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Abstract—The reconfigurable intelligent surface (RIS) with
massive low-cost passive reflecting elements integrated on a
planar surface has the ability to favourably reconfigure the wire-
less propagation environment, thereby significantly improving
the performance of wireless communication networks. In this
work, we consider uplink (UL) channel estimation for the RIS
assisted millimeter-wave multiuser multiple-input single-output
beamspace system where the base station (BS) is equipped
with lens antenna array. This channel state information (CSI)
estimation task is extremely challenging for two reasons. First,
the BS only has limited number of radio frequency chains but
the size of beamspace channel is very large. Second, the number
of passive components in the RIS is abundance but they lack
signal processing capabilities. By exploiting the parallel factor
(PARAFAC) decomposition of the received signals, we derive
an iterative estimation algorithm, called unitary approximate
message passing (UAMP), to accurately estimate the channels
between the BS and the RIS as well as the channels between the
RIS and the users. To guide the selection of the system param-
eters, we provide the uniqueness conditions for our PARAFAC
decomposition based channel estimation. To theoretically verify
the efficiency of our UAMP algorithm, the Cramér-Rao bound
(CRB) of the estimation is also derived. Besides, we investigate
the achievable downlink (DL) sum rate for the channel estimation
obtained by the proposed algorithm by using the maximum
power beam selection, the optimized phase shift matrix and the
zero forcing precoding. Extensive simulation results demonstrate
the excellent mean squared error (MSE) performance of our
UAMP estimation algorithm. In particular, for sufficiently high
UL signal-to-noise ratio, the MSE of our channel estimation
reaches the CRB. Simulation results also show that the DL sum
rate achieved by the estimated CSI is very close to that obtained
by the perfect CSI. Theoretical analysis and simulation results
thus validate the effectiveness and reliability of our beamspace
channel estimation approach.

Index Terms—Reconfigurable intelligent surface, lens an-
tenna array, millimeter-wave, beamspace, channel estimation,
PARAFAC, Cramér-Rao bound, downlink sum rate.
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I. INTRODUCTION

Millimeter wave (mmWave) communication with its abun-
dantly available bandwidth, high data rate and interference
immunity is considered as a critical technology for the fifth
generation (5G) and future mobile communications [1], [2].
However, severe path loss occurs during signal transmission
due to high mmWave frequency. To compensate for this high
path loss, antenna array with large number of antenna elements
is required to obtain high beamforming gain.

Conventional multiple-input multiple-output (MIMO) tech-
nology with a dedicated radio frequency (RF) chain for each
antenna is impractical for mmWave MIMO systems, because
of substantial hardware costs and extremely high energy
consumption [3], [4]. The work [5] proposed the concept of
beamspace MIMO, which is capable of reducing the number
of RF chains required. A lens antenna array consists of an
electromagnetic lens and antennas placed at its focal surface,
which focuses signals from different directions on different
antennas to convert the spatial channel into a beamspace
channel. Owing to the sparse nature of mmWave beamspace
channels, a small number of dominant beams exist and they
can be selected, to reduce the number of required RF chains
and hence the dimensionality of MIMO systems. This results
in low-complexity and low-cost mmWave MIMO systems.
Extensive researches have been conducted for many topics of
beamspace MIMO systems, including beam selection, channel
estimation, etc. To address the issues of interference and the
waste of RF links in traditional beam selection schemes,
the work [6] designed an interference-aware beam selection
scheme based on the sum rate maximization. The study [7] de-
signed a phase-shifter-assisted beam selection network, which
uses a single RF chain to support multiple focused energy
beams so as to mitigate beam skew in wideband mmWave
MIMO systems. A support detection based channel estimation
scheme was proposed in [8], which is capable of obtaining
high estimation accuracy with reliable performance and low
pilot overhead. Inspired by the classical successive interference
cancellation for multiuser detection, the work [9] investigated
a successive support detection based beamspace channel esti-
mation scheme, which does not impose the common support
assumption.

Although lens antenna array is capable of reducing the
cost and complexity of mmWave communication system, it
does not have the ability to address the critical issue that
mmWave signal is easily blocked by obstacles. With the recent
advance in digital metamaterials, the reconfigurable intelligent
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surface (RIS) has been developed into a practical technology
with great potential for solving the problem of blind spots
in coverage. Moreover, it is also capable of extending signal
coverage, overcoming transmission distance limitations and
tackling transmission signal blockage difficulties in mmWave
band. RIS is made of electromagnetic material and has a
unique physical structure. Specifically, it consists of many pas-
sive reflection units, integrated on a two-dimensional surface,
and each reflection unit is independently controllable. Through
joint regulation of the reflection units, the purpose of adjusting
phase, amplitude and other parameters of the incident signal
can be achieved, and the signal propagation channel can be
favourably changed. Therefore, RIS is regarded as a crucial
technology in the 5G and the sixth generation (6G) of mobile
communications [10]–[12].

Efficient and accurate channel estimation is crucial for prac-
tical implementation of RIS assisted communication systems.
Although it is revealed that the achievable rate gains of the
active RIS would be superior than that of the passive RIS
if the power budget and the number of RIS elements satisfy
certain conditions [13], it is worth noting that we only consider
the channel estimation for the passive RIS instead of the
active RIS in this paper. A simple on/off two-state channel
estimation protocol was invented in [14]. The protocol adjusts
one RIS reflective unit at a time to estimate the cascade
channels corresponding to individual reflective elements one
by one. However, turning off all but one reflector element
leads to a very weak RIS’s reflected power, thereby reducing
the received signal-to-noise ratio (SNR) and consequently
resulting in a poor channel estimation accuracy. To avoid
this shortcoming, the authors of [15] designed the RIS phase
shift matrix as a discrete Fourier transform (DFT) matrix and
proposed the least square (LS) estimator for the cascaded
channels. MmWave channels are known to be inherently
sparse. Exploiting this property and based on Katri-Rao and
Kronecker products, the work [16] converted the cascaded
channel estimation into a sparse signal recovery problem.
Further applying the orthogonal matching pursuit algorithm for
sparse signal recovery, the corresponding cascaded channels
can be estimated with relatively low training overhead. In
[17], a dual time-scale channel estimation framework and a
dual-link guided transmission scheme were proposed, which
significantly reduces the training overhead. Based on the
innovative uplink (UL) channel estimation protocol, the study
[18] presented a method with low pilot overhead by employing
the unvarying angle information and the linear correlation of
multiuser cascaded paths as well as the partial channel state
information (CSI) of the common BS-RIS channel. Distributed
machine learning was employed to estimate the downlink (DL)
channels for RIS assisted wireless communications [19], which
obtains better channel estimation performance compared with
the conventional approaches.

Furthermore, the authors of [20] strove to simultaneously
acquire both the direct channel from the user to the BS and
the cascaded channel by leveraging array signal processing
techniques. They proposed a two-stage channel estimation
algorithm that begins with the estimation of the angle of
departure (AoD) at the RIS using semi-definite programming

(SDP). This is followed by the estimation of the direct channel
angle and the angle of arrival (AoA) at the BS using an
iterative quadratic maximum likelihood approach. However,
the separate estimation processes for AoD and AoA necessi-
tate an additional step involving a computationally intensive
data association procedure. In [21], two flexible and resilient
approaches were introduced for the concurrent estimation of
direct and reflective channels in mmWave systems assisted
by RIS under dynamic channel conditions. In these systems,
the RIS is equipped with more versatile, arbitrarily shaped
elements. The authors conceptualized the challenge as a robust
low-rank sparse matrix reconstruction issue and crafted an al-
ternating optimization-based solution and a machine learning-
based solution.

In addition, some researchers have tackled the channel esti-
mation problem in RIS aided systems through tensor. Tensor as
an effective mathematical tool has a wide range of applications
in various signal processing problems [22], [23]. The basic
principle of tensor decomposition is to decompose a high-
dimensional tensor into a linear combination of multiple rank-
one matrices, thereby facilitating low-complexity and effective
estimation of multiple large MIMO channel matrices [24],
[25]. The tensor modeling approach was exploited in [26] to
construct the received signal into a three-dimensional tensor.
Then based on the parallel factor (PARAFAC) decomposi-
tion of the received signal, two channel estimation methods
were proposed. The first method solves the rank-1 matrix
approximation problem based on the Khatri-Rao factorization
to achieve the closed-form cascaded MIMO channel solution,
and the second method uses an iterative bilinear alternative LS
(ALS) algorithm to find a cascaded MIMO channel estimate.
The study [27] considered the UL channel estimation for
an RIS aided multiuser multiple-input-single-output (MISO)
system. More specifically, a parallel factorization-based chan-
nel estimation framework was proposed to unfold the final
cascaded channel model, and two iterative algorithms were
employed to estimate the cascaded MIMO channel matrices,
namely, the channel matrix between the base station (BS)
and the RIS as well as the channel matrix between the RIS
and the users. The literature [28] manipulated the fourth-order
tensors for estimating RIS assisted communication channels
for the first time by jointly utilizing tensor structures and
low-rank characteristics of mmWave channels. The work [29]
considered a dual RIS aided MIMO system and introduced
an estimation algorithm based on ALS using Tucker 2 tensor
structure, to estimate the cascaded MIMO channels. The work
[30] considered the DL RIS assisted mmWave system employ-
ing orthogonal frequency division multiplexing transmission.
In this work, the received signal is represented as a low-rank
third-order tensor by exploring the sparse scattering properties
inherent to mmWave channels, to facilitate channel estimation.
The study [31] utilized both compressed sensing and tensor
decomposition techniques to derive a channel estimation al-
gorithm with low training overhead.

To exploit the advantages of both RIS and lens antenna
array simultaneously, this paper considers the RIS aided
mmWave multiuser MISO beamspace system where the BS
is equipped with lens antenna array. As discussed previously,
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RIS has the ability to favourably reconfigure the wireless
propagation environment, thereby extending the coverage of
signal and improving the quality of the received signal, while
lens antenna array contributes to the reduction in the number
of RF chains required, thereby reducing costs and saving
energy. Consequently, this system improves communication
quality at low cost, low energy consumption as well as low
complexity [32], [33]. However, channel estimation in this
system is an extremely challenging task for two reasons.
First, the BS only has limited number of RF chains but the
size of beamspace channel is very large. Second, although
the number of passive components in the RIS is abundance,
it lacks signal processing capabilities. We establish a cor-
responding relationship between the RIS aided beamspace
multiuser MISO communication system model and the tensor
model. By utilizing the PARAFAC signal structure, we propose
an effective algorithm, called unitary approximate message
passing (UAMP), to estimate channels. To the authors’ best
knowledge, this paper is the first work of using the tensor ap-
proach to solve the beamspace channel estimation for the RIS
aided mmWave multiuser MISO communication system. We
use both analysis and simulation to validate the effectiveness
and reliability of our proposed algorithm. The contributions of
this paper are as follows.

• By modeling the received pilot signal as a third-order
tensor, the channel estimation problem is formulated
for the RIS-aided mmWave multiuser MISO beamspace
system. By utilizing the PARAFAC decomposition, high
dimensional tensor that includes the unknown channels
is unfolded into three different terms. Afterward, UAMP
is adopted to estimate the channels in an iterative way.

• We analyze the uniqueness conditions for our PARAFAC
decomposition based UAMP algorithm, which offers use-
ful guidance for selecting the system parameters. More
importantly, the Cramér-Rao Bound (CRB) associated
with our algorithm is derived to demonstrate its perfor-
mance validity and efficiency.

• Utilizing the proposed maximum power (MP) beam se-
lection at the BS, the optimized phase shift matrix at the
RIS as well as the zero forcing (ZF) precoding at the BS,
we calculate the DL sum rate for the RIS-aided mmWave
multiuser MISO system using the channel estimation

obtained by our proposed algorithm, thereby verifying
its effectiveness.

Table I compares our proposed UAMP algorithm with
the existing channel estimation algorithms for RIS assisted
communication systems.

It is worth emphasizing that our UAMP algorithm is differ-
ent from the existing tensor-based methods. This is because
the RIS-aided mmWave multiuser MISO beamspace system
considered in this paper is totally different from the systems
considered in the works [26]–[31]. It is well understood
that the signal models constructed for different systems are
very distinct, and the way of formulating the tensor in our
paper is not the same as those formulated in [26]–[31]. Since
the PARAFAC decomposition of the tensor model has the
trilinearity property, the three modes of the constructed tensors
within the channels that need to be estimated can be achieved.
Our UAMP method can then estimate the channels by utilizing
the algebraic structure of the PARAFAC model.

The paper is structured as follows. Section II provides
a detailed description of the RIS-aided mmWave multiuser
MISO beamspace communication system and the tensor signal
modeling. Our PARAFAC-based channel estimation algorithm
is developed in Section III, where its feasibility conditions are
also analyzed. The CRB for the proposed UAMP algorithm is
derived in Section IV. Section V is devoted to the achievable
DL sum rate of the system using the proposed channel esti-
mate, where the BS adopts the proposed MP beam selection
and the ZF precoding, while the RIS employes the optimized
phase shift matrix. Section VI presents the simulation results,
and finally Section VII offers our conclusions.

II. MMWAVE MULTIUSER MISO BEAMSPACE SYSTEM
AND TENSOR MODEL

This section first introduces the RIS-aided mmWave
multiuser MISO UL beamspace communication system. A
PARAFAC decomposition based on the third-order tensor of
the received pilot signal is then developed for the cascade
channel model of this communication system.

A. Beamspace MIMO Induced by RIS

Fig. 1 illustrates the RIS-aided mmWave multiuser MISO
beamspace system, where the BS is equipped with an uniform

TABLE I
COMPARISON OF CHANNEL ESTIMATION ALGORITHMS FOR RIS ASSISTED COMMUNICATION SYSTEMS.

Classification Year Paper Contributions

Non-tensor methods

2019 Mishra and Johansson [14] Two-state channel estimation protocol
2020 Jensen and De Carvalho [15] The RIS phase shift matrix and the LS channel estimator
2020 Wang et al. [16] A sparse signal recovery problem converted by channel estimation
2021 Hu et al. [17] A dual time-scale channel estimation framework and a dual-link guided transmission scheme
2022 Zhou et al. [18] A three-stage uplink channel estimation protocol and a one-dimensional search method
2022 Dai and Wei [19] Distributed machine learning-aided channel estimation
2023 Noh et al. [20] Two-stage channel estimation algorithm
2024 Chu et al. [21] An alternating optimization-based solution and a machine learning-based solution

Tensor-based methods

2019 de Araújo et al. [26] Two channel estimation methods based on the PARAFAC decomposition
2021 Wei et al. [27] A parallel factorization based channel estimation framework and two iterative algorithms
2021 Gherekhloo et al. [28] The fourth-order tensors-aided method
2022 Ardah et al. [29] An estimation algorithm based on ALS using Tucker 2 tensor structure
2022 Zheng et al. [30] A structured canonical polyadic decomposition-based method
2022 Zhang et al. [31] Compressed sensing and tensor decomposition-based channel estimation algorithm

This paper The first PARAFAC based beamspace channel estimation framework and UAMP algorithm
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user 1

user 2
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Fig. 1. Illustration of RIS-assisted mmWave multiuser MISO beamspace
communication system.

planar array (UPA) of K lens antennas and KRF RF chains,
while the RIS has N reflecting elements and can individually
adjust its reflection coefficients. The system operates on the
time division duplexing mode and supports M single-antenna
users on the same time-frequency resource block. It is assumed
that there are no line-of-sight or direct links between the
BS and the users since the mmWave links are extremely
vulnerable to blockage.

The end-to-end cascade communication channel consists
of the channel between the RIS and the BS as well as the
channel between all the M users and the RIS. The former is
represented by the channel matrix G ∈ CK×N , and the latter
is represented by the channel matrix H =

[
h1,h2, · · · ,hM

]
∈

CN×M , where hm ∈ CN×1 stands for the channel between
the m-th user to the RIS for 1 ≤ m ≤ M . Since the
system carrier is mmWave frequency, the well known Saleh-
Valenzuela channel model [34] is adopted to represent G as

G =

√
KN

LG

LG∑
l1=1

αGl1aBS
(
θbl1 , φ

b
l1

)
aRIS

(
θrl1 , φ

r
l1

)T
. (1)

In (1), LG is the number of paths in the channel between
the RIS and the BS, while αGl1 , θbl1 (φbl1 ), and θrl1 (φrl1 ) stand
for the complex path gain, the azimuth (elevation) angle at
the BS, and the azimuth (elevation) angle at the RIS for
the l1-th path, respectively. Furthermore, the normalized array
steering vectors for the BS and the RIS are denoted by
aBS
(
θb, φb

)
∈ CK×1 and aRIS

(
θr, φr

)
∈ CN×1, respectively.

Given a K1×K2 UPA, where K = K1×K2, its array steering
vector a(θ, φ) ∈ CK×1 is given by

a(θ, φ) = aaz(θ)⊗ ael(φ)T, (2)

where ⊗ denotes the Kronecker product, aaz(θ) =
1√
K1

[
e
−j2πd sin(θ)k1

λ ,∀k1 ∈ I (K1)
]
∈ CK1×1 and ael(φ) =

1√
K2

[
e
−j2πd sin(φ)k2

λ ,∀k2 ∈ I (K2)
]
∈ CK2×1 are the azimuth

and elevation steering vectors, respectively. Here λ is the
carrier wavelength, d is the antenna spacing which is set
d=λ/2, and we define I(k) =

{
s− k−1

2 , s = 0, 1, . . . , k−1
}

.
The array steering vector of the RIS can be obtained in the
same way by replacing K with N . Similarly, the channel hm
is given by

hm =

√
N

Lm

Lm∑
l2=1

αml2 aRIS(θml2 , φ
m
l2 ), (3)

1

length of training
TNL P T  Q
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Fig. 2. Pilot overhead requirements for the considered system.

where the channel between the m-th user and the RIS has Lm
paths, αml2 and θml2 (φml2 ) are the complex path gain and the
azimuth (elevation) angle at the RIS for the l2-th path.

To reduce the number of RF chains, i.e., achieving KRF �
K, and hence reducing hardware costs and energy consump-
tion, the BS adopts a lens antenna array, which acts as a spatial
DFT matrix U ∈ CK×K on the wireless channel to convert it
into a beamspace channel. The matrix U consists of the array
steering vectors of K orthogonal directions (beams) that cover
the entire angle space and it is given by

U = [a (i/K1, j/K2) ,∀i ∈ I (K1) ,∀j ∈ I (K2)]
H
. (4)

Assume that the RIS has P feasible phase configurations,
and they are collected in a RIS phase shift matrix Φ∈CP×N ,
where the p-th row of Φ, denoted as [Φ]p,:, represents the
p-th feasible phase configuration. Obviously, P is no more
than N . During the pilot transmission, the BS employs Q
combiners Wq ∈ CKRF×K , q = 1, 2, · · · , Q, Q = K/KRF ,
to combine the received UL signal matrices one after another.
Further assume that the UL training period corresponding to
the p-th feasible phase configuration and the q-th combiner
consists of T consecutive time slots, as shown in the blue
blocks of Fig. 2, and the transmitted pilot signals are collected
in the matrix Xp,q ∈ CM×T . Then with the RIS set at its p
feasible phase configuration and the BS employing the q-th
combiner, the BS’s baseband signal matrix Yp,q ∈ CKRF×T
can be expressed as

Yp,q = WqUGDp(Φ)HXp,q + WqZp,q, (5)

where Dp(Φ)=diag
(
[Φ]p,:

)
∈ CN×N is the diagonal matrix

with [Φ]p,: as its diagonal entries, and Zp,q ∈ CK×T is the
complex additive white Gaussian noise (AWGN) matrix whose
elements have zero mean and variance σ2/2 per dimension.
To ensure the efficiency of channel estimation, T must be no
smaller than M . Typically orthogonal pilot signals are adopted,
i.e., Xp,qXH

p,q = IM . Overall, the pilot overhead requirements
for the considered system is LTN = Q × P × T , which is
depicted in Fig. 2. For convenience, we set Xp,q = X for
1 ≤ p ≤ P and 1 ≤ q ≤ Q.

B. Tensor Signal Modeling

After the received UL signal is dealt with the Q combiners,
we stack the resulting Yp,q for 1 ≤ q ≤ Q in the column
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direction to yield

Ỹp =

 Yp,1
...

Yp,Q

 =

 W1

...
WQ

UGDp(Φ)HX +

 W1Zp,1
...

WQZp,Q


=WUGDp(Φ)HX + Z̄p. (6)

We design W ∈ CK×K in (6) as a DFT matrix. Right
multiplying XH on the both sides of Eq. (6) yields R̃p =

ỸpXH ∈ CK×M as

R̃p = WUGDp(Φ)H + Z̃p, (7)

where Z̃p = Z̄pXH ∈ CK×M . Eq. (7) can be rewritten as

R̃p = FDp(Φ)H + Z̃p, (8)

where F=WUG∈CK×N . We define the noiseless version of
R̃p as Rp=FDp(Φ)H∈CK×M .

According to the conditions of multi-modal PARAFAC
decomposition [35], the matrix Rp is the p-th frontal matrix
slice of a corresponding three-way tensor R ∈ CK×M×P ,
and each entry of Rp, denoted as rk,m,p, 1 ≤ k ≤ K and
1 ≤ m ≤M , is given by

rk,m,p = [Rp]k,m =

N∑
n=1

[F]k,n [H]n,m [Φ]p,n, (9)

where [A]i,j denotes the (i, j)-th element of A. Therefore, the
noiseless received signal tensor R has the three PARAFAC
factors of F, H and Φ, and the PARAFAC decomposition of
R can be expressed as [26]

R = I3,N ×1 F×2 H×3 Φ. (10)

It can easily be seen that the PARAFAC decomposition of R
is trilinear in F, H and Φ and, therefore, the three modes of
R can be derived as [35]

R1 =
(
HT �Φ

)
FT ∈ CPM×K , (11)

R2 = (Φ� F) H ∈ CKP×M , (12)

R3 =
(
F�HT

)
ΦT ∈ CMK×P , (13)

in which � represents the Khrtri-Rao product. In the follow-
ing, by exploiting this algebraic structure of the PARAFAC
decomposition, we formulate a method to estimate G and H.

III. PROPOSED PARAFAC-DECOMPOSITION BASED
METHOD

In this section, by utilizing the PARAFAC decomposition
formulated in Section II, an iterative estimation algorithm,
called UAMP, is derived to estimate the channel matrices
G and H. The feasibility conditions of the proposed UAMP
algorithm are also analyzed.

A. UAMP Algorithm for Channel Estimation

Similar to the multi-modal PARAFAC decomposition of the
noiseless received signal matrices Rp, ∀p, all the P noisy
received signal matrices R̃p in (7) have the corresponding
three-way tensor R̃ ∈ CK×M×P given by

R̃ = R+ Z̃, (14)

where Z̃ ∈ CK×M×P is the three-way tensor that corresponds
to all the P AWGN matrices Z̃p in (7). Similar to the unfolded
form for R given in (11)-(13), the noisy version R̃ has the
unfolding form as follows:

R̃
1

=
(
HT �Φ

)
FT + Z̃

1
∈ CPM×K , (15)

R̃
2

= (Φ� F) H + Z̃
2
∈ CKP×M , (16)

R̃
3

=
(
F�HT

)
ΦT + Z̃

3
∈ CMK×P . (17)

The k-th column of R̃
1
, denoted as [R̃

1
]:,k, 1 ≤ k ≤ K, is

given by
[R̃

1
]:,k = A1[FT]:,k + [Z̃

1
]:,k, (18)

where A1 = HT � Φ. Similarly, the m-th column of R̃
2
,

denoted as [R̃
2
]:,m, 1 ≤ m ≤M , is given by

[R̃
2
]:,m = A2[H]:,m + [Z̃

2
]:,m, (19)

where A2 = Φ� F. We regard R̃
1

and R̃
2

as the observation
matrices, while A1 and A2 as the measurement matrices.

The variant of approximate message passing based on an
unitary transform [36], i.e., UAMP, is leveraged for channel
estimation in this paper, which achieves not only low com-
plexity but also high robustness. Denote Ĝ(i) and Ĥ(i) as
the estimates of G and H for the i-th iteration, respectively.
Algorithm 1 presents the step-by-step algorithmic process
for the proposed UAMP-based iterative channel estimation
approach. More explanations of this UAMP algorithm are
provided below.

1) Initial Channel Estimation: To provide a feasible Φ for
the UAMP algorithm, we first generate an N×N DFT matrix
and then choose its first P rows as Φ, i.e., Φ is a P × N
DFT matrix. We initiate Ĝ(0) and Ĥ(0) through (1) and (3),

and then obtain F̂(0) = WUĜ(0), Â
1

(0) = Ĥ
T

(0) � Φ and

Â
2

(0) = Φ� F̂(0) according to (8), (18) and (19), respectively.
Recalling (1), (3) and (8), it is obvious that the elements of F
and H obey complex Gaussian distribution with mean 0 and
variance 1. Therefore, the prior means γ1

k,mean and variances
τ 1
k,var of [FT]:,k, 1 ≤ k ≤ K are 0N and 1N , the prior means
γ2
m,mean and variances τ 2

m,var of [H]:,m, 1 ≤ m ≤M are also
0N and 1N , where 0N and 1N represent all-zero and all-one
column vectors, respectively. The posterior means γ̃1

k,mean and

variances τ̃ 1
k,var of [F̂

T
]:,k, 1 ≤ k ≤ K as well as the posterior

means γ̃2
m,mean and variances τ̃ 2

m,var of [Ĥ]:,m, 1 ≤ m ≤ M
are initialized the same as the corresponding prior means and
variances.

2) UAMP Channel Estimation Update: Based on singular
value decomposition (SVD) and unitary transform, F̂ can
be constructed by steps from 2 to 3 in Algorithm 1. In
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Algorithm 1 Proposed Channel Estimation Based on UAMP

Input: Give feasible Φ, observation matrices R̃
1

and R̃
2
,

prior means γ1
k,mean, γ2

m,mean and variances τ 1
k,var, τ

2
m,var

(1 ≤ k ≤ K, 1 ≤ m ≤M ), noise variance σ2, termination
threshold δ=10−5, maximum number of UAMP iterations
Imax, maximum number of updates for posteriors Jmax;
Initialize Ĥ(0) and F̂(0), measurement matrices Â

1

(0) and

Â
2

(0), posterior means γ̃1
(0),k,mean, γ̃2

(0),m,mean and variances
τ̃ 1
(0),k,var, τ̃

2
(0),m,var (1 ≤ k ≤ K, 1 ≤ m ≤M );

Set iterative index i = 0;
1: do i = i+ 1;
2: Compute SVD Â

1

(i−1) = U1Λ1V1;

3: for 1 ≤ k ≤ K; % compute F̂
T
(i) column by column

3.a: Unitary transform r1 = (U1)H[R̃
1
]:,k;

3.b: Set Ω1 =Λ1V1, s1(−1)=0PM , iterative index j=0;
3.c: Repeat; % update posterior means and variances
3.d: Update τ 1

t = |Ω1|2 τ̃ 1
(j),k,var;

3.e: Update t1 = Ω1γ̃1
(j),k,mean − τ

1
t ◦ s1(j−1);

3.f: Update τ 1
s = 1◦/

(
τ 1
t + σ21PM

)
;

3.g: Update s1(j) = τ 1
s ◦ (r1 − t1);

3.h: Update 1◦/τ 1
q = |(Ω1)H|2 τ 1

s ;
3.i: Update q1 = γ̃1

(j),k,mean + τ 1
q ◦
(
(Ω1)Hs1(j)

)
;

3.j: Update τ̃ 1
(j+1),k,var = 1◦/

(
1◦/τ 1

k,var + 1◦/τ 1
q

)
;

3.k: Update γ̃1
(j+1),k,mean = τ̃ 1

(j+1),k,var ◦
(

q1◦/τ 1
q +

γ1
k,mean◦/τ 1

k,var

)
;

3.l: Set j = j + 1;
3.m: Until j = Jmax;
3.n: Construct [F̂

T
(i)]:,k = γ̃1

(j),k,mean;
end for;

4: Update Ĝ(i) by Ĝ(i) = (WU)†F̂(i);

5: Compute SVD Â
2

(i−1) = U2Λ2V2;
6: for 1 ≤ m ≤M ; % compute Ĥ(i) column by column

6.a: Unitary transform r2 = (U2)H[R̃
2
]:,m;

6.b: Set Ω2 =Λ2V2, s2(−1) =0KP , iterative index j=0;
6.c: Repeat; % update posterior means and variances
6.d: Update τ 2

t = |Ω2|2 τ̃ 2
(j),m,var;

6.e: Update t2 = Ω2γ̃2
(j),m,mean − τ

2
t ◦ s2(j−1);

6.f: Update τ 2
s = 1◦/

(
τ 2
t + σ21KP

)
;

6.g: Update s2(j) = τ 2
s ◦ (r2 − t2);

6.h: Update 1◦/τ 2
q = |(Ω2)H|2 τ 2

s ;
6.i: Update q2 = γ̃2

(j),m,mean + τ 2
q ◦
(
(Ω2)Hs2(j)

)
;

6.j: Update τ̃ 2
(j+1),m,var =1◦/

(
1◦/τ 2

m,var + 1◦/τ 2
q

)
;

6.k: Update γ̃2
(j+1),m,mean = τ̃ 2

(j+1),m,var ◦
(

q2◦/τ 2
q +

γ2
m,mean◦/τ 2

m,var

)
;

6.l: Set j = j + 1;
6.m: Until j = Jmax;
6.n: Construct [Ĥ(i)]:,m = γ̃2

(j),m,mean;
end for;

7: Update Â
1

(i) = Ĥ
T

(i) �Φ;

8: Update Â
2

(i) = Φ� F̂(i);
9: Until i = Imax or convergence condition (21) is met;

Output: Ĝ(i) and Ĥ(i) are estimates of G and H.

particular, the inner loop 3.c-3.m involves Jmax updates of
the posterior means γ̃1

k,mean and variances τ̃ 1
k,var of [F̂

T
]:,k for

1 ≤ k ≤ K. Here, |C|2 represents the elementwise magnitude
squared operation on C, and we use ◦ and ◦/ to denote
the elementwise product and elementwise division operations,
respectively. Then Ĝ is updated as

Ĝ =(WU)†F̂, (20)

where C† denotes the pseudo-inverse of C. In a similar way,
Ĥ can be constructed by steps from 5 to 6 in Algorithm 1,
and similarly the inner loop 6.c-6.m performs Jmax updates
of the posterior means γ̃2

m,mean and variances τ̃ 2
m,var of [Ĥ]:,m

for 1 ≤ m ≤M .
3) Iteration Termination Criterion: The UAMP procedure

converges either when the channel estimation errors become
sufficiently small, specifically, when

∥∥∥Ĥ(i) − Ĥ(i−1)

∥∥∥2
F

∥∥∥Ĥ(i)

∥∥∥−2
F
≤ δ

and ‖Ĝ(i) − Ĝ(i−1)
∥∥2
F

∥∥ Ĝ(i)‖−2F ≤ δ,
(21)

where δ is a small positive threshold, e.g., δ = 10−5. Or the
algorithm is terminated when a preset maximum number of
iterations Imax is exhausted, i.e., when i = Imax.

The computational complexity of the proposed UAMP al-
gorithm for estimating the channels F and H is next analyzed.
It can be seen from Algorithm 1 that the complexity of
SVD for Â

1
and Â

2
are c1 = min{N(PM)2, N2PM} and

c2 =min{N(PK)2, N2PK}, respectively, and the complexity
of the main body for F̂ and Ĥ are O(2N2PM + 2P 2M2)
and O(2N2PK + 2P 2K2), respectively. In summary, the
total complexity of the proposed algorithm is O(c1 + c2 +
2N2P (M +K) + 2P 2(M2 +K2)) per iteration. By contrast,
the complexity of the ALS algorithm [27] is O(2N3 +
4N2P (M +K) + 4NPMK) per iteration. Since the number
of RIS reflecting elements N is much larger than the other
system parameters, the complexity of our proposed algorithm
is on the order of N2 and the complexity of the ALS [27] is on
the order of N3. Therefore our algorithm imposes significantly
less computational complexity than the ALS.

B. Uniqueness Condition

The feasibility of our UAMP algorithm depends on the
uniqueness of the PARAFAC decomposition. To establish the
uniqueness condition for our UAMP algorithm, we employ the
uniqueness conditions for the PARAFAC model [37]. Based
on the established identifiability condition, we can infer useful
system design suggestions. Denote the Kruskal rank or k-rank
of A by kA. By leveraging the identifiability theorem of the
PARAFAC model, it can be demonstrated that if

kF + kH + kΦ ≥ 2N + 2, (22)

the decomposition of R is unique up to permutation and scal-
ing ambiguities [38]. In other words, if two triples

(
F,H,Φ

)
and

(
F,H,Φ

)
both decompose R into N rank-one arrays,

there must exist an N×N permutation matrix Π and three
N ×N diagonal scaling matrices Λi with i = 1, 2, 3 and
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Λ1Λ2Λ3 = IN , such that F = FΠΛ1, H = HΠΛ2 and
Φ=ΦΠΛ3.

Inequality (22) establishes the sufficient condition for the
identifiability of (F,H,Φ). Because the azimuth and elevation
angles between the users and the RIS are usually different, H
has full k-rank. As Φ is a DFT matrix, it also has full k-rank.
Since W and U both have full k-rank according to (8), the rank
of F equals to that of G, which is rank deficient. Moreover,
the k-rank of G is equal to the number of paths between the
RIS and the BS. Hence, (22) becomes

min{LG, N}+ min{N,M}+ min{P,N} ≥ 2N + 2. (23)

The number of RIS elements N in a real deployment is very
large, and N is greater than the number of paths LG between
the RIS and the BS or the number of users M . Also it is
obvious that P ≤ N since Φ is the first P rows chosen from
an N × N DFT matrix. Therefore, the uniqueness condition
for our PARAFAC decomposition is not easily satisfied.

To resolve this difficulty, we partition the N -element RIS
in groups of non-overlapping sub-cells. For example, consider
the system with LG = 5, M = 16 and an RIS of N = 128
elements, and we choose P = N . Since N � max{LG,M},
the condition (23) is not met. We can partition the 128-element
RIS into 8 non-overlapping 16-element sub-RISs. Each 16-
element sub-RIS meets the condition (23). The proposed
UAMP algorithm can be applied to estimate the channels re-
lated to the 8 sub-RISs. Concatenating the 8 channel estimates
for all the 8 sub-RISs properly yields the desired channel
estimation for the whole 128-element RIS. Overall, the useful
system design guidelines can be obtained by (23), in which
the system parameters LG, M , P and N should meet the
uniqueness condition for our PARAFAC decomposition.

IV. CRAMÉ-RAO LOWER BOUND ANALYSIS

For the zero-mean AWGN received signal model (8), the
proposed UAMP algorithm provides the maximum likelihood
estimations of G and H, which is asymptotically unbiased [39].
On the other hand, the CRB yields theoretically lower bound
on the achieved variances of an unbiased estimate. Therefore,
we derive the CRBs for the estimations of G and H obtained
by our UAMP algorithm, which offers the ultimate achievable
estimation accuracy for our UAMP algorithm. As pointed out
in Subsection III-B, the trilinear decomposition model suffers
from the inherent permutation and scale ambiguity. To remove
the scaling ambiguity, thereby assisting the derivation of the
CRBs, we fix the first column of H to [H]:,1 = 1N , where
1N is the N -dimensional vector with all the elements equal
to 1 and [A]:,j denotes the j-th column of A. Hence, the total
number of the unknown complex parameters is reduced to
(K +M − 1)N .

Consider the noisy version R̃ of the K×M ×P three-way
tensor with typical element

r̃k,m,p =

N∑
n=1

[F]k,n [H]n,m [Φ]p,n + z̃k,m,p. (24)

Recalling (15)-(17), the likelihood of R̃ can be expressed in
the following three equivalent ways:

L
(
R̃
)

=
1

(πσ2)
KMP

e
− 1
σ2

∑K
k=1

∥∥∥[R̃1
]
:,k
−
(

HT�Φ
)

ak
∥∥∥2

=
1

(πσ2)
KMP

e
− 1
σ2

∑M
m=1

∥∥∥[R̃2
]
:,m
−(Φ�F)bm

∥∥∥2

=
1

(πσ2)
KMP

e
− 1
σ2

∑P
p=1

∥∥∥[R̃3
]
:,p
−
(

F�HT
)

cp
∥∥∥2
, (25)

where ak =
[
FT]

:,k
, bm = [H]:,m and cp =

[
ΦT
]
:,p

. Further
collect all the unknown parameters ak, ∀k, and bm, ∀m, into
the equivalent 1×2(K+M −1)N complex parameter vector

ϑ=
[
aT1 , . . . , a

T
K ,b

T
2 , . . . ,b

T
M , a

H
1 , . . . , a

H
K ,b

H
2 , . . . ,b

H
M

]
. (26)

Then we can express the log-likelihood function of ϑ as

f(ϑ)=−KMP ln(πσ2)− 1

σ2

K∑
k=1

∥∥∥[R̃1]
:,k
−(HT �Φ)ak

∥∥∥2
=−KMP ln

(
πσ2

)
− 1

σ2

M∑
m=1

∥∥∥[R̃2]
:,m
−(Φ� F)bm

∥∥∥2.
(27)

The complex Fisher information matrix (FIM) of ϑ is defined
by

Ω(ϑ) = E

{(
∂f(ϑ)

∂ϑ

)H(
∂f(ϑ)

∂ϑ

)}
, (28)

in which the partial derivatives of f(ϑ) with respect to the
unknown parameters are given by

∂f(ϑ)
∂ak,n

= 1
σ2

([
R̃

1]
:,k
−(HT �Φ)ak

)H
(HT �Φ)en,

∂f(ϑ)
∂bm,n

= 1
σ2

([
R̃

2]
:,m
−(Φ�H)bm

)H
(Φ�H)en,

∂f(ϑ)
∂a∗k,n

=
(
∂f(ϑ)
∂ak,n

)∗
, ∂f(ϑ)
∂b∗m,n

=
(
∂f(ϑ)
∂bm,n

)∗
,

(29)

where en is the n-th unit coordinate vector.
Because z̃k,m,p is independent in the dimensions of k, m

and p, we have

E
{
z̃k1,m1,p1 z̃

∗
k2,m2,p2

}
= σ2δk1,k2δm1,m2

δp1,p2 , (30)

E {z̃k1,m1,p1 z̃k2,m2,p2} = E
{
z̃∗k1,m1,p1 z̃

∗
k2,m2,p2

}
= 0. (31)

Therefore, it can be shown that the FIM can be written as

Ω(ϑ) =

[
Ψ 0
0 Ψ∗

]
, (32)

where the subblock Hessian matrix Ψ and the all-zero matrix 0
are both of size (K+M−1)N×(K+M−1)N . Based on (29)
and noting that E

{([
R̃

1]
:,k
− (HT�Φ)ak

)([
R̃

1]
:,k
− (HT�

Φ)ak
)H}

= σ2IN and E
{([

R̃
2]

:,m
− (Φ�F)bm

)([
R̃

2]
:,m
−
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(Φ�F)bm
)H}

= σ2IN as well as (30) and (31), the elements
of Ψ are obtained as

E

{
∂f(ϑ)

∂a∗k1,n1

∂f(ϑ)

∂ak2,n2

}
=

1

σ2
eHn1

(
HT �Φ

)H (
HT �Φ

)
en2

δk1,k2 , (33)

E
{
∂f(ϑ)

∂b∗m1,n1

∂f(ϑ)

∂bm2,n2

}
=

1

σ2
eHn1

(Φ� F)
H

(Φ� F) en2δm1,m2 , (34)

E

{
∂f(ϑ)

∂a∗k1,n1

∂f(ϑ)

∂bm,n2

}
=

1

σ4
eHn1

(
HT �Φ

)H E
{[

Z̃
1]

:,k

[
Z̃
2]H

:,m

}
(Φ� F) en2

, (35)

for 1 ≤ k1, k2 ≤ K and 1 ≤ n1, n2 ≤, N . In (35), the
covariance matrix of the weighted channel AWGN is given
by

E
{[

Z̃
1]

:,k

[
Z̃
2]H

:,m

}
=

σ2



0 · · · 0 · · · 0 · · · 0 · · · 0
. . .

0 · · · 1 · · · 0 · · · 0 · · · 0
0 · · · 0 · · · 1 · · · 0 · · · 0

. . .
0 · · · 0 · · · 0 · · · 1 · · · 0

. . .
0 · · · 0 · · · 0 · · · 0 · · · 0



←(m−1)P+1
←(m−1)P+2

...
←(m−1)P+P

↑ · · · ↑ · · · ↑
k K+k (P−1)K+k (36)

Hence, the CRB for the unbiased estimator of the unknown
channels ϑ is expressed as

Ω−1(ϑ) =

[
Ψ−1 0

0
(
Ψ−1

)∗ ] , (37)

where the inverse of Ψ can be partitioned into

Ψ−1 =

[
CRBF K

KH CRBH

]
, (38)

in which CRBF ∈ CKN×KN is the CRB for the channel
estimation of F, and CRBH∈C(M−1)N×(M−1)N is the CRB
for the channel estimation of H, while the remaining sub-
matrix K ∈ CKN×(M−1)N . Further divide the Hermitian
matrix Ψ into

Ψ =

[
Ψ1 Ψ2

ΨH
2 Ψ3

]
, (39)

with Ψ1 ∈ CKN×KN , Ψ2 ∈ C(M−1)N×(M−1)N and Ψ3 ∈
CKN×(M−1)N . Then the CRBs can be derived derived as

CRBF =
(
Ψ1 −Ψ2Ψ

−1
3 ΨH

2

)−1
, (40)

CRBH =
(
Ψ3 −ΨH

2 Ψ−11 Ψ2

)−1
. (41)

Digital

Precoding

RF Chains

Selecting

Network

   Lens

Antenna

   Array

RIS

Digital

Precoding

RF Chains

Selecting

Network

   Lens

Antenna

   Array

RIS

Fig. 3. DL of the RIS-aided mmWave multiuser MISO system with lens
antenna array and beam selection at the BS.

According to (8), F = WUG. Because W and U are constant
with respect to ϑ, the lower bound of CRB for the estimation
of G, denoted by CRBG, can be derived as

CRBG =

(
Ψ1 −Ψ2Ψ

−1
3 ΨH

2

)−1
‖WU‖2F

. (42)

V. DL SUM RATE PERFORMANCE ANALYSIS

The DL transmission system is illustrated in Fig. 3. Assume
that all the operations are completed within the channel
coherence time during which the CSI remains unchanged.
Define the RIS phase configuration matrix as Θ ∈ CN×N
and the binary selecting matrix B of the size K×KRF whose
elements take the value 0 or 1. Let θ = [θ1, · · · , θN ] and Θ =
diag

([
βejθ1 , · · · , βejθn , · · · , βejθN

])
, where θn ∈ [0, 2π) and

β ∈ [0, 1].1 The BS transmits the unit power complex-valued
information symbol sm, chosen from a discrete constellation
set, to the m-th user with the precoding vector pm, for 1 ≤
m ≤M . Let the BS transmit power be ρ. Then the transmitted
signal at the BS is given by x=

√
ρ
∑M
m=1 pmsm∈CKRF×1.

Therefore, the received signals at the M mobile users, denoted
as y ∈ CM×1, are given by

y = HHΘG̃
H

Bx + n, (43)

where n∈CM×1 is the DL channel’s complex AWGN vector
with zero mean and covariance matrix σ2

DLIM , i.e., n ∼
CN

(
0, σ2

DLIM
)
, and G̃

H
= (UG)H ∈ CN×K defines the DL

beamspace channel matrix whose K columns corresponding
to K orthogonal beams. It can be seen that the received
signals and hence the achievable DL sum rate depends on
the beam selection method represented by the beam selection
matrix B, the RIS setting represented by it phase configuration
matrix Θ, and the precoding method employed by the BS. To
achieve the best attainable DL sum rate for our UAMP channel
estimate, we propose a MP beam selection method, optimize
the RIS’s phase shift matrix and adopt the ZF precoding, using
a centralized algorithm [40].

1In this paper, each element on the RIS is designed to maximize signal
reflection. Thus, we set β = 1.
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A. MP Beam Selection

It is well-known that the beamspace channel G̃
H

has a
sparse structure because mmWave signal propagation has
limited number of dominant scatters. More specifically, only
a few elements of G̃

H
have dominant values near the line-of-

sight direction from the BS to the RIS, as illustrated by the
red-coloured beams in Fig. 3. We propose a MP beam selection
scheme to select KRF beams by taking advantage of this
sparse property of the beamspace channel. It can also easily
be seen that in order to match the RIS with KRF available
RF chains, thereby fully utilizing the available resources of
KRF RF chains, the beam selection matrix B should satisfy∥∥[B]k,:

∥∥
0
≤ 1,

∥∥[B]:,kRF
∥∥
0
≤ 1 and

∑K
k=1[B]k,kRF = 1 for

1 ≤ k ≤ K and 1 ≤ kRF ≤ KRF , where ‖b‖0 denotes the
zero norm of b and [B]i,j represents the (i, j)-th element of
B.

Our proposed MP beam selection scheme selects the KRF

dominant or MP beams from the K selectable beams for the
RIS. Specifically, we first calculate the power of the beamspace

channel G̃
H

in a column-wise way by g̃k =
∥∥∥[G̃H]

:,k

∥∥∥2 for
1 ≤ k ≤ K. Clearly, g̃k is the sum of squares of the elements
of the k-th column vector in G̃

H
. Then, we sort all the g̃k

values in descending order and select the top KRF g̃k which
correspond to the best KRF columns of the beamspace channel
matrix with the highest power. Finally, the selection matrix B
is designed based on the obtained column indices correspond-
ing to the first KRF g̃k. With this MP beam selection matrix B,
we obtain the beamspace channel matrix corresponding to the
selected beams as G̃r = G̃

H
B ∈ CN×KRF , and the received

signals at the M users become

y = HHΘG̃rx + n. (44)

This MP beam selection algorithm is summarized in Algo-
rithm 2.

Algorithm 2 Proposed MP Beam Selection Method

Input: G̃
H

, KRF ;
1: Initialize B = zeros(K,KRF ), g̃ = zeros(K, 1), and g̃p =

zeros(K, 1);
2: for k = 1, 2, · · · ,K do

3: Calculate channel power g̃k =
∥∥∥[G̃H]

:,k

∥∥∥2, g̃(k, 1) = g̃k;
4: Arrange elements of g̃ in descending order, while keeping

original column indexes corresponding to the rearranged
elements in g̃p;

5: end for
6: for l = 1, 2, · · · ,KRF do
7: Arrange elements of g̃p in ascending order of magnitude;
8: B(g̃p(l), l) = 1;
9: end for

Output: B.

B. Optimizing RIS Phase Matrix

From the signal model (44), it can be seen that the achiev-
able DL sum rate depends on the RIS’s phase matrix Θ.
Therefore we further exploit maximizing the total DL sum

rate for all the users by optimizing the reflected beamforming
of the RIS’s phase shifters, given the CSI of H and G̃r as well
as the BS precoding matrix. This optimization problem can be
formulated as

max
Θ

M∑
m=1

∥∥∥hH
mΘG̃r

∥∥∥2 ,
s.t. 0 ≤ θn<2π, 1 ≤ n ≤ N,

(45)

assuming that H and G̃r are available at the RIS. Let
t = [t1, . . . , tN ]

H with tn = ejθn , ∀n. The constraints
in (45) are equivalent to |tn| = 1, ∀n. With the change
of variables hH

mΘG̃r = tH diag (hm) G̃r = tHCm, where
Cm = diag (hm) G̃r, the problem (45) is equivalent to

max
t

M∑
m=1

tHC′mt,

s.t. |tn| = 1, 1 ≤ n ≤ N,
(46)

where C′m=CmCH
m. Since

∑M
m=1tHC′mt= tHC̃t, where C̃=∑M

m=1 C′m, the optimization problem (46) can be expressed
as

max
t

tHC̃t,
s.t. |tn| = 1, 1 ≤ n ≤ N.

(47)

The objective function of (47) can be expressed as tHC̃t =

tr
(

tHC̃t
)

= tr
(

C̃ttH
)

. Define T = ttH. Then the constraints
of (47) become T � 0 and rank(T) = 1. Since the rank-one
constraint is non-convex, it is challenging to directly solve this
optimization.

By applying semidefinite relaxation (SDR) technique to
relax the non-convex rank-one constraint into [T]n,n = 1 for
1 ≤ n ≤ N , we relax the optimization problem (47) into

max
T

tr(C̃T),

s.t. [T]n,n = 1, 1 ≤ n ≤ N,
T � 0.

(48)

The optimization problem (48) is a standard convex SDP, and
it can readily be solved by a convex optimization solver, such
as CVX.

However, the solution of the problem (48) in general may
not be a rank-one solution, i.e., rank(T) 6= 1, which implies
that it is not the solution of the problem (47). Therefore, it is
necessary to construct a rank-one problem from the optimal
higher-ranking solution T of the optimization problem (48).
This can be achieved by first carrying out the eigenvalue
decomposition of T as T = ΩΣΩH, where Ω ∈ CN×N is
a unitary matrix and Σ = diag

([
λ1, · · · , λN

])
is a diagonal

matrix with the eigenvalues of T at its diagonal entries. Then
a suboptimal solution to (47) can be obtained as t′ = ΩΣ1/2r,
where r ∈ CN×1 is a random vector generated according
to the distribution CN (0, IN ). The objective value of (47)
can be approximated by taking the maximum among the best
t′ obtained from a set of independently generated Gaussian
random vectors r. Finally, the solution t to the problem (46)
can be recovered by t = ejarg(t′).
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C. Precoding Matrix Design

The BS precoding matrix P =
[
p1, · · · ,pM

]
also influ-

ences the achievable DL sum rate. By using the notations
V = HHΘ(UG)HB ∈ CM×KRF and vm = [VH]:,m, the
received signal at the m-th user, i.e., the m-th element of y,
can be written as

ym =
√
ρvHmpmsm +

√
ρ

M∑
i 6=m

vHmpisi + nm, (49)

where nm is the m-th element of n. The last two terms in the
right hand side of (49) represent the interference-plus-noise,
which is a random variable having zero mean and variance
ρ
∑M
i 6=m

∣∣vHmpi
∣∣2 + σ2

DL. The interference-plus-noise can be
approximated as an complex additive Gaussian noise that is
independent of sm.

Obviously, as with any channel estimator, there exist chan-
nel estimation errors for the proposed PARAFAC-based chan-
nel estimation technique, which will negatively impact on
the achievable DL sum rate. By defining the estimation error
matrices for G and H as Ξg ∈ CK×N and Ξh ∈ CN×M ,
respectively, the end-to-end channel matrix V can be expressed
as

V = (Ĥ−Ξh)HΘ(U(Ĝ−Ξg))HB = Ĥ
H

Θ(UĜ)HB−Ξ,
(50)

where Ξ = (Ξh)HΘ(UĜ)HB + Ĥ
H

Θ(UΞg)HB− (Ξh)HΘ
(UΞg)HB. Also the BS precoding vectors can only be cal-
culated based on the estimated channels, which are denoted
as p̂m for 1 ≤ m ≤M . Using these expressions, the received
signal model with the estimated channels is derived as

ym=
√
ρv̂Hmp̂msm+

√
ρ

M∑
i 6=m

v̂Hmp̂isi−
√
ρ

M∑
j=1

ξHj p̂jsj+nm,

(51)
where v̂m=

[
V̂

H]
:,m

, 1 ≤ m ≤ M , with V̂ = Ĥ
H

Θ(UĜ)HB,
and ξj = [Ξ]j,: . The first term of (51) is the intended
signal and the remaining terms are treated as the interference-
plus-noise. The power of the third term in (51) is ξ =

ρ
∑M
j=1

∣∣ξHj p̂j
∣∣2.

The solution of the beam selection matrix B also depends
on the estimated channels, i.e., B is actually obtained by
replacing the real channels with the estimated channels. With
the estimated channels, therefor, the achievable DL rate for
the m-th user is calculated as

R̂m=E

{
log2

(
1 +

ρ
∣∣v̂Hmp̂m

∣∣2
ρ
∑M
i 6=m

∣∣v̂H
mp̂i

∣∣2+ ξ + σ2
DL

)}
. (52)

For the perfect CSI, by comparison, the achievable DL rate
for the m-th user is given by

Rm = E

{
log2

(
1 +

ρ
∣∣vH
mpm

∣∣2
ρ
∑M
i 6=m |vH

mpi|
2

+ σ2
DL

)}
. (53)

Given the channel estimation, the ZF precoding scheme
sets the precoding matrix as P̂ = V̂

H
(V̂V̂

H
)−1 to eliminate

interference among different users. With the ZF precoding,

therefore, the achievable DL rate for the m-th user given the
channel estimation become

R̂(ZF)
m = E

{
log2

(
1 +

ρ

ξ + σ2
DL

)}
. (54)

For the perfect CSI, by comparison, the achievable DL rate
for the m-th user is given by

R(ZF)
m = log2

(
1 +

ρ

σ2
DL

)
. (55)

VI. SIMULATION BASED EXPERIMENTAL RESULTS

In this section, we conduct the simulation based experiments
to evaluate the performance of the proposed UAMP channel
estimator for jointly estimating G and H.

A. Performance Metrics and Default System Settings

In the simulation, the channel estimation accuracy of an
estimator can be measured by the normalized mean square
error (NMSE) metric calculated as

NMSE
(
Ŝ
)

=
1

V

V∑
v=1

∥∥Sv − Ŝv
∥∥2
F

‖Sv‖2F
, (56)

where S=H or G, Ŝv denotes the estimate of the real channel
Sv at the v-th run, and V is the number of Monte Carlo
runs. As we have derived the CRB for our UAMP estimator,
it is utilized as the ultimate benchmark for evaluating the
performance of our algorithm. We also provide the achievable
DL sum rate, which is calculated by averaging over V Monte
Carlo runs, to validate the effectiveness of our UAMP method.

All the NMSE and DL sum rate results are averaged over
V = 2000 independent Monte Carlo trials. The threshold δ
is 10−5 and the maximum number of iterations Imax is 100
in Algorithm 1. The first column of the channel matrix H
is normalized to remove the scaling ambiguity. We adopt
the truncated DFT matrices for the RIS phase matrix Φ and
assume KRF = M . |αGl1 | = 10−3d−2.2BR , where dBR denotes
the distance between the BS and the RIS. |αml2 |=10−3d−2.8RU ,
where dRU denotes the distance between the RIS and the user
[41]. Unless otherwise stated, we set K = 64, M =N =T =
P =16 and LG=5.

B. NMSE of Channel Estimation

Fig. 4 depicts the NMSE performance as the function of the
UL SNR for our UAMP algorithm. We compare our scheme
with the idealized LS estimation and the ALS algorithm of
[27]. The idealized scheme calculates the LS estimate of the
channel matrix G between the RIS and the BS given the
perfect channel matrix H between the users and the RIS,
and it calculates the LS estimate of H given the perfect
G. Obviously, the idealized LS estimation is impractical and
represents potentially the best achievable estimation accuracy.
It can be observed from Fig. 4 that the estimation accuracy for
H obtained by our algorithm and the ALS algorithm are almost
the same as that obtained by the idealized LS algorithm, as
the three NMSE curves basically overlap. On the other hand,
the estimation accuracy for G obtained by our algorithm and
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Fig. 4. NMSE performance versus UL SNR comparison for the proposed
UAMP estimator, the ALS estimator and the idealized LS scheme.
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Fig. 5. Estimation accuracy of the proposed UAMP channel estimator, in
terms of NMSE versus dRU, with different values of dBR ∈ {10, 20, 30}m.

the ALS algorithm are almost the same. While at low SNRs
of 0 to 5 dB, the NMSE performances of our algorithm for
both H and G are slightly better than the ALS algorithm. As
analyzed in Subsection III-A, our proposed UAMP channel
estimation has an additional practical advantage over the ALS
channel estimation [27] in that it imposes significantly lower
complexity than the ALS scheme. There is only about 1 dB
gap in the NMSE between the estimation performance of G
obtained by our algorithm and that given by the idealized LS
estimation. This clearly demonstrates the excellent estimation
accuracy achieved by our UAMP estimator.

Fig. 5 portrays the NMSE performance versus dRU of the
proposed UAMP estimator with three different values of the
distance dBR between the BS and the RIS, given that the sum
transmit power constraint of the BS is 0 dBm and the noise
variance is -174 dBm/Hz. Observe from Fig. 5 that the NMSE
performance of the estimated channels G and H deteriorate
with increasing distance between the BS and the RIS as well
as between the RIS and the user. The reason is that increasing
distance leads to higher path loss, which in turn degrades the
channel estimation performance.

Fig. 6 illustrates the NMSE performance versus the UL
SNR of the proposed UAMP channel estimator with three
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Fig. 6. Estimation accuracy of the proposed UAMP channel estimator, in
terms of NMSE versus UL SNR, with different values of K ∈ {32, 64, 128}.
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Fig. 7. Estimation accuracy of the proposed UAMP channel estimator, in
terms of NMSE versus UL SNR, with LG = 10 and different values of
P ∈ {8, 12, 16}.

different values for the number of BS antennas K. The
results of Fig. 6 indicate that the NMSE performance for
the channel estimation becomes better as the number of BS
antennas K increases. This is because as K increases, the
training overhead also increases, which is beneficial to channel
estimation. Also the NMSE performance of the estimated
channel G does not improve as much as the estimated channel
H as K increases. This is because the larger K is, the larger
the dimension of G, but it does not affect the dimension of H.

Fig. 7 shows the NMSE performance as the function of UL
SNR for our UAMP algorithm given LG=10 and with three
different values of the number of phase shift matrices P . It can
be seen that the estimation accuracy improves as P increases,
since increasing P implies a longer training sequence.

Fig. 8 illustrates the estimation accuracy of our UAMP
channel estimator, in terms of NMSE versus UL SNR, given
K=32 and with three different values of the number of paths
LG between the RIS and the BS. The results of Fig. 8 indicate
that as LG increases, the NMSE performance becomes better.
This may be explained from the uniqueness condition (23). In
this case, we have LG<N . The larger LG is, the more (23)
is satisfied, which lead to better estimation accuracy.

How the number of the RIS elements N influences the
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Fig. 8. Estimation accuracy of the proposed UAMP channel estimator, in
terms of NMSE versus UL SNR, with K = 32 and different values of LG ∈
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Fig. 9. Estimation accuracy of the proposed UAMP channel estimator, in
terms of NMSE versus UL SNR, with LG = 10 and different values of
N ∈ {16, 18, 20}.

estimation accuracy of our UAMP channel estimator is in-
vestigated in Fig. 9. The results of Fig. 9 indicates that the
estimation accuracy degrades as N increases. This is because
increasing N increases the channel dimension, leading to more
channel coefficients in G and H to be estimated.

C. CRB of the Proposed UAMP Channel Estimation

We compare the CRB and the NMSE of our UAMP channel
estimation in Fig. 10, with K=32, M=N=T =16, LG=10
and P ∈{8, 16}. Observe that over the range of the UL SNRs
evaluated, the NMSEs of our UAMP channel estimates are
very close to their respective CRBs. In particular, the NMSEs
of the two estimated H reach their respective CRBs when the
UL SNR is greater than 10 dB. Furthermore, at low UL SNRs,
the NMSE performance with P = 16 is closer to the CRB
than that with P =8. This is because the NMSE performance
becomes better as P increases. Additionally, it can be seen
that the gap between the NMSE and the corresponding lower
bound of CRB is very small for the estimated G. Since the
CRB is the ultimate upper bound of achievable estimation
accuracy, the results of Fig. 10 offers the clear evidence for
the excellent estimation accuracy of our UAMP algorithm.
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Fig. 10. Comparison of the CRB and the NMSE as the functions of UL SNR
for the proposed UAMP channel estimation.

D. DL Sum Rate

In evaluating the DL sum rate achieved with the pro-
posed UAMP channel estimation, unless otherwise specifically
stated, we set the system parameters to K = 16, M = N =
T = P = 8 and LG = 8 as well as set the UL SNR to 20 dB.

Fig. 11 illustrates the achievable DL sum rate performance
as the function of the DL SNR with different channel esti-
mations, given different UL SNRs. The achievable DL sum
rate performance for our proposed UAMP channel estimator
and the ALS channel estimator are almost the same, which
verifies the NMSE performance in Fig. 4. As expected, when
the UL SNR is fixed, the DL sum rate increases with the
DL SNR. Similarly, when the DL SNR is fixed, the DL sum
rate improves as the UL SNR increases. It can be seen that
given a sufficiently high UL training SNR, e.g., 30 dB, the
achievable sum rate gap between the estimated CSI and the
perfect CSI is very small, particularly, at the poor DL SNR
region. At a high DL SNR of 4 dB, the sum rate gap between
the estimated CSI and the perfect CSI is only about 1 bits/s/Hz,
while the gap is about 3 bits/s/Hz at the DL SNR of 10 dB.
The results of Fig. 11 therefore demonstrate the excellent
estimation accuracy as well as the effectiveness of our UAMP
channel estimator.
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Fig. 13. Achievable DL sum rate versus DL SNR performance for the
proposed UAMP channel estimation with ZF precoding, given different values
of K ∈ {16, 32, 64}.

Fig. 12 depicts the cumulative distribution for the achievable
DL rate per user with the proposed UAMP channel estimation,
given different UL SNRs of 10 dB, 20 dB and 30 dB as well as
DL SNR of 10 dB. The circles indicate the five percent values,
i.e., the achievable DL rate per user is greater than or equal to
the indicated value with probability 0.95. It can be seen that
UL SNR of 20 dB instead of 10 dB increases the achievable
DL rate per user by about 1 bits/s/Hz, and UL SNR of 30 dB
adds an additional 1.7 bits/s/Hz.

Fig. 13 presents the achievable DL sum rate versus the
DL SNR performance for our UAMP channel estimator, given
three different values of K. It is evident that the achievable
DL sum rate increases with the increases of the number of BS
antennas K. This is because the training overhead increases
with K, leading to better channel estimation performance for
larger K, which can also be seen in Fig. 6.

In Fig. 14, we plot the DL sum rate as the function of the DL
SNR for the proposed UAMP algorithm with three different
values of P . It can be seen that increasing P results in the
enhancement of the achievable DL sum rate. The reason is
that an increase in P implies a longer training sequence.

Fig. 15 depicts the achievable DL sum rate performance of
the proposed UAMP algorithm under the system settings of

K=30, M =T =P =10, LG=10, N ∈{10, 12, 14} and UL
SNR = 20 dB. Observe from Fig. 15 that at low DL SNRs,
the DL sum rates are almost identical given different values
of N . However, when the DL SNR is greater than 0 dB, the
DL sum rate performance deteriorates as N increases. This is
because the number of channel coefficients to be estimated in
G and H increases with N , leading to poor channel estimation
performance and thus poor DL sum rate performance.

Lastly, we verify that the phase shift matrix optimization
given in Subsection V-B improves the achievable DL sum rate
performance. Fig. 16 compares the DL sum rate performance
difference between the random phase shift matrix and the
optimized phase shift matrix. As shown in Fig. 16, when the
DL SNR is less than 0 dB, the two phase shift matrices exhibit
almost the same sum rate performance. However, when the
DL SNR is greater than 0 dB, the DL sum rate achieved by
the optimized phase shift matrix outperforms that attained by
the stochastic DFT phase shift matrix, and this verifies the
necessity for the phase shift matrix optimization.

VII. CONCLUSIONS

This paper has developed a new channel estimation method
for the RIS-aided mmWave multiuser MISO beamspace com-
munication system by exploiting PARAFAC decomposition.
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Fig. 14. Achievable DL sum rate versus DL SNR performance for the
proposed UAMP channel estimation with ZF precoding, given different values
of P ∈ {4, 6, 8}.

0

5

10

15

20

25

-10 -8 -6 -4 -2 0 2 4 6 8 10

D
L
su
m

ra
te

(b
it
s/
s/
H
z)

SNRDL (dB)

Estimated CSI with UAMP (N = 10)
Estimated CSI with UAMP (N = 12)
Estimated CSI with UAMP (N = 14)
SNRUL = 20 (dB)

Fig. 15. Achievable DL sum rate versus DL SNR performance for the
proposed UAMP channel estimation with ZF precoding, given K = 30,
M=T =P =10, LG=10, N ∈{10, 12, 14}, and UL SNR=20 dB.



14

0

4

8

12

16

20

-10 -8 -6 -4 -2 0 2 4 6 8 10

D
L
su
m

ra
te

(b
it
s/
s/
H
z)

SNRDL (dB)

Estimated CSI with UAMP (Estimated Φ)
Estimated CSI with UAMP (Random Φ)
SNRUL = 20 (dB)
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Specifically, by fully exploiting the tensor structure of the
received pilot signals, a novel UAMP channel estimation al-
gorithm has been developed to accurately estimate the cascade
beamspace channel matrices. We have presented the feasibility
conditions for our UAMP channel estimation algorithm based
on which useful system design guidelines can be obtained.
Furthermore, we have derived the CRB for the UAMP channel
estimation to evaluate the algorithm’s performance. With the
assistance of our beam selection algorithm and the optimized
phase shift matrix obtained using SDR as well as the ZF
precoding, we have also calculated the DL sum rate of the
RIS-aided mmWave multiuser MISO beamspace system based
on the proposed UAMP channel estimation. The excellent
estimation accuracy of our proposed UAMP channel estimator
has be verified by extensive simulation results. In particular,
with sufficiently high UL training SNR, the NMSE of our
UAMP channel estimator has been shown to approach the
corresponding CRB. In addition, it has been demonstrated that
the performance of the proposed UAMP channel estimator is
significantly influenced by the number of RIS unit elements
and training symbols.
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