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Abstract 

Most practitioners recognise the important part accurate estimates of development effort play 
in the successful management of major software projects. However, it is widely recognised 

that current estimation techniques are often very inaccurate, while studies (Heemstra 1992; 

Lederer and Prasad 1993) have shown that effort estimation research is not being effectively 

transferred from the research domain into practical application. Traditionally, research has 

been almost exclusively focused on the advancement of algorithmic models (e. g. COCOMO 

(Boehm 1981) and SLIM (Putnam 1978)), where effort is commonly expressed as a function of 

system size. However, in recent years there has been a discernible movement away from 

algorithmic models with non-algorithmic systems (often encompassing machine learning 

facets) being actively researched. This is potentially a very exciting and important time in this 

field, with new approaches regularly being proposed. One such technique, estimation by 

analogy, is the focus of this thesis. 

The principle behind estimation by analogy is that past experience can often provide insights 

and solutions to present problems. Software projects are characterised in terms of collectable 
features (such as the number of screens or the size of the functional requirements) and stored 

in a historical case base as they are completed. Once a case base of sufficient size has been 

cultivated, new projects can be estimated by finding similar historical projects and re-using 

the recorded effort. 

To make estimation by analogy feasible it became necessary to construct a software tool, 

dubbed ANGEL, which allowed the collection of historical project data and the generation of 

estimates for new software projects. A substantial empirical validation of the approach was 

made encompassing approximately 250 real historical software projects across eight industrial 

data sets, using stepwise regression as a benchmark. Significance tests on the results accepted 

the hypothesis (at the 1% confidence level) that estimation by analogy is a superior prediction 

system to stepwise regression in terms of accuracy. A study was also made of the sensitivity 

of the analogy approach. By growing project data sets in a pseudo time-series fashion it was 

possible to answer pertinent questions about the approach, such as, what are the effects of 

outlying projects and what is the minimum data set size? 

The main conclusions of this work are that estimation by analogy is a viable estimation 

technique that would seem to offer some advantages over algorithmic approaches including, 

improved accuracy, easier use of categorical features and an ability to operate even where no 

statistical relationships can be found. 
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Chapter 1 

Introduction 

Most practitioners recognise the important part accurate estimates of development effort play 

in the successful completion of major software projects. Accurate estimates are not only 

necessary for tendering bids, where both over and under estimates can be financially 

disastrous, but also for monitoring progress, scheduling resources and evaluating risk factors. 

The estimation of project effort however is far from easy. For one thing software projects are 

commonly one offs, which renders much of the past estimating experience difficult to use. 

Couple this with the complex human and political machinations of many software companies 

and the need for estimates, when little more than sketchy details are known about proposed 

systems, and you have a very poor basis on which to found estimates. 

It is now four decades since the first attempts (Farr and Zargorski 1965; Nelson 1967) were 

made to capture and model the factors that affect software development effort. Unfortunately, 

the little evidence that is available suggests that for the most part, the industrial community is 

very slow at embracing research advances in software estimation technology (Lederer and 

Prasad 1993; Subramanian and Breslawski 1995). For example Heemstra (1992) reports the 

results of a survey of 598 Dutch software companies which found that while 50% captured 

data on completed projects, only 14% made any attempt to generate any formal models. To 

some extent this can be seen as a failure by researchers to address the real needs of the 

software community, who are under pressure to make estimates based on ill defined 

specifications and ever changing technology. Unfortunately, what the research community 

has to offer is estimation solutions that require clearly specified problems with measurable 

features (Kitchenham 1996). 

Until recently the weight of effort estimation research has largely been focused upon the use 

of algorithmic models, where typically effort is expressed as a function of product size. A 

good example of such a model is Boehm's COCOMO (1981) which provides a number of 

equations that, it is hoped, adequately model the user's development environment. However, 

it is a major failing of this approach that it is dependent on quantifiable inputs and often not 

appropriate at the bidding stage of a project, when thT most important estimates are often 
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required. Another serious problem has been the lack of consistent accuracy experienced when 

using these models (see for example Kemerer (1987) who reports absolute average errors 
between 85 and 772 percent for four popular cost models). In response to these problems 

many researchers (Vicinanza and Prietolla 1990; Karunanithi, Whitley et al. 1992; 

Mukhopadhyay and Kekre 1992; Samson, Ellison et al. 1993; Venkatachalam 1993; Jorgensen 

1995; Serluca 1995; Prietula, Vincinanza et al. 1996; Gray and MacDonell 1997) are currently 

exploring a variety of non-algorithmic techniques (typically incorporating some 'machine 

learning' element). It is hoped that these will provide solutions more suitable for practitioners, 

together with a greater degree of accuracy than is currently being experienced. 

The focus of this thesis is on one such machine learning technique known as estimation by 

analogy. 

1.0 Motivation for Thesis 

The potential benefits of accurately estimating development costs are large, especially when 

the vast amount of money spent on new and legacy software systems is considered; yet it is 

widely recognised (e. g. (Heemstra 1992; Lederer and Prasad 1993)) that few companies are 

proficient at estimating effort. The motivation for this thesis is essentially to provide the 

estimating community with a fresh approach to the estimation problem, which might 

complement present practices. The main reasons for this are: 

i) Poor results from algorithmic models. Numerous empirical studies into the accuracy of 

algorithmic models have been published in the literature (for example (Golden, 

Mueller et al. 1981; Kemerer 1987)). Unfortunately, the over-riding trend is inaccuracy 

and inconsistency with average errors over 100% common. By exploring techniques 

other fihan. algorithmic models it will be possible to build effort prediction systems 

that are not necessarily reliant on there being a strong statistical relationship present. 

ii) Too much research effort has been spent on algorithmic models to the detriment of other 

potential techniques (Kitchenham 1996). Algorithmic models have absorbed the greater 

part of four decades of research effort in effort estimation; however, there is little 

tangible evidence of any improvement in accuracy or indeed usage. The suggestion, 

therefore, is to apply research effort to more diverse estimation techniques that might 
better address the problems experienced by practitioners 
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iii) Methods more appropriate for early estimation are required. As has been stated, a major 

problem with the use of algorithmic models is their dependence on quantifiable 
inputs. This often renders them ineffective during the early stages of a software 

project's conception. More appropriate approaches need to be found that can make 

estimates using the type of data that is present during the early stages of a project. 

1.1 Research Objectives 

The work described within this thesis is a practical investigation into the accuracy and efficacy 

of a non-algorithmic approach to the effort estimation problem. The technique, known as 

estimation by analogy, has received little attention from the software community and this 

work is an attempt to partially redress this imbalance with the following objectives: 

i) To investigate the viability of analogical reasoning for the purpose of estimating the required 

effort to complete software projects. 

ii) To develop an automated tool that supports the functionality required to generate estimates by 

analogical reasoning. 

iii) To validate the analogical reasoning technique on data taken from industrial environments. 

1.2 Scope of the Investigation 

While this -work could conceivably be applied to other software measurement problems such 

as the prediction of project duration or defect density, the focus of this thesis is exclusively on 

the prediction of software project effort. In reality, it is project costs rather than effort that we 

are trying to capture. However, for a number of reasons, such as: 

i) work effort is easier to compare across different companies, 

ü) production costs are often too sensitive to be made public, 
iii) cost is determined largely by effort, 

effort (measured in for example work hours) is used as a convenient proxy with the 

assumption that there is a calculable linear relationship between effort and cost. Although 

effort is by no means the only driver of project costs, it is usually by far the most significant. 
The definition of what constitutes effort varies widely between development environments 
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studied but is expected to include as a minimum, the effort expended during the 

requirements definition, design, coding and testing phases. 

The term software project is not restricted to the development of new software but can also 

refer to maintenance or enhancement projects, which reflects the large amount of effort spent 

on such projects. However, hypothetical or educational projects such as those commonly 

carried out by students are not considered within this thesis. 

During the course of the thesis the terms effort and cost will be used interchangeably, as will 

the terms estimation and prediction. This is commonplace within the literature. 

1.3 Outline of Thesis 

Chapter 2: 

This chapter examines the general principles of effort estimation and in particular looks at the 

body of research on algorithmic prediction systems. It concludes that research into 

algorithmic models has reached a natural zenith with the use of simple statistical techniques. 

It also agrees with Kitchenham (1996) that too much attention has been focused on algorithmic 

models to the detriment of other potential techniques. 

Chapter 3: 

In response to the lack of convincing results from algorithmic models, chapter 3 examines a 

range of non-algorithmic approaches to effort estimation that are coming to the attention of 

researchers as possible answers to the effort estimation problem. It concludes that these new 

techniques can potentially offer a number of advantages over algorithmic techniques and that 

more research work is certainly warranted. 

Chapter 4: 

This chapter focuses on one particular non-algorithmic technique known as estimation by 

analogy or case-based reasoning, which has received very little attention in the effort 

estimation literature. It describes the development of the approach and construction of a 

software tool that facilitates estimation by analogy. 
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Chapter 5: 

The software tool described in the previous chapters is now applied to eight industrial data 

sets to empirically validate the analogy approach. The results from the tool are compared to a 

commonly used algorithmic approach (stepwise linear regression) and conclusions are drawn 

about their relative accuracy. It is found that the analogy approach is very flexible and can be 

used in circumstances that prohibit the use of algorithmic models. 

Chapter 6: 

Chapter 6 describes a study of the sensitivity of the analogy approach when applied to four 

data sets. By adopting a pseudo time series analysis approach, questions about aspects of 
dynamic behaviour can be answered such as, is it sensitive to the addition of outlying projects 

and what is the minimum number of projects required before the technique becomes 

effective? 

Chapter 7: 

The final chapter summarises the preceding research work and concludes that estimation by 

analogy is a suitable alternative or complement to algorithmic modelling techniques. The 

contributions of the work to empirical software engineering are stated before limitations of 

the work are acknowledged and avenues for further work are explored. 



Chapter 2 

A History of Research Progress in the Development of 
Algorithmic Software Cost Models 

2.0 Introduction 

A brief history of software effort estimation is presented here to give context to the current 

state of the art, and as a prelude and justification for the research presented in later chapters. 

By critical discussion of all the major approaches proposed from the mid 1960s to the present, 

it is hoped to show the significant themes and developments that have shaped estimation 

research and practice. 

Traditionally estimation practice has been divided between seven separate approaches 

(Boehm 1981). These are: 

" Algorithmic Models: where mathematical models are used to represent effort as a 
function of one or more variables. 

" Expert Judgement: where one or more 'domain experts' are consulted. 

" Analogy: where historical project details are recalled for use in estimating a new project. 

" Top Down: where effort is estimated for the whole project before being divided between 
its components. 

" Bottom Up: where individual components are estimated and then the results aggregated. 

" Parkinson: where the available resources determine the estimate. 

" Price to Win : where the estimate is influenced by the need to win a contract or be first in 
the marketplace. 

Of the seven, the last two, Parkinson and Price to Win are not really estimation techniques as 

such and should not have any involvement in the estimation process. Of the remaining five 

techniques, four (expert judgement, analogy, Top down, and bottom up) are usually 

considered as informal non-repeatable approaches, where a domain expert is normally 
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required. Only algorithmic models are independent of the availability of domain experts and 

can be seen as a repeatable process. It is for this reason that algorithmic models have been the 

primary focus of estimation research effort. 

Algorithmic models attempt to represent the relationship between effort and one or more 

project characteristics. The main 'cost driver' used in such a model is usually taken to be some 

notion of the size of the software, for example the number of lines of source code, so that a 

very simplistic example model might be of the form: 

Effort =a* size 
(Eqn. 2.1) 

where a is a productivity constant. More sophisticated models introduce economies or 

diseconomies of scale coefficients. It is this type of model that is the focus of the remainder of 

this chapter. This chapter will show how 'the state of the art' in effort estimation research has 

matured over time. From the initial ad hoc use of productivity factors in modelling effort, 

through the introduction of complexity factors as a way of calibrating a model, on to the 

development of various function counts as alternatives to lines of code, and finally, after a 

series of empirical validations failed to demonstrate the accuracy of complex constrained 

models, to a more pragmatic approach where a simple unconstrained process for estimation is 

advocated based around simple statistical procedures. 

2.1 Evolution of Effort Estimation Models 

The earliest software cost models began to appear in the literature from the mid 1960's 

onwards, perhaps arising from the practice of measuring employee productivity (Mohanty 

1981). Good descriptions of these early cost models can be found in (Mohanty 1981) and 

(Boehm 1981) while Jeffery (1991) provides a more up to date survey coupled with a method 

of categorising the models into three streams: 

i) Economic. 

Models developed from the economic studies of historical 

project data, typically utilising regression analysis 

ii) Rayleigh. 

Models based upon the Rayleigh-curve 
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iii) Function Points. 

Models that utilise measures of a programs functionality 

providing some advantage over lines of code 

Classifying effort models is useful as it allows the general principles of each to be discussed 

without the need to study the vagaries of each individual model. Since Jeffery's study, another 

category has emerged. 

iv) Non-algorithmic. 

This new class represents a significant movement away from the traditional algorithmic 

models and incorporates technologies such as neural networks, fuzzy logic systems and case- 

based reasoningl. It will be shown in the main body of this chapter, that research interest in 

non-algorithmic approaches is partly the result of the fact that mathematical modelling of 

effort has reached a research zenith in the practices suggested by researchers such as those 

involved with the MERMAID project (Kok, Kitchenharn et al. 1990). 

2.2 Early Economic Models - Pre 1976 

Although it wasn't until the mid 1960's that people began to develop and disseminate 

software cost estimation models, people like Herbert Bennington (1983) were estimating the 

effort required to produce large scale software systems as early as 1956. As a member of the 

SAGE project that adopted many software management techniques that were subsequently 

ignored by their peers, he estimated that it would cost $5,500,000 to produce a 100,000 

instruction system program. 

'In other words, =the time and cost required to prepare a system program are comparable 

with the time and cost of building the computer itself 

The SAGE costs as estimated by Bennington 'chilled' many of his peers as the common goal of 

the era was to produce instructions that cost less than $1 per line rather than $50. 

I Although grouped under a single category, in truth each non-algorithmic approach could be considered in its own category as 
each is very distinctive. 
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2.2.1 The First Algorithmic Models 

It was to be another ten years before the first models based upon statistical techniques were 

proposed, the earliest perhaps being the SDC (System Development Corporation) (Nelson 

1967) and the Farr and Zagorski (1965) models. These early models were characterised by 

their emphasis on covering large numbers of productivity factors, at the expense of the 

models construction. The SDC collected 104 variables in all for 169 software projects and used 

a simple linear regression technique to build the best possible model for the data (Eqn. 2.2. ) 

MM = -33.63 
+9.15(Lack of requirements) (0-2) 

+10.73(Stability of design) (0-3) 

+0.51(% Math instructions) 

+0.46(% Storage/retrieval instructions) 

+0.40(No. of subprograms) 

+7.28(Language) (0-1) 

-21.45(Business application) (0-1) 

+13.53(Stand-alone program) (0-1) 

+12.35(First program on computer) (0-1) 

+58.82(Concurrent hardware development) (0-1) 

+30.61(Random access device used) (0-1) 

+29.55(Different host, target hardware) (0-1) 

+0.54(No. of personnel trips) 

-25.20(Developed by military organisation) (0-1) 

(Eqn. 2.2) 

Where MM stands for Man Months of effort and an attribute that is followed by figures in 

brackets requires the user to supply a value in the range indicated. 

Boehm (1981) notes that, even when applied to the data from which it was developed, the 

model is not a very accurate predictor and further, that the algorithm is counter intuitive in 

that the constant is below zero. This gives the opportunity for an estimate of effort to be 

negative for small projects. Kitchenham (1990) also adds that the negative constant value 

implies that there are relationships amongst the input variables that result in the effort being 

over-estimated when all the variables are treated as independent. It is interesting to note that 

this model, while having some factors that can be seen as proxies of size (e. g. no. of 

subprograms and no. of personnel trips), has no definitive size parameter. The lesson soon 
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learnt from early attempts, such as these, was that multiple factor cost models tended to be 

unstable and that there would be little chance of porting these models to different 

environments due to the attributes selected. 

2.2.2 Wolverton 

Wolverton's (1974) approach to estimation assumes that software cost (measured in dollars 

rather than man-months) is linearly proportional to size. The four inputs to this model are: 

a) number of object instructions 

b) the degree of system difficulty (in the range 0 to 100 or easy to hard) 

c) the novelty of the system (new or old) 

d) the application area ( control, i/o, pre/post-processor, algorithm, data management or 

time critical ). 

Wolverton provides 10 equations that model cost per object as a function of (b), (c) and (d) 

and thus the estimate becomes, the number of object instructions multiplied by the cost per 

individual object. 

This model represents a step forward for a number of reasons. First, in differentiating 

between different application areas the model adopts a homogenisation strategy that is thus 

far unique. Second the input variables used are more intuitive than some of those used by his 

predecessors and third, the individual equations are kept simple with size and difficulty being 

the main inputs. The major criticism of the Wolverton model is that it adopts object lines of 

code rather than source lines of code as the input metric and that the output is measured in 

dollars rather than man-months. It is possibly because of this that the Wolverton model 

received less recognition than was perhaps deserved. 

2.3 Later Economic Models - Post 1976 

The economic models proposed from the late 1970's began to capitalise on the experiences, 

successes and mistakes of their predecessors. The individual algorithms often became simpler, 

single factor models with lines of code becoming the dominant expression of program size. 

Another element introduced to many of these models was a system of predictor or cost driver 

variables which were used to further refine estimates. Many of these variables have been 

identified as productivity factors and had been incorporated into the earlier cost models. 
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2.3.1 Walston & Felix 

Walston and Felix (1977) developed their effort model from a database of sixty projects 

collected in IBM's Federal Systems division. They expressed the relationship between effort 
(E) and program size (S) in the following equation (Eqn. 2.3) 

E=5.2*50.91 (Eqn. 2.3) 

It is interesting to note that the equation has an exponent less than 1.0, which means that 

there are economies of scale. That is, productivity increases as program size increases. This 

was one of the few studies to find this. Unfortunately the equation didn't adequately estimate 

actual effort for the projects from which it was developed. This led Walston and Felix to try 

incorporating more of the information available. The project database held information on a 

number of project factors and Walston and Felix used these to develop a productivity index. 

Sixty-eight factors were selected for analysis and refined by correlation analysis to twenty- 

nine that were found to be significantly correlated to productivity. The productivity index 

was calculated as follows: 

29 

I= Wi (Eqn. 2.4) 

i=ý 

where: 
I= productivity index for a project 
Wi = question weighting, calculated as one-half log10 of the ratio of total productivity change 

(highest to the lowest) indicated for a given question i 

Xi = question response (+1,0 or -1) depending on whether the response indicates increased, 

nominal or decreased productivity. 

They then used I in a regression equation to calculate productivity L which was in turn used 

to determine effort in the following equation: 

E=S /L (Eqn. 2.5) 

where S is measured in lines of code. 

Walston and Felix were aware that some of the productivity variables might be correlated but 

pragmatically chose not to take this into account. It is likely that many of the variables are 



AN EMPIRICAL INVESTIGATION INTO SOFTWARE EFFORT ESTIMATION BY ANALOGY 12 

almost certainly correlated, for example Conte et al. (1986) point to variables 15 - 18: 

"structured programming", "design and code inspections", "top-down development" and 

"chief programmer team usage" as being highly correlated, since a manager who encourages 

structured programming is equally likely to encourage all four practices. In the final analysis 

this model is important, not so much for the effort equations proposed, but rather, for the 

productivity factors used, many of which appear in later models from this period such as 

programmer experience and usage of modem practices. 

2.3.2 COCOMO 

Boelmn's (1981) COCOMO (COnstructive COst MOdel) is without doubt the most widely 

studied of all the cost models presented here. The popularity of this model is due to its ease of 

accessibility (other contemporary models, such as Rubin's ESTIIVLACS (Rubin 1983) and 

Putnam's SLIM (Putnam 1978), remain unpublished) and ease of use. COCOMO is more than 

just a cost model in that it also incorporates models for development time and schedule, but 

the focus of this thesis chapter is with COCOMO's effort estimation. COCOMO presents three 

single factor effort equations that relate size, measured in Thousands of Delivered Source 

Instructions (KDSI) to effort in Man-Months (MM), see Eqn. 2.6. 

'nom = a(KDSI)b (Eqn. 2.6) 

The values for a and b depend on the development mode (Organic, Semi-detached or 

Embedded) of the project and are summarised in table 2.1. Organic mode projects are small 
(typically less than 50 KDSI of new software) developed within stable environments with a 

relaxed requirement specification. A project is classed as Embedded if it is relatively large 

and is operated under tight constraints. This type of project will usually require a greater 
degree of innovation. The Semi-detached project lies between these two extremes. 

Mode Basic Intermediate/Detailed 

a b a b 

Organic 2.4 1.05 3.2 1.05 

Semi-detached 3.0 1.12 3.0 1.12 

Embedded 3.6 1.20 2.8 1.20 

Table 2.1 COCOMO parameter values 

It can be seen that all of Boehm's equations demonstrate diseconomies of scale, that is to say, 

the larger the product, the lower the productivity. Also, as might be expected, the size of the 
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diseconomy (i. e. coefficient b) is increased as the projects become more difficult to control (i. e. 
from Organic to Embedded). This is basically the extent of Boehm's basic model, which 

should be regarded as a quick and rough estimate. 

The intermediate version of the COCOMO model allows the basic estimate to be adjusted by 

15 cost drivers that are intended as refinements to the estimate to take account of local project 

characteristics. The cost drivers are spread across four categories (product, computer, 

personnel and project) and are assigned ratings2 (six ratings from Very Low to Extra High) 

depending on the extent to which they affect the project in question. So for example, the first 

driver, required software reliability, can be rated 0.75 if reliability is a minor consideration, while 

if human life is dependent on the reliability of the product the rating would be Very High or 

1.40. The basic effort estimate is then multiplied by each of these factors to determine the 

adjusted estimate value. Finally, the intermediate model recognises that when the different 

components of the project have been determined, it is likely that individual components will 

have different cost driver ratings. These components can be estimated individually using the 

process described above and collated to produce an even further refined estimate. 

The philosophy behind the detailed version of COCOMO is that the more detail provided as 

input to a cost estimate, the more accurate the resulting estimate is likely to be. This is 

reflected in the introduction of phase sensitive effort multipliers, for example, a driver 

concerned with computer response time is unlikely to have much effect on the requirements 

phase. Also, Boehm suggests that the different levels of the project hierarchy (e. g. module, 

subsystem and system) should be treated differently to achieve more accurate estimates. 

2.3.3 Critique of the COCOMO Approach 

Considering the wide-spread popularity of the COCOMO model, it is remarkable that, to 

date, it has received very little critical attention in the literature3. Kitchenham and Taylor 

(1984) discuss some of the problems posed by COCOMO's underlying assumptions. First, 

they point out that all the input parameters, the model coefficients, the cost drivers and their 

ratings, and the distribution of effort across phases, were estimated by experts and thus may 

be subject to human bias. Second, and related, is that the number of variables that would need 

to be collected to perform a validation of all the model parameters is huge. And third, they 

draw our attention to the fact that there is a dichotomy between the value of the parameters 
for basic COCOMO and those of the intermediate and detailed equations. This further 

Z The values for which are pre-defined by Boehm. 
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demonstrates the subjective nature of the whole process and highlights the question of 

whether the parameters are transportable to other environments. 

Kitchenham and Taylor (1984) also assessed the stability of COCOMO for a test project of 

14,000 lines of code. They found that poor choice of development mode was more dangerous 

than a mis-estimate of size and further, that a mis-estimate of just one of the 15 cost drivers 

was potentially as dangerous as either of the above. This last point is highlighted by Conte et 

al. (1986) who demonstrate that the maximum estimate (i. e. all cost drivers at the highest 

value) can be 800 times the minimum estimate for a given lines of code count. Criticism of the 

cost drivers is also made by Kitchenham (1992) who re-iterates the findings of the MERMAID 

Esprit projects that: a) there is evidence that some of the cost drivers are not independent, b) 

that some of the cost drivers may not be relevant in all environments and c) that it is difficult 

to make sure that estimators evaluate the cost drivers in the way they were intended. 

A further common problem associated with COCOMO, and indeed all of the models thus far 

discussed, is the need for subjective estimates of size and productivity drivers. The risk here is 

that poor input estimates will lead to misleading effort projections although Boehm does 

recommend that the inputs be re-evaluated as more information becomes available. 

On a more positive note, Miyazaki and Mori (1985) report an attempt to calibrate the 

COCOMO model by tailoring it to their own environment. By following the prescribed 

tailoring methodology and pairing down the list of cost drivers they generate a model that, for 

their data, has a relative error of 20%. 

2.3.4 Revisions to the COCOMO Model 

Since the seminal 1981 COCOMO work, Boehm has twice developed variants of COCOMO to 

reflect advances in-software technology. Ada-COCOMO (Boehm and Royce 1989) was first 

proposed in 1987 and was based on data collected from projects using both the Ada language 

and process model. Similarly, with the original COCOMO model, the input metric is size 

which is refined by a number of cost drivers. However, the nominal effort equation includes 

four weights that reflect the Ada design process before any cost drivers are used. The cost 
drivers remain true to the original model with the addition of four new classifications: 

RUSE : The need for reusable code 

VMVH : Volatility of virtual host machine 

3 The reasons for this are not clear-cut although it is plausible that COCOMO is pitched at the right level of complexity while 
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VMVT : Volatility of target machine 
SECU : Security classification 

However, the values for the drivers are revised from the original with the nominal rating no 
longer exclusively 1.0. 

A further revision to the COCOMO model i. e. COCOMO 2.0, (Boehm, Clark et al. 1995; 

Boehm 1997) has recently been unveiled, that claims to be tailored to modern software 

engineering practices such as rapid development. The underlying principles of the original 
COCOMO again remain preserved, but a number of models are now proposed that represent 

what the authors consider to be the key market sectors of future software development. 

Unfortunately, the models still appear to be experiential (in terms of the cost drivers and 

equation co-efficients) and complex (in relation to calibration). One major positive change is 

that COCOMO 2.0 allows size to be expressed in terms of the available data such as Object 

and Function Points. This removes some of the guess work involved in the estimation of lines 

of code. 

2.4 Rayleigh-Curve Models 

The use of the Rayleigh probability curve for effort and staff level modelling was first 

suggested by Norden (1963), based upon an investigation he conducted into the build-up and 
decline of staff levels in engineering and development projects at IBM. The result was a series 

of manpower curves that he found to be similar in nature to the Rayleigh-curve (Fig. 2.1). The 

Rayleigh-curve is an example of an exponentially declining curve where a project is described 

with an initial sharp build-up of staff levels followed by a gradual reduction as the project 

evolves and people graduate to new projects leaving only maintenance staff. 

Staff Level 

Time 

Figure 2.1 : The Rayleigh-curve 

remaining mechanistic and prescriptive enough for it to be appealing to software managers. 
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2.4.1 The Putnam Model 

The Rayleigh-curve was first applied to software development projects by Putnam (1978) 

when he analysed a very large database of military projects. This led him to promote a 
Proprietary estimation tool, called SLIM. The specific equation that models the relationship 
between effort, size and time is given below. 

Ss=CK1/3T4/3 

(Eqn 2.7) 

Where Ss is measured in lines of code (LOC). The constant c is a technology factor that takes 

into account the affect of numerous productivity related aspects of the project such as 

complexity. K represents the total life-cycle effort excluding requirements specification and T 

is the development time measured in years. The constant c, described by Putnam as a "funnel 

through which all system development must pass", can be assigned one of 20 values in the 

range 610 to 57,314 and as c increases so does productivity. The estimator also has control of 

the slope of the curve using what is known as the Manpower Build-up Index (MBI). The 

higher the MBI, the sharper the build up of staff at the start of the project. 

Rayleigh-curve models place particular emphasis on the trade-off's between effort and 
development time. Basically, a reduction in development time leads to a severe increase in 

effort required, with the opposite being true for time increases. Rewriting equation 2.7 to look 

at the life-cycle effort gives: 

K= (Ss/c)3/I 

(Eqn 2.8) 

This has come under attack from a number of researchers (Parr 1980; Basil and Beane 1981; 

Jeffery 1987; Kitchenham 1992). In fact Putnam himself found from studying 750 projects that 

the relationship held for only 251. 

2.4.2 Critique of The Putnam Model 

Putnam's assumptions and model have been subject to a number of criticisms in the literature. 

Both Jeffery (1987) and Kitchenham (1992) have challenged the assumption that a reduction in 

the time-scales increases effort and vice versa. Kitchefiham and Taylor (1984) found that 
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prediction of effort from the Putnam model is very sensitive to the mis-estimation of both size 

and the c value. Estimation of c, just one level either side of its correct level, can have a 
dramatic effect on the estimate; likewise with mis-estimates of the LOC value S. They also 
found that the amount of sensitivity experienced varied in proportion to the size of the c and 
Ssvalues being used (smaller values being more sensitive). 

Parr (1980) criticises many of the underlying assumptions of the Putnam model including the 

fact that it disregards the initial stages (exploratory design /specification) of a project. He 

argues, that in reality every project starts with a certain staffing level and that these early 

activities have a major influence on the rest of the project. In an attempt to correct the 

problems with the Rayleigh-curve Parr offers a new curve known as sech2 (Fig 2.2) which has 

a non-zero y-intercept. 

Staff Level 

Time 

Figure 2.2 : Parr's sech2 curve 

Basili and Beane (1981) compared the Putnam and Parr curves along with a parabola and 

trapezoid on seven projects. They found that of the four, the Parr curve was the most 

consistent with the data and that Putnam's model fitted least well. 
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2.5 Function Point Models 

The numerous problems associated with the use of lines of code when estimating effort have 

been well documented in the literature (DeMarco 1982; Jones 1986). In the search for an 

alternative input metric for project size Albrecht (Albrecht 1979; Albrecht and Gaffney 1983), 

proposed a measurement of system functionality that could be collected at the requirements 
documentation stage. This technique rapidly gained popularity throughout the 1980's and 
1990's because of the overwhelming advantages it offers over LOC, such as availability earlier 

in the project life-cycle and language independence. 

2.5.1 Albrecht's Function Points 

Albrecht, first published the Function Point methodology while working at IBM in 1979. The 

Function Point is a dimensionless unit of system functionality that can be evaluated by the 

analysis of a project requirements document, classifying and counting the individual function 

types. Albrecht originally proposed four function types (Albrecht 1979): files, inputs, outputs 

and inquiries with one set of associated weights and ten General System Characteristics. By 

1983 (Albrecht and Gaffney 1983) this was expanded (table 2.2) with an extra function type, 

three sets of weighting values and fourteen General System Characteristics. 

Function Type Simple Average Complex 

External Input 3 4 6 

External Output 4 5 7 

Logical Internal file 7 10 15 

External Interface File 5 7 10 

External inquiry 3 4 6 

Table 2.2 1983 function types and weights 

The individual functions identified from the specification are weighted according to their 

complexity and the sum of the weighted function types becomes the Unadjusted Function 

Point count (UFP) for the system. Albrecht originally provided textual guidelines on how to 

rate the complexity of function types. More recently a more objective approach has been 

devised that relates complexity to the number of file, record and data element types 

referenced by the function type (IFPUG 1994). ' 



AN EMPIRICAL INVESTIGATION INTO SOFTWARE EFFORT ESTIMATION BY ANALOGY 19 

1 Data Communications 

2 Distributed Functions 

3 Performance 

4 Heavily Used Configuration 

5 Transaction Rate 

6 Online Data Entry 

7 End User Efficiency 

8 Online Update 

9 Complex Processing 

10 Reusability 

11 Installation Ease 

12 Operational Ease 

13 Multiple Sites 

14 Facilitate Change 

Table 2.3 General System Characteristics (GSC) 

The next step is to assess the extent to which the fourteen General System Characteristics 

(Listed in table 2.3) impact on the projects development environment. Each characteristic can 

be rated from 0- no influence to 5- strong influence. The sum of all the characteristics is then 

modified (Eqn. 2.9) to become the Value Adjustment Factor (VAF) in the range 0.65 -1.35. 

14 

VAF = 0.65 + 0.01 1 GSCC (Eqn. 2.9) 
i-ýl 

And that in turn is multiplied by the UFP to create the Adjusted Function Point (AFP) count. 

Thus the AFP value-will be within ±35% of the original UFP figure. 

2.5.2 Critique of the Function Point Approach 

As already mentioned, the use of Albrecht's Function Points is considered to have a number 

of advantages over LOC as an input to a cost model. Not least of these is the fact that the 

function size can be counted, rather than estimated, at an earlier stage in a project's life-cycle. 

However, many researchers have expressed concern over the underlying philosophy of 

Function Points, while others have empirically validated the ability of Function Points to 

predict effort on different data sets with varying degrees of success. 
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Problems have been reported by researchers investigating inter-rater reliability, that is, the 

potential problem of different Function Point counters generating dissimilar results for the 

same system. This problem is accentuated by the difficulties of automating the collection 

process. A study by Kemerer and Porter (1992) reported variations in the range of counts, 

over 3 case studies, to be around 12%. Low and Jeffery (1990) found within- organisation 

variation to be within 30%. These both confirmed Rudolph's (1983) findings that Function 

Points were estimated within 30% of the mean. 

Function Points represent an experiential approach to effort modelling. That is, the model 

components are derived by expert opinion and by trial and error. This leaves Shepperd (1994) 

expressing surprise at the "non-linearity, indeed arbitrariness" of the weightings for the 

function types (e. g. 3-4- 6) and the breakpoints when determining function type complexity 

(e. g. 1-4,5-15, ? 16). He also notes the possible conflict of interest between this "debate and 

trial" approach and Albrecht's justification for the weights as "numbers reflecting the relative 

value of the function to the user/customer". The value of a function from a user's point of 

view doesn't have a direct influence on project costs. Symons (1988) is another who cannot 

rationalise some of the differences between weighting values. He suggests that a "more 

objective assessment of the weights seems advisable". Another problem reported by 

Kitchenham and Kansala (1993) and by Jefferey and Stathis (1993) is the lack of independence 

between the counts for some of the function types. The use of inter-dependent inputs to an 

estimation model can lead to the repeated capture of the same underlying phenomenon, 

artificially enhancing its overall effect. 

Once the AFP count has been calculated it is used either as an input to a cost model, perhaps 

using regression techniques, or is converted to LOC for input to a model such as COCOMO. 

This conversion can either be through one of the published conversion rates, see for example 
(Behrens 1983), or preferably by the collection of historical LOC and Function Point data so 

that the conversion-rate can reflect local conditions. A number of studies have focused on 

verifying the assumption that Function Points are strongly correlated with effort (Albrecht 

and Gaffney 1983; Kemerer 1987; Desharnais 1988). As might be expected Albrecht reports a 

strong positive correlation (R2 = 0.87) using the data set from which Function Points were 
developed. However this is placed in perspective by Knaff and Sacks (1986) who point out 

that without three particularly large projects (R2 is known to be sensitive to outlying points) 

the R2 is only 0.42. Kemerer and Desharnais's findings are more typical of the general pattern. 
The results they got from correlating AFP to effort on two independent data sets were an RZ of 
0.55 and 0.54 respectively. It is interesting to note that in both these experiments, the RZ values 
for UFP counts were not significantly different from the AFP values, calling into question the 

benefit of the VAF. 
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Many researchers see the advantages to be gained from calibrating Function Points to the 

environment in which they are being collected. This enables companies to produce cost 

estimates initially based on informal analogy, and later, when the historical database has 

grown sufficiently, by use of statistical approaches. However, the calibration of Function 

Points counts poses a considerable problem when the five Function types and their three 

weights, the fourteen General Systems Characteristics and the coefficients (Productivity 

function (x and perhaps exponential ß) of the cost model are considered. For this reason 
Shepperd (1994) suggests that calibration be kept simplistic with adjustments to the 

coefficients of the model. 

2.5.3 Adaptations to Albrecht's Function Points 

Mark II Function Points (Symons 1988; Symons 1991) were proposed by Symons as an 

alternative to Albrecht's approach. Driven by some of the shortcomings of Function Points 

outlined above, Symons adopted the view that a system is made up of a collection of logical 

transactions, as opposed to delivered customer functions, each having an input, process and 

output component. The Unadjusted Function count for Mark II (based upon data collected for 

twelve systems) is defined as : 

UFP = 0.44N + 1.67Ne + 03 8No (Eqn. 2.10) 

where Ni is the number of input data element-types 

Ntis the number of entity-types referenced 

N,, is the number of output data element-types 

Next the Adjusted Function Point count is determined using a similar set of system 

characteristics to Albrecht's, with the addition of six new GSC's (table 2.4), the twentieth 

representing any characteristics the user feels should be included. 
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15 Requirements of Other Applications 

16 Security, Privacy, Auditability 

17 User Training Needs 

17 Direct Use by Third Parties 

19 Extraordinary Documentation Requirements 

20 Client Defined Characteristics 

Table 2.4 Symon's new General System Characteristics 

When Symons attempted calibration of the 20 GSC's he found that for some of the factors, a 

coefficient of 0.005, rather than Albrecht's mandatory 0.01, was more accurate, which 

contradicts the notion that Function Points are language independent. 

2.6 Empirical Validation of Cost Models 

While researchers continue to expose the strengths and weaknesses of the underlying theory 

behind cost models, to the pragmatic software manager one of the major justifications for the 

use of cost models is the level of accuracy (s)he can expect. The adoption and appropriate use 

of any one of the models described above requires a great deal of investment in collection and 

training time. Thus, some indication of the relative accuracy of different techniques when 

applied to data other than that which they were cultivated from is an essential research area. 

Unfortunately the number of empirical validations of cost models is very inadequate due to 

the lack4 of available historical data. 

It should be noted that there are a number of factors other than accuracy that should be 

considered in the, validation of a cost model, such as the availability and objectivity of the 

input parameters, robustness of the model etc. However for the purposes of research 

presented in future chapters, attention will be directed solely on studies of model accuracy. 

2.6.1 Validation Criteria 

A number of validation criteria are proposed in the literature (Boehm 1981; Conte, Dunsmore 

et al. 1986; Miyazaki 1993; Miyazaki, Terakado et al. 1994) and the most commonly used are 

4 There are various reasons for the lack of data, such as, many companies being reluctant to publish data for political reasons. 
However, the major barrier is the amount of effort required to collect the appropriate data. 
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briefly discussed below. Note, Eact is actual effort, Epred is predicted effort and n is the 

number of projects. 
i=n 

(i) Total Error - 
Y, (East 

- Epred) 
i=1 

Also commonly known as the sum of the residuals, this measures the total difference between 

actual and predicted values. An obvious drawback with this measure is that it provides no 

indication of the relative size of individual errors. However, when assessed as part of a global 

strategy, where estimates are managed across the range of a company's projects, a total error 

of zero would be desirable (Kitchenham and Linkman 1997). 

ý: fact - Epred 
(ii) Mean Percentage Error - 

100/ 
L 17 ; _I 

Eact 

The lack of attention to relative error size using total error discussed above is overcome with 

mean percentage error, a measure that takes account of the average size of estimate errors 

relative to the size of the project actuals. The major drawback with this measure is that it 

includes the direction of the errors, thus under-estimates and over-estimate can cancel each 

other out. 

:nI Eact - Epred l 100/ (iii) Mean Magnitude of Relative Error (MMRE) -L n , _, 
Eact 

MMRE is an indicator of the average error given by a prediction system. It differs from mean 

percentage error in that it takes the mean absolute relative error value and thus ignores the 

direction of the error. As a result information on the overall degree of over or under- 

estimation is lost. On the plus side, it can give a better indication of errors associated with an 

individual estimate. 

(iv) Balanced Mean Magnitude of Relative Error (BMMRE) - 
100 1-n IEact 

- Epredl 

InI min(Eact, Epred ) 

A major problem with MMRE is that it is not symmetrical (Miyazaki 1993), i. e. while under- 

estimates must be between zero and one, over-estimates are unbounded, thus the measure is 

biased towards prediction systems that under-estimate. BMMRE overcomes this problem by 

dividing the absolute error by whichever of the actual and estimate value is the smallest. 

(v) Prediction at level n or Pred (n) 

Pred(n) measures the percentage of estimates that are within n% of the actual values. Conte et 

al. (1986) suggest that n should be set at 25% and that a good prediction system should 
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achieve this accuracy level 75% of the time. The drawback with Pred(n) is that it provides no 
indication of the accuracy of estimates that don't fall within n%. 

(vi) Adjusted Coefficient of Determination - Adj R2 

Adj R2 is an indication of the amount to which the independent variables, the inputs to a 

prediction system, explain the variation seen in the dependent variable, i. e. effort. A value of 
Adj R2 tending towards one demonstrates a prediction system where a change in effort is 

effectively explained by a change in the independent variable(s). An Adj RZ value tending 

towards zero demonstrates a system where little of the variance is accounted for. The Adj R2 is 

generally used in preference to the raw R2 value because it compensates for the introduction of 

extra variables in multiple regression and allows comparison between models with differing 

numbers of variables. 

Various objective criteria for judging model performance have been proposed and used by 

validation researchers. Unfortunately, the problem is that no one individual measure provides 

an overall picture of performance and further, some techniques have model bias. Thus 

combinations of validation techniques would seem more useful. The value of having a 

number of independent techniques can be seen in the variety of ways model output can be 

used by different organisations. For example, many companies leave the problem of 

estimating to the individual project manager who is only interested in the difference between 

estimate and actual effort. Other companies use the manager's estimates at an organisational 

level. Kitchenham (1997) discusses a portfolio management strategy where uncertainties and 

risk are managed across the range of a company's projects. She advocates the use of the sum 

of the residuals (or total error) to monitor how well an estimation model used in this way 
behaves. If the sum of the residuals is close to zero, the model is considered well behaved, 

even if individual projects have large over or under-estimates. If the sum of the residuals is 

different to zero, new estimates with the model can be corrected by adding the mean of the 

residuals. Further evidence of the disparity between performance indicators is provided by 

Schofield (1997) who tested four performance indicators (total error, MIvIRE, BMMRE, 

Pred(n)) on three estimation techniques (least squares regression (LSR) and two analogy 
based approaches - see Chapter 4) (see table 2.5). He found that all three techniques were 

considered 'most suitable' under at least one of the performance indicators and thus selection 

of performance indicators should reflect the goals of the estimator. 
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ndicator LSR Analogy 1 Analogy 2 

Total Error (1)5 8.5 (3)1494.92 (2) 925.79 

MMIZE (3)0.86 (1)0.39 (2) 0.51 

MMRE (2)95.65 (3)97.99 (1) 84.86 

red(25) (=2) 44% (=2) 44°/ (1) 55% 

Table 2.5 Comparing performance indicators 

2.6.2 Published Validation Research 

Empirical studies of cost models (whether validating individual models or comparing the 

performance of different models) rely on the collection of historical project information so that 

the estimates of project effort generated can be compared to the actual effort figures. These 

estimate errors are then usually collated and, in the more recent surveys, represented using 

one or more of the performance indicators described above. 

Perhaps the earliest independent validation study was that of Golden et al. (1981), who looked 

at Putnam's SLIM and more specifically the duration and effort estimates produced for four 

projects undertaken at Xerox. While the overall results were promising, the variance of 

individual estimates coupled with the size of the data set, raises doubts over whether this 

level of performance could be sustained for a larger sample of projects. However, a study of 

staff loading over one of the projects lent some credence to the use of a Rayleigh-curve. A 

second evaluation of the Rayleigh-curve was carried out by Wiener-Ehrlich et al. (1984) who 

used four data processing projects to again test duration and effort estimates. Generally they 

found that the Rayleigh-curve estimated the phases reasonably well, but tended to 

underestimate the maintenance phase until they defined maintenance as solely 'corrective' 

(Lientz and Swansofl 1980). A further study of the Rayleigh-curve, through the SLIM model, 

was conducted'by Jeffery (1987) on a database of 47 data processing projects. He concluded 

that their was no support for the contention that productivity declines as time increases. 

Kitchenham and Taylor studied both the SLIM and the COCOMO models initially on 20 

projects (Kitchenham and Taylor 1984) and then 33 projects (Kitchenham and Taylor 1985) 

taken from ICL and British Telecom. They found large discrepancies between the actual and 

estimated effort values when using the basic COCOMO model and that the collected data did 

not conform to the Rayleigh-curve model. They concluded that both models required 

5 The values in parenthesis indicate a rating of performance indicator 1-best, 37worst 
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calibration before they could be used sensibly. Further they suggest that estimates could be 

improved by using additional information as it becomes available. 

Another evaluation of COCOMO was carried out by Miyazaki and Mori (1985) who calibrated 
Boehm's intermediate model to a set of 33 application software projects. Without calibration 

they found that COCOMO overestimated effort; with calibration they found they obtained a 
better fit in terms of Pred(20) than Boehm did on his data set. Their revised nominal effort 

equation became: 

MMnom = 2.15. (KDSI)0.94 (Eqn. 2.11) 

Note that the Miyazaki and Mori equation is opposed to the idea that software projects exhibit 

diseconomies of scale. They also discarded three of Boehm's cost drivers (Virtual Machine 

Volatility, Analyst Capability and Main Storage Constraint) to improve the model. 

An influential comparison of four popular cost models was carried out by Kemerer (1987) 

who collected information on 15 data processing projects. The four models under the spotlight 

were SLIM, COCOMO, Function Points and Estimacs and a summary of the results obtained 

in terms of MMRE and Pred(25) is shown in table 2.6. 

Model MMRE Pred(25) 

R'-After 

Calibration 

SLIM 771.87% 7% 87.8% 

COCOMO - Inter 538.82 % 0% 59.9 % 

Function Points 102.74 % 33 % 55.3 % 

Estimacs 85.48 % 22% 13.4 % 

Table 2.6 Results from Kemerer data set 

Both COCOMO and SLIM consistently overestimated effort and performed considerably less 

well than the other two models, Function Points and Estimacs which, it should be noted, were 
developed in similar environments to the data in this study. However, when Kemerer 

calibrated each model by using Albrecht's technique of using the estimates as the independent 

variable in a regression equation, he found that the SLOC models SLIM and COCOMO 

produced the best 'fit' in terms of R2. Another important result of Kemerer's work was that the 

productivity factors used in the COCOMO and FPA models added virtually nothing to the 

results. 
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2.7 Current State of the Art? 

The lessons learnt over the past thirty years research into effort estimation models (and more 

particularly algorithmic models of the type that have been discussed throughout this chapter) 
has recently culminated in a more mature and appropriate approach to algorithmic cost 

modelling, namely the MERMAID6 approach. 

The MERMAID project was a four year ESPRIT II initiative that had the goal of 'improving 

support for estimators in the area of software sizing, effort estimation, risk analysis, resource 

monitoring and progress monitoring' (Kok, Kitchenham et al. 1990). By analysing the 

problems associated with former models, particularly the lack of accuracy and the fact that 

environmental relationships are rarely constant, the MERMAID consortium were able to 

specify an approach which they believed brought together the best practices in cost 

estimation. 

In brief, the MERMAID approach advocates the calibration of models to the environment in 

which they are to be used. This, they believe, is best achieved by using statistical methods 

such as stepwise regression that can create models that evolve with the environment and 

provide stable and unbiased estimates. A further initiative is the use of phase based input 

variables in a attempt to eliminate estimated inputs, the use of which represents a major 

criticism levelled at many of the models previously proposed. The model's input parameters 

are used as and when they become available, and the user is not restricted to any single input 

parameter as with other models. Another important feature of the approach, and associated 

tool, is the ability to statistically analyse the model in terms of a number of performance 

indicators such as M RE, Pred(25) and W. 

The question is, why are the approaches outlined above better and more likely to be accurate 

than other algorithmic models? The answer lies in the simplicity and flexibility of the 

approach and in the way MERMAID encourages the building of locally based models. First, it 

has been shown that accuracy increases when data is separated into more homogenous 

clumps (Gulezian 1991). Second, the phase-based approach allows an organisation to create 

estimates using different models at different stages in the life-cycle. These models are 

continually improved as more data becomes available. Third, the method does not force a 

change to operating procedures or data collection practices. 

6 P2046 MERMAID (MEtrication and Resource Modelling AID) 
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As the MERMAID consortium point out, their approach while incorporating many of the best 

practices available is not without flaws. For example a major obstacle to the use of MERMAID 

is that it demands that companies collect a substantial amount of historical project data. This is 

obviously going to take a great deal of time and effort for many companies. MERMAID's 

solution is to include facilities for a form of estimation by analogy that requires substantially 

less data7 and is not as susceptible to outliers. 

The MERMAID approach has so far been subject to few independent examinations. One study 
by Campobasso et al. (1995) looked at the relative accuracy of following the MERMAID 

approach, when compared to Intermediate COCOMO and to a calibrated Proprietary cost 

estimation tool. Two data sets were collected of 26 and 46 projects respectively, and the results 

are reported below (table 2.7. ) 

Data set Model MMRE Pred(25) 

Data set -1 COCOMO 135 % 0% 

Proprietary Tool 71 % 20 % 

MERMAID 18% 82% 

Data set -2 COCOMO 41 % 24% 

MERMAID 36% 45% 

Table 2.7 Results from an analysis of MERMAID, COCOMO and a proprietary prediction system 

The MERMAID approach helped to build two models that were both accurate and superior in 

performance to the other techniques studied. The authors concluded that simple local models, 

derived from local data, make better predictions than general complex models. The results, at 

least for the data sets under study, are a vindication of the MERMAID approach. 

2.8 Summary 

The most important themes and experiences of thirty years of effort estimation research have 

been discussed in this chapter. This chapter has attempted to show how the present level of 

research maturity has been obtained through a great deal of trial and error, and how present 

estimation practice and research goals have been shaped by the past. 

7 Optimally between 4 and 9 projects. 
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Research into repeatable methods of estimating effort began in the mid 60's in an ad hoc 

fashion where great numbers of productivity factors were collected and analysed together to 

create large complex algorithms. From this early work researchers were able identify the most 

important factors and began to create models based on the LOC measure of program size 

using economies or dis-economies of scale as appropriate. Some models such as COCOMO 

allowed the estimator to 'calibrate' original estimates by applying a number of productivity 

drivers. A significant break away from the use of estimated LOC was started by Albrecht who 

proposed a measure of function size that could be counted earlier in the project life-cycle. 

However, the Function Point metric, like LOC, remains relatively controversial. The 80's saw a 

series of empirical studies of the accuracy and validity of some of the more important models. 

However, the results obtained were less than encouraging. The net result of all this is that 

most researchers now agree that simple, unconstrained statistical approaches such as stepwise 

regression are the best way to create models that are dynamic, environment independent and 

testable. 

The next chapter will go on to describe how estimation researchers have begun to examine 

non-algorithmic approaches in a search for more suitable prediction systems and increased 

levels of accuracy. 



Chapter 3 

Recent Research Directions: Non-Algorithmic Estimation 

Techniques 

3.0 Introduction 

As was stated in the previous chapter, the main thrust of research work in the field of 

software effort estimation has been in the development of algorithmic models. Unfortunately, 

the algorithmic approaches have been unable to demonstrate consistently adequate results, 

with errors of 100% or greater typical even after model calibration (see for example (Conte, 

Dunsmore et al. 1986; Kemerer 1987)). One possible reason why these models have not proven 

fruitful is that they are often unable to adequately model the complex set of relationships that 

are evident in many software development environments. It can be the case that a model is 

successful within a well-constrained environment, however, few are flexible enough to 

perform well outside their domain. Consequently, researchers are beginning to turn their 

attention to the search for alternative non-algorithmic solutions to the estimation problem, 

and in particular to a set of approaches that could be regarded as 'machine learning' in nature. 

Machine learning techniques have been used successfully in solving many difficult problems 

such as speech recognition from text (Sejnowski and Rosenberg 1987) and adaptive control 

(Narendra and Parthasarathy 1987). It is only relatively recently that the use of machine 

learning techniques has been proposed as an alternative way of predicting effort. 

Machine learning is a term used to loosely group together a set of techniques that can be seen 

to embody some of the facets of the human mind, that allow us to solve hugely complex 

problems (such as recognising a face in a crowd) at an incredible speed which dwarfs even the 

fastest computers8 (Schank 1982; Gentner 1983). However, much of the fine detail of how the 

human mind works is still poorly understood and it is for this reason, that much of the work 

presented in this chapter is still in its infancy and remains largely untested. 

8 While this remains generally true, an IBM computer 'Deep Blue' did recently beat the world chess champion. Chess has long 
been regarded as the acid test of whether 'intelligent' machines will one day supersede human mental abilities. 
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This chapter will consider a variety of techniques that might be utilised in effort estimation 

that attempt to 'learn' the underlying relationships present in the software environment, such 

as neural networks and case-based reasoning. 

3.1 Artificial Neural Networks 

Artificial Neural Networks (ANN's), inspired by the architecture of biological neural 

networks, are massively parallel systems comprising simple interconnected processors (or 

neurons - see fig. 3.1). The neuron computes a weighted sum of its inputs and generates an 

output if the sum exceeds a certain threshold. This output then becomes an excitatory or 

inhibitory input to other neurons in the network and the process continues until an output is 

generated. Artificial neurons are intended to be roughly analogous to biological neurons, for 

example, the weighted inputs represent biological synapses, the interconnections between 

neurons represent the dendrites and axons, while the threshold function represents the 

activity in the biological soma. However, it must be understood that much of our knowledge 

of how the human brain works is based upon conjecture. 

Inputs Neuron Step Function 

x1 W, 

x2 
W2 

W3 

X3 

Vgl' 

xn 

Figure 3.1 :A McCulloch and Pitts neuron 

As has been stated, an artificial neuron computes the weighted sum of its n inputs, xj, where j 

=1,2,...... n, and generates an output of 1 if this sum is above a certain threshold u. Otherwise, 

an output of 0 results. Mathematically speaking: 
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n 

Y=O Yw; x; -u j=l 

(Eqn. 3.1) 

where 
0 (. ) is a unit step function at 0 and wj is the synapse weight associated with the jth 

input. it is considered as another weight i. e. wo = -u attached to the neuron with a constant 
input of xo =1 (i. e. the threshold). Positive weights model excitatory synapses, while negative 

weights -model inhibitory ones. The activation function in figure 3.1 is known as a Step 

function, however, there are a number of functions that can be utilised such as Gaussian, 

Linear, Sigmoid and Tanh. It is the Sigmoid function that is the most frequently used in 

ANNs. 

Neural network architectures are divided into two groups: 

" feed-forward networks where no loops in the network path occur and 

" feedback networks that have recursive loops 

Of the different architectures, the feed-forward multi-layer perceptron is the most commonly 

used. As the name suggests, the network has no loops between nodes and is static, which 

means that only one set of outputs result from a given input. As a result feed-forward 

networks, unlike their counterparts, have no 'memory' of any previous network state. Figure 

3.2 illustrates a possible network architecture9 configured for the estimation of software 

project effort. The inputs to this network are unadjusted Function Points, the number of 

screens, development language and the project type. At first, the system is initialised with 

random weights. The network then 'learns' the relationships implicit in a set of data by 

adjusting the weightings when presented with a combination of inputs and outputs that are 
known as the training set. There are a number of training algorithms that can be used to train 

the network, each having particular areas of speciality. The most common learning algorithm 

used by software metrics researchers is Back-PropagationlO, which is used in prediction and 

classification problems. However as Gray and MacDonell (1997) point out, the emphasis on 
just one learning algorithm reflects the lack of understanding of the ever-advancing state of 
ANN research. After training, the network is ready to make estimates for new inputs. 

9 In this case a multi-layer perceptron. This type of network has a number of neurons which are organised into interconnected 
layers including input and output layers and one or more hidden layers. 
10 The Back-Propogation algorithm has three stages: feed-forward of the input error, Back-Propagation of the output error, and 
adjustment of the network weights. 
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Raw FP 

Screens 

Language 

Project Type 

Input Layer Hidden Layer Output Layer 

Figure 3.2 :A multi-layerperceptron 

rt 

A number of studies looking at the use of neural nets to predict software development effort 

can be found in the literature. On the whole these studies have focused most attention on the 

accuracy of the approach when compared to algorithmic models and little on the suitabilityll 

of the approach for building effort prediction systems. In general the strategy for testing 

neural networks is to divide the historical data collected into sets, one used to train the data 

(usually the larger set) and one to test the trained network. 

Venkatachalam (1993) chose a Back-Propagation learning algorithm used on a multi-layer 

perceptron to predict software effort and development time. The preliminary results obtained 

were seen as promising by Venkatachalam, when he applied the approach to data (22 inputs) 

taken from the COCOMO database. 

Wittig and Finnie (1997) also employed a back-propagation multi-layer perceptron when they 

predicted development effort on the Desharnias (1988) and Australian Metrics Association 

data sets. Using test sets of just 10 randomly selected projects and keeping the remaining 71 

and 105 projects respectively as the training sets, they produced very encouraging results. The 

neural network wäs'äble to predicting effort within 25% of the actual values, more than 75% 

of the time, which compares well with other techniques. 

Jorgenson (1995), again, reports the use of a multi-layer perceptron with a back-propagation 

algorithm on a data set comprising 109 maintenance projects. His study compared four 

different approaches to estimation of maintenance effort: (i) regression models, (ii) a neural 

net and (iii) a form of pattern recognition against (iv) a simple baseline rule of thumb model: 

effort is equal to size divided by the mean productivity. The neural network was found to perform 

11 Possible reasons for deeming them unsuitable could include their interpretability, suitability to the type of data sets common 
to software environments or their life-cycle availability (see section 3.6). 

,. 
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less well than the best regression model, in terms of MMRE, but very favourably in terms of 

Pred(25). On the negative side, he found the neural network to be one of the least robust 

approaches. He measured robustness by studying the accuracy of each technique when 

applied to the same five test data sets. Of the techniques, the neural network demonstrated 

the largest differences in prediction accuracy. 

Serluca (1995), reports the use of a back-propagation network on the MERMAID-2 data set. 

The result obtained using the full data set was far superior to regression and marginally better 

than an estimation by analogy method. However when the data set was separated into two 

more homogenous and therefore smaller dumps, the neural net performed very poorly, while 

the two other methods improved considerably. This led Serluca to conclude that neural nets 

require large training sets before they give accurate predictions. 

Karunanithi et al. (1992) use neural nets for the purpose of predicting software reliability. 

They appear to be more imaginative in their approach to the adoption of network architecture 

and learning algorithm, opting to try both a feed-forward and a feed-back (Jordan) network 

with a learning algorithm known as cascade-correlation that combines both incremental 

development of the network and learning by back-propagation in one. The authors conclude 

that neural network models produce more accurate prediction systems then analytical 

models. 

An Albus multi-layer perceptron is utilised by Samson et al. (1993) to predict software effort. 

The neural net is compared to linear regression on the COCOMO data set with results of 428% 

and 521% in terms of MMRE. Although out-performing regression the neural nets result is 

still very poor and unconvincing. 

A multi-layer architecture coupled with a back-propagation learning algorithm is again used 

by Srinivasan and Fisher (1995) to analyse the Kemerer data set. As a consequence of the small 

size of the Kemerer data set (15 projects), it is used entirely as the test set and the network is 

trained on the COCOMO data set (63 projects). An MMRE of 70% is obtained using the 

network which is compared with algorithmic techniques: a Function Points based regression 

model (MMRE = 103%), basic COCOMO (MMRE = 610%) and SLIM (MMRE = 772%). The 

results of this experiment are very supportive of neural nets, however, it should be noted that 

the neural net is trained on data from a different data set to that which it is tested on. This is 

by no means a bad result in that it provides some evidence that neural network approaches 

may be utilised across environments. Unfortunately, they also found that the results were 

sensitive to the number of hidden units and layers. To help find the best network 
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configuration, they suggest dividing the training data further so that different configurations 

can be tested before learning begins. 

Hughes (1996), like Jorgenson compares a range of approaches to effort estimation including, 

analogy, regression and a neural network. The data set comprised 33 telecoms projects and 

was initially divided into two homogenous groups, which led to mixed results from the 

neural network (MMRE = 163% and 41%). When the data set was combined, the MMRE 

improved to 55%, which reinforces the fact that neural networks can flourish when presented 

with a larger data set. At the same time, results from other techniques including analogy and 

regression deteriorated. 

MacDonell and Gray (1996), while exploring alternatives to regression analysis made an 

accuracy comparison of a number of different estimation techniques on the Desharnais data 

set. The techniques studied included Function Point productivity, least squares regression, 

least median squares regression12 and a neural network. The best statistical model found 

(predicting 30% of the validation set within 10% of their actual values) was a least squares 

regression model with all outliers removed. However, the best approach, overall, was the 

neural network which was superior to all other methods in terms of N MIRE (44% - half of the 

nearest statistical approach) and Pred(25) (63%). 

Study Learning Data set No. of Predicting Results 
Al orithm Projects 

Venkatachalam Back- COCOMO 63 Development "Promising" 
Propagation Effort & Time 

Wittig & Finnie Back- Deshamais/ 81 Development Pred(25) = 25% 
Propagation ASMA 136 Effort 

Jorgenson Back- Jorgenson 109 Maintenance MMRE = 100% 
Pro pa ation Effort 

Serluca Back- Mermaid-2 28 Development M vIRE = 76% 
Propagation Effort 

Karunanithi et Cascade- N/A N/A Reliability "More accurate 
al. Correlation than algorithmic 

models" 
Samson et al. Back- COCOMO 63 Development MMRE = 428% 

Propagation Effort 
Srinivasan & Back- Kemerer & 78 Development MMRE = 70% 
Fisher Propagation COCOMO Effort 
Hughes Back- Hughes 33 Development MMRE = 55% 

Propagation Effort 

Table 3.1 Summary of neural network effort prediction studies 

12 A form of robust regression which is less sensitive to outliers than least sggares regression. 
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The ability of neural networks to generalise and solve problems of great complexity has been 

proven in a number of areas. Based on the evidence so far (a summary of the studies are 

presented in Table 3.1), they have great potential in the area of effort prediction. However, 

despite the increasing popularity of the approach, a number of flaws remain that can make 

neural networks difficult to utilise and completely unsuitable under some conditions. First, 

ANN's can be considered as black boxes13. The knowledge stored in the architecture and the 

synapse weights is not easily explained. It is this ability, to explain the relationship between 

the inputs and output, that is considered important by Davis et al. (1997), if neural networks 

are to gain user acceptance. Second, guidelines for the construction of neural network 

topologies (units and layers), and the way they are trained (learning algorithms and number 

of learning epochs) are very vague. Further, even with the same architecture, results will not 
be repeatable due to the arbitrariness of the random weights. A third and final problem, that 

is particularly pertinent to the software community, is the amount of data required to usefully 

train a network. Many software organisations would find it difficult to collect an adequate 

amount of data to make the technique viable. 

In spite of these problems, there remains a great deal of interest in this approach and the 

accuracy of the results suggest that neural network approaches can be considered at least 

comparable with algorithmic approaches. A great deal of further research needs to be done 

before neural nets are accepted as common practice. This research would preferably look at 

some of the large number of algorithms and networks, rather than at just back-propagation on 

a multi-layer perceptron. 

3.2 Rule Induction Systems 

Rule based systems have been implemented successfully in a number of different domains 

including aerospace, manufacturing, business and medicine. However, as yet, there have been 

few attempts to harness rule based reasoning to solve software development problems and no 

serious attempts to use rule based systems for predicting effort. Thus the inclusion of this 

approach serves only to highlight its potential as an alternative prediction technique. 

In a rule-based system, known facts, stored in a knowledge base, are matched against a set of 

rules from a rule base. If the premise of a rule is found to be true then that rule fires which 
leads to the inference of new facts. This process continues until no more rules can be fired and 

13 This is seen as an advantage by Karunanithi et al. (Karunanithi, Whitley et at 1992) in that the users need not concern 
themselves with the underlying process being modelled. 
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some final output can be determined. A demonstration of how a rule based system could be 

utilised to predict effort is given below: 

IF Function Points > 500 OR Function Points > 350 AND Military Project 

THEN Complexity= 4 

IF Complexity >3 AND Team experience <4 

THEN Effort = 1000-1500 Man-Days 

In this example, if the first rule is satisfied, a new fact is established - that Complexity is equal 

to 4- which in turn becomes part of the premise for the second rule. In practice, rule based 

systems are often vastly more complex, typically containing hundreds of embedded rules. 

To be classed as a machine learning technique, the system must infer the set of rules from 

actual development data rather than have them supplied by a human expert as with 

traditional rule based systems. This has the effect of removing 'human bias' and also helps to 

overcome another common problem, rule base maintenance over time. Luckily, even though 

the rules are often complex, they are usually visible and thus are easier to understand. 

3.3 Fuzzy Systems 

It is often the case, in poorly defined areas such as software development, that measurements 

and relationships are expressed in a "fuzzy" way rather than with precise values. This 

uncertainty is the price that is paid for attempting to solve complex problems. For example, 

when asked about an impending software project, a manager is more likely to express the size 

with terms such as "very large" or "medium-small" rather than in exact figures. This fuzzy 

view potentially affords a broader and richer field of data and the manipulation of that data 

than do more traditional methods (Brule 1985) 

The idea of three (true, false and indeterminate) or more valued logic has been around for 

over a millennium. However, the seminal work on fuzzy set theory and fuzzy logic was 

proposed by Zadeh (1965) in 1965. The basic principle is that set membership values are 

assigned to observations in the range 0.0 to 1.0 where a value of 0.0 represents absolute falsity 

and 1.0 represents absolute truth. The values in-between 0.0 and 1.0 represent a degree of 

partial truth. As an example, take the statement: 

"Module X is very small" 
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If the module contains say 50 lines of code, we might decide to assign a truth value of (0.7) to 

this statement or in other words we believe the module to be "more or less, very small". Note, 

this should not be confused with a 70% probability which supposes that the module is or is 

not very small excluding any middle ground. For a good summary see (Zadeh 1988). 

There are a number of ways data fuzzification could potentially be applied to the effort 

estimation problem. One way would be to construct a rule induction system (as described 

above) replacing the crisp facts with fuzzy inputs (Fig 3.3). An inference engine would then 

use the rulebase to map inputs to a fuzzy output which can either be translated back to a crisp 

value or left as a fuzzy value (which might be seen as desirable as it highlights the speculative 

nature of the estimate). As MacDonell and Gray (1996) note, expressing targets with fuzzy 

values allows for a less harsh form of commitment. 

Figure 3.3 :A fuzzy rule based system 

Neuro-fuzzy systems are another potential application for fuzzy concepts. A neuro-fuzzy 

system attempts to combine the strengths of fuzzy theory and neural networks while 

overcoming many of their associated weaknesses. One of the major criticisms targeted at 

neural network approaches is that they often over adapt to the data on which they are trained, 

which inhibits generalisation and is also a problem when noisy or unreliable data is 

presented. This is overcome in neuro-fuzzy systems by fuzzifying the input data, improving 

the ability to model unseen data. Neuro-fuzzy systems also have the advantage that they are 

"grey boxes", that is, their reasoning is not totally opaque as with standard neural networks. 

Neuro-fuzzy systems have been used successfully in a number of applications including 

diagnosing potential cases of breast cancer (Bridgett, Brandt et al. 1995). 
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Again, at present, the use of either technique for estimating software effort remains 

speculative. However, the amount of research on both subjects would seem to suggest that 

they are reasonably well evolved techniques and there is no reason why either may not be 

utilised for effort prediction purposes. 

3.4 Regression Trees 

Regression trees, unlike their counterpart classification tress, solve quantifiable as opposed 

classifiable problems. The regression tree approach requires training data from which to learn 

the rules that appear on each of the leaf nodes. The algorithms work by using the features of 

the data, that are thought to influence the outcome of the output feature, to create a tree 

structure that branches based upon the values of the features. The most common tree 

structure involves the choice of two branches, but multiple branches are possible. 

There have been a couple of reports of the use of such trees to assess aspects of software 

development, see for example (Porter and Selby 1990). Srinivasan and Fisher (1995), describe 

the use of a regression tree tool, CartX, for effort estimation. CartX was used on the Kemerer 

data set. They concluded that, although the technique was superior to COCOMO and SLIM, 

the results were less impressive than the use of a Function Points driven statistical model or a 

back-propagation driven neural network. 

The limited use of regression trees for effort estimation purposes has, so far, produced few 

results that appear to be sensitive to tree construction decisions such as tree depth and the 

algorithm that creates the tree. A further substantial weakness of the approach is that it is 

unable to process features that have values outside of the range of the training data. On the 

positive side they can provide insights into the nature of the decision process, as opposed to 

techniques that canbe considered 'black boxes' such as neural networks. 

3.5 Case-Based Reasoning (CBR) 

Case-based reasoning is a problem solving approach that has received a great deal of attention 

recently. It has its origins in the work of people such as Gentner (1983), looking at analogical 

reasoning, and Schank (1982) who studied dynamic memory and the role of previous 

situations (or cases) in learning and problem sölving. Development of the first true case-based 

reasoning system, CYRUS, is attributed to Kolodner (1983) who used the work of Schank in a 

basic question and answer system that held knowledge of. the various meetings of former US 



AN EMPIRICAL INVESTIGATION INTO SOFTWARE EFFORT ESTIMATION BY ANALOGY 40 

secretary of state Cyrus Vance. More sophisticated systems built more recently have been 

applied to problems such as dispute resolution, speech recognition, medical diagnosis and 

Chinese cooking! 

Cases are abstractions of events that are limited in time and space. They are viewed by 

cognitive psychologists as episodic knowledge. In case-based reasoning terms, cases are 

problems that have been solved (or have failed to be solved) using a particular problem 

solving mechanism. Each case contains a description of the problem and the solution 
(assuming it was solved) to the problem that was found for that case. The actual definition of 

what constitutes a case-based reasoning system is open to interpretation, as the use of 
historical cases to reason about future cases is a key part of all machine learning approaches at 

some level. For the purpose of this thesis, case-based reasoning is taken to refer to systems 

that retain, retrieve, revise and reuse explicit cases. 

The case-based reasoning process has been described by Aamodt and Plaza (1994) (Figure 3.4) 

as cyclic and composed of four stages: 

RETAIN 

tested / 
repaired 
case 

confirmed 
solution 

prob 

new 
case 

RETRIEVE 

7xk 
C 
new case 

retrieved 
case 

general knowledge 

REUSE 
REVISE 

previous 
cases 

REVISE 

solved 
case 

suggested 
solution 

Figure 3.4: The case-based reasoning cycle 

RETRIEVAL of similar cases 
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REUSE of the retrieved cases to find a solution to the problem 
REVISION of the proposed solution if necessary 

RETENTION of the solution to form a new case 

When a new problem arises, a possible solution can be found by retrieving similar cases from 

the case repository. The knowledge available with these similar cases can then be reused to 

form a solution to the new problem. The solution may be revised based upon experience of 

reusing previous cases and the outcome retained to supplement the case repository. This 

leaves a number of issues that must be dealt with before a case-based reasoning system can be 

effectively deployed. First, how cases are characterised, second, how similarity is discerned 

when retrieving cases and third how solutions can be revised. 

Case characterisation poses a difficult problem when developing repositories for new case 
based reasoning systems. Parameters used in CBR systems can be either quantifiable 
(measured on the ratio or interval scale) or categorical (measured on the ordinal or nominal 

scale). Some expert knowledge of the problem space is required so that those features that are 
judged suitable for the purpose of gauging similarity are collected. Inevitably though, feature 

selection is a pragmatic task and must rely on the information that is available at the time that 

the classification or prediction problem is to be solved. Rich and Knight (1995) discuss the 

problem of choosing insufficiently general features. Again the solution seems to be to use an 

expert. 

The way in which similarity is gauged between cases is one of the major topics in case-based 

reasoning. There are a number of approaches described in the literature (Aha 1991; Watson 

and Marir 1994) including a number of preference heuristics proposed by Kolodoner (1993) 

Nearest neighbour algorithms - these are either based upon straightforward distance 

measures or the sum. of squares of the differences for each variable. In either case each 

variable must be first standardised (so that it has an equal influence) and then weighted 

according to the degree of importance attached to the feature. A common algorithm is given 
by Aha (1991) 

SIM(C,, C2, P) =1 (Egn. 3.2) 
y, i PFeature_dissimilarity(C,;, C2i) 

where P is the set of features, Cl and C2 are cases and 
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[(c! - cZ 
Feature 

-d 
issirnilarity(C1., C2 )J0 (Eqn. 3.3) 

11 

where i) features are numeric, ii) the features are categorical and Cl=C2 or iii) the features are 

categorical and C1#C2 respectively. 

This approach is the most popular within the case-based reasoning community. In a survey of 

commercial CBR tools carried out by Watson an Marir (1994), all 10 were reported as using a 

variant of the nearest neighbour algorithm. 

Static similarity measure - Althoff (1996) proposes a variant for features based on the 

following measure: 

SIM(C4C2) = 
a. #E 

a. #E+b. #D+ c. #U1 +d. #U2 
(Eqn. 3.4) 

where E is the set of features with the same values for cases 1 and 2, D is the set of features 

with different values, U1 is the set of features with known values for case 1 and not case 2 and 

U2 is the set of features with known values for case 2 but not case 1. In addition a, b, c and d 

are parameters for which Althoff suggests the values a=1, b=2 and c, d=0.5. This approach 

suffers from the problem of continuous attributes being almost but not quite the same. In 

other words, if features do not match no account is taken of how dissimilar they are. 

Knowledge guided induction - here an expert manually identifies key features that are 

thought to affect the goal feature. 

Template retrieval. - similar to query by example database interfaces, i. e. the user can supply 

ranges, and all cases that match are retrieved. Often used as a precursor to nearest neighbour 

algorithms. 

Goal directed preference - cases are characterised by their goals. 

Specificity preference - cases with features that are an exact match are preferred over those 

that match in general 

Frequency preference - The most recently selected cases are given preference. 
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Breiman et al. (1984), while examining a simple similarity algorithm, found a number of 
inadequacies. First, they are computationally intensive. Generally speaking though, the search 
time involved in retrieving cases using a nearest neighbour algorithm will only increase 

linearly with the number of cases. However, Aha (1991) proposes a number of algorithms that 

are only marginally less accurate while being more efficient. Second, the algorithms are 
intolerant of noise and irrelevant features. However this can be overcome by building in 

learning so that irrelevant features can be identified and the important ones can be given more 

weight in the similarity measure. And third, the use of symbolic or categorical parameters is 

problematic. The way most similarity algorithms approach such variables is Boolean in that 

they are either a match or a mismatch with no in-between. 

While many researchers (Aha 1991; Veloso and Carbonell 1991) have sought more accurate 

and efficient ways of discerning similarity between cases, some consider revision or 

adaptation to be the most important challenge in CBR research. Adaptation is not an issue 

where problems are repetitive, however, in an environment where novel problems are 

continuously being experienced, adaptation is essential. The problem is that once the most 

similar cases have been found, how do we go about adapting them so that the best solution 
for a new case can be found? Leake (1996) describes two distinct approaches to adaptation. 
The first approach involves the use of rules to facilitate adaptation which is inevitably subject 

to the problem of knowledge elicitation. The second approach involves finding ways to 

reduce the need for adaptation such as favouring cases with features that are more likely to be 

adaptable. 

An early attempt to develop a CBR system dedicated to the selection of similar software 

projects for the purpose of estimating effort is described by Vicinanza et al. (1990). They 

created Estor, a case-based analogical retrieval system, by studying the way in which experts 

approached ten separate cost estimation problems. Using domain knowledge supplied by one 

of the experts, Estor was able to produce its own effort estimates using an analogy searching 

approach and adapt those estimates using rules inferred from the estimator's own protocols. 
The performance of the estimates produced were comparable, in terms of R2, to the expert's 

own and far superior to those obtained using the regression based techniques, Function Points 

and COCOMO. 

A second, more recent, example of software effort estimation using a case-based reasoning 

system is described by Bisio and Malabocchiä (1995). They also developed a CBR tool, called 
FACE (Finding Analogies for Cost Estimation), and assessed it using the COCOMO data set. 
One interesting feature of their approach is that all : andidate analogies from the case 
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repository are given a normalised score 0between 0 and 100 (100 being a perfect match) as to 

their similarity to the target case. The user can indicate the threshold (typically 0= 70) over 

and above which cases can be used to form an estimate. If no cases are found (i. e. no cases 

have scores above the 0 threshold score), then no reliable estimation can be performed. 

Although difficult to compare due to the limited number of projects used in the 

experiments14, FACE appears to perform very favourably against algorithmic techniques. 

It appears that the case-based reasoning community is thriving and that there is evidence 
from early research that case-base reasoning could be adapted to the effort estimation 

problem. The most obvious drawback with case based reasoning systems is that they have 

little generalisation power when confronted with new cases that have not been previously 

observed although this problem maybe countered by the use of adaptation. They do however 

have a number of advantages over other methods. First, they are able to function effectively 

where the number of observations is small. Second, they are able to explain the reasoning 

process behind the selection of the analogical cases and therefore the output. And third, they 

seem to thrive where the problem domain is not well understood. 

3.6 Comparison of Approaches 

The previous sections have discussed a number of machine learning techniques that could 

potentially be applied to the estimation of effort. However, it is likely that each approach will 
be optimal under different circumstances. This section will now discuss the different 

techniques in relation to a set of subjective criteria under which prediction systems are often 

judged: 

" Interpretability 

This criterion considers the degree to which the reasoning behind the output of a model is 

explained by its internal workings. Obviously, the ability to understand the reasoning behind 

an estimate has a large effect on the amount of confidence one can place on the estimate. 
Neural networks are an example of an approach that is at essentially totally opaque. The 

reasoning power of a neural network is concentrated in the synaptic weights on the inputs to 

each node, unfortunately, these have proven very hard to interpret15 into any meaningful 

explanation of their output. Hybrid neuro-fuzzy systems are regarded as easier to interpret 

14 The setting of the 0 often meant that for many of the projects no reliable estimates could be made. 
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than normal neural networks because it is possible to examine their 'internal rules'. In contrast 

to neural networks, the hidden layer units of a neuro-fuzzy system are more akin to rules 

where excitatory inputs (in the form of fuzzy membership degrees from the initial input) 

represent positive rules. The outputs then represents the degree to which a rule has fired 

which determine the relative activation of the output fuzzy membership neurons. 

The other techniques described within this chapter can be considered translucent in 

comparison to neural networks. Rule-based and regression-tree systems often give explicit 

readable rules as output. The main criticism though is that they are often very complex with 

numerous nested IF-THEN statements in the case of rule-based systems and branches in the 

case of regression trees. Finally the case-based reasoning approach affords the clearest 
interpretation value as it is usually based directly upon the similarity of one or more explicit 
input cases. However, even here the reasoning can get a little muddied where adaptation is 

employed. 

" Ability to Generalise 

This criterion considers the ability of each approach to generalise i. e. its ability to estimate 

when presented with novel data. Very often when training a model there is a trade off 
between the level of accuracy achieved and its ability to generalise. By trying to achieve the 

most accurate model, it is possible to over train the model to the data which will often render 
it woefully inaccurate when presented with data from outside of the training domain. 

For neural networks over fitting to the training data is a serious problem that can lead to the 

network placing too much emphasis on individual values. However, when trained properly16 

neural networks are exceptional at generalisation. Neuro-fuzzy systems, by contrast, 

automatically overcome this problem by using fuzzy inputs that remove any chance that the 

model will focus on individual specific values. The ability of rule-based systems and 

regression trees to generalise is limited by the extent of their knowledge. If a new case has 

values outside of the current rules then they are unable to generalise. A case-based reasoning 

system is also limited by the available cases it can select. However, its ability to adapt 

estimates based upon case differences means that it retains some power to generalise. 

15 There are some examples of attempts to convert the weights into rule form but the author knows of no successful attempts 
16 This often means restricting the amount of training the network undertakes so that it is not over-trained on the data. 
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0 Suitability to Software Project Data Sets 

Unfortunately, for this criterion there is very little evidence available. Most of the evidence 

concerns neural networks, which have been found to be more accurate in terms of accuracy as 

the size of the data set increases. This might be a problem for software companies who are 

rarely able to collect large amounts of data (less than 30 projects is common). However, when 

neural networks are trained properly (i. e. not over trained to the data) their ability to 

generalise is considerable, and therefore, it is conceivable that data from different company 

environments might be combined to increase the size of a data set. 

9 Life-cycle Availability 

Life cycle availability handles the coverage the approach affords to the software life-cycle. In 

other words at which stages does each technique become viable. Again there is little evidence 
for this point. However, there is no reason to suppose that all of the techniques described in 

this chapter could not be used at any point along the software life-cycle. The ability of each to 

handle categorical data is important especially for the bidding stages of a project where there 

are likely to be few quantifiable inputs. 

In truth, it is very difficult at present to say which approach is superior under which 

conditions. Neural networks have been shown to be accurate, but reservations still remain 

over the amount of data required to make them effective and their poor level of 
interpretability. The efficacy of the remaining techniques remains speculative however, a 

tentative comparison of all of the approaches described above can be found in (MacDonell 

and Gray 1996). 

3.7 Summary 

There has been an increasing amount of interest in alternative approaches to effort estimation 
in the last few years. Of these approaches some, notably neural networks and case-based 

reasoning, are being actively researched and the likelihood is that they will soon be 

recognised as viable alternatives, or better still complementary, to regression based 

approaches. Other approaches such as neuro-fuzzy systems, crisp/fuzzy rule-based systems 

and regression trees are, as yet, mainly speculative and perhaps warrant more serious 

attention. It is clear though, that each technique has its own advantages and disadvantages 

under different circumstances, and that it would bg!. useful to identify under which 
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circumstances each could be most effectively used. As yet, little evidence exists about the 

accuracy and efficacy of any one approach and there clearly is a need for more systematic 

comparisons between approaches. 

The following chapters will describe an application of case-based reasoning technology, 

known as ANGEL, which has been used for predicting software effort. The ANGEL tool was 
developed with reference to the case-based reasoning theory covered in this chapter. 



Chapter 4 

The ANGEL approach to Effort Estimation 

4.0 Introduction 

Analogical reasoning is a fundamental part of human cognition (Oppenheimer 1956; 

Vosniadou and Ortony 1989). It is necessary for recognition, classification and learning; it also 

extends its influence into the realms of discovery and creativity. We use analogical reasoning 

whenever we make new decisions by recalling related past experiences, for example, if we 
buy food from a shop because previous purchases have been good value for money, we are 

reasoning by analogy. Analogical reasoning has long been recognised as being related to 

intelligence. Raven (1938) defines intellectual ability as the ".. ability to reason by analogy from 

awareness of relations between experienced characters". Thus analogy has been a major 

component of many tests of intellectual ability and has been employed in a number of 

'intelligent systems' that solve complex problems (see for example (Evans 1968; Winston 1970; 

Raven, Court, et al. 1986. )). The theories of how humans solve problems using analogies are 

numerous, see for example (Johnson 1962; Evans 1968; Winston 1970). However, generally 

speaking, all the theories embody some or all of the following chain of processes: 

i) Encode attributes of a new task into an internal representation. 
ii) Infer a relationship between a previous task and the new task. 

iii) Identify a mapping between the previous task and the new task. 

iv) Apply the mapping to the solution for the previous task to give a candidate solution for 

the new task. 

v) Modify the candidate solution 

The use of analogy for software effort estimation has been proposed by a number of 

researchers. Boehm (1981), back in 1981 considered informal human analogy to be one of the 

seven available estimation techniques. He considered its main advantage to be the fact that 

estimates were based upon experiences that could be analysed to determine the specific 

similarities/differences and their possible impacts on the new project. Cowderoy and Jenkins 

(1988) suggest that analogies can be found at different levels of granularity, from phase level 

upwards. They adopt a 5-step approach to the recognitiorrbf useful analogies: 
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1. Select analogies from similar domain. 

2. Assess the similarities between the current environment and the analogy, reject if 

differences too great. 
3. Assess the quality and reliability of the analogy. Where a number of potential analogies 

exist, reject any with suspicious backgrounds (e. g. dubious progress reported). 
4. Consider known special cases (e. g. differences in methods of working). 
5. Review the list of analogies and reject any regarded as still being unsuitable. 

These steps, they suggest, could be partially automated in an Estimation Decision Support 

System (EDSS) or in a less formal system of spreadsheets, instruction manuals and library of 
knowledge. Despite this early recognition of the potential of analogical reasoning, it is only 

recently that the approach has received anything more than lip service from software 

engineering researchers. This lack of attention is even stranger when framed in the context of 

two reports (Heemstra 1992; Lederer and Prasad 1993) which both looked at the usage of cost 

estimation techniques across 598 and 112 organisations respectively. Both report that informal 

analogy based estimation was by far the most predominant technique. 

The notion of similarity is implicitly tied in with the process of analogy in that a successful 

analogy between two cases is dependent on there being some element of similarity between 

them. Software effort estimation by analogy involves systematically searching for similarities 
between a target project that is to be undertaken, and historical source projects, then forming 

estimates based upon the effort recorded for the selected source analogy. As with all 

estimation techniques (with the exception of expert judgement) analogy requires the collection 

of historical data. In common with other techniques, the more homogenous (i. e. coming from 

the same environment) the data the greater the confidence we can place in the estimates 

produced. 

Although an association between human analogical reasoning and automated estimation by 

analogy is being made, it is clear that there is a great deal of difference in their complexity and 
implementation. The similarity mechanism utilised in analogy effort estimation is a relatively 

simple proximity measure, whereas, much of the knowledge we have about human analogical 

processes, although based upon conjecture, suggests that they are a great deal more intricate. 
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4.1 Reasoning by Analogy Vs Case-Based Reasoning 

Reasoning by analogy is often used as a synonym for case-based reasoning (Section 3.5) and 

essentially, they are the same method. However, analogical reasoning systems are considered 

to be distinct in that they are able to solve cross domain problems (i. e. the problems do not 
have to be from the same area as their potential solutions, although there must be some cross- 

over of attributes17), whereas case-based reasoning is predominantly a single domain problem 

solver. A further difference between the two methods is the amount of adaptation 

undertaken. Typically case-based reasoning systems place a great deal of emphasis on the 

adaptation process, whereas, analogical reasoning systems (in-line with human analogical 

processes) undertake little or no adaptation (Aarmodt and Plaza 1994). In all other respects 

the two approaches can be considered identical. As Section 3.5 has already covered most of 

the fundamental aspects of all case-based reasoning systems, the rest of this chapter will be 

concerned with the specific features of the ANGEL estimation system. 

4.2 Effort Estimation by Analogy : The ANGEL Approach 

Software estimation using analogy can be seen as a specific use of analogical reasoning and as 
has been stated, its basis is the matching of one or more projects from a historical case base, to 

a new project for which an estimate is required. Projects are characterised by a number of 
descriptor features that are used to measure between project similarity. Once the most similar 

completed projects have been found, the known effort values for these projects can be used to 

form an estimate of the effort for the new project. As a consequence of its relationship to case- 
based reasoning, it also inherits many of the issues that surround case-based reasoning 

systems. First, we have to determine how best to describe projects. Second, once we have 

characterised projects, how do we then discern similarity and how much confidence can we 

place in the resulting analogies? Third, how do we find and deal with factors that might cause 

noise? And fourth, how do we use the known effort values from analogous projects? 

4.2.1 Characterising Projects 

Apart from the goal feature (the variable that we may wish to estimate i. e. effort) we must 

also characterise a project with one or more descriptor features. Descriptor features can be 

17 The classic example is our solar system being used as a source of analogy to help in the understanding of the structure of an 
atom. 
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either quantifiable (interval, ratio or absolute) or categorical (nominal or ordinal) variables; 

they must be available at the point when an estimate of the goal feature is required, so 

commonly collected measures such as lines of code are usually impractical as they are only 

available much further down the life-cycle. 

There are no specific guidelines for the identification of candidate descriptor features other 

than to be pragmatic in choosing features that can be easily collected. However, it is 

recommended that features that have a direct bearing on effort are used, such as functionality 

or complexity measures; collecting features that have no perceived relationship to project 

effort is likely to result in the selection of poor analogies. This is not to say that a so-called 

'expert' is required for the identification of pertinent features. As will be described later in this 

chapter, the ANGEL approach incorporates a mechanism for finding the best combination of 
features presented to it, based upon the historical data it is presented with. 

4.2.2 Similarity Measures 

The case-based reasoning community have identified a number of different similarity 

measures (Section 3.5) however, the measures that have found practical use are 

predominantly the nearest neighbour algorithms. The nearest neighbour algorithm used in 

estimation by analogy involves measuring Euclidean distance in n dimensional space (Eqn. 

4.1) where n is the number of features, and x and y are two project cases. 

ED(x, y) = (xl - yi)2 

(Eqn. 4.1) 

Euclidean distance Was chosen as the measure of similarity because the straight line distance 

between two points is the simplest, most commonly used, proximity measure (Suppes, Krantz 

et al. 1989). Before the similarity measure can be used, it is important that the feature values 

for the projects are standardised18 (in this case between 0 and 1) so that all the features 

contribute equally to the measure of similarity. As has been stated, two different feature types 

can be incorporated into the similarity measure, namely quantifiable features and categorical 
features. The use of quantifiable data is not problematic, however, categorical features have 

18 Each feature value is divided by that features range. 
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no notion of interval and thus can only be described as identical or different19 to one another. 
This leaves us with the problem of assigning standardised values for different and identical. 

Within this project we have chosen to assign a distance of 1 where the feature values are 
different and 0 where they are identical. This decision was made on the grounds that 

expressing categorical similarity on the boundaries of the standardised feature range is a 

common practice within the case-based reasoning community (see for example (Aha 1991)) 

and also that the values 0 and 1 (within the range 0 to 1) were deemed the most suitable for 

expressing the notions of identical and different. 

Figure 4.1 demonstrates how the similarity mechanism works with 3 projects that are 

characterised with three descriptor features: experience, Function Points and number of 

subsystems. It can be seen that the Euclidean distance between the new project and project A 

is less than the distance between the new project and project B. Thus, in this case, project A 

would be selected as the closest candidate analogy and its known effort value would 

contribute to the estimate for the new project. 

Figure 4.1: Measuring similarity in three dimensional space 

The confidence that can be placed in an estimate can be determined in a number of ways. One 

possible way is to use the similarity measure between the target and source project. However, 

19 Note, ordinal categorical feature values can also be manipulated as being greater or less than each other. However, this 
information is of no value in the Euclidean distance measure unless a psuedo interval is imposed on the feature values. 
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this strategy is problematic, in that two projects are similar in terms of the range of all the 

projects feature values, so that a similarity measure between two projects will change if a new 

project is added with feature value outside of the present range. Figure 4.2 demonstrates this 

using projects with, for simplicity, just one descriptor feature (i. e. in one dimensional space). 

Because all feature values are standardised between 0 and 1, the addition of a new project C 

has the effect of increasing the relative similarity between projects A and B. 

ABC 

Projects XXXXXX 

Range 01 Before Project 'C' 

Range 01 After Project 'C' 

Figure 4.2 : Adding a new project in one dimensional space. 

Another possible way of determining confidence is to adopt a technique similar to jack- 

knifing, that makes individual predictions for all of the historical projects in the Project case 

base. Basically, each project is successively removed and its effort estimated using the 

remaining projects as the analogy source (Fig 4.3). The estimated effort for each of the projects 

is then compared to their actual effort, which yields an indication of how much reliance can be 

placed upon new estimates from that Project case base. 
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Figure 4.3 : Jack-knifing a project case base 

This is the technique that has been adopted in the ANGEL approach for assessing estimate 

confidence (expressed in MMRE - see section 2.6). It not only allows the user to assess how 

accurate an individual estimate may be, but also compare the ANGEL approach with other 

estimation methods such as algorithmic models. 
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4.2.3 Dealing with Noisy Features 

It is difficult to know in advance which features will be helpful for finding useful analogies 

and it is likely that where a number of features are being used, some will be adding noise. 
Obviously some strategy is required to weed out these noisy features. The most 

comprehensive way this can be accomplished, and the way adopted in the ANGEL approach, 

is to perform an exhaustive comparison of every possible combination of features, jack-knifing 

the Project case base each time until the subset of features that return the best confidence 

figure is found. The major problem here is that an exhaustive search can be computationally 

expensive. To be more precise, the complexity of an exhaustive jack-knife can be expressed as 

m*2n -1 where m is the number of project cases and n is the number of features. Given a 

constant number of project cases, the time taken to perform such a search will increase 

exponentially with the number of features. For example, given a case-base of twenty projects 

on a Pentium 200, ANGEL will take 5 seconds to process 5 features, 2 minutes 40 seconds to 

process 10 and 45 hours to process 20 features! 

4.2.4 Forming a New Estimate 

The simplest way to form a new estimate is to copy the effort value from the closest source 

analogy to the target. However, other strategies might be considered, for example, finding the 

n closest projects and taking an average of their total effort or alternatively applying a 

weighting so that the closest projects contribute more to the eventual estimate. It is likely that 

different strategies will be optimal under different circumstances. For example, taking just the 

closest analogy leaves the estimate vulnerable to it being a poor or outlying analogy. On the 

other hand, where numerous analogies are selected, the effect of the closest analogy might be 

weakened by less important analogies. 

The strategy adopted for the ANGEL approach was, first and foremost, pragmatic. It was not 

within the scope or time-scale of this project to test all the possible ways analogies could be 

used so four different strategies were chosen as outlined below: 

One analogy 
Estimate = effort from the closest analogy. 

Two analogies 
Estimate = average effort from the closest two analogies. 

Three analogies 

Estimate = average effort from the closest three analogies. 
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Two analogies (weighted) 

Estimate = average effort from the two closest analogies, the first weighted double. 

This is as close as the ANGEL approach comes to offering an adaptation mechanism, a feature 

that is so highly desired in case-based reasoning systems. Other attempts at creating 

analogical based reasoning systems (Vicinanza and Prietolla 1990) have tried to incorporate 

such mechanisms, but ultimately expert intervention is required (usually in the form of rules) 

which makes the system difficult to move between development environments and will make 

expert intervention (to maintain the rulebase) necessary. 

Early experiments using automated estimation by analogy (Atkinson and Shepperd 1994) 

found that one disadvantage is that it requires a great deal of computation. They overcame 

this problem by automating the process using SPSS20 to compute the statistical similarities 
between projects and then EXCEL to identify the closest analogies, develop an estimate and 

compute the method performance. Automating the process allowed them to create estimates 

relatively quickly and accurately. Using this automated technique they found21 that certain 

analogy selection techniques out performed regression based techniques (in terms of MMRE) 

while performing slightly less well than expert judgement. From this work it was evident that 

to make estimation by analogy viable it would have to be fully automated. This has been 

done, in the form of a software tool known as ANGEL, and is described below. 

4.3 Effort Estimation by Analogy: The ANGEL Tool22 

From experience, searching for analogies using the approach described in section 4.2 can be 

both time consuming and error prone, particularly if there are many projects or many 

variables. For this reason it was decided to automate the process and provide an environment 

where data can be stored, analogies found and estimates generated. A prototype was 
developed using Visual Basic 3.0 to run under Windows (3.1 or above) on a PC, and was 

christened ANaloGy Estimation tool (ANGEL). Visual Basic was chosen because it allowed 
for rapid and incremental prototyping of the embryonic ideas while providing a user-friendly 
interface. Although essentially a prototype system, built with the intention of supporting 

research into the efficacy of estimation by analogy, a number of commercial companies have 

20 A social science statistical package 
21 Using data from 21 real-time projects. 
22 A version of this tool is available at http: //dec. boumemouth. ac. uk/dec_ind/ýlecind22/web/Angel. html 
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shown interest in using the tool in a variety of ways from the simple identification of similar 

projects as an aid to expert estimators, to full use of the estimate generation facilities. 

It was decided early on that ANGEL must not constrain the user by prescribing the collection 

of any particular features. Thus a shell architecture was developed, that enabled the user to 

define the features that best characterise their environment. As a result of adopting a shell 

architecture, ANGEL can conceivably estimate any goal feature (and is not constrained to 

software development problems) such as development duration, lines of code or testing 

effort, and is not constrained over which features must be collected. From the start, design 

decisions have been made with three major guiding influences: expediency, simplicity and 

openness. 

The ANGEL tool separates the process of estimation by analogy into three key areas: 

i) Data Templates 

Template are simply forms used to describe the environment in which projects are to 

be undertaken (i. e. meta data). 

ii) Project Case Base 

A project case base, built from information captured in a template, is the repository 

for project data. 

iii) Estimate Generation 

Estimate generation allows the user to generate estimates for target projects based 

upon source projects in a project case base. 

Template Template Editor 
File Creates/ 

T 
Modifies 

Used By 

Project Editor 

Creates/Modifies 

Project Used By 

Data _. _. _ .............. 
Estimate Generator 

Returns 

estimate to 

Figure 4-4: ANGEL scher atic 
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The interaction between the main components of the ANGEL tool is demonstrated in figure 

4.4 Before project case data can be stored, the template editor is used to profile the 

environment from which the data will be collected. The resultant template is stored as a text 

file. This template file is then used by the project case editor to create a project case base. Once 

enough projects have been collected in the case base, the estimation generator can be used to 

generate estimates for any new projects. Ideally, an estimate should then be recorded in the 

project case base so that it can be compared to the final outcome, although this is not 

mandatory in ANGEL. Figures 4.5 to 4.9 illustrate ANGEL in operation. 
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Figure 4.5 :A data templates in ANGEL 

Figure 4.5 shows a template for recording environment data. Templates are an important part 

of this approach because they can be configured to suit the individual data collection 

environment of an organisation. There is no particular set of features prescribed by the 

template, in order that the approach can take optimum advantage of the data available at each 

data collection site. All feature types and names are user determined, except for Project Name 

and Status which are mandatory. Project Name merely provides a mechanism for uniquely 

identifying each project or case. Status indicates whether a project has been completed, or not 

and therefore whether it can be used as a source of analogy. Selection of feature type is 

important at this stage as it determines how ANGEL will treat data when performing 

estimates. The data types available are Estimate (a goal feature type), Attribute (a quantifiable 
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descriptor feature type), Categorical (a categorical descriptor feature type) and Text (a memo 
field). Before a template can be transformed into a project data store, it must have at least one 
Estimate feature and one Attribute or Categorical feature (in addition to the mandatory 
features). 

Figure 4.6: A project database in ANGEL 

Project case bases are formed from template files and stored as Microsoft Access readable 
database files. Figure 4.6 shows two example project case bases holding projects taken from 

the Albrecht (1979) and Kemerer (1987) data sets respectively. It was decided to display the 

project case bases as spreadsheets because of the visibility advantages this format affords. 
Each column in the spreadsheet represents a feature, while each row holds a single project. 

Figure 4.6 shows all but one project as having a Status of 'COMPLETED', a label that marks 

that project as belonging to the pool of potential source analogies, while one project has an 

'ACTIVE' Status marking it as a project for which we might want produce an estimate. 
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Figure 4.7: Configuring an estimate in ANGEL 

Figure 4.7 shows the estimation generator screen. Before ANGEL can generate an estimate, 

the user must select an active project and the number of analogies ANGEL will search for 

(recall that ANGEL currently allows up to three analogies to be used). Having selected the 

number of analogies, the features that will be used in measuring the Euclidean distance 

between projects must be selected. As mentioned earlier, the reason for this is that not all 

collected features will be helpful in finding good analogies; some features may create noise. 

The chosen features can be all, or just a subset, of the features stored in the project case base. 

Because the problem of determining these features by hand is very hard23, ANGEL can also 

automatically determine the best combination of features to be used for finding analogies for a 

particular case base. This relies upon a brute force, exhaustive search of all possible feature 

combinations. 

23 The most obvious features that generally have a strong statistical influence on effort will not necessarily be the most 
influential features in ANGEL. 
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Figure 4.8: Estimation results using ANGEL 

The final step (Figure 4.8) involves predicting effort for a selected project, in this case a test 

project, using the completed projects from the case base. Here we see a predicted value of 

13300 work hours (shown in Figure 4.8 as thousands of work hours). The confidence that we 

can have in the estimate is automatically provided in the form of the MMRE, Pred(25), 

SMMRE24 and S-Pred(25) values25 as described in section 2.6. A further facility is the ability 

to examine the source analogies used to create the prediction, in this case projects 16 and 11. 

Note that the estimate figure represents the average of the effort for the closest two analogous 

projects. Obviously, on small projects this level of precision is not necessary and perhaps 
falsely gives an impression that the technique can be so accurate. However, where projects are 

measured in larger units such as thousand work hours or person years the values after the 

decimal point obviously become important. At present ANGEL has no provision for 

recognising the two different situations. 

24 Also known as BMMRE - Balanced MMRE [13] 
25 Each performance indicator has its own merits and the ANGEL approach does not advocate the use of any one. However, 
the user should be aware that ANGEL optimises on MMRE and that the use of other indicators helps to provide a more 
balanced view. 
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Figure 4.9 : Applying weightings to features 

An auxiliary facility available in ANGEL provides the means of applying weightings to 

project features. Features can be classified as minor, nominal or significant, altering the 

amount of influence that is exerted by that feature on the similarity measure by *0.5, *1.0 and 

*1.5 respectively. Initially, all features are set to nominal so that all features contribute equally. 

The decision to adopt a three point scale for the weighting facility was made on the grounds 

that to have more points on what is essentially an arbitrary scale goes against the major 

strengths of the ANGEL tool (i. e. its simplicity and transparency). It was also considered 

important that whatever the values chosen, the minor and significant values should exert the 

same effect in both directions from the nominal value. Another function that was considered 

and later abandoned was a facility that would allow the user to find the best weighting for 

each feature by carrying out an exhaustive search similar to that used to determine the best set 

of features. The idea was discarded, however, because it was deemed too computationally 

expensive in a tool that was already sensitive to time constraints, particularly when trying to 

determine the best subset of features. It was also considered to go against the simplicity of the 

analogy technique and blur ANGEL's ability to explain its output. 

4.4 Summary 

There has been a great deal of anecdotal evidence in the literature indicating that humans 

solve complex problems by reasoning using analogies. This has led a number of software 

engineering researchers to consider the use of analogies in order to mimic the reasoning 

processes of expert human estimators. 

This chapter has described a novel approach to the estimation of software development effort 
by searching for similar or analogous examples from sets of historical software projects. This 
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approach is very similar to case-based reasoning and has learnt a great deal from the 

experiences reported in that community. Unfortunately, the approach is computationally 

expensive and thus requires automated support. This support is provided in a tool, dubbed 

ANGEL, which allows the collection of project data and the identification of similar projects in 

order that the effort for new projects might be estimated. 

The next chapter will describe how the ANGEL tool was used as part of an empirical analysis 

comparing the accuracy of the estimation by analogy and a more traditional algorithmic 

approach. 



Chapter 5 

An Empirical Investigation of the Accuracy of Estimation by 

Analogy 

5.0 Introduction 

Although a variety of different factors must be considered when assessing prediction systems, 

such as robustness and ease of use (see for example (Boehm 1981; Conte, Dunsmore et al. 

1986; Kitchenham 1990)), arguably the most important and certainly the most visible feature, 

is the relative accuracy of predictions made. To be taken seriously by researchers and more 

importantly practitioners, any new estimation technique must justify itself first and foremost 

by its results. This chapter will present the results obtained when using the ANGEL tool to 

predict project effort for approximately 250 real software development projects across 8 

different industrial data sets, summarised in table 5.1. The 8 data sets represent a wide range 

of development environments including a defence contractor, 2 telecoms companies and a DP 

services organisation, and were collected between the late 1970's and early 1990's. 

Name n Description Source 

Albrecht 24 IBM DP Services projects (Albrecht and Gaffney 1983) 
Desharnais 77 Canadian software house - (Desharnais 1988) 

commercial projects 
Finnish 38 Data collected by the TIEKE Finnish Data set: data set 

organisation from IS made available to the 
projects from 9 different ESPRIT Mermaid Project by 
Finnish companies. the TIEKE organisation 

Hughes 33 Telecoms project builds See Appendix B 
Kemerer 15 Large business applications (Kemerer 1987) 
Mermaid 28 New and enhancements MM2 Data set: Data set 

projects made available to the 
ESPRIT Mermaid Project 

anonymously 
Real-Timel 21 Real-time defence projects See Appendix B 
Telecomsl 18 Enhancement projects from See Appendix B 

a large telecoms company 

Table 5.1 Data sets used to compare estimation by analogy and regression 
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Effort is also predicted using a regression based technique to allow the results from ANGEL 

to be put into perspective, and to provide a comparison between estimation by analogy and a 

technique regarded by some (Kok, Kitchenham et al. 1990) as 'state of the art' in effort 

estimation. The results from both techniques are then analysed together using statistical 

significance testing and conclusions about the relative performance of estimation by analogy 

are drawn from the results. 

5.1 Experimental Procedure 

Throughout this investigation a Pentium 200 PC was used to run SPSS and the ANGEL tool. 

For each data set, the four different analogy selection approaches26 in ANGEL were 

compared to stepwise regression run in SPSS. Stepwise regression builds prediction models 

based upon one or more independent variables where variables are successively entered into 

the model until no further significant contribution can be made. All the available features 

(with the exception of nominal and ordinal scale features27) are entered into the stepwise 

regression, except where there are a priori reasons for leaving a feature out, for example, 

where there are missing values. Appendix A contains a full list of the features used for each 

technique. The four analogy selection approaches (as described in section 4.3) were: 

" One analogy - the effort from the closest analogy 

" Two analogies - the mean effort from the two closest analogies 

" Two analogies (weighted) - the mean effort from the two closest analogies with the first 

weighted double 

" Three analogies - the mean effort from the three closest analogies 

The prediction accuracy of the different approaches is assessed using IMRE and Pred(25). As 

has been stated in section 2.6, there are a variety of other performance indicators, however, 

these two were chosen because they give a balanced view (MMRE tends to be conservative 

while Pred(25) tends to be more optimistic focusing attention only on the best cases), because 

they can be appropriately applied to both regression and analogy (unlike, for example, R- 

26 At this stage it was difficult to predict which analogy selection approach would work best under different circumstances so 
the results from all four are presented. 
27 Although it is possible to incorporate such features into a regression model (creating dummy variables for each feature 
value), their worth in anything other than a exploratory analysis is questionable., 
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Squared28) and because they are the most widely used performance indicators in the 

literature. 

Standard significance testing was also used to test the validity of claims made about the 

performance of estimation by analogy when compared to stepwise regression in terms of (a) 

MMRE and (b) Pred(25). 

i 

5.2 Notes on the Investigation 

It is important to note at this stage the two minor differences between the estimation by 

analogy and stepwise regression approaches and a third difference in the way they will use 

the data presented to them. 

1) The performance indicators for estimation by analogy and regression are generated slightly 

differently 

Estimation by analogy adopts a strategy very similar to jack-knifing where individual projects 

are removed for estimation and are then returned to the data set. The regression modelling is 

different in that a regression model is generated using all of the data (hereafter this process is 

known as 'goodness of fit'). This will, in practice, give an advantage to the regression-based 

technique because each project will contribute to the generation of the model from which its 

effort will be estimated. A possible solution to this problem would be to jack-knife the 

regression technique so that a new model would be built as each project is removed in turn. 

However, this represents a great deal of manual effort, more than was possible within the 

time-scales of this project. 

2) Estimation by analogy optimises on MMRE. 

Estimation by analogy decides upon the best set of features by minimising the mean absolute 

percentage error (MMRE). Regression, on the other hand, creates a line of best fit by 

minim sing the sum of the squared errors. As a result it is likely that comparisons of the two 

techniques using the MMRE performance indicator will give an advantage to estimation by 

analogy. 

28 After initial exploratory analysis, R2 appears to be inappropriate for analogy and with certain calculations it is possible to 
obtain a negative value for R2. 
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For the remainder of this thesis, the assumption is made that neither of these have a serious 
impact on the results, and that the advantage to estimation by analogy from optimising on 
MMRE is no greater than the advantage to stepwise regression by not jack-knifing. 

3) The handling of ordinal scale data 

The features collected across the eight data sets in Table 5.1 range from ratio scale measures, 

such as Years of experience, to nominal scale measures, such as Development environment. When 

one is considering the use of data for estimation, it is important to take note of the operations 

that are permissible on each scale type. Measurement theory states (Finkelstein and Leaning 

1984) that the only operations applicable on ordinal data are equality and greater/less than 

comparisons. However, as a number of the data sets are richly characterised with ordinal 

data, strategies were sought to enable ANGEL to use such data. A decision was made to treat 

all ordinal variables as interval on the grounds that doing so improves accuracy. This 

essentially means that ANGEL assumes a linear interval between all ordinal values. This 

approach is defended by Briand et al. (1996), amongst others, who consider that the rigid 

application of measurement theory can be "rather sterile in terms of results"; and also by 

Stevens (1946), the 'father' of measurement theory, who provides a pragmatic sanction for the 

use of "illegal statistics" on ordinal measures: "In numerous instances it leads to fruitful 

results. While outlawing of this procedure would probably serve no good purpose,... ". 

However, no researcher would disagree that this approach must be treated cautiously and 

should not be used if not yielding useful results. 

The next section will go on to compare estimation by analogy with regression for the eight 
data sets in table 5.1. The first data set, the Albrecht data set, will be examined in more detail 

to demonstrate the process by which all data sets were analysed. 

5.3 Data Analysis 

5.3.1 The Albrecht data set 

A statistical summary of the features used in the analysis of the Albrecht data set is displayed 

in table 5.2. Note that KSLOC has been left out, because it is not generally available before 

estimation is required. The feature to be predicted (goal feature or dependent variable) is 

effort, measured in work-hours, while the potential independent variables (descriptor 

features) are adjusted f unction points, the number of master files, the number of inputs, the number 

of inquiries and the number of outputs. 
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Feature Count Min Max Mean Median 
Effort 24 . 50 105.20 21.88 11.45 
FP 24 199.00 1902.00 647.62 506.00 
Files 24 3.00 60.00 17.38 11.50 
Inputs 24 7.00 193.00 40.25 33.50 
Inquiries 24 0.00 75.00 16.88 19.3 
Outputs 24 12.00 150.00 47.25 39.00 

Table 5.2 Summary statistics for Albrecht data set. 

As an example of regression based model building, figure 5.1 shows a linear regression model 

using f unction points as the independent variable to predict effort. Note the negative intercept 

on the y-intercept, suggesting that projects from this sample have negative fixed costs. For the 

remainder of this analysis stepwise linear regression will be used to generate models. 
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Figure 5.1: Scatterplot of effort vs Function Points 

The prediction system built by stepwise regression rejects the majority of the features as not 

contributing significantly to a model based on function points and number of inquiries and thus 

the regression equation becomes: 

Effort = -12.08 + (0.04*ficnction points) + (0.42*number of inquiries). (Eqn. 5.1) 

The adjusted RZ of 0.90 suggests that the model is good with 90% of the variation in effort 

being explained by variation in fimnction points and number of inquiries, however the negative 
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intercept value is not intuitively very appealing as it suggests negative fixed costs. The next 

step is to predict each project in turn using this model and using the difference between the 

estimates generated and the known effort to derive the MMRE and Pred(25) statistics. 

The analogy results were obtained by using the facility that allows the best subset of features 

to be found (see Section 4.2). Note the best subset of features is often different, dependent on 

the number of analogies to be found. The associated MMRE and Pred(25) statistics represent 

the predictive performance of each of the four analogy selection techniques. 

Table 5.3 shows the results from stepwise regression and estimation by analogy in terms of 
NRYM and Pred (25). 

Prediction Method MMRE Pred(25) 

Stepwise Regression 74% 25% 

One Analogy 67% 33% 

Two Analogies 66% 37% 

Two Analogies 61% 41% 

Three Analogies 62% 33% 

Table 5.3 Regression vs Analogy for the Albrecht data set 

As can be seen from table 5.3, estimation by analogy out performs stepwise regression in all 

cases for both MMIZE and Pred(25). For this data set at least, the optimum number of 

analogies appears to be two, when the first analogy is weighted double, which returns an 

M RE of 61% and a Pred(25) of 41%. Note how similar the four estimation by analogy results 

are (a 6% difference in NUVIRE and an 8% difference in Pred(25), between the best and worst 

results), a pattern that will be repeated throughout this analysis. 

The same procedure is followed for the remaining 7 data sets, with the overall results 

presented in Tables 5.15 and 5.16. 

5.3.2 The Desharnais data set 

It is uncommon in the field of software project estimation to come across a data set as large as 

that collected by Desharnais (1988) from a Canadian software house. At 77 projects, collected 

over 3 different development environments, the data set is twice the size of the next largest 

data set in this investigation. The data set is also relatively rich in features that can potentially 
be used to estimate effort (for a full summary of the features see appendix A. 2). 
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The Stepwise regression equation again rejected most of the features as not contributing 

significantly to its initial model: 

Effort = 150.816 + (16.454*adjFP) 

with an adjusted RZ of 0.53. 

(Eqn. 5.2) 

Prediction Method MMRE Pred(25) 

Stepwise Regression 66% 42% 

One Analogy 37% 45% 

Two Analogies 38% 37% 

Two Analogies 36% 37% 

Three Analogies 34% 49% 

Table 5.4 Regression vs Analogy for the Desharnais data set 

The strategy of searching for three analogies was found to be the most accurate for this data 

set, predicting 49% of the projects within 25% of their actual effort and achieving an MMRE 

nearly twice that of the stepwise regression model (Table 5.4). The three other analogy 

approaches were also notably superior to stepwise regression in terms of MMRE but similar 

in terms of Pred(25) 

Recall from chapter two that algorithmic techniques such as stepwise regression prefer more 

homogenous data and that provided the number of projects remains high enough for 

statistical relationships to be found, they will generally be more accurate when data is 

partitioned into related groups. In the case of the Desharnais data set, it is possible to partition 

the data based upon the three different development environments of 44,23 and 10 projects 

respectively, and doing so improves the accuracy of stepwise regression from the overall 

figure of MMRE = 66% to 41%, 29% and 49% respectively. At the same time the best analogy 

approach improves in two of the sets, and worsens in one, while still remaining superior to 

stepwise regression. 
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Data set Stepwise Regression Analogy 

Desharnais - Dev Env 1 41% 37% 

Desharnais - Dev Env 2 29% 29% 

Deshamais - Dev Env 3 49% 26% 

Table 5.5 MMRE results for the partitioned Desharnais data sets 

Data set Stepwise Regression Analogy 

Deshamais - Dev Env 1 45% 47% 

Desharnais - Dev Env 2 48% 47% 

Desharnais - Dev Env 3 50% 70% 

Table 5.6 Pred(25) results for the partitioned Desharnais data sets 

Partitioning also appears to have a positive effect on the Pred(25) values for stepwise 

regression improving the figure from Pred(25) = 42% to 45%, 48% and 50%. The result for Dev 

Env 2 is particularly interesting where the stepwise regression model performs marginally 

better than estimation by analogy. Another interesting result is obtained by using estimation 

by analogy on Dev Env 3. Although only 10 project cases are available, accuracy figures of 

NR ORE = 26% and Pred(25) = 70% are returned (the best within this investigation and 

soberingly, the only results close to the values Conte et al. (1986) considered should be 

returned by a good effort prediction system) providing some insight into the question of the 

minimum number of project cases needed to make estimation by analogy viable. 

5.3.3 The Finnish data set 

The Finnish data set, comprising 38 projects from a variety of different organisations, was 

very rich in predictor features, having 29 in all. This provided a problem for the analogy 

estimation approach as finding the best subset of 29 features on a Pentium 200 would take 

approximately 20 years! However, performance figures for analogy were generated by 

analysing smaller subsets of features. This meant that the optimal subset may not have been 

found, however, by adopting informal search heuristics, it was possible to find subsets of 
features that were considered to be close to the optimal subset and that produced accurate 

results. 

Using stepwise regression on the available continuous features (see appendix A3) resulted in 

the following model, with an adjusted RZ of 0.39: 
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Effort = 899.709+(121.975*ON) + (148.853*FN) (Eqn. 5.3) 

Prediction Method ] 

_MMRE 
Pred(25) 

Stepwise Regression 114% 26% 

One Analogy 48% 23% 

Two Analogies 42% 44% 

Two Analogies 
(weight) 

41% 39% 

Three Analogies 52% 26% 

Table 5.7 Regression vs Analogy for the Finnish data set 

Although not necessarily able to find the best subset of all the features, table 5.7 shows that 

analogy is still able to estimate effort almost 3 times more accurately than stepwise regression 

when searching for two analogies, weighted and unweighted. This time, the most accurate 

technique in terms of the Pred(25) statistic is the two analogies approach while choosing two 

analogies weighted returns a marginally superior MMRE result. 

5.3.4 The Hughes data set 

The Hughes data set collected from a large size telecommunications company contains 

information on 33 projects with 14 features (summarised in appendix A. 4) including 

development effort. 

The stepwise regression equation has a relatively high adjusted RZ of 0.80, and produces the 

following model: 

Effort = 626.87 + (2Q5.40*C5) + (559.36*C3) + (313.54*C8) + (-854.28*C4) + (55.66*C9) 

+ (-26.91*C10) (Eqn. 5.4) 

An interesting quirk of this model is that the amount of effort needed to complete a project is 

increased by the experience of the block designer (C9). On the surface, this appears to be 

another example of a counter intuitive model, however further investigation might reveal a 

plausible reason for this such as, the more experience designers being given the more difficult 

tasks. 
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Prediction Method MMRE Pred(25) 

Stepwise Regression 72% 42% 

One Analogy 37% 51% 

Two Analogies 40% 39% 

Two Analogies (wg ce, ) 40% 45% 

Three Analogies 37% 39% 

Table 5.8 Regression vs Analogy for the Hughes data set 

However, as Table 5.8 shows, the regression model shows a poor level of accuracy, in terms of 

NIIvIRE when compared with the best analogy technique which predicts effort on average to 

within 37% of the actual figure. The picture is less clear cut for the Pred(25) measure although 

the best analogy (One Analogy) method is still superior. 

5.3.5 The Kemerer data set 

The Kemerer data set contains two features (summarised in appendix A. 5) that can be 

exploited by regression and analogy for the purposes of estimating effort, these are adjusted 

Function Points and unadjusted Function Points. Even though there is a high level of 

correlation (rs = 0.98) between the two variables it was decided to use both features with the 

expectation that stepwise regression would eliminate the least useful one. 

The regression equation generated was Effort = -121.57 + (0.34* FP) which has an adjusted RZ 

of 0.55. Table 5.9 summaries the MMRE and Pred(25) values for regression and the best 

analogy method 

Prediction Method MMRE Pred(25) 

Stepwise Regression 106% 13% 

One Analogy 68% 26% 

Two Analogies 62% 40% 

Two Analogies 62% 26% 

Three Analogies 64% 40% 

Table 5.9 Regression vs Analogy for the Kemerer data set 

The results in table 5.9 seem to follow the same pattern as those before it (i. e. analogy 

significantly out-performing regression) with the strategy of taking the mean of the closest 

two project's effort being the most fruitful approach this time. Note that this is the data set 
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with, at 15, the smallest number of projects. This does not, however, seem to pose a great 

problem to the analogy technique which is able to predict effort within 25% of its actual figure 

for 40% of projects. 

5.3.6 The MERMAID data set 

The MERMAID data set comprises 28 new and enhancement projects. The predictor features 

available include unadjusted and adjusted Function Points counts and the fourteen General 

System Characteristics that convert the former Function Point count into the latter. Using the 
Function Point Counts with stepwise regression generates the following model: 

Effort = 3060.183 + (15.626*RawFP) 

AdjR2 = 0.20. 

(Eqn. 5.6) 

Prediction Method MMRE } 

_Fred(25) Stepwise Regression 251% 14% 

One Analogy 78% 21% 

Two Analogies 95% 3% 

Two Analogies 92% 3% 

Three Analogies 117% 28% 

Table 5.10 Regression vs Analogy for the MERMAID data set 

The mermaid data throws up a number of interesting results. An interesting quirk of using 

analogy on this data set was that ANGEL chose the Development Environment29 feature as the 

sole best feature for all of the four analogy techniques. This of course meant that the first E 

and N type projects were being selected as the source of analogies for each project estimate30 
in the jack-knife procedure. This situation would not normally be expected to yield a good 
MMRE, however, a combination of the fact that the MMRE measure favours under-estimates 

and that the first N and E projects in the data set are the smallest in terms of effort, means that 

the use of the Development Environment feature predicts with an MMRE of 69% but, perhaps 

more revealingly, with a balanced MMRE31 of 658%. As a consequence, Development 

29 A categorical indicator of project type , with three values: N- New project; E- Enhancement project; N/A - not applicable. 
30The way ANGEL handles ties is primitive. If the Euclidean distance of two or more projects is equal, the first project 
encountered will always be chosen as the closest analogy. 
31 Recall that balanced MMRE unlike MMRE treats over and under-estimates equally. 
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Environment is removed from the analysis by ANGEL and the results present a more realistic 

picture. 

From Table 5.10, the regression model, with an adjusted RZ of 0.20, a Pred(25%) of 14% and an 

MMRE of 251%, does not seem to be able to model the relationships implicit in the data and 

consequently is a very ineffectual prediction system. The analogy technique, while over three 

times more accurate than stepwise regression on average, is also not very convincing with a 
best MMIZE of 78%, the poorest result of all the data sets analysed. 

MERMAID provides the second opportunity for partitioning of a data set into more 

homogenous groups, based upon the two development environments containing 18 and 832 

projects respectively. 

Data set Stepwise Regression Analogy 

MERMAID E 62% 53% 

MERMAID N N/A 60% 

Table 5.11 MMRE results for the partitioned MERMAID data sets 

Data set Stepwise Regression Analogy 

MERMAID E 27% 39% 

MERMAID N N/A 25% 

Table 5.12 Pred(25) results for the partitioned MERMAID data sets 

In the case of the Mermaid E (enhancements) data set, both techniques improve with analogy 

still the superior technique. However, in part due to the small size of the MERMAID N (new) 

data set it was not possible to find statistically significant relationships between effort and any 

of the predictor features which meant that no regression model could be built to compare 

with the analogy results. 

5.3.7 The Real-Time 1 data set 

The Real-Timel data set is interesting due to nature of the features (summarised in appendix 

A. 7) available at the time estimation is required. Not only is there no size related feature, but 

also all three features in this data set (host machine, life-cycle, and document standard) are 

32 Note that two of the projects cannot be placed in either group. 
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nominal and thus the building of a regression model is ruled out, since it would be comprised 

only of dummy variables. 

However, the use of analogy was not without its problems. When using ANGEL to analyse 

the data, a similar situation to that encountered when using a nominal feature for the 

MERMAID data set occurred. ANGEL in all four cases selected just one of the nominal 
features, which inevitably led to the repeated selection of the same projects as the source of 

analogy. 

Late on in the analysis a solution to this problem was found with the data reanalysed with 

each of the 3 features dis-aggregated so that each category value became a binary feature, 

with a value of 1, indicating the presence of the feature and 0 absence. As an example, the host 

machine feature was expanded into VAX, SUN and IBM-PC features and a project that was to 

use a VAX as the host machine would record a1 for that feature and 0 for the SUN and 
IBM_PC features. In all other ways the analysis method remained unchanged. 

Prediction Method MMRE Pred(25) 

Stepwise Regression N/A N/A 

One Analogy 65% 28% 

Two Analogies 59% 19% 

Two Analogies (weighted) 62% 23% 

Three Analogies 60% 14% 

Table 5.13 Regression vs Analogy for the Real-Time] data set 

The results in table 5.13 suggest that estimation by analogy is capable of producing acceptable 

estimates in situations where only categorical data is available. The importance of this cannot 

be overlooked, as. it, is often the case that the only type of data available to an estimator 

(especially at the bidding stage of a contract) is categorical in nature. Also this type of data is 

often easier to obtain and more likely to be free from errors. On the other hand any results 

obtained from data sets comprised solely of categorical data should be treated with caution. 

5.3.8 The Telecoms 1 data set 

The Telecomsl data set is characterised by only one potential descriptor feature, the number 

of files, which can be determined with reasonable accurately early on in the project life-cycle. 
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The regression line that describes the linear relationship between effort and the number of 

files is: 

effort = 95.18 + (1.89*files) (Eqn. 5.7) 

which has an adjusted RZ figure of 0.39 suggesting a considerable amount of scatter from the 

regression line, not a good basis for prediction. 

Prediction Method MMRE Pred(25) 

Stepwise Regression 86% 44% 

One Analogy 39% 44% 

Two Analogies 51% 55% 

Two Analogies 
(WQ1 ý 

46% 50% 

Three Analogies 73% 44% 

Table 5.14 Regression vs Analogy for the Telecomsl data set 

Table 5.14 shows that analogy is again the superior approach, with the selection of just one 

analogy the optimum technique in terms of MMRE and two analogies the optimum approach 

in terms of Pred(25). 

5.4 Summary of Results 

Data set Analogy Stepwise Regression 

Albrecht 61% 74% 
Desharnais 34% 66% 
Deshamais - Dev Env 1 37% 41% 

Desharnais - Dev Env 2 29% 29% 
Deshamais - Dev Env 3 26% 49% 

Finnish 41% 114% 
Hughes 37% 72% 
Kemerer 62% 106% 
Mermaid 78% 251% 
Mermaid E projects 53% 62% 
Mermaid N projects 60% N/A 
Real-Timet 59% N/A 
Telecomsl 39% 86% 

Table 5.15 Summary of comparison between-analogy and stepwise regression using MMRE 

Tables 5.15 and 5.16 summarise the results of predicting effort for 8 industrial data sets (plus 5 

subsets) using estimation by analogy and stepwise regre§sion. Note, The MMRE and Pred(25) 
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result are in each case taken from the analogy approach which obtained the best MMRE 

figure. Although on the surface this appears to penalise the stepwise regression model, in 

reality the user will wish to find the most accurate number of analogies before making an 

estimate. 

The most striking feature of both these tables is that the analogy technique equals or, more 

commonly, out-performs the regression technique in all but 1 of the 11 data sets for which 
both techniques could be applied. The one exception is the Desharnais-2 data set which shows 
fractionally superior performance for regression based prediction when using the Pred(25) 

indicator. This seemingly gives overwhelming evidence that the analogy technique is superior 

to stepwise regression based algorithmic methods, at least for the data sets under 

examination. 

Data set Analogy Stepwise Regression 

Albrecht 41% 25% 
Deshamais 49% 42% 
Desharnais - Dev Env 1 47% 45% 
Deshamais - Dev Env 2 47% 48% 
Deshamais - Dev Env 3 70% 50% 
Finnish 39% 26% 
Hughes 51% 42% 
Kemerer 40% 40% 
Mermaid 21% 14% 
Mermaid E projects 39% 27% 
Mermaid N projects 25% N/A 
Real-Timel 19% N/A 
Telecomsl 44% 44% 

Table 5.16 Summary of comparison between analogy and stepwise regression using Pred(25) 

To test the validity of. this claim, a one-tailed Wilcoxon signed pair test on the a) MMRE and 

b) Pred(25) results was calculated. 

The stated null hypothesis for (a) was: 

H0: Estimation by analogy is not more accurate at predicting software development 

effort than stepwise regression using the MMRE indicator 

to be rejected in favour of the alternative hypothesis: 
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H,: Estimation by analogy is more accurate at predicting software development 

effort than stepwise regression using the MMRE indicator. 

While the stated null hypothesis for (b) was: 

HD: Estimation by analogy is not more accurate at predicting software development 

effort than stepwise regression using the Pred(25) indicator 

to be rejected in favour of the alternative hypothesis: 

H,: Estimation by analogy is more accurate at predicting software development 

effort than stepwise regression using the Pred(25) indicator. 

Note that a direction has been specified in both the alternative hypotheses, which represents a 

belief that estimation by analogy is superior in terms of accuracy to regression analysis. 

Wilcoxon's signed pair test considers information about both the sign of the differences and 

the magnitude of the differences between pairs, in this case, the results obtained for analogy 

and stepwise regression. The test based on the MMRE figures for the 11 pairs produced a 

significant result where p= 0.001 thus the null hypothesis can be rejected at the 0.01 level of 

confidence and the alternative hypothesis that 'estimation by analogy is a superior to stepwise 

regression for the MMRE indicator' is accepted. Similarly, the test based on the Pred(25) 

figures for the 11 pairs produced a significant result where p= 0.0054 thus the second null 

hypothesis can also be rejected at the 0.01 level of confidence and the alternative hypothesis 

that 'estimation by analogy is a superior to stepwise regression for the Pred(25) indicator' is 

also accepted. 

Since the original submission of this thesis a more appropriate test33 of the significance of 

results from ANGEL has been devised by researchers (Stensrud and Myrtveit 1998) looking at 

the added value analogy can provide to expert judgement. Managers at Anderson Consulting 

were asked to estimates a series of software projects three time with first of all no 

supplementary data, second, access to historical data and third, access to historical data and 

ANGEL. The overall MMRE figures demonstrated that ANGEL did indeed improve on the 

estimates based upon historical data alone. However, to test the significance of this result 

33 The Wilcoxon signed rank test is sometimes seen as being too optimistic in that very few positive results are required for the 
null hypothesis to be rejected. 
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Stensrud and Myrtveit used a t-test on the mean difference between MRE pairs. The test 

confirmed at the 10% confidence level that ANGEL did indeed improve estimates over those 

based upon historical data alone. 

5.5 Discussion 

From the empirical analysis it can be seen that, at least for the sample of data sets analysed, 

estimation by analogy is superior in terms of results, to estimation based on stepwise 

regression. Although it must be remembered that the analogy technique optimises on MMRE, 

the results seen in terms of Pred(25) also show analogy to be superior, if to a lesser extent. 

Further, from the results, estimation by analogy would seem to have a number of previously 

unstated advantages over algorithmic prediction systems. First, estimation by analogy 

succeeds in creating estimates on data where no statistical relationships have been found (e. g. 

the MERMAID N data set). Second, estimation by analogy remains viable for data based 

solely on categorical features (e. g. the Real-Timel data set). Third, estimation by analogy 

remains accurate for small data sets (e. g. the Kemerer (15 projects), MERMAID N (8 projects) 

and Telecomsl (18 projects) data sets). And fourth, estimation by analogy remains accurate 

where the number of features is limited (e. g. the telecomsl data set). 

Another interesting point is that, for all of the data sets under consideration, the function to 

find the best subset of features improved, in every case, upon the result of using all the 

features together. This demonstrates the usefulness of the process of removing noisy features. 

This analysis has also highlighted a couple of flaws with the analogy technique. First, the use 

of categorical attributes can cause a problem under certain conditions (e. g. with the 

MERMAID and Telecomsl data sets) where the flawed nature of the MMRE measure is 

highlighted. As a result, a new strategy for dealing with wholly categorical data sets was 

developed. Even so,. the fact remains that estimates from data sets relying wholly on 

categorical features should be treated with caution. Second, the use of an exhaustive search to 

find the best subset of features is computationally expensive and impossible for one of the 

data sets under study. 

This analysis also permits an empirical evaluation of a number of questions relating to the 

most effective use of estimation by analogy: 

" What is the optimum number of analogies for ANGEL to search for? 

Table 5.17 shows the optimum number of analogies to use in ANGEL for each data set. 

'One Analogy' is the most commonly accurate estimation method, being selected for 5 
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out of the 13 data sets. 'Two Analogies' is the most accurate 4 times, and both 'Three 

Analogies' and 'Two Analogies Weighted' are most accurate twice respectively. One of 
the assumptions made early on in the project was that the selection of just one analogy 

would be more suitable on small data sets while a larger data set would favour the 

selection of more analogies34. This however, has not been borne out in the results, with 
for example, the two smallest data sets, MERMAID-N and Desharnais-3 finding 

respectively two and three analogies to be the optimum number to search for. Even 

though the selection of 'One Analogy' or Two Analogies' seem to be superior to both 

'Three Analogies' and 'Two Analogies weighted', it must be remembered that for many 

of the data sets the four different method returned remarkably similar accuracy levels. 

Data Set No. of Project Cases Optimum No. of Analogies 

Albrecht 24 Two (weighted) 

Deshamais 77 Three 

Desharnais - Dev Env 1 42 One 

Desharnais - Dev Env 2 23 Two 

Desharnais - Dev Env 3 10 Three 

Finnish 38 Two (weighted) 

Hughes 33 One 

Kemerer 15 Two 

Mermaid 28 One 

Mermaid E projects 18 One 

Mermaid N projects 8 Two 

Real-Timel 21 Two 

Telecomsl 18 One 

Table 5.17 Optimum no. of analogies for each data set 

" Does accuracy improve with more homogenous data? 

The answer to this question appears to be yes, based upon the limited evidence 

provided by the Deshamais and MERMAID data sets where, in both cases, partitioning 

of the data set led to more accurate estimates. However, the scale of improvement was 

relatively poor when compared to that seen in the regression models. This is possibly 

34 The theory behind this assumption was that, where there are a great number of projects, the chances are that for a given new 
project, there will be more projects similar (clustered close to it) that can be used as analogies than for a data set with few 
projects. 
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because analogy bases an estimate for a project on the cluster of projects that are most 

similar i. e. to a certain extent it automatically partitions the data. 

" What is the minimum number of cases that can be used as source analogies? 
The smallest number of cases successfully analysed by ANGEL is 8 from the 

MERMAID-N data set. However, the criteria by which the cut off point in the 

minimum number of projects to be used is judged, remains unclear. Chapter 6 will 

analyse this question in more detail. 

" Does accuracy improve on larger data sets? 
Figures 5.2 and 5.3 show the accuracy of each data set (in terms of MMIZE and Pred(25) 

respectively) plotted against data set size. For both accuracy indicators it is very 
difficult to discern any consistent pattern which can, in part, be put down to the small 

sample of data. In terms of MvIRE, the best figure results from the second smallest data 

set (10 projects), however on the whole, the smaller data sets (less than 30 projects) tend 

to return the poorest results (6 out of 9 over 50% MMRE). The MMRE values for the 4 

larger data sets (greater than 30 projects) are more consistent around the 40% mark. 
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Figure 5.2: MMRE by no. of cases 
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The results in terms of Pred(25) are very similar to those seen for MMRE. Again the 

best result is returned by the second smallest data set however, it is the smaller data 

sets that are again responsible for the worst results. 
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Figure 5.3 : Fred(25) by no. of cases 

Perhaps the only conclusion that can be drawn on this question is that, the larger the data set, 

the more consistent the results are likely to be. This question will be looked at again from a 
different view point in the next chapter, where individual data sets will be examined to see if 

accuracy improves as data points are added. 

5.6 Summary 

In summary, after analysing over 250 software projects, the hypothesis that estimation by 

analogy is a superior technique for predicting software development effort than a regression 
based analysis approach has been accepted. This analysis has allowed us to answer (within 

the limitation mentioned previously) questions about the analogy approach, such as, what is 

the optimum number of analogies for ANGEL to search for? and does accuracy improve on larger data 

sets?. The chapter has also highlighted circumstances under which analogy is a more 
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appropriate technique than the use of algorithmic models, i. e. where the data set is too small 

for any statistical relationships to be found; where nominal data is prevalent and where the 

data is heterogeneous. 



Chapter 6 

An Investigation into the Sensitivity of Estimation by 

Analogy 

6.0 Introduction 

The previous chapter analysed the overall accuracy of the estimation by analogy prediction 

system on static sets of historical project data. However, whilst extremely useful as a general 

indicator of predictive accuracy, this kind of analysis only provides a snapshot of the accuracy 

on a data set at a specific point in time. In reality, a prediction system will evolve over time. 

New projects will be estimated and when completed, their data will be used to enhance the 

prediction system. To judge a prediction system based on its accuracy for data sets that can 

contain many projects, (e. g. the Desharnais data set), is to neglect the fact that data sets are 

continually growing over time and that the size of the data set is likely to have a strong effect 

on accuracy and stability of estimates. 

The use of sensitivity tests allows a more focused examination of the performance and 

behaviour of a prediction system. By devising a test that simulates the dynamic growth of a 

data set over time, questions, such as how many data points are needed for estimation by 

analogy to be viable and how vulnerable is its accuracy to the addition of a single outlying 

project, can be answered. 

This chapter will describe an analysis that was devised to investigate the dynamic behaviour 

of the analogy technique. The results from 3 runs of the test on 4 data sets are presented in 

section 6.3 and discussed in section 6.4 and 6.5. Note that the full complement of 8 data sets 

was not used, due to the time consuming nature of this style of analysis. 

6.1 Questions to be Answered 

The sensitivity analysis was designed to answer the following questions: 
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  Does accuracy improve as the number of project cases increases? 

  What is the least number of project cases needed before estimation by 

analogy becomes stable? 

  Is estimation by analogy vulnerable to the addition of outlying35 data 

points? 

  Is there a recognisable point at which estimation by analogy becomes 

stable? 

The answers to these questions will inevitably be found in the way accuracy changes as data 

points are fed into the prediction system. 

6.2 Design of the Sensitivity Analysis 

The analysis procedure involved randomly numbering the projects from 1 to n (where n is the 

number of projects in the data set). Projects were then added to an empty data set one at a 

time in their random number order. Thus each data set grew until all of the projects had been 

added. For each partial data set (starting from two projects) the 'best set of features' function 

was employed searching for two analogies (unweighted) and the mean absolute prediction 

error (MMRE) associated with that subset was used as the measure of accuracy thus n-2 

accuracy measures were taken. This procedure was repeated three times for each data set 

under study so as to guard against freak results arising from the randomising procedure. 

As was mentioned earlier, constraints on time meant that only four of the data sets could be 

analysed. The Albrecht and Kemerer data sets were selected as examples for which a 

comparatively low level of accuracy was achieved. In contrast the Hughes and Telecomsl data 

sets showed the highest levels of accuracy. 

35 Outlying data points for ANGEL are similar but not identical to outlying data points for algorithmic models. An outlying 
data point in an analogy system is a point for which there are no suitable analogies identifiable in the case-base. Unlike for 
algorithmic prediction systems, it only takes the inclusion of one similar outlying project (assuming only one analogy is being 
searched for) to the case-base to remedy the problem. However, unlike algorithmic systems, analogy is unable to interpolate or 
extrapolate to form estimates and thus any point sufficiently outside of its current knowledge will be an outlying data point. 
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6.3 Sensitivity Analysis Results 

Figures 6.1 to 6.4 show the accuracy of each of the four data sets over time 
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Figure 6.1 : Estimation accuracy over time (Albrecht data set) 

Figure 6.1. Shows the behaviour over time of the Albrecht data set. The most striking feature 

of this analysis is the dissimilarity of the three lines. Al, after a period of increasing accuracy 

up to the addition of the ninth project, experiences a sudden 100% reduction in accuracy when 

the tenth project is added. However, after the tenth project, the trend is again a steady 

increase in accuracy. A2 reaches a high level of accuracy early on (after the fifth project) and 

maintains an MMRE around 40% up until the sixteenth project is added. The addition of the 

sixteenth project causes the accuracy level to suddenly decrease to approximately 80% in a 

way similar, to that seen in Al. From the seventeenth project onwards, accuracy is again 

consistent between 60% and 70% MMRE. The path of A3 is less turbulent than its 

predecessors. Starting off with a very poor level of accuracy (the MIvIRE being well over 

200%) until the addition of the ninth project, A3 slowly improves and reaches a consistent 

level, at approximately 65% MMRE, after 17 project have been added. 
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Figure 6.2 : Estimation accuracy over time (Kemerer data set) 

The dynamic behaviour of the Kemerer data set is shown in Figure 6.2. Two of the random 

series (K1 and K2) show very consistent behaviour from the addition of the fifth project 

onwards with both contained within the boundaries of 50% and 70% MMRE. Random series 
K3 however, is far less consistent, moving from an initial accuracy peak of 30% to a trough of 

over 100% MMRE after the seventh project. After this point however, accuracy increases until 

all the projects have been added. 
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Figure 6.3 : Estimation accuracy over time (Hughes data set) 
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Figure 6.3. Shows the behaviour over time of the Hughes data set. In contrast to Figure 6.1, the 

most striking feature of the three random series is their similarity and their consistent level of 

accuracy after fifteen projects have been added. The three lines begin to converge after the 

seventh project, with two (H1 and H3) of the three experiencing large reductions in accuracy 

(similar to those seen in Al and A3) previous to that point. 
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Figure 6.4: Estimation accuracy over time (Telecoms] data set) 

The three random series in Figure 6.4 exhibit very contrasting behaviour. T1 shows the most 

volatile pattern with a peak of approximately 30% MMRE, and a trough of approximately 

140% MARE. T2 is the most stable of the three series, after a little variability before 7 projects, 

the level of accuracy remains markedly constant around 50%. T3 is generally stable at just 

below 50% NIMRE but experiences two major 'blips' at 5 and 11-12 projects. 

6.4 Discussion of Results 

Overall, Figures 6.1,6.2,6.3 and 6.4 show that there is a tendency for the MMRE level to 

improve as the size of the data set grows. Exceptions to this can be seen in both the Albrecht 

and Telecomsl analysis and appear to be caused, in the main, by the addition of outlying data 

points, which will be discussed later. For many of the random series, there is a point at which 
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the level of accuracy begins to stabilise, which indicates that estimation by analogy can be a 
high risk technique at below this number of projects. 

After early fluctuation, the Hughes data set exhibits little improvement in accuracy levels 

beyond 15 projects. This is a trend also evident in the other three data sets at approximately 
this point, although, with the exception of the Albrecht data set, they really contain too few 

data points to provide compelling evidence. This suggests that data set size is not the most 
important factor determining accuracy, and indeed that the approximate accuracy of the 

analogy prediction system is determined early (say after 20 projects have been added) and is 

then relatively robust (to the introduction of outlying data points) from that point onwards. 

An interesting feature of Figure 6.1 is the sharp rise in the MMRE values that occur after 10 

projects have been added for random sequence Al and 16 have been added for random 

sequence A2. Further investigation reveals that both of these anomalies are linked to the 

introduction of the same project. The project is third in sequence A3, when predictions are 

still very poor and thus doesn't show so strongly. A similar pattern occurs in Figure 6.4. Sharp 

rises are seen in Ti and T3 at the stage where 9 and 5 projects have been added respectively. 

These rises correspond to the addition of the same project: number 16. Within the Telecomsl 

data set, projects 16,17 and 18 are different in nature to the remaining 15 projects and 

required relatively little effort to complete. As a result when the first one of these three 

projects is added there are no analogous projects in the case-base and the estimate made for 

this project is wildly inaccurate. The reason for the dramatic recovery seen in the MMRE 

figure for T3 is the addition of project 17, which is very similar to project 16. Note, the same 

pattern is not seen in T2 because projects 16 and 18 are introduced from the start. All this 

suggests that the results from estimating by analogy, like regression, can be influenced by 

outlying projects. However, Al and A2 demonstrate that the affect of an outlying project is 

ameliorated as the size of the data set increases. 

6.5 Questions Revisited 

In this section the questions asked in section 6.2 will be revisited in light of the tests carried 

out on the four data sets. 

Does accuracy improve as the number of project cases increases? 

The Hughes data set gives an almost perfect example of a curve of diminishing accuracy 
improvement over time. The Albrecht data set also appears to be characterised by a general 

increase in accuracy with size, which is only spoiled by the introduction of an outlying 
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project. Unfortunately, the other two data sets give no support this theory. When the 

individual series are combined into an average MMRE over time (Figure 6.5) the trend shown 

is for the Albrecht and Hughes data sets to improve, the Kernerer data set to remain 

remarkably constant throughout and the Telecomsl data set to improve gradually in between 

large jumps of inaccuracy. 
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Figure 6.5: Average Estimation Accuracy Over Time (All Data Sets) 

What is the least number of project cases needed before estimation by analogy becomes 

stable? 

The smallest data set analysed in chapter 5, MERMAID-N, contained 8 projects. However, the 

results of the sensitivity analysis highlight the fact that results from any data set containing 

less than 10 projects are likely to be very volatile. Thus caution must be exercised when 

interpreting the results from data sets containing less than this amount of projects. 

Is estimation by analogy vulnerable to the addition of outlying data points? 

The tests on the Albrecht data set highlight this point clearly and indeed the removal of the 

offending project, number 23, has a dramatic effect on the accuracy of estimation by analogy, 

reducing the original MMRE of 62% down to 39% and increasing the Pred(25) figure from 

40% up to 47%. One good point to be drawn from Figure 6.1 is that the effect of an outlying 
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data point seems to be ameliorated as the size of the case base grows. The Telecoms 1 data set 

also appears to provide strong evidence on the effects of outlying data points. In this case 

though, the addition of just one project, similar to the outlier, removes the problem. This gives 

support to the idea that the analogy approach is more adaptable to changes in the estimation 

environment. 

Is there a recognisable point at which estimation by analogy becomes stable? 

This has implications for the amount of confidence that can be placed on estimates. Initial 

observations suggest (e. g. H1-3, T2, T3, K2, K3, and A1-3) that it is possible to discern a point 

at which the MMRE level stabilises and is not subject to wild fluctuations. This suggests that it 

might be possible identify a point at which the use of estimation by analogy on a given set of 
data enters a 'stable mode' in which new estimates can be treated with less suspicion. The 

Hughes data set certainly points to this being a possibility with the MMRE level stabilising 

after 15 projects and then remaining remarkably constant over the introduction of the 

remaining 17 projects. Unfortunately, the other three data sets have too few data points for 

any compelling conclusions to be drawn on this question. 

6.6 Summary 

The use of sensitivity tests on four of the project data sets has enabled the dynamic study of 

estimation by analogy under the more realistic circumstances of data points being added over 

time. The tests have thrown up a number of interesting characteristics of the approach, such 

as the fact that accuracy does not always increase with the number of projects and that it can 

be affected greatly by the introduction of outlying projects. One of the data sets showed 

evidence of a heightened sensitivity to the introduction of a single outlying project that had a 

dramatic effect on accuracy throughout the remaining test. The introduction of outlying 

projects is potentially the most dangerous pitfall of this technique, where the selection of one 

project as a basis for estimation is common. On the positive side however, the same data set 

showed that the effect of a outlier is diminished as the number of projects increases. Another 

important finding is the confirmation of the fact that, due to wild fluctuations in accuracy, 

estimation by analogy should be considered unsuitable where less than approximately ten 

projects are available. 

In summary, estimation by analogy is a stable and robust estimation approach given an 

appropriate (typically 10 plus projects) amount of data. The sensitivity test described above 
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has proved its value in revealing previously unseen characteristics of each data set when used 
by the analogy approach. 



Chapter 7 

Conclusions 

7.0 Introduction 

This chapter will bring together all of the research findings of the previous six chapters and 

analyse both the importance of the work and its limitations. First of all the research will be 

briefly summarised, before the objectives stated at the start of the thesis are revisited in order 

that an assessment can be made of the degree to which they have been achieved. The next 

section will then focus on the contribution this thesis makes to empirical software engineering 
discussing the important research findings that have been identified. Thereafter, limitations of 

the research will also be discussed. The final section will look at where work in this area might 
be targeted in the future. 

7.1 Summary of Work Carried Out 

A study of the literature on software effort estimation was made covering many of the main 

research themes that have shaped present day practises in effort estimation. From the study it 

was apparent that, by far the greatest amount of research effort has been expended on the 

development and validation of algorithmic models such as Boehm's COCOMO (Boehm 1981), 

Albrecht's Function Points (Albrecht 1979; Albrecht and Gaffney 1983) and Putnam's SLIM 

(Putnam 1978), and that, in the opinion of some (e. g. (Kitchenham 1996)), this focus has been 

to the detriment of other potential estimation techniques. More recently, alternative 

estimation techniques have been proposed and explored by software effort researchers such 

as neural networks, case-based reasoning systems and rule induction systems, however, very 

little evidence (mainly anecdotal) exists to the efficacy of any of these approaches. 

Having identified a need for research in the area of non-algorithmic approaches to effort 

estimation, this research project has focused upon a novel approach to effort estimation 

(called estimation by analogy) that involves the direct reuse of solutions to closely matching 

previous projects as a basis for estimates of new projects. 
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Before any practical use of the approach could be made, it was necessary to build a software 

tool that could store projects allowing for varying numbers of their features and calculate the 

relative similarity of projects so that the closest projects (to a new project) in terms of 
Euclidean distance could be used in the generation of an estimate for that new project. The 

use of software project data from eight different software engineering environments enabled 

an empirical validation of the approach in comparison to the use of an algorithmic method - 

stepwise regression - which showed (table 5.15 & 5.16) that, in almost all cases under study 

(comprising over 250 projects), the new approach was superior to the algorithmic model in 

terms of the MMRE and Pred(25) performance indicators. 

The analogy estimation technique was also examined using a novel pseudo time-series study 

that allowed the dynamic behaviour of the approach to be observed as data sets were grown 

over time. This allowed the approach to be assessed in a more realistic environment where 

projects are constantly being added to a data set. 

7.2 Research Objectives Revisited 

The three objectives stated at the start of this thesis will now be reiterated so that they can be 

assessed in light of the work presented in the previous chapters. 

i) To investigate the viability of analogical reasoning for the purpose of estimating the required effort to 

complete software projects. 

An objective of "investigating the viability" of a new approach is perhaps a little fuzzy and 

needs to be brought into dearer focus. However, at the outset of the project the approach was 
little more than an idea thus, for it to be realised, many (and at that stage some unknown) 
factors would have to be investigated before estimation by analogy could be recognised as a 

viable technique. These factors include: its theoretical basis, ease of automation, ease of use 

and widespread applicability. 

Theoretical basis 

Many of the ideas used in the development of the ANGEL approach to effort estimation, 

particularly the similarity measure, were drawn from mature well grounded theory that has 

been examined and applied within the case-based reasoning community for the last 15 years. 
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Ease of Automation 

One of the first and most important questions was whether estimation by analogy could be 

automated. The importance of this is discussed below, but suffice to say that the time scales 

involved for the multiple proximity calculations make it impractical for anything other than a 

computer. Although time consuming, the algorithms that drive estimation by analogy are 

repetitive in nature and thus were easy to implement. 

Ease of use 

The process of estimation by analogy can draw many parallels with the way humans 

informally use analogies from the past to solve problems in the present. Thus the concepts 

behind estimation by analogy are easy to understand. The major difficulty with this or any 

estimation approach comes from the peripheral problems, such as data collection. However, 

data collection is facilitated by the flexibility of ANGEL's templates which do not dictate the 

mandatory collection of any single feature and which include the ability to use categorical 

features, which are relatively easy to collect. 

Widespread applicability 

By permitting the user to process categorical values, the estimation by analogy approach 

becomes available earlier in the software project life-cycle than algorithmic techniques. This is 

important to companies that are forced to make early estimates based upon sketchy 

requirements with a lack of quantitative data. Again, because ANGEL does not predetermine 

what features must be collected, unlike for example, COCOMO, the approach is less 

restrictive. 

ii) To develop an automated tool that supports the functionality required to generate estimates by 

analogical reasoning. 

In all walks of life a great number of new ideas get stifled before they are fully realised 

because there are no practical means to implement them. This also holds true for the software 

engineering community and therefore to fully investigate the potential of the analogy 

estimation technique it was important to develop a tool that could automate the complex 

proximity calculations needed to make analogy estimation effective. On top of this, the needs 

of the software manager, the most likely user of such a tool, are equally important in the 

acceptance of a new technique. For the majority of managers making software estimates 

involves spending valuable time away from the practical implementation issues of a project. 

Therefore to have any chance of acceptance the analogy approach must have a short learning 

curve and be able to produce rapid results. 
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This has been achieved in the development of the ANGEL software tool. ANGEL allows a 

user not only to define project environments and store project data, but also to make 

predictions for new projects based upon that data. The tool is not constrained to the collection 

of any project characteristic or data type, which makes it practical within widely different 

development environments. This also provides the possibility that it can be used for 

predicting other characteristics of software (such as project duration or fault density) or 
indeed potentially, within many other areas where estimation is a problem. The tool was 
developed with a conventional 'windows' style interface to make it easy to adopt and use. 

The latest version of ANGEL (2.0). has been demonstrated informally a number of times and 
its simplicity and ease of use have been widely commended. It is also available in a scaled- 
down version on the internet and is being used in a number of software companies such as 
British Telecom. The concepts and algorithms behind ANGEL have also been incorporated 

into a software quality toolset known as SQUID (Kitchenham, Linkman et al. 1997), which 

employs analogical reasoning to evaluate the feasibility of and predict values for software 

quality requirements. 

iii) To validate the analogical reasoning technique on data taken from industrial environments. 

Validation of a new technique is essential before any legitimate claims can be made about its 

ability to estimate effort. Validation can take many forms, such as its ability to resist outliers 

or its ability to generalise when presented with new situations, but this project concentrated 
first, and foremost, on the accuracy of the approach. A widely recognised algorithmic 

approach - stepwise regression - was used as the benchmark against which it was judged. 

The accuracy experiments were carried out on eight data sets comprising 254 projects, all from 

the software industry. The relative accuracy of each approach was measured in terms of 
MMRE and Pred(25) and the outcome was that in all but one case, the analogy approach 

matched or outperformed the stepwise regression approach. As a result, the alternative 
hypothesis, that estimation by analogy is a more accurate estimator of software project effort 

than stepwise regression, was accepted, using wilcoxon signed pairs at p=0.001 for the 

MMRE performance indicator and p=0.0054 for the Pred(25) indicator. 

Many other aspects of the analogy approach were also studied in an analysis of the 

approach's sensitivity to the addition of new data points. This study provided valuable 
insights into the dynamic behaviour of estimation by analogy such as its ability to resist 

outliers, the number of data points needed before it becomes a viable technique and the effect 

of data set size on the accuracy of the approach. The study showed that the analogy approach 
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is sensitive to outlying projects, but that some projects that might be classed as outliers for a 

regression model may not be regarded as such by the analogy approach and visa versa. In 

terms of the number of data points needed before analogy can be used sensibly used, 8 was 

the lowest number of projects presented to ANGEL which returned an MMRE of 53% and a 

Pred(25) of 39%. However, the evidence from the sensitivity analysis indicates that the use of 

any less than 10 projects is risky. The extent to which data set size affects accuracy remains 
hazy, although the sensitivity tests did give some indication that accuracy becomes more 

stable as the data set grows. 

7.3 Synopsis of Research Findings 

The major research findings of this project have been that software effort estimation by 

analogy can be used as a viable alternative or complement to present estimation practices and 

that, at least for the eight data set studied, the approach is superior in accuracy to regression 

based models. Other important research findings include: 

0 The observed accuracy of a prediction system is very dependent on the performance indicator used. 

While the analogy approach was judged to be greatly superior to the regression approach 

in terms of Mv1RE, the Pred(25) results, while still supporting the superiority of analogy, 

were less convincing. This confirms the findings of a study by Schofield (1997) who used 

three different estimation techniques to estimate effort for the same data set and 

measured the results using four different performance indicators. He found that each of 

the three techniques were reported as most accurate with at least one of the indicators. 

" The application of weightings to increase the effect of chosen features within the proximity 

calculations does not appear to have any significant effect on results. One explanation of this 

could be that the use of the best attribute subset function allows ANGEL to find those 

features that have the most influence on effort and therefore apply a natural bias or 

weighting to them. For example, if a data set contained a number of complexity related 

measures amongst other features, ANGEL might decide that complexity has an important 

influence on effort and focus upon those features discarding other less important features. 

" Searching for the best attribute subset has a significant impact on the accuracy of the analogy 

approach. For each of the data sets under study, with the exception of Telecomsl, accuracy 

in terms of MMRE and Pred(25), can be dramatically improved by looking for the subset 

of variables that best predicts effort. This is an important finding in that it not only allows 
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us to calibrate the analogy model, but it also means that expert judgement is not 

necessarily required to pare down the feature list. 

" Analogy can succeed even where no statistical relationships are present. Recall that the 

MERMAID-N data set displayed no statistical relationships between the independent 

features and effort. This however, was not a problem for analogy as it does not look for 

statistical relationships and as a result was able to predict effect, in less than propitious 

circumstances, with an MMIZE of 60% and Pred(25) of 25%. 

" Analogy can be used throughout the project life-cycle. The value of a effort estimate is 

inversely proportionate to point, in the project lifecycle, that it is generated. 
Unfortunately, the same holds true for the difficulty in developing an estimate. This is a 

major problem for software estimators because the lack of collectable quantitative data 

before the requirement specification stage means that traditional algorithmic estimates 

must be made using estimated input parameters. The analogy approach on the other hand 

is able to generate estimates by using qualitative (or categorical) data and is therefore 

available throughout the project life-cycle. 

" Analogy, like algorithmic models, is sensitive to the introduction of outliers. An analysis of the 

sensitivity of the analogy approach has revealed that, in common with algorithmic 

models, it is sensitive to the introduction of outliers. Similarly with algorithmic models, 

the more data points available, the less effect the outlier will have. Conversely, unlike 

algorithmic models, assuming only one analogy is being searched for, the effect of an 

outlier can be nullified with the addition of just one similar data point. Where more than 

one analogy is being sought, obviously it takes a like amount of similar projects to totally 

nullify the outlier. 

" Accuracy using analogy improves with data set homogeneity. Tests on both the Desharnais and 

the MERMAID data set confirm the assumption that creating more homogeneous data 

sets can increase accuracy. However, the observed accuracy increases were relatively 

minor and inferior to those observed for the stepwise regression models. 

" Analogy should be considered as complementary rather than alternative approach. It was never 

the intention of this work to find a new estimation technique that would replace existing 

techniques. Instead it is believed that benefit can be gained by the application of more 

than one estimation technique in a complementary fashion. In this way estimates can be 

triangulated, with conflicting estimates pointing to a possible risk and the need for more 

data, and converging estimates providing a level of confidence. 
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7.4 Contribution of this Thesis 

This work has made the following contributions to the field of software effort estimation: 

i) A new approach to effort estimation to the extent that it is ready to be deployed 

within a software organisation. 

ii) A better understanding of the relative accuracy of the estimation by analogy 

technique in relation to an algorithmic model developed by linear regression. 

iii) A tool that facilitates estimation by analogy. The tool is freely available on the internet 

and is being used by researchers examining software effort data sets (e. g. (Niessink 

and Van Vliet 1997; Stensrud and Myrtveit 1998)). 

iv) A new way of studying the dynamic behaviour of project data sets by artificially 

introducing data points one at a time and estimating each project from each partial 
data set. 

7.5 Limitations of Work 

Some elements of the work presented in this thesis were theoretical in nature and many of the 

techniques have not been previously applied to software project data. As a result it is 

important to recognise the limitations of the work reported. The identified limitations are 

divided between the ANGEL approach, the software tool and the analysis procedure. 

7.5.1 Limitations of Approach 

"3 of the 8 data sets analysed in chapter 5 contained features measured on the ordinal scale 

(such as Project Manager's Experience - Appendix A2). The ANGEL approach permits the 

user to define such variables as being on the interval scale which is clearly in breach of 

measurement theory. In defence of this approach however, it does improve the accuracy 

of estimation by analogy (in some cases considerably) for the data sets that contain such 

features. This less-rigorous approach is defended by Briand et al. (1996) and Stevens 

(1946), who advocate a more pragmatic to the application of measurement theory. 
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" MMRE is possibly the most widely used and reported performance indicator and for that 

reason was chosen as the main measure of accuracy in the ANGEL approach. 
Unfortunately, the measure is flawed being non-symmetrical and tending to favour 

systems that underestimate. Due to the fact that the ANGEL approach optimises on 
M RE it therefore follows that predictions are more likely to be under estimates. 

" There is a need for a strategy to handle the situation where ties are encountered. It is 

inevitable, especially when there is a significant use of categorical features, that there will 

occasionally be a situation when two or more projects are identical in terms of their 

similarity to the target project. This is not a problem where the number of ties is equal too, 

or less than, the number of analogies sought36. If the opposite is true however, then the 

procedure at present is that the first tied analogies encountered will be used as the 

sources analogies. This is clearly unsatisfactory, as it is quite possible that the selection of 

those analogies that have been overlooked would give conflicting figures. In truth, the 

situation where a number of ties are found, probably points to the fact that the 

combination of features being used is unsuitable for finding distinct analogies. 

7.5.2 Tool Limitations 

" The function in ANGEL to search for the best subset of features has proved to be a very 

effective mechanism for improving estimate accuracy. Unfortunately, the need to evaluate 

every combination of features against each other, to facilitate this improvement in 

accuracy, means that there is a limit to the number of features that can realistically be 

processed37. 

" Although the ANGEL tool is being used or evaluated by a number of major software 

developers, it must be remembered that it is only a prototype system that was developed 

with purely research objectives in mind. As a consequence, the tool has not been 

systematically tested. Following on from this point, the tool was also not developed with 

the principles of sound ergonomic design high on the priority list. 

36 Assuming that no weightings are being placed on the analogies. If two analogies(weighted) are sought then the first tie 
would still be weighted double. 
37 Every single increment in the number of features used effectively doubles the search time. Thus if 20 feature takes two days 
to process, 24 feature will take approximately a month. 
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7.5.3 Analysis Limitations 

" The level of accuracy that ANGEL was consistently able to maintain over the eight data 

sets was encouraging, especially in light of the relative performance of the stepwise 

regression. However, it must be understood that some of the data sets analysed were quite 

old and their relevance to today's software development environments must be 

considered. For example, the Albrecht data set was first published 17 years ago and the 

Kemerer data set 10 years ago. Moreover, the fact that ANGEL is capable of reliably 

predicting effort over a range of data sets spanning a number of years (in which time many 

practices have changed), suggests that it may not be unreasonable to conclude that the 

analogy approach is widely applicable. 

" Another limitation of the analysis procedure was that two separate techniques, jack-knifing 

and goodness of fit were used to generate the performance figures for analogy and 

stepwise regression respectively. This was unfortunate and in hindsight it would have 

been better to adopt the same technique for both approaches. This should have been the 

jack-knifing procedure for two reasons i) the project to be estimated in ANGEL cannot, for 

obvious reasons (the main one being that it would always to be found as the closest 

analogy) be used in the set of source analogies and ii) using goodness of fit means that 

each project contributes38 to the model that will be eventually used to evaluate it. In terms 

of the impact this has on accuracy, as discussed in section 5.2, the use of the goodness of fit 

gives the stepwise regression technique an advantage over analogy, however, this 

advantage is thought to be balanced by the advantage gained by analogy from optimising 

with MMRE. 

7.6 Further Work 

Suggestions for future work are now made which are divided between three areas: work that 

would enhance the functionality and effectiveness of the ANGEL tool; work to extend the 

analogy approach and finally possible future avenues for wider research into effort 

estimation. 

38 A luxury new projects estimated by the model would not be afforded. 
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7.6.1 Improvements to the ANGEL Tool 

There are specific ways in which the ANGEL tool might be improved. An important addition 

would be a facility to deal with the situation, discussed above, where there are ties between 

source analogies. Another useful addition to ANGEL would be an ability to conduct the 

search for the best attribute subset using heuristics to reduce the number of combinations 

searched for, without overly affecting the potential accuracy. 

7.6.2 Research on the Analogy Approach 

A possible future research avenue would be to investigate further into the sensitivity of the 

analogy approach. The tests in chapter 5 looked at overall accuracy, in terms of M RE, over 

time by adding projects in random order. Another possible test might look at how well 

ANGEL was able to predict the next project to be added to the case base revealing its true 

accuracy more realistically. While a further test might be to track the features that are being 

selected by the 'best subset' function which would give some indication of the most useful 

features to be collected in the future. All of these investigations could be automated within the 

ANGEL environment without much effort. 

Within the case-based reasoning community one of the hottest research topics (Leake 1996) is 

the application of adaptation to estimates, based upon the differences between the observed 

feature values in the source and target analogies. Although ANGEL does adjust its estimates 

based upon the number of analogies searched for, it does not at present have any real 

adaptation abilities. For an adaptation system to be useful in ANGEL, it is important either 

that it is automatable or is a simple process that a non-domain expert might follow. But 

perhaps most important of all is that it not be hard coded so that ANGEL remains a shell 

transferable between environments. 

7.6.3 Future Research Avenues 

Researchers into the development of effort prediction systems have recently recognised the 

fact that there are a great many alternatives to algorithmic models and that these techniques 

such as neural networks and case-based reasoning offer a number of potential advantages (not 

least improvement in accuracy) over their algorithmic counterparts. However for the potential 

of any of these techniques to be realised it is important that they are brought closer to the 

estimation practitioner. For example, in the case of neural networks there is a certain level of 

competence required before they can deployed effectively by a practitioner. Until tools and 
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methods are developed that make the use of such technologies easier, without the loss of any 

of their estimating power, any amount of research proving their accuracy will not encourage 

practitioners to embrace them. 

Repeatable prediction systems such as regression and analogy are at present dependent on the 

availability of a certain amount of historical data with which to build models or search for 

pertinent analogies. However, the indications are that the collection of completed project data 

is not so wide spread amongst software companies (Heemstra 1992). Further evidence of this 

is provided by the lack of data sets that are seen in the public domain, even after taking the 

confidentiality of such data into consideration. This points to the need for researchers to look 

for ways of developing data-less prediction systems. One possible way that this might be 

achieved using ANGEL would be for an expert to seed a case base with artificial cases that 

cover a range of potential outcomes. Another approach would be to use a technique such as 

the analytic hierarchy process, discussed by Saaty (1994), which can use a single known case 

to help reconstruct unrecorded historical cases. 

Strategies for assessing the accuracy of predictions systems are varied. They range from the 

optimistic goodness of fit and jack-knifing techniques, where most or all of the data points are 

used to create the model on which they are then tested, to the more pessimistic random 

sampling of data into training, validation and testing sets on the other end of the scale. The 

latter technique being preferable as long as there is enough data available to sufficiently 

populate each of the three set with a representative sample. The decision to use a particular 

strategy is not always easy, especially with software project data sets, where the number of 

projects collected is typically less than 50. Another problem widely ignored in the validation 
literature is that of choosing performance indicators. Typically researchers (the author 

included) have given a primary reason for choosing a performance indicator as 'it is the most 

popular in the literature'. The indicator will clearly have a track record and it allows 
benchmarking, however, each performance indicator tells a different story and more thought 

must be given to the goal of the validation exercise. As studies into the accuracy of effort 

prediction systems are becoming more common place, the need for guidelines to help refine 

validation strategies becomes more essential. 
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Appendix A 

Key 

- Used in analysis (chapter 5) 
x- Not used in analysis (chapter 5) 

Al. Albrecht Data set 

Feature Description Analogy Regression 

Effort Measured in thousands of work hours `' v 

FP Function points count V 

Files Number of master files VO 

Inputs Number of Inputs 

Inquires Number of Inquiries VO 

Outputs Number of outputs VO VO 

A2 The Desharnais Data set 

Feature Description Analogy Regression 

Effort Measured in hours 

ExpEquip Team experience in years 

ExpProjMan Project managers experience in years X 

Trans Number of transactions V 

Entities Number of entities V 

RawFP Unadjusted function points V 

AdjFP Adjusted function points 

DevEnv Development Environment X 

YearFin Year of Completion 
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A3 The Finnish Data set 

Feature Description Analogy Regression 

Effort Measured in hours 

FP Function points count 

UA End user availability VO X 

MA Machine availability V X 

AA Analyst/designer availability V X 

STD availability of standards V X 

UM Use of methods V X 

TA Tool availability V X 

PC Procedural complexity V X 

SR Stability of requirements specification WO X 

CQ Criticality of quality requirements X 

CP Criticality of execution time requirements X 

UT User training X 

MET Methodology X 

THE Team application experience X 

MEX Team method/ tools experience X 

PME Project manager experience X 

IN Number of inputs V 

INFP Input function points X 

QN Number of queries V 

QFP Query function points VO X 

ON Number of Outputs VO V# 

OFP Output function points X 

SN Number of interacting systems 

SFP Interacting systems function points X 

FN Number of logical master files 

FFP Logical master file function points X 

HW - Type Hardware type X 

AT - Type Application type X 
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A4 The Hughes Data set 

Feature Description Analogy Regression 

Effort Measured in work-hours 7 

C2 Number of parameters in operator 

commands 

C3 Number of parameters used by subscriber 
input procedures 

C4 Outputs which trigger messages 

C5 Number of parameters in output/enquiry 

subscriber procedures 

VO 

C6 Number of parameters on print-outs V 

C7 Number of messages passed between 

blocks 

C8 Count of timers used by function V 

C9 Months of experience of the block 

designer 

C10 Months of experience of the function 

designer 

C11 C3+C5 VP VO 

C12 C9+C10 V 

C13 Number of lines of code patched in the 

base version of the code that the 

enhancement has incorporated 

V 

C14 Subsystem indicator 0 or 1 X 

A5 The Kemerer Data set 

Feature Description Analogy Regression 

Effort Measured in person-months 

AdjFP Adjusted function points 
RawFP Unadjusted function points 
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A6 The MERMAID Data set 

Feature Description Analogy Regression 

Effort Measured in hours 

AdjFP Adjusted function point count 

RawFP Unadjusted function point count V 

Proj Type Project Type - New/Enhancement X 

AF1 Data communications X 

AF2 Distributed functions X 

AF3 Performance V X 

AF4 Heavily used configuration V, X 

AF5 Transaction rate X 

AF6 Online data entry X 

AF7 End user efficiency X 

AF8 Online update X 

AF9 Complex processing X 

AF10 Reusability X 

AF11 Installation ease X 

AF12 Operational ease X 

AF13 Multiple sites X 

AF14 Facilitates change X 

A7 The Real-Timet Data set 

Feature Description Analogy Regression 

Effort Measured in person months x 

Host Machine Host machine used x 

Life Cycle Life cycle used x 

Documentation 

Standard 

Documentation Standard used x 
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A8 The Telecommsl Data set. 

Feature Description Analogy Regression 

Effort Measured in Person Days 

Files Number of files amended 
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Appendix B 

The Albrecht Data Set 

Project 
Ref 

Effort Inputs Outputs Files Inquiries FP SLOC 

1 102.4 25 150 60 75 1750 130 

2 105.2 193 98 36 70 1902 318 

3 11. 70 27 12, 0 428 20 

4 21.1 40 60 12 20 759 54 

5 28.8 10 69 9 1 431 62 

6 10 13 19 23 0 283 28 

7 8 34 14 5 0 100 35 

8 4.9 17 17 5 15 289 30 

9 12.9 45 64 16 14 680 48 

10 19 40 60 15 20 794 93 

11 10.8 41 27 5 29 512 57 

12 2.9 33 17 5 8 224 22 

13 7.5 28 41 11 16 417 , 24 

14 12 43 40 35 20 682 42 

15 4.1 7 12 8 13 209 40 

16 15.8 28 38 9 24 512 96 

17 18.3 42 57 5 12 606 40 

18 8.9 27 20 6 24 400 52 

19 38.1 48 66 50 13 1235 94 

20 61.2 69 112 39 21 1572 110 

21 3.6 25 28 22 4 500 15 

22 11.8 61 68 11 0 694 24 

23 0.5 15 15 3 6 199 3 

24 6.1 12 15 15 0 260 29 
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The Desharnais Data set 

Project 
Ref 

Effort Exp 
Equip 

Exp 
Pro'Man 

Trans Raw FP Adj 
Factor 

Adj FP Dev Env Year Fin Entities 

1 5152 1 4 253 305 34 302 1 85 52 
2 5635 0 0 197 321 33 315 1 86 124 
3 805 4 4 40 100 18, 83 1 85, 60 
4 3829 0 0 200 319 30 303 1 86 119 
5 2149 0 0 140 234 24 208 1 86 94 
6 2821 0 0 97 186 38 192 1 86 89 
7 2569 2 1 119 161 25 145 2 85 42 
8 3913 1 2 186 238 25 214 1 83 52 
9 7854 3 1 172 260 30 247 1 85 88 

10 2422 3 4 78 116 24 103 1 83 38 
11 4067 4 1 167 266 24 237 1 84 99 
12 9051 2 1 146 258 40 271 1 84 112 
13 2282 1 1 33 105 19 88 1 84 72 
14 4172 3 4 162 223 32 216 1 85 61 
15 4977 4 4 223 344 28 320 1 85 121 
16 1617 3 2 119 167 26 152 2 85 48 
17 3192 4 3 57 100 43 108 1 85 43 
18 3437 4 4 68 384 20, 326 2 86 316 
19 4494 3 4 9 395 21 340 2 87 386 
20 840 4 2 58 92 29 86 1 86 34 
21 14973 4 4 318 587 34 581 2 86 269 
22 5180 2 4 88 258 34 255 1 85 170 
23 5775 2 4 306 438 37 447 1 86 132 
24 10577 4 1 304 382 39 397 1 87 78 
25 3983 1 4 89 289 33 283 1 86, 200 
26 3164 4 1 86 316 33 310 1 85 230 
27 3542 2 0 71 306 37 312 1 86 235 
28 4277 3 1 148 472 39 491 1 85 324 
29 7252 4 4 116 286 27 263 1 85 170 
30 3948 4 1 175 452 37 461 1 85, 277 
31 3927 4 3 79 207 27 190 1 86 128 
32 710 1 1 145 183 27 168 3 86 38 
33 2429 4 4 174 252 41, 267 3 87 78 
34 6405 1 1 194 285 35 285 1 85 91 
35 651 2 2 126 175 38 180 3 88 49 
36 9135 1 3 317 436 34 432 2 86 119 
37 1435 2 4 289 377 28 351 3 87, 88 
39 847 1 4 158 217 18 180 3 88 59 
40 8050 3 3 302 447 52 523 2 88 145 
41 4620 1 1 451 499 28 464 1 87 48 
42 2352 2 4 661 793 23 698 3 87 132 
43 2174 1 1 64 118 25 106 1 88 54 
45 6699 2 1 182 308, 35 308 1 86 126 
46 14987 2 3 173 505 19 424 1 87 332 
47 4004 2 2 252 259 28 241 1 88 7 
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Project 
Ref 

Effort Exp 
Equip 

Exp 
ProjMan 

Trans Raw FP Adj 
Factor 

Adj FP Dev Env Year Fin Entities 

48 12824 4 3 131 311 51 361 1 85 180 
49 2331 2 3 106 145 6 103 1 85 39 
50 5817 3 3 96 204 29, 192 1 85, 108 
51 2989 2 3 116 188 18 156 1 85 72 
52 3136 3 3 86 135 32 131 1 85 49 
53 14434 2 3 221 342 35 342 1 85 121 
54 2583 1 1 61 157 18 130 1 87 96 
55 3647 1 3 132 221 5 155 2 86 89 
56 8232 3 7 45 432 16 350 2 86 387 
57 3276 1 1 55 167 12 128 2 86, 112 
58 2723 1 4 124 1176 14 139 2 87 52 
59 3472 3 3 120 246 15 196 2 87 126 
60 1575 1 2 47 79 14 62 2 87 32 
61 2926 1 1 126 233 23 205 2 86 107 
62 1876 3 2 101 146 15 117 2 86 45 
63 2520 1 1 78 177 14 140 1 86, 99 
64 1603 4 7 69 143 14 112 1 86 74 
65 3626 1 3 194 291 35 290 2 86 97 
67 11361 2 4 323 507 35 504 2 87 184 
68 1267 1 3 42 73 27 67 2 86 31 
69 2548 1 2 74 117 25 105 2 87 43 
70 1155 3 4 101 158 9 117 2 87 57 
71 546 0 4 97 139 6 99 3 86 42 
72 2275 2 3 134 211 13 165 2 84 77 

73 9100 4 5 482 709 26 645 2 86 227 
74 595 0 2 213 286 6 203 3 84 73 
76 13860 2 3 473 655 40 688 2 86 182 
77 1400 4 4 229 398 39 414 3 85 169 
78 2800 4 3 227 300 34 297 1 83 73 
79 9520 4 4 395 588 40 617 1 82 193 
80 5880 4 3 469 645 43 697 3 86 176 
81 23940 4 4 886 1127 34 1116 1 85 241 
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The Finnish Data Set 

Project 
Ref 

Effort HW 
Type 

App 
Type 

FP Company UA MA AA STD UM TA PC SR CQ CP UT 

20 17778 1 1 1364 10 5 4 4 5 4 3 4 4 5 4 3 
21 8800 1 1 648 10 4 4 1 3 3 3 3 3 3 4 3 
22 26670 1 1 1282 10 4 2 4 4 3 3 4 3 3 3 4 
23 1330 1 1 176 10 3 5 5 5 5 3 4 3 3 4 4 
24 14504 1 3 627 10 3 4 3 2 1 2 4 4 2 1 2 
25 8498 1 1 1026 10 3 2 3 3 3 2 3 3 3 5 4 
26 4830 1 5 561 10 5 3 5 4 3 2 4 4 3 3 5 
27 3008 1 1 206 5 2 3 2 3 2 2 4 3 4 2 3 
28 2525 1 1 128 5 3 3 3 3 2 3 5 4 4 2 3 
29 4500 1 1 1814 3 4 3 3 2 3 3 4 3 3 3 4 
30 1455 2 2 609 3 3 4 5 3 3 3 5 2 4 5 3 
31 -1 1 2 210 3 3 3 3 3 3 3 4 2 4 3 3 

32 1203 3 1 321 3 2 2 1 3 3 3 4 5 3 1 4 
33 7537 1 4 355 4 3 4 4 4 4 3 2 3 5 3 3 
34 8710 3 1 1058 4 4 4 3 5 4 4 5 3 4 4 3 
35 796 3 3 65 4 4 2 2 3 3 2 4 4 4 4 3 
36 11023 3 1 374 4 5 5 3 3 2 3 4 5 3 4 4 
37 6030 2 1 1584 2 4 4 3 3 3 3 3 3 3 5 3 
38 1750 1 1 464 2 4 2 3 3 3 4 3 3 3 3 4 
39 2240 1 5 528 2 4 3 4 3 3 3 2 3 2 3 2 
40 1105 1 1 233 2 4 4 4 3 3 4 2 3 4 3 4 
41 2915 1 5 577 2 4 3 4 3 4 4 4 2 4 3 3 
42 2100 1 1 786 8 4 4 3 2 2 3 2 3 2 4 4 
43 2100 1 2 232 8 3 4 3 3 3 4 2 3 3 3 2 
44 580 1 1 235 8 2 2 3 2 2 3 3 3 3 2 2 
45 460 1 5 196 8 2 3 3 3 1 3 3 1 4 3 1 
46 6182 1 3 677 6 4 3 4 3 3 3 4 4 4 5 5 
47 4713 1 3 1035 6 5 4 4 2 4 4 4 3 3 3 3 
48 8700 1 1 1056 6 4 3 3 3 3 3 4 3 4 4 4 
49 8095 1 1 1598 6 4 3 4 3 3 3 4 3 3 3 4 

50 18690 1 .4 1619 9 4 3 4 3 4 3 2 3 4 4 3 
51 -1 1 1 1229 9 4 3 3 3 3 3 5 4 4 4 5 

52 592 1 3 402 9 3 4 3 3 2 2 3 2 3 1 2 
53 23000 1 4 1347 7 3 2 3 3 3 3 4 4 2 4 4 

54 17031 1 1 983 7 4 2 4 2 3 2 3 3 4 3 3 

55 17200 1 1 1719 7 3 2 3 5 4 

56 10850 1 4 1148 7 3 3 2 3 4 

57 18900 1 4 1049 7 2 3 3 2 

M 

3 3 3 

58 14568 1 4 755 7 5 4 2 2 3 

59 780 1 2 189 7 4 3 2 4 3 
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Proje 
Ref 

ct MET THE MEX PME IN INFP QN QFP ON OFP SN SFP FN FFP 

20 4 5 3 4 89 485 32 67 43 273 17 119 51 420 
21 2 2 4 3 10 33 0 0 19 100 36 246 24 269 
22 2 1 1 4 96 514 51 255 23, 166, 29 176, 20 171 
23 3 3 2 3 10 40 8 32 4 20 2 14 7 70 
24 4 4 5 3 20 80 20 80 28 140 18 126 20 200 
25 3 2 2 3 42 162 40 160 40 194 30 210 30 300 
26 3 2 4 4 21 81 20 80 29 145 15 105 15 150 
27 3 4 5 3 5 22 5 15 3 11 6 34 13 124 
28 3 2 4 3 5 33 0 0 2 16, 0 0 10 79 
29 3 4 4 3 65 252 104 283 61 227 30 291 50 761 
30 4 4 4 3 22 79 88 397 2 15 2 10 12 108 
31 3 4 4 3 11 24 19 72 14 37 0 0 8 77 
32 2 4 4 3 1 4 15 27 2 7 23 263 2 20 
33 4 3 2 5 17 47 43 97 6 28 3 9 18 174 
34 5 2 4 4 38 138 45 145 69 274 17 170 28 331 
35 4 4 5 3 7 15 1 4 6 38 0 0 2 8 
36 4 3 4 4 29 142 8 11 19 117 10 77 3 27 
37 4 2 4 3 198 404 54 67 46 250 11 74, 53 789, 
38 2 3 2 3 28 86 5 5 12, 61 1 3 27 309 
39 2 2 5 3 33 100 59 125 7 50 2 12 24 241 
40 2 5 1 3 13 25 22 80 1 4 0 0 11 124 
41 4 3 5 4 65 177 32 99 0 0 0 0 31 301 
42 4 3 4 4 70 226 64 162 4 16 9 59 28 323 
43 4 4 4 3 12 37 15 29 24 86 3 13 13 67 
44 3 2 2 3 10 26 19 30 9 44 4 20 11 115 
45 3 5 4 3 10 32 10 20 9 47 5 25 9 72 
46 4 4 5 4 22 70 60 148 43 258 5 29 18 162 
47 4 5 1 4 39 207 54 151 15 91 0 0 43 586, 
48 4 3 4 5 63 227 74 163 30 134 2 12 42 520 

49 3 4 5 4 82 409 97 282 21 148 0 0 46 759 

50 2 5 4 5 75, 354 83 , 255 44 289 8 61 47 660 
51 4 2 3 3 76 407 87 275 53 245, 7 36 24 266 

52 3 3 4 3 6 48 0 0 0 0 27 187 15 167 
53 2 2 1 1 18 96 26 123 36 210 13 83 59 835 
54 2 1 1 2 10 60 5 26 26 87 6 60 50 750 
55 1 1 1 1 74 , 290 33 110 36 170 27 249 60 900 

56 2 2 2 1 112 270 7 32 18 74 2 6 53 766 
57 2 3 3 4 77 258 62 152 132 479 14 82 12 78, 

58 2 1 2 2 31 142 26 130 33 174 10 85 20 224 

59 3 3 3 4 10 24 20 52 5 25 0 0 10 88 
1 1 1 1 1 1 1 1 1 1 1 1 1 1' 
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The Hughes Data Set 

Project 
Ref 

Effort C2 C3 C4 C5 C6 C7 C8 C9 C10 C11 C12 C13 C14 

1 12422 32 10 5 21 11 77 7 44 26 15 70 0 0 
2 10839 18 10 3 8 5 2 1 46 8 13 54 0 0 
3 10672 18 9 0 3 1 9 1 52, 1 9 53 0 0 
4 1853 14 2 0 1 6 2 0 50 120 2 170 0 0 
5 3890 50 2 1 6 6 9 0 49 120 3 169 0 0 
6 1229 26 4 0 0 4 0 0 57 120 4 177 0 0 
7 4239 20 2 1 11 6 13 1 49 40 3 89 0 0 
8 2344 4 0 0 0 1 7 0 57 40 0 97 0 0 
9 3467 25 0 0 0 12 4 1 46 1 0 47 0 0 
10 5963 0 0 0 0 0 0 7 90 26 0 116 0 0 
11 3779 14 4 0 3 25 5 0 34 8 4 42 0 0 
12 4181 22 4 2 7 6 0 0 57 36 6 93, 0 0 
13 3136 0 0 0 0 0 52 1 57 65 0 122 0 0 
14 2948 0 0 0 0 0 0 2 29 40 0 69 0 0 
15 4095 1 0 0 0 4 6 0 33 23 0 56 369, 0 
16 4182 23 0 0 0 11 3 11 47 75 0 122 3072 0 
17 3651 0 0 0 0 0 13, 0 43 38 0 81 7750 0 
18 1499 0 0 0 0 0 12 0 43 75 0 118 7730 0 
19 2432 0 1 0 0 0 3 0 34, 23 1 57 3830 0 
20 321 0 0 0 0 0 12 0 36 13 0 49 63 1 
21 358 0 0 0 0 0 6 0 13 13 0 26 54 1 
22 693 0 0 0 0 0 11 0 13 13 0 26 111 1 
23 723 0 0 0 0 0 12 0 22 22 0 44 561 1 
24 408 0 0 0 0 0 7.5 0 5 36 0 41 249 1 
25 300 0 0 0 0 0 24.5 0 6 16 0 22 240 1 
26 618 0 7 3 2 0 11.5 0 29 32 10 61 534 1 
27 1639 4 7 3 2 4 11.5 0 28 32 10 60 720 1 
28 1506 4 7 3 0 0 11.5 0 9 17 10 26 291 1 
29 5747 4 7 0 10 ,2 203 1 6 6 7 12 0 1 

30 370 0 0 0 0 0 5 0 1 1 0 2 321 1 
31 11936 6 8 5 46 3 245 6 62 89 13 151 12 1 
32 4680 0 0 0 5 0 229 1 17 17 0 34 0 1 
33 3900 13 0 0 0 9 23 4 106 131 0 237 172 1 



AN EMPIRICAL INVESTIGATION INTO SOFTWARE EFFORT ESTIMATION BY ANALAGY 121 

The Kemerer Data Set 

Project 
Name 

Effort Duration KSLOC AdjFP RawFP 

1 287 17 253.6 1217.1 1010 

2 82.5 7 40.5 507.3 457 
3 1107.31 15 450 2306.8 2284 
4 86.9 18 214.4 788.5 881 
5 336.3 13 449.9 1337.6 1583 
6 84 5 50 421.3 411 
7 23.2 5 43 99.9 97 
8 130.3 11 200 993 998 
9 116 14 289 1592.9 1554 
10 72 5 39 240 250 
11 258.7 13 254.2 1611 1603 

12 230.7 31 128.6 789 724 
13 157 20 161.4 690.9 705 
14 246.9 26 164.8 1347.5 1375 
15 69.9 14 60.2 1044.3 976 
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The MERMAID Data Set 

Project 
Ref 

Effort Adj 
FP 

Raw 
FP 

Proj 
Type 

AF I 2 3 4 5 6 7 8 9 10 11 12 13 14 

1 238 23 23 E 5 0 4 0 1 5 4 4 4 0 2 4 0 2 
2 490 38 42 E 3 2 3 2 2 4 2 2 2 1 0 2 1 0 
3 616 36 44 E 3 3 0 0 0 5 0 2 1 0 0 0 3 0 
4 910 57 51 E 5 4 4 4 4 5 4 3 5 0 3 2 3 0 
5 1540 36 47 E 0 0 0 2 0 0 0 0 4 0 3 2 0 0 
6 1680 29 38 E 0 3 0 0 0 1 4 0 2 0 0 1 0 0 
7 1750 23 34 E 0 1 2 0 0 0 0 0 0 0 0 0 0 0 
8 3234 99 115 N 3 4 0 0 0 1 0 2 0 5 0 2 0 4 
9 3360 605 550 N 5 1 4 2 2 5 4 4 2 3 1 4 3 5 
10 3850 34 42 E 3 1 0 0 3 1 2 1 4 0 1 1 0 0 
11 5460 338 371 N 1 0 0 5 4 5 2 0 0 0 5 4 0 0 
12 5110 133 157 E 3 3 3 2 1 1 0 2 2 0 3 0 0 0 
13 6440 118 107 E 5 4 4 4 4 5 5 4 4 0 1 5 0 0 
14 17920 653 634 N 3 3 3 2 4 4 2 3 1 3 3 5 0 2 
15 18620 502 528 E 3 1 0 4 4 0 4 0 4 4 0 0 2 4 
16 21280 306 268 N/A 5 5 4 3 4 5 4 4 4 1 2 2 3 3 
17 24850 170 179 N 0 0 4 4 5 0 4 0 1 0 5 3 2 2 
18 48230 911 884 N 3 3 3 2 4 4 2 3 1 3 3 5 0 2 
19 3415 221 235 E 5 0 0 0 0 5 2 3 2 3 0 5 0 4 
20 11551 613 626 N/A 3 2 4 2 3 5 0 5 2 1 0 4 0 2 
21 4860 1507 1408 N 5 0 3 1 1 5 1 4 4 1 5 4 3 5 
22 14224 559 N/A E 
23 9080 218 291 E 0 0 0 0 2 0 0 0 4 1 3 0 0 0 
24 1635 479 499 N 5 0 1 0 0 5 3 4 4 1 0 5 0 3 
25 296 26 33 E 4 0 0 0 0 5 0 2 0 0 1 1 1 0 
26 3720 125 137 E 5 1 0 1 1 5 0 4 5 0 0 0 3 1 

27 4672 205 N/A E 
28 2065 105 109 E 4 3 1 0 3 2 2 2 4 0 3 1 4 2 
29 1690 114 107 E 5 4 4 5 5 5 0 5 3 0 0 1 0 2 

30 504 36 39 E 5 0 0 0 0 5 2 3 2 3 0 5 0 4 
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The Real-Time 1 Data set 

Project 
Ref 

Effort Host 
Machine 

Life Cycle Documentation 
Standard 

1 573 SUN RTSAOOD DOD-2167A 
2 446 SUN RTSAOOD DOD-2167A 
3 127 SUN RTSAOOD DOD-2167A 
4 400 SUN RTSAOOD DOD-2167A 
5 189 SUN RTSAOOD DOD-2167A 
6 200 IBM PC RTSASD INTERNAL 
7 140 IBM PC RTSASD DOD-2167A 
8 203 VAX RTSASD DOD-2167A 
9 260 VAX MASCOT INTERNAL 
10 2100 VAX WATERFA DOD-2167A 
11 174 VAX WATERFA INTERNAL 
12 1000 VAX RTSAOOD JSP 188 
13 1679 VAX RTSASD INTERNAL 
14 1225 VAX RTSASD INTERNAL 
15 394 VAX RTSASD INTERNAL 
16 1600 SUN MASCOT JSP 188 
17 107 IBM PC RTSASD DOD-2167A 
18 134 SUN RTSAOOD JSP 188 
19 455 VAX MASCOT INTERNAL 
20 270 VAX MASCOT INTERNAL 
21 1042 SUN RTSASD INTERNAL 
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The Telecoms 1 Data Set 

Project 
Ref 

Actual 
Effort 

Files 

1 305.22 105 
2 330.29 237 
3 333.96 98 
4 150.4 24 
5 544.61 197 
6 117.87 39 
7 1115.54 284 
8 158.56 37 
9 573.71 53 
10 276.95 116 
11 97.45 38 
12 374.34 180 
13 167.12 43 
14 358.37 84 
15 123.1 257 
16 23.54 6 
17 34.25 5 
18 31.8 3 


