
Citation: Ajibosin, S.S.; Cetinkaya, D.

Implementation and Performance

Evaluation of Quantum Machine

Learning Algorithms for Binary

Classification. Software 2024, 3,

498–513. https://doi.org/10.3390/

software3040024

Academic Editor: Francisco

José García-Peñalvo

Received: 31 October 2024

Revised: 21 November 2024

Accepted: 26 November 2024

Published: 28 November 2024

Copyright: © 2024 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

Article

Implementation and Performance Evaluation of Quantum
Machine Learning Algorithms for Binary Classification
Surajudeen Shina Ajibosin and Deniz Cetinkaya *

Department of Computing & Informatics, Bournemouth University, Poole BH12 5BB, UK
* Correspondence: dcetinkaya@bournemouth.ac.uk; Tel.: +44-1202-961241

Abstract: In this work, we studied the use of Quantum Machine Learning (QML) algorithms for
binary classification and compared their performance with classical Machine Learning (ML) methods.
QML merges principles of Quantum Computing (QC) and ML, offering improved efficiency and
potential quantum advantage in data-driven tasks and when solving complex problems. In binary
classification, where the goal is to assign data to one of two categories, QML uses quantum algorithms
to process large datasets efficiently. Quantum algorithms like Quantum Support Vector Machines
(QSVM) and Quantum Neural Networks (QNN) exploit quantum parallelism and entanglement to
enhance performance over classical methods. This study focuses on two common QML algorithms,
Quantum Support Vector Classifier (QSVC) and QNN. We used the Qiskit software and conducted
the experiments with three different datasets. Data preprocessing included dimensionality reduction
using Principal Component Analysis (PCA) and standardization using scalers. The results showed
that quantum algorithms demonstrated competitive performance against their classical counterparts
in terms of accuracy, while QSVC performed better than QNN. These findings suggest that QML
holds potential for improving computational efficiency in binary classification tasks. This opens
the way for more efficient and scalable solutions in complex classification challenges and shows the
complementary role of quantum computing.

Keywords: quantum machine learning; binary classification; quantum algorithms

1. Introduction

Quantum Computing (QC) exploits the principles of quantum mechanics to process in-
formation and solve problems that are too complex for classical computers. Unlike classical
bits, qubits possess the unique ability to represent numerous possible combinations of zero
and one at the same time. This simultaneous existence in multiple states is a phenomenon
referred to as superposition. This property enables the processing of information in a
parallel and exponentially expanded manner compared to classical computers. Although
still in its early stages, quantum computing holds great promise for solving problems that
are currently infeasible with classical computers [1].

Machine Learning (ML) has significantly advanced human capabilities and contributed
to societal progress across various fields by automating complex tasks, improving decision-
making processes, and providing personalized experiences [2]. ML uses algorithms and
statistical models to analyze and interpret complex data, assisting in planning, decision sup-
port, predictive analysis, intelligent automation, and many other activities across multiple
domains including healthcare, finance, education, transportation, defense, etc. [3–5].

ML is a rapidly evolving and active field that is continuously being expanded with new
models and approaches [6]. Training and deploying ML models can be computationally
expensive and time-consuming depending on the volume of data and the complexity of
the methods. Research efforts to address this challenge include improving ML algorithms
and architectures to be more efficient and scalable and using hardware advancements

Software 2024, 3, 498–513. https://doi.org/10.3390/software3040024 https://www.mdpi.com/journal/software

https://doi.org/10.3390/software3040024
https://doi.org/10.3390/software3040024
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/software
https://www.mdpi.com
https://orcid.org/0000-0002-1047-0685
https://doi.org/10.3390/software3040024
https://www.mdpi.com/journal/software
https://www.mdpi.com/article/10.3390/software3040024?type=check_update&version=1

Software 2024, 3 499

such as Graphics Processing Units (GPUs) and Tensor Processing Units (TPUs), as well as
distributed machine learning, to accelerate model training and inference [7].

QC, a multifaceted field based on quantum theory that has different potential applica-
tions in software engineering, is an alternative paradigm used to reduce the time required
to solve complex problems with improved performance [8,9]. Quantum Machine Learning
(QML) combines the power of ML and QC to solve challenges in various domains [10–12].
It uses the principles of quantum mechanics to improve computational efficiency and
the performance metrics of the available ML algorithms. As QC technology evolves, the
synergy between quantum algorithms and ML is expected to drive innovative solutions to
previously unsolved computational problems.

QML offers potential solutions to these problems by utilizing quantum mechanical
properties such as superposition and entanglement to process and analyze data more
efficiently. However, the practical implementation of quantum algorithms and models
is a relatively new research field, so many application areas still remain underexplored.
In this study, we focused on the binary classification problem in machine learning. Our
main research question was about understanding whether QML algorithms improve the
performance of trained ML models by capturing more complex patterns or correlations
in the datasets. We implemented a set of commonly used classical and quantum machine
learning algorithms for binary classification by using three different datasets and compared
the performances of the two computing paradigms.

This section presented an introduction to the problem domain and an overview of
the study. The remainder of this manuscript is organized as follows: Section 2 presents
background information and a review of the current literature regarding QC and QML.
Section 3 explains the materials and methods adopted for building and training the models
for this study. Section 4 describes more details about the experiments and presents the results.
Section 5 includes the discussion and conclusions, as well as suggestions for future work.

2. Background Information and Literature Review

In this section, the fundamental concepts and principles of QC and QML will be briefly
explained with a review of related work in the literature. Concepts such as superposi-
tion, entanglement, and quantum gates will be described. Related work about QML and
specifically using quantum classifiers for binary classification is presented.

2.1. Quantum Computation and Quantum Information

Unlike classical computation, in which the smallest unit of information is represented in
bits (represented as zeros and ones), quantum computation uses quantum bits, or qubits [13].
Quantum computers are not simply faster or better versions of today’s classical computers,
but instead, they represent a fundamentally new paradigm for processing information. While
classical bits can take a value of 0 or 1, qubits possess the unique ability to represent and store
various possible combinations of 0 and 1 at the same time [14]. This ability to simultaneously
be in multiple states is called superposition. This property enables the processing of information
in a parallel and exponentially expanded manner compared to classical computers.

A quantum state is any possible state of a quantum mechanical system or quantum
hardware. There are numerous examples of quantum mechanical two-level systems in
nature that potentially could serve as qubits. The electronic states of an ion and the electron
spin of an atom implanted in silicon serve as examples. If the quantum system is based on
a multi-level computational unit instead of the conventional two-level qubit, then each unit
is called a qudit. Compared to qubits, qudits provide a larger state space that can reduce
the circuit complexity and enhance the algorithm efficiency [15].

In quantum computing, we can generate pairs of qubits that are entangled, which
means that changing the state of one of the qubits will instantly change the state of the
other one. Entanglement has two very special properties: it is inherently private and allows
maximal coordination. This happens even if the qubits are separated by very long distances.

Software 2024, 3 500

Quantum computers are built using various hardware technologies, but the main
types are superconducting circuits, photonic networks, trapped ions, quantum dots, etc.
Each type has its advantages and disadvantages, such as greater entanglement or longer
coherence times. Quantum supremacy is the goal, representing a quantum computer that
could perform calculations that are not possible with classical computers or beyond the
reach of even the most powerful supercomputer. In the future, quantum computers may
not rely on a single hardware technology but could instead be based on combining different
technologies for greater effectiveness [16]. Table 1 presents a comparison of classical vs.
quantum computing according to various features.

Table 1. Classical vs. quantum computing.

Feature Quantum Classical

Theory Quantum mechanics Classical physics

Computation Probabilistic Deterministic

Operations Linear algebra operations Boolean algebra operations

Information storage Qubits, qudits Bits

System state Continuous possible states in superposition Discrete number of possible states

Technology Superconducting loops, trapped ions, quantum dots, etc. Transistors

Applications Complex problems, optimization, simulation General purpose

Error rate High Low

Environment Ultracold Room temperature

Computing power Exponential growth Linear growth

Processing QPU CPU

A universal fault-tolerant quantum computer that can efficiently solve complex tasks,
such as integer factorization or unstructured database search, requires millions of qubits
with optimized coherence times and error rates [17]. Practical realization of such devices
could take a long time; however, Noisy Intermediate-Scale Quantum (NISQ) computation
has been achieved, and near-term devices are presently available for use [18]. For example,
IBM’s Quantum Lab, Google Quantum AI, Microsoft’s Azure Quantum, and Amazon’s
Bracket services offer cloud-based solutions for the implementation of quantum algorithms
and are being used for real-world applications [19]. Other companies, such as D-Wave,
Rigetti Computing, IonQ, Intel, Quantiuum, Xanadu, etc., are developing quantum comput-
ers and technologies as well [20]. These cumulative efforts will likely propel QC towards
the intermediate-scale quantum era [21] and perhaps the fault-tolerant quantum era [22].

2.2. QC Implementation Models

We use Dirac notation to represent the quantum states, as it is widely used in quantum
mechanics. A quantum state of a system can be represented by a column vector whose
components are probability amplitudes for different states in which the system might be
found when measured, i.e., in correspondence with the classical states of that system. The
probability amplitudes are complex numbers, and the sum of the absolute values squared
of the probability amplitudes is equal to 1 [14].

We assume that a qubit represents an abstraction of the fundamental unit of informa-
tion without regard to what it is. It might be a single physical qubit or a logical qubit that
consists of multiple physical qubits (e.g., 10–100). Qubits can have the value |0〉 and |1〉
or be in a state other than |0〉 or |1〉. A particular quantum state can be represented by a
wave function ψ(x) as follows:

|ψ⟩ = α|0⟩+ β|1⟩ (1)

where α, β ∈ C and α2 + β2 = 1 (2)

Software 2024, 3 501

In the literature, there are various methods for representing and examining quan-
tum systems, though the most common ones to have been successfully implemented are
quantum gate circuit and adiabatic quantum computing [23].

Quantum gates are similar to classical gates, and quantum circuits can be designed by
using existing sets of quantum gates that operate on a constant number of qubits [24]. This
approach is commonly used and universal for QC, as gates are linked to each other like in
the classical circuits and each gate performs some unitary operator [14].

Symbols are often used to denote the gates during the design of quantum circuits. For
example, the quantum analogue of a classical NOT gate is the X-gate, also known as the Pauli-X
gate. Note that not all classical gates have a direct quantum analogue. Multi-qubit gates act on
two or more qubits simultaneously and enable the creation and manipulation of quantum states.
Simulations can be executed by using single or two qubit gates on a universal quantum computer.

A qubit state can be illustrated via the Bloch sphere [14]. |ψ〉 points from the origin to
a point on the surface of the unit sphere. The direction of |ψ〉 is specified by polar angle
θ and azimuthal angle φ. Commonly used single-qubit gates are the Pauli-X, -Y, and -Z
gates, which correspond to rotations by π radians about the x, y, and z axes, respectively,
on the Bloch sphere, and the Hadamard gate, which is a π rotation about the X + Z axis
and has the effect of putting the state into superposition. Once measured, the qubit will be
in either one of its computational basis states.

The most common two-qubit gate is the quantum-controlled NOT or CNOT gate, which
flips the second qubit (the target qubit) if and only if the first qubit (the control qubit) is |1〉.
All unitary circuits can be decomposed into single-qubit gates and CNOT gates. Because the
two-qubit CNOT gate requires much more time to execute on real hardware than single-qubit
gates, circuit cost or complexity can be measured by the number of CNOT gates. There are
also three-qubit gates such as the Toffoli gate, also known as the CCNOT gate.

Adiabatic quantum computing is an alternative universal approach, but in terms of
computational complexity it is equivalent to gate-based quantum computing at polynomial
time [25]. It is founded upon the quantum adiabatic theorem, which describes the evolution
of the ground state of a quantum system as follows:

H(t) = s(t)H0 + (1 − s(t))H f (3)

A time-varying Hamiltonian evolves from an initial ground state H0 to a form H f that
encodes the problem to be solved. s(t) represents an adiabatic evolution path, a function
that decreases from 1 to 0 for an elapsed time t f . If the time evolution of the Hamiltonian
is sufficiently slow, the state is likely to remain in the ground state [26]. Adiabatic quantum
computing, and more specifically quantum annealing, are mainly used for optimization
problems, while gate-based quantum computing can be used for a broader range of problems.

2.3. Quantum Algorithms and Quantum Data Encoding Methods

For a two-qubit system, all possibilities could be encoded into the state of the two
qubits via superposition of the four basis states |00〉, |01〉, |10〉 and |11〉. A superposition
of four states requires four probability amplitudes to fully describe the quantum state.
Multiple qubits in a quantum computer can be conceptually grouped together in a quantum
register. Each qubit will have an index within this register and each qubit can be addressed
in qubit operations by using this qubit index.

Quantum parallelism is based on the ability of a quantum register to exist in a su-
perposition of base states. It is the possibility of performing a large number of operations
in parallel without the need for extra resources. For example, while with three classical
bits there are 2n = 23 = 8 cases, all these cases can be represented using three qubits in
superposition, meaning they are in a single quantum state simultaneously.

Quantum interference is a phenomenon in quantum mechanics when subatomic particles
interact with and influence themselves and other particles while in a probabilistic superposition
state. It can influence the probability of the outcomes when the quantum state is measured.

Software 2024, 3 502

Quantum parallelism and quantum interference form the foundation of how a quan-
tum computer processes information simultaneously. Quantum computers have the poten-
tial to exceed the performance of conventional computers for complex problems such as
cryptography, chemistry, pharmaceuticals, etc. Quantum advantage is the point at which
quantum algorithms deliver a significant, practical benefit beyond what classical computers
alone are capable of for computationally complex problems.

Quantum algorithms are usually described via a circuit model, but they can be defined
using other mathematical models too. They can use other techniques or algorithms as
sub-parts of the algorithm, such as quantum phase estimation, quantum Fourier transform,
amplitude amplification, etc.

One of the important steps in QML is encoding classical data into quantum states
suitable for quantum computation [27]. There are several techniques for quantum data
encoding, such as basis encoding, amplitude encoding, angle encoding, etc.

Basis encoding is a technique where classical data are encoded directly into the compu-
tational basis states of qubits. Each classical bit of data is mapped to a qubit, and the classical
value is represented by the qubit being in either the |0〉 or |1〉 state. This is also known as binary
encoding. Basis encoding is straightforward and directly maps classical binary data to quantum
states, making it easy to implement in quantum circuits for classical data in binary form.

Amplitude encoding involves encoding the data into amplitudes of the quantum
states. For a system with n qubits, amplitude encoding uses 2n amplitudes to represent
classical data. However, preparing a quantum state with specific amplitudes is non-trivial
and may require complex quantum circuits or additional resources.

Angle encoding, also known as phase or rotation encoding, is another technique that
maps classical data into the phase angles of qubits. A qubit state can be represented with
Bloch sphere parameters using θ and φ.

|ψ⟩ = cos
(

θ

2

)
|0⟩+ eiφ sin

(
θ

2

)
|1⟩ (4)

Angle encoding is straightforward to implement using basic quantum gates, making it
accessible in quantum circuits; however, a qubit can only be used to encode a single data fea-
ture, making it more expensive to use for high-dimension datasets unless a dimensionality
reduction technique is used.

2.4. Related Work

This section presents related work on using QML for classification problems. We
grouped the studies into three subsections based on the underlying model.

2.4.1. Studies Using Variational Quantum Classifier (VQC)

VQC is a promising QML model, particularly for tackling classification problems. Built
upon the principles of variational quantum algorithms, VQCs use parameterized quantum
circuits to perform tasks in high-dimensional quantum spaces, potentially achieving a
computational advantage over classical classifiers in certain scenarios [28].

To improve the detection rate of heart failure, Munshi et al. (2024) proposed a QML-
based framework using a standard heart failure dataset consisting of different features related
to cardiovascular diseases [29]. VQC was one of the QML algorithms used for the research. The
Principal Component Analysis (PCA) dimensionality technique was used to reduce the dimension
of the dataset. This study focused on comparing the QML methods rather than comparing QML
performance with classical ML algorithms on the same dataset. After a comparative analysis, they
concluded that QSVC outperformed VQC in all the metrics for the given dataset.

Maheshwari et al. (2022) presented the application of VQC for binary classification [30].
The three datasets used were: a synthetic dataset with randomly generated values between
zero and one, a publicly available sonar dataset consisting of mining data, and a proprietary
diabetes dataset related to diabetes with acute diseases and diabetes without acute disease.
The feature importance technique was used to reduce the dimensions of the datasets by

Software 2024, 3 503

dropping some features with least importance. The study reported VQC accuracies of 75%,
71.4%, and 68.73% for the synthetic, sonar, and diabetes datasets, respectively, when using
basis data encoding. In contrast, VQC using amplitude data encoding achieved superior
results, with accuracies of 98.40%, 67.3%, and 74.50% for the same datasets. These findings
show the potential of quantum approaches in improving performance in classification
tasks, suggesting promising directions for future research in QML.

2.4.2. Studies Using Quantum Support Vector Classifier (QSVC)

QSVC is an adaptation of the classical Support Vector Machine (SVM) within the
framework of quantum computing. Classical SVMs operate by mapping data into a high-
dimensional feature space where classes can be separated by an optimal hyperplane, but
this mapping can become computationally intensive as data dimensionality grows. QSVCs
address this challenge by using quantum feature maps and quantum kernels, potentially
allowing for exponential speedup in certain classification scenarios. As the field advances,
understanding the capabilities and limitations of QSVCs will be essential for evaluating
their practical relevance within QML.

In a recent study, Kavitha and Kaulgud (2024) employed various datasets to benchmark
the performance of QSVCs, demonstrating their potential and highlighting the areas where
further research is needed [31]. A key factor in the study was the selection of suitable
feature maps, which are critical for encoding data into quantum states. Effective feature
maps can enhance the classifier’s ability to distinguish between different classes in the
dataset. The results showed that by using the right quantum feature maps, a quantum
advantage was demonstrated for all three datasets compared to the classical alternatives.
Comparisons to other QML approaches could provide broader insight on QSVC’s strengths.

Suzuki et al. (2024) explored the practical applicability of both QSVC and Quan-
tum Support Vector Regression (QSVR) by evaluating their performance on a variety of
datasets [32]. QSVC was evaluated using fraudulent credit card transactions and image
datasets, while the regression performance of QSVR was evaluated using financial and
materials datasets. The experiments were implemented both on a quantum circuit simula-
tor and a real quantum computer. The results show the resilience of quantum kernels on
noisy devices, even when implemented on shallow circuits, and their adaptability across
different types of datasets and tasks. These findings demonstrate the potential of QML
to offer significant advantages over classical counterparts, particularly in handling noisy
environments, which are prevalent in near-term quantum devices.

By adopting a QSVC-based approach to quantum annealing principles, Yuan et al. (2023)
were able to enhance the classification of flow separation scenarios [33]. The QSVC algo-
rithm demonstrated superior performance compared to classical SVM approaches. Specifi-
cally, it achieved an 11.1% increase in accuracy for binary classification tasks. Additionally,
the study extended its investigation to multiclass classification, focusing on multiple angles
of attack on aircraft wings. The developed multiclass QSVC, utilizing a one-against-all
strategy, showed a notable 17.9% accuracy improvement over classical methods.

2.4.3. Studies Using Quantum Neural Networks (QNN)

QNNs represent a novel fusion of quantum computing and artificial neural networks
where quantum parallelism and entanglement provide more efficient ways to process
information [34]. A QNN has an input, output, and a number of hidden layers. The
smallest building block of a QNN is the quantum perceptron, which is the quantum
analogue of the perceptron used in ML [35]. Most QNNs are developed as feed-forward
networks; i.e., they take input from one layer of qubits, evaluate this information, and passe
on the output to the next layer. However, other models such as Quantum Recurrent Neural
Networks (QRNN) have also been proposed in the literature, contributing to an emerging
and rapidly developing field of research [36].

Several studies used the QNN approach in the literature to advance QML. For example,
Simoes et al. (2023) performed an experimental analysis of QNN algorithm by evaluating its

Software 2024, 3 504

performance on five different datasets using different combinations of quantum encoding
techniques [37]. The study was able to demonstrate a quantum advantage, with the
results showing that the QNN outperformed the classical neural network by 7%. In the
hybrid approach used, QNN was implemented as a variational quantum circuit, while the
optimizer was implemented on classical hardware.

Although it is a relatively new research field, the number of publications has increased
recently in this area, and researchers have started to present systematic review studies to
compare the QML methods and explore their usage for specific problems [38–40]. Overall,
the existing literature on QML highlights significant advancements in developing quantum-
enhanced classification algorithms. While practical implementations are limited by current
quantum hardware constraints such as noise and low coherence, the results are promising
with regard to better accuracy and efficiency.

3. Materials and Methods

This section presents the selected methods in this study, as well as the datasets. We used
Python programming language (version 3.10.12) with Jupyter Notebook (version 7.2.2) and
standard libraries pandas (version 2.2.3), numpy (version 2.1.2), matplotlib (version 3.9.2),
and scikit-learn (version 1.5.2). The quantum computation processes were implemented
by using the IBM Quantum Qiskit software package (initially version 1.1.2 then migrated
to 1.2), which provides open access to quantum computing services for various QML
algorithms. We used a quantum simulator due to the limited usage time of real quantum
computers and the fact that simulators provide a flexible and accessible alternative for
exploring quantum computation.

Currently available quantum processors, which are relatively small and noisy, lack the
capacity to disentangle and generalize quantum data independently. To be effective, these
NISQ processors must operate alongside classical co-processors [41]. As such, we employed
a hybrid quantum–classical model that combines classical and quantum computing to adopt
the strengths of both paradigms. The basic workflow is shown in Figure 1. During the
initialization step, the building of the models, analysis, and preprocessing of the datasets
were conducted on a classical computer. The training and optimization of the models were
conducted on the classical and quantum hardware for the classical and quantum algorithms,
respectively. During the evaluation step, the results were analyzed on a classical computer.

Software 2024, 3, FOR PEER REVIEW 8

Figure 1. Flowchart of the model implementation.

3.1. ML Approach and Models
The quantum gate circuit model was adopted for this research because it is more

popular and has the most easily accessible quantum hardware. The adaptation of classical
ML algorithms in designing the corresponding quantum analogues is an ongoing research
area. While it enables much easier transition to QC by using existing methods, it also al-
lows for direct comparison by providing a benchmark for measuring the performance and
effectiveness of quantum adaptations. We used QSVC and QNN as they have both
achieved a level of success in their design and implementation, as discussed in the previ-
ous section.

QSVC is an adaptation of Support Vector Classifier (SVC), which is a sub type of SVM
that works well with small- and medium-sized datasets [42]. It is used for both linear and
non-linear classification tasks, though for non-linear classification tasks, it uses a kernel
trick that maps the input data into a higher-dimensional feature space. For comparison,
the classical model was trained and evaluated using SVC, for which four different models
were trained using the linear, poly, rbf, and sigmoid kernels for each dataset. The
cross_validate() function was used for the training and evaluation of the classical models.

To adapt SVC into a quantum algorithm as QSVC, the quantum kernel function can
be represented with a quantum Hilbert space using a quantum feature map [43]. A kernel
function can be represented as a matrix, and the kernel matrix K that represents the over-
lap of two quantum states is defined as follows: 𝐾, = ห〈𝜙(�⃗�) | 𝜙൫�⃗�൯〉หଶ (5)

where a quantum feature map 𝜙(�⃗�) maps a classical feature vector �⃗� to a Hilbert space.

Figure 1. Flowchart of the model implementation.

Software 2024, 3 505

3.1. ML Approach and Models

The quantum gate circuit model was adopted for this research because it is more popular
and has the most easily accessible quantum hardware. The adaptation of classical ML algo-
rithms in designing the corresponding quantum analogues is an ongoing research area. While
it enables much easier transition to QC by using existing methods, it also allows for direct
comparison by providing a benchmark for measuring the performance and effectiveness of
quantum adaptations. We used QSVC and QNN as they have both achieved a level of success
in their design and implementation, as discussed in the previous section.

QSVC is an adaptation of Support Vector Classifier (SVC), which is a sub type of SVM
that works well with small- and medium-sized datasets [42]. It is used for both linear and
non-linear classification tasks, though for non-linear classification tasks, it uses a kernel
trick that maps the input data into a higher-dimensional feature space. For comparison, the
classical model was trained and evaluated using SVC, for which four different models were
trained using the linear, poly, rbf, and sigmoid kernels for each dataset. The cross_validate()
function was used for the training and evaluation of the classical models.

To adapt SVC into a quantum algorithm as QSVC, the quantum kernel function can
be represented with a quantum Hilbert space using a quantum feature map [43]. A kernel
function can be represented as a matrix, and the kernel matrix K that represents the overlap
of two quantum states is defined as follows:

Ki,j =
∣∣∣〈ϕ

(→
x i

)∣∣∣ϕ(→x j

)〉∣∣∣2 (5)

where a quantum feature map ϕ
(→

x
)

maps a classical feature vector
→
x to a Hilbert space.

QNN uses parameterized quantum circuits to represent the layers. For comparison,
the classical model was trained and evaluated using the Multilayer Perceptron (MLP) from
the scikit-learn library, which is a feed-forward artificial neural network.

We used PCA for dimensionality reduction and data visualization. This method re-
duces the dataset into its most critical features, referred to as its principal components [44].
These components are linear combinations of the original variables that capture the max-
imum variance within the dataset. Through this process, PCA offers an approximation
of the original data matrix, relying on a reduced number of principal components while
preserving the most significant variance present in the data [45].

We used Quantum Feature Map (QFM) to map our classical datasets into quantum
states. The quantum data estimation approach adopted by the two selected algorithms
differs slightly. While we used the same quantum feature maps for both, we used the
Quantum Kernel Estimation (QKE) method for QSVC and the Parameterized Quantum
Circuit (PQC) method for QNN. These methods are explained in Section 3.4. The code is
available upon request from the corresponding author.

3.2. Datasets

We used three health-related datasets that are publicly available. This section briefly
explains the datasets and provides the links to the datasets. The breast cancer dataset is a
part of the Python scikit-learn package and also publicly available via https://archive.ics.uci.
edu/dataset/17/breast+cancer+wisconsin+diagnostic (accessed on 31 October 2024). It is a
multivariate dataset with real feature characteristics. It contains 569 instances and 31 features.
The features were computed from digitized images of fine-needle aspirations of breast masses.
The dataset was loaded via the scikit-learn library directly during implementation.

The diabetes dataset can be found on the Kaggle data repository and is available via
https://www.kaggle.com/datasets/uciml/pima-indians-diabetes-database (accessed on
31 October 2024). This dataset comprises 768 instances and 9 features, with the prediction
feature included. It contains information such as the number of pregnancies, glucose level,
blood pressure, skin thickness, insulin level in the blood stream, body mass index, age

https://archive.ics.uci.edu/dataset/17/breast+cancer+wisconsin+diagnostic
https://archive.ics.uci.edu/dataset/17/breast+cancer+wisconsin+diagnostic
https://www.kaggle.com/datasets/uciml/pima-indians-diabetes-database

Software 2024, 3 506

and diabetes pedigree function. There are no missing values or duplicated information in
the dataset.

The heart disease dataset is also available from the Kaggle data repository via https://
www.kaggle.com/datasets/andrewmvd/heart-failure-clinical-data (accessed on 31 October
2024). It includes heart failure clinical data with 299 instances and 13 features.

The three different datasets are defined as DBC, DD, and DHD of order Rn·m, represent-
ing the breast cancer, diabetes and heart disease datasets, respectively. Each contains a
set of features {f 1, f 2, . . ., fm}, where m is the number of features and n is the number of
instances in each dataset. After importing these datasets, some exploratory data analysis
was conducted to gain more insights into the contents of the datasets. Appendix A includes
the target class balance analysis and PCA visualization for the three datasets. The next
section provides brief information about the data preprocessing step.

3.3. Data Preprocessing

The first step was identifying and isolating the target/class feature for prediction. Then,
the datasets were split into training and testing datasets using either the cross_validate() or
the train_test_split() function with a splitting ratio of 80:20. This is a standard supervised
ML procedure where 80% of a dataset is used for training a model and the remaining 20% is
used to evaluate the performance of the trained model on an unseen dataset. The splitting
ratio can be varied.

DBC : R569×31 Isolating Target Column−−−−−−−−−−−−−→ DBC1 : R569×30

DD : R768×9 Isolating Target Column−−−−−−−−−−−−−→ DD1 : R768×8

DHD : R299×13 Isolating Target Column−−−−−−−−−−−−−→ DHD1 : R299×12

A standard scaler was applied to the datasets. This technique removes the mean of
each feature in the datasets and scales them by unit variance. This process ensures that
each feature contributes equally to the model, preventing any feature from dominating due
to its scale. This has been shown to improve the trainability of ML models [46]. It takes
care of the outlier datapoints.

DBC1 : R569×30 StandardScaler−−−−−−−−→ DBC2 : R569×30

DD1 : R768×8 StandardScaler−−−−−−−−→ DD2 : R768×8

DHD1 : R299×12 StandardScaler−−−−−−−−→ DHD2 : R299×12

Next, the PCA technique was applied to reduce the dimensionality of the datasets
without reducing the information or pattern therein. The dimension of each dataset was
reduced to a linear combination of two principal components. The dimensionality of a dataset
impacts the speed and training efficiency of QML models. The limitation and operational
constraints of quantum hardware is also a justification for this dimensionality reduction.

DBC2 : R569×30 PCA−−→ DBC3 : R569×2

DD2 : R768×8 PCA−−→ DD3 : R768×2

DHD2 : R299×12 PCA−−→ DHD3 : R299×2

The final step was the application of the MinMaxScaler for the quantum model to
restrict the range of values in the dataset to between 0 and 1.

3.4. QML Model Implementation

In this study, we adopted the ZZFeatureMap, which was designed with the angle
encoding technique. It is assumed to be difficult to simulate classically [47]. It is available
as one of the built-in QFMs provided by IBM in the qiskit_machine_learning 0.8.0 library.

https://www.kaggle.com/datasets/andrewmvd/heart-failure-clinical-data
https://www.kaggle.com/datasets/andrewmvd/heart-failure-clinical-data

Software 2024, 3 507

Figure 2 shows the ZZFeaturemap circuit for the QSVC model with two feature
dimensions (for the two principal components), two repetitions, and a linear entanglement.
It has a depth of 10. The x[0] and x[1] parameters are the placeholders for the input features.

Software 2024, 3, FOR PEER REVIEW 10

𝐷: ℛହଽൈ ଷଵ ூ௦௧ ்௧ ௨ሱ⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯ሮ 𝐷ଵ: ℛହଽ ൈ ଷ

𝐷: ℛ଼ ൈ ଽ ூ௦௧ ்௧ ௨ሱ⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯ሮ 𝐷ଵ: ℛ଼ ൈ ଼

𝐷ு: ℛଶଽଽ ൈ ଵଷ ூ௦௧ ்௧ ௨ሱ⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯ሮ 𝐷ுଵ: ℛଶଽଽ ൈ ଵଶ

A standard scaler was applied to the datasets. This technique removes the mean of
each feature in the datasets and scales them by unit variance. This process ensures that
each feature contributes equally to the model, preventing any feature from dominating
due to its scale. This has been shown to improve the trainability of ML models [46]. It takes
care of the outlier datapoints. 𝐷ଵ: ℛହଽ ൈ ଷ ௌ௧ௗௗௌሱ⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯ሮ 𝐷ଶ: ℛହଽ ൈ ଷ 𝐷ଵ: ℛ଼ ൈ ଼ ௌ௧ௗௗௌሱ⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯ሮ 𝐷ଶ: ℛ଼ ൈ ଼ 𝐷ுଵ: ℛଶଽଽ ൈ ଵଶ ௌ௧ௗௗௌሱ⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯ሮ 𝐷ுଶ: ℛଶଽଽ ൈ ଵଶ

Next, the PCA technique was applied to reduce the dimensionality of the datasets
without reducing the information or pattern therein. The dimension of each dataset was
reduced to a linear combination of two principal components. The dimensionality of a
dataset impacts the speed and training efficiency of QML models. The limitation and op-
erational constraints of quantum hardware is also a justification for this dimensionality
reduction. 𝐷ଶ: ℛହଽ ൈ ଷ ሱ⎯ሮ 𝐷ଷ: ℛହଽ ൈ ଶ 𝐷ଶ: ℛ଼ ൈ ଼ ሱ⎯ሮ 𝐷ଷ: ℛ଼ ൈ ଶ 𝐷ுଶ: ℛଶଽଽ ൈ ଵଶ ሱ⎯ሮ 𝐷ுଷ: ℛଶଽଽ ൈ ଶ

The final step was the application of the MinMaxScaler for the quantum model to
restrict the range of values in the dataset to between 0 and 1.

3.4. QML Model Implementation
In this study, we adopted the ZZFeatureMap, which was designed with the angle

encoding technique. It is assumed to be difficult to simulate classically [47]. It is available
as one of the built-in QFMs provided by IBM in the qiskit_machine_learning 0.8.0 library.

Figure 2 shows the ZZFeaturemap circuit for the QSVC model with two feature di-
mensions (for the two principal components), two repetitions, and a linear entanglement.
It has a depth of 10. The x[0] and x[1] parameters are the placeholders for the input fea-
tures.

Figure 2. ZZFeatureMap with 2 qubits for the QSVC model.

We employed the QKE method for the QSVC model to optimize the quantum kernel’s
parameters, utilizing a quantum kernel trained model and an optimizer. Specifically, we
used the Quantum Kernel Alignment (QKA) method to accomplish this task [48]. In QKA,
a quantum kernel that is parameterized to fit a dataset is iteratively adjusted, aiming for
the largest possible margin in SVMs.

Figure 2. ZZFeatureMap with 2 qubits for the QSVC model.

We employed the QKE method for the QSVC model to optimize the quantum kernel’s
parameters, utilizing a quantum kernel trained model and an optimizer. Specifically, we
used the Quantum Kernel Alignment (QKA) method to accomplish this task [48]. In QKA,
a quantum kernel that is parameterized to fit a dataset is iteratively adjusted, aiming for
the largest possible margin in SVMs.

A custom rotational layer is created and composed with the ZZFeatureMap, as shown
in Figure 3. A quantum kernel is then instantiated from the TrainableFidelityQuantumK-
ernel class with the feature map passed a parameter. In training the quantum kernel, a
gradient-free optimizer SPSA (Simultaneous Perturbation Stochastic Approximation) was
used [49]. It is particularly efficient for noisy quantum circuits. The fit() method was then
used to train the QKT with the dataset.

Software 2024, 3, FOR PEER REVIEW 11

A custom rotational layer is created and composed with the ZZFeatureMap, as
shown in Figure 3. A quantum kernel is then instantiated from the TrainableFidelityQuan-
tumKernel class with the feature map passed a parameter. In training the quantum kernel,
a gradient-free optimizer SPSA (Simultaneous Perturbation Stochastic Approximation)
was used [49]. It is particularly efficient for noisy quantum circuits. The fit() method was
then used to train the QKT with the dataset.

Figure 3. ZZFeatureMap with a custom rotational layer.

Similar to the QSVC model, the ZZFeatureMap and an ansatz were configured for
the QNN model, as shown in Figures 4 and 5. A custom quantum circuit was created with
a number of qubits equivalent to the feature dimension of our datasets. The ansatz was
instantiated from the RealAmplitudes class library. A QNN was created from the Sam-
plerQNN class and passed into the configured circuit as a parameter. We used the PQC
method for the QNN model. A quantum classifier from the NeuralNetworkClassifier class
that integrates an optimization algorithm COBYLA (Constrained Optimization by Linear
Approximation) was used for training the QNN.

Figure 4. Ansatz generated for the ZZFeatureMap.

Figure 5. Two-qubit quantum circuit configured with ZZFeatureMap and ansatz.

4. Results
This section presents the experimental results for both the classical and quantum

models for each dataset and compares their performance. The IBM quantum development
environment and Qiskit software library were easy to use, and the available documenta-
tion was comprehensive [42,50]. We used the standard metrics: accuracy, F1 score, preci-
sion, recall, and the area under the ROC (ROC-AUC). Accuracy measures the number of
instances correctly classified, and it can be defined as below by using the confusion matrix
values: TP + TNTP + TN + FP + FN (6)

Precision is the proportion of correctly predicted positive observations to the total
predicted positives (TP/(TP + FP)). Recall is the proportion of correctly labelled positive
observations to all actual positives (TP/(TP + FN)), aka the True Positive Rate (TPR). F1
score is the harmonic mean of precision and recall, providing a single metric that repre-
sents a model’s total class-wise accuracy. ROC-AUC is a metric that measures the

Figure 3. ZZFeatureMap with a custom rotational layer.

Similar to the QSVC model, the ZZFeatureMap and an ansatz were configured for
the QNN model, as shown in Figures 4 and 5. A custom quantum circuit was created
with a number of qubits equivalent to the feature dimension of our datasets. The ansatz
was instantiated from the RealAmplitudes class library. A QNN was created from the
SamplerQNN class and passed into the configured circuit as a parameter. We used the PQC
method for the QNN model. A quantum classifier from the NeuralNetworkClassifier class
that integrates an optimization algorithm COBYLA (Constrained Optimization by Linear
Approximation) was used for training the QNN.

Software 2024, 3, FOR PEER REVIEW 11

A custom rotational layer is created and composed with the ZZFeatureMap, as
shown in Figure 3. A quantum kernel is then instantiated from the TrainableFidelityQuan-
tumKernel class with the feature map passed a parameter. In training the quantum kernel,
a gradient-free optimizer SPSA (Simultaneous Perturbation Stochastic Approximation)
was used [49]. It is particularly efficient for noisy quantum circuits. The fit() method was
then used to train the QKT with the dataset.

Figure 3. ZZFeatureMap with a custom rotational layer.

Similar to the QSVC model, the ZZFeatureMap and an ansatz were configured for
the QNN model, as shown in Figures 4 and 5. A custom quantum circuit was created with
a number of qubits equivalent to the feature dimension of our datasets. The ansatz was
instantiated from the RealAmplitudes class library. A QNN was created from the Sam-
plerQNN class and passed into the configured circuit as a parameter. We used the PQC
method for the QNN model. A quantum classifier from the NeuralNetworkClassifier class
that integrates an optimization algorithm COBYLA (Constrained Optimization by Linear
Approximation) was used for training the QNN.

Figure 4. Ansatz generated for the ZZFeatureMap.

Figure 5. Two-qubit quantum circuit configured with ZZFeatureMap and ansatz.

4. Results
This section presents the experimental results for both the classical and quantum

models for each dataset and compares their performance. The IBM quantum development
environment and Qiskit software library were easy to use, and the available documenta-
tion was comprehensive [42,50]. We used the standard metrics: accuracy, F1 score, preci-
sion, recall, and the area under the ROC (ROC-AUC). Accuracy measures the number of
instances correctly classified, and it can be defined as below by using the confusion matrix
values: TP + TNTP + TN + FP + FN (6)

Precision is the proportion of correctly predicted positive observations to the total
predicted positives (TP/(TP + FP)). Recall is the proportion of correctly labelled positive
observations to all actual positives (TP/(TP + FN)), aka the True Positive Rate (TPR). F1
score is the harmonic mean of precision and recall, providing a single metric that repre-
sents a model’s total class-wise accuracy. ROC-AUC is a metric that measures the

Figure 4. Ansatz generated for the ZZFeatureMap.

Software 2024, 3, FOR PEER REVIEW 11

A custom rotational layer is created and composed with the ZZFeatureMap, as
shown in Figure 3. A quantum kernel is then instantiated from the TrainableFidelityQuan-
tumKernel class with the feature map passed a parameter. In training the quantum kernel,
a gradient-free optimizer SPSA (Simultaneous Perturbation Stochastic Approximation)
was used [49]. It is particularly efficient for noisy quantum circuits. The fit() method was
then used to train the QKT with the dataset.

Figure 3. ZZFeatureMap with a custom rotational layer.

Similar to the QSVC model, the ZZFeatureMap and an ansatz were configured for
the QNN model, as shown in Figures 4 and 5. A custom quantum circuit was created with
a number of qubits equivalent to the feature dimension of our datasets. The ansatz was
instantiated from the RealAmplitudes class library. A QNN was created from the Sam-
plerQNN class and passed into the configured circuit as a parameter. We used the PQC
method for the QNN model. A quantum classifier from the NeuralNetworkClassifier class
that integrates an optimization algorithm COBYLA (Constrained Optimization by Linear
Approximation) was used for training the QNN.

Figure 4. Ansatz generated for the ZZFeatureMap.

Figure 5. Two-qubit quantum circuit configured with ZZFeatureMap and ansatz.

4. Results
This section presents the experimental results for both the classical and quantum

models for each dataset and compares their performance. The IBM quantum development
environment and Qiskit software library were easy to use, and the available documenta-
tion was comprehensive [42,50]. We used the standard metrics: accuracy, F1 score, preci-
sion, recall, and the area under the ROC (ROC-AUC). Accuracy measures the number of
instances correctly classified, and it can be defined as below by using the confusion matrix
values: TP + TNTP + TN + FP + FN (6)

Precision is the proportion of correctly predicted positive observations to the total
predicted positives (TP/(TP + FP)). Recall is the proportion of correctly labelled positive
observations to all actual positives (TP/(TP + FN)), aka the True Positive Rate (TPR). F1
score is the harmonic mean of precision and recall, providing a single metric that repre-
sents a model’s total class-wise accuracy. ROC-AUC is a metric that measures the

Figure 5. Two-qubit quantum circuit configured with ZZFeatureMap and ansatz.

4. Results

This section presents the experimental results for both the classical and quantum
models for each dataset and compares their performance. The IBM quantum development
environment and Qiskit software library were easy to use, and the available documentation

Software 2024, 3 508

was comprehensive [42,50]. We used the standard metrics: accuracy, F1 score, precision,
recall, and the area under the ROC (ROC-AUC). Accuracy measures the number of instances
correctly classified, and it can be defined as below by using the confusion matrix values:

TP + TN
TP + TN + FP + FN

(6)

Precision is the proportion of correctly predicted positive observations to the total
predicted positives (TP/(TP + FP)). Recall is the proportion of correctly labelled positive
observations to all actual positives (TP/(TP + FN)), aka the True Positive Rate (TPR).
F1 score is the harmonic mean of precision and recall, providing a single metric that
represents a model’s total class-wise accuracy. ROC-AUC is a metric that measures the
performance of a classification model by plotting the TPR against the False Positive Rate
(FPR) at various threshold settings.

4.1. Breast Cancer Dataset Performance Metrics

Table 2 shows the breast cancer dataset results for the seven models trained for this
study, which include a classical SVC with four different kernels (linear, poly, rbf, and
sigmoid), MLP, and the two quantum algorithms QSVC and QNN. In terms of accuracy,
the SVC_Linear and MLP models performed the best with the highest accuracy of 95.26%,
while QSVC had a competitive score of 93.86%. QNN performed the worst with the lowest
accuracy of 77.19%. Other metrics were not significantly different.

Table 2. Results for the breast cancer dataset.

Models SVC_Linear SVC_Poly SVC_RBF SVC_Sigmoid MLP QSVC QNN

Accuracy 95.26 90.17 94.03 90.34 95.26 93.86 77.19
Precision 96.17 87.67 94.32 91.67 96.13 93.86 77.19

Recall 96.36 98.31 96.35 93.27 96.36 93.73 76.44
F1 score 96.23 92.65 95.29 92.38 96.23 94.41 77.02

ROC-AUC 98.82 98.11 98.39 96.05 98.80 91.86 73.44

4.2. Diabetes Dataset Performance Metrics

Table 3 shows the diabetes dataset results for each model. Among the models, the
MLP model performed the best with an accuracy score of 72.4%. SVC_Linear and SVC_RBF
showed comparable performance with accuracy scores of 72.39% and 72.14%, respectively.

Table 3. Results for the diabetes dataset.

Models SVC_Linear SVC_Poly SVC_RBF SVC_Sigmoid MLP QSVC QNN

Accuracy 72.39 69.40 72.14 62.63 72.40 70.78 67.53
Precision 64.89 74.48 65.40 46.5 65.27 70.78 67.53

Recall 45.90 17.92 42.54 47.01 45.92 69.26 60.35
F1 score 53.68 28.67 51.31 46.72 53.44 69.66 68.04

ROC-AUC 76.27 75.45 74.71 63.02 77.25 64.75 56.16

On the other hand, SVC_Poly and QNN showed lower accuracy scores of 69.4%
and 67.53%, respectively. The SVC_Sigmoid model had the lowest accuracy at 62.63%,
suggesting it is the least suitable for this task among the models tested. QSVC performed
relatively well, with an accuracy of 70.78%, making it a competitive alternative in the
quantum machine learning category. On the other hand, the F1 scores were higher for
quantum models, which indicates that the quantum models had a good overall performance
in binary classification.

Software 2024, 3 509

4.3. Heart Disease Dataset Performance Metrics

Table 4 shows the heart disease dataset results for each model. For this dataset,
the MLP model achieved the highest accuracy of 75.57%, closely followed by SVC_RBF,
SVC_Linear, and SVC_Poly. The QNN model demonstrated the lowest accuracy of 58.33%,
indicating that it was less useful in this application. QSVC exhibited moderate performance,
with an accuracy score of 63.33%, which is better than QNN but still lags behind the other
models. However, the other performance metrics were different, specifically recall and
F1 score. QSVC performed best regarding F1 score, with a score of 77.49%.

Table 4. Results for the heart disease dataset.

Models SVC_Linear SVC_Poly SVC_RBF SVC_Sigmoid MLP QSVC QNN

Accuracy 74.57 73.90 74.90 69.55 75.57 63.33 58.33
Precision 75.11 69.67 77.47 53.02 74.34 63.33 58.33

Recall 43.42 25.74 45.53 51.89 50.74 53.31 42.98
F1 score 47.26 33.14 48.88 51.24 52.95 77.49 34.03

ROC-AUC 83.79 82.51 77.32 72.69 83.76 56.00 50.00

5. Discussion

This section presents our interpretation of the results and limitations of the study.
Conclusions are summarized and future research directions are highlighted as well.

5.1. Discussion and Limitations

Across the three datasets, while the classical algorithms showed similar or slightly
better performance, the QSVC showed strength by outperforming some of the classical
kernels in some metrics and doing much better than the QNN. Several factors could be
responsible for the poor performances of the quantum algorithms in this study. Firstly,
the complexities of the datasets may not be suitable enough for the requirements of QC;
i.e., datasets are small, with a limited number of instances and feature dimensions as it
was only two after PCAas little as two. We plan to continue the experiments with larger
datasets and change the parameters to better understand the quantum processes.

Secondly, the limitations imposed by restricted access to quantum hardware and
our use of a simulator could have an impact on the results. Access to real quantum
hardware would have further enriched this study. We used IBM quantum platform and
Qiskit, but more detailed analysis could be performed with other software packages and by
comparing them, e.g., using Cirq by Google or Q# by Microsoft as an alternative quantum
programming language.

Finally, IBM’s ongoing updates to the quantum services and Qiskit package made
model implementation a bit challenging as a user. For example, IBM announced the new
Qiskit 1.2 around August 2024, and some classes were deprecated, e.g., BaseSamplerV1 and
BaseEstimatorV1. This required continuous updates to the code, and some QML functions
did not work with the updated version. Due to the emerging nature of the quantum
programming language constructs, backward compatibility has been somewhat poor. For
example, V2 primitives are not supported in version 0.7.2 of the Qiskit ML package, but
the new 0.8.0 version, which was released in November 2024, fixed some of these issues.

These results highlight the fact that quantum computing, however promising, may
not be suitable for all datasets and should not be considered a direct replacement for the
classical computing paradigm; rather, its role is complementary. In other words, it would
be an overkill to apply QC to simple tasks that can be accomplished by existing classical
alternatives, but QC can be a promising solution when the layers of complexity increase,
i.e., to tackle exponentially complex problems. We note that although quantum computing
is more powerful than classical computing, for most trivial operations and small datasets,
classical ML can be enough. Considering the required computing power and current

Software 2024, 3 510

challenges with quantum hardware, one may prefer to use hybrid or classical models if
there are alternative classical solutions with comparable performance.

5.2. Conclusions and Future Work

In this paper, we presented a study evaluating the performance of QML algorithms
for binary classification and compared the results with classical counterparts using three
datasets. The main objective of this study was to demonstrate the practical implementation
and applicability of QML algorithms and compare the performance results to classical
counterparts. The relevant literature was reviewed, and our methods were explained. The
quantum processes of building a quantum feature map, quantum kernel estimation for
QSVC, and parameterized quantum circuit for QNN were implemented. Evaluations of the
models and comparative analysis of the performance metrics were presented. The results
showed that QML algorithms can improve the performance of trained ML models, but
there is not a significant quantum advantage for small datasets.

Although QC promises to revolutionize many fields, significant technical and theoreti-
cal challenges remain before practical and widespread use of quantum computers becomes
a reality. QC in the NISQ era is prone to errors and noise. Quantum noise describes the
unwanted disturbances that affect the quantum systems and lead to errors in quantum
computation [51]. Even small amounts of noise can lead to decoherence, causing qubits to
lose their superposition and entanglement properties. Quantum noise poses a significant
barrier to the development of large-scale, fault-tolerant quantum computers. Advances in
quantum error correction, qubit stability, scalability, and quantum algorithm development
will be critical for the progression of this technology.

Using a classical computer or a supercomputer will potentially be the easiest and most
economical solution for tackling ordinary problems, but on the other hand, many complex
mathematical problems and machine learning challenges can benefit from the exponential
power and quantum advantage provided by QC and QML. For a future study, we are
planning to apply the QML to other classification problems with medium datasets and
investigate how data size influences the performance of QML algorithms in both binary
and multi-class classification tasks. This emerging field holds promise for solving complex
classification problems, particularly in cases involving high-dimensional data. Additionally,
we would like to explore QML for multi-labelled data, as multinomial classification adds
another layer of complexity.

Author Contributions: Conceptualization, S.S.A. and D.C.; methodology, S.S.A. and D.C.; software,
S.S.A.; validation, S.S.A. and D.C.; research and analysis, S.S.A.; writing—original draft preparation,
review and editing, S.S.A. and D.C.; supervision, D.C. All authors have read and agreed to the
published version of the manuscript.

Funding: This research received no external funding.

Institutional Review Board Statement: This study was conducted according to the ethical guidelines
of Bournemouth University in the UK. This study did not involve humans or animals.

Informed Consent Statement: Not applicable.

Data Availability Statement: Publicly available datasets were used in this study, as explained in the
methods section.

Conflicts of Interest: The authors declare no conflicts of interest.

Appendix A

This appendix includes the target class balance analysis and PCA visualization of
the three datasets. Figure A1 is for the breast cancer dataset, Figure A2 is for the diabetes
dataset, and Figure A3 is for the heart disease dataset. Yellow and purple dots in PCA
analysis show the classification.

Software 2024, 3 511Software 2024, 3, FOR PEER REVIEW 15

(a) (b)

Figure A1. Breast cancer dataset (a) target class balance; (b) PCA visualization.

(a) (b)

Figure A2. Diabetes dataset (a) target class balance; (b) PCA visualization.

(a) (b)

Figure A3. Heart disease dataset (a) target class balance; (b) PCA visualization.

Figure A1. Breast cancer dataset (a) target class balance; (b) PCA visualization.

Software 2024, 3, FOR PEER REVIEW 15

(a) (b)

Figure A1. Breast cancer dataset (a) target class balance; (b) PCA visualization.

(a) (b)

Figure A2. Diabetes dataset (a) target class balance; (b) PCA visualization.

(a) (b)

Figure A3. Heart disease dataset (a) target class balance; (b) PCA visualization.

Figure A2. Diabetes dataset (a) target class balance; (b) PCA visualization.

Software 2024, 3, FOR PEER REVIEW 15

(a) (b)

Figure A1. Breast cancer dataset (a) target class balance; (b) PCA visualization.

(a) (b)

Figure A2. Diabetes dataset (a) target class balance; (b) PCA visualization.

(a) (b)

Figure A3. Heart disease dataset (a) target class balance; (b) PCA visualization.

Figure A3. Heart disease dataset (a) target class balance; (b) PCA visualization.

Software 2024, 3 512

References
1. Gill, S.S.; Kumar, A.; Singh, H.; Singh, M.; Kaur, K.; Usman, M.; Buyya, R. Quantum computing: A taxonomy, systematic review

and future directions. Softw. Pract. Exp. 2022, 52, 66–114. [CrossRef]
2. Wu, X.; Xiao, L.; Sun, Y.; Zhang, J.; Ma, T.; He, L. A survey of human-in-the-loop for machine learning. Future Gener. Comput. Syst.

2022, 135, 364–381. [CrossRef]
3. Sahu, M.; Gupta, R.; Ambasta, R.K.; Kumar, P. Artificial intelligence and machine learning in precision medicine: A paradigm

shift in big data analysis. Prog. Mol. Biol. Transl. Sci. 2022, 190, 57–100. [CrossRef] [PubMed]
4. Oztas, B.; Cetinkaya, D.; Adedoyin, F.; Budka, M.; Aksu, G.; Dogan, H. Transaction monitoring in anti-money laundering: A

qualitative analysis and points of view from industry. Future Gener. Comput. Syst. 2024, 159, 161–171. [CrossRef]
5. Sabeur, Z.; Bruno, A.; Johnstone, L.; Ferjani, M.; Benaouda, D.; Arbab-Zavar, B.; Cetinkaya, D.; Sallal, M. Cyber-physical behaviour

detection and understanding using artificial intelligence. In Proceedings of the 13th International Conference on Applied Human
Factors and Ergonomics (AHFE’22), Cognitive Computing and Internet of Things, New York, NY, USA, 24–28 July 2022; Volume 67.

6. Bertolini, M.; Mezzogori, D.; Neroni, M.; Zammori, F. Machine learning for industrial applications: A comprehensive literature
review. Expert Syst. Appl. 2021, 175, 114820. [CrossRef]

7. Verbraeken, J.; Wolting, M.; Katzy, J.; Kloppenburg, J.; Verbelen, T.; Rellermeyer, J.S. A survey on distributed machine learning.
ACM Comput. Surv. 2020, 53, 30. [CrossRef]

8. Ali, S.; Yue, T.; Abreu, R. When software engineering meets quantum computing. Commun. ACM 2022, 65, 84–88. [CrossRef]
9. Hassija, V.; Chamola, V.; Saxena, V.; Chanana, V.; Parashari, P.; Mumtaz, S.; Guizani, M. Present landscape of quantum computing.

IET Quantum Commun. 2020, 1, 42–48. [CrossRef]
10. Biamonte, J.; Wittek, P.; Pancotti, N.; Rebentrost, P.; Wiebe, N.; Lloyd, S. Quantum machine learning. Nature 2017, 549, 195–202.

[CrossRef]
11. Ramezani, S.B.; Sommers, A.; Manchukonda, H.K.; Rahimi, S.; Amirlatifi, A. Machine learning algorithms in quantum computing:

A survey. In Proceedings of the International Joint Conference on Neural Networks, Glasgow, UK, 19–24 July 2020.
12. Bayerstadler, A.; Becquin, G.; Binder, J.; Botter, T.; Ehm, H.; Ehmer, T.; Erdmann, M.; Gaus, N.; Harbach, P.; Hess, M.; et al.

Industry quantum computing applications. EPJ Quantum Technol. 2021, 8, 25. [CrossRef]
13. Hughes, C.; Isaacson, J.; Perry, A.; Sun, R.F.; Turner, J. Quantum Computing for the Quantum Curious; Springer Nature: Cham,

Switzerland, 2021.
14. Nielsen, M.A.; Chuang, I.L. Quantum Computation and Quantum Information, 10th ed.; Cambridge University Press: Cambridge,

UK, 2010.
15. Wang, Y.; Hu, Z.; Sanders, B.C.; Kais, S. Qudits and high-dimensional quantum computing. Front. Phys. Sec. Quantum Eng.

Technol. 2020, 8, 589504. [CrossRef]
16. Menon, S.G.; Glachman, N.; Pompili, M.; Dibos, A.; Bernien, H. An integrated atom array-nanophotonic chip platform with

background-free imaging. Nat. Commun. 2024, 15, 6156. [CrossRef] [PubMed]
17. Grumbling, E.; Horowitz, M. (Eds.) Quantum Computing: Progress and Prospects; The National Academies of Sciences, Engineering

and Medicine, The National Academies Press: Washington, DC, USA, 2019.
18. Bharti, K.; Cervera-Lierta, A.; Kyaw, T.H.; Haug, T.; Alperin-Lea, S.; Anand, A.; Degroote, M.; Heimonen, H.; Kottmann, J.S.;

Menke, T.; et al. Noisy intermediate-scale quantum (NISQ) algorithms. Rev. Mod. Phys. 2022, 94, 015004. [CrossRef]
19. Bova, F.; Goldfarb, A.; Melko, R.G. Commercial applications of quantum computing. EPJ Quantum Technol. 2021, 8, 2. [CrossRef]

[PubMed]
20. Smith, C.S. Forbes Top 10 Quantum Computing Companies Making Change—December 2023. Available online: https://www.

forbes.com/sites/technology/article/top-quantum-computing-companies/ (accessed on 29 October 2024).
21. Elben, A.; Vermersch, B.; van Bijnen, R.; Kokail, C.; Brydges, T.; Maier, C.; Joshi, M.K.; Blatt, R.; Roos, C.F.; Zoller, P. Cross-platform

verification of intermediate scale quantum devices. Phys. Rev. Lett. 2020, 124, 010504. [CrossRef] [PubMed]
22. Shor, P.W. Fault-tolerant quantum computation. In Proceedings of the 37th Conference on Foundations of Computer Science,

Burlington, VT, USA, 14–16 October 1996; IEEE Computer Society Press: Washington, DC, USA, 1996.
23. Nimbe, P.; Weyori, B.A.; Adekoya, A.F. Models in quantum computing: A systematic review. Quantum Inf. Process. 2021, 20, 80.

[CrossRef]
24. DiVincenzo, D.P. Quantum gates and circuits. Proc. R. Soc. A Math. Phys. Eng. Sci. 1998, 454, 261–276. [CrossRef]
25. McGeoch, C. Adiabatic Quantum Computation and Quantum Annealing: Theory and Practice; Part of the book series: Synthesis

Lectures on Quantum Computing (SLQC); Springer: Berlin/Heidelberg, Germany, 2014.
26. Albash, T.; Lidar, D.A. Adiabatic quantum computation. Rev. Mod. Phys. 2018, 90, 015002. [CrossRef]
27. Rath, M.; Date, H. Quantum data encoding: A comparative analysis of classical-to-quantum mapping techniques and their impact

on machine learning accuracy. EPJ Quantum Technol. 2024, 11, 72. [CrossRef]
28. Schuld, M.; Bocharov, A.; Svore, K.; Wiebe, N. Circuit-centric quantum classifiers. Phys. Rev. A 2020, 101, 032308. [CrossRef]
29. Munshi, M.; Gupta, R.; Jadav, N.K.; Polkowski, Z.; Tanwar, S.; Alqahtani, F.; Said, W. Quantum machine learning-based framework

to detect heart failures in Healthcare 4.0. Softw. Pract. Exp. 2024, 54, 168–185. [CrossRef]
30. Maheshwari, D.; Sierra-Sosa, D.; Garcia-Zapirain, B. Variational quantum classifier for binary classification: Real vs synthetic

dataset. IEEE Access 2022, 10, 3705–3715. [CrossRef]

https://doi.org/10.1002/spe.3039
https://doi.org/10.1016/j.future.2022.05.014
https://doi.org/10.1016/bs.pmbts.2022.03.002
https://www.ncbi.nlm.nih.gov/pubmed/36008002
https://doi.org/10.1016/j.future.2024.05.027
https://doi.org/10.1016/j.eswa.2021.114820
https://doi.org/10.1145/3377454
https://doi.org/10.1145/3512340
https://doi.org/10.1049/iet-qtc.2020.0027
https://doi.org/10.1038/nature23474
https://doi.org/10.1140/epjqt/s40507-021-00114-x
https://doi.org/10.3389/fphy.2020.589504
https://doi.org/10.1038/s41467-024-50355-4
https://www.ncbi.nlm.nih.gov/pubmed/39039068
https://doi.org/10.1103/RevModPhys.94.015004
https://doi.org/10.1140/epjqt/s40507-021-00091-1
https://www.ncbi.nlm.nih.gov/pubmed/33569545
https://www.forbes.com/sites/technology/article/top-quantum-computing-companies/
https://www.forbes.com/sites/technology/article/top-quantum-computing-companies/
https://doi.org/10.1103/PhysRevLett.124.010504
https://www.ncbi.nlm.nih.gov/pubmed/31976701
https://doi.org/10.1007/s11128-021-03021-3
https://doi.org/10.1098/rspa.1998.0159
https://doi.org/10.1103/RevModPhys.90.015002
https://doi.org/10.1140/epjqt/s40507-024-00285-3
https://doi.org/10.1103/PhysRevA.101.032308
https://doi.org/10.1002/spe.3264
https://doi.org/10.1109/ACCESS.2021.3139323

Software 2024, 3 513

31. Kavitha, S.S.; Kaulgud, N. Quantum machine learning for support vector machine classification. Evol. Intell. 2024, 17, 819–828.
[CrossRef]

32. Suzuki, T.; Hasebe, T.; Miyazaki, T. Quantum support vector machines for classification and regression on a trapped-ion quantum
computer. Quantum Mach. Intell. 2024, 6, 31. [CrossRef]

33. Yuan, X.-J.; Chen, Z.-Q.; Liu, Y.-D.; Xie, Z.; Liu, Y.-Z.; Jin, X.-M.; Wen, X.; Tang, H. Quantum support vector machines for
aerodynamic classification. Intell. Comput. 2023, 2, 0057. [CrossRef]

34. Aly, M.; Fadaaq, S.; Warga, O.A.; Nasir, Q.; Talib, M.A. Experimental benchmarking of quantum machine learning classifiers. In
Proceedings of the 6th International Conference on Signal Processing and Information Security (ICSPIS), Dubai, United Arab
Emirates, 8–9 November 2023; pp. 240–245. [CrossRef]

35. Beer, K.; Bondarenko, D.; Farrelly, T.; Osborne, T.; Salzmann, R.; Scheiermann, D.; Wolf, R. Training deep quantum neural
networks. Nat. Commun. 2020, 11, 808. [CrossRef]

36. Li, Y.; Wang, Z.; Han, R.; Shi, S.; Li, J.; Shang, R.; Zheng, H.; Zhong, G.; Gu, Y. Quantum recurrent neural networks for sequential
learning. Neural Netw. 2023, 166, 148–161. [CrossRef]

37. Simoes, R.D.M.; Huber, P.; Meier, N.; Smailov, N.; Fuchslin, R.M.; Stockinger, K. Experimental evaluation of quantum machine
learning algorithms. IEEE Access 2023, 11, 6197–6208. [CrossRef]

38. Desai, U.; Kola, K.S.; Nikhitha, S.; Nithin, G.; Raj, G.P.; Karthik, G. Comparison of machine learning and quantum machine
learning for breast cancer detection. In Proceedings of the International Conference on Smart Systems for Applications in
Electrical Sciences, Tumakuru, India, 3–4 May 2024. [CrossRef]

39. Reka, S.S.; Karthikeyan, H.L.; Shakil, A.J.; Venugopal, P.; Muniraj, M. Exploring quantum machine learning for enhanced skin
lesion classification: A comparative study of implementation methods. IEEE Access 2024, 12, 104568–104584. [CrossRef]

40. Peral-García, D.; Cruz-Benito, J.; García-Peñalvo, F.J. Systematic literature review: Quantum machine learning and its applications.
Comput. Sci. Rev. 2024, 51, 100619. [CrossRef]

41. Broughton, M.; Verdon, G.; McCourt, T.; Martinez, A.J.; Yoo, J.H.; Isakov, S.V.; Massey, P.; Halavati, R.; Niu, M.Y.; Zlokapa, A.; et al.
TensorFlow Quantum: A software framework for quantum machine learning. arXiv 2020, arXiv:2003.02989. Available online:
http://arxiv.org/abs/2003.02989 (accessed on 31 October 2024).

42. Cervantes, J.; Garcia-Lamont, F.; Rodríguez-Mazahua, L.; Lopez, A. A comprehensive survey on support vector machine
classification: Applications, challenges and trends. Neurocomputing 2020, 408, 189–215. [CrossRef]

43. IBM Qiskit Machine Learning Documentation. Available online: https://qiskit-community.github.io/qiskit-machine-learning/
(accessed on 30 October 2024).

44. Hasan, B.M.S.; Abdulazeez, A.M. A review of principal component analysis algorithm for dimensionality reduction. J. Soft
Comput. Data Min. 2021, 2, 20–30. [CrossRef]

45. Greenacre, M.; Groenen, P.J.F.; Hastie, T.; D’Enza, A.I.; Markos, A.; Tuzhilina, E. Principal component analysis. Nat. Rev.-Methods
Primers 2022, 2, 100. [CrossRef]

46. Ahsan, M.; Mahmud, M.; Saha, P.; Gupta, K.; Siddique, Z. Effect of data scaling methods on machine learning algorithms and
model performance. Technologies 2021, 9, 52. [CrossRef]

47. Havlíček, V.; Córcoles, A.D.; Temme, K.; Harrow, A.W.; Kandala, A.; Chow, J.M.; Gambetta, J.M. Supervised learning with
quantum-enhanced feature spaces. Nature 2019, 567, 209–212. [CrossRef]

48. Vasques, X.; Paik, H.; Cif, L. Application of quantum machine learning using quantum kernel algorithms on multiclass neuron
M-type classification. Sci. Rep. 2023, 13, 11541. [CrossRef] [PubMed]

49. Bonet-Monroig, X.; Wang, H.; Vermetten, D.; Senjean, B.; Moussa, C.; Bäck, T.; Dunjko, V.; O’Brien, T.E. Performance comparison
of optimization methods on variational quantum algorithms. arXiv 2021, arXiv:2111.13454. Available online: http://arxiv.org/
abs/2111.13454 (accessed on 31 October 2024). [CrossRef]

50. Javadi-Abhari, A.; Treinish, M.; Krsulich, K.; Wood, C.J.; Lishman, J.; Gacon, J.; Martiel, S.; Nation, P.D.; Bishop, L.S.; Cross, A.W.; et al.
Quantum computing with Qiskit. arXiv 2024, arXiv:2405.08810. [CrossRef]

51. Ball, H.; Biercuk, M.J.; Carvalho, A.R.R.; Chen, J.; Hush, M.; De Castro, L.A.; Li, L.; Liebermann, P.J.; Slatyer, H.J.; Edmunds, C.; et al.
Software tools for quantum control: Improving quantum computer performance through noise and error suppression. Quantum
Sci. Technol. 2021, 6, 044011. [CrossRef]

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

https://doi.org/10.1007/s12065-022-00756-5
https://doi.org/10.1007/s42484-024-00165-0
https://doi.org/10.34133/icomputing.0057
https://doi.org/10.1109/ICSPIS60075.2023.10343811
https://doi.org/10.1038/s41467-020-14454-2
https://doi.org/10.1016/j.neunet.2023.07.003
https://doi.org/10.1109/ACCESS.2023.3236409
https://doi.org/10.1109/ICSSES62373.2024.10561257
https://doi.org/10.1109/ACCESS.2024.3434681
https://doi.org/10.1016/j.cosrev.2024.100619
http://arxiv.org/abs/2003.02989
https://doi.org/10.1016/j.neucom.2019.10.118
https://qiskit-community.github.io/qiskit-machine-learning/
https://doi.org/10.30880/jscdm.2021.02.01.003
https://doi.org/10.1038/s43586-022-00184-w
https://doi.org/10.3390/technologies9030052
https://doi.org/10.1038/s41586-019-0980-2
https://doi.org/10.1038/s41598-023-38558-z
https://www.ncbi.nlm.nih.gov/pubmed/37460767
http://arxiv.org/abs/2111.13454
http://arxiv.org/abs/2111.13454
https://doi.org/10.1103/PhysRevA.107.032407
https://doi.org/10.48550/ARXIV.2405.08810
https://doi.org/10.1088/2058-9565/abdca6

	Introduction
	Background Information and Literature Review
	Quantum Computation and Quantum Information
	QC Implementation Models
	Quantum Algorithms and Quantum Data Encoding Methods
	Related Work
	Studies Using Variational Quantum Classifier (VQC)
	Studies Using Quantum Support Vector Classifier (QSVC)
	Studies Using Quantum Neural Networks (QNN)

	Materials and Methods
	ML Approach and Models
	Datasets
	Data Preprocessing
	QML Model Implementation

	Results
	Breast Cancer Dataset Performance Metrics
	Diabetes Dataset Performance Metrics
	Heart Disease Dataset Performance Metrics

	Discussion
	Discussion and Limitations
	Conclusions and Future Work

	Appendix A
	References

