
An Empirical Investigation into
Software Effort Estimation by Analogy

Christopher Schofield

A thesis submitted as partial fulfilment of the
requirements of Bournemouth University for the degree of

Doctor of Philosophy

June 1998

Bournemouth University

Abstract

Most practitioners recognise the important part accurate estimates of development effort play
in the successful management of major software projects. However, it is widely recognised

that current estimation techniques are often very inaccurate, while studies (Heemstra 1992;

Lederer and Prasad 1993) have shown that effort estimation research is not being effectively

transferred from the research domain into practical application. Traditionally, research has

been almost exclusively focused on the advancement of algorithmic models (e. g. COCOMO

(Boehm 1981) and SLIM (Putnam 1978)), where effort is commonly expressed as a function of

system size. However, in recent years there has been a discernible movement away from

algorithmic models with non-algorithmic systems (often encompassing machine learning

facets) being actively researched. This is potentially a very exciting and important time in this

field, with new approaches regularly being proposed. One such technique, estimation by

analogy, is the focus of this thesis.

The principle behind estimation by analogy is that past experience can often provide insights

and solutions to present problems. Software projects are characterised in terms of collectable
features (such as the number of screens or the size of the functional requirements) and stored

in a historical case base as they are completed. Once a case base of sufficient size has been

cultivated, new projects can be estimated by finding similar historical projects and re-using

the recorded effort.

To make estimation by analogy feasible it became necessary to construct a software tool,

dubbed ANGEL, which allowed the collection of historical project data and the generation of

estimates for new software projects. A substantial empirical validation of the approach was

made encompassing approximately 250 real historical software projects across eight industrial

data sets, using stepwise regression as a benchmark. Significance tests on the results accepted

the hypothesis (at the 1% confidence level) that estimation by analogy is a superior prediction

system to stepwise regression in terms of accuracy. A study was also made of the sensitivity

of the analogy approach. By growing project data sets in a pseudo time-series fashion it was

possible to answer pertinent questions about the approach, such as, what are the effects of

outlying projects and what is the minimum data set size?

The main conclusions of this work are that estimation by analogy is a viable estimation

technique that would seem to offer some advantages over algorithmic approaches including,

improved accuracy, easier use of categorical features and an ability to operate even where no

statistical relationships can be found.

Acknowledgements

I would first and foremost like to thank Professor Martin Shepperd for his dedicated

supervision and unwavering support, without which this thesis would never have got off the

ground. Thanks Martin, I owe you a lot.

I would also like to record my thanks to several other people who have made contributions to

this thesis. In particular, Dr. Frank Milsom, Michelle Cartwright, Colin Kirsopp, Austin

Rainer, Tina Lepinioti, Dr. Liguang Chen and Jacqui Holmes.

A great deal of thanks must also go to Justine Tyler and my parents, who have supported me

throughout, putting up with my thoroughly unsociable behaviour and late nights.

The research contained within this thesis has been supported by British Telecom and the

Enterprise in Higher Education (EHE) initiative.

List of Publications

The publications listed below are based upon work presented in this thesis:

" Schofield, C. and M. J. Shepperd (1995). "Software Support for Cost Estimation by

Analogy. " ESCOM 95, Rolduc, The Netherlands.

" Shepperd, M. J., C. Schofield, and B. Kitchenham. (1996). "Effort Estimation Using

Analogy. " ICSE-18, Berlin.

" Schofield, C. and M. J. Shepperd (1996). "Estimation by Analogy: A Case Study. " ESCOM

96, Wilmslow, UK.,

" Shepperd, M. J. and C. Schofield (1997). "New Techniques for Estimation from Function

Points. " IFPUG Fall Conference, Scottsdale, Arizona,

" Shepperd, M. J. and C. Schofield (1997). "Estimating Software Project Effort Using

Analogies. " IEEE Transactions on Software Engineering 23(11): 736 - 743.

iv

Contents

ABSTRACT ...
I

ACKNOWLEDGEMENTS ...
II

LIST OF PUBLICATIONS ...
III

CONTENTS ...
IV

LIST OF TABLES ..
VII

LIST OF FIGURES ..
VIII

CHAPTER 11

TNTRODUCTION ..
1

0 MOTIVATION FOR THESIS
... 1 ..

2
.

1.1 RESEARCH OBJECTIVES
... ..

3

2 SCOPE OF THE INVESTIGATION ... 1 ..
3

.
1.3 OUTLINE OF THESIS

... ..
4

CHAPTER 2

A HISTORY OF RESEARCH PROGRESS IN THE DEVELOPMENT OF ALGORITHMIC
SOFTWARE COST MODELS ..

6

... 0 INTRODUCTION 2 ..
6

............. .
2.1 EVOLUTION OF EFFORT ESTIMATION MODELS

...
7

2.2 EARLY ECONOMIC MODELS - PRE 1976
..

8

2.2.1 The First Algorithmic Models
9

2.2.2 Wolverton
10

2.3 LATER ECONOMIC MODELS - POST 1976
...

10

2.3.1 Walston & Felix
11

2.3.2 CO COMO
12

2.3.3 Critique of the COCOMO Approach ...
13

2.3.4 Revisions to the COCOMO Model ...
14

2.4 RAYLEIGH-CURVE MODELS
.. ...

15

2.4.1 The Putnam Model
16

2.4.2 Critique of The Putnam Model
16

2.5 FUNCTION POINT MODELS
.. ...

18

2.5.1 Albrecht's Function Points
18

2.5.2 Critique of the Function Point Approach
19

2.5.3 Adaptations to Albrecht's Function Points
21

2.6 EMPIRICAL VALIDATION OF COST MODELS
...

22

2.6.1 Validation Criteria
22

2.6.2 Published Validation Research
25

2.7 CURRENT STATE OF THE ART?
... ..

27

2.8 SUMMARY
... ..

28

CHAPTER 30

RECENT RESEARCH DIRECTIONS: NON-ALGORITHMIC ESTIMATION TECHNIQUES
. 30

.. ...
3.0 INTRODUCTION

30

3.1 ARTIFICIAL NEURAL NETWORKS
31

V

3.2 RULE INDUCTION SYSTEMS
...

36
3.3 FUZZY SYSTEMS

..
37

3.4 REGRESSION TREES
...

39
3.5 CASE-BASED REASONING (CBR)

...
39

3.6 COMPARISON OF APPROACHES
..

44
3.7 SUMMARY

...
46

CHAPTER 4

THE ANGEL APPROACH TO EFFORT ESTIMATION ... 48

4.0 INTRODUCTION
..

48
4.1 REASONING BY ANALOGY Vs CASE-BASED REASONING

...
50

4.2 EFFORT ESTIMATION BY ANALOGY : THE ANGEL APPROACH
...

50

4.2.1-Characterising Projects
...

50
4.2.2 Similarity Measures ...

51
4.2.3 Dealing with Noisy Features

...
54

4.2.4 Forming a New Estimate
...

54
4.3 EFFORT ESTIMATION BY ANALOGY: THE ANGEL TOOL

...
55

4.4 SUMMARY ...
61

CHAPTER 5

AN EMPIRICAL INVESTIGATION OF THE ACCURACY OF ESTIMATION BY ANALOGY

.. 63

5.0 INTRODUCTION
..

63

5.1 EXPERIMENTAL PROCEDURE
...

64
5.2 NOTES ON THE INVESTIGATION

..
65

5.3 DATA ANALYSIS
..

66

5.3.1 The Albrecht data set ... 66
5.3.2 The Desharnais data set ..

68
5.3.3 The Finnish data set ... 70
5.3.4 The Hughes data set ... 71
5.3.5 The Kemerer data set ...

72
5.3.6 The MERMAID data set ...

73
5.3.7 The Real-Time 1 data set ... 74
5.3.8 The Telecoms 1 data set ... 75

5.4 SUMMARY OF RESULTS
..

76
5.5 DISCUSSION

...
79

5.6 SUMMARY
...

82

CHAPTER 6

AN INVESTIGATION INTO THE SENSITIVITY OF ESTIMATION BY ANALOGY 84

6.0 INTRODUCTION
..

84
6.1 QUESTIONS TO BE ANSWERED

...
84

6.2 DESIGN OF THE SENSITIVITY ANALYSIS
...

85
6.3 SENSITIVITY ANALYSIS RESULTS

...
86

6.4 DISCUSSION OF RESULTS
...

88
6.5 QUESTIONS REVISITED

...
89

6.6 SUMMARY
...

91

CHAPTER 7

CONCLUSIONS ... 93

7.0 INTRODUCTION
..:...

93
7.1 SUMMARY OF WORK CARRIED OUT

..
93

7.2 RESEARCH OBJECTIVES REVISITED
..

94
7.3 SYNOPSIS OF RESEARCH FINDINGS

..
97

7.4 CONTRIBUTION OF THIS THESIS
..

99

vi

7.5 LIMITATIONS OF WORK
..

99

7.5.1 Limitations of Approach
99

7.5.2 Tool Limitations ...
100

7.5.3 Analysis Limitations ...
101

7.6 FURTHER WORK
..

101

7.6.1 Improvements to the ANGEL Tool ...
102

7.6.2 Research on the Analogy Approach ...
102

7.6.3 Future Research Avenues ..
102

REFERENCES ..
104

APPENDIX A ..
110

APPENDIX B ..
115

THE ALBRECHT DATA SET
..

115

THE DESHARNAIS DATA SET ..
116

THE FINNISH DATA SET
...

118

THE HUGHES DATA SET
..

120

THE KEMERER DATA SET
..

121

THE MERMAID DATA SET ..
122

THE REAL-TIME 1 DATA SET ...
123

THE TELECOMS I DATA SET
...

124

Vii

List of Tables
TABLE2.1 COCOMO PARAMETER VALUES ..

12
TABLE 2.2 1983 FUNCTION TYPES AND WEIGHTS .. .

18
TABLE 2.3 GENERAL SYSTEM CHARACTERISTICS (GSC)

... .
19

TABLE 2.4 SYMON'S NEW GENERAL SYSTEM CHARACTERISTICS
... .

22
TABLE 2.5 COMPARING PERFORMANCE INDICATORS .. .

25
TABLE 2.6 RESULTS FROM KEMERER DATA SET

26
TABLE 2.7 RESULTS FROM AN ANALYSIS OF MERMAID, COCOMO AND A PROPRIETARY PREDICTION

SYSTEM
28

TABLE 3.1 SUMMARY OF NEURAL NETWORK EFFORT PREDICTION STUDIES .. .
35

TABLE 5.1 DATA SETS USED TO COMPARE ESTIMATION BY ANALOGY AND REGRESSION
63

TABLE 5.2 SUMMARY STATISTICS FOR ALBRECHT DATA SET .. .
67

TABLE 5.3 REGRESSION VS ANALOGY FOR THE ALBRECHT DATA SET .. .
68

TABLE 5.4 REGRESSION VS ANALOGY FOR THE DESHARNAIS DATA SET
69

TABLE 5.5 MMRE RESULTS FOR THE PARTITIONED DESHARNAIS DATA SETS
70

TABLE 5.6 PRED(25) RESULTS FOR THE PARTITIONED DESHARNAIS DATA SETS
70

TABLE 5.7 REGRESSION VS ANALOGY FOR THE FINNISH DATA SET
71

TABLE 5.8 REGRESSION VS ANALOGY FOR THE HUGHES DATA SET .. .
72

TABLE 5.9 REGRESSION VS ANALOGY FOR THE KEM'IERER DATA SET .. .
72

TABLE 5.10 REGRESSION VS ANALOGY FOR THE MERMAID DATA SET .. .
73

TABLE 5.11 MMRE RESULTS FOR THE PARTITIONED MERMAID DATA SETS .. .
74

TABLE 5.12 PRED(25) RESULTS FOR THE PARTITIONED MERMAID DATA SETS
74

TABLE 5.13 REGRESSION VS ANALOGY FOR THE REAL-TIME1 DATA SET ..
75

TABLE 5.14 REGRESSION VS ANALOGY FOR THE TELECOMS 1 DATA SET ...
76

TABLE 5.15 SUMMARY OF COMPARISON BETWEEN ANALOGY AND STEPWISE REGRESSION USING MMRE

.. 76
TABLE 5.16 SUMMARY OF COMPARISON BETWEEN ANALOGY AND STEPWISE REGRESSION USING

PRED(25) ... 77
TABLE 5.17 OPTIMUM NO. OF ANALOGIES FOR EACH DATA SET ...

80

Vill

List of Figures

FIGURE 2.1 : THE RAYLEIGH-CURVE
... 15

FIGURE 2.2 : PARR'S SECH2 CURVE ... 17
FIGURE 3.1 :A MCCuLLOCH AND PrI7S NEURON ...

31
FIGURE 3.2 :A MULTI-LAYER PERCEPTRON ...

33
FIGURE 3.3 :A FUZZY RULE BASED SYSTEM ..

38
FIGURE 3.4 : THE CASE-BASED REASONING CYCLE ..

40
FIGURE 4.1 : MEASURING SIMILARITY IN THREE DIMENSIONAL SPACE ...

52
FIGURE 4.2 : ADDING A NEW PROJECT IN ONE DIMENSIONAL SPACE ...

53
FIGURE 4.3 : JACK-KNIFING A PROJECT CASE BASE ..

53
FIGURE 4.4 : ANGEL SCHEMATIC ...

56
FIGURE 4.5 :A DATA TEMPLATES IN ANGEL

..
57

FIGURE 4.6 :A PROJECT DATABASE IN ANGEL
..

58
FIGURE 4.7 : CONFIGURING AN ESTIMATE IN ANGEL

..
59

FIGURE 4.8 : ESTIMATION RESULTS USING ANGEL
...

60
FIGURE 4.9 : APPLYING WEIGHTINGS TO FEATURES ...

61
FIGURE 5.1 : SCATTERPLOT OF EFFORT VS FUNCTION POINTS

..
67

FIGURE 5.2 : MMRE BY NO. OF CASES ..
81

FIGURE 5.3 : PRED(25) BY NO. OF CASES ...
82

FIGURE 6.1 : ESTIMATION ACCURACY OVER TIME (ALBRECHT DATA SET) ...
86

FIGURE 6.2 : ESTIMATION ACCURACY OVER TIME (KEMERER DATA SET) ..
87

FIGURE 6.3 : ESTIMATION ACCURACY OVER TIME (HUGHES DATA SET) ...
87

FIGURE 6.4 : ESTIMATION ACCURACY OVER TIME (TELECOMS 1 DATA SET) ...
88

FIGURE 6.5 : AVERAGE ESTIMATION ACCURACY OVER TIME (ALL DATA SETS)
.....................................

90

Chapter 1

Introduction

Most practitioners recognise the important part accurate estimates of development effort play

in the successful completion of major software projects. Accurate estimates are not only

necessary for tendering bids, where both over and under estimates can be financially

disastrous, but also for monitoring progress, scheduling resources and evaluating risk factors.

The estimation of project effort however is far from easy. For one thing software projects are

commonly one offs, which renders much of the past estimating experience difficult to use.

Couple this with the complex human and political machinations of many software companies

and the need for estimates, when little more than sketchy details are known about proposed

systems, and you have a very poor basis on which to found estimates.

It is now four decades since the first attempts (Farr and Zargorski 1965; Nelson 1967) were

made to capture and model the factors that affect software development effort. Unfortunately,

the little evidence that is available suggests that for the most part, the industrial community is

very slow at embracing research advances in software estimation technology (Lederer and

Prasad 1993; Subramanian and Breslawski 1995). For example Heemstra (1992) reports the

results of a survey of 598 Dutch software companies which found that while 50% captured

data on completed projects, only 14% made any attempt to generate any formal models. To

some extent this can be seen as a failure by researchers to address the real needs of the

software community, who are under pressure to make estimates based on ill defined

specifications and ever changing technology. Unfortunately, what the research community

has to offer is estimation solutions that require clearly specified problems with measurable

features (Kitchenham 1996).

Until recently the weight of effort estimation research has largely been focused upon the use

of algorithmic models, where typically effort is expressed as a function of product size. A

good example of such a model is Boehm's COCOMO (1981) which provides a number of

equations that, it is hoped, adequately model the user's development environment. However,

it is a major failing of this approach that it is dependent on quantifiable inputs and often not

appropriate at the bidding stage of a project, when thT most important estimates are often

AN EMPIRICAL INVESTIGATION INTO SOFTWARE EFFORT ESTIMATION BY ANALOGY 2

required. Another serious problem has been the lack of consistent accuracy experienced when

using these models (see for example Kemerer (1987) who reports absolute average errors
between 85 and 772 percent for four popular cost models). In response to these problems

many researchers (Vicinanza and Prietolla 1990; Karunanithi, Whitley et al. 1992;

Mukhopadhyay and Kekre 1992; Samson, Ellison et al. 1993; Venkatachalam 1993; Jorgensen

1995; Serluca 1995; Prietula, Vincinanza et al. 1996; Gray and MacDonell 1997) are currently

exploring a variety of non-algorithmic techniques (typically incorporating some 'machine

learning' element). It is hoped that these will provide solutions more suitable for practitioners,

together with a greater degree of accuracy than is currently being experienced.

The focus of this thesis is on one such machine learning technique known as estimation by

analogy.

1.0 Motivation for Thesis

The potential benefits of accurately estimating development costs are large, especially when

the vast amount of money spent on new and legacy software systems is considered; yet it is

widely recognised (e. g. (Heemstra 1992; Lederer and Prasad 1993)) that few companies are

proficient at estimating effort. The motivation for this thesis is essentially to provide the

estimating community with a fresh approach to the estimation problem, which might

complement present practices. The main reasons for this are:

i) Poor results from algorithmic models. Numerous empirical studies into the accuracy of

algorithmic models have been published in the literature (for example (Golden,

Mueller et al. 1981; Kemerer 1987)). Unfortunately, the over-riding trend is inaccuracy

and inconsistency with average errors over 100% common. By exploring techniques

other fihan. algorithmic models it will be possible to build effort prediction systems

that are not necessarily reliant on there being a strong statistical relationship present.

ii) Too much research effort has been spent on algorithmic models to the detriment of other

potential techniques (Kitchenham 1996). Algorithmic models have absorbed the greater

part of four decades of research effort in effort estimation; however, there is little

tangible evidence of any improvement in accuracy or indeed usage. The suggestion,

therefore, is to apply research effort to more diverse estimation techniques that might
better address the problems experienced by practitioners

AN EMPIRICAL INVESTIGATION INTO SOFTWARE EFFORT ESTIMATION BY ANAWGY 3

iii) Methods more appropriate for early estimation are required. As has been stated, a major

problem with the use of algorithmic models is their dependence on quantifiable
inputs. This often renders them ineffective during the early stages of a software

project's conception. More appropriate approaches need to be found that can make

estimates using the type of data that is present during the early stages of a project.

1.1 Research Objectives

The work described within this thesis is a practical investigation into the accuracy and efficacy

of a non-algorithmic approach to the effort estimation problem. The technique, known as

estimation by analogy, has received little attention from the software community and this

work is an attempt to partially redress this imbalance with the following objectives:

i) To investigate the viability of analogical reasoning for the purpose of estimating the required

effort to complete software projects.

ii) To develop an automated tool that supports the functionality required to generate estimates by

analogical reasoning.

iii) To validate the analogical reasoning technique on data taken from industrial environments.

1.2 Scope of the Investigation

While this -work could conceivably be applied to other software measurement problems such

as the prediction of project duration or defect density, the focus of this thesis is exclusively on

the prediction of software project effort. In reality, it is project costs rather than effort that we

are trying to capture. However, for a number of reasons, such as:

i) work effort is easier to compare across different companies,

ü) production costs are often too sensitive to be made public,
iii) cost is determined largely by effort,

effort (measured in for example work hours) is used as a convenient proxy with the

assumption that there is a calculable linear relationship between effort and cost. Although

effort is by no means the only driver of project costs, it is usually by far the most significant.
The definition of what constitutes effort varies widely between development environments

AN EMPIRICAL INVESTIGATION INTO SOFTWARE EFFORT ESTIMATION BY ANALOGY 4

studied but is expected to include as a minimum, the effort expended during the

requirements definition, design, coding and testing phases.

The term software project is not restricted to the development of new software but can also

refer to maintenance or enhancement projects, which reflects the large amount of effort spent

on such projects. However, hypothetical or educational projects such as those commonly

carried out by students are not considered within this thesis.

During the course of the thesis the terms effort and cost will be used interchangeably, as will

the terms estimation and prediction. This is commonplace within the literature.

1.3 Outline of Thesis

Chapter 2:

This chapter examines the general principles of effort estimation and in particular looks at the

body of research on algorithmic prediction systems. It concludes that research into

algorithmic models has reached a natural zenith with the use of simple statistical techniques.

It also agrees with Kitchenham (1996) that too much attention has been focused on algorithmic

models to the detriment of other potential techniques.

Chapter 3:

In response to the lack of convincing results from algorithmic models, chapter 3 examines a

range of non-algorithmic approaches to effort estimation that are coming to the attention of

researchers as possible answers to the effort estimation problem. It concludes that these new

techniques can potentially offer a number of advantages over algorithmic techniques and that

more research work is certainly warranted.

Chapter 4:

This chapter focuses on one particular non-algorithmic technique known as estimation by

analogy or case-based reasoning, which has received very little attention in the effort

estimation literature. It describes the development of the approach and construction of a

software tool that facilitates estimation by analogy.

AN EMPIRICAL INVESTIGATION INTO SOFTWARE EFFORT ESTIMATION BY ANALOGY 5

Chapter 5:

The software tool described in the previous chapters is now applied to eight industrial data

sets to empirically validate the analogy approach. The results from the tool are compared to a

commonly used algorithmic approach (stepwise linear regression) and conclusions are drawn

about their relative accuracy. It is found that the analogy approach is very flexible and can be

used in circumstances that prohibit the use of algorithmic models.

Chapter 6:

Chapter 6 describes a study of the sensitivity of the analogy approach when applied to four

data sets. By adopting a pseudo time series analysis approach, questions about aspects of
dynamic behaviour can be answered such as, is it sensitive to the addition of outlying projects

and what is the minimum number of projects required before the technique becomes

effective?

Chapter 7:

The final chapter summarises the preceding research work and concludes that estimation by

analogy is a suitable alternative or complement to algorithmic modelling techniques. The

contributions of the work to empirical software engineering are stated before limitations of

the work are acknowledged and avenues for further work are explored.

Chapter 2

A History of Research Progress in the Development of
Algorithmic Software Cost Models

2.0 Introduction

A brief history of software effort estimation is presented here to give context to the current

state of the art, and as a prelude and justification for the research presented in later chapters.

By critical discussion of all the major approaches proposed from the mid 1960s to the present,

it is hoped to show the significant themes and developments that have shaped estimation

research and practice.

Traditionally estimation practice has been divided between seven separate approaches

(Boehm 1981). These are:

" Algorithmic Models: where mathematical models are used to represent effort as a
function of one or more variables.

" Expert Judgement: where one or more 'domain experts' are consulted.

" Analogy: where historical project details are recalled for use in estimating a new project.

" Top Down: where effort is estimated for the whole project before being divided between
its components.

" Bottom Up: where individual components are estimated and then the results aggregated.

" Parkinson: where the available resources determine the estimate.

" Price to Win : where the estimate is influenced by the need to win a contract or be first in
the marketplace.

Of the seven, the last two, Parkinson and Price to Win are not really estimation techniques as

such and should not have any involvement in the estimation process. Of the remaining five

techniques, four (expert judgement, analogy, Top down, and bottom up) are usually

considered as informal non-repeatable approaches, where a domain expert is normally

AN EMPIRICAL INVESTIGATION INTO SOFTWARE EFFORT ESTIMATION BY ANALOGY %

required. Only algorithmic models are independent of the availability of domain experts and

can be seen as a repeatable process. It is for this reason that algorithmic models have been the

primary focus of estimation research effort.

Algorithmic models attempt to represent the relationship between effort and one or more

project characteristics. The main 'cost driver' used in such a model is usually taken to be some

notion of the size of the software, for example the number of lines of source code, so that a

very simplistic example model might be of the form:

Effort =a* size
(Eqn. 2.1)

where a is a productivity constant. More sophisticated models introduce economies or

diseconomies of scale coefficients. It is this type of model that is the focus of the remainder of

this chapter. This chapter will show how 'the state of the art' in effort estimation research has

matured over time. From the initial ad hoc use of productivity factors in modelling effort,

through the introduction of complexity factors as a way of calibrating a model, on to the

development of various function counts as alternatives to lines of code, and finally, after a

series of empirical validations failed to demonstrate the accuracy of complex constrained

models, to a more pragmatic approach where a simple unconstrained process for estimation is

advocated based around simple statistical procedures.

2.1 Evolution of Effort Estimation Models

The earliest software cost models began to appear in the literature from the mid 1960's

onwards, perhaps arising from the practice of measuring employee productivity (Mohanty

1981). Good descriptions of these early cost models can be found in (Mohanty 1981) and

(Boehm 1981) while Jeffery (1991) provides a more up to date survey coupled with a method

of categorising the models into three streams:

i) Economic.

Models developed from the economic studies of historical

project data, typically utilising regression analysis

ii) Rayleigh.

Models based upon the Rayleigh-curve

AN Eh1PIRICAL INVESTIGATION INTO SOFTWARE EFFORT ESTIMATION BY ANALOGY Ö

iii) Function Points.

Models that utilise measures of a programs functionality

providing some advantage over lines of code

Classifying effort models is useful as it allows the general principles of each to be discussed

without the need to study the vagaries of each individual model. Since Jeffery's study, another

category has emerged.

iv) Non-algorithmic.

This new class represents a significant movement away from the traditional algorithmic

models and incorporates technologies such as neural networks, fuzzy logic systems and case-

based reasoningl. It will be shown in the main body of this chapter, that research interest in

non-algorithmic approaches is partly the result of the fact that mathematical modelling of

effort has reached a research zenith in the practices suggested by researchers such as those

involved with the MERMAID project (Kok, Kitchenharn et al. 1990).

2.2 Early Economic Models - Pre 1976

Although it wasn't until the mid 1960's that people began to develop and disseminate

software cost estimation models, people like Herbert Bennington (1983) were estimating the

effort required to produce large scale software systems as early as 1956. As a member of the

SAGE project that adopted many software management techniques that were subsequently

ignored by their peers, he estimated that it would cost $5,500,000 to produce a 100,000

instruction system program.

'In other words, =the time and cost required to prepare a system program are comparable

with the time and cost of building the computer itself

The SAGE costs as estimated by Bennington 'chilled' many of his peers as the common goal of

the era was to produce instructions that cost less than $1 per line rather than $50.

I Although grouped under a single category, in truth each non-algorithmic approach could be considered in its own category as
each is very distinctive.

AN EMPIRICAL INVESTIGATION INTO SOFTWARE EFFORT ESTIMATION BY ANALOGY 9

2.2.1 The First Algorithmic Models

It was to be another ten years before the first models based upon statistical techniques were

proposed, the earliest perhaps being the SDC (System Development Corporation) (Nelson

1967) and the Farr and Zagorski (1965) models. These early models were characterised by

their emphasis on covering large numbers of productivity factors, at the expense of the

models construction. The SDC collected 104 variables in all for 169 software projects and used

a simple linear regression technique to build the best possible model for the data (Eqn. 2.2.)

MM = -33.63
+9.15(Lack of requirements) (0-2)

+10.73(Stability of design) (0-3)

+0.51(% Math instructions)

+0.46(% Storage/retrieval instructions)

+0.40(No. of subprograms)

+7.28(Language) (0-1)

-21.45(Business application) (0-1)

+13.53(Stand-alone program) (0-1)

+12.35(First program on computer) (0-1)

+58.82(Concurrent hardware development) (0-1)

+30.61(Random access device used) (0-1)

+29.55(Different host, target hardware) (0-1)

+0.54(No. of personnel trips)

-25.20(Developed by military organisation) (0-1)

(Eqn. 2.2)

Where MM stands for Man Months of effort and an attribute that is followed by figures in

brackets requires the user to supply a value in the range indicated.

Boehm (1981) notes that, even when applied to the data from which it was developed, the

model is not a very accurate predictor and further, that the algorithm is counter intuitive in

that the constant is below zero. This gives the opportunity for an estimate of effort to be

negative for small projects. Kitchenham (1990) also adds that the negative constant value

implies that there are relationships amongst the input variables that result in the effort being

over-estimated when all the variables are treated as independent. It is interesting to note that

this model, while having some factors that can be seen as proxies of size (e. g. no. of

subprograms and no. of personnel trips), has no definitive size parameter. The lesson soon

AN EMPIRICAL INVESTIGATION INTO SoFrwARE EFFORT ESTIMATION BY ANALOGY 10

learnt from early attempts, such as these, was that multiple factor cost models tended to be

unstable and that there would be little chance of porting these models to different

environments due to the attributes selected.

2.2.2 Wolverton

Wolverton's (1974) approach to estimation assumes that software cost (measured in dollars

rather than man-months) is linearly proportional to size. The four inputs to this model are:

a) number of object instructions

b) the degree of system difficulty (in the range 0 to 100 or easy to hard)

c) the novelty of the system (new or old)

d) the application area (control, i/o, pre/post-processor, algorithm, data management or

time critical).

Wolverton provides 10 equations that model cost per object as a function of (b), (c) and (d)

and thus the estimate becomes, the number of object instructions multiplied by the cost per

individual object.

This model represents a step forward for a number of reasons. First, in differentiating

between different application areas the model adopts a homogenisation strategy that is thus

far unique. Second the input variables used are more intuitive than some of those used by his

predecessors and third, the individual equations are kept simple with size and difficulty being

the main inputs. The major criticism of the Wolverton model is that it adopts object lines of

code rather than source lines of code as the input metric and that the output is measured in

dollars rather than man-months. It is possibly because of this that the Wolverton model

received less recognition than was perhaps deserved.

2.3 Later Economic Models - Post 1976

The economic models proposed from the late 1970's began to capitalise on the experiences,

successes and mistakes of their predecessors. The individual algorithms often became simpler,

single factor models with lines of code becoming the dominant expression of program size.

Another element introduced to many of these models was a system of predictor or cost driver

variables which were used to further refine estimates. Many of these variables have been

identified as productivity factors and had been incorporated into the earlier cost models.

AN EMPIRICAL INVESTIGATION INTO SOFTWARE EFFORT ESTAIATION BY ANALOGY 11

2.3.1 Walston & Felix

Walston and Felix (1977) developed their effort model from a database of sixty projects

collected in IBM's Federal Systems division. They expressed the relationship between effort
(E) and program size (S) in the following equation (Eqn. 2.3)

E=5.2*50.91 (Eqn. 2.3)

It is interesting to note that the equation has an exponent less than 1.0, which means that

there are economies of scale. That is, productivity increases as program size increases. This

was one of the few studies to find this. Unfortunately the equation didn't adequately estimate

actual effort for the projects from which it was developed. This led Walston and Felix to try

incorporating more of the information available. The project database held information on a

number of project factors and Walston and Felix used these to develop a productivity index.

Sixty-eight factors were selected for analysis and refined by correlation analysis to twenty-

nine that were found to be significantly correlated to productivity. The productivity index

was calculated as follows:

29

I= Wi (Eqn. 2.4)

i=ý

where:
I= productivity index for a project
Wi = question weighting, calculated as one-half log10 of the ratio of total productivity change

(highest to the lowest) indicated for a given question i

Xi = question response (+1,0 or -1) depending on whether the response indicates increased,

nominal or decreased productivity.

They then used I in a regression equation to calculate productivity L which was in turn used

to determine effort in the following equation:

E=S /L (Eqn. 2.5)

where S is measured in lines of code.

Walston and Felix were aware that some of the productivity variables might be correlated but

pragmatically chose not to take this into account. It is likely that many of the variables are

AN EMPIRICAL INVESTIGATION INTO SOFTWARE EFFORT ESTIMATION BY ANALOGY 12

almost certainly correlated, for example Conte et al. (1986) point to variables 15 - 18:

"structured programming", "design and code inspections", "top-down development" and

"chief programmer team usage" as being highly correlated, since a manager who encourages

structured programming is equally likely to encourage all four practices. In the final analysis

this model is important, not so much for the effort equations proposed, but rather, for the

productivity factors used, many of which appear in later models from this period such as

programmer experience and usage of modem practices.

2.3.2 COCOMO

Boelmn's (1981) COCOMO (COnstructive COst MOdel) is without doubt the most widely

studied of all the cost models presented here. The popularity of this model is due to its ease of

accessibility (other contemporary models, such as Rubin's ESTIIVLACS (Rubin 1983) and

Putnam's SLIM (Putnam 1978), remain unpublished) and ease of use. COCOMO is more than

just a cost model in that it also incorporates models for development time and schedule, but

the focus of this thesis chapter is with COCOMO's effort estimation. COCOMO presents three

single factor effort equations that relate size, measured in Thousands of Delivered Source

Instructions (KDSI) to effort in Man-Months (MM), see Eqn. 2.6.

'nom = a(KDSI)b (Eqn. 2.6)

The values for a and b depend on the development mode (Organic, Semi-detached or

Embedded) of the project and are summarised in table 2.1. Organic mode projects are small
(typically less than 50 KDSI of new software) developed within stable environments with a

relaxed requirement specification. A project is classed as Embedded if it is relatively large

and is operated under tight constraints. This type of project will usually require a greater
degree of innovation. The Semi-detached project lies between these two extremes.

Mode Basic Intermediate/Detailed

a b a b

Organic 2.4 1.05 3.2 1.05

Semi-detached 3.0 1.12 3.0 1.12

Embedded 3.6 1.20 2.8 1.20

Table 2.1 COCOMO parameter values

It can be seen that all of Boehm's equations demonstrate diseconomies of scale, that is to say,

the larger the product, the lower the productivity. Also, as might be expected, the size of the

AN EMPIRICAL INVESTIGATION INTO SOFTNARE EFFORT ESTIMATION BY ANALOGY 13

diseconomy (i. e. coefficient b) is increased as the projects become more difficult to control (i. e.
from Organic to Embedded). This is basically the extent of Boehm's basic model, which

should be regarded as a quick and rough estimate.

The intermediate version of the COCOMO model allows the basic estimate to be adjusted by

15 cost drivers that are intended as refinements to the estimate to take account of local project

characteristics. The cost drivers are spread across four categories (product, computer,

personnel and project) and are assigned ratings2 (six ratings from Very Low to Extra High)

depending on the extent to which they affect the project in question. So for example, the first

driver, required software reliability, can be rated 0.75 if reliability is a minor consideration, while

if human life is dependent on the reliability of the product the rating would be Very High or

1.40. The basic effort estimate is then multiplied by each of these factors to determine the

adjusted estimate value. Finally, the intermediate model recognises that when the different

components of the project have been determined, it is likely that individual components will

have different cost driver ratings. These components can be estimated individually using the

process described above and collated to produce an even further refined estimate.

The philosophy behind the detailed version of COCOMO is that the more detail provided as

input to a cost estimate, the more accurate the resulting estimate is likely to be. This is

reflected in the introduction of phase sensitive effort multipliers, for example, a driver

concerned with computer response time is unlikely to have much effect on the requirements

phase. Also, Boehm suggests that the different levels of the project hierarchy (e. g. module,

subsystem and system) should be treated differently to achieve more accurate estimates.

2.3.3 Critique of the COCOMO Approach

Considering the wide-spread popularity of the COCOMO model, it is remarkable that, to

date, it has received very little critical attention in the literature3. Kitchenham and Taylor

(1984) discuss some of the problems posed by COCOMO's underlying assumptions. First,

they point out that all the input parameters, the model coefficients, the cost drivers and their

ratings, and the distribution of effort across phases, were estimated by experts and thus may

be subject to human bias. Second, and related, is that the number of variables that would need

to be collected to perform a validation of all the model parameters is huge. And third, they

draw our attention to the fact that there is a dichotomy between the value of the parameters
for basic COCOMO and those of the intermediate and detailed equations. This further

Z The values for which are pre-defined by Boehm.

AN EhfPIRICAL INVESTIGATION INTO SOFTWARE EFFORT ESTIMATION BY ANALOGY 14

demonstrates the subjective nature of the whole process and highlights the question of

whether the parameters are transportable to other environments.

Kitchenham and Taylor (1984) also assessed the stability of COCOMO for a test project of

14,000 lines of code. They found that poor choice of development mode was more dangerous

than a mis-estimate of size and further, that a mis-estimate of just one of the 15 cost drivers

was potentially as dangerous as either of the above. This last point is highlighted by Conte et

al. (1986) who demonstrate that the maximum estimate (i. e. all cost drivers at the highest

value) can be 800 times the minimum estimate for a given lines of code count. Criticism of the

cost drivers is also made by Kitchenham (1992) who re-iterates the findings of the MERMAID

Esprit projects that: a) there is evidence that some of the cost drivers are not independent, b)

that some of the cost drivers may not be relevant in all environments and c) that it is difficult

to make sure that estimators evaluate the cost drivers in the way they were intended.

A further common problem associated with COCOMO, and indeed all of the models thus far

discussed, is the need for subjective estimates of size and productivity drivers. The risk here is

that poor input estimates will lead to misleading effort projections although Boehm does

recommend that the inputs be re-evaluated as more information becomes available.

On a more positive note, Miyazaki and Mori (1985) report an attempt to calibrate the

COCOMO model by tailoring it to their own environment. By following the prescribed

tailoring methodology and pairing down the list of cost drivers they generate a model that, for

their data, has a relative error of 20%.

2.3.4 Revisions to the COCOMO Model

Since the seminal 1981 COCOMO work, Boehm has twice developed variants of COCOMO to

reflect advances in-software technology. Ada-COCOMO (Boehm and Royce 1989) was first

proposed in 1987 and was based on data collected from projects using both the Ada language

and process model. Similarly, with the original COCOMO model, the input metric is size

which is refined by a number of cost drivers. However, the nominal effort equation includes

four weights that reflect the Ada design process before any cost drivers are used. The cost
drivers remain true to the original model with the addition of four new classifications:

RUSE : The need for reusable code

VMVH : Volatility of virtual host machine

3 The reasons for this are not clear-cut although it is plausible that COCOMO is pitched at the right level of complexity while

AN EIv1PIRICAL INVESTIGATION INTO SOFFWARE EFFORT ESTIMATION BY ANALOGY 15

VMVT : Volatility of target machine
SECU : Security classification

However, the values for the drivers are revised from the original with the nominal rating no
longer exclusively 1.0.

A further revision to the COCOMO model i. e. COCOMO 2.0, (Boehm, Clark et al. 1995;

Boehm 1997) has recently been unveiled, that claims to be tailored to modern software

engineering practices such as rapid development. The underlying principles of the original
COCOMO again remain preserved, but a number of models are now proposed that represent

what the authors consider to be the key market sectors of future software development.

Unfortunately, the models still appear to be experiential (in terms of the cost drivers and

equation co-efficients) and complex (in relation to calibration). One major positive change is

that COCOMO 2.0 allows size to be expressed in terms of the available data such as Object

and Function Points. This removes some of the guess work involved in the estimation of lines

of code.

2.4 Rayleigh-Curve Models

The use of the Rayleigh probability curve for effort and staff level modelling was first

suggested by Norden (1963), based upon an investigation he conducted into the build-up and
decline of staff levels in engineering and development projects at IBM. The result was a series

of manpower curves that he found to be similar in nature to the Rayleigh-curve (Fig. 2.1). The

Rayleigh-curve is an example of an exponentially declining curve where a project is described

with an initial sharp build-up of staff levels followed by a gradual reduction as the project

evolves and people graduate to new projects leaving only maintenance staff.

Staff Level

Time

Figure 2.1 : The Rayleigh-curve

remaining mechanistic and prescriptive enough for it to be appealing to software managers.

AN EMPIRICAL INVESTIGATION INTO SOFTWARE EFFORT ESTIMATION BY ANALOGY 16

2.4.1 The Putnam Model

The Rayleigh-curve was first applied to software development projects by Putnam (1978)

when he analysed a very large database of military projects. This led him to promote a
Proprietary estimation tool, called SLIM. The specific equation that models the relationship
between effort, size and time is given below.

Ss=CK1/3T4/3

(Eqn 2.7)

Where Ss is measured in lines of code (LOC). The constant c is a technology factor that takes

into account the affect of numerous productivity related aspects of the project such as

complexity. K represents the total life-cycle effort excluding requirements specification and T

is the development time measured in years. The constant c, described by Putnam as a "funnel

through which all system development must pass", can be assigned one of 20 values in the

range 610 to 57,314 and as c increases so does productivity. The estimator also has control of

the slope of the curve using what is known as the Manpower Build-up Index (MBI). The

higher the MBI, the sharper the build up of staff at the start of the project.

Rayleigh-curve models place particular emphasis on the trade-off's between effort and
development time. Basically, a reduction in development time leads to a severe increase in

effort required, with the opposite being true for time increases. Rewriting equation 2.7 to look

at the life-cycle effort gives:

K= (Ss/c)3/I

(Eqn 2.8)

This has come under attack from a number of researchers (Parr 1980; Basil and Beane 1981;

Jeffery 1987; Kitchenham 1992). In fact Putnam himself found from studying 750 projects that

the relationship held for only 251.

2.4.2 Critique of The Putnam Model

Putnam's assumptions and model have been subject to a number of criticisms in the literature.

Both Jeffery (1987) and Kitchenham (1992) have challenged the assumption that a reduction in

the time-scales increases effort and vice versa. Kitchefiham and Taylor (1984) found that

AN Eh1PIRicAL INVESTIGATION INTO SOFTWARE EFFORT ESTIMATION BY ANALOGY 17

prediction of effort from the Putnam model is very sensitive to the mis-estimation of both size

and the c value. Estimation of c, just one level either side of its correct level, can have a
dramatic effect on the estimate; likewise with mis-estimates of the LOC value S. They also
found that the amount of sensitivity experienced varied in proportion to the size of the c and
Ssvalues being used (smaller values being more sensitive).

Parr (1980) criticises many of the underlying assumptions of the Putnam model including the

fact that it disregards the initial stages (exploratory design /specification) of a project. He

argues, that in reality every project starts with a certain staffing level and that these early

activities have a major influence on the rest of the project. In an attempt to correct the

problems with the Rayleigh-curve Parr offers a new curve known as sech2 (Fig 2.2) which has

a non-zero y-intercept.

Staff Level

Time

Figure 2.2 : Parr's sech2 curve

Basili and Beane (1981) compared the Putnam and Parr curves along with a parabola and

trapezoid on seven projects. They found that of the four, the Parr curve was the most

consistent with the data and that Putnam's model fitted least well.

AN EMPIRICAL INVESTIGATION INTO SOFTWARE EFFORT ESTIMATION BY ANALOGY 18

2.5 Function Point Models

The numerous problems associated with the use of lines of code when estimating effort have

been well documented in the literature (DeMarco 1982; Jones 1986). In the search for an

alternative input metric for project size Albrecht (Albrecht 1979; Albrecht and Gaffney 1983),

proposed a measurement of system functionality that could be collected at the requirements
documentation stage. This technique rapidly gained popularity throughout the 1980's and
1990's because of the overwhelming advantages it offers over LOC, such as availability earlier

in the project life-cycle and language independence.

2.5.1 Albrecht's Function Points

Albrecht, first published the Function Point methodology while working at IBM in 1979. The

Function Point is a dimensionless unit of system functionality that can be evaluated by the

analysis of a project requirements document, classifying and counting the individual function

types. Albrecht originally proposed four function types (Albrecht 1979): files, inputs, outputs

and inquiries with one set of associated weights and ten General System Characteristics. By

1983 (Albrecht and Gaffney 1983) this was expanded (table 2.2) with an extra function type,

three sets of weighting values and fourteen General System Characteristics.

Function Type Simple Average Complex

External Input 3 4 6

External Output 4 5 7

Logical Internal file 7 10 15

External Interface File 5 7 10

External inquiry 3 4 6

Table 2.2 1983 function types and weights

The individual functions identified from the specification are weighted according to their

complexity and the sum of the weighted function types becomes the Unadjusted Function

Point count (UFP) for the system. Albrecht originally provided textual guidelines on how to

rate the complexity of function types. More recently a more objective approach has been

devised that relates complexity to the number of file, record and data element types

referenced by the function type (IFPUG 1994). '

AN EMPIRICAL INVESTIGATION INTO SOFTWARE EFFORT ESTIMATION BY ANALOGY 19

1 Data Communications

2 Distributed Functions

3 Performance

4 Heavily Used Configuration

5 Transaction Rate

6 Online Data Entry

7 End User Efficiency

8 Online Update

9 Complex Processing

10 Reusability

11 Installation Ease

12 Operational Ease

13 Multiple Sites

14 Facilitate Change

Table 2.3 General System Characteristics (GSC)

The next step is to assess the extent to which the fourteen General System Characteristics

(Listed in table 2.3) impact on the projects development environment. Each characteristic can

be rated from 0- no influence to 5- strong influence. The sum of all the characteristics is then

modified (Eqn. 2.9) to become the Value Adjustment Factor (VAF) in the range 0.65 -1.35.

14

VAF = 0.65 + 0.01 1 GSCC (Eqn. 2.9)
i-ýl

And that in turn is multiplied by the UFP to create the Adjusted Function Point (AFP) count.

Thus the AFP value-will be within ±35% of the original UFP figure.

2.5.2 Critique of the Function Point Approach

As already mentioned, the use of Albrecht's Function Points is considered to have a number

of advantages over LOC as an input to a cost model. Not least of these is the fact that the

function size can be counted, rather than estimated, at an earlier stage in a project's life-cycle.

However, many researchers have expressed concern over the underlying philosophy of

Function Points, while others have empirically validated the ability of Function Points to

predict effort on different data sets with varying degrees of success.

AN EMPIRICAL INVESTIGATION INTO SOFTWARE EFFORT ESTIMATION BY ANALOGY 20

Problems have been reported by researchers investigating inter-rater reliability, that is, the

potential problem of different Function Point counters generating dissimilar results for the

same system. This problem is accentuated by the difficulties of automating the collection

process. A study by Kemerer and Porter (1992) reported variations in the range of counts,

over 3 case studies, to be around 12%. Low and Jeffery (1990) found within- organisation

variation to be within 30%. These both confirmed Rudolph's (1983) findings that Function

Points were estimated within 30% of the mean.

Function Points represent an experiential approach to effort modelling. That is, the model

components are derived by expert opinion and by trial and error. This leaves Shepperd (1994)

expressing surprise at the "non-linearity, indeed arbitrariness" of the weightings for the

function types (e. g. 3-4- 6) and the breakpoints when determining function type complexity

(e. g. 1-4,5-15, ? 16). He also notes the possible conflict of interest between this "debate and

trial" approach and Albrecht's justification for the weights as "numbers reflecting the relative

value of the function to the user/customer". The value of a function from a user's point of

view doesn't have a direct influence on project costs. Symons (1988) is another who cannot

rationalise some of the differences between weighting values. He suggests that a "more

objective assessment of the weights seems advisable". Another problem reported by

Kitchenham and Kansala (1993) and by Jefferey and Stathis (1993) is the lack of independence

between the counts for some of the function types. The use of inter-dependent inputs to an

estimation model can lead to the repeated capture of the same underlying phenomenon,

artificially enhancing its overall effect.

Once the AFP count has been calculated it is used either as an input to a cost model, perhaps

using regression techniques, or is converted to LOC for input to a model such as COCOMO.

This conversion can either be through one of the published conversion rates, see for example
(Behrens 1983), or preferably by the collection of historical LOC and Function Point data so

that the conversion-rate can reflect local conditions. A number of studies have focused on

verifying the assumption that Function Points are strongly correlated with effort (Albrecht

and Gaffney 1983; Kemerer 1987; Desharnais 1988). As might be expected Albrecht reports a

strong positive correlation (R2 = 0.87) using the data set from which Function Points were
developed. However this is placed in perspective by Knaff and Sacks (1986) who point out

that without three particularly large projects (R2 is known to be sensitive to outlying points)

the R2 is only 0.42. Kemerer and Desharnais's findings are more typical of the general pattern.
The results they got from correlating AFP to effort on two independent data sets were an RZ of
0.55 and 0.54 respectively. It is interesting to note that in both these experiments, the RZ values
for UFP counts were not significantly different from the AFP values, calling into question the

benefit of the VAF.

AN EMPIRICAL INVESTIGATION INTO SOFTWARE EFFORT ESTIMATION BY ANALOGY 21

Many researchers see the advantages to be gained from calibrating Function Points to the

environment in which they are being collected. This enables companies to produce cost

estimates initially based on informal analogy, and later, when the historical database has

grown sufficiently, by use of statistical approaches. However, the calibration of Function

Points counts poses a considerable problem when the five Function types and their three

weights, the fourteen General Systems Characteristics and the coefficients (Productivity

function (x and perhaps exponential ß) of the cost model are considered. For this reason
Shepperd (1994) suggests that calibration be kept simplistic with adjustments to the

coefficients of the model.

2.5.3 Adaptations to Albrecht's Function Points

Mark II Function Points (Symons 1988; Symons 1991) were proposed by Symons as an

alternative to Albrecht's approach. Driven by some of the shortcomings of Function Points

outlined above, Symons adopted the view that a system is made up of a collection of logical

transactions, as opposed to delivered customer functions, each having an input, process and

output component. The Unadjusted Function count for Mark II (based upon data collected for

twelve systems) is defined as :

UFP = 0.44N + 1.67Ne + 03 8No (Eqn. 2.10)

where Ni is the number of input data element-types

Ntis the number of entity-types referenced

N,, is the number of output data element-types

Next the Adjusted Function Point count is determined using a similar set of system

characteristics to Albrecht's, with the addition of six new GSC's (table 2.4), the twentieth

representing any characteristics the user feels should be included.

AN EMPIRICAL INVESTIGATION INTO SOFTWARE EFFORT ESTIMATION BY ANALOGY 22

15 Requirements of Other Applications

16 Security, Privacy, Auditability

17 User Training Needs

17 Direct Use by Third Parties

19 Extraordinary Documentation Requirements

20 Client Defined Characteristics

Table 2.4 Symon's new General System Characteristics

When Symons attempted calibration of the 20 GSC's he found that for some of the factors, a

coefficient of 0.005, rather than Albrecht's mandatory 0.01, was more accurate, which

contradicts the notion that Function Points are language independent.

2.6 Empirical Validation of Cost Models

While researchers continue to expose the strengths and weaknesses of the underlying theory

behind cost models, to the pragmatic software manager one of the major justifications for the

use of cost models is the level of accuracy (s)he can expect. The adoption and appropriate use

of any one of the models described above requires a great deal of investment in collection and

training time. Thus, some indication of the relative accuracy of different techniques when

applied to data other than that which they were cultivated from is an essential research area.

Unfortunately the number of empirical validations of cost models is very inadequate due to

the lack4 of available historical data.

It should be noted that there are a number of factors other than accuracy that should be

considered in the, validation of a cost model, such as the availability and objectivity of the

input parameters, robustness of the model etc. However for the purposes of research

presented in future chapters, attention will be directed solely on studies of model accuracy.

2.6.1 Validation Criteria

A number of validation criteria are proposed in the literature (Boehm 1981; Conte, Dunsmore

et al. 1986; Miyazaki 1993; Miyazaki, Terakado et al. 1994) and the most commonly used are

4 There are various reasons for the lack of data, such as, many companies being reluctant to publish data for political reasons.
However, the major barrier is the amount of effort required to collect the appropriate data.

AN EMPIRICAL INVESTIGATION INTO SOFTWARE EFFORT ESTIMATION BY ANALOGY 23

briefly discussed below. Note, Eact is actual effort, Epred is predicted effort and n is the

number of projects.
i=n

(i) Total Error -
Y, (East

- Epred)
i=1

Also commonly known as the sum of the residuals, this measures the total difference between

actual and predicted values. An obvious drawback with this measure is that it provides no

indication of the relative size of individual errors. However, when assessed as part of a global

strategy, where estimates are managed across the range of a company's projects, a total error

of zero would be desirable (Kitchenham and Linkman 1997).

ý: fact - Epred
(ii) Mean Percentage Error -

100/
L 17 ; _I

Eact

The lack of attention to relative error size using total error discussed above is overcome with

mean percentage error, a measure that takes account of the average size of estimate errors

relative to the size of the project actuals. The major drawback with this measure is that it

includes the direction of the errors, thus under-estimates and over-estimate can cancel each

other out.

:nI Eact - Epred l 100/ (iii) Mean Magnitude of Relative Error (MMRE) -L n , _,
Eact

MMRE is an indicator of the average error given by a prediction system. It differs from mean

percentage error in that it takes the mean absolute relative error value and thus ignores the

direction of the error. As a result information on the overall degree of over or under-

estimation is lost. On the plus side, it can give a better indication of errors associated with an

individual estimate.

(iv) Balanced Mean Magnitude of Relative Error (BMMRE) -
100 1-n IEact

- Epredl

InI min(Eact, Epred)

A major problem with MMRE is that it is not symmetrical (Miyazaki 1993), i. e. while under-

estimates must be between zero and one, over-estimates are unbounded, thus the measure is

biased towards prediction systems that under-estimate. BMMRE overcomes this problem by

dividing the absolute error by whichever of the actual and estimate value is the smallest.

(v) Prediction at level n or Pred (n)

Pred(n) measures the percentage of estimates that are within n% of the actual values. Conte et

al. (1986) suggest that n should be set at 25% and that a good prediction system should

AN EMPIRICAL INVESTIGATION INTO SOFtWARE EFFORT ESTIMATION BY ANALOGY 24

achieve this accuracy level 75% of the time. The drawback with Pred(n) is that it provides no
indication of the accuracy of estimates that don't fall within n%.

(vi) Adjusted Coefficient of Determination - Adj R2

Adj R2 is an indication of the amount to which the independent variables, the inputs to a

prediction system, explain the variation seen in the dependent variable, i. e. effort. A value of
Adj R2 tending towards one demonstrates a prediction system where a change in effort is

effectively explained by a change in the independent variable(s). An Adj RZ value tending

towards zero demonstrates a system where little of the variance is accounted for. The Adj R2 is

generally used in preference to the raw R2 value because it compensates for the introduction of

extra variables in multiple regression and allows comparison between models with differing

numbers of variables.

Various objective criteria for judging model performance have been proposed and used by

validation researchers. Unfortunately, the problem is that no one individual measure provides

an overall picture of performance and further, some techniques have model bias. Thus

combinations of validation techniques would seem more useful. The value of having a

number of independent techniques can be seen in the variety of ways model output can be

used by different organisations. For example, many companies leave the problem of

estimating to the individual project manager who is only interested in the difference between

estimate and actual effort. Other companies use the manager's estimates at an organisational

level. Kitchenham (1997) discusses a portfolio management strategy where uncertainties and

risk are managed across the range of a company's projects. She advocates the use of the sum

of the residuals (or total error) to monitor how well an estimation model used in this way
behaves. If the sum of the residuals is close to zero, the model is considered well behaved,

even if individual projects have large over or under-estimates. If the sum of the residuals is

different to zero, new estimates with the model can be corrected by adding the mean of the

residuals. Further evidence of the disparity between performance indicators is provided by

Schofield (1997) who tested four performance indicators (total error, MIvIRE, BMMRE,

Pred(n)) on three estimation techniques (least squares regression (LSR) and two analogy
based approaches - see Chapter 4) (see table 2.5). He found that all three techniques were

considered 'most suitable' under at least one of the performance indicators and thus selection

of performance indicators should reflect the goals of the estimator.

AN EMPIRICAL INVESTIGATION INTO SOFTWARE EFFORT ESTIMATION By ANALAGY 25

ndicator LSR Analogy 1 Analogy 2

Total Error (1)5 8.5 (3)1494.92 (2) 925.79

MMIZE (3)0.86 (1)0.39 (2) 0.51

MMRE (2)95.65 (3)97.99 (1) 84.86

red(25) (=2) 44% (=2) 44°/ (1) 55%

Table 2.5 Comparing performance indicators

2.6.2 Published Validation Research

Empirical studies of cost models (whether validating individual models or comparing the

performance of different models) rely on the collection of historical project information so that

the estimates of project effort generated can be compared to the actual effort figures. These

estimate errors are then usually collated and, in the more recent surveys, represented using

one or more of the performance indicators described above.

Perhaps the earliest independent validation study was that of Golden et al. (1981), who looked

at Putnam's SLIM and more specifically the duration and effort estimates produced for four

projects undertaken at Xerox. While the overall results were promising, the variance of

individual estimates coupled with the size of the data set, raises doubts over whether this

level of performance could be sustained for a larger sample of projects. However, a study of

staff loading over one of the projects lent some credence to the use of a Rayleigh-curve. A

second evaluation of the Rayleigh-curve was carried out by Wiener-Ehrlich et al. (1984) who

used four data processing projects to again test duration and effort estimates. Generally they

found that the Rayleigh-curve estimated the phases reasonably well, but tended to

underestimate the maintenance phase until they defined maintenance as solely 'corrective'

(Lientz and Swansofl 1980). A further study of the Rayleigh-curve, through the SLIM model,

was conducted'by Jeffery (1987) on a database of 47 data processing projects. He concluded

that their was no support for the contention that productivity declines as time increases.

Kitchenham and Taylor studied both the SLIM and the COCOMO models initially on 20

projects (Kitchenham and Taylor 1984) and then 33 projects (Kitchenham and Taylor 1985)

taken from ICL and British Telecom. They found large discrepancies between the actual and

estimated effort values when using the basic COCOMO model and that the collected data did

not conform to the Rayleigh-curve model. They concluded that both models required

5 The values in parenthesis indicate a rating of performance indicator 1-best, 37worst

AN E1vfPIRICAL INVESTIGATION INTO SOFTWARE EFFORT ESTIMATION BY ANALOGY 26

calibration before they could be used sensibly. Further they suggest that estimates could be

improved by using additional information as it becomes available.

Another evaluation of COCOMO was carried out by Miyazaki and Mori (1985) who calibrated
Boehm's intermediate model to a set of 33 application software projects. Without calibration

they found that COCOMO overestimated effort; with calibration they found they obtained a
better fit in terms of Pred(20) than Boehm did on his data set. Their revised nominal effort

equation became:

MMnom = 2.15. (KDSI)0.94 (Eqn. 2.11)

Note that the Miyazaki and Mori equation is opposed to the idea that software projects exhibit

diseconomies of scale. They also discarded three of Boehm's cost drivers (Virtual Machine

Volatility, Analyst Capability and Main Storage Constraint) to improve the model.

An influential comparison of four popular cost models was carried out by Kemerer (1987)

who collected information on 15 data processing projects. The four models under the spotlight

were SLIM, COCOMO, Function Points and Estimacs and a summary of the results obtained

in terms of MMRE and Pred(25) is shown in table 2.6.

Model MMRE Pred(25)

R'-After

Calibration

SLIM 771.87% 7% 87.8%

COCOMO - Inter 538.82 % 0% 59.9 %

Function Points 102.74 % 33 % 55.3 %

Estimacs 85.48 % 22% 13.4 %

Table 2.6 Results from Kemerer data set

Both COCOMO and SLIM consistently overestimated effort and performed considerably less

well than the other two models, Function Points and Estimacs which, it should be noted, were
developed in similar environments to the data in this study. However, when Kemerer

calibrated each model by using Albrecht's technique of using the estimates as the independent

variable in a regression equation, he found that the SLOC models SLIM and COCOMO

produced the best 'fit' in terms of R2. Another important result of Kemerer's work was that the

productivity factors used in the COCOMO and FPA models added virtually nothing to the

results.

AN EMPIRICAL INVESTIGATION INTO SOFrwARE EFFORT ESTIMATION BY ANAwGY 27

2.7 Current State of the Art?

The lessons learnt over the past thirty years research into effort estimation models (and more

particularly algorithmic models of the type that have been discussed throughout this chapter)
has recently culminated in a more mature and appropriate approach to algorithmic cost

modelling, namely the MERMAID6 approach.

The MERMAID project was a four year ESPRIT II initiative that had the goal of 'improving

support for estimators in the area of software sizing, effort estimation, risk analysis, resource

monitoring and progress monitoring' (Kok, Kitchenham et al. 1990). By analysing the

problems associated with former models, particularly the lack of accuracy and the fact that

environmental relationships are rarely constant, the MERMAID consortium were able to

specify an approach which they believed brought together the best practices in cost

estimation.

In brief, the MERMAID approach advocates the calibration of models to the environment in

which they are to be used. This, they believe, is best achieved by using statistical methods

such as stepwise regression that can create models that evolve with the environment and

provide stable and unbiased estimates. A further initiative is the use of phase based input

variables in a attempt to eliminate estimated inputs, the use of which represents a major

criticism levelled at many of the models previously proposed. The model's input parameters

are used as and when they become available, and the user is not restricted to any single input

parameter as with other models. Another important feature of the approach, and associated

tool, is the ability to statistically analyse the model in terms of a number of performance

indicators such as M RE, Pred(25) and W.

The question is, why are the approaches outlined above better and more likely to be accurate

than other algorithmic models? The answer lies in the simplicity and flexibility of the

approach and in the way MERMAID encourages the building of locally based models. First, it

has been shown that accuracy increases when data is separated into more homogenous

clumps (Gulezian 1991). Second, the phase-based approach allows an organisation to create

estimates using different models at different stages in the life-cycle. These models are

continually improved as more data becomes available. Third, the method does not force a

change to operating procedures or data collection practices.

6 P2046 MERMAID (MEtrication and Resource Modelling AID)

AN EMPmICAL INVESTIGATION INTO SOPrwARE EFFORT ESTIMATION BY ANALOGY 28

As the MERMAID consortium point out, their approach while incorporating many of the best

practices available is not without flaws. For example a major obstacle to the use of MERMAID

is that it demands that companies collect a substantial amount of historical project data. This is

obviously going to take a great deal of time and effort for many companies. MERMAID's

solution is to include facilities for a form of estimation by analogy that requires substantially

less data7 and is not as susceptible to outliers.

The MERMAID approach has so far been subject to few independent examinations. One study
by Campobasso et al. (1995) looked at the relative accuracy of following the MERMAID

approach, when compared to Intermediate COCOMO and to a calibrated Proprietary cost

estimation tool. Two data sets were collected of 26 and 46 projects respectively, and the results

are reported below (table 2.7.)

Data set Model MMRE Pred(25)

Data set -1 COCOMO 135 % 0%

Proprietary Tool 71 % 20 %

MERMAID 18% 82%

Data set -2 COCOMO 41 % 24%

MERMAID 36% 45%

Table 2.7 Results from an analysis of MERMAID, COCOMO and a proprietary prediction system

The MERMAID approach helped to build two models that were both accurate and superior in

performance to the other techniques studied. The authors concluded that simple local models,

derived from local data, make better predictions than general complex models. The results, at

least for the data sets under study, are a vindication of the MERMAID approach.

2.8 Summary

The most important themes and experiences of thirty years of effort estimation research have

been discussed in this chapter. This chapter has attempted to show how the present level of

research maturity has been obtained through a great deal of trial and error, and how present

estimation practice and research goals have been shaped by the past.

7 Optimally between 4 and 9 projects.

AN EMPIRICAL INVESTIGATION INTO SOFTWARE EFFORT ESTIMATION BY ANALOGY 29

Research into repeatable methods of estimating effort began in the mid 60's in an ad hoc

fashion where great numbers of productivity factors were collected and analysed together to

create large complex algorithms. From this early work researchers were able identify the most

important factors and began to create models based on the LOC measure of program size

using economies or dis-economies of scale as appropriate. Some models such as COCOMO

allowed the estimator to 'calibrate' original estimates by applying a number of productivity

drivers. A significant break away from the use of estimated LOC was started by Albrecht who

proposed a measure of function size that could be counted earlier in the project life-cycle.

However, the Function Point metric, like LOC, remains relatively controversial. The 80's saw a

series of empirical studies of the accuracy and validity of some of the more important models.

However, the results obtained were less than encouraging. The net result of all this is that

most researchers now agree that simple, unconstrained statistical approaches such as stepwise

regression are the best way to create models that are dynamic, environment independent and

testable.

The next chapter will go on to describe how estimation researchers have begun to examine

non-algorithmic approaches in a search for more suitable prediction systems and increased

levels of accuracy.

Chapter 3

Recent Research Directions: Non-Algorithmic Estimation

Techniques

3.0 Introduction

As was stated in the previous chapter, the main thrust of research work in the field of

software effort estimation has been in the development of algorithmic models. Unfortunately,

the algorithmic approaches have been unable to demonstrate consistently adequate results,

with errors of 100% or greater typical even after model calibration (see for example (Conte,

Dunsmore et al. 1986; Kemerer 1987)). One possible reason why these models have not proven

fruitful is that they are often unable to adequately model the complex set of relationships that

are evident in many software development environments. It can be the case that a model is

successful within a well-constrained environment, however, few are flexible enough to

perform well outside their domain. Consequently, researchers are beginning to turn their

attention to the search for alternative non-algorithmic solutions to the estimation problem,

and in particular to a set of approaches that could be regarded as 'machine learning' in nature.

Machine learning techniques have been used successfully in solving many difficult problems

such as speech recognition from text (Sejnowski and Rosenberg 1987) and adaptive control

(Narendra and Parthasarathy 1987). It is only relatively recently that the use of machine

learning techniques has been proposed as an alternative way of predicting effort.

Machine learning is a term used to loosely group together a set of techniques that can be seen

to embody some of the facets of the human mind, that allow us to solve hugely complex

problems (such as recognising a face in a crowd) at an incredible speed which dwarfs even the

fastest computers8 (Schank 1982; Gentner 1983). However, much of the fine detail of how the

human mind works is still poorly understood and it is for this reason, that much of the work

presented in this chapter is still in its infancy and remains largely untested.

8 While this remains generally true, an IBM computer 'Deep Blue' did recently beat the world chess champion. Chess has long
been regarded as the acid test of whether 'intelligent' machines will one day supersede human mental abilities.

AN EMPII2ICAL INVESTIGATION INTO SOFTWARE EFFORT ESTIMATION BY ANAWGY 31

This chapter will consider a variety of techniques that might be utilised in effort estimation

that attempt to 'learn' the underlying relationships present in the software environment, such

as neural networks and case-based reasoning.

3.1 Artificial Neural Networks

Artificial Neural Networks (ANN's), inspired by the architecture of biological neural

networks, are massively parallel systems comprising simple interconnected processors (or

neurons - see fig. 3.1). The neuron computes a weighted sum of its inputs and generates an

output if the sum exceeds a certain threshold. This output then becomes an excitatory or

inhibitory input to other neurons in the network and the process continues until an output is

generated. Artificial neurons are intended to be roughly analogous to biological neurons, for

example, the weighted inputs represent biological synapses, the interconnections between

neurons represent the dendrites and axons, while the threshold function represents the

activity in the biological soma. However, it must be understood that much of our knowledge

of how the human brain works is based upon conjecture.

Inputs Neuron Step Function

x1 W,

x2
W2

W3

X3

Vgl'

xn

Figure 3.1 :A McCulloch and Pitts neuron

As has been stated, an artificial neuron computes the weighted sum of its n inputs, xj, where j

=1,2,...... n, and generates an output of 1 if this sum is above a certain threshold u. Otherwise,

an output of 0 results. Mathematically speaking:

AN EMPIRICAL INVESTIGATION INTO SOFTWARE EFFORT ESTIMATION BY ANALOGY 32

n

Y=O Yw; x; -u j=l

(Eqn. 3.1)

where
0 (.) is a unit step function at 0 and wj is the synapse weight associated with the jth

input. it is considered as another weight i. e. wo = -u attached to the neuron with a constant
input of xo =1 (i. e. the threshold). Positive weights model excitatory synapses, while negative

weights -model inhibitory ones. The activation function in figure 3.1 is known as a Step

function, however, there are a number of functions that can be utilised such as Gaussian,

Linear, Sigmoid and Tanh. It is the Sigmoid function that is the most frequently used in

ANNs.

Neural network architectures are divided into two groups:

" feed-forward networks where no loops in the network path occur and

" feedback networks that have recursive loops

Of the different architectures, the feed-forward multi-layer perceptron is the most commonly

used. As the name suggests, the network has no loops between nodes and is static, which

means that only one set of outputs result from a given input. As a result feed-forward

networks, unlike their counterparts, have no 'memory' of any previous network state. Figure

3.2 illustrates a possible network architecture9 configured for the estimation of software

project effort. The inputs to this network are unadjusted Function Points, the number of

screens, development language and the project type. At first, the system is initialised with

random weights. The network then 'learns' the relationships implicit in a set of data by

adjusting the weightings when presented with a combination of inputs and outputs that are
known as the training set. There are a number of training algorithms that can be used to train

the network, each having particular areas of speciality. The most common learning algorithm

used by software metrics researchers is Back-PropagationlO, which is used in prediction and

classification problems. However as Gray and MacDonell (1997) point out, the emphasis on
just one learning algorithm reflects the lack of understanding of the ever-advancing state of
ANN research. After training, the network is ready to make estimates for new inputs.

9 In this case a multi-layer perceptron. This type of network has a number of neurons which are organised into interconnected
layers including input and output layers and one or more hidden layers.
10 The Back-Propogation algorithm has three stages: feed-forward of the input error, Back-Propagation of the output error, and
adjustment of the network weights.

AN EMPIRICAL INVESTIGATION INTO SOF WARE EFFORT ESTIMATION BY ANALOGY 33

Raw FP

Screens

Language

Project Type

Input Layer Hidden Layer Output Layer

Figure 3.2 :A multi-layerperceptron

rt

A number of studies looking at the use of neural nets to predict software development effort

can be found in the literature. On the whole these studies have focused most attention on the

accuracy of the approach when compared to algorithmic models and little on the suitabilityll

of the approach for building effort prediction systems. In general the strategy for testing

neural networks is to divide the historical data collected into sets, one used to train the data

(usually the larger set) and one to test the trained network.

Venkatachalam (1993) chose a Back-Propagation learning algorithm used on a multi-layer

perceptron to predict software effort and development time. The preliminary results obtained

were seen as promising by Venkatachalam, when he applied the approach to data (22 inputs)

taken from the COCOMO database.

Wittig and Finnie (1997) also employed a back-propagation multi-layer perceptron when they

predicted development effort on the Desharnias (1988) and Australian Metrics Association

data sets. Using test sets of just 10 randomly selected projects and keeping the remaining 71

and 105 projects respectively as the training sets, they produced very encouraging results. The

neural network wäs'äble to predicting effort within 25% of the actual values, more than 75%

of the time, which compares well with other techniques.

Jorgenson (1995), again, reports the use of a multi-layer perceptron with a back-propagation

algorithm on a data set comprising 109 maintenance projects. His study compared four

different approaches to estimation of maintenance effort: (i) regression models, (ii) a neural

net and (iii) a form of pattern recognition against (iv) a simple baseline rule of thumb model:

effort is equal to size divided by the mean productivity. The neural network was found to perform

11 Possible reasons for deeming them unsuitable could include their interpretability, suitability to the type of data sets common
to software environments or their life-cycle availability (see section 3.6).

,.

AN EMPIRICAL INVESTIGATION INTO SOFTWARE EFFORT ESTIMATION BY ANALOGY 34

less well than the best regression model, in terms of MMRE, but very favourably in terms of

Pred(25). On the negative side, he found the neural network to be one of the least robust

approaches. He measured robustness by studying the accuracy of each technique when

applied to the same five test data sets. Of the techniques, the neural network demonstrated

the largest differences in prediction accuracy.

Serluca (1995), reports the use of a back-propagation network on the MERMAID-2 data set.

The result obtained using the full data set was far superior to regression and marginally better

than an estimation by analogy method. However when the data set was separated into two

more homogenous and therefore smaller dumps, the neural net performed very poorly, while

the two other methods improved considerably. This led Serluca to conclude that neural nets

require large training sets before they give accurate predictions.

Karunanithi et al. (1992) use neural nets for the purpose of predicting software reliability.

They appear to be more imaginative in their approach to the adoption of network architecture

and learning algorithm, opting to try both a feed-forward and a feed-back (Jordan) network

with a learning algorithm known as cascade-correlation that combines both incremental

development of the network and learning by back-propagation in one. The authors conclude

that neural network models produce more accurate prediction systems then analytical

models.

An Albus multi-layer perceptron is utilised by Samson et al. (1993) to predict software effort.

The neural net is compared to linear regression on the COCOMO data set with results of 428%

and 521% in terms of MMRE. Although out-performing regression the neural nets result is

still very poor and unconvincing.

A multi-layer architecture coupled with a back-propagation learning algorithm is again used

by Srinivasan and Fisher (1995) to analyse the Kemerer data set. As a consequence of the small

size of the Kemerer data set (15 projects), it is used entirely as the test set and the network is

trained on the COCOMO data set (63 projects). An MMRE of 70% is obtained using the

network which is compared with algorithmic techniques: a Function Points based regression

model (MMRE = 103%), basic COCOMO (MMRE = 610%) and SLIM (MMRE = 772%). The

results of this experiment are very supportive of neural nets, however, it should be noted that

the neural net is trained on data from a different data set to that which it is tested on. This is

by no means a bad result in that it provides some evidence that neural network approaches

may be utilised across environments. Unfortunately, they also found that the results were

sensitive to the number of hidden units and layers. To help find the best network

AN E6IPIRICAI. INVESTIGATION INTO SOFTWARE EFFORT ESTIMATION BY ANALOGY 35

configuration, they suggest dividing the training data further so that different configurations

can be tested before learning begins.

Hughes (1996), like Jorgenson compares a range of approaches to effort estimation including,

analogy, regression and a neural network. The data set comprised 33 telecoms projects and

was initially divided into two homogenous groups, which led to mixed results from the

neural network (MMRE = 163% and 41%). When the data set was combined, the MMRE

improved to 55%, which reinforces the fact that neural networks can flourish when presented

with a larger data set. At the same time, results from other techniques including analogy and

regression deteriorated.

MacDonell and Gray (1996), while exploring alternatives to regression analysis made an

accuracy comparison of a number of different estimation techniques on the Desharnais data

set. The techniques studied included Function Point productivity, least squares regression,

least median squares regression12 and a neural network. The best statistical model found

(predicting 30% of the validation set within 10% of their actual values) was a least squares

regression model with all outliers removed. However, the best approach, overall, was the

neural network which was superior to all other methods in terms of N MIRE (44% - half of the

nearest statistical approach) and Pred(25) (63%).

Study Learning Data set No. of Predicting Results
Al orithm Projects

Venkatachalam Back- COCOMO 63 Development "Promising"
Propagation Effort & Time

Wittig & Finnie Back- Deshamais/ 81 Development Pred(25) = 25%
Propagation ASMA 136 Effort

Jorgenson Back- Jorgenson 109 Maintenance MMRE = 100%
Pro pa ation Effort

Serluca Back- Mermaid-2 28 Development M vIRE = 76%
Propagation Effort

Karunanithi et Cascade- N/A N/A Reliability "More accurate
al. Correlation than algorithmic

models"
Samson et al. Back- COCOMO 63 Development MMRE = 428%

Propagation Effort
Srinivasan & Back- Kemerer & 78 Development MMRE = 70%
Fisher Propagation COCOMO Effort
Hughes Back- Hughes 33 Development MMRE = 55%

Propagation Effort

Table 3.1 Summary of neural network effort prediction studies

12 A form of robust regression which is less sensitive to outliers than least sggares regression.

AN EMPIRICAL INVESTIGATION INTO SOFTWARE EFFORT ESTIMATION BY ANALOGY 36

The ability of neural networks to generalise and solve problems of great complexity has been

proven in a number of areas. Based on the evidence so far (a summary of the studies are

presented in Table 3.1), they have great potential in the area of effort prediction. However,

despite the increasing popularity of the approach, a number of flaws remain that can make

neural networks difficult to utilise and completely unsuitable under some conditions. First,

ANN's can be considered as black boxes13. The knowledge stored in the architecture and the

synapse weights is not easily explained. It is this ability, to explain the relationship between

the inputs and output, that is considered important by Davis et al. (1997), if neural networks

are to gain user acceptance. Second, guidelines for the construction of neural network

topologies (units and layers), and the way they are trained (learning algorithms and number

of learning epochs) are very vague. Further, even with the same architecture, results will not
be repeatable due to the arbitrariness of the random weights. A third and final problem, that

is particularly pertinent to the software community, is the amount of data required to usefully

train a network. Many software organisations would find it difficult to collect an adequate

amount of data to make the technique viable.

In spite of these problems, there remains a great deal of interest in this approach and the

accuracy of the results suggest that neural network approaches can be considered at least

comparable with algorithmic approaches. A great deal of further research needs to be done

before neural nets are accepted as common practice. This research would preferably look at

some of the large number of algorithms and networks, rather than at just back-propagation on

a multi-layer perceptron.

3.2 Rule Induction Systems

Rule based systems have been implemented successfully in a number of different domains

including aerospace, manufacturing, business and medicine. However, as yet, there have been

few attempts to harness rule based reasoning to solve software development problems and no

serious attempts to use rule based systems for predicting effort. Thus the inclusion of this

approach serves only to highlight its potential as an alternative prediction technique.

In a rule-based system, known facts, stored in a knowledge base, are matched against a set of

rules from a rule base. If the premise of a rule is found to be true then that rule fires which
leads to the inference of new facts. This process continues until no more rules can be fired and

13 This is seen as an advantage by Karunanithi et al. (Karunanithi, Whitley et at 1992) in that the users need not concern
themselves with the underlying process being modelled.

AN Ei wmICAL INVESTIGATION INTO SOFTWARE EFFORT ESTIMATION BY ANALOGY 37

some final output can be determined. A demonstration of how a rule based system could be

utilised to predict effort is given below:

IF Function Points > 500 OR Function Points > 350 AND Military Project

THEN Complexity= 4

IF Complexity >3 AND Team experience <4

THEN Effort = 1000-1500 Man-Days

In this example, if the first rule is satisfied, a new fact is established - that Complexity is equal

to 4- which in turn becomes part of the premise for the second rule. In practice, rule based

systems are often vastly more complex, typically containing hundreds of embedded rules.

To be classed as a machine learning technique, the system must infer the set of rules from

actual development data rather than have them supplied by a human expert as with

traditional rule based systems. This has the effect of removing 'human bias' and also helps to

overcome another common problem, rule base maintenance over time. Luckily, even though

the rules are often complex, they are usually visible and thus are easier to understand.

3.3 Fuzzy Systems

It is often the case, in poorly defined areas such as software development, that measurements

and relationships are expressed in a "fuzzy" way rather than with precise values. This

uncertainty is the price that is paid for attempting to solve complex problems. For example,

when asked about an impending software project, a manager is more likely to express the size

with terms such as "very large" or "medium-small" rather than in exact figures. This fuzzy

view potentially affords a broader and richer field of data and the manipulation of that data

than do more traditional methods (Brule 1985)

The idea of three (true, false and indeterminate) or more valued logic has been around for

over a millennium. However, the seminal work on fuzzy set theory and fuzzy logic was

proposed by Zadeh (1965) in 1965. The basic principle is that set membership values are

assigned to observations in the range 0.0 to 1.0 where a value of 0.0 represents absolute falsity

and 1.0 represents absolute truth. The values in-between 0.0 and 1.0 represent a degree of

partial truth. As an example, take the statement:

"Module X is very small"

AN EMPIRICAL INVESTIGATION INTO SOFTWARE EFFORT ESTIMATION BY ANALOGY 38

If the module contains say 50 lines of code, we might decide to assign a truth value of (0.7) to

this statement or in other words we believe the module to be "more or less, very small". Note,

this should not be confused with a 70% probability which supposes that the module is or is

not very small excluding any middle ground. For a good summary see (Zadeh 1988).

There are a number of ways data fuzzification could potentially be applied to the effort

estimation problem. One way would be to construct a rule induction system (as described

above) replacing the crisp facts with fuzzy inputs (Fig 3.3). An inference engine would then

use the rulebase to map inputs to a fuzzy output which can either be translated back to a crisp

value or left as a fuzzy value (which might be seen as desirable as it highlights the speculative

nature of the estimate). As MacDonell and Gray (1996) note, expressing targets with fuzzy

values allows for a less harsh form of commitment.

Figure 3.3 :A fuzzy rule based system

Neuro-fuzzy systems are another potential application for fuzzy concepts. A neuro-fuzzy

system attempts to combine the strengths of fuzzy theory and neural networks while

overcoming many of their associated weaknesses. One of the major criticisms targeted at

neural network approaches is that they often over adapt to the data on which they are trained,

which inhibits generalisation and is also a problem when noisy or unreliable data is

presented. This is overcome in neuro-fuzzy systems by fuzzifying the input data, improving

the ability to model unseen data. Neuro-fuzzy systems also have the advantage that they are

"grey boxes", that is, their reasoning is not totally opaque as with standard neural networks.

Neuro-fuzzy systems have been used successfully in a number of applications including

diagnosing potential cases of breast cancer (Bridgett, Brandt et al. 1995).

AN EMPnucAL INVESTIGATION INTO SOFTWARE EFFORT ESTAIATION BY ANALOGY 39

Again, at present, the use of either technique for estimating software effort remains

speculative. However, the amount of research on both subjects would seem to suggest that

they are reasonably well evolved techniques and there is no reason why either may not be

utilised for effort prediction purposes.

3.4 Regression Trees

Regression trees, unlike their counterpart classification tress, solve quantifiable as opposed

classifiable problems. The regression tree approach requires training data from which to learn

the rules that appear on each of the leaf nodes. The algorithms work by using the features of

the data, that are thought to influence the outcome of the output feature, to create a tree

structure that branches based upon the values of the features. The most common tree

structure involves the choice of two branches, but multiple branches are possible.

There have been a couple of reports of the use of such trees to assess aspects of software

development, see for example (Porter and Selby 1990). Srinivasan and Fisher (1995), describe

the use of a regression tree tool, CartX, for effort estimation. CartX was used on the Kemerer

data set. They concluded that, although the technique was superior to COCOMO and SLIM,

the results were less impressive than the use of a Function Points driven statistical model or a

back-propagation driven neural network.

The limited use of regression trees for effort estimation purposes has, so far, produced few

results that appear to be sensitive to tree construction decisions such as tree depth and the

algorithm that creates the tree. A further substantial weakness of the approach is that it is

unable to process features that have values outside of the range of the training data. On the

positive side they can provide insights into the nature of the decision process, as opposed to

techniques that canbe considered 'black boxes' such as neural networks.

3.5 Case-Based Reasoning (CBR)

Case-based reasoning is a problem solving approach that has received a great deal of attention

recently. It has its origins in the work of people such as Gentner (1983), looking at analogical

reasoning, and Schank (1982) who studied dynamic memory and the role of previous

situations (or cases) in learning and problem sölving. Development of the first true case-based

reasoning system, CYRUS, is attributed to Kolodner (1983) who used the work of Schank in a

basic question and answer system that held knowledge of. the various meetings of former US

AN EMPIRICAL INVESTIGATION INTO SOFTWARE EFFORT ESTIMATION BY ANALOGY 40

secretary of state Cyrus Vance. More sophisticated systems built more recently have been

applied to problems such as dispute resolution, speech recognition, medical diagnosis and

Chinese cooking!

Cases are abstractions of events that are limited in time and space. They are viewed by

cognitive psychologists as episodic knowledge. In case-based reasoning terms, cases are

problems that have been solved (or have failed to be solved) using a particular problem

solving mechanism. Each case contains a description of the problem and the solution
(assuming it was solved) to the problem that was found for that case. The actual definition of

what constitutes a case-based reasoning system is open to interpretation, as the use of
historical cases to reason about future cases is a key part of all machine learning approaches at

some level. For the purpose of this thesis, case-based reasoning is taken to refer to systems

that retain, retrieve, revise and reuse explicit cases.

The case-based reasoning process has been described by Aamodt and Plaza (1994) (Figure 3.4)

as cyclic and composed of four stages:

RETAIN

tested /
repaired
case

confirmed
solution

prob

new
case

RETRIEVE

7xk
C
new case

retrieved
case

general knowledge

REUSE
REVISE

previous
cases

REVISE

solved
case

suggested
solution

Figure 3.4: The case-based reasoning cycle

RETRIEVAL of similar cases

AN EMPIRICAL INVESTIGATION INTO SOFTWARE EFFORT ESTIMATION BY ANALOGY 41

REUSE of the retrieved cases to find a solution to the problem
REVISION of the proposed solution if necessary

RETENTION of the solution to form a new case

When a new problem arises, a possible solution can be found by retrieving similar cases from

the case repository. The knowledge available with these similar cases can then be reused to

form a solution to the new problem. The solution may be revised based upon experience of

reusing previous cases and the outcome retained to supplement the case repository. This

leaves a number of issues that must be dealt with before a case-based reasoning system can be

effectively deployed. First, how cases are characterised, second, how similarity is discerned

when retrieving cases and third how solutions can be revised.

Case characterisation poses a difficult problem when developing repositories for new case
based reasoning systems. Parameters used in CBR systems can be either quantifiable
(measured on the ratio or interval scale) or categorical (measured on the ordinal or nominal

scale). Some expert knowledge of the problem space is required so that those features that are
judged suitable for the purpose of gauging similarity are collected. Inevitably though, feature

selection is a pragmatic task and must rely on the information that is available at the time that

the classification or prediction problem is to be solved. Rich and Knight (1995) discuss the

problem of choosing insufficiently general features. Again the solution seems to be to use an

expert.

The way in which similarity is gauged between cases is one of the major topics in case-based

reasoning. There are a number of approaches described in the literature (Aha 1991; Watson

and Marir 1994) including a number of preference heuristics proposed by Kolodoner (1993)

Nearest neighbour algorithms - these are either based upon straightforward distance

measures or the sum. of squares of the differences for each variable. In either case each

variable must be first standardised (so that it has an equal influence) and then weighted

according to the degree of importance attached to the feature. A common algorithm is given
by Aha (1991)

SIM(C,, C2, P) =1 (Egn. 3.2)
y, i PFeature_dissimilarity(C,;, C2i)

where P is the set of features, Cl and C2 are cases and

AN EMPIRICAL INVESTIGATION INTO SOFTWARE EFFORT ESTIMATION BY ANALOGY 42

[(c! - cZ
Feature

-d
issirnilarity(C1., C2)J0 (Eqn. 3.3)

11

where i) features are numeric, ii) the features are categorical and Cl=C2 or iii) the features are

categorical and C1#C2 respectively.

This approach is the most popular within the case-based reasoning community. In a survey of

commercial CBR tools carried out by Watson an Marir (1994), all 10 were reported as using a

variant of the nearest neighbour algorithm.

Static similarity measure - Althoff (1996) proposes a variant for features based on the

following measure:

SIM(C4C2) =
a. #E

a. #E+b. #D+ c. #U1 +d. #U2
(Eqn. 3.4)

where E is the set of features with the same values for cases 1 and 2, D is the set of features

with different values, U1 is the set of features with known values for case 1 and not case 2 and

U2 is the set of features with known values for case 2 but not case 1. In addition a, b, c and d

are parameters for which Althoff suggests the values a=1, b=2 and c, d=0.5. This approach

suffers from the problem of continuous attributes being almost but not quite the same. In

other words, if features do not match no account is taken of how dissimilar they are.

Knowledge guided induction - here an expert manually identifies key features that are

thought to affect the goal feature.

Template retrieval. - similar to query by example database interfaces, i. e. the user can supply

ranges, and all cases that match are retrieved. Often used as a precursor to nearest neighbour

algorithms.

Goal directed preference - cases are characterised by their goals.

Specificity preference - cases with features that are an exact match are preferred over those

that match in general

Frequency preference - The most recently selected cases are given preference.

AN EMPIRICAL INVESTIGATION INTO SOFTWARE EFFORT ESTIMATION BY ANALOGY 43

Breiman et al. (1984), while examining a simple similarity algorithm, found a number of
inadequacies. First, they are computationally intensive. Generally speaking though, the search
time involved in retrieving cases using a nearest neighbour algorithm will only increase

linearly with the number of cases. However, Aha (1991) proposes a number of algorithms that

are only marginally less accurate while being more efficient. Second, the algorithms are
intolerant of noise and irrelevant features. However this can be overcome by building in

learning so that irrelevant features can be identified and the important ones can be given more

weight in the similarity measure. And third, the use of symbolic or categorical parameters is

problematic. The way most similarity algorithms approach such variables is Boolean in that

they are either a match or a mismatch with no in-between.

While many researchers (Aha 1991; Veloso and Carbonell 1991) have sought more accurate

and efficient ways of discerning similarity between cases, some consider revision or

adaptation to be the most important challenge in CBR research. Adaptation is not an issue

where problems are repetitive, however, in an environment where novel problems are

continuously being experienced, adaptation is essential. The problem is that once the most

similar cases have been found, how do we go about adapting them so that the best solution
for a new case can be found? Leake (1996) describes two distinct approaches to adaptation.
The first approach involves the use of rules to facilitate adaptation which is inevitably subject

to the problem of knowledge elicitation. The second approach involves finding ways to

reduce the need for adaptation such as favouring cases with features that are more likely to be

adaptable.

An early attempt to develop a CBR system dedicated to the selection of similar software

projects for the purpose of estimating effort is described by Vicinanza et al. (1990). They

created Estor, a case-based analogical retrieval system, by studying the way in which experts

approached ten separate cost estimation problems. Using domain knowledge supplied by one

of the experts, Estor was able to produce its own effort estimates using an analogy searching

approach and adapt those estimates using rules inferred from the estimator's own protocols.
The performance of the estimates produced were comparable, in terms of R2, to the expert's

own and far superior to those obtained using the regression based techniques, Function Points

and COCOMO.

A second, more recent, example of software effort estimation using a case-based reasoning

system is described by Bisio and Malabocchiä (1995). They also developed a CBR tool, called
FACE (Finding Analogies for Cost Estimation), and assessed it using the COCOMO data set.
One interesting feature of their approach is that all : andidate analogies from the case

AN EMPIRICAL INVESTIGATION INTO Soyrw RE EFFORT ESTIMATION BY ANALOGY 44

repository are given a normalised score 0between 0 and 100 (100 being a perfect match) as to

their similarity to the target case. The user can indicate the threshold (typically 0= 70) over

and above which cases can be used to form an estimate. If no cases are found (i. e. no cases

have scores above the 0 threshold score), then no reliable estimation can be performed.

Although difficult to compare due to the limited number of projects used in the

experiments14, FACE appears to perform very favourably against algorithmic techniques.

It appears that the case-based reasoning community is thriving and that there is evidence
from early research that case-base reasoning could be adapted to the effort estimation

problem. The most obvious drawback with case based reasoning systems is that they have

little generalisation power when confronted with new cases that have not been previously

observed although this problem maybe countered by the use of adaptation. They do however

have a number of advantages over other methods. First, they are able to function effectively

where the number of observations is small. Second, they are able to explain the reasoning

process behind the selection of the analogical cases and therefore the output. And third, they

seem to thrive where the problem domain is not well understood.

3.6 Comparison of Approaches

The previous sections have discussed a number of machine learning techniques that could

potentially be applied to the estimation of effort. However, it is likely that each approach will
be optimal under different circumstances. This section will now discuss the different

techniques in relation to a set of subjective criteria under which prediction systems are often

judged:

" Interpretability

This criterion considers the degree to which the reasoning behind the output of a model is

explained by its internal workings. Obviously, the ability to understand the reasoning behind

an estimate has a large effect on the amount of confidence one can place on the estimate.
Neural networks are an example of an approach that is at essentially totally opaque. The

reasoning power of a neural network is concentrated in the synaptic weights on the inputs to

each node, unfortunately, these have proven very hard to interpret15 into any meaningful

explanation of their output. Hybrid neuro-fuzzy systems are regarded as easier to interpret

14 The setting of the 0 often meant that for many of the projects no reliable estimates could be made.

AN EMPIRICAL INVESTIGATION INTO SOFTWARE EFFORT ESTIMATION BY ANALOGY 45

than normal neural networks because it is possible to examine their 'internal rules'. In contrast

to neural networks, the hidden layer units of a neuro-fuzzy system are more akin to rules

where excitatory inputs (in the form of fuzzy membership degrees from the initial input)

represent positive rules. The outputs then represents the degree to which a rule has fired

which determine the relative activation of the output fuzzy membership neurons.

The other techniques described within this chapter can be considered translucent in

comparison to neural networks. Rule-based and regression-tree systems often give explicit

readable rules as output. The main criticism though is that they are often very complex with

numerous nested IF-THEN statements in the case of rule-based systems and branches in the

case of regression trees. Finally the case-based reasoning approach affords the clearest
interpretation value as it is usually based directly upon the similarity of one or more explicit
input cases. However, even here the reasoning can get a little muddied where adaptation is

employed.

" Ability to Generalise

This criterion considers the ability of each approach to generalise i. e. its ability to estimate

when presented with novel data. Very often when training a model there is a trade off
between the level of accuracy achieved and its ability to generalise. By trying to achieve the

most accurate model, it is possible to over train the model to the data which will often render
it woefully inaccurate when presented with data from outside of the training domain.

For neural networks over fitting to the training data is a serious problem that can lead to the

network placing too much emphasis on individual values. However, when trained properly16

neural networks are exceptional at generalisation. Neuro-fuzzy systems, by contrast,

automatically overcome this problem by using fuzzy inputs that remove any chance that the

model will focus on individual specific values. The ability of rule-based systems and

regression trees to generalise is limited by the extent of their knowledge. If a new case has

values outside of the current rules then they are unable to generalise. A case-based reasoning

system is also limited by the available cases it can select. However, its ability to adapt

estimates based upon case differences means that it retains some power to generalise.

15 There are some examples of attempts to convert the weights into rule form but the author knows of no successful attempts
16 This often means restricting the amount of training the network undertakes so that it is not over-trained on the data.

AN EMPIRICAL INVESTIGATION INTO SOFTWARE EFFORT ESTIMATION BY ANALOGY 46

0 Suitability to Software Project Data Sets

Unfortunately, for this criterion there is very little evidence available. Most of the evidence

concerns neural networks, which have been found to be more accurate in terms of accuracy as

the size of the data set increases. This might be a problem for software companies who are

rarely able to collect large amounts of data (less than 30 projects is common). However, when

neural networks are trained properly (i. e. not over trained to the data) their ability to

generalise is considerable, and therefore, it is conceivable that data from different company

environments might be combined to increase the size of a data set.

9 Life-cycle Availability

Life cycle availability handles the coverage the approach affords to the software life-cycle. In

other words at which stages does each technique become viable. Again there is little evidence
for this point. However, there is no reason to suppose that all of the techniques described in

this chapter could not be used at any point along the software life-cycle. The ability of each to

handle categorical data is important especially for the bidding stages of a project where there

are likely to be few quantifiable inputs.

In truth, it is very difficult at present to say which approach is superior under which

conditions. Neural networks have been shown to be accurate, but reservations still remain

over the amount of data required to make them effective and their poor level of
interpretability. The efficacy of the remaining techniques remains speculative however, a

tentative comparison of all of the approaches described above can be found in (MacDonell

and Gray 1996).

3.7 Summary

There has been an increasing amount of interest in alternative approaches to effort estimation
in the last few years. Of these approaches some, notably neural networks and case-based

reasoning, are being actively researched and the likelihood is that they will soon be

recognised as viable alternatives, or better still complementary, to regression based

approaches. Other approaches such as neuro-fuzzy systems, crisp/fuzzy rule-based systems

and regression trees are, as yet, mainly speculative and perhaps warrant more serious

attention. It is clear though, that each technique has its own advantages and disadvantages

under different circumstances, and that it would bg!. useful to identify under which

AN EMPIRICAL INVESTIGATION INTO SOFTWARE EFFORT ESTIMATION BY ANALOGY 47

circumstances each could be most effectively used. As yet, little evidence exists about the

accuracy and efficacy of any one approach and there clearly is a need for more systematic

comparisons between approaches.

The following chapters will describe an application of case-based reasoning technology,

known as ANGEL, which has been used for predicting software effort. The ANGEL tool was
developed with reference to the case-based reasoning theory covered in this chapter.

Chapter 4

The ANGEL approach to Effort Estimation

4.0 Introduction

Analogical reasoning is a fundamental part of human cognition (Oppenheimer 1956;

Vosniadou and Ortony 1989). It is necessary for recognition, classification and learning; it also

extends its influence into the realms of discovery and creativity. We use analogical reasoning

whenever we make new decisions by recalling related past experiences, for example, if we
buy food from a shop because previous purchases have been good value for money, we are

reasoning by analogy. Analogical reasoning has long been recognised as being related to

intelligence. Raven (1938) defines intellectual ability as the ".. ability to reason by analogy from

awareness of relations between experienced characters". Thus analogy has been a major

component of many tests of intellectual ability and has been employed in a number of

'intelligent systems' that solve complex problems (see for example (Evans 1968; Winston 1970;

Raven, Court, et al. 1986.)). The theories of how humans solve problems using analogies are

numerous, see for example (Johnson 1962; Evans 1968; Winston 1970). However, generally

speaking, all the theories embody some or all of the following chain of processes:

i) Encode attributes of a new task into an internal representation.
ii) Infer a relationship between a previous task and the new task.

iii) Identify a mapping between the previous task and the new task.

iv) Apply the mapping to the solution for the previous task to give a candidate solution for

the new task.

v) Modify the candidate solution

The use of analogy for software effort estimation has been proposed by a number of

researchers. Boehm (1981), back in 1981 considered informal human analogy to be one of the

seven available estimation techniques. He considered its main advantage to be the fact that

estimates were based upon experiences that could be analysed to determine the specific

similarities/differences and their possible impacts on the new project. Cowderoy and Jenkins

(1988) suggest that analogies can be found at different levels of granularity, from phase level

upwards. They adopt a 5-step approach to the recognitiorrbf useful analogies:

AN EMPIRICAL INVESTIGATION INTO SOFTWARE EFFORT ES IMATION BY ANALOGY 49

1. Select analogies from similar domain.

2. Assess the similarities between the current environment and the analogy, reject if

differences too great.
3. Assess the quality and reliability of the analogy. Where a number of potential analogies

exist, reject any with suspicious backgrounds (e. g. dubious progress reported).
4. Consider known special cases (e. g. differences in methods of working).
5. Review the list of analogies and reject any regarded as still being unsuitable.

These steps, they suggest, could be partially automated in an Estimation Decision Support

System (EDSS) or in a less formal system of spreadsheets, instruction manuals and library of
knowledge. Despite this early recognition of the potential of analogical reasoning, it is only

recently that the approach has received anything more than lip service from software

engineering researchers. This lack of attention is even stranger when framed in the context of

two reports (Heemstra 1992; Lederer and Prasad 1993) which both looked at the usage of cost

estimation techniques across 598 and 112 organisations respectively. Both report that informal

analogy based estimation was by far the most predominant technique.

The notion of similarity is implicitly tied in with the process of analogy in that a successful

analogy between two cases is dependent on there being some element of similarity between

them. Software effort estimation by analogy involves systematically searching for similarities
between a target project that is to be undertaken, and historical source projects, then forming

estimates based upon the effort recorded for the selected source analogy. As with all

estimation techniques (with the exception of expert judgement) analogy requires the collection

of historical data. In common with other techniques, the more homogenous (i. e. coming from

the same environment) the data the greater the confidence we can place in the estimates

produced.

Although an association between human analogical reasoning and automated estimation by

analogy is being made, it is clear that there is a great deal of difference in their complexity and
implementation. The similarity mechanism utilised in analogy effort estimation is a relatively

simple proximity measure, whereas, much of the knowledge we have about human analogical

processes, although based upon conjecture, suggests that they are a great deal more intricate.

AN EMPIRICAL INVESTIGATION INTO SOMVARE EFFORT ESTIMATION BY ANALOGY 50

4.1 Reasoning by Analogy Vs Case-Based Reasoning

Reasoning by analogy is often used as a synonym for case-based reasoning (Section 3.5) and

essentially, they are the same method. However, analogical reasoning systems are considered

to be distinct in that they are able to solve cross domain problems (i. e. the problems do not
have to be from the same area as their potential solutions, although there must be some cross-

over of attributes17), whereas case-based reasoning is predominantly a single domain problem

solver. A further difference between the two methods is the amount of adaptation

undertaken. Typically case-based reasoning systems place a great deal of emphasis on the

adaptation process, whereas, analogical reasoning systems (in-line with human analogical

processes) undertake little or no adaptation (Aarmodt and Plaza 1994). In all other respects

the two approaches can be considered identical. As Section 3.5 has already covered most of

the fundamental aspects of all case-based reasoning systems, the rest of this chapter will be

concerned with the specific features of the ANGEL estimation system.

4.2 Effort Estimation by Analogy : The ANGEL Approach

Software estimation using analogy can be seen as a specific use of analogical reasoning and as
has been stated, its basis is the matching of one or more projects from a historical case base, to

a new project for which an estimate is required. Projects are characterised by a number of
descriptor features that are used to measure between project similarity. Once the most similar

completed projects have been found, the known effort values for these projects can be used to

form an estimate of the effort for the new project. As a consequence of its relationship to case-
based reasoning, it also inherits many of the issues that surround case-based reasoning

systems. First, we have to determine how best to describe projects. Second, once we have

characterised projects, how do we then discern similarity and how much confidence can we

place in the resulting analogies? Third, how do we find and deal with factors that might cause

noise? And fourth, how do we use the known effort values from analogous projects?

4.2.1 Characterising Projects

Apart from the goal feature (the variable that we may wish to estimate i. e. effort) we must

also characterise a project with one or more descriptor features. Descriptor features can be

17 The classic example is our solar system being used as a source of analogy to help in the understanding of the structure of an
atom.

AN EMPIRICAL INVESTIGATION INTO SOFTWARE EFFORT ES IMATION BY ANALOGY 51

either quantifiable (interval, ratio or absolute) or categorical (nominal or ordinal) variables;

they must be available at the point when an estimate of the goal feature is required, so

commonly collected measures such as lines of code are usually impractical as they are only

available much further down the life-cycle.

There are no specific guidelines for the identification of candidate descriptor features other

than to be pragmatic in choosing features that can be easily collected. However, it is

recommended that features that have a direct bearing on effort are used, such as functionality

or complexity measures; collecting features that have no perceived relationship to project

effort is likely to result in the selection of poor analogies. This is not to say that a so-called

'expert' is required for the identification of pertinent features. As will be described later in this

chapter, the ANGEL approach incorporates a mechanism for finding the best combination of
features presented to it, based upon the historical data it is presented with.

4.2.2 Similarity Measures

The case-based reasoning community have identified a number of different similarity

measures (Section 3.5) however, the measures that have found practical use are

predominantly the nearest neighbour algorithms. The nearest neighbour algorithm used in

estimation by analogy involves measuring Euclidean distance in n dimensional space (Eqn.

4.1) where n is the number of features, and x and y are two project cases.

ED(x, y) = (xl - yi)2

(Eqn. 4.1)

Euclidean distance Was chosen as the measure of similarity because the straight line distance

between two points is the simplest, most commonly used, proximity measure (Suppes, Krantz

et al. 1989). Before the similarity measure can be used, it is important that the feature values

for the projects are standardised18 (in this case between 0 and 1) so that all the features

contribute equally to the measure of similarity. As has been stated, two different feature types

can be incorporated into the similarity measure, namely quantifiable features and categorical
features. The use of quantifiable data is not problematic, however, categorical features have

18 Each feature value is divided by that features range.

AN EMPIRICAL INVESTIGATION INTO SOFTWARE EFFORT ESTIMATION BY ANALOGY 52

no notion of interval and thus can only be described as identical or different19 to one another.
This leaves us with the problem of assigning standardised values for different and identical.

Within this project we have chosen to assign a distance of 1 where the feature values are
different and 0 where they are identical. This decision was made on the grounds that

expressing categorical similarity on the boundaries of the standardised feature range is a

common practice within the case-based reasoning community (see for example (Aha 1991))

and also that the values 0 and 1 (within the range 0 to 1) were deemed the most suitable for

expressing the notions of identical and different.

Figure 4.1 demonstrates how the similarity mechanism works with 3 projects that are

characterised with three descriptor features: experience, Function Points and number of

subsystems. It can be seen that the Euclidean distance between the new project and project A

is less than the distance between the new project and project B. Thus, in this case, project A

would be selected as the closest candidate analogy and its known effort value would

contribute to the estimate for the new project.

Figure 4.1: Measuring similarity in three dimensional space

The confidence that can be placed in an estimate can be determined in a number of ways. One

possible way is to use the similarity measure between the target and source project. However,

19 Note, ordinal categorical feature values can also be manipulated as being greater or less than each other. However, this
information is of no value in the Euclidean distance measure unless a psuedo interval is imposed on the feature values.

AN EMPIRICAL INVESTIGATION INTO SOFTWARE EFFORT ES MIATION BY ANALOGY 53

this strategy is problematic, in that two projects are similar in terms of the range of all the

projects feature values, so that a similarity measure between two projects will change if a new

project is added with feature value outside of the present range. Figure 4.2 demonstrates this

using projects with, for simplicity, just one descriptor feature (i. e. in one dimensional space).

Because all feature values are standardised between 0 and 1, the addition of a new project C

has the effect of increasing the relative similarity between projects A and B.

ABC

Projects XXXXXX

Range 01 Before Project 'C'

Range 01 After Project 'C'

Figure 4.2 : Adding a new project in one dimensional space.

Another possible way of determining confidence is to adopt a technique similar to jack-

knifing, that makes individual predictions for all of the historical projects in the Project case

base. Basically, each project is successively removed and its effort estimated using the

remaining projects as the analogy source (Fig 4.3). The estimated effort for each of the projects

is then compared to their actual effort, which yields an indication of how much reliance can be

placed upon new estimates from that Project case base.

Imame I Effort I Qxafon I Fux ian Puts.

Each paject is
s wely..

estimated and
reriined to
xt ect base

Ptiýed 2 2425 23 195 C++
Prýect 3 3463 27 285 Cabd
Pfciect 588 20 . 1 Ck+
RxýOd 5 2577 1 Ct+

Pyciect x 4,2221 422 \isual C++

Figure 4.3 : Jack-knifing a project case base

This is the technique that has been adopted in the ANGEL approach for assessing estimate

confidence (expressed in MMRE - see section 2.6). It not only allows the user to assess how

accurate an individual estimate may be, but also compare the ANGEL approach with other

estimation methods such as algorithmic models.

AN EMPIRICAL INVESTIGATION INTO SOFTWARE EFFORT ESTBIATION BY ANALOGY 54

4.2.3 Dealing with Noisy Features

It is difficult to know in advance which features will be helpful for finding useful analogies

and it is likely that where a number of features are being used, some will be adding noise.
Obviously some strategy is required to weed out these noisy features. The most

comprehensive way this can be accomplished, and the way adopted in the ANGEL approach,

is to perform an exhaustive comparison of every possible combination of features, jack-knifing

the Project case base each time until the subset of features that return the best confidence

figure is found. The major problem here is that an exhaustive search can be computationally

expensive. To be more precise, the complexity of an exhaustive jack-knife can be expressed as

m*2n -1 where m is the number of project cases and n is the number of features. Given a

constant number of project cases, the time taken to perform such a search will increase

exponentially with the number of features. For example, given a case-base of twenty projects

on a Pentium 200, ANGEL will take 5 seconds to process 5 features, 2 minutes 40 seconds to

process 10 and 45 hours to process 20 features!

4.2.4 Forming a New Estimate

The simplest way to form a new estimate is to copy the effort value from the closest source

analogy to the target. However, other strategies might be considered, for example, finding the

n closest projects and taking an average of their total effort or alternatively applying a

weighting so that the closest projects contribute more to the eventual estimate. It is likely that

different strategies will be optimal under different circumstances. For example, taking just the

closest analogy leaves the estimate vulnerable to it being a poor or outlying analogy. On the

other hand, where numerous analogies are selected, the effect of the closest analogy might be

weakened by less important analogies.

The strategy adopted for the ANGEL approach was, first and foremost, pragmatic. It was not

within the scope or time-scale of this project to test all the possible ways analogies could be

used so four different strategies were chosen as outlined below:

One analogy
Estimate = effort from the closest analogy.

Two analogies
Estimate = average effort from the closest two analogies.

Three analogies

Estimate = average effort from the closest three analogies.

AN EMPIRICAL INVESTIGATION INTO SOFTWARE EFFORT ESTIMATION BY ANALOGY 55

Two analogies (weighted)

Estimate = average effort from the two closest analogies, the first weighted double.

This is as close as the ANGEL approach comes to offering an adaptation mechanism, a feature

that is so highly desired in case-based reasoning systems. Other attempts at creating

analogical based reasoning systems (Vicinanza and Prietolla 1990) have tried to incorporate

such mechanisms, but ultimately expert intervention is required (usually in the form of rules)

which makes the system difficult to move between development environments and will make

expert intervention (to maintain the rulebase) necessary.

Early experiments using automated estimation by analogy (Atkinson and Shepperd 1994)

found that one disadvantage is that it requires a great deal of computation. They overcame

this problem by automating the process using SPSS20 to compute the statistical similarities
between projects and then EXCEL to identify the closest analogies, develop an estimate and

compute the method performance. Automating the process allowed them to create estimates

relatively quickly and accurately. Using this automated technique they found21 that certain

analogy selection techniques out performed regression based techniques (in terms of MMRE)

while performing slightly less well than expert judgement. From this work it was evident that

to make estimation by analogy viable it would have to be fully automated. This has been

done, in the form of a software tool known as ANGEL, and is described below.

4.3 Effort Estimation by Analogy: The ANGEL Tool22

From experience, searching for analogies using the approach described in section 4.2 can be

both time consuming and error prone, particularly if there are many projects or many

variables. For this reason it was decided to automate the process and provide an environment

where data can be stored, analogies found and estimates generated. A prototype was
developed using Visual Basic 3.0 to run under Windows (3.1 or above) on a PC, and was

christened ANaloGy Estimation tool (ANGEL). Visual Basic was chosen because it allowed
for rapid and incremental prototyping of the embryonic ideas while providing a user-friendly
interface. Although essentially a prototype system, built with the intention of supporting

research into the efficacy of estimation by analogy, a number of commercial companies have

20 A social science statistical package
21 Using data from 21 real-time projects.
22 A version of this tool is available at http: //dec. boumemouth. ac. uk/dec_ind/ýlecind22/web/Angel. html

AN EMPIRICAL INVESTIGATION INTO SOFTWARE EFFORT ESTIMATION BY ANALOGY 56

shown interest in using the tool in a variety of ways from the simple identification of similar

projects as an aid to expert estimators, to full use of the estimate generation facilities.

It was decided early on that ANGEL must not constrain the user by prescribing the collection

of any particular features. Thus a shell architecture was developed, that enabled the user to

define the features that best characterise their environment. As a result of adopting a shell

architecture, ANGEL can conceivably estimate any goal feature (and is not constrained to

software development problems) such as development duration, lines of code or testing

effort, and is not constrained over which features must be collected. From the start, design

decisions have been made with three major guiding influences: expediency, simplicity and

openness.

The ANGEL tool separates the process of estimation by analogy into three key areas:

i) Data Templates

Template are simply forms used to describe the environment in which projects are to

be undertaken (i. e. meta data).

ii) Project Case Base

A project case base, built from information captured in a template, is the repository

for project data.

iii) Estimate Generation

Estimate generation allows the user to generate estimates for target projects based

upon source projects in a project case base.

Template Template Editor
File Creates/

T
Modifies

Used By

Project Editor

Creates/Modifies

Project Used By

Data _. _. _
Estimate Generator

Returns

estimate to

Figure 4-4: ANGEL scher atic

AN EMPIRICAL INVESTIGATION INTO SOFTWARE EFFORT ESTIMATION BY ANALOGY 57

The interaction between the main components of the ANGEL tool is demonstrated in figure

4.4 Before project case data can be stored, the template editor is used to profile the

environment from which the data will be collected. The resultant template is stored as a text

file. This template file is then used by the project case editor to create a project case base. Once

enough projects have been collected in the case base, the estimation generator can be used to

generate estimates for any new projects. Ideally, an estimate should then be recorded in the

project case base so that it can be compared to the final outcome, although this is not

mandatory in ANGEL. Figures 4.5 to 4.9 illustrate ANGEL in operation.

IRE] x
File Project View Mao Wr ow

11 Row: Col

Fie 41Data

Name dj FP

Type Att1ute

Descr, tion biechts A¬ UZted Function Poänts

Taýwla/rDcsuplxn
This is a Demonstration Template Created on the
20/2/1997

Opiaravwxu

Remove Insert

AM*

Field r or 1

Figure 4.5 :A data templates in ANGEL

Figure 4.5 shows a template for recording environment data. Templates are an important part

of this approach because they can be configured to suit the individual data collection

environment of an organisation. There is no particular set of features prescribed by the

template, in order that the approach can take optimum advantage of the data available at each

data collection site. All feature types and names are user determined, except for Project Name

and Status which are mandatory. Project Name merely provides a mechanism for uniquely

identifying each project or case. Status indicates whether a project has been completed, or not

and therefore whether it can be used as a source of analogy. Selection of feature type is

important at this stage as it determines how ANGEL will treat data when performing

estimates. The data types available are Estimate (a goal feature type), Attribute (a quantifiable

AN EMPIRICAL INVESTIGATION INTO Soi rw RE EFFORT ESTIMATION BY ANALOGY 58

descriptor feature type), Categorical (a categorical descriptor feature type) and Text (a memo
field). Before a template can be transformed into a project data store, it must have at least one
Estimate feature and one Attribute or Categorical feature (in addition to the mandatory
features).

Figure 4.6: A project database in ANGEL

Project case bases are formed from template files and stored as Microsoft Access readable
database files. Figure 4.6 shows two example project case bases holding projects taken from

the Albrecht (1979) and Kemerer (1987) data sets respectively. It was decided to display the

project case bases as spreadsheets because of the visibility advantages this format affords.
Each column in the spreadsheet represents a feature, while each row holds a single project.

Figure 4.6 shows all but one project as having a Status of 'COMPLETED', a label that marks

that project as belonging to the pool of potential source analogies, while one project has an

'ACTIVE' Status marking it as a project for which we might want produce an estimate.

AN EMPIRICAL INVESTIGATION INTO SOFTWARE EFFORT ESTIMATION BY ANALOGY 59

El

Fie P cv, A. Lwiw
A25 1 -1

15.8
18.3

3.6
11.8

No. of Analogie:

Estimation Athbute

Actual Effort

Find Best Attes

Estimation

Ex

Figure 4.7: Configuring an estimate in ANGEL

Figure 4.7 shows the estimation generator screen. Before ANGEL can generate an estimate,

the user must select an active project and the number of analogies ANGEL will search for

(recall that ANGEL currently allows up to three analogies to be used). Having selected the

number of analogies, the features that will be used in measuring the Euclidean distance

between projects must be selected. As mentioned earlier, the reason for this is that not all

collected features will be helpful in finding good analogies; some features may create noise.

The chosen features can be all, or just a subset, of the features stored in the project case base.

Because the problem of determining these features by hand is very hard23, ANGEL can also

automatically determine the best combination of features to be used for finding analogies for a

particular case base. This relies upon a brute force, exhaustive search of all possible feature

combinations.

23 The most obvious features that generally have a strong statistical influence on effort will not necessarily be the most
influential features in ANGEL.

AN EMPIRICAL INVESTIGATION INro SOFTWARE EFFORT ESTIMATION BY ANALOGY 60

JIM IS
Fie 1oiect View Ark-Jouy wem,

38.1

6.1 1

Dataset ALBRECHT

Number of Projects 99

Number of Attributes 2

Estimating Project Test Project

Na. of Analogie: Closest Two Analogies

Estimation Performance Measures

,
S-MMRE : 7- MMRE: pr2n

Pred425 : 52Z S-Pred(25] :

Exit
I

Closet Analogy

(second Analogy

Third Analogy fr
vK..

Resutts

Esdia1adAchdE1Avt
Fa Test Pßcgeicta:

Ji 13.3

Figure 4.8: Estimation results using ANGEL

The final step (Figure 4.8) involves predicting effort for a selected project, in this case a test

project, using the completed projects from the case base. Here we see a predicted value of

13300 work hours (shown in Figure 4.8 as thousands of work hours). The confidence that we

can have in the estimate is automatically provided in the form of the MMRE, Pred(25),

SMMRE24 and S-Pred(25) values25 as described in section 2.6. A further facility is the ability

to examine the source analogies used to create the prediction, in this case projects 16 and 11.

Note that the estimate figure represents the average of the effort for the closest two analogous

projects. Obviously, on small projects this level of precision is not necessary and perhaps
falsely gives an impression that the technique can be so accurate. However, where projects are

measured in larger units such as thousand work hours or person years the values after the

decimal point obviously become important. At present ANGEL has no provision for

recognising the two different situations.

24 Also known as BMMRE - Balanced MMRE [13]
25 Each performance indicator has its own merits and the ANGEL approach does not advocate the use of any one. However,
the user should be aware that ANGEL optimises on MMRE and that the use of other indicators helps to provide a more
balanced view.

AN EMPIRICAL INVESTIGATION INTO SOFTWARE EFFORT ESTIMATION BY ANALOGY 61

OX

Function Points

A _7

Minor Nominal Significant

Finished I

Figure 4.9 : Applying weightings to features

An auxiliary facility available in ANGEL provides the means of applying weightings to

project features. Features can be classified as minor, nominal or significant, altering the

amount of influence that is exerted by that feature on the similarity measure by *0.5, *1.0 and

*1.5 respectively. Initially, all features are set to nominal so that all features contribute equally.

The decision to adopt a three point scale for the weighting facility was made on the grounds

that to have more points on what is essentially an arbitrary scale goes against the major

strengths of the ANGEL tool (i. e. its simplicity and transparency). It was also considered

important that whatever the values chosen, the minor and significant values should exert the

same effect in both directions from the nominal value. Another function that was considered

and later abandoned was a facility that would allow the user to find the best weighting for

each feature by carrying out an exhaustive search similar to that used to determine the best set

of features. The idea was discarded, however, because it was deemed too computationally

expensive in a tool that was already sensitive to time constraints, particularly when trying to

determine the best subset of features. It was also considered to go against the simplicity of the

analogy technique and blur ANGEL's ability to explain its output.

4.4 Summary

There has been a great deal of anecdotal evidence in the literature indicating that humans

solve complex problems by reasoning using analogies. This has led a number of software

engineering researchers to consider the use of analogies in order to mimic the reasoning

processes of expert human estimators.

This chapter has described a novel approach to the estimation of software development effort
by searching for similar or analogous examples from sets of historical software projects. This

AN EMPIRICAI. INVESTIGATION INTO SOFTWARE EFFORT ESTIMATION BY ANALOGY 62

approach is very similar to case-based reasoning and has learnt a great deal from the

experiences reported in that community. Unfortunately, the approach is computationally

expensive and thus requires automated support. This support is provided in a tool, dubbed

ANGEL, which allows the collection of project data and the identification of similar projects in

order that the effort for new projects might be estimated.

The next chapter will describe how the ANGEL tool was used as part of an empirical analysis

comparing the accuracy of the estimation by analogy and a more traditional algorithmic

approach.

Chapter 5

An Empirical Investigation of the Accuracy of Estimation by

Analogy

5.0 Introduction

Although a variety of different factors must be considered when assessing prediction systems,

such as robustness and ease of use (see for example (Boehm 1981; Conte, Dunsmore et al.

1986; Kitchenham 1990)), arguably the most important and certainly the most visible feature,

is the relative accuracy of predictions made. To be taken seriously by researchers and more

importantly practitioners, any new estimation technique must justify itself first and foremost

by its results. This chapter will present the results obtained when using the ANGEL tool to

predict project effort for approximately 250 real software development projects across 8

different industrial data sets, summarised in table 5.1. The 8 data sets represent a wide range

of development environments including a defence contractor, 2 telecoms companies and a DP

services organisation, and were collected between the late 1970's and early 1990's.

Name n Description Source

Albrecht 24 IBM DP Services projects (Albrecht and Gaffney 1983)
Desharnais 77 Canadian software house - (Desharnais 1988)

commercial projects
Finnish 38 Data collected by the TIEKE Finnish Data set: data set

organisation from IS made available to the
projects from 9 different ESPRIT Mermaid Project by
Finnish companies. the TIEKE organisation

Hughes 33 Telecoms project builds See Appendix B
Kemerer 15 Large business applications (Kemerer 1987)
Mermaid 28 New and enhancements MM2 Data set: Data set

projects made available to the
ESPRIT Mermaid Project

anonymously
Real-Timel 21 Real-time defence projects See Appendix B
Telecomsl 18 Enhancement projects from See Appendix B

a large telecoms company

Table 5.1 Data sets used to compare estimation by analogy and regression

AN EMPIRICAL INVESTIGATION INTO SOFTWARE EFFORT ESTIMATION BY ANALOGY 64

Effort is also predicted using a regression based technique to allow the results from ANGEL

to be put into perspective, and to provide a comparison between estimation by analogy and a

technique regarded by some (Kok, Kitchenham et al. 1990) as 'state of the art' in effort

estimation. The results from both techniques are then analysed together using statistical

significance testing and conclusions about the relative performance of estimation by analogy

are drawn from the results.

5.1 Experimental Procedure

Throughout this investigation a Pentium 200 PC was used to run SPSS and the ANGEL tool.

For each data set, the four different analogy selection approaches26 in ANGEL were

compared to stepwise regression run in SPSS. Stepwise regression builds prediction models

based upon one or more independent variables where variables are successively entered into

the model until no further significant contribution can be made. All the available features

(with the exception of nominal and ordinal scale features27) are entered into the stepwise

regression, except where there are a priori reasons for leaving a feature out, for example,

where there are missing values. Appendix A contains a full list of the features used for each

technique. The four analogy selection approaches (as described in section 4.3) were:

" One analogy - the effort from the closest analogy

" Two analogies - the mean effort from the two closest analogies

" Two analogies (weighted) - the mean effort from the two closest analogies with the first

weighted double

" Three analogies - the mean effort from the three closest analogies

The prediction accuracy of the different approaches is assessed using IMRE and Pred(25). As

has been stated in section 2.6, there are a variety of other performance indicators, however,

these two were chosen because they give a balanced view (MMRE tends to be conservative

while Pred(25) tends to be more optimistic focusing attention only on the best cases), because

they can be appropriately applied to both regression and analogy (unlike, for example, R-

26 At this stage it was difficult to predict which analogy selection approach would work best under different circumstances so
the results from all four are presented.
27 Although it is possible to incorporate such features into a regression model (creating dummy variables for each feature
value), their worth in anything other than a exploratory analysis is questionable.,

AN EMPIRICAL INVESTIGATION INTO SOFTWARE EFFORT ESTIMATION BY ANALOGY 65

Squared28) and because they are the most widely used performance indicators in the

literature.

Standard significance testing was also used to test the validity of claims made about the

performance of estimation by analogy when compared to stepwise regression in terms of (a)

MMRE and (b) Pred(25).

i

5.2 Notes on the Investigation

It is important to note at this stage the two minor differences between the estimation by

analogy and stepwise regression approaches and a third difference in the way they will use

the data presented to them.

1) The performance indicators for estimation by analogy and regression are generated slightly

differently

Estimation by analogy adopts a strategy very similar to jack-knifing where individual projects

are removed for estimation and are then returned to the data set. The regression modelling is

different in that a regression model is generated using all of the data (hereafter this process is

known as 'goodness of fit'). This will, in practice, give an advantage to the regression-based

technique because each project will contribute to the generation of the model from which its

effort will be estimated. A possible solution to this problem would be to jack-knife the

regression technique so that a new model would be built as each project is removed in turn.

However, this represents a great deal of manual effort, more than was possible within the

time-scales of this project.

2) Estimation by analogy optimises on MMRE.

Estimation by analogy decides upon the best set of features by minimising the mean absolute

percentage error (MMRE). Regression, on the other hand, creates a line of best fit by

minim sing the sum of the squared errors. As a result it is likely that comparisons of the two

techniques using the MMRE performance indicator will give an advantage to estimation by

analogy.

28 After initial exploratory analysis, R2 appears to be inappropriate for analogy and with certain calculations it is possible to
obtain a negative value for R2.

AN EMPIRICAL INVESTIGATION INTO Soi rw RE EFFORT ESTIMATION BY ANALOGY 66

For the remainder of this thesis, the assumption is made that neither of these have a serious
impact on the results, and that the advantage to estimation by analogy from optimising on
MMRE is no greater than the advantage to stepwise regression by not jack-knifing.

3) The handling of ordinal scale data

The features collected across the eight data sets in Table 5.1 range from ratio scale measures,

such as Years of experience, to nominal scale measures, such as Development environment. When

one is considering the use of data for estimation, it is important to take note of the operations

that are permissible on each scale type. Measurement theory states (Finkelstein and Leaning

1984) that the only operations applicable on ordinal data are equality and greater/less than

comparisons. However, as a number of the data sets are richly characterised with ordinal

data, strategies were sought to enable ANGEL to use such data. A decision was made to treat

all ordinal variables as interval on the grounds that doing so improves accuracy. This

essentially means that ANGEL assumes a linear interval between all ordinal values. This

approach is defended by Briand et al. (1996), amongst others, who consider that the rigid

application of measurement theory can be "rather sterile in terms of results"; and also by

Stevens (1946), the 'father' of measurement theory, who provides a pragmatic sanction for the

use of "illegal statistics" on ordinal measures: "In numerous instances it leads to fruitful

results. While outlawing of this procedure would probably serve no good purpose,... ".

However, no researcher would disagree that this approach must be treated cautiously and

should not be used if not yielding useful results.

The next section will go on to compare estimation by analogy with regression for the eight
data sets in table 5.1. The first data set, the Albrecht data set, will be examined in more detail

to demonstrate the process by which all data sets were analysed.

5.3 Data Analysis

5.3.1 The Albrecht data set

A statistical summary of the features used in the analysis of the Albrecht data set is displayed

in table 5.2. Note that KSLOC has been left out, because it is not generally available before

estimation is required. The feature to be predicted (goal feature or dependent variable) is

effort, measured in work-hours, while the potential independent variables (descriptor

features) are adjusted f unction points, the number of master files, the number of inputs, the number

of inquiries and the number of outputs.

AN Eh4PIRICAL INVESTIGATION INTO SOFTWARE EFFORT ESTIMATION BY ANALOGY 67

Feature Count Min Max Mean Median
Effort 24 . 50 105.20 21.88 11.45
FP 24 199.00 1902.00 647.62 506.00
Files 24 3.00 60.00 17.38 11.50
Inputs 24 7.00 193.00 40.25 33.50
Inquiries 24 0.00 75.00 16.88 19.3
Outputs 24 12.00 150.00 47.25 39.00

Table 5.2 Summary statistics for Albrecht data set.

As an example of regression based model building, figure 5.1 shows a linear regression model

using f unction points as the independent variable to predict effort. Note the negative intercept

on the y-intercept, suggesting that projects from this sample have negative fixed costs. For the

remainder of this analysis stepwise linear regression will be used to generate models.

120

100

80

60

40

20

~
fit 0
O
U-
w

-20

O

O

Q

U
aC

lb

13 0
13

0

13 Ri 13

0 1000 2000

FPS

Figure 5.1: Scatterplot of effort vs Function Points

The prediction system built by stepwise regression rejects the majority of the features as not

contributing significantly to a model based on function points and number of inquiries and thus

the regression equation becomes:

Effort = -12.08 + (0.04*ficnction points) + (0.42*number of inquiries). (Eqn. 5.1)

The adjusted RZ of 0.90 suggests that the model is good with 90% of the variation in effort

being explained by variation in fimnction points and number of inquiries, however the negative

AN EMPIRICAL INVESTIGATION INTO SOFTWARE EFFORT ESTIMATION BY ANALOGY 68

intercept value is not intuitively very appealing as it suggests negative fixed costs. The next

step is to predict each project in turn using this model and using the difference between the

estimates generated and the known effort to derive the MMRE and Pred(25) statistics.

The analogy results were obtained by using the facility that allows the best subset of features

to be found (see Section 4.2). Note the best subset of features is often different, dependent on

the number of analogies to be found. The associated MMRE and Pred(25) statistics represent

the predictive performance of each of the four analogy selection techniques.

Table 5.3 shows the results from stepwise regression and estimation by analogy in terms of
NRYM and Pred (25).

Prediction Method MMRE Pred(25)

Stepwise Regression 74% 25%

One Analogy 67% 33%

Two Analogies 66% 37%

Two Analogies 61% 41%

Three Analogies 62% 33%

Table 5.3 Regression vs Analogy for the Albrecht data set

As can be seen from table 5.3, estimation by analogy out performs stepwise regression in all

cases for both MMIZE and Pred(25). For this data set at least, the optimum number of

analogies appears to be two, when the first analogy is weighted double, which returns an

M RE of 61% and a Pred(25) of 41%. Note how similar the four estimation by analogy results

are (a 6% difference in NUVIRE and an 8% difference in Pred(25), between the best and worst

results), a pattern that will be repeated throughout this analysis.

The same procedure is followed for the remaining 7 data sets, with the overall results

presented in Tables 5.15 and 5.16.

5.3.2 The Desharnais data set

It is uncommon in the field of software project estimation to come across a data set as large as

that collected by Desharnais (1988) from a Canadian software house. At 77 projects, collected

over 3 different development environments, the data set is twice the size of the next largest

data set in this investigation. The data set is also relatively rich in features that can potentially
be used to estimate effort (for a full summary of the features see appendix A. 2).

AN EMPIRICAL INVESTIGATION INTO SOFTWARE EFFORT ESTIMATION BY ANALOGY 69

The Stepwise regression equation again rejected most of the features as not contributing

significantly to its initial model:

Effort = 150.816 + (16.454*adjFP)

with an adjusted RZ of 0.53.

(Eqn. 5.2)

Prediction Method MMRE Pred(25)

Stepwise Regression 66% 42%

One Analogy 37% 45%

Two Analogies 38% 37%

Two Analogies 36% 37%

Three Analogies 34% 49%

Table 5.4 Regression vs Analogy for the Desharnais data set

The strategy of searching for three analogies was found to be the most accurate for this data

set, predicting 49% of the projects within 25% of their actual effort and achieving an MMRE

nearly twice that of the stepwise regression model (Table 5.4). The three other analogy

approaches were also notably superior to stepwise regression in terms of MMRE but similar

in terms of Pred(25)

Recall from chapter two that algorithmic techniques such as stepwise regression prefer more

homogenous data and that provided the number of projects remains high enough for

statistical relationships to be found, they will generally be more accurate when data is

partitioned into related groups. In the case of the Desharnais data set, it is possible to partition

the data based upon the three different development environments of 44,23 and 10 projects

respectively, and doing so improves the accuracy of stepwise regression from the overall

figure of MMRE = 66% to 41%, 29% and 49% respectively. At the same time the best analogy

approach improves in two of the sets, and worsens in one, while still remaining superior to

stepwise regression.

AN EMPIRICAL INVESTIGATION INTO SOFTWARE EFFORT ESTIMATION BY ANALOGY 70

Data set Stepwise Regression Analogy

Desharnais - Dev Env 1 41% 37%

Desharnais - Dev Env 2 29% 29%

Deshamais - Dev Env 3 49% 26%

Table 5.5 MMRE results for the partitioned Desharnais data sets

Data set Stepwise Regression Analogy

Deshamais - Dev Env 1 45% 47%

Desharnais - Dev Env 2 48% 47%

Desharnais - Dev Env 3 50% 70%

Table 5.6 Pred(25) results for the partitioned Desharnais data sets

Partitioning also appears to have a positive effect on the Pred(25) values for stepwise

regression improving the figure from Pred(25) = 42% to 45%, 48% and 50%. The result for Dev

Env 2 is particularly interesting where the stepwise regression model performs marginally

better than estimation by analogy. Another interesting result is obtained by using estimation

by analogy on Dev Env 3. Although only 10 project cases are available, accuracy figures of

NR ORE = 26% and Pred(25) = 70% are returned (the best within this investigation and

soberingly, the only results close to the values Conte et al. (1986) considered should be

returned by a good effort prediction system) providing some insight into the question of the

minimum number of project cases needed to make estimation by analogy viable.

5.3.3 The Finnish data set

The Finnish data set, comprising 38 projects from a variety of different organisations, was

very rich in predictor features, having 29 in all. This provided a problem for the analogy

estimation approach as finding the best subset of 29 features on a Pentium 200 would take

approximately 20 years! However, performance figures for analogy were generated by

analysing smaller subsets of features. This meant that the optimal subset may not have been

found, however, by adopting informal search heuristics, it was possible to find subsets of
features that were considered to be close to the optimal subset and that produced accurate

results.

Using stepwise regression on the available continuous features (see appendix A3) resulted in

the following model, with an adjusted RZ of 0.39:

AN EMPIRICAL INVESTIGATION INTO SOFTWARE EFFORT ESTIMATION BY ANALOGY 71

Effort = 899.709+(121.975*ON) + (148.853*FN) (Eqn. 5.3)

Prediction Method]

_MMRE
Pred(25)

Stepwise Regression 114% 26%

One Analogy 48% 23%

Two Analogies 42% 44%

Two Analogies
(weight)

41% 39%

Three Analogies 52% 26%

Table 5.7 Regression vs Analogy for the Finnish data set

Although not necessarily able to find the best subset of all the features, table 5.7 shows that

analogy is still able to estimate effort almost 3 times more accurately than stepwise regression

when searching for two analogies, weighted and unweighted. This time, the most accurate

technique in terms of the Pred(25) statistic is the two analogies approach while choosing two

analogies weighted returns a marginally superior MMRE result.

5.3.4 The Hughes data set

The Hughes data set collected from a large size telecommunications company contains

information on 33 projects with 14 features (summarised in appendix A. 4) including

development effort.

The stepwise regression equation has a relatively high adjusted RZ of 0.80, and produces the

following model:

Effort = 626.87 + (2Q5.40*C5) + (559.36*C3) + (313.54*C8) + (-854.28*C4) + (55.66*C9)

+ (-26.91*C10) (Eqn. 5.4)

An interesting quirk of this model is that the amount of effort needed to complete a project is

increased by the experience of the block designer (C9). On the surface, this appears to be

another example of a counter intuitive model, however further investigation might reveal a

plausible reason for this such as, the more experience designers being given the more difficult

tasks.

AN EMPIRICAL INVESTIGATION INTO SOFTWARE EFFORT ESTIMATION BY ANALOGY 72

Prediction Method MMRE Pred(25)

Stepwise Regression 72% 42%

One Analogy 37% 51%

Two Analogies 40% 39%

Two Analogies (wg ce,) 40% 45%

Three Analogies 37% 39%

Table 5.8 Regression vs Analogy for the Hughes data set

However, as Table 5.8 shows, the regression model shows a poor level of accuracy, in terms of

NIIvIRE when compared with the best analogy technique which predicts effort on average to

within 37% of the actual figure. The picture is less clear cut for the Pred(25) measure although

the best analogy (One Analogy) method is still superior.

5.3.5 The Kemerer data set

The Kemerer data set contains two features (summarised in appendix A. 5) that can be

exploited by regression and analogy for the purposes of estimating effort, these are adjusted

Function Points and unadjusted Function Points. Even though there is a high level of

correlation (rs = 0.98) between the two variables it was decided to use both features with the

expectation that stepwise regression would eliminate the least useful one.

The regression equation generated was Effort = -121.57 + (0.34* FP) which has an adjusted RZ

of 0.55. Table 5.9 summaries the MMRE and Pred(25) values for regression and the best

analogy method

Prediction Method MMRE Pred(25)

Stepwise Regression 106% 13%

One Analogy 68% 26%

Two Analogies 62% 40%

Two Analogies 62% 26%

Three Analogies 64% 40%

Table 5.9 Regression vs Analogy for the Kemerer data set

The results in table 5.9 seem to follow the same pattern as those before it (i. e. analogy

significantly out-performing regression) with the strategy of taking the mean of the closest

two project's effort being the most fruitful approach this time. Note that this is the data set

AN EMPmICAL INVESTIGATION INTO SOFTWARE EFFORT ESTIMATION BY ANALOGY 73

with, at 15, the smallest number of projects. This does not, however, seem to pose a great

problem to the analogy technique which is able to predict effort within 25% of its actual figure

for 40% of projects.

5.3.6 The MERMAID data set

The MERMAID data set comprises 28 new and enhancement projects. The predictor features

available include unadjusted and adjusted Function Points counts and the fourteen General

System Characteristics that convert the former Function Point count into the latter. Using the
Function Point Counts with stepwise regression generates the following model:

Effort = 3060.183 + (15.626*RawFP)

AdjR2 = 0.20.

(Eqn. 5.6)

Prediction Method MMRE }

_Fred(25) Stepwise Regression 251% 14%

One Analogy 78% 21%

Two Analogies 95% 3%

Two Analogies 92% 3%

Three Analogies 117% 28%

Table 5.10 Regression vs Analogy for the MERMAID data set

The mermaid data throws up a number of interesting results. An interesting quirk of using

analogy on this data set was that ANGEL chose the Development Environment29 feature as the

sole best feature for all of the four analogy techniques. This of course meant that the first E

and N type projects were being selected as the source of analogies for each project estimate30
in the jack-knife procedure. This situation would not normally be expected to yield a good
MMRE, however, a combination of the fact that the MMRE measure favours under-estimates

and that the first N and E projects in the data set are the smallest in terms of effort, means that

the use of the Development Environment feature predicts with an MMRE of 69% but, perhaps

more revealingly, with a balanced MMRE31 of 658%. As a consequence, Development

29 A categorical indicator of project type , with three values: N- New project; E- Enhancement project; N/A - not applicable.
30The way ANGEL handles ties is primitive. If the Euclidean distance of two or more projects is equal, the first project
encountered will always be chosen as the closest analogy.
31 Recall that balanced MMRE unlike MMRE treats over and under-estimates equally.

AN EMPIRICAL INVESTIGATION INTO SOFTWARE EFFORT ESTIMATION BY ANALOGY 74

Environment is removed from the analysis by ANGEL and the results present a more realistic

picture.

From Table 5.10, the regression model, with an adjusted RZ of 0.20, a Pred(25%) of 14% and an

MMRE of 251%, does not seem to be able to model the relationships implicit in the data and

consequently is a very ineffectual prediction system. The analogy technique, while over three

times more accurate than stepwise regression on average, is also not very convincing with a
best MMIZE of 78%, the poorest result of all the data sets analysed.

MERMAID provides the second opportunity for partitioning of a data set into more

homogenous groups, based upon the two development environments containing 18 and 832

projects respectively.

Data set Stepwise Regression Analogy

MERMAID E 62% 53%

MERMAID N N/A 60%

Table 5.11 MMRE results for the partitioned MERMAID data sets

Data set Stepwise Regression Analogy

MERMAID E 27% 39%

MERMAID N N/A 25%

Table 5.12 Pred(25) results for the partitioned MERMAID data sets

In the case of the Mermaid E (enhancements) data set, both techniques improve with analogy

still the superior technique. However, in part due to the small size of the MERMAID N (new)

data set it was not possible to find statistically significant relationships between effort and any

of the predictor features which meant that no regression model could be built to compare

with the analogy results.

5.3.7 The Real-Time 1 data set

The Real-Timel data set is interesting due to nature of the features (summarised in appendix

A. 7) available at the time estimation is required. Not only is there no size related feature, but

also all three features in this data set (host machine, life-cycle, and document standard) are

32 Note that two of the projects cannot be placed in either group.

AN EMPIRICAL INVESTIGATION INTO SOFIIVARE EFFORT ESTIMATION BY ANALOGY 75

nominal and thus the building of a regression model is ruled out, since it would be comprised

only of dummy variables.

However, the use of analogy was not without its problems. When using ANGEL to analyse

the data, a similar situation to that encountered when using a nominal feature for the

MERMAID data set occurred. ANGEL in all four cases selected just one of the nominal
features, which inevitably led to the repeated selection of the same projects as the source of

analogy.

Late on in the analysis a solution to this problem was found with the data reanalysed with

each of the 3 features dis-aggregated so that each category value became a binary feature,

with a value of 1, indicating the presence of the feature and 0 absence. As an example, the host

machine feature was expanded into VAX, SUN and IBM-PC features and a project that was to

use a VAX as the host machine would record a1 for that feature and 0 for the SUN and
IBM_PC features. In all other ways the analysis method remained unchanged.

Prediction Method MMRE Pred(25)

Stepwise Regression N/A N/A

One Analogy 65% 28%

Two Analogies 59% 19%

Two Analogies (weighted) 62% 23%

Three Analogies 60% 14%

Table 5.13 Regression vs Analogy for the Real-Time] data set

The results in table 5.13 suggest that estimation by analogy is capable of producing acceptable

estimates in situations where only categorical data is available. The importance of this cannot

be overlooked, as. it, is often the case that the only type of data available to an estimator

(especially at the bidding stage of a contract) is categorical in nature. Also this type of data is

often easier to obtain and more likely to be free from errors. On the other hand any results

obtained from data sets comprised solely of categorical data should be treated with caution.

5.3.8 The Telecoms 1 data set

The Telecomsl data set is characterised by only one potential descriptor feature, the number

of files, which can be determined with reasonable accurately early on in the project life-cycle.

AN EMPIRICAL INVESTIGATION INTO SOFPWARE EFFORT ESTIMATION BY ANALOGY 76

The regression line that describes the linear relationship between effort and the number of

files is:

effort = 95.18 + (1.89*files) (Eqn. 5.7)

which has an adjusted RZ figure of 0.39 suggesting a considerable amount of scatter from the

regression line, not a good basis for prediction.

Prediction Method MMRE Pred(25)

Stepwise Regression 86% 44%

One Analogy 39% 44%

Two Analogies 51% 55%

Two Analogies
(WQ1 ý

46% 50%

Three Analogies 73% 44%

Table 5.14 Regression vs Analogy for the Telecomsl data set

Table 5.14 shows that analogy is again the superior approach, with the selection of just one

analogy the optimum technique in terms of MMRE and two analogies the optimum approach

in terms of Pred(25).

5.4 Summary of Results

Data set Analogy Stepwise Regression

Albrecht 61% 74%
Desharnais 34% 66%
Deshamais - Dev Env 1 37% 41%

Desharnais - Dev Env 2 29% 29%
Deshamais - Dev Env 3 26% 49%

Finnish 41% 114%
Hughes 37% 72%
Kemerer 62% 106%
Mermaid 78% 251%
Mermaid E projects 53% 62%
Mermaid N projects 60% N/A
Real-Timet 59% N/A
Telecomsl 39% 86%

Table 5.15 Summary of comparison between-analogy and stepwise regression using MMRE

Tables 5.15 and 5.16 summarise the results of predicting effort for 8 industrial data sets (plus 5

subsets) using estimation by analogy and stepwise regre§sion. Note, The MMRE and Pred(25)

AN EMPIRICAL INVESTIGATION INTO SOFTWARE EFFORT ESTIMATION BY ANALOGY 77

result are in each case taken from the analogy approach which obtained the best MMRE

figure. Although on the surface this appears to penalise the stepwise regression model, in

reality the user will wish to find the most accurate number of analogies before making an

estimate.

The most striking feature of both these tables is that the analogy technique equals or, more

commonly, out-performs the regression technique in all but 1 of the 11 data sets for which
both techniques could be applied. The one exception is the Desharnais-2 data set which shows
fractionally superior performance for regression based prediction when using the Pred(25)

indicator. This seemingly gives overwhelming evidence that the analogy technique is superior

to stepwise regression based algorithmic methods, at least for the data sets under

examination.

Data set Analogy Stepwise Regression

Albrecht 41% 25%
Deshamais 49% 42%
Desharnais - Dev Env 1 47% 45%
Deshamais - Dev Env 2 47% 48%
Deshamais - Dev Env 3 70% 50%
Finnish 39% 26%
Hughes 51% 42%
Kemerer 40% 40%
Mermaid 21% 14%
Mermaid E projects 39% 27%
Mermaid N projects 25% N/A
Real-Timel 19% N/A
Telecomsl 44% 44%

Table 5.16 Summary of comparison between analogy and stepwise regression using Pred(25)

To test the validity of. this claim, a one-tailed Wilcoxon signed pair test on the a) MMRE and

b) Pred(25) results was calculated.

The stated null hypothesis for (a) was:

H0: Estimation by analogy is not more accurate at predicting software development

effort than stepwise regression using the MMRE indicator

to be rejected in favour of the alternative hypothesis:

AN EA1PIRICAL INVESTIGATION INTO SOFTWARE EFFORT ESTIMATION BY ANALOGY 78

H,: Estimation by analogy is more accurate at predicting software development

effort than stepwise regression using the MMRE indicator.

While the stated null hypothesis for (b) was:

HD: Estimation by analogy is not more accurate at predicting software development

effort than stepwise regression using the Pred(25) indicator

to be rejected in favour of the alternative hypothesis:

H,: Estimation by analogy is more accurate at predicting software development

effort than stepwise regression using the Pred(25) indicator.

Note that a direction has been specified in both the alternative hypotheses, which represents a

belief that estimation by analogy is superior in terms of accuracy to regression analysis.

Wilcoxon's signed pair test considers information about both the sign of the differences and

the magnitude of the differences between pairs, in this case, the results obtained for analogy

and stepwise regression. The test based on the MMRE figures for the 11 pairs produced a

significant result where p= 0.001 thus the null hypothesis can be rejected at the 0.01 level of

confidence and the alternative hypothesis that 'estimation by analogy is a superior to stepwise

regression for the MMRE indicator' is accepted. Similarly, the test based on the Pred(25)

figures for the 11 pairs produced a significant result where p= 0.0054 thus the second null

hypothesis can also be rejected at the 0.01 level of confidence and the alternative hypothesis

that 'estimation by analogy is a superior to stepwise regression for the Pred(25) indicator' is

also accepted.

Since the original submission of this thesis a more appropriate test33 of the significance of

results from ANGEL has been devised by researchers (Stensrud and Myrtveit 1998) looking at

the added value analogy can provide to expert judgement. Managers at Anderson Consulting

were asked to estimates a series of software projects three time with first of all no

supplementary data, second, access to historical data and third, access to historical data and

ANGEL. The overall MMRE figures demonstrated that ANGEL did indeed improve on the

estimates based upon historical data alone. However, to test the significance of this result

33 The Wilcoxon signed rank test is sometimes seen as being too optimistic in that very few positive results are required for the
null hypothesis to be rejected.

AN EMPIRICAL INVESTIGATION INTO SOFTWARE EFFORT ESTIMATION BY ANALOGY 79

Stensrud and Myrtveit used a t-test on the mean difference between MRE pairs. The test

confirmed at the 10% confidence level that ANGEL did indeed improve estimates over those

based upon historical data alone.

5.5 Discussion

From the empirical analysis it can be seen that, at least for the sample of data sets analysed,

estimation by analogy is superior in terms of results, to estimation based on stepwise

regression. Although it must be remembered that the analogy technique optimises on MMRE,

the results seen in terms of Pred(25) also show analogy to be superior, if to a lesser extent.

Further, from the results, estimation by analogy would seem to have a number of previously

unstated advantages over algorithmic prediction systems. First, estimation by analogy

succeeds in creating estimates on data where no statistical relationships have been found (e. g.

the MERMAID N data set). Second, estimation by analogy remains viable for data based

solely on categorical features (e. g. the Real-Timel data set). Third, estimation by analogy

remains accurate for small data sets (e. g. the Kemerer (15 projects), MERMAID N (8 projects)

and Telecomsl (18 projects) data sets). And fourth, estimation by analogy remains accurate

where the number of features is limited (e. g. the telecomsl data set).

Another interesting point is that, for all of the data sets under consideration, the function to

find the best subset of features improved, in every case, upon the result of using all the

features together. This demonstrates the usefulness of the process of removing noisy features.

This analysis has also highlighted a couple of flaws with the analogy technique. First, the use

of categorical attributes can cause a problem under certain conditions (e. g. with the

MERMAID and Telecomsl data sets) where the flawed nature of the MMRE measure is

highlighted. As a result, a new strategy for dealing with wholly categorical data sets was

developed. Even so,. the fact remains that estimates from data sets relying wholly on

categorical features should be treated with caution. Second, the use of an exhaustive search to

find the best subset of features is computationally expensive and impossible for one of the

data sets under study.

This analysis also permits an empirical evaluation of a number of questions relating to the

most effective use of estimation by analogy:

" What is the optimum number of analogies for ANGEL to search for?

Table 5.17 shows the optimum number of analogies to use in ANGEL for each data set.

'One Analogy' is the most commonly accurate estimation method, being selected for 5

AN EMPIRICAL INVESTIGATION INTO SOFTWARE EFFORT ESTIMATION BY ANALOGY 80

out of the 13 data sets. 'Two Analogies' is the most accurate 4 times, and both 'Three

Analogies' and 'Two Analogies Weighted' are most accurate twice respectively. One of
the assumptions made early on in the project was that the selection of just one analogy

would be more suitable on small data sets while a larger data set would favour the

selection of more analogies34. This however, has not been borne out in the results, with
for example, the two smallest data sets, MERMAID-N and Desharnais-3 finding

respectively two and three analogies to be the optimum number to search for. Even

though the selection of 'One Analogy' or Two Analogies' seem to be superior to both

'Three Analogies' and 'Two Analogies weighted', it must be remembered that for many

of the data sets the four different method returned remarkably similar accuracy levels.

Data Set No. of Project Cases Optimum No. of Analogies

Albrecht 24 Two (weighted)

Deshamais 77 Three

Desharnais - Dev Env 1 42 One

Desharnais - Dev Env 2 23 Two

Desharnais - Dev Env 3 10 Three

Finnish 38 Two (weighted)

Hughes 33 One

Kemerer 15 Two

Mermaid 28 One

Mermaid E projects 18 One

Mermaid N projects 8 Two

Real-Timel 21 Two

Telecomsl 18 One

Table 5.17 Optimum no. of analogies for each data set

" Does accuracy improve with more homogenous data?

The answer to this question appears to be yes, based upon the limited evidence

provided by the Deshamais and MERMAID data sets where, in both cases, partitioning

of the data set led to more accurate estimates. However, the scale of improvement was

relatively poor when compared to that seen in the regression models. This is possibly

34 The theory behind this assumption was that, where there are a great number of projects, the chances are that for a given new
project, there will be more projects similar (clustered close to it) that can be used as analogies than for a data set with few
projects.

AN EMPIRICAL INVESTIGATION INTO SOFTWARE EFFORT ESTIMATION BY ANALOGY 81

because analogy bases an estimate for a project on the cluster of projects that are most

similar i. e. to a certain extent it automatically partitions the data.

" What is the minimum number of cases that can be used as source analogies?
The smallest number of cases successfully analysed by ANGEL is 8 from the

MERMAID-N data set. However, the criteria by which the cut off point in the

minimum number of projects to be used is judged, remains unclear. Chapter 6 will

analyse this question in more detail.

" Does accuracy improve on larger data sets?
Figures 5.2 and 5.3 show the accuracy of each data set (in terms of MMIZE and Pred(25)

respectively) plotted against data set size. For both accuracy indicators it is very
difficult to discern any consistent pattern which can, in part, be put down to the small

sample of data. In terms of MvIRE, the best figure results from the second smallest data

set (10 projects), however on the whole, the smaller data sets (less than 30 projects) tend

to return the poorest results (6 out of 9 over 50% MMRE). The MMRE values for the 4

larger data sets (greater than 30 projects) are more consistent around the 40% mark.

eon

70%

60%

50%-

40%

30%

20%

10'%

0%
0 10 20 30 40 50 60 70 80 90

No. of Projects

Figure 5.2: MMRE by no. of cases

AN EMPIRICAL INVESTIGATION INTO SOFTWARE EFFORT ESTIMATION BY ANALOGY 82

The results in terms of Pred(25) are very similar to those seen for MMRE. Again the

best result is returned by the second smallest data set however, it is the smaller data

sets that are again responsible for the worst results.

80%

70%

60%

50%-

40%-

30%

20%-

10%

0%
0 10 20 30 40 50 60 70 80 90

No. of Projects

Figure 5.3 : Fred(25) by no. of cases

Perhaps the only conclusion that can be drawn on this question is that, the larger the data set,

the more consistent the results are likely to be. This question will be looked at again from a
different view point in the next chapter, where individual data sets will be examined to see if

accuracy improves as data points are added.

5.6 Summary

In summary, after analysing over 250 software projects, the hypothesis that estimation by

analogy is a superior technique for predicting software development effort than a regression
based analysis approach has been accepted. This analysis has allowed us to answer (within

the limitation mentioned previously) questions about the analogy approach, such as, what is

the optimum number of analogies for ANGEL to search for? and does accuracy improve on larger data

sets?. The chapter has also highlighted circumstances under which analogy is a more

AN EMPIRICAL INVESTIGATION INTO SOFTWARE EFFORT ESTIMATION BY ANALOGY 83

appropriate technique than the use of algorithmic models, i. e. where the data set is too small

for any statistical relationships to be found; where nominal data is prevalent and where the

data is heterogeneous.

Chapter 6

An Investigation into the Sensitivity of Estimation by

Analogy

6.0 Introduction

The previous chapter analysed the overall accuracy of the estimation by analogy prediction

system on static sets of historical project data. However, whilst extremely useful as a general

indicator of predictive accuracy, this kind of analysis only provides a snapshot of the accuracy

on a data set at a specific point in time. In reality, a prediction system will evolve over time.

New projects will be estimated and when completed, their data will be used to enhance the

prediction system. To judge a prediction system based on its accuracy for data sets that can

contain many projects, (e. g. the Desharnais data set), is to neglect the fact that data sets are

continually growing over time and that the size of the data set is likely to have a strong effect

on accuracy and stability of estimates.

The use of sensitivity tests allows a more focused examination of the performance and

behaviour of a prediction system. By devising a test that simulates the dynamic growth of a

data set over time, questions, such as how many data points are needed for estimation by

analogy to be viable and how vulnerable is its accuracy to the addition of a single outlying

project, can be answered.

This chapter will describe an analysis that was devised to investigate the dynamic behaviour

of the analogy technique. The results from 3 runs of the test on 4 data sets are presented in

section 6.3 and discussed in section 6.4 and 6.5. Note that the full complement of 8 data sets

was not used, due to the time consuming nature of this style of analysis.

6.1 Questions to be Answered

The sensitivity analysis was designed to answer the following questions:

AN EMPIRICAL INVESTIGATION INTO SOFTWARE EFFORT ESTIMATION BY ANALOGY 85

 Does accuracy improve as the number of project cases increases?

 What is the least number of project cases needed before estimation by

analogy becomes stable?

 Is estimation by analogy vulnerable to the addition of outlying35 data

points?

 Is there a recognisable point at which estimation by analogy becomes

stable?

The answers to these questions will inevitably be found in the way accuracy changes as data

points are fed into the prediction system.

6.2 Design of the Sensitivity Analysis

The analysis procedure involved randomly numbering the projects from 1 to n (where n is the

number of projects in the data set). Projects were then added to an empty data set one at a

time in their random number order. Thus each data set grew until all of the projects had been

added. For each partial data set (starting from two projects) the 'best set of features' function

was employed searching for two analogies (unweighted) and the mean absolute prediction

error (MMRE) associated with that subset was used as the measure of accuracy thus n-2

accuracy measures were taken. This procedure was repeated three times for each data set

under study so as to guard against freak results arising from the randomising procedure.

As was mentioned earlier, constraints on time meant that only four of the data sets could be

analysed. The Albrecht and Kemerer data sets were selected as examples for which a

comparatively low level of accuracy was achieved. In contrast the Hughes and Telecomsl data

sets showed the highest levels of accuracy.

35 Outlying data points for ANGEL are similar but not identical to outlying data points for algorithmic models. An outlying
data point in an analogy system is a point for which there are no suitable analogies identifiable in the case-base. Unlike for
algorithmic prediction systems, it only takes the inclusion of one similar outlying project (assuming only one analogy is being
searched for) to the case-base to remedy the problem. However, unlike algorithmic systems, analogy is unable to interpolate or
extrapolate to form estimates and thus any point sufficiently outside of its current knowledge will be an outlying data point.

AN EMPMICAL INVESTIGATION INTO SOFTWARE EFFORT ESTIMATION BY ANALOGY 86

6.3 Sensitivity Analysis Results

Figures 6.1 to 6.4 show the accuracy of each of the four data sets over time

200 _..................................... _.......

180

160 1'
\ Al

140

%1

-----A2

120
-------- A3

m

R
100 \

E\
`ý

\/_, 60

40 1

20

0" rII7I -iýT-Tý^fý.. I
3456789 10 11 12 13 14 15 16 17 18 1

No. of P'o}o. 1s

Figure 6.1 : Estimation accuracy over time (Albrecht data set)

Figure 6.1. Shows the behaviour over time of the Albrecht data set. The most striking feature

of this analysis is the dissimilarity of the three lines. Al, after a period of increasing accuracy

up to the addition of the ninth project, experiences a sudden 100% reduction in accuracy when

the tenth project is added. However, after the tenth project, the trend is again a steady

increase in accuracy. A2 reaches a high level of accuracy early on (after the fifth project) and

maintains an MMRE around 40% up until the sixteenth project is added. The addition of the

sixteenth project causes the accuracy level to suddenly decrease to approximately 80% in a

way similar, to that seen in Al. From the seventeenth project onwards, accuracy is again

consistent between 60% and 70% MMRE. The path of A3 is less turbulent than its

predecessors. Starting off with a very poor level of accuracy (the MIvIRE being well over

200%) until the addition of the ninth project, A3 slowly improves and reaches a consistent

level, at approximately 65% MMRE, after 17 project have been added.

AN EN1puucAL INVESTIGATION INTO $OFrWARE EFFORT ESTIMATION BY ANALOGY 87

200

180

160 K1
K2

140 ------ K3

! 20

M
M 100 "_..
R
E

60

40

20

0
3466769 10 11 12 13 14 15

No. of Projects

Figure 6.2 : Estimation accuracy over time (Kemerer data set)

The dynamic behaviour of the Kemerer data set is shown in Figure 6.2. Two of the random

series (K1 and K2) show very consistent behaviour from the addition of the fifth project

onwards with both contained within the boundaries of 50% and 70% MMRE. Random series
K3 however, is far less consistent, moving from an initial accuracy peak of 30% to a trough of

over 100% MMRE after the seventh project. After this point however, accuracy increases until

all the projects have been added.

200

180

160

140

% 120
M
M 100
R
E 80

60

40

20

ý:

ý`1ý1

H1

--- H2

-----H3

0
3456789 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32

No. of Projects

Figure 6.3 : Estimation accuracy over time (Hughes data set)

AN EMPIRICAL INVESTIGATION INTO SOFTWARE EFFORT ES I11ATION BY ANALOGY 88

Figure 6.3. Shows the behaviour over time of the Hughes data set. In contrast to Figure 6.1, the

most striking feature of the three random series is their similarity and their consistent level of

accuracy after fifteen projects have been added. The three lines begin to converge after the

seventh project, with two (H1 and H3) of the three experiencing large reductions in accuracy

(similar to those seen in Al and A3) previous to that point.

350

300

250

200

m 150

100

50

0

:

:

i, ".. - Ii

Ti

---- T2

-----T3

/-
3456789 10 11 12 13 14 15 16 17 18

No. of Projects

Figure 6.4: Estimation accuracy over time (Telecoms] data set)

The three random series in Figure 6.4 exhibit very contrasting behaviour. T1 shows the most

volatile pattern with a peak of approximately 30% MMRE, and a trough of approximately

140% MARE. T2 is the most stable of the three series, after a little variability before 7 projects,

the level of accuracy remains markedly constant around 50%. T3 is generally stable at just

below 50% NIMRE but experiences two major 'blips' at 5 and 11-12 projects.

6.4 Discussion of Results

Overall, Figures 6.1,6.2,6.3 and 6.4 show that there is a tendency for the MMRE level to

improve as the size of the data set grows. Exceptions to this can be seen in both the Albrecht

and Telecomsl analysis and appear to be caused, in the main, by the addition of outlying data

points, which will be discussed later. For many of the random series, there is a point at which

AN EMPIRICAL INVESTIGATION INTO SOFTWARE EFFORT ESTIMATION BY ANALOGY 89

the level of accuracy begins to stabilise, which indicates that estimation by analogy can be a
high risk technique at below this number of projects.

After early fluctuation, the Hughes data set exhibits little improvement in accuracy levels

beyond 15 projects. This is a trend also evident in the other three data sets at approximately
this point, although, with the exception of the Albrecht data set, they really contain too few

data points to provide compelling evidence. This suggests that data set size is not the most
important factor determining accuracy, and indeed that the approximate accuracy of the

analogy prediction system is determined early (say after 20 projects have been added) and is

then relatively robust (to the introduction of outlying data points) from that point onwards.

An interesting feature of Figure 6.1 is the sharp rise in the MMRE values that occur after 10

projects have been added for random sequence Al and 16 have been added for random

sequence A2. Further investigation reveals that both of these anomalies are linked to the

introduction of the same project. The project is third in sequence A3, when predictions are

still very poor and thus doesn't show so strongly. A similar pattern occurs in Figure 6.4. Sharp

rises are seen in Ti and T3 at the stage where 9 and 5 projects have been added respectively.

These rises correspond to the addition of the same project: number 16. Within the Telecomsl

data set, projects 16,17 and 18 are different in nature to the remaining 15 projects and

required relatively little effort to complete. As a result when the first one of these three

projects is added there are no analogous projects in the case-base and the estimate made for

this project is wildly inaccurate. The reason for the dramatic recovery seen in the MMRE

figure for T3 is the addition of project 17, which is very similar to project 16. Note, the same

pattern is not seen in T2 because projects 16 and 18 are introduced from the start. All this

suggests that the results from estimating by analogy, like regression, can be influenced by

outlying projects. However, Al and A2 demonstrate that the affect of an outlying project is

ameliorated as the size of the data set increases.

6.5 Questions Revisited

In this section the questions asked in section 6.2 will be revisited in light of the tests carried

out on the four data sets.

Does accuracy improve as the number of project cases increases?

The Hughes data set gives an almost perfect example of a curve of diminishing accuracy
improvement over time. The Albrecht data set also appears to be characterised by a general

increase in accuracy with size, which is only spoiled by the introduction of an outlying

AN EMPIRICAL INVESTIGATION INTO SOFTWARE EFFORT ESTIMATION BY ANALOGY 90

project. Unfortunately, the other two data sets give no support this theory. When the

individual series are combined into an average MMRE over time (Figure 6.5) the trend shown

is for the Albrecht and Hughes data sets to improve, the Kernerer data set to remain

remarkably constant throughout and the Telecomsl data set to improve gradually in between

large jumps of inaccuracy.

600

500

400
w

300

200

100

0

Albrecht

- --- Hughes
Telecommsl

----- Kemerer

_': __---- ---------

CO U) h Q) r CO U) F- Qi r CO Il) N O)
TTrrrNNNNN

No. of Projects

Figure 6.5: Average Estimation Accuracy Over Time (All Data Sets)

What is the least number of project cases needed before estimation by analogy becomes

stable?

The smallest data set analysed in chapter 5, MERMAID-N, contained 8 projects. However, the

results of the sensitivity analysis highlight the fact that results from any data set containing

less than 10 projects are likely to be very volatile. Thus caution must be exercised when

interpreting the results from data sets containing less than this amount of projects.

Is estimation by analogy vulnerable to the addition of outlying data points?

The tests on the Albrecht data set highlight this point clearly and indeed the removal of the

offending project, number 23, has a dramatic effect on the accuracy of estimation by analogy,

reducing the original MMRE of 62% down to 39% and increasing the Pred(25) figure from

40% up to 47%. One good point to be drawn from Figure 6.1 is that the effect of an outlying

AN EMPIRICAL INVESTIGATION INTO SOFTWARE EFFORT ESTIMATION BY ANALOGY 91

data point seems to be ameliorated as the size of the case base grows. The Telecoms 1 data set

also appears to provide strong evidence on the effects of outlying data points. In this case

though, the addition of just one project, similar to the outlier, removes the problem. This gives

support to the idea that the analogy approach is more adaptable to changes in the estimation

environment.

Is there a recognisable point at which estimation by analogy becomes stable?

This has implications for the amount of confidence that can be placed on estimates. Initial

observations suggest (e. g. H1-3, T2, T3, K2, K3, and A1-3) that it is possible to discern a point

at which the MMRE level stabilises and is not subject to wild fluctuations. This suggests that it

might be possible identify a point at which the use of estimation by analogy on a given set of
data enters a 'stable mode' in which new estimates can be treated with less suspicion. The

Hughes data set certainly points to this being a possibility with the MMRE level stabilising

after 15 projects and then remaining remarkably constant over the introduction of the

remaining 17 projects. Unfortunately, the other three data sets have too few data points for

any compelling conclusions to be drawn on this question.

6.6 Summary

The use of sensitivity tests on four of the project data sets has enabled the dynamic study of

estimation by analogy under the more realistic circumstances of data points being added over

time. The tests have thrown up a number of interesting characteristics of the approach, such

as the fact that accuracy does not always increase with the number of projects and that it can

be affected greatly by the introduction of outlying projects. One of the data sets showed

evidence of a heightened sensitivity to the introduction of a single outlying project that had a

dramatic effect on accuracy throughout the remaining test. The introduction of outlying

projects is potentially the most dangerous pitfall of this technique, where the selection of one

project as a basis for estimation is common. On the positive side however, the same data set

showed that the effect of a outlier is diminished as the number of projects increases. Another

important finding is the confirmation of the fact that, due to wild fluctuations in accuracy,

estimation by analogy should be considered unsuitable where less than approximately ten

projects are available.

In summary, estimation by analogy is a stable and robust estimation approach given an

appropriate (typically 10 plus projects) amount of data. The sensitivity test described above

AN EMPIRICAL INVESTIGATION INTO SOFTWARE EFFORT ESMIATION BY ANALOGY 92

has proved its value in revealing previously unseen characteristics of each data set when used
by the analogy approach.

Chapter 7

Conclusions

7.0 Introduction

This chapter will bring together all of the research findings of the previous six chapters and

analyse both the importance of the work and its limitations. First of all the research will be

briefly summarised, before the objectives stated at the start of the thesis are revisited in order

that an assessment can be made of the degree to which they have been achieved. The next

section will then focus on the contribution this thesis makes to empirical software engineering
discussing the important research findings that have been identified. Thereafter, limitations of

the research will also be discussed. The final section will look at where work in this area might
be targeted in the future.

7.1 Summary of Work Carried Out

A study of the literature on software effort estimation was made covering many of the main

research themes that have shaped present day practises in effort estimation. From the study it

was apparent that, by far the greatest amount of research effort has been expended on the

development and validation of algorithmic models such as Boehm's COCOMO (Boehm 1981),

Albrecht's Function Points (Albrecht 1979; Albrecht and Gaffney 1983) and Putnam's SLIM

(Putnam 1978), and that, in the opinion of some (e. g. (Kitchenham 1996)), this focus has been

to the detriment of other potential estimation techniques. More recently, alternative

estimation techniques have been proposed and explored by software effort researchers such

as neural networks, case-based reasoning systems and rule induction systems, however, very

little evidence (mainly anecdotal) exists to the efficacy of any of these approaches.

Having identified a need for research in the area of non-algorithmic approaches to effort

estimation, this research project has focused upon a novel approach to effort estimation

(called estimation by analogy) that involves the direct reuse of solutions to closely matching

previous projects as a basis for estimates of new projects.

AN EMPIRICAL INVESTIGATION INTO SOFTWARE EFFORT ESTIMATION BY ANALAGY 94

Before any practical use of the approach could be made, it was necessary to build a software

tool that could store projects allowing for varying numbers of their features and calculate the

relative similarity of projects so that the closest projects (to a new project) in terms of
Euclidean distance could be used in the generation of an estimate for that new project. The

use of software project data from eight different software engineering environments enabled

an empirical validation of the approach in comparison to the use of an algorithmic method -

stepwise regression - which showed (table 5.15 & 5.16) that, in almost all cases under study

(comprising over 250 projects), the new approach was superior to the algorithmic model in

terms of the MMRE and Pred(25) performance indicators.

The analogy estimation technique was also examined using a novel pseudo time-series study

that allowed the dynamic behaviour of the approach to be observed as data sets were grown

over time. This allowed the approach to be assessed in a more realistic environment where

projects are constantly being added to a data set.

7.2 Research Objectives Revisited

The three objectives stated at the start of this thesis will now be reiterated so that they can be

assessed in light of the work presented in the previous chapters.

i) To investigate the viability of analogical reasoning for the purpose of estimating the required effort to

complete software projects.

An objective of "investigating the viability" of a new approach is perhaps a little fuzzy and

needs to be brought into dearer focus. However, at the outset of the project the approach was
little more than an idea thus, for it to be realised, many (and at that stage some unknown)
factors would have to be investigated before estimation by analogy could be recognised as a

viable technique. These factors include: its theoretical basis, ease of automation, ease of use

and widespread applicability.

Theoretical basis

Many of the ideas used in the development of the ANGEL approach to effort estimation,

particularly the similarity measure, were drawn from mature well grounded theory that has

been examined and applied within the case-based reasoning community for the last 15 years.

AN Eb1PIRICAL INVESTIGATION INTo SOFTWARE EFFORT ESTIMATION BY ANALOGY 95

Ease of Automation

One of the first and most important questions was whether estimation by analogy could be

automated. The importance of this is discussed below, but suffice to say that the time scales

involved for the multiple proximity calculations make it impractical for anything other than a

computer. Although time consuming, the algorithms that drive estimation by analogy are

repetitive in nature and thus were easy to implement.

Ease of use

The process of estimation by analogy can draw many parallels with the way humans

informally use analogies from the past to solve problems in the present. Thus the concepts

behind estimation by analogy are easy to understand. The major difficulty with this or any

estimation approach comes from the peripheral problems, such as data collection. However,

data collection is facilitated by the flexibility of ANGEL's templates which do not dictate the

mandatory collection of any single feature and which include the ability to use categorical

features, which are relatively easy to collect.

Widespread applicability

By permitting the user to process categorical values, the estimation by analogy approach

becomes available earlier in the software project life-cycle than algorithmic techniques. This is

important to companies that are forced to make early estimates based upon sketchy

requirements with a lack of quantitative data. Again, because ANGEL does not predetermine

what features must be collected, unlike for example, COCOMO, the approach is less

restrictive.

ii) To develop an automated tool that supports the functionality required to generate estimates by

analogical reasoning.

In all walks of life a great number of new ideas get stifled before they are fully realised

because there are no practical means to implement them. This also holds true for the software

engineering community and therefore to fully investigate the potential of the analogy

estimation technique it was important to develop a tool that could automate the complex

proximity calculations needed to make analogy estimation effective. On top of this, the needs

of the software manager, the most likely user of such a tool, are equally important in the

acceptance of a new technique. For the majority of managers making software estimates

involves spending valuable time away from the practical implementation issues of a project.

Therefore to have any chance of acceptance the analogy approach must have a short learning

curve and be able to produce rapid results.

AN EMPIIUcAL INVESTIGATION INTO SovrwARE EFFORT ESTIMATION BY ANALAGY 96

This has been achieved in the development of the ANGEL software tool. ANGEL allows a

user not only to define project environments and store project data, but also to make

predictions for new projects based upon that data. The tool is not constrained to the collection

of any project characteristic or data type, which makes it practical within widely different

development environments. This also provides the possibility that it can be used for

predicting other characteristics of software (such as project duration or fault density) or
indeed potentially, within many other areas where estimation is a problem. The tool was
developed with a conventional 'windows' style interface to make it easy to adopt and use.

The latest version of ANGEL (2.0). has been demonstrated informally a number of times and
its simplicity and ease of use have been widely commended. It is also available in a scaled-
down version on the internet and is being used in a number of software companies such as
British Telecom. The concepts and algorithms behind ANGEL have also been incorporated

into a software quality toolset known as SQUID (Kitchenham, Linkman et al. 1997), which

employs analogical reasoning to evaluate the feasibility of and predict values for software

quality requirements.

iii) To validate the analogical reasoning technique on data taken from industrial environments.

Validation of a new technique is essential before any legitimate claims can be made about its

ability to estimate effort. Validation can take many forms, such as its ability to resist outliers

or its ability to generalise when presented with new situations, but this project concentrated
first, and foremost, on the accuracy of the approach. A widely recognised algorithmic

approach - stepwise regression - was used as the benchmark against which it was judged.

The accuracy experiments were carried out on eight data sets comprising 254 projects, all from

the software industry. The relative accuracy of each approach was measured in terms of
MMRE and Pred(25) and the outcome was that in all but one case, the analogy approach

matched or outperformed the stepwise regression approach. As a result, the alternative
hypothesis, that estimation by analogy is a more accurate estimator of software project effort

than stepwise regression, was accepted, using wilcoxon signed pairs at p=0.001 for the

MMRE performance indicator and p=0.0054 for the Pred(25) indicator.

Many other aspects of the analogy approach were also studied in an analysis of the

approach's sensitivity to the addition of new data points. This study provided valuable
insights into the dynamic behaviour of estimation by analogy such as its ability to resist

outliers, the number of data points needed before it becomes a viable technique and the effect

of data set size on the accuracy of the approach. The study showed that the analogy approach

AN EMPIRICAL INVESTIGATION INTO SOFRVARE EFFORT ESTIMATION BY ANALOGY 97

is sensitive to outlying projects, but that some projects that might be classed as outliers for a

regression model may not be regarded as such by the analogy approach and visa versa. In

terms of the number of data points needed before analogy can be used sensibly used, 8 was

the lowest number of projects presented to ANGEL which returned an MMRE of 53% and a

Pred(25) of 39%. However, the evidence from the sensitivity analysis indicates that the use of

any less than 10 projects is risky. The extent to which data set size affects accuracy remains
hazy, although the sensitivity tests did give some indication that accuracy becomes more

stable as the data set grows.

7.3 Synopsis of Research Findings

The major research findings of this project have been that software effort estimation by

analogy can be used as a viable alternative or complement to present estimation practices and

that, at least for the eight data set studied, the approach is superior in accuracy to regression

based models. Other important research findings include:

0 The observed accuracy of a prediction system is very dependent on the performance indicator used.

While the analogy approach was judged to be greatly superior to the regression approach

in terms of Mv1RE, the Pred(25) results, while still supporting the superiority of analogy,

were less convincing. This confirms the findings of a study by Schofield (1997) who used

three different estimation techniques to estimate effort for the same data set and

measured the results using four different performance indicators. He found that each of

the three techniques were reported as most accurate with at least one of the indicators.

" The application of weightings to increase the effect of chosen features within the proximity

calculations does not appear to have any significant effect on results. One explanation of this

could be that the use of the best attribute subset function allows ANGEL to find those

features that have the most influence on effort and therefore apply a natural bias or

weighting to them. For example, if a data set contained a number of complexity related

measures amongst other features, ANGEL might decide that complexity has an important

influence on effort and focus upon those features discarding other less important features.

" Searching for the best attribute subset has a significant impact on the accuracy of the analogy

approach. For each of the data sets under study, with the exception of Telecomsl, accuracy

in terms of MMRE and Pred(25), can be dramatically improved by looking for the subset

of variables that best predicts effort. This is an important finding in that it not only allows

AN EMPIRICAL INVESTIGATION INTO SOFTWARE EFFORT ESTIMATION BY ANALOGY 98

us to calibrate the analogy model, but it also means that expert judgement is not

necessarily required to pare down the feature list.

" Analogy can succeed even where no statistical relationships are present. Recall that the

MERMAID-N data set displayed no statistical relationships between the independent

features and effort. This however, was not a problem for analogy as it does not look for

statistical relationships and as a result was able to predict effect, in less than propitious

circumstances, with an MMIZE of 60% and Pred(25) of 25%.

" Analogy can be used throughout the project life-cycle. The value of a effort estimate is

inversely proportionate to point, in the project lifecycle, that it is generated.
Unfortunately, the same holds true for the difficulty in developing an estimate. This is a

major problem for software estimators because the lack of collectable quantitative data

before the requirement specification stage means that traditional algorithmic estimates

must be made using estimated input parameters. The analogy approach on the other hand

is able to generate estimates by using qualitative (or categorical) data and is therefore

available throughout the project life-cycle.

" Analogy, like algorithmic models, is sensitive to the introduction of outliers. An analysis of the

sensitivity of the analogy approach has revealed that, in common with algorithmic

models, it is sensitive to the introduction of outliers. Similarly with algorithmic models,

the more data points available, the less effect the outlier will have. Conversely, unlike

algorithmic models, assuming only one analogy is being searched for, the effect of an

outlier can be nullified with the addition of just one similar data point. Where more than

one analogy is being sought, obviously it takes a like amount of similar projects to totally

nullify the outlier.

" Accuracy using analogy improves with data set homogeneity. Tests on both the Desharnais and

the MERMAID data set confirm the assumption that creating more homogeneous data

sets can increase accuracy. However, the observed accuracy increases were relatively

minor and inferior to those observed for the stepwise regression models.

" Analogy should be considered as complementary rather than alternative approach. It was never

the intention of this work to find a new estimation technique that would replace existing

techniques. Instead it is believed that benefit can be gained by the application of more

than one estimation technique in a complementary fashion. In this way estimates can be

triangulated, with conflicting estimates pointing to a possible risk and the need for more

data, and converging estimates providing a level of confidence.

AN EMPIRICAL INVESTIGATION INTO SOFTWARE EFFORT ESTIMATION BY ANALOGY 99

7.4 Contribution of this Thesis

This work has made the following contributions to the field of software effort estimation:

i) A new approach to effort estimation to the extent that it is ready to be deployed

within a software organisation.

ii) A better understanding of the relative accuracy of the estimation by analogy

technique in relation to an algorithmic model developed by linear regression.

iii) A tool that facilitates estimation by analogy. The tool is freely available on the internet

and is being used by researchers examining software effort data sets (e. g. (Niessink

and Van Vliet 1997; Stensrud and Myrtveit 1998)).

iv) A new way of studying the dynamic behaviour of project data sets by artificially

introducing data points one at a time and estimating each project from each partial
data set.

7.5 Limitations of Work

Some elements of the work presented in this thesis were theoretical in nature and many of the

techniques have not been previously applied to software project data. As a result it is

important to recognise the limitations of the work reported. The identified limitations are

divided between the ANGEL approach, the software tool and the analysis procedure.

7.5.1 Limitations of Approach

"3 of the 8 data sets analysed in chapter 5 contained features measured on the ordinal scale

(such as Project Manager's Experience - Appendix A2). The ANGEL approach permits the

user to define such variables as being on the interval scale which is clearly in breach of

measurement theory. In defence of this approach however, it does improve the accuracy

of estimation by analogy (in some cases considerably) for the data sets that contain such

features. This less-rigorous approach is defended by Briand et al. (1996) and Stevens

(1946), who advocate a more pragmatic to the application of measurement theory.

AN EMPIRICAL INVESTIGATION INTO SOFTWARE EFFORT ESTIMATION BY ANALOGY 100

" MMRE is possibly the most widely used and reported performance indicator and for that

reason was chosen as the main measure of accuracy in the ANGEL approach.
Unfortunately, the measure is flawed being non-symmetrical and tending to favour

systems that underestimate. Due to the fact that the ANGEL approach optimises on
M RE it therefore follows that predictions are more likely to be under estimates.

" There is a need for a strategy to handle the situation where ties are encountered. It is

inevitable, especially when there is a significant use of categorical features, that there will

occasionally be a situation when two or more projects are identical in terms of their

similarity to the target project. This is not a problem where the number of ties is equal too,

or less than, the number of analogies sought36. If the opposite is true however, then the

procedure at present is that the first tied analogies encountered will be used as the

sources analogies. This is clearly unsatisfactory, as it is quite possible that the selection of

those analogies that have been overlooked would give conflicting figures. In truth, the

situation where a number of ties are found, probably points to the fact that the

combination of features being used is unsuitable for finding distinct analogies.

7.5.2 Tool Limitations

" The function in ANGEL to search for the best subset of features has proved to be a very

effective mechanism for improving estimate accuracy. Unfortunately, the need to evaluate

every combination of features against each other, to facilitate this improvement in

accuracy, means that there is a limit to the number of features that can realistically be

processed37.

" Although the ANGEL tool is being used or evaluated by a number of major software

developers, it must be remembered that it is only a prototype system that was developed

with purely research objectives in mind. As a consequence, the tool has not been

systematically tested. Following on from this point, the tool was also not developed with

the principles of sound ergonomic design high on the priority list.

36 Assuming that no weightings are being placed on the analogies. If two analogies(weighted) are sought then the first tie
would still be weighted double.
37 Every single increment in the number of features used effectively doubles the search time. Thus if 20 feature takes two days
to process, 24 feature will take approximately a month.

AN EMPIRICAL INVESTIGATION INTO SOFTWARE EFFORT ESTIMATION BY ANAIAGY 101

7.5.3 Analysis Limitations

" The level of accuracy that ANGEL was consistently able to maintain over the eight data

sets was encouraging, especially in light of the relative performance of the stepwise

regression. However, it must be understood that some of the data sets analysed were quite

old and their relevance to today's software development environments must be

considered. For example, the Albrecht data set was first published 17 years ago and the

Kemerer data set 10 years ago. Moreover, the fact that ANGEL is capable of reliably

predicting effort over a range of data sets spanning a number of years (in which time many

practices have changed), suggests that it may not be unreasonable to conclude that the

analogy approach is widely applicable.

" Another limitation of the analysis procedure was that two separate techniques, jack-knifing

and goodness of fit were used to generate the performance figures for analogy and

stepwise regression respectively. This was unfortunate and in hindsight it would have

been better to adopt the same technique for both approaches. This should have been the

jack-knifing procedure for two reasons i) the project to be estimated in ANGEL cannot, for

obvious reasons (the main one being that it would always to be found as the closest

analogy) be used in the set of source analogies and ii) using goodness of fit means that

each project contributes38 to the model that will be eventually used to evaluate it. In terms

of the impact this has on accuracy, as discussed in section 5.2, the use of the goodness of fit

gives the stepwise regression technique an advantage over analogy, however, this

advantage is thought to be balanced by the advantage gained by analogy from optimising

with MMRE.

7.6 Further Work

Suggestions for future work are now made which are divided between three areas: work that

would enhance the functionality and effectiveness of the ANGEL tool; work to extend the

analogy approach and finally possible future avenues for wider research into effort

estimation.

38 A luxury new projects estimated by the model would not be afforded.

Bou
JN ERS1 T`

\! r T TAP A 1? V

AN EMPIRICAL INVESTIGATION INTO SOFTWARE EFFORT ESTIMATION BY ANALOGY 102

7.6.1 Improvements to the ANGEL Tool

There are specific ways in which the ANGEL tool might be improved. An important addition

would be a facility to deal with the situation, discussed above, where there are ties between

source analogies. Another useful addition to ANGEL would be an ability to conduct the

search for the best attribute subset using heuristics to reduce the number of combinations

searched for, without overly affecting the potential accuracy.

7.6.2 Research on the Analogy Approach

A possible future research avenue would be to investigate further into the sensitivity of the

analogy approach. The tests in chapter 5 looked at overall accuracy, in terms of M RE, over

time by adding projects in random order. Another possible test might look at how well

ANGEL was able to predict the next project to be added to the case base revealing its true

accuracy more realistically. While a further test might be to track the features that are being

selected by the 'best subset' function which would give some indication of the most useful

features to be collected in the future. All of these investigations could be automated within the

ANGEL environment without much effort.

Within the case-based reasoning community one of the hottest research topics (Leake 1996) is

the application of adaptation to estimates, based upon the differences between the observed

feature values in the source and target analogies. Although ANGEL does adjust its estimates

based upon the number of analogies searched for, it does not at present have any real

adaptation abilities. For an adaptation system to be useful in ANGEL, it is important either

that it is automatable or is a simple process that a non-domain expert might follow. But

perhaps most important of all is that it not be hard coded so that ANGEL remains a shell

transferable between environments.

7.6.3 Future Research Avenues

Researchers into the development of effort prediction systems have recently recognised the

fact that there are a great many alternatives to algorithmic models and that these techniques

such as neural networks and case-based reasoning offer a number of potential advantages (not

least improvement in accuracy) over their algorithmic counterparts. However for the potential

of any of these techniques to be realised it is important that they are brought closer to the

estimation practitioner. For example, in the case of neural networks there is a certain level of

competence required before they can deployed effectively by a practitioner. Until tools and

AN EMPIRICAL INVESTIGATION INTO SOFTWARE EFFORT ESTIMATION BY ANALOGY 103

methods are developed that make the use of such technologies easier, without the loss of any

of their estimating power, any amount of research proving their accuracy will not encourage

practitioners to embrace them.

Repeatable prediction systems such as regression and analogy are at present dependent on the

availability of a certain amount of historical data with which to build models or search for

pertinent analogies. However, the indications are that the collection of completed project data

is not so wide spread amongst software companies (Heemstra 1992). Further evidence of this

is provided by the lack of data sets that are seen in the public domain, even after taking the

confidentiality of such data into consideration. This points to the need for researchers to look

for ways of developing data-less prediction systems. One possible way that this might be

achieved using ANGEL would be for an expert to seed a case base with artificial cases that

cover a range of potential outcomes. Another approach would be to use a technique such as

the analytic hierarchy process, discussed by Saaty (1994), which can use a single known case

to help reconstruct unrecorded historical cases.

Strategies for assessing the accuracy of predictions systems are varied. They range from the

optimistic goodness of fit and jack-knifing techniques, where most or all of the data points are

used to create the model on which they are then tested, to the more pessimistic random

sampling of data into training, validation and testing sets on the other end of the scale. The

latter technique being preferable as long as there is enough data available to sufficiently

populate each of the three set with a representative sample. The decision to use a particular

strategy is not always easy, especially with software project data sets, where the number of

projects collected is typically less than 50. Another problem widely ignored in the validation
literature is that of choosing performance indicators. Typically researchers (the author

included) have given a primary reason for choosing a performance indicator as 'it is the most

popular in the literature'. The indicator will clearly have a track record and it allows
benchmarking, however, each performance indicator tells a different story and more thought

must be given to the goal of the validation exercise. As studies into the accuracy of effort

prediction systems are becoming more common place, the need for guidelines to help refine

validation strategies becomes more essential.

AN EMPIRICAL INVESTIGATION INTO SOFTWARE EFFORT ESTIMATION BY ANALOGY 104

References

Aarmodt, A. and E. Plaza (1994). "Case-Based Reasoning: Foundational Issues, Methodical Variations
and System Approaches. " AT communications 7(1):

Aha, W. D. (1991). "Case-Based Learning Algorithms. " 1991 DARPA Case-Based Reasoning
Workshop, Morgan Kaufmann.

Albrecht, A. J. (1979). "Measuring Application Development Productivity. " Proceedings of the IBM
Applications Developments Symposium,

Albrecht, A. J. and J. E. Gaffney (1983). "Software Function, Source Lines of Code, and Development
Effort Prediction: A Software Science Validation. " IEEE Transactions on Software Engineering 9(6):
639-648.

Althoff, K. D. (1996). " Evaluating case-based reasoning systems. " Workshop on Case-Based
Reasoning: A New Force In Advanced Systems Development,

Atkinson, K. and M. Shepperd (1994). "Using Function Points to Find Cost Analogies. " ESCOM 95,
Ivrea, Italy,

Basili, R. and J. Beane (1981). "Can the Parr Curve Help With Manpower Distribution and Resource
Estimation Problem. " Journal of System and Software 2: 59 - 69.

Behrens, C. A. (1983). "Measuring the Productivity of Computer Systems Development Activities With
Function Points. " IEEE Transactions on Software Engineering 9(6): 649 - 658.

Bennington, H. D. (1983). "Production of Large Computer Programs. " Annals of the History of
Computing 5(4): 350 - 361.

Bisio, R. and F. Malabocchia (1995). "Cost Estimation of Software Projects Through Case Based
Reasoning. " International Conference on Case Based Reasoning, Sesimbra, Portugal,

Boehm, B., B. Clark, et al. (1995). "The COCOMO 2.0 Software Cost Estimation Model. " International
Society of Parametric Analysts - 17th Annual Conference.,

Boehm, B. and W. Royce (1989). "Ada COCOMO and the Ada Process Model. " Fifth COCOMO
Users' Group Meeting, Pittsburgh,

Boehm, B. W. (1981). Software Engineering Economics. New York, Prentice-Hall.

Boehm, B. W. (1997). "COCOMO II Experience and Plans. " ESCOM97, Berlin,

Briand, L., K. Emam, et al. (1996). "On The Application of Measurement Theory in Software
Engineering. " Empirical Software Engineering 1(1): 61 - 88.

Bridgett, N. A., J. Brandt, et al. (1995). "A Neuro-fuzzy Route to Breast Cancer Diagnosis and
Treatment. " FUZZ-IEEE/IFES'95, Yokahama, Japan,

Brieman, L., J. H. Friedman, et al. (1984), Classification and Regression Trees. Wadsworth
International Group. California.

Brule, J. F. (1985). Fuzzy Systems -A Tutorial. http: //www. quadralay. com/www/Fuzzy/Tutorial. html.

AN EMPIRICAL INVESTIGATION INTO SOFrwARE EFFORT ESTIMATION BY ANALOGY 105

Campobasso, A., G. Caracoglia, et al. (1995). "Using Cost Models in Software Industry. " ESCOM,
Netherlands,

Conte, S., H. E. Dunsmore, et al. (1986). Software Engineering Metrics and Models.
Benjamin/Cummings.

Cowderoy, A. J. C. and J. O. Jenkins (1988). "Cost Estimation by Analogy as a Good Management
Practice. " Proc. Software Engineering 88. Liverpool: IEE/BCS,

Davies, R., B. G. Buchanan, et al. (1997). "Production Rules as a Representation for a Knowledge-
Based Consultation Program. " Artificial Intelligence 8: 15 - 45.

DeMarco, T. (1982). Controlling Software Projects. Yourdon Press.

Desharnais, J. M. (1988). Analyse Statistique de la Productivite des Projects de Development en
Informatique a Partir de la Technique de Points de Fonction. MSc. Thesis, Montreal, University of
Quebec.

Evans, T. G. (1968). A Program for the Geometric Analogy Intelligence Test Questions. Semantic
Information Processing. Cambridge, Mass, MIT Press.

Farr, L. and J. Zargorski (1965). "Quantitive Analysis of Programming Cost Factors: A Progress
Report. " ICC Symposium Proc. Economics of Automatic Data Processing, Amsterdam,

Finkelstein, L. and M. S. Leaning (1984). "A Review of the Fundamental Concepts of Measurement
Theory. " Measurement 2(1): 25 - 34.

Gentner, D. (1983). "Structure Mapping -A Theoretical Framework for Analogy. " Cognitive Science 7:

Golden, J. R., J. R. Mueller, et al. (1981). "Software Cost Estimating: Craft or Witchcraft. " Database
12: 12 - 14.

Gray, A. R. and S. G. MacDonell (1997). "A Comparison of Techniques for Developing Predictive
Models of Software Metrics. " Information and Software Technology 39: 425 - 437.

Gulezian, R. (1991). "Reformulating and Calibrating COCOMO. " Journal of Systems and Software 16:
235 - 242.

Heemstra, F. J. (1992). "Software Cost Estimation. " Information and Software Technology 34(10): 627

- 639.

Hughes, R. T. (1996). An Evaluation of Machine Learning Techniques for Software Effort Estimation.
University of Brighton.

IFPUG (1994). Function Point Counting Practices Manual: Release 4.0. Westerville OH, International
Function Point User's Group.

Jeffery, R. (1987). "Time-Sensitive Cost Models in the Commercial MIS Environment. " IEEE
Transactions on Software Engineering 13(7): 852-859.

Jeffery, R. (1991). Software Cost Estimation Models. Software Engineer's Reference Book. Oxford,
Butterworth-Heinemann. 28/1 - 28 /10.

Jeffery, R. and J. Stathis (1993). "Specification Based Software Sizing : an Empirical Investigation of
Function Metrics. " NASA Goddard Software Engineering Workshop, Greenbelt, MD, USA,

Johnson, D. M. (1962). "Serial Analysis of Verbal Analogy Problems. " Journal of Education
Psychology 53: 86 - 88.

AN EMPIRICAL INVESTIGATION INTO SOFTWARE EFFORT ESTIMATION BY ANALOGY 106

Jones, C. (1986). Programming Productivity. New York, McGraw-Hill.

Jorgensen, M. (1995). "Experience With the Accuracy of Software Maintenance Task Effort Prediction
Models. " IEEE Transactions on Software Engineering 21(8): 674-681.

Karunanithi, N., D. Whitley, et al. (1992). "Using Neural Networks in Reliability Prediction. " IEEE
Software 9(4): 53 - 59.

Kemerer, C. F. (1987). "An Empirical Validation of Cost Estimation Models. " Comms of the ACM
30(5): 416-429.

Kemerer, C. F. and B. S. Porter (1992). "Improving the Reliability of Function Point Measurement: an
Empirical Study. " IEEE Transactions on Software Engineering 18(11): 1011-1024.

Kitchenham, B. (1990). Software Development Cost Models. Software Reliability Handbook. Ed.
Rook, P. Elsevier.

Kitchenham, B. (1996). "Estimation -A Personal View. " ESCOM97, Wilmslow, UK,

Kitchenham, B. and K. Kansala (1993). "Inter-Item Correlations Among Function Points. " 15th Intl
Conf On Software Engineering, Baltimore, IEEE Computer Society Press.

Kitchenham, B. and S. Linkman (1997). "Estimates, Uncertainty and Risk. " IEEE Software 14(3):

Kitchenham, B., S. Linkman, et al. (1997). "The SQUID Approach to Defining a Quality Model. "
Software Quality Journal 6: 211 - 233.

Kitchenham, B. A. (1992). "Empirical Studies of Assumptions That Underlie Software Cost-Estimation
Models. " Information and Software Technology 34(4): 211-218.

Kitchenham, B. A. and N. R. Taylor (1984). "Software Cost Models. " ICL Technical Journal (May): 73

- 102.

Kitchenham, B. A. and N. R. Taylor (1985). "Software Project Development Cost Estimation. " The
Journal of System Software 5: 267-278.

Knaff, F. J. and J. Sacks (1986). "Software Development Effort Prediction Based on Function Points. "
COMPSAC 86,

Kok, P., B. A. Kitchenham, et al. (1990). "The MERMAID Approach to Software Cost Estimation. "
Esprit Annual Conference, Brussels,

Kolodner, J. (1983). "Maintaining Organisation in a Dynamic Long Term Memory. " Cognitive Science
7: 234 - 280.

Kolodner, J. L. (1993). Case-Based Reasoning. Morgan-Kaufmann.

Leake, D. (1996). Case-Based Reasoning: Experiences Lessons and Future Directions. Menlo Park,
AAAI Press.

Lederer, A. L. and J. Prasad (1993). "Information Systems Software Cost Estimating: A Current
Assessment. " Journal of Information Technology 8: 22 - 33.

Lientz, B. P. and E. B. Swanson (1980). Software Maintenance Management. Reading, Addison-
Wesley.

Low, G. C. and R. Jeffery (1990). "Function Points in the Estimation and Evaluation of the Software

Process. " IEEE Transactions on Software Engineering 16(1): 64-71.

AN EMPIRICAL INVESTIGATION INTO SOFTWARE EFFORT ESTIMATION BY ANALOGY 107

MacDonell, S. G. and A. R. Gray (1996). "Alternatives to Regression Models For Estimating Software
Projects. " IFPUG Fall Conference, Dallas,

Miyazaki, Y. (1993). "Robust Regression for Developing Software Estimation Models. " ESCOM 93,
Bristol,

Miyazaki, Y. and K. Mori (1985). "COCOMO Evaluation and Tailoring. " Proceedings of 8th
International Software Engineering Conference, IEEE Computer Society Press.

Miyazaki, Y., M. Terakado, et al. (1994). "Robust Regression For Developing Software Estimation
Models. " J. Systems Software-27: 3- 16.

Mohanty, S. N. (1981). "Software Cost Estimation: Present and Future. " Software Practice and
Experience 11: 103-121.

Mukhopadhyay, T. and S. Kekre (1992). "Software Effort Models for Early Estimation of Process
Control Applications. " IEEE Transactions on Software Engineering 18(10): 915 - 923.

Narendra, K. S. and K. Parthasarathy (1987). "Identification and Control of Dynamical Systems Using
Neural Networks. " IEEE Transactions on Neural Networks 1: 4-27.

Nelson, E. A. (1967). Management Handbook for Estimation of Computer Programming Costs.
Systems Development Corp.

Niessink, F. and H. Van Vliet (1997). "Predicting Maintenance Effort with Function Points. "
International Conference on Software Maintenance, Bari, Italy,

Norden, P. V. (1963). Useful Tools for Project Mana eg ment. New York, John Wiley and Sons.

Oppenheimer, J. R. (1956). "Analogy in Science. " American Psychological Review 11: 127-135.

Parr, F: N. (1980). "An Alternative to the Rayleigh Curve Model for Software Development Effort. "
IEEE Transactions on Software Engineering 6(3): 291 - 296.

Porter, A. and R. Selby (1990). "Empirically Guided Software Development Using Metric-Based
Classification Trees. " IEEE Software 7: 46 - 54.

Prietula, M. J., S. S. Vincinanza, et al. (1996). "Software Effort Estimation With a Case-Based
Reasoner. " J. Experimental & Theoretical Artificial Intelligence 8: 341 - 363.

Putnam, L. H. (1978). "A General Empirical Solution to the Macro Sizing and Estimating Problem. "
IEEE Transactions on Software Engineering SE-4(4): 345 - 361.

Raven, J. C. (1938). Progressive Matrices: A Perceptual Test of Intelligence. London: Lewis.

Raven, J. C., J. H. Court, et al. (1986). Coloured Progressive Matrices. London: Lewis.

Rich, E. and K. Knight (1995). Artificial Intellige`. McGraw-Hill.

Rubin, H. A. (1983). "Macroestimation of Software Development Parameters: The Estimacs System. "
SOFTAIR Conference on Software Development Tools, Techniques and Alternatives, Arlington, IEEE
Press, New York.

Rudolph, E. E. (1983). Productivity in Computer Application Development. Dept. Management
Studies, Dept. Management Studies, University Aubkland.

Saaty, T. L. (1994). "Highlights and Critical Points in the Theory and Application of the Analytic
Hierarchy Process. " European Journal of Operational Research 74: 426 -447.

AN EMPIRICAL INVESTIGATION INTO SOFTWARE EFFORT ESTIMATION BY ANALOGY 108

Samson, B., D. Ellison, et al. (1993). "Software Cost Estimation using an Albus Perceptron(CMAC). "
Proc. Eight International COCOMO Estimation Meeting, Pittsburgh,

Schank, R. (1982). Dynamic Memory: A Theory of Reminding and Learning in Computers and People.
Cambridge University Press.

Schofield, C. (1997). "Selecting Criteria for the Evaluation of Effort Prediction Systems. " ESCOM 97,
Berlin,

Sejnowski, T. J. and C. R. Rosenberg (1987). "Parallel Networks That Learn to Pronounce English
Text. " Complex Systems 1: 145-168.

Serluca, C. (1995). An Investigation into Software Effort Estimation Using a Back-Propogation Neural
Network. M. Sc. Thesis, Bournemouth University.

Shepperd, M. (1994). "Some Observations on Function Points. " CSR Annual Conference, Dublin,

Srinivasan, K. and D. Fisher (1995). "Machine Learning Approaches to Estimating Software
Development Effort. " IEEE Transactions on Software Engineering 21(2): 126-136.

Stensrud, E. and I. Myrtveit (1998). "The Added Value of Estimation by Analogy - An Industrial
Experiment. " The European Software Measurement Conference, Antwerp, Belgium,

Stevens, S. (1946). "On the Theory of Scales of Measurement. " Science 103(2684): 677 - 680.

Subramanian, G. H. and S. Breslawski (1995). "An Empirical Analysis of Software Development Cost
Estimation Model Awareness and Usage. " Information Resources Management Association: Managing
information and communications in a changing global environment, Atlanta; GA, Harrisburg.

Suppes, P., D. H. Krantz, et al. (1989). Foundations of Measurement. London, Academic Press.

Symons, C. R. (1991). Software Sizing and Estimating. MK II FPA. Chichester, John Wiley.

Symons, R. (1988). "Function Point Analysis: Difficulties and Improvements. " IEEE Transactions on
Software Engineering 14(1): 2-11.

Veloso, M. M. and J. G. Carbonell (1991). "Variable-Precision Case Retrieval in Analogical Problem
Solving. " Proceedings of the DARPA Case-Based Reasoning Workshop,

Venkatachalam, A. R. (1993). "Software Cost Estimation Using Artificial Neural Networks. "
International Joint Conference on Neural Networks, Nagoya, IEEE.

Vicinanza, S. and M. J. Prietolla (1990). "Case Based Reasoning In Software Effort Estimation. "
Proceedings 11th Int Conf on Information Systems,

Vosniadou, S. and A. Ortony, Ed. (1989). Similarity and Analogical Reasoning. Cambridge, Cambridge
University Press.

Walston, C. E. and C. P. Felix (1977). "A Method of Programming Measurement and Estimation. " IBM
Systems Journal 16(1): 54-73.

Watson, I. and F. Marir (1994). "Case-Based Reasoning: A Review. " The Knowledge Engineering
Review 9(4): 327-354.

Wiener-Ehrlich, W. K., J. R. Hamrick, et al. (1984). "Modeling Software Behaviour in Terms of
Formal Lifecycle Curve: Implications for Software Maintenance. " IEEE Transactions on Software
Engineering SE-10: 376 - 282.

Winston, P. H. (1970). Learning Structural Description From Examples. Cambridge, Mass, MIT

AN EMPIRICAL INVESTIGATION INTO SOFPWARE EFFORT ESTIMATION BY ANALOGY 109

Wittig, G. and G. Finnie (1997). "Estimating Software Development Effort with Connectionist
Models. " Information and Software Technology 39: 469 - 476.

Wolverton, R. W. (1974). "The Cost of Developing Large Scale Software. " IEEE Transactions on
Computers 23(6):

Zadeh, L. A. (1965). "Fuzzy Sets. " Info. & Ctl 8: 338 - 353.

Zadeh, L. A. (1988). "Fuzzy Logic. " IEEE Computer 21(4): 83 - 93.

AN EMPIRICAL INVES LIGATION INTO SOFrWARE EFFORT ESTIIiiATION BY ANALOGY 110

Appendix A

Key

- Used in analysis (chapter 5)
x- Not used in analysis (chapter 5)

Al. Albrecht Data set

Feature Description Analogy Regression

Effort Measured in thousands of work hours `' v

FP Function points count V

Files Number of master files VO

Inputs Number of Inputs

Inquires Number of Inquiries VO

Outputs Number of outputs VO VO

A2 The Desharnais Data set

Feature Description Analogy Regression

Effort Measured in hours

ExpEquip Team experience in years

ExpProjMan Project managers experience in years X

Trans Number of transactions V

Entities Number of entities V

RawFP Unadjusted function points V

AdjFP Adjusted function points

DevEnv Development Environment X

YearFin Year of Completion

AN EMPIRICAL INVESTIGATION INTO SOFTWARE EFFORT ESTIMATION BY ANALOGY ill

A3 The Finnish Data set

Feature Description Analogy Regression

Effort Measured in hours

FP Function points count

UA End user availability VO X

MA Machine availability V X

AA Analyst/designer availability V X

STD availability of standards V X

UM Use of methods V X

TA Tool availability V X

PC Procedural complexity V X

SR Stability of requirements specification WO X

CQ Criticality of quality requirements X

CP Criticality of execution time requirements X

UT User training X

MET Methodology X

THE Team application experience X

MEX Team method/ tools experience X

PME Project manager experience X

IN Number of inputs V

INFP Input function points X

QN Number of queries V

QFP Query function points VO X

ON Number of Outputs VO V#

OFP Output function points X

SN Number of interacting systems

SFP Interacting systems function points X

FN Number of logical master files

FFP Logical master file function points X

HW - Type Hardware type X

AT - Type Application type X

AN EMPIRICAL INVESTIGATION INTO SOFTWARE EFFORT ESTIMATION BY ANAI. OGy 112

A4 The Hughes Data set

Feature Description Analogy Regression

Effort Measured in work-hours 7

C2 Number of parameters in operator

commands

C3 Number of parameters used by subscriber
input procedures

C4 Outputs which trigger messages

C5 Number of parameters in output/enquiry

subscriber procedures

VO

C6 Number of parameters on print-outs V

C7 Number of messages passed between

blocks

C8 Count of timers used by function V

C9 Months of experience of the block

designer

C10 Months of experience of the function

designer

C11 C3+C5 VP VO

C12 C9+C10 V

C13 Number of lines of code patched in the

base version of the code that the

enhancement has incorporated

V

C14 Subsystem indicator 0 or 1 X

A5 The Kemerer Data set

Feature Description Analogy Regression

Effort Measured in person-months

AdjFP Adjusted function points
RawFP Unadjusted function points

AN EMPIRICAL INVESTIGATION INTO SOFTWARE EFFORT ESTIMATION BY ANALOGY 113

A6 The MERMAID Data set

Feature Description Analogy Regression

Effort Measured in hours

AdjFP Adjusted function point count

RawFP Unadjusted function point count V

Proj Type Project Type - New/Enhancement X

AF1 Data communications X

AF2 Distributed functions X

AF3 Performance V X

AF4 Heavily used configuration V, X

AF5 Transaction rate X

AF6 Online data entry X

AF7 End user efficiency X

AF8 Online update X

AF9 Complex processing X

AF10 Reusability X

AF11 Installation ease X

AF12 Operational ease X

AF13 Multiple sites X

AF14 Facilitates change X

A7 The Real-Timet Data set

Feature Description Analogy Regression

Effort Measured in person months x

Host Machine Host machine used x

Life Cycle Life cycle used x

Documentation

Standard

Documentation Standard used x

AN EMPIRICAL INVESTIGATION INTO SOFTWARE EFFORT ESTIMATION BY ANALOGY 114

A8 The Telecommsl Data set.

Feature Description Analogy Regression

Effort Measured in Person Days

Files Number of files amended

AN EMPIRICAL INVESTIGATION INTO SOFTWARE EFFORT ESTIMATION BY ANALOGY 115

Appendix B

The Albrecht Data Set

Project
Ref

Effort Inputs Outputs Files Inquiries FP SLOC

1 102.4 25 150 60 75 1750 130

2 105.2 193 98 36 70 1902 318

3 11. 70 27 12, 0 428 20

4 21.1 40 60 12 20 759 54

5 28.8 10 69 9 1 431 62

6 10 13 19 23 0 283 28

7 8 34 14 5 0 100 35

8 4.9 17 17 5 15 289 30

9 12.9 45 64 16 14 680 48

10 19 40 60 15 20 794 93

11 10.8 41 27 5 29 512 57

12 2.9 33 17 5 8 224 22

13 7.5 28 41 11 16 417 , 24

14 12 43 40 35 20 682 42

15 4.1 7 12 8 13 209 40

16 15.8 28 38 9 24 512 96

17 18.3 42 57 5 12 606 40

18 8.9 27 20 6 24 400 52

19 38.1 48 66 50 13 1235 94

20 61.2 69 112 39 21 1572 110

21 3.6 25 28 22 4 500 15

22 11.8 61 68 11 0 694 24

23 0.5 15 15 3 6 199 3

24 6.1 12 15 15 0 260 29

AN EMPIRICAL INVESTIGATION INTO SOFTWARE EFFORT ESTIMATION BY ANALOGY 116

The Desharnais Data set

Project
Ref

Effort Exp
Equip

Exp
Pro'Man

Trans Raw FP Adj
Factor

Adj FP Dev Env Year Fin Entities

1 5152 1 4 253 305 34 302 1 85 52
2 5635 0 0 197 321 33 315 1 86 124
3 805 4 4 40 100 18, 83 1 85, 60
4 3829 0 0 200 319 30 303 1 86 119
5 2149 0 0 140 234 24 208 1 86 94
6 2821 0 0 97 186 38 192 1 86 89
7 2569 2 1 119 161 25 145 2 85 42
8 3913 1 2 186 238 25 214 1 83 52
9 7854 3 1 172 260 30 247 1 85 88

10 2422 3 4 78 116 24 103 1 83 38
11 4067 4 1 167 266 24 237 1 84 99
12 9051 2 1 146 258 40 271 1 84 112
13 2282 1 1 33 105 19 88 1 84 72
14 4172 3 4 162 223 32 216 1 85 61
15 4977 4 4 223 344 28 320 1 85 121
16 1617 3 2 119 167 26 152 2 85 48
17 3192 4 3 57 100 43 108 1 85 43
18 3437 4 4 68 384 20, 326 2 86 316
19 4494 3 4 9 395 21 340 2 87 386
20 840 4 2 58 92 29 86 1 86 34
21 14973 4 4 318 587 34 581 2 86 269
22 5180 2 4 88 258 34 255 1 85 170
23 5775 2 4 306 438 37 447 1 86 132
24 10577 4 1 304 382 39 397 1 87 78
25 3983 1 4 89 289 33 283 1 86, 200
26 3164 4 1 86 316 33 310 1 85 230
27 3542 2 0 71 306 37 312 1 86 235
28 4277 3 1 148 472 39 491 1 85 324
29 7252 4 4 116 286 27 263 1 85 170
30 3948 4 1 175 452 37 461 1 85, 277
31 3927 4 3 79 207 27 190 1 86 128
32 710 1 1 145 183 27 168 3 86 38
33 2429 4 4 174 252 41, 267 3 87 78
34 6405 1 1 194 285 35 285 1 85 91
35 651 2 2 126 175 38 180 3 88 49
36 9135 1 3 317 436 34 432 2 86 119
37 1435 2 4 289 377 28 351 3 87, 88
39 847 1 4 158 217 18 180 3 88 59
40 8050 3 3 302 447 52 523 2 88 145
41 4620 1 1 451 499 28 464 1 87 48
42 2352 2 4 661 793 23 698 3 87 132
43 2174 1 1 64 118 25 106 1 88 54
45 6699 2 1 182 308, 35 308 1 86 126
46 14987 2 3 173 505 19 424 1 87 332
47 4004 2 2 252 259 28 241 1 88 7

AN EMPIRICAL INVESTIGATION INTO SOFTWARE EFFORT ESTIMATION BY ANALOGY 117

Project
Ref

Effort Exp
Equip

Exp
ProjMan

Trans Raw FP Adj
Factor

Adj FP Dev Env Year Fin Entities

48 12824 4 3 131 311 51 361 1 85 180
49 2331 2 3 106 145 6 103 1 85 39
50 5817 3 3 96 204 29, 192 1 85, 108
51 2989 2 3 116 188 18 156 1 85 72
52 3136 3 3 86 135 32 131 1 85 49
53 14434 2 3 221 342 35 342 1 85 121
54 2583 1 1 61 157 18 130 1 87 96
55 3647 1 3 132 221 5 155 2 86 89
56 8232 3 7 45 432 16 350 2 86 387
57 3276 1 1 55 167 12 128 2 86, 112
58 2723 1 4 124 1176 14 139 2 87 52
59 3472 3 3 120 246 15 196 2 87 126
60 1575 1 2 47 79 14 62 2 87 32
61 2926 1 1 126 233 23 205 2 86 107
62 1876 3 2 101 146 15 117 2 86 45
63 2520 1 1 78 177 14 140 1 86, 99
64 1603 4 7 69 143 14 112 1 86 74
65 3626 1 3 194 291 35 290 2 86 97
67 11361 2 4 323 507 35 504 2 87 184
68 1267 1 3 42 73 27 67 2 86 31
69 2548 1 2 74 117 25 105 2 87 43
70 1155 3 4 101 158 9 117 2 87 57
71 546 0 4 97 139 6 99 3 86 42
72 2275 2 3 134 211 13 165 2 84 77

73 9100 4 5 482 709 26 645 2 86 227
74 595 0 2 213 286 6 203 3 84 73
76 13860 2 3 473 655 40 688 2 86 182
77 1400 4 4 229 398 39 414 3 85 169
78 2800 4 3 227 300 34 297 1 83 73
79 9520 4 4 395 588 40 617 1 82 193
80 5880 4 3 469 645 43 697 3 86 176
81 23940 4 4 886 1127 34 1116 1 85 241

AN EMPIRICAL INVESTIGATION INTO SOFTWARE EFFORT ESTIMATION BY ANALAGY 118

The Finnish Data Set

Project
Ref

Effort HW
Type

App
Type

FP Company UA MA AA STD UM TA PC SR CQ CP UT

20 17778 1 1 1364 10 5 4 4 5 4 3 4 4 5 4 3
21 8800 1 1 648 10 4 4 1 3 3 3 3 3 3 4 3
22 26670 1 1 1282 10 4 2 4 4 3 3 4 3 3 3 4
23 1330 1 1 176 10 3 5 5 5 5 3 4 3 3 4 4
24 14504 1 3 627 10 3 4 3 2 1 2 4 4 2 1 2
25 8498 1 1 1026 10 3 2 3 3 3 2 3 3 3 5 4
26 4830 1 5 561 10 5 3 5 4 3 2 4 4 3 3 5
27 3008 1 1 206 5 2 3 2 3 2 2 4 3 4 2 3
28 2525 1 1 128 5 3 3 3 3 2 3 5 4 4 2 3
29 4500 1 1 1814 3 4 3 3 2 3 3 4 3 3 3 4
30 1455 2 2 609 3 3 4 5 3 3 3 5 2 4 5 3
31 -1 1 2 210 3 3 3 3 3 3 3 4 2 4 3 3

32 1203 3 1 321 3 2 2 1 3 3 3 4 5 3 1 4
33 7537 1 4 355 4 3 4 4 4 4 3 2 3 5 3 3
34 8710 3 1 1058 4 4 4 3 5 4 4 5 3 4 4 3
35 796 3 3 65 4 4 2 2 3 3 2 4 4 4 4 3
36 11023 3 1 374 4 5 5 3 3 2 3 4 5 3 4 4
37 6030 2 1 1584 2 4 4 3 3 3 3 3 3 3 5 3
38 1750 1 1 464 2 4 2 3 3 3 4 3 3 3 3 4
39 2240 1 5 528 2 4 3 4 3 3 3 2 3 2 3 2
40 1105 1 1 233 2 4 4 4 3 3 4 2 3 4 3 4
41 2915 1 5 577 2 4 3 4 3 4 4 4 2 4 3 3
42 2100 1 1 786 8 4 4 3 2 2 3 2 3 2 4 4
43 2100 1 2 232 8 3 4 3 3 3 4 2 3 3 3 2
44 580 1 1 235 8 2 2 3 2 2 3 3 3 3 2 2
45 460 1 5 196 8 2 3 3 3 1 3 3 1 4 3 1
46 6182 1 3 677 6 4 3 4 3 3 3 4 4 4 5 5
47 4713 1 3 1035 6 5 4 4 2 4 4 4 3 3 3 3
48 8700 1 1 1056 6 4 3 3 3 3 3 4 3 4 4 4
49 8095 1 1 1598 6 4 3 4 3 3 3 4 3 3 3 4

50 18690 1 .4 1619 9 4 3 4 3 4 3 2 3 4 4 3
51 -1 1 1 1229 9 4 3 3 3 3 3 5 4 4 4 5

52 592 1 3 402 9 3 4 3 3 2 2 3 2 3 1 2
53 23000 1 4 1347 7 3 2 3 3 3 3 4 4 2 4 4

54 17031 1 1 983 7 4 2 4 2 3 2 3 3 4 3 3

55 17200 1 1 1719 7 3 2 3 5 4

56 10850 1 4 1148 7 3 3 2 3 4

57 18900 1 4 1049 7 2 3 3 2

M

3 3 3

58 14568 1 4 755 7 5 4 2 2 3

59 780 1 2 189 7 4 3 2 4 3

AN EMPIRICAL INVESTIGATION INTO SOFTWARE EFFORT ESTIMATION BY ANALOGY 119

Proje
Ref

ct MET THE MEX PME IN INFP QN QFP ON OFP SN SFP FN FFP

20 4 5 3 4 89 485 32 67 43 273 17 119 51 420
21 2 2 4 3 10 33 0 0 19 100 36 246 24 269
22 2 1 1 4 96 514 51 255 23, 166, 29 176, 20 171
23 3 3 2 3 10 40 8 32 4 20 2 14 7 70
24 4 4 5 3 20 80 20 80 28 140 18 126 20 200
25 3 2 2 3 42 162 40 160 40 194 30 210 30 300
26 3 2 4 4 21 81 20 80 29 145 15 105 15 150
27 3 4 5 3 5 22 5 15 3 11 6 34 13 124
28 3 2 4 3 5 33 0 0 2 16, 0 0 10 79
29 3 4 4 3 65 252 104 283 61 227 30 291 50 761
30 4 4 4 3 22 79 88 397 2 15 2 10 12 108
31 3 4 4 3 11 24 19 72 14 37 0 0 8 77
32 2 4 4 3 1 4 15 27 2 7 23 263 2 20
33 4 3 2 5 17 47 43 97 6 28 3 9 18 174
34 5 2 4 4 38 138 45 145 69 274 17 170 28 331
35 4 4 5 3 7 15 1 4 6 38 0 0 2 8
36 4 3 4 4 29 142 8 11 19 117 10 77 3 27
37 4 2 4 3 198 404 54 67 46 250 11 74, 53 789,
38 2 3 2 3 28 86 5 5 12, 61 1 3 27 309
39 2 2 5 3 33 100 59 125 7 50 2 12 24 241
40 2 5 1 3 13 25 22 80 1 4 0 0 11 124
41 4 3 5 4 65 177 32 99 0 0 0 0 31 301
42 4 3 4 4 70 226 64 162 4 16 9 59 28 323
43 4 4 4 3 12 37 15 29 24 86 3 13 13 67
44 3 2 2 3 10 26 19 30 9 44 4 20 11 115
45 3 5 4 3 10 32 10 20 9 47 5 25 9 72
46 4 4 5 4 22 70 60 148 43 258 5 29 18 162
47 4 5 1 4 39 207 54 151 15 91 0 0 43 586,
48 4 3 4 5 63 227 74 163 30 134 2 12 42 520

49 3 4 5 4 82 409 97 282 21 148 0 0 46 759

50 2 5 4 5 75, 354 83 , 255 44 289 8 61 47 660
51 4 2 3 3 76 407 87 275 53 245, 7 36 24 266

52 3 3 4 3 6 48 0 0 0 0 27 187 15 167
53 2 2 1 1 18 96 26 123 36 210 13 83 59 835
54 2 1 1 2 10 60 5 26 26 87 6 60 50 750
55 1 1 1 1 74 , 290 33 110 36 170 27 249 60 900

56 2 2 2 1 112 270 7 32 18 74 2 6 53 766
57 2 3 3 4 77 258 62 152 132 479 14 82 12 78,

58 2 1 2 2 31 142 26 130 33 174 10 85 20 224

59 3 3 3 4 10 24 20 52 5 25 0 0 10 88
1 1 1 1 1 1 1 1 1 1 1 1 1 1'

AN EMPIRICAL INVESTIGATION INTO SOFFWARE EFFORT ESTIMATION BY ANALAGY 120

The Hughes Data Set

Project
Ref

Effort C2 C3 C4 C5 C6 C7 C8 C9 C10 C11 C12 C13 C14

1 12422 32 10 5 21 11 77 7 44 26 15 70 0 0
2 10839 18 10 3 8 5 2 1 46 8 13 54 0 0
3 10672 18 9 0 3 1 9 1 52, 1 9 53 0 0
4 1853 14 2 0 1 6 2 0 50 120 2 170 0 0
5 3890 50 2 1 6 6 9 0 49 120 3 169 0 0
6 1229 26 4 0 0 4 0 0 57 120 4 177 0 0
7 4239 20 2 1 11 6 13 1 49 40 3 89 0 0
8 2344 4 0 0 0 1 7 0 57 40 0 97 0 0
9 3467 25 0 0 0 12 4 1 46 1 0 47 0 0
10 5963 0 0 0 0 0 0 7 90 26 0 116 0 0
11 3779 14 4 0 3 25 5 0 34 8 4 42 0 0
12 4181 22 4 2 7 6 0 0 57 36 6 93, 0 0
13 3136 0 0 0 0 0 52 1 57 65 0 122 0 0
14 2948 0 0 0 0 0 0 2 29 40 0 69 0 0
15 4095 1 0 0 0 4 6 0 33 23 0 56 369, 0
16 4182 23 0 0 0 11 3 11 47 75 0 122 3072 0
17 3651 0 0 0 0 0 13, 0 43 38 0 81 7750 0
18 1499 0 0 0 0 0 12 0 43 75 0 118 7730 0
19 2432 0 1 0 0 0 3 0 34, 23 1 57 3830 0
20 321 0 0 0 0 0 12 0 36 13 0 49 63 1
21 358 0 0 0 0 0 6 0 13 13 0 26 54 1
22 693 0 0 0 0 0 11 0 13 13 0 26 111 1
23 723 0 0 0 0 0 12 0 22 22 0 44 561 1
24 408 0 0 0 0 0 7.5 0 5 36 0 41 249 1
25 300 0 0 0 0 0 24.5 0 6 16 0 22 240 1
26 618 0 7 3 2 0 11.5 0 29 32 10 61 534 1
27 1639 4 7 3 2 4 11.5 0 28 32 10 60 720 1
28 1506 4 7 3 0 0 11.5 0 9 17 10 26 291 1
29 5747 4 7 0 10 ,2 203 1 6 6 7 12 0 1

30 370 0 0 0 0 0 5 0 1 1 0 2 321 1
31 11936 6 8 5 46 3 245 6 62 89 13 151 12 1
32 4680 0 0 0 5 0 229 1 17 17 0 34 0 1
33 3900 13 0 0 0 9 23 4 106 131 0 237 172 1

AN EMPIRICAL INVESTIGATION INTO SOFTWARE EFFORT ESTIMATION BY ANALAGY 121

The Kemerer Data Set

Project
Name

Effort Duration KSLOC AdjFP RawFP

1 287 17 253.6 1217.1 1010

2 82.5 7 40.5 507.3 457
3 1107.31 15 450 2306.8 2284
4 86.9 18 214.4 788.5 881
5 336.3 13 449.9 1337.6 1583
6 84 5 50 421.3 411
7 23.2 5 43 99.9 97
8 130.3 11 200 993 998
9 116 14 289 1592.9 1554
10 72 5 39 240 250
11 258.7 13 254.2 1611 1603

12 230.7 31 128.6 789 724
13 157 20 161.4 690.9 705
14 246.9 26 164.8 1347.5 1375
15 69.9 14 60.2 1044.3 976

AN EMPIRICAL INVESTIGATION INTO SOFFwARE EFFORT ESTIMATION BY ANALOGY 122

The MERMAID Data Set

Project
Ref

Effort Adj
FP

Raw
FP

Proj
Type

AF I 2 3 4 5 6 7 8 9 10 11 12 13 14

1 238 23 23 E 5 0 4 0 1 5 4 4 4 0 2 4 0 2
2 490 38 42 E 3 2 3 2 2 4 2 2 2 1 0 2 1 0
3 616 36 44 E 3 3 0 0 0 5 0 2 1 0 0 0 3 0
4 910 57 51 E 5 4 4 4 4 5 4 3 5 0 3 2 3 0
5 1540 36 47 E 0 0 0 2 0 0 0 0 4 0 3 2 0 0
6 1680 29 38 E 0 3 0 0 0 1 4 0 2 0 0 1 0 0
7 1750 23 34 E 0 1 2 0 0 0 0 0 0 0 0 0 0 0
8 3234 99 115 N 3 4 0 0 0 1 0 2 0 5 0 2 0 4
9 3360 605 550 N 5 1 4 2 2 5 4 4 2 3 1 4 3 5
10 3850 34 42 E 3 1 0 0 3 1 2 1 4 0 1 1 0 0
11 5460 338 371 N 1 0 0 5 4 5 2 0 0 0 5 4 0 0
12 5110 133 157 E 3 3 3 2 1 1 0 2 2 0 3 0 0 0
13 6440 118 107 E 5 4 4 4 4 5 5 4 4 0 1 5 0 0
14 17920 653 634 N 3 3 3 2 4 4 2 3 1 3 3 5 0 2
15 18620 502 528 E 3 1 0 4 4 0 4 0 4 4 0 0 2 4
16 21280 306 268 N/A 5 5 4 3 4 5 4 4 4 1 2 2 3 3
17 24850 170 179 N 0 0 4 4 5 0 4 0 1 0 5 3 2 2
18 48230 911 884 N 3 3 3 2 4 4 2 3 1 3 3 5 0 2
19 3415 221 235 E 5 0 0 0 0 5 2 3 2 3 0 5 0 4
20 11551 613 626 N/A 3 2 4 2 3 5 0 5 2 1 0 4 0 2
21 4860 1507 1408 N 5 0 3 1 1 5 1 4 4 1 5 4 3 5
22 14224 559 N/A E
23 9080 218 291 E 0 0 0 0 2 0 0 0 4 1 3 0 0 0
24 1635 479 499 N 5 0 1 0 0 5 3 4 4 1 0 5 0 3
25 296 26 33 E 4 0 0 0 0 5 0 2 0 0 1 1 1 0
26 3720 125 137 E 5 1 0 1 1 5 0 4 5 0 0 0 3 1

27 4672 205 N/A E
28 2065 105 109 E 4 3 1 0 3 2 2 2 4 0 3 1 4 2
29 1690 114 107 E 5 4 4 5 5 5 0 5 3 0 0 1 0 2

30 504 36 39 E 5 0 0 0 0 5 2 3 2 3 0 5 0 4

AN EMPIRICAL INVESTIGATION INTO SOFTWARE EFFORT ESTIMATION BY ANALOGY 123

The Real-Time 1 Data set

Project
Ref

Effort Host
Machine

Life Cycle Documentation
Standard

1 573 SUN RTSAOOD DOD-2167A
2 446 SUN RTSAOOD DOD-2167A
3 127 SUN RTSAOOD DOD-2167A
4 400 SUN RTSAOOD DOD-2167A
5 189 SUN RTSAOOD DOD-2167A
6 200 IBM PC RTSASD INTERNAL
7 140 IBM PC RTSASD DOD-2167A
8 203 VAX RTSASD DOD-2167A
9 260 VAX MASCOT INTERNAL
10 2100 VAX WATERFA DOD-2167A
11 174 VAX WATERFA INTERNAL
12 1000 VAX RTSAOOD JSP 188
13 1679 VAX RTSASD INTERNAL
14 1225 VAX RTSASD INTERNAL
15 394 VAX RTSASD INTERNAL
16 1600 SUN MASCOT JSP 188
17 107 IBM PC RTSASD DOD-2167A
18 134 SUN RTSAOOD JSP 188
19 455 VAX MASCOT INTERNAL
20 270 VAX MASCOT INTERNAL
21 1042 SUN RTSASD INTERNAL

AN EMPIRICAL INVESTIGATION INTO SOFTWARE EFFORT ESTIMATION BY ANALOGY 124

The Telecoms 1 Data Set

Project
Ref

Actual
Effort

Files

1 305.22 105
2 330.29 237
3 333.96 98
4 150.4 24
5 544.61 197
6 117.87 39
7 1115.54 284
8 158.56 37
9 573.71 53
10 276.95 116
11 97.45 38
12 374.34 180
13 167.12 43
14 358.37 84
15 123.1 257
16 23.54 6
17 34.25 5
18 31.8 3

