
APPLICATION OF OBJECT-ORIENTATION TO
HDL-BASED DESIGNS

David Cabanis

Athesis submitted in partial
fulfilment of the requirements

for the degree of

Doctor of Philosophy

Bournemouth University

September

2000

DAVID CABANIS
APPLICATION OF OBJECT ORIENTATION TO HDL-BASED

DESIGN

ABSTRACT

The increase in the scale of VLSI circuits over the last two decades has been

of great importance to the development process. To cope with this ever­

growing design complexity. new development techniques and methodologies

have been researched and applied. The early 90's have witnessed the uptake of

a new kind of design methodology based on Hardware Description

Languages (HDL). This methodology has helped to master the possibilities

inherent in our ability to manufacture ever-larger designs. However. while

HDL based design methodology is sufficient to address today's standard

ASIC sizes, it reaches its limits when considering tomorrow's design scales.

Already. RISC processor chip descriptions can contain tens of thousands of

HDLlines.

Object-Oriented design methodology has recently had a considerable Impact

in the software design community as it is tightly coupled with the handling of

complex systems. Object-Orientation concentrates on data rather than

functions since. throughout the design process. data are more stable than

functions. Methodologies for both hardware and software have been

introduced through the application of HDLs to hardware design. Common

design constructs and principles that have proved successful in software

language development should therefore be considered in order to assess their
suitability for HDLs based designs.

A new methodology was created to emphasise on encapsulation. abstraction

and classification of designs. using standard VHDL constructs. This achieves

higher levels of modelling along with an Improved reusability through design

inheritance.

The development of extended semantics for integrating Object-Orientation in

the VHDL language is described. Comparisons are made between the

modelling abilities of the proposed extension and other competing proposals.

A UNIX based Object-Oriented to standard VHDL pre-processor is

described along with translation techniques and their issues related to

synthesis and simulation. This tool permitted validation of the new design

methodology by application to existing design problems.

TABLE OF CONTENTS

Abstract ii
Table of Contents .i
List of figures : iii
LIST OF TABLES vi
Acknowledgments vii
Glossary viii
Chapter 1: Overview and Requirements Specifications 3

1.1 Introduction 3
1.2 Rationale 3
1.3 Aims and Objectives 9
1.4 Taxonomy of Chapters 9

Chapter 2: Review of VLSI Design Methods 12
2.1 Introduction 12
2.2 Schematic Capture Based Methodology : .13
2.3 Current Hardware System Design Methods and their Limits .19
2.4 Object-Oriented Methodology for HDL's Based Designs 24
2.5 Object-Orientation in Standard VHDL 30
2.6 Existing Extension Proposals 62
2.7 Conclusions 66

Chapter 3: Language Design 68
3.1 Introduction 68
3.2 Language Design Decisions 69
3.3 Language Semantics 84
3.4 Conclusions 112

Chapter 4: Comparative study of proposed extensions 114
4.1 Introduction ;114
4.2 Study of the VISTA Proposal 114
4.3 Study of the Active Proposals 119
4.4 Conclusions 148

Chapter 5: Case Study: The Edge Filter Design 149
5.1 Introduction 149
5.2 Overview of Function 149
5.3 Filter External Interface 151
5.4 Filter Partitioning ~ 152
5.5 Supporting Class Structure 158
5.6 Edge Filter implementation 164
5.7 Comparative Study 167
5.8 Conclusions 170

Chapter 6: Preprocessor design 172
6.1 Introduction 172
6.2 Requirements 172
6.3 System Design 173
6.4 Specification of the Translation Mechanism 174
6.5 Full Application Example 179

6.6 Conclusions 187
Chapter 7: Overall conclusions and recommendation for further work 188
References 193
Appendix A: Edge filter supporting classes 199

Appendix A-I. Edge Filter Class Structure 199
Appendix A-2. Class Structure Code 200

Appendix B: Edge futer Code 205
Appendix B·l. Mult Mask Code Using the Proposed Extension 205
Appendix B-2. NS &WE Mask Code Using the Proposed Extension 211
Appendix B-3. Line Store Code Using the Proposed Extension 216
Appendix B-4. Threshold Mult Code Using the Proposed Extension. 218
Appendix B-5. Interface Code Using the Proposed Extension 221
Appendix B-6. RAM Write Code Using the Proposed Extension 225
Appendix B-7. RAM Code Using the Proposed Extension 226
Appendix B-8. Filtercore Code Using the Proposed Extension 228
Appendix B-9. Mult Mask Code Using RTL VHDL. 231
Appendix B-10. NS Mask and WE Mask Code Using RTL VHDL.. 237
Appendix B-1 I. Line Store Code Using the RTL VHDL. 242
Appendix B-12. Threshold Multiplexor Code Using the RTL VHDL 245
Appendix B-1 3. Interface Code Using RTL VHDL. 248
Appendix B-14. RAM Write Code Using RTL VHDL 252
Appendix B-15. RAM Code Using RTL VHDL 254
Appendix B-16. Filtercore Code Using RTL VHDL.. 256
Appendix B-17. Mask Types Code Using RTL VHDL 259

ii

LIST OF FIGURES

Figure 1-1. Rigid Functional Decomposition 6
Figure 2-1. Time Related Cash Flow 14
Figure 2-2. Schematic Based Design Capture 15
Figure 2-3 Applications ofAbstraction Levels 17
Figure 2-4. Functional Decomposition 20
Figure 2-5. Petri Net Description. 21
Figure 2-6. State Machine Graphical Description 22
Figure 2-7. Object Based Design Representation 27
Figure 2-8. Queues Implementation 28
Figure 2-9. Algorithmic Description of the Register ADT 33
Figure 2-10. Algorithmic Description of the Counter ADT 33
Figure 2-11. Message Oriented Communication Scheme 34
Figure 2-12. Register Code Re·use 35
Figure 2-13. Block-Based Design Structure 36
Figure 2-14. Use of the VHDL Block Statement 38
Figure 2-15. Counter Described Using The 'Abstract Component' Style 39
Figure 2-16. Use of an 'Abstract Component' .40
Figure 2-17. Use of a Package for Building Abstract Data Types .43
Figure 2-18. Package. Visibility throughout the Entity/Architecture .44
Figure 2-19. Narrowing the Accessibility ofa Package .44
Figure 2-20. Selective Access to Package Instances .45
Figure 2-21. Data Structure Inheritance in Standard VHDL.. .49
Figure 2-22. Abstract Data Type with Records 50
Figure 2-23. Abstract Data Type and Inheritance with Records 51
Figure 2-24. Inheritance via Component Instantiation 52
Figure 2-25. Initial Code for Abstract Data Type Based Component... ~ 53
Figure 2-26. Class Structure for the Counter Abstract Data Type 55
Figure 2-27. Static Polymorphism through Configuration 59
Figure 2-28. Benefits of Dynamic Polymorphism 60
Figure 3-1. Class Declaration 85
Figure 3-2. Class Declaration with aGeneric Declaration 86
Figure 3-3. Class Declaration with an interface Declaration 87
Figure 3-4. Class Declaration with aGeneric Declaration 88
Figure 3-5. Class with Two Methods and an Execution Priority 92
Figure 3-6. Virtual Class Definition 94
Figure 3.7. Class Definition 97
Figure 3-8. Class Declaration with aCreator Method 98
Figure 3-9. Dynamic Creation and Removal of an Object... 99
Figure 3-10. Object Instantiation with a Generic Map 99
Figure 3-11. Object Instantiation with an Interface Map 100
Figure 3.12. Declaration of an Array of Objects 101
Figure 3-13. Non Blocking Object Calls 102
Figure 3-14. Object Shallow Copy 103

iii

Figure 3-15. Class Encapsulation Levels 104
Figure 3-16. Public Encapsulation during the Inheritance Process 105
Figure 3-17. Multiple Inheritance Example 106
Figure 3-18. Class Declaration with a Feature Map " 106
Figure 3-19. Polymorphic Behaviour 108
Figure 3-20. Class Using aType Declared Within a Package 109
Figure 3-21. Wait Statement Synchronised on a 'stable Attribute 111
Figure 3-22. Use of Pre Assertions 112
Figure 4-1. The EntityObject Abstract Data Type 115
Figure 4-2. Grouping of Un-related Types in an Array 118
Figure 4-3. ADT Declaration in SUAVE/Oldenburg 120
Figure 4-4. ADT Declaration in Objective VHDL and our Proposal 120
Figure 4-5. Method Declarations in SUAVE/Oldenburg 121
Figure 4-6. Method Declaration in Objective VHDL. 121
Figure 4-7. Method Declaration in our Proposal 123
Figure 4-8. Abstract Class Declaration in SUAVE 123
Figure 4-9. Abstract Class Declaration in Objective VHDL. 124
Figure 4-10. Abstract Class Declaration in our Proposal. 124
Figure 4-11. Visible an Non-Visible Declaration in SUAVE 125
Figure 4-12. Hidden Type Declaration in SUAVE 126
Figure 4-13. Visible and Non Visible Declarations in Objective VHDL. 127
Figure 4-14. Hidden Attribute Declarations in Objective VHDL 127
Figure 4-15. Encapsulation Control in our Proposal 128
Figure 4-16. Use of Public Instance Variables in our Proposal 129
Figure 4-17. Example Class Structure 131
Figure 4-18. Example Add_shift Class 132
Figure 4-19. Feature Mapping in our Proposal 133
Figure 4-20. Inheritance Limits in SUAVE/Oldenburg 135
Figure 4-21. Inheritance Limits in Objective VHDL. 136
Figure 4.22. Repeated Inheritance for an Hand-bell Counter 137
Figure 4-23. Instantiation in SUAVE/Oldenburg & Objective VHDL. 138
Figure 4-24. Object Instantiation in our Proposal 138
Figure 4-25. Multiple Drivers Assignment in VHDL 140
Figure 4-26. Improper DeSCription ofa Counter 141
Figure 4-27. Proper Description of aCounter 141
Figure 4-28. Message Passing in SUAVE/Oldenburg 145
Figure 4-29. Message Passing in Objective VHDL. 146
Figure 4-30. Message Passing in our Proposed Extension 147
Figure 5-1. Edge Filter Top Level.. 151
Figure 5-2. Edge Filter Decomposition 152
Figure 5-3. Mult-Mask Top Level. 153
Figure 5-4. Line-Store Top Level 154
Figure 5-5. Threshold Multiplexor Top Level 154
Figure 5-6. Interface Top Level.. 156
Figure 5-7. RAM Top Level. 157
Figure 5-8. Ram Write Top Level. 157

tv

Figure 5-9. Filtercore Top Level. 158
Figure 6-1. Operation of Pre-Processor 173
Figure 6-2. Class Declaration 174
Figure 6-3. Translated Version of the Class Declaration 175
Figure 6-4. Child Class of the 'shift_reg' Class 176
Figure 6-5. Translated Version ofa Child Class 177
Figure 6-6. Object-Oriented Method Calls 178
Figure 6-7. Translation for Method Calls 178
Figure 6-8. Object-Oriented Version of the Example 182
Figure 6-9. Translated Version of the ShiftRightReg 183
Figure 6-10. Translated Version of the ShiftLeftReg 184
Figure 6-11. Translated Version of the BidirShiftReg 185
Figure 6-12. Translated Version of the Counter 186

v

LIST OF TABLES

Table 5-1. Threshold Decoding Table Top Level... 155
Table 5-2. Detail ofWrite and Read Operations 156
Table 5-3. Case Study Comparative Table 170
Table 6-1 Translation Process According to Inherited Attributes 176

vi

ACKNOWLEDGMENTS

This research was sponsored by the School of Design. Engineering and

Computing at Bournemouth University and IBM Havant, UK.

The author would like to acknowledge the help and support given by his

supervisor Doctor David Long and Nick Weavers.

The author would also like to acknowledge the support of the fellow

researchers and members of staff of the School of Design, Engineering and

Computing at Bournemouth University.

vii

GLOSSARY

ASIC. Stands for Application Specific Integrated Circuit. This is usually used
to refer to an integrated circuit (Ie) that is designed to implement the
functionality required for a popular product as opposed to standard ICs that
implement a more diverse function that can be used in wide range of
products. An ASIC solution reduces the number of ICs required for a
product and so reduces the production cost. ASICs are one of the major
growth areas in electronics.

Abstract Data Type. An abstract data type is a type, which defmes a set of
visibility rules and interfaces for accessing its internal properties. ADTs
represent the back-bone of Object-Oriented programming.

Abstraction Level Term used in the latest Hardware Description Languages
to indicate the level of details used to describe a design. Commonly, three
main levels are specified: Behavioural, Register Transfer. and Structural. The
Behavioural level represents the most abstract form of description, mainly
focusing on the behaviour of a design. The Register Transfer defines the
implementation details of a design. The structural level is mainly used for
assembling hierarchical blocks of a design.

Attribute. Also referred as feature. name given to the composing elements of
an abstract data type such as access messages and internal instance variables.

BNF. Stands for Backus Naur Form. A context-free method for expressing
the syntax and structure of a programming language. Used extensively in the
IEEE VHDL language reference manual.

FPGA. Stands for Field Programmable Gate Array. Also referred as Complex
Programmable Logic Devices (CPLD). This is the cost effective alternative to
an ASIC for smaller production quantities. FPGAs benefits form a fast design
cycle and on site re-programmability due to their static RAM based
architecture. FPGA are generally more expensive than ASICs on a unit basis.
This is caused by their complex coarse-grained architecture.

Genericity. Also referred as tailorability, term used to qualify the level of
reusability of a design. A design is said to be generic if it provides the user
with a number of modifiable parameter to allow for context sensitive
adaptations.

viii

HDL. Stands for Hardware Description Language. Depending on their
complexity, HDLs will support different levels of abstraction. The latest
HDLs languages are based on complex sequential programming languages
and allow high abstraction levels systems description. HDLs are used both for
simulation and implementation (synthesis) purpose.

Inheritance. Inheritance is an important feature of object-orientation.
Inheritance provides a mechanism for design reuse by deriving functionality
from an already existing one. Inheritance is one of the mechanisms
supporting polymorphism.

Logic Synthesis. The logic synthesis operation consists in transforming
register transfer language description in an optimised set of Boolean
equations. The resulting equations are then mapped into ASIC library
component primitives following some user-defmed constraints (mainly
related to execution speed and size of the design). High-level synthesis tools
also include a primary operator optimisation stage.

Object-Orientation. The object-orientation is a collection of means for
organising a description (e.g. specification. implementation). From this
perspective, object-orientation may be regarded as a methodology. Two of
the most important mechanisms introduced by object-orientation are
inheritance and polymorphism. These two techniques when used in
disciplined fashion will promote design maintainability and reusability.

Polymorphism. Object-oriented mechanism also known as late binding.
Polymorphism characterises the dynamic type of an element. Polymorphism
due to inheritance is often considered as an important contributor to object­
orientation.

Register Transfer. The register transfer terminology is used to characterise a
description's level of abstraction. This level is situated under the behavioural
level (also known as executable specifications) and above the gate level (net­
list format). The register transfer level description of a system specifies in
detail the logic building blocks composing it and their connectivity.

Simulator. A simulator can evaluate a system consisting of components
described at different levels of abstraction (e.g. a mixture of behavioural,
register transfer language, and gate leven. The evaluation of each of the
system's node status is generally event based. The input stimuli required for
the execution of the simulation are often referred as test bench or test
harness.

VHDL Stands for Very High Speed Integrated Circuit Hardware
Description Language. This language was designed by the Institute of
Electrical and Electronic Engineers (IEEE), primarily as a
specification/simulation language. A subset of this language can be translated
into a physical circuit layout by synthesis tools.

VLSI. Stands for Very Large Scale Integration. The technology that enables
integrated circuits (ICs) containing millions of deep sub-micron transistors to
be fabricated.

2

Chapter 1

OVERVIEW AND REQUIREMENTS SPECIFICATIONS

1.1 Introduction

This thesis describes the research work performed towards the application of

the Object-Oriented paradigm to the Very High Speed Integrated Circuit

Hardware Description Language VHDL (DASC 1993). This chapter

summarises the contents of this thesis through taxonomy of the chapters

along with a defInition of the project background and objectives.

1.2 Rationale

The rapid advance in integrated circuit technology over the past two decades

has driven the need for improved design entry tools. There are a number of

advantages to be gained from the introduction of HDLs in ASIC design.

Amongst them. is the ability to describe systems at different levels of

abstraction: from a structural to behavioural description of the design. This

allows faster and more reliable design capture, hence improving time to

market. HDL based ASIC designs represents one of the main growth areas in

the field of the digital electronics. However, although well suited for today's

design sizes. Hardware Description Languages such as Verilog or VHDL

already show some limits (Weiss 1994) for handling multi-designer large-sized

designs. This is related to the bulk philosophy on which both languages have

been built. This research investigates the limits found in the most popular

HDLs for handling the concepts of design abstraction, reusability,

extendibility and maintainability in an effort to develop a better suited

language based on the Object-Oriented paradigm (KhoshafIan 1989) (Booch

1991).

The notion for reusability and extendibility are primordial in the design of any

application specifIc integrated circuit since most projects either represent a

3

cut-down or improved version of existing products. This is mainly motivated

by the need to limit development costs for these projects.

As a result, it is crucial to specify and design electronic systems with reuse and

maintainability issues in mind.

The two principal Hardware Description Languages (VHDL and Verilog) do

not represent the ideal solution for the specification and building of large

designs, as both languages are based on the Widely used structured and

obsolete programming methodology. Although structured programming

represented a reliable methodology for designing small to medium sized

systems it has long been acknowledged for its limits in the software world. A

new hybrid language has therefore been created along with a pre-processor to

address those limits. This language is enhanced with a layer of constructs

favouring the use of object-oriented techniques for code structuring.

Numerous extensions have been proposed by the design community to

handle large descriptions (Vista) (Shumacher 1995) (Cabanis 1995)(Ashenden

1997)(Radetzki 1997).

An ideal hybrid language should be an orthogonal extension to an already

existing and well-structured language. thus allowing optimal integration within

the type system and philosophy of the original language. Furthermore, the

new capabilities of the language should allow modem analysis and design

methodologies to be used.

With procedural languages such as Verilog or VHDL. a multi-abstraction

level paradigm is used to specify. simulate, design and implement a system.

The Behavioural Level represents an abstraction of the functionality described

during a functional decomposition. Consequently. at this stage of the design

process. only functionality issues are addressed. The Register Transfer Level

(RTL) also known as Data Flow Level, implements the physical aspects of the

required functionality taking into account phenomena such as timing and

4

power conswnption along with cost related issues such as the design size. The

Gate Level will represent the result of an automated translation of an RTL

description into a net list format.

The approach taken in most HDL based designs relies on a functional

decomposition stage. followed by a behavioural specification for the

functional blocks. The behavioural description is used with a test bench to

ensure the consistency and correctness of the design throughout the

construction of the system. The same test bench is then used with the RTL

and gate level versions of the design as a means to cross-check the

functionality during the different stages of the system's development.

For each level of abstraction. designers are required to build an interface in

order to adapt the test bench to the abstraction of the information exchanged.

The functional blocks interface types are usually different and not compatible

from one level of abstraction to the next. The behavioural level will usually

maintain user-dermed types for interfacing. The register transfer level and gate

level will be using more hardware-related types such as "bit" based or

"standard logic" based types (either scalar or composite versions).

A problem with this approach is that the communication channels used to

exchange information throughout functional blocks are often prone to

changes during the life of a project. As a result. any minor changes in the

system specification will have an important effect on the amount of work

required to update the implementation. Furthermore. as can be seen from

Figure 1-1. the structure of any functional block is very rigid and often cannot

be reused for other applications without requiring significant reengineering

effort in terms of design debUgging.

5

FO Abstraction level sensitive
block interface's

F02F01

----------------!
I

:
:,,,
:
I
I,
I
I___J

Figure 1-1. Rigid Functional Decomposition.

The need for an improved method for modelling is increasing as the size and

complexity of new Ie's designs steadily grows. On-going work on the subject

is being carried out by an IEEE committee (Berger 1995) with the intention

of developing a solution for the next generation of HDL. However, the best

alternative is not clear, as there is no one solution to address all aspects of

current design methodologies' limits. In terms of modelling, a number of

issues that should be resolved can be listed. These include:

• Which design methodology ensures better reusability. maintainability and

extendibility of hardware designs.

• To what extent a better design methodology could be implemented with

already existing HDLs.

• What would be the requirements for the implementation of an improved

Hardware Description Language.

• How to maintain a consistent link with already existing designs and CAD

tools.

6

• To what extent reusability could be achieved with a new language when

compared to existing HDLs.

• What should be the range of applications of any new language? E.g.

specification. simulation. synthesis or formal verification.

Object-Orientation has been used in a number of concurrent processing

applications since the encapsulated nature of an object provides a good

mechanism for representing independent asynchronous processing units.

Consequently. this infers that Object-Oriented modelling might be beneficial

for the description of hardware systems.

Pragmatically, there are three main domains in hardware design where the use

of Object-Orientation might prove beneficial. Primarily, enabling HDLs to

support Object-Oriented constructs would narrow the gap between system

analysis and system design. Both stages could be developed around an object­

based methodology. hence. reducing the costly iterations that typically occur

between the design stage and the analysis stage. This line of thought is related

to the use of abstract interfaces for inter-component communication. For

instance, as designs become more complex. it becomes almost mandatory to

work at different levels of description (Behavioural. RTL. and Gates) for the

different building blocks. As a result this task requires a significant effort in

terms of project planning. Different parts of a system will be developed at a

different pace using a variety of capture tools and means of verification. In

the example of a common design, some parts might be bought from an

external supplier (Intellectual Property) with fixed specifications. and

interfaces. The level of details for those components will inevitably be low

(RTL or Gate) since these models are designed for synthesis. Other

hierarchical blocks of the designed system may require a Mtop-down"

approach before getting to the implementation stage. With those blocks,

implementation decisions may be delayed until a later stage. As a result,
means of abstraction are needed for the overall design capture.

7

The second benefit of the use of object-orientation is related to the concept

of inheritance. The inheritance represents a powerful means for categorising

elements of systems and expanding their capabilities by derivation from

already existing element attributes. Most modem ASIC designs are based on

improved versions of existing designs. inheritance if used with hardware

design would simplify the building of the new design and shorten time to

market.

The third aspect is related to the modelling of large designs. Historically.

software and hardware languages have been improved to further extend their

abstraction capabilities. For instance, in the software world, structured

languages such as Cand Pascal that replaced assembly code have in turn. been

replaced by Object-Oriented languages (namely C++ and other

implementations of Object-Orientation). A similar analogy can be found in

hardware design where gate level design and logic level description languages

such as ABEL or PALASM have now been replaced by more abstract
languages, namely, Verilog and VHDL.

Although a higher level of abstraction in a design commonly results in a less

efficient implementation, the trade-off has proven worthwhile when the time

to market. design maintainability and design extendibility represent important

criteria.

To some extents, VHDL can be seen as an improved version of the Verilog

language for its support for complex data structure. encapsulation and strong

typing. If inheritance and polymorphism were to be added to the language to

improve its abstraction capabilities, changes would have to be made to the

VHDL encapsulation and type mechanisms to cope with the new designs

inheritance and dynamic types.

This project focuses on improving the modelling capabilities of the VHDL

language by increasing its abstraction level, thereby bringing hardware

8

modelling to higher grounds. As a result this should be better suited for the

building and verification of large reusable designs. To achieve the announced

objective. language extensions have been researched and added to the VHDL

language with three essential criteria in mind: orthogonality of the new

constructs with the existing ones. respect of the VHDL language philosophy

(strong type system) and minimal changes to the language. Hardware models

based on the new semantics and design methods have been developed.

leading to the creation of a demonstration pre-processor tool to prove the

validity of the research.

1.3 Aims and Objectives

To design a HDL for modelling large reusable hardware/software systems

that is compatible with already used languages and proven design

methodologies namely VHDL and the Object-Orientation.

To develop models in order to validate the proposed semantics and to

illustrate the benefits of object-orientation applied to hardware description

languages when dealing with behavioural and register transfer description

level.

To create an experimental compiler/pre-processor to evaluate and validate

the benefits of the proposed semantics over standard VHDL

1.4 Taxonomy of Chapters

1.4.1 Chapter 1

This chapter introduces the research work carried out to achieve the project

objectives and main issues involved. Abrief description of the thesis layout is

also given.

9

1.4.2 Chapter 2

An analytical study of the work carried out on design methodologies and

proposed solutions to Object-Orientation applied to Hardware Description

Languages is carried out in this chapter. This review is based on the material

published in a range of software and hardware technical publications. books,

journals and conference proceedings.

1.4.3 Chapter 3

The defInition of the new semantics is described in this chapter along with

the motivations for selecting the classification orientation versus other

available solutions for achieving Object-Orientation.

1.4.4 Chapter 4

This chapter evaluates the validity and superiority of the newly proposed

syntactical constructs by comparing our proposed extension to other existing

proposals. The comparison uses a common set of benchmarks derived from

the language design objectives set in chapter 2.

1.4.5 Chapter 5

This chapter demonstrates the proposed extension abilities for implementing

design abstraction. reusability and maintainability. This is done by

implementing a real-life application using our proposed extension. In order to

contrast the proposed extension with standard VHDL code. the studied

design will also be implemented using the VHDL RTL style. The comparison

results will be used to draw conclusions on the benefits of our proposed

extension over conventional VHDL code.

1.4.6 Chapter 6

This chapter presents the overall conclusion of this thesis. It also makes

recommendations for further work and applications for an Object-Oriented
Hardware Description Language.

10

1.4.7 Appendix A

This describes an experimental pre-processor that has been developed to

demonstrate how a pre-processor handling inheritance. dynamic

polymorphism and encapsulation could be developed to support the

semantics developed in this thesis.

1.4.8 AppendixB

This appendix contains the code for the Object-Oriented description of the

supporting classes for the design of the Edge Filter.

1.4.9 Appendix C

This holds both the Object-Oriented and RTL Code for the design of the

Edge Filter.

11

Chapter 2.

REVIEW OF VLSI DESIGN METHODS

2.1 Introduction

VLSI design and software engineering are two key areas for which a rise in

productivity is needed in the near future. There has been an interesting

awareness of similarities in the two fields (Kumar 1993). The willingness to

transfer technologies that have proved to be successful from one area to the

other became stronger because of the limits of the schematic capture based

methodology (Smith 1986), (Wirth 1998), (Shelor 1994). Designers who have

experience in both areas have always spontaneously done technology transfer

between the two disciplines. Some of the fields where technology transfer has

worked successfully are in silicon compilation, in which part. or all of the

process of translating a VLSI design concept into mask level layout

instruction. has been automated. Like software language translators, which

range from assembler to fourth generation languages systems, silicon

compilers automate translations. Similarly. the assembling of predefmed

standard cells on a chip using traditional programming concepts to create a

procedural VLSI design methodology has proved to be a success, applying to

a VLSI design program. transformation approaches originally developed for

software. These conclusive experiments led the designers to assume that a

software like capture based methodology could be beneficial to the VLSI

design process and to conceive Hardware Description Languages.

The next step hardware designers took in favour of technology transfer was

the adoption of software analysis and design methodologies. Although

hardware designers valued ASIC design, functional decomposition and

structured analysis/ structured design methodologies. the concept of Object­

Orientation, originally a software concept, was gradually gaining support

within their community. The notion of objects was frrst introduced in the

12

language Simula (Dah11966), designed in the late 1960's. However, Object­

Oriented programming did not emerge as a new analysis and programming

paradigm until Smalltalk (Goldberg 1989) came along by the end of the 70's.

Many Object-Oriented programming languages are widely used today.

Although some of them have been designed from scratch. most of them are

hybrid languages, that is to say conventional languages with added Object­

Oriented concepts. This chapter will examine the limits of the current

methods and identify requirements for an improved Hardware Description

Language.

2.2 Schematic Capture Based Methodology

Critical time to market constraints and hardware costs have led ASIC

development to rely on efficient design methodologies for decades [Figure

2.1]. Mask design was the first methodology used for the production of LSI

designs; it was later replaced by logic level schematic capture. Schematic

capture has been the main design entry technique used until the mid-eighties

when hardware description languages appeared (Barbacci 1981).

13

Although the HDL based technique for developing hardware is similar to

high level language to develop software. a number of issues have motivated

the move from a visual graphical based methodology to a language based one.

Cuhl"low

l"p ~ ,___+~. .a ,,,p

'iamotaM....t
Squeue

Figure 2-1. Time Related Cash Flow.

In a graphical based methodology. some information is provided to infer and

clarify the functionality described in the schematic. This information will

relate to specific data flow in the circuit, feed back data path. data

dependencies or sequential and parallel operations. This means of

representing a design is very convenient. as it does not just show how electric

components connect but also how they operate. However. as component

complexity increases. representing hierarchy via graphical means becomes

limited. An example of this limitation can be found with the standard

ANSI/IEEE standard symbols such representations are effective for small

and limited functionality components but fail to address LSI or VLSI types of

components. which are too complex to be represented in an efficient way.

14

Commonly, hardware designers add a number of indications on a design,

such as specific vertical/horizontal alignments (for parallel or sequential

executions), adata flow operating from left to right and others [Figure 22]. In

most cases, a schematic should provide information that can be understood

by a person reading it The interpretation of this information has not been

clearly defmed and has been adopted by tradition. All these implicit means of

giving information do not have their counterpart in language based designs;

this justifies the popularity of graphical entry tools as ~front ends" to HDL

designs. Design tools such as state diagrams, flow diagrams, logic tables and

others, support different design entry formalisms.

AI'l c:::-"""'----l
BIN C::::-JW"'---1

PIN c::::::::)-Z1!oL-------+-'-----f

CN C)-Clll-------..l.---------.....,

Figure 2-2. Schematic Based Design Capture.

To overcome this lack of information in HDL designs, run time assertions

and inline comments can be used to clarify the code functionality. For

example, information regarding the use ofa specific architecture or sequential

statement such as 'if or 'case' infers the use of either multiplexor or decoder

15

based structures. Well-commented code can often overcome some schematic

shortcomings.

Furthermore, HDL based descriptions free the designer from unnecessary

details by abstracting ASIC library components. FPGA designs represent an

exception to the rule. Due to their coarse grain architecture: internal features

(10 blocks, internal clock buffers, etc.) need to be explicitly inferred to

achieve satisfying synthesis results (Xilinx 1997). Ideally these problems

should be solved as synthesis tools improve in the same way as for high level

language software compilers.

In any kind of engineering construction, the most important factor for

productivity is the reuse of prior effort (Keating 1998). This has greater

significance in ASIC design, where getting the design right first time is a

primary goal and design mistakes can jeopardise a project or increase the cost

and shipment time drastically. Consequently, every reuse of well-tested and

validated components increases the overall design reliability and reduces the

cost and effort required. These factors apply equally to schematic or HDL

based design methodology but, the use of the latter maximises its effect

When designers migrate from a schematic environment to a language

environment, their motivations are often tied to the needs of creating larger

designs within smaller time scales. Therefore the opportunity for reuse of

larger designs increases with larger ASICs. To be able to apply design reuse,

various elements need to be taken into account the existence of functionality;

what it provides; what it needs; its limitations and whether the level of testing

has been thorough enough. Schematic capture does not guarantee the

development of reusable parts in terms of genericity. Even though provisions

for reuse can be built in, changes in ASIC technology cannot ensure direct

mapping across ASIC libraries. Unlike schematic capture, with a HDL based

design, a switch from one technology to another is a straightforward

16

operation, due to the teclmology independent nature of HDLs, thus

preventing design obsolescence.

Hardware Description Languages can be classified according to their levels of

abstraction (see Figure 2.3). Most of the early HDLs such as CDL (Chu

1965), DDL (Dwey 1968), were designed specifically for description at the

Register Transfer Level. Today, these languages represent the lowest entry

level before the structural level. With these languages, the system had to be
described in depth, using rigid expressions to assist the synthesis tools.

Stnlctural

Polygons -~~.....-

Sticks -~-r;;;:::
~-<-~

Standard Cells --~o::::--rl

F100c Plan -----=+'?'J

Geometric

Functional

r+-- Algortthm

,"~"""--_ ReglsterTransferLanguage

~--I..._ Boolean EqualJon

T--+-+- Differential EqualJon

Figure 2-3 Applications ofAbstraction Levels.

Later HDLs such as ARCHI (Nixon 1986), ADL (Leung 1979), S*A

(Dargupta 1981), ZEUS (Lieber herr 1981) were aimed at micro-architecture

level designs. With these HDLs, the description was based around a set of

predefmed architectures to make the design process easier, but design

possibilities were restricted by the rigidity of the predefmed architectures.

Besides, these languages are not adequate for describing the digital system

17

design process. as they are often restricted in their ability to support different

levels of abstractions.

In recent years. much research has been canied out on Multi-level HDLs.

One of the solutions for this problem was to develop a single language that

could support a large class of architectures. Some languages which fall into

this category are ELLA (Morison 1985), ModIan (pawlak 1981), UDL/I

(Kartsu 1991), Trio (Coen-Porisini 1991), VHDL (DASC 1993) and Verilog

(Verilog std 1364-1995). Three levels of description are currently supported

by these languages: Structural. Data Flow (or Register Transfer Language) and

Behavioural. Although these languages offer an efficient way of modelling

and designing digital systems. few of them offer links from system

specifications to Register Transfer Level. which represents the closest level to

layout Consequently. the resulting code for a complex ASIC (Application

Specific Integrated Circuit) will become large. Apart from these languages,

some research has been canied out in the field of specification languages.

They are either a formal semantic for specifications such as ESP (Chu 1993).

or a syntactic scanning. semantic analysis. interpretation generation and model

integration of the English language (Cyre 1989).

Nevertheless, no specification language can be considered complete if it does

not support any development techniques for analysis and reasoning. Typically,

the phases of a development process include various stages: requirement

analysis, design, implementation, test and integration stages. Hardware

Description Languages such as VHDL were primarily designed for addressing

those aspects: although nowadays VHDL cannot be used for all stages of a

. design. its use covers most of them. Within one development environment,

engineers are able to specify. design and implement a circuit validating each

level of the hierarchy via high level VHDL test benches. In comparison.

schematic based designs do not allow such abstraction: the highest level often

considered is the top-level block diagram. Furthermore. since aVHDL design

18

methodology is language based. this indirectly provides a convenient means

of documentation.

VHDL, like most of the modern hardware description languages. is based on

a structured programming technique. Structured programming was designed

to organise complex programs more efficiently by linking the processing

functions to the data structures. The method of functional decomposition

characterises the steps that must be taken to reach a particular goal. These

steps may be presented by functions that may take arguments in order to deal

with data that is shared between the successive steps of the computation. In

general. this method is not very good for data hiding. Another problem is that

new designers may not be familiar with viewing their problems in tenns of

computation steps. Also. the method does not result in descriptions that are

easy to alter. This leads us to further examine the limitations of current

hardware system design methods in order to offer alternatives.

2.3 Current Hardware System Design Methods and their Limits

The choice of analysis and design methods is often motivated by the

designers' need to manage design complexity and to keep development and

maintenance costs down. Numerous analysis and design methodologies have

been used since the 70s. contributing to a better defInition of design

processes. Besides, there has been an attempt at standardising the system

representations used by designers. Electronic engineers successfully use two

main methods: Functional Decomposition and System Based Analysis.

19

Figure 2-4. Functional Decomposition.

Functional decomposition treats one function at a time. and hierarchically

decomposes it into a set of sub-functions. This process continues until the

decomposition level is low enough to be implemented by a set of simple

functions as shown in figure 2-4. This method is based on the principle that a

problem can be divided into smaller manageable problems to reduce the

complexity of the design. Consequently. the functional decomposition is seen

as a simple approach towards achieving a sensible solution. Nevertheless.

with this approach. the analysis effort is mainly based on creating design

functions at the expense of data consistency. Furthermore, function

decomposition rules are not clearly stated and therefore the decomposition

hierarchy ofa system will vary from one designer to another. Finally. the non­

hierarchical interconnections encountered in the design of complex systems

(between different taxonomies or within the different levels of the same tree)

are difficult to represent with the functional decomposition paradigm.

System based analysis is inspired from the system theory by (Lanffy 1968); the

system is seen as a complex and active object. The structural and functional

aims of such an object are described at the System Analysis stage. Both Data

models and Process models therefore represent the modelling of a system.

Design rules are also provided for a better data consistency and process

description. This approach appears to be an improvement over the functional

decomposition method. However. in this paradigm. the data and processes

description techniques are not closely related.

An alternative approach to the system level description is based on graphical

methods. Like system based analysis. graphical tools rely on an algorithmic

description of the system. One of the most efficient but cumbersome

methods is the Petri net description (Gourgand 1993). By using this paradigm,

the concurrency within a design. as well as the data exchange protocol, can be

expressed in a precise way [Figure 2-5]. As the description gets larger. the

Petri net is more likely to make errors when events drive the system to a dead

end or an infinite loop. Techniques based on matrix resolutions have been

developed to overcome these problems but the description still rapidly
becomes unmanageable.

ConcurrentBranch~

Figure 2-5. Petri Net Description.

Mixed language and graphical tools based on state diagrams are derived from

the Petri net theoI)'. Some languages that fall into this category are SpecCharts

(Vahid 1991) and StateChar (Harel 1987). These languages represent an

extended way of describing a system's behaviour at the algorithmic level.

Nevertheless, the progress in system level description tools research (Kurup

1998) has brought new problems to light For instance, as the level of

abstraction increases. lower level models can no longer be expressed.

21

Conversely. it may not be possible to directly implement expressions in higher

abstraction levels onto lower level models.

As a result. engineers commonly use fInite [Figure 2-6] or algorithmic state

machine descriptions. allowing low level modelling at the expense of
abstraction level.

STO

ST3

Z <= 'I'
Y <.'1'

a

Z<·'O·

Y<-'!'

Figure 2-6. State Machine Graphical Description.

In addition to Petri net theory derived descriptions, there has been research

reported on system level description using the well supported structured and

functional analysis techniques (Lahitis 1991). (Bakowski 1992). These consist

of hierarchical data-flow diagrams. which describe the flow of data and

control signals inside the system. in response to external stimuli. It provides a

system level deSCription that is suitable for synthesis, as the method allows

high level representation as well as low level modelling. Furthermore. such

methods are based on reasoning techniques for which the designer follows

clearly defIned steps.

Although the latter techniques seem to be the way ahead for system level

synthesis. they soon become ineffIdent when designs grow in complexity.

22

With large designs, work is usually allocated among different people. Ideally,

designers should not have to know complex details concerning units built or

modified by other people. only how the units they are responsible for interact

with the rest of the system. However. with methodologies that do not

emphasise encapsulation and information hiding, multi-person development

team issues are more inclined to occur.

In addition to the design consistency issues, the development cost of large

designs is usually very high. The cost of developing could be reduced, if some

of the units the system is built from could be taken from already existing

systems. Similarly. it would be beneficial if some parts could be reused in

future projects. Nevertheless, neither functional decomposition nor System

Analysis/ System Design (SA/SD) methods clearly emphasise the reuse and

extendibility aspects ofadesign.

In addition to the discussed design method limits, the building of large

systems using the functional decomposition or SA/SD methods do not

facilitate the creation of components that closely relate to the application

domain. The reason is that design based on such methods identifies two kinds

of entities: the data, which are passive and represent the system. and the

functions, which manipulate the data.

As a result, the designer of a system written in a procedural language such as

Verilog or VHDL will face two alternatives. Either map the problem into a

set of functions and defme the data structure needed by the functions or map

the problem to a set of data and write the functions that transform the input

data into output data.

These observations lead us to look for an improved analysis and design

technique providing an easier development of reusable units (genericity.

tailorability), and a higher level of modelling, together with a better object
abstraction.

23

2.4 Object-Oriented Methodology for HDL's Based Designs

The history of programming languages may be regarded as a progression

from low level constructs towards high level of abstractions, that enable the

programmer to specify programs in a more abstract manner thus allowing

problem related abstractions to be captured more directly in a program. This

development towards high level languages was partly motivated by the need

to verify that aprogram adequately implemented aspecification.

Object orientation is one of the most commonly used terms in recent design

methodology projects, as it is closely associated with the handling of complex

systems. Object-oriented methods address aspects such as encapsulation,

reuse and derivation techniques to name but a few. Encapsulation is a

technique used to hide the implementation of a design. The designer uses

high level constructs to describe a system's behaviour without concerns about

the fmal implementation of the construct Reusability is achieved through

message passing techniques to get information or to modify the values of an

object Consequently, the design of the function remains safe. Finally,

derivation or inheritance is one of the most promising features of Object­

orientation. This concept is based on the ability to design new functions from

existing ones. To achieve this. a new design will inherit all the methods of its

ancestors. All these attributes are highly beneficial when applied to hardware

description languages (Takeuchi 1981).

Object-orientation has proven useful for numerous purposes within HDL. It

can be useful for configuration management and macro modelling of

analogue devices (Mammen 1994). It also provides a means of higher level

description. Some of the hardware description languages that apply Object

Oriented technology are Odice (Muller 1990). Loglan (pawlak 1987). OODE

(Takeuchi 1981) and SDL (Glunz 1998). These languages adopt different

approaches for the semantic and object-orientation philosophies. Pascal,

24

Algol and LISP are used as a basis for the semantics, Simula67, Modula2 and

Smalltalk for the Object Oriented Implementation.

The notion of objects, originally introduced in Simula, has significantly

influenced the design of many subsequent languages (e.g. Modula and Ada).

The fIrst well-known object oriented language was Smalltalk. In Smalltalk, the

data hiding aspect of objects has been combined with the mechanism of

inheritance, allowing the reuse of code defIning the behaviour of objects.

Both information hiding and data abstraction relieve the programmer's task

when using existing code: they are no longer distracted by irrelevant

implementation details. On the other hand, the code developer may benefIt

from information hiding as well, since they will be able to optimise the

implementation without interfering with the client code.

The advantages of Object-Orientation are clear when considering the gap

between system design and implementation. In a number of instances,

Object-Oriented analysis has been regarded as a solution to this problem of

communication. According to Coad and Yourdon (Coad 1991), Object­

Oriented techniques allow us to capture the system requirements in a model

that directly corresponds to a conceptual model of the problem domain.

Furthermore, proponents of Object-Oriented Programming (OOP) claimed

(Cox 1990) that an Object-Oriented approach enables a more seamless

transition between the respective phases of the software life cycle. If this

turns out to be true, changing user requirements could be more easily

discussed as these changes would be less disruptive for the system and they

could in principle be more easily applied to the successive phases of the

development One of the basic ideas underlying Object-Oriented analysis is

that the abstractions achieved in developing a conceptual model of the

problem domain will remain stable over time. Consequently, rather than

focusing on specifIc functional requirements. attention should be given to

modelling the problem domain by means of high level abstractions. Due to

25

the stability of those abstractions, the results of analysis are likely elements for

reuse.

To achieve reusability, extendibility and reliability, the principles of Object­

Oriented design provides the best known technical answer. Object­

Orientation is a way of organising designs by focusing on a fundamental

construct: the Object (Boach 1991). A design therefore represents a

collection of discrete objects that incorporate both data structure and

behaviours. This is often referred to as Mtight binding", as opposed to the

Mloose binding" found in common design methodologies. The main

characteristics used to support this paradigm are classification, inheritance and

polymorphism. The classification enables the designer to identify groups of

objects with commonalties and combine them into distinct categories.

Objects are therefore seen as instances of a given class, while a class can

gather an infInite number of objects exhibiting identical attributes. Figure 2-7

illustrates the Object-Oriented view ofa design containing anumber of FIFO

(First In First Out) and LIFO (Last In First Out) objects gathered in two

distinct groups. The action of grouping similar objects into classes enables

further higher abstraction in the design process as illustrated by the queues

class.

26

DESIGN

8
8

aUEUS
VALUE

RESET
PUSH
POP

J
I I

FIFO LIFO

PUSH PUSH
POP POP

Figure 2-7. Object Based Design Representation.

The inheritance would also bring an extra level of organisation flexibility to

hardware designs. as it refers to the action of creating a hierarchy of classes

sharing common data structure and behaviours. A child class will be a

refmement of a parent class. which transfers its unique properties to the

inherited class. Inheritance is used to implement code sharing amongst several

similar classes, therefore reducing code redundancy. In Figure 2-8 an example

of inheritance is given with the queues class.

One can imagine that the two child classes FIFO and LIFO are using the

same code for implementing the reset functionality. As a result, this operation

would be defined at the parent class level thereby promoting code sharing.

Inheritance is not just a module combination and enriclunent mechanism. it

also enables the defmition of flexible entries that may become attached to

objects of various forms whilst an HDL simulation is executing (referred as:

run time), a property known as polymorphism. A polymorphic operation is

characterised by its ability to adopt different behaviours depending on the

object addressed.

27

Write Pointer
Write Sequence

j•
LIFO

~ 1Read Pointer
Read Sequence

Write Sequence j Write Pointer•
FIFO

Read Pointer 1 •
Read Sequence

QUEUES

VALUE

RESET
PUSH
POP

~
I I

FIFO LIFO

PUSH PUSH
POP POP

Figure 2-8. Queues Implementation.

Considering the example given in Figure 2-8, the operation PUSH could be

identical for the two child classes FIFO and LIFO and could consequently be

defmed at the parent class level. However, the POP operation, although

having the same identifier, must behave clifferently. To do so, the user will

"overload" the two different behaviours for the two different classes and rely

on the execution program (HDL simulator) to select the appropriate one

depending on the class of the selected object. As can be seen, polymorphism

together with encapsulation allows a higher level of system design abstraction

by postponing implementation decisions until later in the development

process. Although it is clifficult to fmd equivalents to some of these new

principles in hardware, it is still sensible to search for similarities between

software design and hardware design methodologies. It is even more relevant

since the introduction of HDLs for hardware design. Indeed, a structure of

hardware entities exchanging signals closely resembles the object model. This

latest advance in the hardware design process is comparable to the

introduction of structured procedural languages in software. Such an increase

28

in the abstraction level was motivated by an increase in design complexity and

design effort. Already. the hardware community faces identical problems

when considering large HDL descriptions. Design organisation.

maintainability and reusability are some of the main issues that have to be

studied.

In an effort to provide an object-oriented version of the VHDL language. the

IEEE OOVHDL Study Group Www.vbdl.org) committee has produced a

requirement and design objectives document. This document identifies the

needs and main requirements for the building of an object-oriented extension.

The requirements are related to many aspects of the language and the design

methodology. However. from this document. eight main points have been

identified.

1) To target higher levels of modelling in order to ease the changes to the

design specifications and make designs less technology dependent.

2) To simplify and speed-up the process of specifications. This should

overcome the challenges faced during the specification of ever

increasingly complex systems.

3) To ease the addition of new functionality thereby reducing the needs for

restructuring large parts of a design.

4) To improve the verification process by bridging the gap between

implementation and specifications.

5) To further the level of reusability; This in tum should yield better design

productivity along with higher design quality.

6) To cater for better documentation capabilities. to help the designs of
growing reusable components libraries.

29

7) To provide better consistency for the creation of Hardware/Software co­

designs.

8) To make the extension easy to learn and apply; Hence allowing a better

acceptance of the new semantics by the designers' community.

Along with the above guidelines, the IEEE Object-Oriented study group

enumerates a collection of concepts that the object-oriented extension has to

include. Most of these concepts merely characterise the main features of an

object-oriented language. These are:

1) Add better abstract data typing to VHDL.

2) Add inheritance/multiple inheritance.

3) Support for method calls or message passing.

4) Add polymorphism.

5) Add Dynamic creation/removal of objects.

6) Add documentation mechanism.

Having defmed the requirements and design objectives for the creation of an

extension to VHDL, we will now examine to what extent VHDL supports

those objectives. We will also identify which of the VHDL constructs and

mechanisms could be used as a base for the building of the language

extension.

2.5 Object-Orientation in Standard VHDL

2.5.1 VHDL Encapsulation and Design Abstraction

Commonly. in most HDL based designs, not all features of the system need

to be accessible by an end user of each component. The designer of a

30

component may therefore want to keep some features private or available

only to specific users (e.g. because they are for internal use only and subject to

changes so letting all users access them directly could endanger further

evolution of the component). This is especially true of features (sub-programs

or attributes) that reflect alternative implementation details of a design rather

than its primary functionality. By keeping such features private. the

component designer protects users against the effect of changes in the fmal

implementation. This policy is known as information hiding. When

elaborating a design, one may achieve different levels of information hiding.

For immediate functionality (those introduced in the design itself), one may

specify any required encapsulation restrictions by using the public or private

mechanisms as found in c++. Obviously, when considering component

design, a public feature will only be accessible through the ports of the given

component Consequently, any feature not listed in the port list will be seen as

private. This component approach is somewhat limited and the VHDL

language offers other constructs to achieve an even smoother encapsulation.

VHDL is derived from the ADA language. As such, it supports abstract data

types by means of a syntactic package construct (DASC 1993). To a larger

extent, this is equivalent to the class abstract data type found in most Object­

Oriented programming languages. However. the benefits achieved through

abstraction can be obtained only when specific coding style is used. Such a

coding style involves the use of VHDL objects such as block statements,

package design units and configuration design units. In many VHDL designs,

a system can be characterised as a combination of several architectures, each

organised as a collection of processes and related signals. A number of

packages are often used throughout the design to gather common

declarations. Finally. a further level of flexibility is often added to the VHDL

deScription through the use of configuration statements. From this

observation. we can now examine issues regarding the VHDL code

maintainability and reusability as it stands, and derive an Object-Oriented

31

implementation method to achieve better encapsulation and abstraction. We

will use simple cases with clearly defined goals in order to discuss the various

implementation possibilities.

The frrst case implements an abstract data type for a register. An inheritance

mechanism is then used to create a counter abstract data type. The

description of the two abstract data types uses a generic algorithmic language.

Figure 2-9 shows the implementation of the base register abstract data type.

An attribute value is defmed to hold the internal value of any instance of the

register ..ADT". Methods are used to implement the £eSe, read, and write

behaviours. This model does not consider any synthesis issues and thus

focuses only on behavioural aspects. Furthermore, the type of assignment is

left undefmed. In Figure 2-10, a counter abstract data type is designed by

inheriting the capabilities of the previously dermed register ADT. This new

abstract data type needs only to implement the count operation to describe a

complete counter. In both examples, the messages will be considered to be
directly accessible by client applications - i.e. they are public.

Although these two examples do not display the full range of the Object­

Orientation paradigm capabilities, they enable us to understand two of the

main features: encapsulation and inheritance. To compare the two examples

to standard VHDL, a simple direct analogy can be made between the abstract

data type concept and the entity-architecture pair. The entity can be seen as

the 'shell' of the class and performs the encapsulation; the architecture part

defmes the implementation of the class. Similarly, VHDL signals can be used

to communicate between entities as well as to implement data attributes.

Figure 2-11 demonstrates how the register class can be coded in standard

VHDL with a message oriented communication scheme.

32

Body of Register
(

attribute value: bit_vector(O to 7)
method reset
(

value becomes ~OOOOOOOO·

method read (v: out bit_vector)
(

v becomes value

method write (v: in bit vector)
(-

value becomes v

Figure 2-9. Algorithmic Description of the Register ADT.

Body of counter inherits register
(

method count
(

value becomes value + ~OOOOOOOl·

Figure 2-1 O. Algorithmic Description of the Counter ADT.

In this example. a user-defmed type is created to list the different message

that will be sent to the interface (entity). The message decoding is performed

via the use of a "case" statement and the data attribute takes the form of the

The entity ports are defmed for input values by the write method argument

and output values by the read method argument Using the same approach.

33

the counter is implemented with standard VHDL in an Object-Oriented

fashion [Figure 2-12]. Here. new functionality is added to support the 'count'

operation.

package reg_ADT-pkg is
type message_type is (reset, read, write);

end reg_ADT-pkg;

use work.reg_ADT-pkg.all;
entity reg is

port (message: message_type;
write-param_in: in bit_vector (0 to 7);
read-param_out: out bit_vector(O to 7)
) ;

end reg;

architecture 00 of reg is
signal value: bit_vector(O to 7);

begin
message_exec: process(message'transaction)
begin

case message is
when reset ->

value <= (others ->'0');
when read ->

read-param_out <- value;
when write ->

value <= write-param_in;
when others -> null;

end case;
end process message_exec;

end 00;

Figure 2-11. Message Oriented Communication Scheme.

34

package counter_ADT-pkg is
type message_type is (reset, read, write, count);

end counter_ADT-pkg;

use work.counter_ADT-pkg.all;
entity counter is

port (message: message_type;
write-param_in: in bit_vector(O to 7) ;
read-param_out: out bit_vector(O to 7)

) ;

end counter;

architecture 00 of counter is
signal value: bit_vector(O to 7);

begin
message_exec: process(message'transaction)
begin

case message is
when reset "'>

value <'" (others ->'0');
when read ->

read-param_out <'" value;
when write "'>

value <'" write-param_in;
when count ->

value <- value + ·00000001-;
when others -> null;

end case;
end process message_exec;

end 00;

Figure 2-12. Register Code Re-use.

Although very similar to the register in its structure. the counter [Figure 2-12]

requires a number of modifications to implement the correct functionality.

The message type had to be changed as well as part of the case statement.

This simple example already highlights the weaknesses of VHDL when

considering code reuse.

Having looked at the most basic way of implementing an abstract data type in

standard VHDL (the component object), we will now consider other options

35

offered by the language in an effort to demonstrate their benefits over the

component object method.

A good design technique recommends the use of local variables instead of

signals whenever it is possible, thus enforcing the encapsulation aspect.

However, large architectures (4000 to SOoo-logic gates equivalent) will contain

a significant number of signals, typically implementing control functions or

data path functions. These signals should be rationalised in the same way as

local variables: by logically grouping related signals within the architecture.

Similarly, related processes should be gathered logically to simplify any future

code reuse. The VHDL language provides the "block" construct to perform
this encapsulation.

Although the block construct has not generated a significant interest within

the design community, we believe that if adequately used, it should prove an

efficient way of increasing designers' productivity.

Figure 2-13. Block-Based Design Structure

In Figure 2-13, we show an architecture containing four processes that

represents the design of a display driver. Process P1 is a master controller

36

taking synchronisation signals as inputs and generating appropriate sequence

of control signals for the dependent processes. Process P2 is a lower level

controller generating synchronisation signals for the external display and

processes P3 and P4 are for error correction and Mde-serialisation"

respectively. The conventional way of designing this system consists of

deflning types for the signals, declaring control and data path signals within

the architecture declarative part and fmalIy defining processes Pl·P4 (in any

order). However, alterations are often required throughout the design life

cycle to cope with speciflcation changes or design updates. Consequently,

conventional design methods are not adapted for design maintainability and

design reuse. To illustrate this remark, consider a design change such that the

code implementing the data path is replaced. With a conventional coding

style, such operations will require the identiflcation of declarations and

processes to be removed or renamed in order to customise the architecture

for the new application. This operation might represent a long and error

prone process. However, by using the encapsulation capability of the block,

the alteration impact is minimised and simplifled. The block encapsulating P3

and P4 contains local declarations regarding the processes (signal SIG_34)

and will simply need to be cut out of the description. Furthermore, the

replacement block will be able to map its interface to the rest of the

architecture blocks through the use of Mport map" and Mgeneric map"

constructs. Figure 2-14 describes the structure of the suggested coding style.

By gathering related processes into sets of blocks, the designer is able to

localise the effect of potential alterations and thus build robust code.

Furthermore, the encapsulation capability of the blocks gives new

opportunities for design reuse. Consequently. the structuring of architectures

around blocks has a signiflcant benefit and should not be eluded.

Unfortunately. the benefits of blocks are constrained to the architecture level

of a VHDL description. However. packages can be employed as abstract data

types to achieve encapsulation at the entity level.

37

architecture rtl of display is
-- global declarations
type t_state is (idle, rd_wr, int, load);
signal state : t_state;
signal sig_12, sig_13, sig_14 : bit;

begin
-- process pl description

block_a: block
-- local declarations
subtype data is bit vecor(size-l downto 0);
signal sig_34 : dat~;

begin
p3: process(in 3);
begin -

-- process description
end process p3;
p4: process(sig_34)
begin

-- process description
end process p4;

end block block a;
block_b: block -

-- .local declarations
type t state is (idle, write, refresh, sync);
signal-state t state;

begin -
p2: process (clk, reset)
begin

-- process description
end process p2;
-- concurrent statements

end block block_b;
end display;

Figure 2-14. Use of the VHDL Block Statement

So far. packages in VHDL have been described as a convenient means for

gathering shared declarations, using them as abstract data types can add a new

dimension to the design process (Willis 1994). To implement an abstract data

type, a package will have to contain the data structure and various associated

behaviours of an object. The data structure can be implemented via signals or

"shared variables" and the behaviours via subprograms (including "impure"

functions). Figure 2-15 gives the VHDL code used to design the counter

using a package as an abstract data type, while Figure 2-16 demonstrates its
use.

38

package counter is
shared variable value : integer;
procedure reset;
procedure count up(signal clk: in bit);
procedure count:down(signal clk: in bit);
procedure read(read_return: out integer);

end counter;

package body counter is
procedure reset is
begin

value :- 0;
end reset;
procedure count up(signal clk: in bit) is
begin -

if clk'event and clk '"' '1' then
value := value + 1;

end if;
end count_up;
procedure count down (signal clk: in bit) is

begin -
if clk'event and clk '"' '1' then

value := value - 1;
end if;

end count_down;
procedure read (read return: out integer)is
begin -

read_return :- value;
end read;
end counter;

Figure 2-15. Counter Described Using The 'Abstract Component' Style

Although a component instantiation would have achieved the same results in

terms of functionality. the use of the package, as an 'abstract component'
achieves better results on numerous aspects.

39

As shown, the design of a counter using conventional coding styles requires

the use of an entity, architecture and a process. It is possible that after

compilation. this counter could be reused as a component in another design.

Unfortunately, if the new design requires only a part of the functionality of

the component. the redundant functionality will still be implemented.

However, with the 'abstract component' approach. only those procedures

used by the new design will be implemented: the synthesis tool will ignore the

rest Furthermore with conventional coding styles, if changes are required to a

function of the instantiated component. the designer will either have to create

a new version of the component (reducing design reliability) or create

additional functions in the new design (introducing redundant logic). The use

of subprogram overloading simplifies this operation with the 'abstract

component' solution and does not add redundant logic.

process
variable result : integer;

begin
work. counter. reset;
wait for 20 ns;
for i in 0 to 10 loop

wait on elk;
work.eounter.count_up(elk);

end loop;
work.eounter.read(result);
sig_result <- result;
wait for 20 ns;
wait;

end process;

Figure 2-16. Use of an 'Abstract Component'

The use of packages as abstract data types enables design maintainability

through the use of feature calls as illustrated in Figure 2-16 Due to the

syntactic dot notation used by most Object-Oriented programming languages.

feature calls used as expressions benefit from an important property: the

notation is the same for a call involving a function with no arguments as one

40

involving an attribute. So for instance. the expression UART.data is applicable

whether the feature data is an instance variable or a method. This property of

uniform access assists the smooth evolution ofa design by protecting abstract

data types from internal implementation changes in the objects they are

referencing.

A number of styles for message passing between package based abstract data

types can be considered:

A message for linear structures represents the addition or removal of an

information.

• Fifo. addFirst (data) : adds the element data as the fIrst element

of the 'fIrst-in fIrst-out' linear data structure.

• Fifo. removeLast : remove and return the last element of the 'fIrst­

in fIrst-out' linear data structure.

A message to associative data structures representing the addition or removal

of information.

• BitNumber. set (controlReg, 8) : associate the value 8 to the

controlReg fIeld in the bitNumber data dictionary.

• Addresses. get (UART) : look up the address associated with

UARTin the dictionary called addresses.

Messages to address counters representing position enquiries and calculations.

• AddressCounter. base: answers the value of the starting address

for the counter named addressCounter:

41

• AddressCounter. isContained (addressValue): answers true

if the location named addressValue is contained within the counter

address space and false otherwise.

• AddressCounter.intersect(addressValue): computes the

value that separates the location named addressValue and the current

address value of the counter called addressCounter.

Clearly, the use of packages to build abstract components significantly

outperforms the capabilities of the component instantiation when considering

code reusability and maintainability aspects. Nevertheless. when used as such.

the VHDL abstract data type reveals a lack of encapsulation capabilities over

its Object-Oriented counterpart: the class.

The package construct enables access to data structures without resorting to

subprograms. Consequently. the data-function binding is loose. To illustrate

the deficiencies of the package in terms of data hiding, we will use new

examples. In Figure 2-17, a signal is used as an attribute 'data'. A public

procedure (visible outside the package) is declared and implements the

behaviour of the abstract data type.

From this abstract data type, we will now consider the different means of

performing operations and assessing their pertinence. Figures 2-18. 2-19 and

2-20 illustrate the different levels of data hiding that can be achieved when

using the package as an abstract data type. In the first instance [Figure 2-18],

the data hiding is minimal as the package is instantiated before the entity

design unit As a result. any attributes of the package can be accessed with no

restrictions throughout the dependent architectures. with the exception of the

calculate function.

42

package ADTJlkg is
signal data : integer;
procedure set_value(signal elk: in bit;

signal value_in : in integer;
end ADTJlkg;

package body ADTJlkg is
procedure set_value(signal elk: in bit;

signal value_in : in integer;
signal value_out : out integer) is

begin
if elk'event aDd elk-'l' then

value out c_ value in;
end if; - -

end set value;
function ealculate(value in : in integer) return integer is
begin -

return value in*value in;
end calculate; - -

end AnTJ'kg ;

Figure 2-1 7. Use of a Package for Building Abstract Data Types

In the package body, the function 'calculate' is described but has not been

declared as a part of the package header. Therefore, this simple mechanism

achieves a private encapsulation. Thus, the function 'calculate' is not

accessible outside the package.

Although this technique represents the most common way of using packages,

it cannot be considered as a proper means of encapsulation. The realisation of

abstract data types as modules with functions requires additional means to

hide the representation of the data instance variable. By contrast, with an

Object-Oriented approach, employing the encapsulation facilities of classes

effects data hiding. To restrict the access to the package elements, the

designer can alter the code, as shown in Figure 2-19.

Through the use of blocks for instance. the designer is able to restrict the
visibility ofa package attributes to apart of an architecture.

43

use work.1lIlT-pkg.&11;
entity test is

port (input_value in integer;
clk : in bit);

end test;

architecture eX_l of test i.
aignal temp value 1 : integer;
aignal temp:value:2 : integer;

set_value(clk, input_value, data);
temp value 1 c_ calculate value (data) ;
temp:value:2 c_ data+data;

end ex_l;

invalid statement.
direct access to data.

Figure 2-18. Package. Visibility throughout the Entity/Architecture

entity test_2 is
port (input value in integer;
clk : in bit>";

end test_2;

architecture ex 1 of test 2 is
signal temp_value]. : integer;
signal temp_value_2 : integer;
signal temp_value_3 : integer;

begin
encapsulation: block

use work .1lIlT-pkg.&11;
begin

set_value (clk, input_value. data);
temp value 1 c- calculate value(data); -- invalid statement.
temp-value-2 c- data+data; -- direct access to data.

end block encapsuiation;
temp_value_3 c- data+data; -- invalid statement,

end ex_l; -- data not visible.

Figure 2-19. Narrowing the Accessibility ofa Package

To conclude on the encapsulation capabilities of the package abstract data

type. an even more rigorous way of performing data hiding is to consider

packages as the implementations ofsingle objects. i.e. packages represent only

one instance. The use of this ADT is outlined in Figure 2.20.

44

entity test 3 is
port! input value : in integer;

elk :-in bit);
end test_3;

architecture ex 1 of test 3 is
signal temp_value~ : integer;
signal temp_value_2 : integer;
signal temp_value_3 : integer;

begin
encapsulation: block
begin

work.ADT-pkg.set_value(elk. input_value, work.ADT-pkg.data);
temp value 1 <= work.ADT-pkg.ealculate value

- - (work.ADT-pkg.data);- -- :invalid scaCemenC.
temp value 2 <= data + data; --:invalid scaCemenC ta noc visible

end block encapsulation;
temp_value_3 <- data+data; -- invalid sCaCement, aaCa noC visible

end ex_l;

Figure 2-2 o. Selective Access to Package Instances

In this example, specifying the full logical path to it accesses any attribute of

the package. The 'use' statement then becomes unnecessary.

Such a representation is too cumbersome to be considered for real coding use

and the loss of code robustness is compensated by the code legibility.

Packages seem to be the best contenders to implement abstract data type in

VHDL. However, in order to decide whether package is powerful enough to

support Object-Orientation, other issues still have to be considered.

Presently, the actual benefits of Object-Oriented programming are difficult to

distinguish from existing VHDL language features. From a pragmatic point of

view, Object-Oriented programming offers two main concepts used in

program development data hiding and inheritance. Encapsulation provides

modularity and, as we have demonstrated in this section, can be achieved in

standard VHDL to a certain extent. One of the limitations is that multiple

instances of an 'abstract component' in a design will result in the creation of

multiple occurrences of the required package. However, once a proper

modularisation has been achieved, the designer of the abstract data type may

45

postpone any fmal decisions concerning the implementation at will. This

feature allows quick programming.

Another advantage of the Object-Oriented approach. often considered as the

main advantage. is the reuse of code. Inheritance is an invaluable mechanism

in this respect. since the code that is reused offers all necessary elements. The

inheritance mechanism enables the programmer to modify the behaviour of a

class of objects without requiring access to the source code. The next section

will focus on how to achieve inheritance in standard VHDL and assess

current capabilities.

2.5.2 Limited Inheritance in Standard VHDL

The basic features of Object-Oriented programming consist of encapsulation

and inheritance. In the previous section. we have shown how encapsulation is

used to support the realisation of abstract data types in a VHDL based design

flow. Inheritance would complement the encapsulation by providing a

mechanism for sharing code. This ultimately provides a mechanism for

defIning polymorphic types. The VHDL language does not support

inheritance although the combination of sub-typing and overloading can be

..regarded as a step towards it As a result. this sectio~ will focus on identifying

means of approaching inheritance using standard VHDL constructs and

identify the limitations found with the existing semantics of the VHDL type

system.

From a pragmatic point of view. derivation can be assimilated to the

operation of ·sub-typing" in procedural languages. the parent type being the

base class and the sub-type being the child class equivalent in the Object­

Oriented domain. From this observation. we will examine the capabilities of

VHDL sub-types and types.

46

Three main cases can be studied from the defInition of a parent type. The

fIrst case extends the type capabilities by defIning a composite of the parent

type as demonstrated in the following statement:

type array_int is array range (0 to 10) of integer;
signal sig_l : integer;
signal sig_2 : array_intI

This operation is an extension of the parent type capabilities since an object

declared of the derived type will. in this case, represent a collection of

elements of the parent type. This mechanism can be compared to Object­

Oriented inheritance although the terminology "aggregation" would be more

accurate.

The second case consists of refIning a type capability though the use of the

range restriction or by declaring a "resolution function", Using the range

restriction on the parent type forces users of the derived sub-type to assign

values only contained within the specifIed boundaries. This sub-typing

operation is commonly used throughout VHDL designs to increase the level

of dynamic error checking. This sub-typing is illustrated in the follOWing

statements:

subtype natural is integer range (0 to 2 A 32);
signal sig_3 : natural;

Similarly. the association of a resolution function. although adding an extra

level of information to the type. restricts its use in an interesting way when

compared to the Object-Oriented derivation. The next statements show the

declaration ofasub-type called res_integer.

subtype res_int is resolved integer;
signal sig_4 : res_intI

This sub-type represents an integer with a specmc property: a resolution

function resolved is associated with it. This is recognisable as an extension of

47

the capabilities of the standard integer type. However, as for the ranged sub­

type, this represents not only a restriction but also an inconsistency in the

inheritance conformance rule (Eliens 1994). This rule states that for an

assignment such as:

variable x : C_Parent;
variable y : C_Child;

x := y;

For class C_ChiJd to conform to C_Parent, the base class of C_ChiJd must be a

descendant of the base class of C_Parent.

These remarks lead us to conclude that the VHDL sub-typing operation. as it

stands, is not suitable to implement the inheritance mechanism. To achieve a

proper inheritance. we therefore have to fmd a VHDL mechanism that

complies with the conformance rule and allows, by its nature, the extension of

the parent type capabilities instead of restricting them. To some extent, the

record (DASC 1993) composite type allows such flexibility.

Aprimitive form of inheritance can be found in standard VHDL. This limited

inheritance is applied to the record composite types. The record type in

VHDL allows the grouping of elements of different types in a single object.

they are often used for modelling of abstract elements. In Figure 2-21, we

demonstrate how, in standard VHDL. an extended data structure can be

defmed by re-using an existing basic data structure. The basicstructure type is

the equivalent of the parent class and the extende<tstructure is the equivalent of

the child class. The extende<tstructure. which features a complex field structure

(record of records). inherits. to some extent. all the attributes defmed in the

basicstructure. Moreover, multiple inheritance can easily be achieved by

creating record types with two or more complex fields.

48

This inheritance process is interesting from many aspects. As opposed to the

sub-typing operation. the derived record structure respects the inheritance

rule since the following assignment is valid:

However. this inheritance process is limiting. Due to the intrinsic nature of

the record statement. functions (behaviours) cannot be included in the data

structure.

type basic_structure is record
coefficient: integer;
data_l: bit_vector(7 downto 0);

end record;

type extended structure is record
basic_element : basic_structure;
data_2: bit_vector(7 downto 0);
data_3: bit_vector(7 downto 0);

end record;

signal si9_l basic_structure;
signal si9_2 extended_structure;

Figure 2-21. Data Structure Inheritance in Standard VHDL

Composite types are powerful tools for modelling abstract data types and

although they cannot encapsulate behaviours (functions or procedures) well.

it is worthwhile investigating their abstraction capabilities with asimple design

example.

Figure 2-2 2 shows the construction of an abstract data type using inheritance

and overloading mechanisms. The base type creates a Simple counter with a

single operation: count To achieve this, a record type called attributes is

created containing the element value of type integer. To perform operations

on this data structure. the count procedure is then created. This completes the

counter abstract data type.

49

Figure 2-23 shows the creation of a bounded counter from the previously

designed counter. To perform this operation. a new record type called

extended_attributes is created containing within its data structure one complex

element of type attributes. Another element of type integer is added to the data

structure to implement the bounded counter: boundaIj'. Finally, the procedure

count is overloaded to take elements of type extended_attibutes as its parameter.

The new procedure count inherits the behaviour of the previous count

procedure by merely calling it using the appropriate type in its parameter list.

This example is interesting as it shows that inheritance along with abstract

data typing can be achieved in standard VHDL (encapsulation is not taken

into account). This method of coding can therefore be regarded as a fIrst step

towards Object-Oriented design structuring in standard VHDL.

type attributes is record
value: integer;

end record;

procedure count(value in : inout attributes) is
begin -

value_in. value • value_in. value + 1;
end count;

Figure 2-22. Abstract Data Type with Records

In structural VHDL designs. a system consists of numerous instantiated

components composing a hierarchical structure. This design method relates

to aggregation techniques and. to some extent, to inheritance.

50

type extended attributes is record
basic_attributes : attributes; -- Inherits attributes.
boundary: integer;

end record;

procedure count(value_in : inout extended_attributes) is
begin
if (value_in.basic_attributes.value<value_in.boundary) then

count(value_in.basic_attributes); -- Inherits count.
end if;
end count;

Figure 2-23. Abstract Data Type and Inheritance with Records

A component, as demonstrated in a previous section. can be seen as a means

of realising an abstract data type: the entity represents the abstract interface

part and the architecture represents the implementation part. As a result,

instantiation of components is equivalent to Object-Oriented aggregation

(often compared to inheritance in the Object-Oriented design literature

(Ellens 1994)). From a pragmatic point of view. when instantiating an object

as part of another design, all the properties of the given object are inherited

by the new design. To illustrate this. Figure 2-24 uses a register component to

create acounter via component instantiation.

The register in Figure 2-24 has an abstract interface composed of an input.

output, elk and reset ports and its functionality is merely to latch the value of

the input on the output on the positive edge of the elksignal

The counter behaviour is very similar to the register's behaviour. except that

the output is fed back to the input via some logic to perform an add

operation. By instantiating the register as part of the counter structure. the

new design inherits all the capabilities of the register. consequently the rest of

the design requires minimal coding. This scheme is adequate provided the

inherited object does not need to be altered and all its functionality is required

in the derived design. Obviously. if a change is required in the instantiated

51

object, this introduces potential hazard within the design flow since, design

units will have to be recompiled in very specific orders.

input(O to 7)

elk

reset

output(O to 7)

input(O to 7)

load

enable

\
COUNTER

8
reset

output(O to 7)

Figure 2-24. Inheritance via Component Instantiation

When taking a closer look at abstract data types, one has to realise that, they

were at fIrst developed with correctness and security in mind and not so

much from a concern with extensibility and reuse. Nevertheless. it is

interesting to compare the standard VHDL approach for realising abstract

data types with packages and the Object-Oriented approach. with regards to

the extensibility of a specifIcation. either by adding an enquiry function or a

modillcation function.

52

package counter is
shared variable value : integer;
procedure reset;
procedure count(signa1 clk: in bit);
procedure read(read_return: out integer);

end counter;

package body counter is
procedure reset is
begin

value := 0;
end reset;
procedure count (signal clk: in bit) is
begin
if clk'event and clk = '1' then

value := value + 1;
end if;
end count;
procedure read (read return: out integer)is
begin -

read_return := value;
end read;

end counter;

Figure 2-2 5. Initial Code for Abstract Data Type Based Component

Let us fIrst look at what happens when we add a new modifIcation function

to the abstract data type. To illustrate this. we will once again. consider the

example of a simple counter. This time. we will create a bounded counter

with a lowest and highest boundary (Figure 2-25 gives the initial code for the

counter).

To give an example of this new property. two instance variables of natural

type need to be created. Furthennore. for the realisation of the new package.

a function boundaIj'Oowest, higheslj is also required to extend the functionality of

the ADT. As a consequence. to add the new function boundaI}'. it is now

necessary to redefme the sub-program count to take into account the new

restriction introduced by the boundaries.

Clearly. unless special constructs are provided. the addition of a new sub­

program and the extension of the count operation require a disruption of the

53

code when implementing the given abstract data type. In contrast not

surprisingly, when we wish to alter or redefine the functionality of count to

agree with the new specification of our abstract data type. the Object­

Oriented implementation does not require a disruption of the given code. We

can simply add the defInition of the new countfunction in a child class (we are

thus performing a sub-typing operation). From that respect adding a new

count method corresponds to the implementation of a virtual (defmed but not

yet implemented) method defined as part of the abstract interface of avirtual

class which gives a method interface which its sub-classes must respect. In

Figure 2-26, we represent the class structure for the implementation of the

counter abstract data type. The class genericcounter defmes common properties

found in all counters. which are read, reset and count The method count is

defmed as virtual (v) to be further refmed in the genericcounter sub-classes by

its defined (d) version. The defmition of virtual operations is a powerful

mechanism in Object-Oriented languages with no equivalent in standard

VHDL. In Object-Oriented languages such as Eiffel or C++. it is possible to

declare an operation without choosing an implementation by making it a

virtual operation. This transfers to proper descendants the responsibility for

providing an implementation though a new declaration. Such a feature is

often used when the designer of a parent class carmot yet provide a default

implementation or does not want to for design methodology reasons.

For the complementary case, when adding an enquiry function (for example

geCrangq to the abstract data type. neither the package version nor the Object­
Oriented class is better.

54

reset

read
generic_counter

(v) count

(d) count

bounded_
counter

(d) count

boundary(L, H)

Figure 2-26. Class Structure for the Counter Abstract Data Type

Since. in a package reaIisation of abstract data type, the code is organised

around enquiry functions. adding a new function amounts simply to a

creation operation. When looking at the Object-Oriented solution. the

realisation for the enquiry function is identical to the package approach.

Asubtle difference may be stated though: when considering accessibility. the

package-based solution offers more flexibility as instance variables can be

accessed on an element basis using constructs such as:

counter_range := lib.Coun-package.high -lib.Coun-package.low

Although types were originally considered as convenient means to assist the

compiler in producing efficient code, types have rapidly been recognised as a

way to capture the meaning of a program in an implementation independent

way. In particular. the notion of abstract data types has become a powerful

device to structure large software systems. The type system introduced by

VHDL through types and sub-types definitions represents an efficient means

to support a procedural language. Nevertheless, as we showed in this section,

such a type system does not comply with the inheritance rule and is an

obstacle to the realisation ofan Object-Oriented implementation.

55

Although the inheritance can be. to some extent. manually inferred in

standard VHDL. it is not yet sufficient to implement a useful Object­

Oriented language. To grasp the full extent and practicality of the techniques

introduced. we need to understand polymorphism and dynamic binding.

Some of the most powerful characteristics of the Object-Oriented method

result from these two notions.

2.5.3 Polymorphism

Typed languages like VHDL impose quite severe constraints on the

programmer. It may require considerable effort to arrive at a consistently

typed system and to deal with the additional notational complexity of defIning

appropriate types. In practice. programmers seem to prefer working in anon­

typed formalism. Languages such as Verilog are popular precisely because of

the flexibility they offer since static type checking is virtually non-existent

However. working in a non-typed formalism is often considered as

unsatisfactory. as regards software reliability. To make typing practical. the

support for well-understood mono-morphic typing (such as overloaded sub­

programs) is provided in VHDL. More importantly. to achieve a flexible

object-orientation. one must provide controlled forms of polymorphism.

Polymorphism is defIned as the ability ofa set of different objects to display a

unique behaviour in response to the same message. This differs from

overloading in standard VHDL in two ways: fIrstly the overloading of a sub­

program is based on the defInition of a set of different arguments for each

new overloaded sub-program and secondly. overloading is a static operation.

This section focuses on the limitations of the VHDL type system when

considering polymorphism and suggests how to achieve it.

As in languages such as Pascal. C or ADA. VHDL relies on a strong type

system. The VHDL language contains a variety of types that can be used to

create objects (signals. variables. constants and flles). The language syntax

56

requires that every object declared must have a type. Also. the type of two

objects must be the same on both sides of an assignment statement at

compile time (statically) and at execution time (dynamically). In practice,

strong typing is an efficient means of ensuring code correctness. However, it

is rather cumbersome when designing large systems. In a system with an

important number of objects and data types, it is difficult for the designer to

manage the large variety of types necessary for the description of the system.

Type casting can be used to ease the assignment of related types: However, its

application scope is limited.

Another construct that VHDL provides to soften its strong type nature is

overloading. Sub-program overloading allows the designer to write multiple

versions of asub-program with the same name, but the number of arguments

and return value can be different. This ability prevents the designer from

haVing to fmd a unique name for equivalent sub-programs dealing with

different types. Overloading is an interesting feature for building abstraction

and conciseness in the code but, as for the previously considered constructs

in VHDL. the evaluation for the matching sub-program is performed at

compile time. To that extent, true polymorphism (dynamic types) carmot be
achieved in standard VHDL.

Ecker W. has suggested in (Ecker 1996), that only a form of static

polymorphism can be achieved in standard VHDL (see Figure 2-27). A

component can be seen as a link to an actual entity-architecture pair relying

on the configuration statement to mimic polymorphic behaviour. This

polymorphic behaviour is said to be static since the binding of the actual

entity-architecture pair is performed at elaboration time instead of execution

time. In the case of the shift register, a design using this device has to declare

a component to materialise an instance of this class. The next step is to create

a configuration for an instantiated component (object) by selecting an entity­

architecture pair. This last operation is carried out after the design has been

57

compiled and any architecture association can be made at this point.

Furthennore, the association of a different entity remains possible provided

that the component and the assodated entity have compatible interfaces.

By allowing different versions of a design to be attached to a given

component interface. we achieve a polymorphic operation. However. since

this selection via the configuration is unique for a given design simulation or

synthesis. this polymorphic operation is static instead of dynamic. This

difference is of significant importance when considering the advantages of

dynamic polymorphism combined with inheritance over static polymorphism.

As stated earlier, abstract data types are rather inflexible and inconvenient for

specifying complex systems. To achieve flexibility, one has to organise types

in a design by expressing the commonality between them. This is achieved

through classification. The notion of class in Object-Orientation supports

such an organisation though the inheritance mechanism. Although. until now

we presented inheritance as a combination and enrichment mechanism. it also

enables the definition of flexible entities that may become attached to objects

of various forms at run time. thus introducing dynamic polymorphism.

58

EJDesign

~
~Static Configuration

LJ ~-...,

I

B
Figure 2-27. Static Polymorphism through Configuration

This characteristic can be compared to the static typing rule in standard

VHDL in the sense that. by convention. an assignment of the form a:= b is

permitted if a and b are of the same type. Nevertheless, dynamic

polymorphism brings a new aspect to the assignment convention by stating

that "ifa and b are of different types, but class b is adescendant of class a, the

assignment is still valid". This corresponds to the idea that a value of a more

specialised type may be assigned to an entity of a less specialised type, but not

the reverse. This possibility becomes even more powerful when combined

with the redefInition of inherited methods. The follOWing example (shown in

Figure 2-28), demonstrates the advantages of dynamic polymorphism In this

example, three objects are declared: 01, 02, 03; the last two objects are of a

derived type of reg. respectively odd_regand even_reg.

59

(e) parity

reg

Reset
Read
Write
(v) parity

~~ ~(e)parity

01: reg;
02: odd_reg; -- child of reg
03: even_reg; -- child of reg

if condition then
01 := 02;

else
01 := 03;

end if;
result := Ol.parity

Figure 2-28. Benefits of Dynamic Polymorphism

Both derived types defme aversion ofparity to perform an even or odd parity

depending on the object type: the version to use in any call is determined by

the run-time form of the target

The assignment 01:= 02 is valid because of the assignment rule defined for

polymorphism: if condition is false. 01 will be attached to an object of type

even_reg for the computation of the operation c1.parity. which will thus use a

even parity check. In the opposite case, c1 will be attached to an object of

type odd_ref, therefore the computation cl.parity will perform an odd
operation. This is a dynamic binding operation.

60

Dynamic binding provides a high degree of flexibility in designs. The

advantage for the user is the ability to request an operation without explicitly

selecting one of its forms. The choice only occurs during the simulation

execution (referred as 'run time). This is an important requirement for the

building of large systems, in which many components must be protected

against changes to other components (abstraction). In standard VHDL.

overloading and the ability to create generic designs. do not bring any

improvements in this respect. They do not support a programming

mechanism in which a client module may issue a request to perform an

operation on a VHDL object (signal. variable) that depends on the form of

this object at run time, and permitted here by inheritance, redefInition,

polymorphism and dynamic binding.

These design techniques support a development mode in which every

component is open and incremental. When the designer wants to reuse an

existing class but needs to adapt it to a new context. one can always defme a

new descendant of that class (with new properties and redefmed ones)

without changing the original.

The power of polymorphism and dynamic binding demands adequate

controls when considering type checking. Type checking is performed

statically at compile time in the VHDL language. In an Object-Oriented

language, dynamic type is checked at run time. When a client sends a message

to an object. the object treats the caIl provided that it has a corresponding

method defmed in its class. However. if the requested object does not have

the required method, a run time error occurs.

Polymorphism is not exclusive to Object-Oriented languages. For example.

languages such as Pascal, and FORTRAN allow an implicit conversion

between certain types. However, in VHDL. an implicit conversion is not

permitted; only a type casting operation can be used on related types.

Polymorphism. including such conversions, relieves the programmer from the

61

rigidity imposed by typing. In other words. polymorphism is used to increase

the expressiveness of the type system. A possible disadvantage when adding

polymorphism to a strongly typed language might be that program

understanding becomes more difficult since many choices are now made by

the dispatching mechanism instead of being written out explicitly. In an

Object-Oriented version of VHDL. both dynamic and static type checking

need to be handled to maintain an acceptable level of error recovery. The

static type checking will ensure type consistency for assignments and the

dynamic version will select the appropriate form of an operation depending

on the run-time type of an object.

From this study of the VHDL language we highlighted the limits of the

existing semantic and mechanisms for implementing the design objectives

defmed in section 2.5. This leads us to look at attempts from the design

community to overcome the VHDL restrictions. The specific weaknesses of

the proposed extensions will be discusses in chapter 4.

2.6 Existing Extension Proposals

Although the main guidelines for the definition of an Object-Oriented

VHDL extension have been drawn. actual implementations have not yet been

defined. As Object-Oriented VHDL is getting more popular. different

suggestions for possible Object-Oriented extensions have been made (Covnot

1994). (Mills 1993). (Willis 1994). (Zippelius 1992). Along with those

suggestions. anumber of actual language extensions were created (Shumacher

1995). (Ashenden 1998). (Radetzki) (Cabanis 1996) . These will seek to help

VHDL reach higher levels ofabstraction. reusability and maintainability.

2.6.1 The Vista Proposal

As demonstrated in section 2.5. VHDL lacks adequate support for abstract

data-typing operations. Consequently. all extensions to the language will

62

primarily focus on either extending the existing VHDL abstract data type

capabilities or implementing new abstract data types.

With the Vista proposal. a new abstract data type has been added to the

language in the form of a "component object" (Vista 1994). (Ramesh 1994).

With the component object paradigm. the designer can build abstract data

types and instantiate objects of that type within the VHDL code. The abstract

data type is defined as an entity object and architecture pair. The entityobject

will declare the interface of the abstract data type. i.e. the operations. while the

architecture will declare the behaviour and attributes. Unlike standard VHDL.

the proposed entityobject is a generalised kind of entity that can interact with

standard entities from the same hierarchical level. The Vista entity does not

rely on ports (of standard or enumerated types) and generics but on high level

messages used for concurrent object communications.

'The entityobject allows for inheritance: all elements of an entityobject are exported

when inherited. This includes ports, generics, local declarations and

concurrent statements found in the associated architecture. Similarly. in the

proposed extension. standard entities can also be inherited in the same way as

an entityobject (apart from operations). Operations declared within the entity

declarative part are used as abstract interfaces allowing message passing. Like

most object-oriented languages. operations are used for communication

among objects and for access to instance variables. The communication

scheme is based on a synchronisation mechanism, which is a more

convenient means than the existing signal-based communication. Any caller

sends a message to a client object and is blocked until the operation is

completed. Messages are processed sequentially and are placed in a queue if

the target object is servicing too many operations at that time. Once an

operation has been processed. the following one in the queue is run.

Polymorphism is supported in the Vista proposal: different objects can have

identical messages on their abstract interface.

63

Specific constructs have been added to the VHDL language to handle the

concurrency aspect of object accessing. These concurrency control

mechanisms are based on the distributed processing model and the ADA

rendez-vous model. The distributed process aspect is used for the deferment

and queuing of processes; furthermore. priority can be assigned to operations.

in order to perform an automated sorting on incoming message calls. The

ADA rendezvous model allows the selection of a specific message over a

number of incoming calls. or the selection of multiple messages to be active at

the same time.

A more in depth study of the language semantics and abilities will be given

when we will compare our proposed extension to other existing extensions in

chapter 4.

2.6.2 The Oldenburg and SUA VE Proposals

The Oldenburg and SUAVE proposals are very similar in their concept and

implementation since both proposals are inspired from the ADA95 (Taft

1993) language. This is a reasonable approach since the original designers of

the VHDL language borrowed many of the features and language philosophy

from ADA. more specifically in areas such as sequential statements. sub­

programs. design units and more importantly the type system. Similarly.

concepts of operator and sub-program overloading. as well as complex data

structures (such as records and access types) are part of the ADA language.

Since the early 1990's. ADA has undertaken radical changes (Seidewitz 1991).

(Atkinson 1990). (Nelson 1992) to adapt to new design methodologies based

on Object-Orientation.

This research lead to proposals for protected objects. hierarchical libraries and

support for Object-Oriented programming. A key part of the language

extension for supporting object-orientation is the ability to defme new types

in terms of existing ones.

64

The new type inherits the operations and fields that are defmed for its parent

type. Furthermore. a new type can redefme or add features to the inherited

ones. In addition to type inheritance. the Ada 95 language allows the

definition of classes of types accessible by sub-programs containing

arguments of these specific types. The selection of a specific operation on a

specific class type is performed at run time allowing dynamic binding.

To implement type inheritance. the two proposals suggest the use of Mtagged

records". A tagged record has identical properties to the standard VHDL

record. In addition. subtypes of tagged records can be declared and a

specialisation mechanism is introduced to allow the addition of new fields.

Associated with the tagged records. are procedures to implement the

behaviour part of the abstract data types. Encapsulation is provided by the

package visibility rules in which both tagged records and related procedures

have to be declared. Procedures can also be redefmed for derived types as

well as added. Polymorphism. or more correctly dynamic binding. is achieved

via the creation of heterogeneous object containers. These containers are

defmed using a class-wide type. which allows a field to adopt any type

contained in the hierarchy of the class type.

More details on the two proposals will be given in chapter 4.

2.6.3 The Objective VHDL Proposal

The abstract data type in the Objective VHDL proposal differs significantly

from both the VISTA and the Oldenburg/SUAVE proposals. The creation

and utilisation of a class ADT in this proposal resembles what is found in

VHDL with the rerord composite type. The class ADT will contain both class's

attributes and method (functions and procedures). As for VHDL's records.

the class can be declared inside architectures and packages. However. when

declared. the classwill be split in a header and body part.

65

The cIa.ss supports single inheritance from which class attributes and methods

can be inherited providing they have been declared as part of the class's

header. The Objective VHDL proposal allows methods to be overridden in

child classes by redefining functions or procedures using identical declarations

to the one found inside the inherited class.

The instantiation of an ADT takes the form of a variable, signal or constant

Each implementation has specific application restrictions.

Polymorphism is achieved through the existence of class wide types. This

resembles the mechanism found in both the Oldenburg and SUAVE

proposal. An object of class wide type is allowed to be assigned different class

type objects that are part ofits class wide tree.

Further implementation details will be given during the comparative study of

all the proposed extensions in chapter 4.

2.7 Conclusions

This Chapter examined the different design methods used to specify and

implement current hardware design. We demonstrated the limits of functional

decomposition and SA/SD. This led us to conclude that an improved design

method was required for the successful creation of multi-mi1Iion gate ASICs.

The IEEE OOVHDL study group has acknowledged those limits and

consequently. has dermed a set of requirements for the implementation of an

improved design methodology. The proposed requirements are supported by

a number of design objectives/changes' that VHDL should undergo. to
comply with the dermed requirements.

66

A study of the VHDL semantics and mechanisms allowed us to identify the

limits of the language for implementing object-orientation support along with,

the areas of the language where changes would be the most suitable.

Having looked at VHDL's limits, we presented the solution proposed in the

Vista, Oldenburg, SUAVE and Objective VHDL language extensions. All

proposals support the design objectives set by the IEEE OOVHDL study

group: However, aside from the SUAVE and Oldenburg proposals that are

similar. all proposals use different semantics and mechanisms to bring object­

orientation to the VHDL language.

We can conclude from this study that the creation of any language extension

is not a straightforward operation. Nevertheless, it is important to establish

whether a language allows a clear interpretation of the constructs introduced;

whether constructs supporting Object-Orientation are independent of other

constructs of the language: whether an efficient implementation of these

constructs is possible: and whether the language is kept minimal, that is

without superfluous constructs.

67

Chapter 3

LANGUAGE DESIGN

3.1 Introduction

The idea of an Object-Oriented version of VHDL is gaining interest within

the design community (Oczko 1990), (Douglas 1994), (perI)' 1992),

(Shumacher 1996). Object Orientation is not a set paradigm but rather a

particular approach to the design methodology. To some extent, Object

Orientation only defmes critical issues found in the process of building large

designs and enables designers to deal with them.

The previous chapter examined how encapsulation, late binding and

inheritance could be implemented in VHDL based design using the original

semantics. We showed that this increases productivity when used on an

object-based design. but also that the existing VHDL semantics are

inadequate to address this level of abstraction.

Quality in hardware descriptions is a combination of several elements; the

language extension design concentrated on the factors which. in the current

state of industry, need to be improved. One of the main factors is reusability,

or the ability to produce components that may be used in many different

applications. Another is extendibility: it is notoriously difficult to modify

hardware systems. especially large ones.

Among quality factors, reusability and expandability play a special role:

satisfying them means having less code to write and consequently more time

to devote to other important goals such as efficiency. ease of use or

consistency.

The third important point is reliability. Techniques such as assertions,

disciplined exception handling and static typing, enabling developers to

68

produce hardware descriptions with fewer errors, are part of the approach to

the engineering of better designs.

In this chapter, using the requirement set by the IEEE OOVHDL study

group (see section 2.4) we will examine means of extending the existing

VHDL semantics in order to achieve object orientation. The fIrst part of this

chapter will explain the language design decisions: the second part will then

detail the chosen semantics.

3.2 Language Design Decisions

3.2.1 Abstract Data Type Specification

Chapter 2 highlighted the weaknesses of the VHDL language in terms of data

abstraction to achieve true Object-Orientation. To solve this problem, our

extension offers the creation of a new kind of composite type alongside the

already existing record and arraytypes, which we have called class. The class type

can be considered as a real type and takes a natural place in the VHDL type

system. Regarding these new abstract data types as real types has numerous

important benefIts. The realisation of abstract data types means that they may

be treated as any other value in the language, for instance being passed as a

parameter. In contrast, syntactic solutions such as the module in Modula-2 or

the package in ADA do not allow this.

Furthermore, in strongly typed languages, the objective of a type system is the

prevention of errors. Therefore, if the type system lacks suffIcient expression.

adequate control for errors may become over restrictive. Generally, the more

expressive the type system, the better is the support that the compiler may

offer. In this respect, associating constructors with types may help in relieving

the programmer from dealing with cumbersome tasks such as initialisation of

complex data structures. Objects. in contrast to modules or packages, allow

automatic initialisation of instances of abstract data types, and allow the
programmer to avoid an error-prone routine.

69

Another area where a more complete type system may improve the designer's

task. is the association of operations with objects. A polymorphic type system

is needed to provide automatic selection of virtual functions and perform

efficient function overloading. This is a useful mechanism to control the

complexity ofa program.

The VHDL language as it stands. is strongly typed to ensure readability and

reliability. Our suggested extension relies on the inherent strongly-type system

of VHDL but also provides a class type with more complex reference rules.

since objects of class types are dermed as 'referenced instances'.

Our new referenced types differ from the basic VHDL types: an object

declared of a referenced type does not represent a value of type but a

reference to an object containing a value. Operations on this object are

dermed as part of the properties of the referenced type. The declaration of a

class type will consists of three parts:

1. A class name.

2. Adeclaration of the variables available to all instances.

3. The methods used by instances to respond to messages.

3.2.2 Visibility

The declaration part of a class will have a visibility over the declaration found

within the scope of the Package. Architecture and Block depending on where

the class has been dermed. This visibility can be seen as going against the

encapsulation principle and therefore should be used with caution.

Although it is dangerous from an encapsulation point of view, allowing

visibility to span the class boundaries has numerous benefits. One the main

70

benefits is highlighted when using packages in a design: where cornman

declarations such as type definition can be shared.

3.2.3 Class Generidty

The generic nature of classes is an important aspect since the designer may

want to create a class that represents a group of instances but to specify size

or timing information at elaboration time rather than at design time. This

mechanism is similar to the mechanism used with VHDL components.

Although class genericity can be achieved with templates like C++, the concept

ofgeneric values rather than generic types was introduced in standard VHDL.

For this reason, the templatesolution is avoided to prevent language constructs

from overlapping.

3.2.4 Class TailorabiJity

The proposal relies on a mapping mechanism to enable the designer to adapt

classes to its design requirements. The use of this mapping operation is

related in principle to the alias-based solution found in VHDL'93. The

VHDL'93 version of the language broadens the use of aliases. However, in

our opinion, aliases are only used to give a second name to an existing object

rather than redefining it. This motivated us to favour the mapping construct

extending it to agreater use than simply ports and generics.

As part of its declarative part, each class will be allowed to defme mapping

clauses to adapt names of inherited features to the local context of the new

class. Name mapping is particularly useful in two cases. With renaming, it is

possible to correct any name clash occurring through the multiple inheritance

process. A name clash occurs when two or more inherited features have

identical names, and would generally make the class invalid if the features

were not renamed. Renaming also enables a class to offer its inherited features

to its users and descendants under a terminology appropriate to its own

71

context. rather than to the context of the parents from which it inherited

them. In other words. it helps make sure that, aside from offering the right

features. they are presented under the appropriate feature names.

It is important to understand that the proposed renaming mechanism does

not change any of the inherited features. but simply changes the name under

which the clients and descendants of a class will know these features. After

replacing a name of an inherited feature. the old name can be reused for

various purposes. It could be used as an identifier for a new feature

introduced by the new class itself. It could also be used for a feature inherited

from a parent of the new class other than the present one which has a feature

with the same name. In some cases. as one inherits a method or an attribute

from a parent. one may wish to discard the inherited implementation. This is

the process of redefinition. which turns anew feature into an effective one.

3.2.5 Class Instance Variables

Instance variables are elements used to store the class properties. For the

implementation of instance variables, we will be using the VHDL's variable

mechanism. Instance variables, unlike variables found in VHDL's sub­

programs, will retain their values until changed. The choice of blocking

assignment over non blocking assignment will be discussed in more details in

chapter 4when we will compare the different OOVHDL implementations.

3.2.6 Class Methods

Methods, in the proposed extension will be similar to VHDL subprograms.

However. they will differ in the capability they offer when used together with

inheritance. From a design perspective, inheritance provides a mechanism for

code sharing and code reuse. Operationally. the power of inheritance in the

proposed extension comes from the use of virtual methods and virtual

classes.

72

A virtual class will be declared if the designer plans to include one or more

features that are specified but not implemented; descendants of the class will

later on in the design process provide the implementations. This is useful to

describe groups of related concepts. or not fully understood concepts. For

example. stacks describe data structures that are managed sequentially.

without indicating any specific implementation. Proper descendants of this

class such as FIFO will describe the concrete sequential structure. Classes and

methods may in fact remain virtual for a long time. providing a high level

notation for system analysis and design. Virtual methods fully exploit this

principle.

3.2. 7Object Instances

Object instances might be declared in packages. architecture blocks and

processes. This will allow designers to define accurately the scope of

accessibility of each object inside adesign. During the declaration ofa specific

object, the designer will be able to specify its initialisation method and
configuration.

One of the most significant advantages of the use of abstract data types over

conventional VHDL objects (signals and variables) is the ability to

dynamically allocate or de-allocate resources for complex components. The

advantage of dynamic allocations is even more obvious when considering the

synthesis of dynamically re-configurable designs (Rosenberg 1994). (Vasilko

1999). (Faura 1997). With the emergence of new technologies. it is now

permitted to create designs that can evolve while they are being used. In order

to implement dynamic allocation and de-allocation of objects. we will use the

already available VHDL access type. Using access types ensures a better

integration of our semantic changes within the existing language.

3.2.8 Object Initialisation

The initialisation of an object will either be the default style (type'LEFI)

found in standard VHDL or via creator methods. The latter initialisation

73

method can be found in programming languages such as c++. Creator

methods will be used when an object needs to go through a complex

initialisation process before it can be used.

3.2.9 Object Configuration

Objects instantiated inside a design. will have optional configuration

parameters. Those parameters will be used to set generic values (set at

elaboration time) as well as interfaces to interact with the external world. The

interface map declaration is used during the object declaration process as a

means of binding the argument used inside the impure methods to the

argument found inside the client application. This process. although

important in the simplification of concurrent Object-Oriented description.

should be used with caution. The methods. impure by defInition, have access

to objects defmed outside their parameter lists. inside the interface list It is

important to consider these interface signals as control lines as opposed to

data lines. Data information should only be carried by parameter list

arguments in order to ensure aproper design encapsulation.

3.2.10 Scalar Types

In standard VHDL. records of records and records containing arrays are valid

constructs and are often used to build abstraction in the design. With the

introduction of class types in the proposed extension, the defInition of a

record with a fIeld of a class type represents an issue. Once the record type

has been created, it is possible to declare either a signal or a variable of this

record type. However. elements of object types do not comply with the same

assignment rules as for signals and variables therefore the creation ofa record

type containing a element of a class type is not acceptable. Although this

might appear to be a restriction in terms of how well the extension fIts the

1076-93 version of the language. it is important to make a few remarks. Such

a restriction in the use of certain types in VHDL is not new to the language

and types such as access types already have numerous restrictions concerning

74

their use. Furthermore, the extension to the language offers a more powerful

mechanism than the record type to build data abstraction and, ideally, the use

of record should be in many cases replaced by the use of classes. The creation

of arrays of ADTs will be fully supported by the proposed extension. Arrays

ofADTs will be used to implement dynamic types.

3.2.11 Message Passing

Different behaviours will be achieved with message patterns depending on

the method specification style. The three main behaviours of a method are
identified in our proposal:

1. Events are used for synchronisation purposes. They are usually encoded by

a message without parameters like 'resecstate'. Here the method indicates

the type of event

2. Commands are requests to an object to perform a local function. These

may also be transferred by messages, either with or without parameters

like 'StopCount' or 'load("OI010")'. Again the method indicates the

command given.

3. Requests ask an object to return some information which is present in (or

can be obtained by) the receiver. They need two messages. The first issues

the actual request. The second one contains the reply, going in the

opposite direction. In a normal mode of operation. the sender waits for

the reply. The method mayor may not have arguments but will have a

return type. Requests will take the form of 'GetContent' or
'evaluate("lOOI0")'.

Some code maintainability aspects motivate the choice of the 'dot' notation

over a standard VHDL sub-program call. When using the notation: x.state •it

is not shown whether in the class of X. state is an attribute or a method

without arguments. This ambiguity is intentional. A user of the class X does

75

not need to know how a state is obtained: the state could be stored as

attribute of every object of class X, or computed via a method from other

attributes. Choosing between these techniques is the role of class X. Since

such implementation choices can often change over the lifetime of a project.

it is essential to protect users against their effects.

Within an object-oriented environment. object can be defmed as either active

or passive. An active object will be able to trigger other objects' activity

without having to be triggered itself. In contrast. a passive object will display

its behaviour only after being triggered. The VHDL environment is based

around concurrent and sequential behaviours. An important choice is whether

to distinguish between active and passive objects or whether to support only

one kind of object. Another important point is how the activity of objects is
to be defmed.

Objects in the proposed extension might be referenced in sequential

statements as well as in concurrent statements. However, multiple concurrent

messages are not allowed due to usability issues. In a VHDL environment,

the execution of concurrent statements does not follow any order by

defmition (with the exception of postponed processes). This remark leads us

to the study of a simple example illustrating the issues encountered with

concurrent statements associated with object access.

object_l.write(A*4);
object_l.write(A*2);

Considering that these two assignments are concurrent blocking assignments.

after a change of the value of A. it is impossible to determine whether the

objecCl will contain the value A*4 or that ofA*2.

The alternative to blocking assignments is non-blocking assignments: this

time, all the assignments are performed on the last delta cycle. However. the

latter example will create a situation where two commands are scheduled to

76

be executed at the same time on a common instance variable. This problem is

solved for signals through a resolution function. However. this solution is too

basic to be valid for objects with numerous messages and complex

behaviours. As a result. objects will not handle multi-concurrent calls to the

same-shared resources. However. concurrent calls to distinct resources within

the same object are allowed.

The proposal will differentiate blocking from non-blocking method calls

through the use of two distinctive call semantics. Ablocking method call used

within a process will have to be fully executed (including any wait statements)

before executing the next statements in the sequence. Unlike blocking calls,

non-blocking method calls when invoked will trigger concurrent activities and

will not be required to be fully executed prior to moving to the following

statements in the sequence. The principle of spawning concurrent activities

inside a process is not foreign to the HDL world. A similar mechanism is

found in Verilog with the fork-join mechanism.

3.2.12 Object Copy and Assignment

Unlike VHDL's signals. variables or constants, no arithmetic or logical

operators are predefmed for objects of class type. The user will either have to

use object access methods or defme operators for specific object types.

Furthermore. the object assignment '==' has been defined as a clone copy of a

reference as opposed to the copy of a value. The clone copy is necessary to

(Meyer 1992) allow polymorphic behaviour to be expressed using dynamic

typing. To perform clone copying however. simple rules for direct object

reattachment have to be followed. The following example shows a limitation

of direct reattachment using the clone copy.

Assuming adata structure and object declaration of the form:

type counter_array is array(natural range <» of counter
object counter_list: counter_array(O to 3) ;

77

Where counter is the parent class of the wrapping..counter and the modulo_counter

class. If the fIrst instance of the list is an instance of the modulo _counter type

and the designer needs to obtain its boundary value (m.u:..value), the following

code might be written:

signal rnax_value_tmp : integer ;
object mOd_counter_l,

mOd_counter_2, mod_counter_3 : modulo_counter ;
object wrap_counter_l, wrap_counter_2 : wrapping_counter

counter_list c= mOd_counter_l & mOd_counter_2 &
wrap_counter_l & wrap_counter_2 ;

mod counter 3 == counter list(O)i -. line 1
max:value_tmp <= mOd_counter_3.max_value; -- line 2

However, since the assignment rule defIned in section 2.5.3 states that only

objects of an identical class or derived class can be assigned to a target object.

line 1 is illegal. In line I, the designer is assigning an object counter_listeD) of a

type counter (from its original defInition) onto an object of type
modulo_counter, lower in the class hierarchy. This creates a type mismatch error.

Since such examples are easy to produce. one might tend to think that strong

typing represents an annoying problem. This is inaccurate: in well-structured

Object-Oriented designs, the problem only arises when dealing with complex

systems. If it is known that an element of such data structure has special

properties. it is then possible to access it separately through an object of the

correct type.

In order to perform the required operation in the example, the designer can

merely replace line 1by the statement:

From this operation, both counter_listeD) and mod_counter_3 are pointing to

the motLcounter_l data structure as required and the assignment is valid.

Similarly. the object equality in our proposed extension is used to determine if

two objects are fIeld-to-fIeld compatible. The result of the expression:

78

object_l • object_2 will be valid if object2 is of the same type or a

descendent of objectl. The result will retwn Boolean true if each field of the

object2 data structure is identical to those in the objectl data structure

(following the standard VHDL comparison mechanism). When considering

complex objects. for efficiency reasons. the expression will be true if the two

fields are pointing to the same object. However. the designer (to meet

alternative requirements) can redefine the equality with the class that defines

objectl.

Besides the equality operator. two methods will be defmed by the system for

every created class: Copy and DeepCopy. All calls to

Object_l.coPy(Object_2l will copy every field of Object_2 onto the

corresponding fields of Objectl. Object2 must conform to the type of

Object_I. Thus. in general. Object2 will contain the same amount or more
fields than Object_l.

In order to perform a copy of all the fields of an object (across the hierarchy).

the DeepCopymechanism is available. A deep copy will replicate the complete

data structure. starting from the top level, down to the lowest level.

3.2.13 Encapsulation Control and Visibility

Encapsulation will be used by the designer to specify/control the visibility of

class properties. The ability to indicate one of the three levels of

encapsulation namely private, publicand restricted provides an improved access

control over the existing mechanism (visible/not visible) in VHDL 93. These

types relate to types found in Object-Oriented programming languages such

as c++. The private type disables any access to the defmed class property by

any external requests or by any class methods of potential inheriting sub­

classes. Public type declarations are the complement of private type

declarations. A property declared of a public type will allow access to any

external class requests as well as by any class methods of potential inheriting

classes. Although dangerous as far as encapsulation is concerned, we consider

79

this aspect is important because it helps to reduce the code size of Object­

Oriented designs. In order to assign values to public instance variables. only a

blocking mechanism is supported. Nevertheless, multiple concurrent

assignments to instance variables is not permitted. The restricted type is used

when properties need to be hidden from external requests but accessible by

any class methods of potential inheriting sub-classes. If no encapsulation type

is specified for a class declaration element. a restricted type is assumed.

However. for pragmatic reasons, the default encapsulation kind for methods

is set to public.

3.2.14 Inheritance

Like any object-oriented language. the proposed extension will support single

inheritance. A question of interest is whether a language must support

multiple inheritance. Clearly. there is some disagreement on this issue (Waldo

1991). (Cargill 1991), (Armstrong 1994). For example, Smalltalk-83 does not

support this type of inheritance. The Eiffel language, on the other hand.

supports it For C++. multiple inheritance was introduced at a later stage. At

fIrst. it was thought to be expensive and not really necessary. Closer analysis

on the issue revealed that the cost was not excessive. The issue of multiple

inheritance is still not resolved completely. Generally. it is acknowledged to be

a powerful and. at the same time. a natural extension of single inheritance.

For that reason, the proposed extension will support multiple inheritance

along with powerful adaptation mechanisms.

As in common OOPLs. the encapsulation control will also be used during the

inheritance process. The intention of encapsulation control at this stage is to

restrict the visibility of any inherited publicand restricted defIned properties. In

designs, it is often useful to use inheritance for the purpose of code sharing

only. with no intention to declare sub-typing relations between two classes. In
this extension, one will declare a class to be either publicly inherited or

privately inherited. The latter will be used when only code sharing is intended

80

and does not affect the type system, whereas the former will be used when a

subtype relation is needed.

A private inheritance will lead public and restricted inherited (parent) class

properties to become private to the inheriting (child) class. A publicinheritance

will assimilate anypublicinherited properties as public and restricted as restricted. A

restricted inheritance will lead public inherited (parent) class properties to

become restricted to the inheriting (child) class. It should be understood that a

well-designed inheritance hierarchy would include few occurrences of classes

hiding some of their parent's features. If one has to constantly work

accordingly to the parent designer's decisions, then it is necessary to consider

improving the inheritance structure (assuming that it is allowed). To overwrite

the inheritance default kind (restricted), the user defines the kind before the

name of the inherited class.

Other Object-Oriented languages such as Eiffel allow the redefinition and

removal of inherited features in the child class. This represents a powerful

means of specialising a child class to its use. However. the redefmition as

introduced by Eiffel does not agree with the VHDL language philosophy and

is replaced in the proposed extension by a mapping construct The removal of

defmitions is not directly supported in this extension, for the same reasons as

for the redefmition; although from a methodology point of view, we believe

that a controlled inheritance mechanism agrees better with the object-oriented

idea ofclass inheritance and specialisation

3.2.15 Dynamic Types and Polymorphism

The reuse of code is one of the most important aspects of inheritance. The

principle underlying the efficient reuse of code consists of stating the

difference when programming. This means that one has to redefine features

of the derived class. which are added to. or different from what is provided by

the base class. To fully exploit this principle. we need to introduce the

81

extension "virtual methods". Virtual methods are methods for which dynamic

binding, or more precisely dynamic types, apply.

The concept of dynamic types will be added to the language to soften the

limiting of VHDL's strong typing nature. The dynamic type of an object or an

expression, at some stage of execution, is the type of the object to which it is

attached. This should not be confused with the type called the static type.

This will provide the ability to have more than one dynamic type. The new

type rule means that possible dynamic types for an object must conform to

the static type of this object This is how polymorphism is implemented and

kept under control by the type system.

A possible disadvantage of this new type rule might be that program

understanding becomes more difficult since many choices are now implicitly

made by the dispatching mechanism instead of being written out explicitly.

3.2.16 Documentation

The use of attributes will be extended to provide users with information

regarding the object's state. Using attributes, designers are able to inquire

whether an object is currently processing any information or whether it is idle.

Attributes will also allow designers to inquire whether a particular method is

in use, waiting for avalid pre-execution condition or whether it is idle.

Attributes in the proposed extension provide a powerful means for achieving

formal specification when combined with assertions by expressing correctness

conditions. Assertions in the proposed extension can play several roles: they

help in the production of correct and robust code, supply high level

documentation, provide debugging support, and serve as a basis for exception

handling. Assertions will be used to express the specification of components:

to give an indication of what a component does rather than how it do it. This

information is essential to build a component that will perform reliably

(Meyer 1992), to use it and to validate it. In addition to the basic assertion

82

mechanism. the proposed extension will feature pre assert and post assert

statements.

Pre and post conditions will be used to defme the requirements that clients of

an object must meet and obligations an object has when executing a method.
This might be seen as acontract between the object and its potential clients.

83

3.3 Language Semantics

3.3.1 Abstract Data Type Specification

3.3.1.1 Class Specification

Class declarations in the proposed extension. are similar to VHDL package

declarations since both class declaration and package declaration defme an

abstract interface. The defmition of a class requires a class declaration having

the syntactic form:

type_definition ::=
scalar_type_definition
Icomposite_type_definition
laccess_type_definition
Ifile_type_definition
Iclass_type_definition

class_type_definition::=
class [use (class_list)]

class_declarative-part
begin

class assertions
Imethod_specification
Imethod_body

end class [class_simple_name];

class_list::- [encapsulation_kind] class_name { ,
[encapsulation_kind] class_name }

class_declarative-part::=
class_header
class_declarative_item

84

An example class declaration with adeclarative part is given in FIgure: 3-1.

type decoder is class
type opcode is (add, sub, mult, fetch);
instance variable data : opcode;

begin
end class decoder;

Figure 3-1. Class Declaration

Although it is intentionally similar to a package declaration. the class

declaration differs from the package declaration insofar as elaboration may

result in multiple instances ofa class type.

The class header of a class type defInition declares objects used for

communication between the abstract data type and its environment. A class

header may contain ageneric clause as well as feature mapping constructs.

The class header in the solution we suggest has the syntactic form:

class_header:::
[generic clause]
[interface clause]
[feature_m;p_clause]

generic_clause ::-
generic (formal_generic_list);

interface clause ::-
interface (formal_interface_list);

feature_map_clause ::_
feature map (feature_association_list);

The formal generic list in the generic clause defInes generic constants whose

values may be determined by the environment. An example class declaration

with ageneric declaration is shown in Figure 3-2:

85

type counter is class
generic (size: integer :z 8);
instance variable value bit_vector(size-l downto 0);

begin
end class counter;

Figure 3-2. Class Declaration with a Generic Declaration

The generic of an abstract data type is defined by a generic interface list

(defmed in the LRM section [1.1.1.1]). Each interface element in such a

generic interface list declares a formal generic. Several rules govern the use of

generics. The corresponding actual in a generic association list may specify the

value of a generic constant. If no such actual is specified for a given formal

generic (either because the formal generic is unallocated or because the actual

is open), and if a default expression is specified for that generic, the value of

this expression is the value of the generic. It is an error ifno actual is specified

for a given formal generic and no default expression is present in the

corresponding interface element. Similarly. it is an error if some of the sub­

elements of a composite formal generic are connected and others are either

unconnected or unallocated. During the inheritance process. generics of

parent classes are inherited by their child classes. If two generics of the same

name are given a default value. the latest defInition will be assimilated as the

valid one unless it is re-mapped via the feature map. These properties

regarding the inheritance of previously defined generics allow the designer to

build complex and fully parameterisable elements through a simple

mechanism.

Following the generic declaration is the interface declaration. Interfaces are

defmed as signals that are used for control purposes. The interface declaration

is a convenient means of declaring external parameters that will be accessible

86

by all internal methods without further declaration as part of their parameter

lists. Generally. these interfaces will be used to declare synchronisation

signals. The BNF of the interface declaration is defmed as follows:

formal_interface_list::= interface_signal_declaration

interface_signal_declaration :: - (see section [4.3.2] LRM)

An example ofa class interface declaration is shown in Figure 3-3.

type counter is class
interface (signal eLK: bit);
instance variable value : bit vector(7 downto 0);

begin -
end class counter;

Figure 3-3. Class Declaration with an interface Declaration

The third part of a class header is the feature map construct. The feature map

aspect associates new feature names with formal super-class publicirestricted)

feature names. This is used to avoid feature name conflicts during the

multiple inheritance process.

Feature map aspects appearing immediately within the class header associate

actuals with formals of the abstract data type interface implied by the binding

indication immediately enclosed. This mechanism does not allow a formal to

be associated with more than one actual. The feature map construct is not

required if no feature clashes occur during the multiple inheritance process.

The feature mapping technique can also be used to adapt inherited features to

the purpose of a newly created child class. If a feature clash occurs and no

mapping has been specified. local declarations will take precedence.

87

The BNF of the feature map aspect is defined as follows:

feature_map_aspect ::=
feature map (feature_association_list);

feature association list::= feature association element { ,
- - feature:association:element }

feature_association_element::= Iormal_feature_name ->
actual_feature_name

feature_name::=
feature designator [(parameter list)]
[retu~ type_mark] of class_name [(parameter_index)

The feature designator is the identifier name for a: method, variable, constant

type, sub-type. alias, attribute, file. group or object. The parameter_index is

used to identify a given class in the class_list ifa given class is inherited more

than once. This situation should occur if repeated inheritance is used. An

example of feature mapping is shown in Figure 3.4.

type up_down_counter is class use (up_counter, down_counter)
feature map (count of up_counter -> count_up,

count of down_counter -> count_down);
begin
end class up_down_counter;

Figure 3-4. Class Declaration with aGeneric Declaration

The use of parameter_list and type_mark is only allowed for method

features. This should be used when name conflicts are encountered through

the use ofa method overloading.

After the defInition of a class header is the class declarative part. The class

declarative part ofagiven class declaration declares items that are common to

all class methods.

88

The BNF of the class declarative items is defmed as follows:

class_declarative_item ::-
[encapsulation_kind) subprogram_declaration
I [encapsulation kind) type declaration
I [encapsulation:kind) subtype_declaration
I [encapsulation kind] constant declaration
I [encapsulation-kind] instance-variable declaration
I [encapsulation-kind] file declaration -
I [encapsulation-kind] alia; declaration
I [encapsulation-kind] attributes declaration
I [encapsulation:kindl attribute_;pecification
I [encapsulation_kind] group_template_declaration
I [encapsulation_kind] group_declaration
I [encapsulation_kind] object_declaration

As for any declarations in VHDL. the item contained in a class declarative

part is local to that particular class. However. all the listed declarations have

been updated to contain an extra encapsulation_kind property.

Encapsulation kind will be examined in section 3.3.7. Sub-program

declaration might seem controversial for Object-Orientation purists.

However. we believe that although made redundant by the existence of

methods. it will occasionally be easier for a trained VHDL designer to relate

to functions and procedures. rather than methods to perform local. hidden

operations Oocal operator overloading may be one of them).

3.3.1.2 Class body

Aclass body will only exist ifaclass is declared within a package. The package

header will contain the class header and the package body will contain the

class body.

When declaring a class inside a package. only method specifications and

feature mapping are allowed inside the class header. The method body is

implemented inside the class body located within the package body.

89

Class bodies have the syntactic form:

class_body :: =
type class_simple_name is class

class_body_declarative-part
begin

class assertion
Imethod_body

end class [class_simple_name];

class_body_declarative-part ::-
[encapsulation_kind] subprogram_declaration

[encapsulation_kind] subprogram_body
[encapsulation_kind] type_declaration
[encapsulation_kind] subtype_declaration
[encapsulation kind] constant declaration
[encapsulation-kind] instance-variable declaration
[encapsulation-kind] file declaration -
[encapsulation:kind] alias_declaration
[encapsulation kind] attributes declaration
[encapsulation:kind] attribute_specification
[encapsulation_kind] group_template_declaration
[encapsulation_kind] group_declaration
[encapsulation_kind] object_declaration

The ability for the designer to split a class defInition into a specifIcation and a

body is crucial for a flexible design organisation. By splitting the class into an

abstract interface (specifIcation) and an implementation part. the designer

benefIts from the flexibility of the package defInition in terms of primary and

secondary design unit dependency and analysis sequence.

The instance variables declared within the class specifIcation are equivalent to

the shared variable dermed in the 1076-93 standard and are used inside the

abstract data type. These variables can be declared of any VHDL types. An

encapsulation property allowing derived classes or outside objects to monitor

and alter their state is also added. The encapsulation property might also be

used to hide information from a derived class or outside objects. The default

encapsulation kind (if not specifIed) is restricted A restricted encapsulation

kind will hide the instance variable from the rest of the world. but will still
permit the instance variable to be inherited in child classes.

90

encapsulation_kind ::= private I public I restricted

instance variable declaration ::-
in~tance variable identifier_list : subtype_indication

Instance variables are only accessible by an external object if they are declared

as public. The private encapsulation kind will forbid both the inheritance and

external access to the instance variable. Encapsulation kind will be discussed
in details in section 3.3.7

3.3.1.3 Methods

Methods in the proposed extension resemble the mechanisms found in C++

or Eiffel. Unlike ADA95 methods can be used as both expressions and

statements depending on the style used for the method call. This represents in

our opinion a more pragmatic approach to message passing furthermore, the

use of methods instead of VHDL's sub-programs clearly states the distinction

in between the two mechanisms. Each method specified within a class

specification defmes an abstract operation, which operates atomically on a

unique object of the associated class type. The following BNF description

shows the defmition ofa method specification.

method_specification ::_
[encapsulation kind] method designator [
(forrnal-parameter_listl] [return type_mark]

The user of a class's object will see methods as messages. These messages will

be used to access or modify the state of this object Methods will support

overloading therefore, when a message is sent, the method with matching

message pattern is selected from the class of the receiver. Expressions in the

selected method are evaluated one after another. Once all the expressions are

evaluated, avalue is returned to the sender of the message.

91

The example in Figure 3.5 demonstrates the creation of methods within our

proposed extension

type reg is class
instance variable value bit_vector(7 downto O};

begin
public method reset is
begin

value := (others s> 'O');
end method reset;
public method write(signal elk: bit; data_in:

bit_vector(7 downto O}} is
begin

if elk'event and elk s 'l'} then
value := data in;

end if; -
end method write;
method read return bit_vector is
begin

return value;
end method read;

end class reg;

Figure 3-5. Class with Two Methods and an Execution Priority

Method formal parameters may be constants, signals, variables, mes or objects (the

default being constant). The only mode that is allowed for the formal

parameters of a method is the mode in. In the case of fIles and objects. the
parameters have no mode.

Two categories of methods can be identified: standard methods and virtual

methods. The most straightforward category is the standard and merely

defines an implementation for a given method specification. Unlike standard

methods, virtual methods only defme a specification, leaving the method

body to be defmed in child classes after the inheritance process. Figure 3.6

demonstrates the creation ofavirtual method.

Method bodies are similar to procedure bodies insofar as they will accept

sequential statements (including the wait statement).

92

The method bodies have the syntactic form:

method_body :: =
method_specification is

method_declarative-part
begin

method_statement-part
end method [designator]

method_declarative-part ::=
{ method_declarative_item

method_statment-part ::-
{ sequential_statement }

method_declarative_item ::_
subprogram declaration
I subprogrim body
I type_declaration
I subtype declaration
I variable declaration
I constant-declaration
I file_declaration
I alias declaration
I attribute declaration
I attribute-specification
I object_declaration

It is interesting to notice that the return statement is added to the list of sequential

statements to allow requests to be answered. Along with formal parameters (used

to refer to the arguments of a message), all methods have access to a pseudo­
variable named' this' that refers to the message receiver itself.

•this' and the formal parameters are available only during the execution of a local

method. In addition, amethod may obtain two different kinds of variables. These

kinds of variables differ in terms of how widely they are available (their scope)

and how long they persist

Instance variables exist for the entire lifetime of the object. Temporary variables

Oocal to methods) are created for specific activity and are available only for the
duration of the activity.

Including a temporary variable declaration within the declarative part of a

method indicates temporary variables. These variables are dynamically

elaborated at run time. A temporary variable declaration consists of a variable

name, its type and an optional default assignment Instance variables

represent the current state of an object Temporary variables represent the

transitory state necessary to carry out some activity. Temporary variables are

typically associated with asingle execution of amethod: they are created when

a message causes the method to be executed and are discarded when the

method is completed and returns a value. Figure 3.6 demonstrates the

creation ofavirtual class.

type counter is class
instance variable value: integer;

begin
public method reset is
begin

value : .. 0;
end method reset;

public method read return integer is
begin

return value;
end method read;

public method count;
end class counter;

Figure 3-6. Virtual Class DefInition

This example illustrates the creation of a virtual class with a virtual method

count that is defmed to be refmed in child classes of the counterclass.

Method names are used to identify methods. There are two kinds of feature

names: identifIers and operator names. The difference between identifIers and

operator names does not affect any properties of the methods, only the way

that a client object may call them. For methods with identifIer names, calls use

the 'dot notation' as in: obj 1. read or obj2.puch ("0001"). In contrast, calls

94

to methods using operator name will be written as: obj 3 + obj 4. This

notation is more convenient than a more traditional one using the notation:
obj3.plus(obj4) .

3.3.1.4 Class Definition

The defInition ofa class will be permitted within numerous constructs such as

the package. architecture and block. Their respective declarative items are

extended to include the class specillcation body. Type defInition is extended

to include object type. The BNF representation of class defInition is detailed

in Figure 3-7

Class defInition consists of a class specillcation and a class body. Each class

specillcation will be associated with exactly one class body. It is important to

notice that the package declarative item list does not contain the class body

declaration since this declaration is performed at the package body level.

3.3.2 Dedaring Objects

Before it can be used. an object must be declared either inside or outside a

class declaration part. If outside, an object of a class might be declared in the

declarative region ofpackages. architectures or blocks.

Objects declared at the package level will be accessible throughout any design

hierarchy referencing this package. When declared at the architecture level it

will only be accessible within this architecture. Finally. objects declared at the

block level will only be accessible by elements inside the block.

95

The object declarations are of the syntactic form:

outside_class_object_declaration::=
object identifier list : class indication

[(formal-parameter_list)] -
[generic map (generic association list)]
[interface map (interface_association_list)];

When building complex objects. objects are declared inside a class declarative

part. These objects obey the same encapsulation rules as normal instance
variables.

The syntactic form of such a declaration is:

inside_class_object_declaration::=
[encapsulation kind] object identifier list

class_indication [(formal-parameter_list)]
[generic map (generic_association_list)]
[interface map (port_association_list)];

96

architecture_declarative_item:: a
common_declarative_item

subprogram_body
I component_declaration
I attribute_declaration
I attribute_specification
I configuration_specification
I class_body

block_declarative_item::=
common declarative item
I subprogram_body-
I class_body
I component_declaration
I attribute_declaration
I attribute_specification
I configuration specification

package_declarative_item::=
common declarative item

package body-declarative-item::a
common-declarative-item
I subp;ogram_body-
I class_body

common_declarative item::=
type declaration
I subtype_declaration
I class_declaration
I constant_declaration
I file_declaration
I alias_declaration
I subprogram_declaration
I use_clause
I object_declaration

Figure 3.7. Class DefInition

3.3.2.1 Creators

Asuccessful creation always perfonns a default initialisation (which may then

be overridden by the creation method) on the variable attribute fIelds of the
resulting object.

A creator method will have the same name as the class. has optional

parameters and can be overloaded. The creator method of an object will only

97

be called when the object needs to be initialised. It is possible to overload

creator methods to allow a powerful and flexible initialisation of complex

structures. As demonstrated in the follOWing example. this mechanism

relieves the user from an error-prone process.

In the example FIgure 3-8, a creator method is defmed for the memory class

with an initial value formal parameter. When the user defmes the object

mem_l. the value to be set in the memory element at initialisation time is set to

255.

architecture 00 of example is
type memory is class

type mem_array is array (0 to 2) of integer;
instance variable mem_array_l : mem_array;

begin
public method memory(initial_value : integer);

begin
mem_array_l := (others -> initial_value);

end method memory;

public method read ...••
end method read;

public method write•
end method write;

end class memory;
object mem_l : memory(255); -- creation

begin
wait for 10 ns;
data out <= mem l.read(address);

end 00; - -

Figure 3-8. Class Declaration with a Creator Method

Wait statements are not allowed as part of a creator method since these

functions are executed during initialisation time (before run time).

Objects can be dynamically created and removed using the VHDL access

type. This mechanism is identical to the one that exists for other VHDL

98

types. The example in Figure 3-9 demonstrates the creation of object

pointers.

process
type counter_access is access counter;
variable counter_l : counter_access;

begin
counter_l :- new counter;
for I in 0 to 10 loop

counter_l.count;
wait until clk -'1';

end loop;
deallocate(counter_l);

end process;

Figure 3-9. Dynamic Creation and Removal ofan Object

3.3.2.2 Generic Map Aspect

The generic map aspect is identical to the existing generic map aspect of the

VHDL standard 1076-1993. Its use has been extended to classes. A generic

map aspect will be used to associate actual values with the formal generics of

class.

architecture 00 of register_16 is
object reg_1 : reg generic map (size -> 16);

begin
A(lS downto 0) <- reg_1.read;

end 00;

Figure 3-10. Object Instantiation with a Generic Map

In Figure 3-10. it is assumed that a class reg with a generic size: integer has

already been defined. An object ~1 is created and the generic size of this

object of ngclass is set to 16 at elaboration time.

99

3.3.2.3 Interface Map Aspect
The interface map semantics is defined as follows:

interface_map_aspect::=
interface map (association_list);

association list ::-
associatIon_element, { association_element

association_element ::=
formal_idenfier_name _> actual_idenfier_name

An example ofinterface mapping is given in Figure 3-11.

architecture RTL of FIFO is
signal : clk4: bit;
object counter 1 : counter interface map (clk =>

clk4); -
begin

-- some code
end RTL;

Figure 3-11. Object Instantiation with an Interface Map

3.3.2.4 Composite Types

An object type can be declared as an array element Each element can be

accessed individually on an element by element basis or as a whole. Event and

Command behaviours can be directly applied to the whole array by using the

.all notation

Figure 3-12 gives an example of declarations applied to arrays. This example

assumes that a class Counter with a method write and reset has already been

defined within a package.

Arrays are important elements in the proposed extension as late binding can

take advantage of these complex data structures.

100

architecture Example 1 of Example
type counter_arr;y is array (3 downto 0) of Counter;
object Single_counter : Counter;
object Complex_counter : Counter_array;

begiD
wait for 10 DB;
Single_counter. reset;
Complex_counter.ALL.reset; -- reseting the array of

-- counters
wait for 10 DB;
Complex_counter(2) .write("lOlO"); -- access to a single

-- element
eDd Example_l;

Figure 3.12. Declaration of an Array of Objects.

3.3.3 Concurrent and Sequential Messages

Objects can be used within a sequential part in three main ways: message

passing. object assignment and object comparison. For message passing.

methods defined in the class specification (non-virtual) operate on objects of

that class via automatic selection. The prefIx denotes the object of the class.

The suffix denotes the method calI with optional parameters passed as part of

the call. The syntactic form ofamethod calI has the form:

object_name{.object_name}.method_name[(argument_list)]
object_name{->object_name}->method_name[(argument_list)

The target and argument lists are optional; the method name is required. In

the case of a call using the following form: alu_l.multiply(3, 5). the call

uses one of the syntactical possibilities. dot notation. The target of the call is

alu_l. the method name of the call is multiply and the actual argument list is 3
and 5.

101

The target is separated from the method name of the call by a period or an

arrow. The this keyword. represents the current object executing. it is possible

to write the call as: this. store (my_value). However. in this case, it is also

possible to write only store (my-value). The this notation will only be

found inside a method body.

Acall can also be of multiple dots such as in:

NetCell(2) •Processor (1) •instruct_reg. set (jmp, 255)

For features without arguments. the actual argument list will be absent. as in:

acknowledge : = dma. status. where the status must either be an instance
variable or amethod without arguments.

process
object counter 1 : upcounter;
object counter-2 : downcounter;
Object fifo_1 ~ fifo;

begin
if reset. '1' then

fifo_1->initialise;
counter_1->reset;
couter_2->reset;

elsif clk'event and clk .'1' then
counter_1->count;
counter 2->count;
fifo_1-;push(-OOOl-);

end if;
end process;

Figure 3-13. Non Blocking Object Calls

The use of an arrow in a message infers a non-blocking call. Consequently.

the call is scheduled to occur when the process is suspended. This allows the

user to spawn operations on numerous objects without having to wait for the

completion of an operation before moving on to the next sequential

statement. If multiple non-identical blocking calls are scheduled onto one

102

object inside the process, the last call will prevail. Figure 3-13 shows the use

of the non-blocking call.

3.3.3.1 Object Assignment and Copy

The object assignment is defmed as the == sign. This refers to a clone copy

of an objects reference. Examples of the object assignment can be seen in
section 4.3.8.

The object copy is of two forms: as shallow and deep. The shallow copy uses

the keyword copy. The deep copy uses the keyword deepcopy. Examples of are

shown in Figure 3-14. The Deep Copy mechanism is used to copy all the

values of the instance variables contained within an object including those

originating from aggregated objects. Unlike the deep copy. the shallow copy is

restricted to instance variables declared at the object level (not including

aggregated instance variables).

Process (transfer, counter 2)
object counter 1, counter 2 counter;

begin - -
if transfer = true then

counter_1.copy(counter_2);
end if;

end process;

Figure 3-14. Object Shallow Copy

3.3.4 Encapsulation Control and Visibility

Encapsulation is used to control the visibility ofaclass properties.

The BNF form for the encapsulation kind is as follows:

encapsulation_kind ::= private I public I restricted

The example in Figure 3-15 demonstrates the use of encapsulation.

103

type reg is class
private content: bit_vector{7 downto 0);

begin
public method reset is

begin
this.write{-OOOOOOOOM);

end method reset;

public method read return bit_vector is
begin

return content;
end method read;

restricted method write {data bit_vector) is
begin

content := data;
end method write;

public method write {data : bit_vector;
signal clk : bit) is

begin
if (clk'event and clk = '1 ') then

this.write{data);
end if;

end method write;
end class reg;

Figure 3-15. Class Encapsulation Levels

This class defInition will be part of a package body. block or architecture

declaration. In this example. a class representing a register abstract data type is

created. an attribute content is declared to implement the stored value in the

register. This element is declared as private since the contents of the reg class

should not be accessed directly but via access methods.

Methods which implement the class features, read write and reset, are public

(default) to be accessed by client objects. However, an asynchronous version

of write is provided for internal use only so it is declared as restricted. The

restricted declaration will permit the method to be inherited in child classes as

opposed to the private one. In most cases, the private declaration will be used

to specify a property that is only valid for a specific class and not for any of its
descendants.

104

3.3.5 Inheritance

The shifCregister class in Figure 3-16 illustrates a public inheritance. This class

defInition will be part of a package body. block or architecture declaration It

is assumed that the parent class reg has been defined at an earlier stage. This

example defInes a set of new methods for performing shift right and shift left

operations. An error will be produced when compiling this design since the

content attribute was declared as private in the reg class (see Figure 3-15) and

both methods shr attempt to access it although it has not been exported

durtng the inheritance mechanism.

type shift register is class use (public reg)
begin -

public method shr(signal elk : bit) is
begin

if (elk'event and elk = '1') then
this.write('O' & eontent(BitsNbr-l downto 1»;

end if;
end method shr;
public method shl(signal elk: bit) is
begin
if (elk'event and elk. '1') then

this.write(eontent(BitsNbr -2 downto 0) & '0');
end if;

end method shl;
end class shift_register;

Figure 3-16. Public Encapsulation during the Inheritance Process

Multiple inheritance is achieved by listing the inherited classes in the type

defInition. after the class keyword.

An example of multiple inheritance is shown in Figure 3-17.

105

type shifting_counter is class use (public shift_reg,
public counter) is

begin
end class shifting_counter;

Figure 3-17. Multiple Inheritance Example

In this example, it is assumed that a class shift_reg and counter have already

been defmed. The shifting..counter class is a new abstract data type merging the

functionality of a shift register class and a counter class. Merging is often

useful when inheriting virtual methods with identical notions in the
descendant

This example suggests that possible conflicts may arise due to merging during

the inheritance process. Such a naming conflict can be removed by the

mapping construct as shown in Figure 3-18.

type OpDownCounter i. class use (UpCounter, DownCounter);
generic (delay: time: 3 ns);
feature map (Count of DownCounter -> CountDown);

end class OpDownCounter;

Figure 3-18. Class Declaration with a Feature Map

As part of the declarative part. each class can defme mapping clauses to adapt

names of inherited features to the local context of the new class.

3.3.6Polymorphism

The proposed semantics fully support polymorphism. The example shown in

Figure 3-19 demonstrates how polymorphism can be achieved. This example

106

assumes that a class counter is created with a virtual method COWlt From this

class COWlter, two sub-classes are derived: up_counter; down_counter in which the

method count is defined (becomes defined). Figure 3-19 shows the definition

of three objects. one for each class. On a change of the value of A the

counter_I object will change its dynamic type from coWlterto either up_counter or

down_counter. After the selection has been performed, the operation

counter_I.count is carried out This displays a polymorphic behaviour in the

sense that the dynamic type of counter_I is only dermed at run time and can

change during the execution Depending on that type. the COWlt message. will

either perform a count up operation or a count down operation. The '=='

symbol is not a copy but apointer to the same object

The assignment attempt might in some cases require knowledge of the type

of the source. What is needed in this case is a way to perform the assignment,

but conditional on its applicability: if the type of the source object turns out

not to be compatible with the type of the target object. then no reattachment

should occur. The 'dass attribute provides information regarding the dynamic

type of an object and can therefore be used to perform avalidity check before
assignments.

107

Count

Counter

Count Count

Up
Counter

Down
Counter

architecture polymorphic of example is
object counter 1 counter;
object counter:2 up_counter;
object counter_3 down_counter;

begin
process
begin

if A • true then
counter_l •• counter_2;

else
counter_l ... counter_3;

end if;
counter_l.count;
wait on A;

eDd process;
end polymorphic;

Figure 3-19. Polymorphic Behaviour

3.3.7 Visibility

The declaration part of a class has a visibility over the declaration found

within the scope of the Package. Architecture and Block depending on where

the class has been defined.

For the example in Figure 3-20, aclass uses an enumerated type called opcode

as part of its method execution and parameter list This user-defmed type. if

only declared inside the class declarative part. could not be used in its method

108

argument list since the client object would not know about its declaration.

Allowing it to be declared outside the class definition allows both the class

and the design instantiating the package to use the same common type

declaration

package p_alu is
type opcode is (add, sub, div, mult);
type alu is class

content : integer;
begin

method send(operation opcode; value integer)
return integer;

end class alu;
end package;

package body p_alu is
type alu i. class
begin

method send(operation : opcode; value integer)
return integer is

begin
-- some statements

end method send;
end class alu;

end package p_alu;

use work.p alu.all;
entity dsp-is

-- some ports declaration
end dsp;
architecture 00 of dsp i.

signal command : opcode;
object alu 1 : alu;
signal result : integer;

begin
result c_ alu_l.send(command, 7);

end 00;

Figure 3-20. Class Using aType Declared Within a Package

3.3.8 Attributes

Alist ofattributes allowed with objects and methods follows:

1. 'event: Will retmn true when a method call occurs on an object or the
referenced method.

109

2. 'IasCevent :Will return the time since aprevious method call occurred

on an object or the referenced method.

3. 'active :Will return true when an object has at least one or more methods

or the referenced method currently processing.

4. 'IasCactive: Will return the time since the last method processing activity

occurred on an object or the referenced method.

5. 'stable [(time)] :Will return true whenever the referenced object or

method has had no call for the time specified by the optional time

expression

6. 'quiet [(time)] :Will return true whenever the referenced object or

method has not been processing any methods for the time specified by

the optional time expression

7. 'transaction: Will create a signal of type bit that toggles its value for every

method call that occurs on the referenced object or method.

8. 'class: This attribute will only be used by objects and will return the class

type of the referenced object

110

process
begin

DMA_l->Start_transfer;-- DMA_l is an object
-- of class DMA

wait until DMA l'stable(135 ns);
DMA 1.Load source(-OOOl-);
wait; -

end process;

Figure 3-21. Wait Statement Synchronised on a 'stable Attribute

Figure 3-21 illustrates the use of the 'stable attribute. This example assumes

that a class DMA with a method Starctransfer and Load_source has been

defmed earlier in the code. The attribute 'stable is used on an object of abstract

data type DMA and is performing a test on the non-activity of the object

DMA_1. Once the period of inactivity has elapsed, the message Load_source is

sent to the object DMA_l with agiven argument

Uke VHDL's signals, object activities can also be monitored as part of a
sensitivity list

3.3.9 Assertions

The improved assertion mechanism uses the following syntactic form:

class assertion statement::-
-[contract condition] assert condition

[report expression]
[.everity expression];

contract_condition::_
pre

Ipost

111

The example in FIgure 3-22 shows the use of a pre assert statement.

type counter is class
value : integer range 0 to 9;

begin
pre assert (value <= 9)
report ·You have reached the maximum value­
severity warning;

method count is
begin

count := count + 1;
end method count;

end class counter;

Figure 3-22. Use of Pre Assertions

For the example in Figure 3-22, a pre-assertion is used to check the status of

the instance variable value for each access to the class. When value reaches la,

the assert statement issues a warning message.

3.4 Conclusions

Three main objectives are addressed in this proposal: a better encapsulation

mechanism, inheritance and late binding. Although a number of different

styles can be used to implement the latter mechanisms, we believe that

classification orientation represents the most appropriate style in terms of its

integration within both the language philosophy and the Object-Oriented

paradigm. The proposed semantics illustrated in this chapter rely on a three­

level encapsulation control which extends the VHDL visible/non visible

mechanism and provides a flexible means of selection for the inheritance

process.

Inheritance will here be selective, single or multiple and enhanced by a

powerful redefmition construct called the feature map in addition to

genericity. Furthermore, creator methods are added to classes allowing a

straightforward initialisation sequence for instances of classes.

112

The proposed extension redefmes the assignment rules to allow more

flexibility in the type system, i.e. objects of a derived class type can be

assigned to objects ofan ancestor class type thereby allowing dynamic binding

and therefore polymorphism to take place.

This chapter defmed the language constructs created to tackle the three main

requirements set in section 2.4 namely: encapsulation, inheritance and

polymorphism. The following chapters will highlight the flexibility of these

constructs to build complex hardware descriptions and will compare the

proposed extension with other proposed Object-Oriented extensions to
VHDL.

113

Chapter 4

COMPARATNE STUDY OF PROPOSED EXTENSIONS

4.1 Introduction

Having introduced the proposed extensions (see section 2.6 and chapter 4)

we will now compare the extensions according to the language design

objectives set by the IEEE OOVHDL study group (detailed section 2.4). The

extensions that will be examined are the VISTA, the Oldenburg, the SUAVE

the Objective VHDL and our proposal (Cabanis 1995).

The VISTA proposal (Ramesh 1994.2) is the earliest extension to the

language and to some extents the less sophisticated too. Although this

proposal has been abandoned. we will briefly study the mechanisms used for

implementing data abstraction, inheritance, and polymorphism.

The SUAVE proposal is in effect a superset of the Oldenburg (Shumacher

1995) proposal. Consequently. in an effort to reduce the amount of

redundancy in this comparative study. we will focus on the SUAVE extension

and mention the areas where the two proposals differ from one another.

4.2 Study of the VISTA Proposal

4.2.1 Abstract Data Type

The Vista proposal is based on a component like abstract data type: the

EntityObject This represents a sensible and straightforward implementation of

an abstract data type. This approach is similar in its principle to other existing

object-oriented programming languages such as C++ or Eiffel (Meyer 1992).

114

EntityObject <identifier> is [new <identifier>]
[generic <generic_list>]
[port <port_list>]
{ operation <operation_name> <interface_list>
[begin]

[entity_statement-part 1
end EntityObject [<identifier>]

Figure 4-1. The EntityObject Abstract Data Type

The EntityObjectrepresents areal abstract data type, in the sense that attributes

and related operations are gathered in one design entity. The splitting of the

abstract interface and its associated implementation is an important feature

for achieving design maintainability. The Vista proposal achieves this here by

the separation of the EntityObjectand the Architecture. However. we believe that

the Vista extension is restricted in its scope of use. The creation of ADTs

based on a type instead of a design unit is more suited to dynamic typing and

encapsulation control. Furthermore. the creation of a new design unit makes

design organisation and management far more complex. The VHDL language

(DASC 1993) consists of five design units comprising three primary and two

secondary units. The concept of design units represents a powerful yet

complex means of structuring a design. The use of design units requires

significant efforts in design management: they are still not fully understood by

most experienced designers, nor supported by a wide number of synthesis

tools. HDLs like the Verilog language (Verilog std 1364-1995) owe their

popularity to their simplified use and also partly to the absence of design

units. Furthermore. while the VHDL'93 version of the language allows

designers to reduce the number of design units via the direct instantiation

mechanism, the Vista proposal introduces one more design unit bringing the

total to six. Although we do not contest the importance of design units. we

believe that the addition of more design units will increase the design

organisation complexity for no extra gain. The splitting of the abstract data

type into an interface is necessary. but the use of multiple architectures

115

conflicts with the Object-Oriented inheritance principle. Different versions of

a design should not have a common EntityObject but rather a common

generalised parent class in order to allow an extended version of the language

to better map to Object-Oriented design methodologies.

In addition to declarations of operations, the EntityObject can hold the

declaration of ports and generics. Port declarations are used to create global

signals throughout the abstract data type. These signals are generally reserved

for synchronisation. This feature is relevant since it simplifies the modelling

of synchronous devices; for example the clock signal ofa synchronous design

does not have to be part of the sensitivity list in a call but merely declared as a

common port for the given abstract data type.

4.2.2 Inheritance with the EntityObject.

The Vista Object-Oriented extension supports a public single inheritance

mechanism. Both instance variable and operations are exported to the

inheriting EntityObject

Neither a clear inheritance control mechanism or redefinition mechanisms

have been implemented. With the Vista proposal, redefinition is merely

achieved through a new declaration and definition of a given operation.

Furthermore, with the Vista proposal, an operation parameter list can only

contain VHDL standard types. This limitation. which is not an issue in all

applications, comes from the use of ComponentObjects as abstract data type

instances instead of type representations.

In addition to this limitation. the use of a super mechanism to access previous

versions of redefined operations does not exploit the full capabilities of the

inheritance hierarchy. This highlights two issues: no support for multiple

inheritance and loss of previous versions of redefined operations. To illustrate

the latter issue, one can imagine a situation where a given operation has been

defined at three levels of the inheritance hierarchy: in such a case, the lowest

116

level will not be able to access the first defInition but only the defInition of its

direct parents.

4.2.3 Polymorphism and Object Handles

EntityObject handles represent a convenient means of handling dynamic types.

An EntityObject handle as defined in the Vista proposal can take any

EntityObject type at run-time, allowing polymorphic operations to be

implemented.

However, the scheme proposed in the Vista extension, undermines and to

some extentjeopardises. the VHDL type system. Maintaining the consistency

of the VHDL type system is a crucial aspect of the building of an Object­

Oriented extension to the language. The EntityObject handle does not respect

any sub-typing relationship; thus it is possible to assign objects of any type

(abstract type) to a handle at run time. For instance, an array of EntityObject

handles could contain a shift register, a counter and an ALU object at the

same time. Although the counter and the shift register may have a common

root (such as a register), the ALU has little in common with the other devices

in the EntityObject handles array. Allowing such a grouping of abstract data

types could lead to a situation where the array's elements contained

inconsistent operations. This is only one example of the issues related to the

phenomenon of 'direct object reattachment'. In general, it is conceptually

wrong to allow the grouping of non-related types in an array. This can be

illustrated by, considering the example in Figure 4-2. In this example, the fIrst

two elements of the EntityObject handle array are assigned to a basic counter

and a bounded counter.

117

variable Counter_list is array (0 to 2) of EO_Handle
begin

counter_list (0) :z Basic_counter;
counter list(l) :- Bounded counter;
send Co~ter_list(Ol Reset-; -- line 1
send Counter list(l) Reset; -- line 2
send counter:list(Ol load_last (15); -- line 3
send Counter_list(l) load_last (15); -- line 4

Figure 4-2. Grouping of Un-related Types in an Array.

On line 1 and line 2. Reset operations are successfully sent to both counter

elements. Line 3 performs a load_last operation on the element zero of the

EntityObject Handle: this is an illegal operation since the element zero is of

basic_counter type and does not implement a load_last operation. Unlike line 3.

line 4 successfully performs the load_last operation since, this time. the

element one of the EntityObject handle array is of type bounded_counter.

Although the expected behaviour is achieved. the drawback of this method is

that the operation load_last is allowed at compile time and the actual error

would not be reported until run time (if ever). Allowing each object of the

EntityObject handle array to run specific commands allows bad coding styles

and compromises the VHDL type system. In awell-planned Object-Oriented

design. these cases should only arise when dealing with complex problems. In
most cases, the rationale for using a generic structure (array) is to abstract the

details of specific variants, and concentrate on what is common to all. If it is

known that an element of such a structure has special properties. then it is

possible to access it separately, through an object of the right type. Ideally.

both line 3 and line 4 (in Figure "4-2) should be disallowed. assuming that the

common set of array elements is made of basic counters. This limitation of

the EntityObject handle results from the limitations of components being used

as abstract data types in the proposed Vista extension

118

4.2.4 Vista Study Conclusions

The Vista proposal implements all the required objectives defined by the

OOVHDL study group. However. because of its choice of ADT

implementation (component object). this proposal offers very limited scope

for abstraction Furthermore the creation of an extra VHDL design unit

makes design organisation and management a more complex task. The use of

object containers for implementing dynamic type is valid; however since no

assignments rules are defmed for the ObjectHandle, this will lead to some

design inconsistendes. This extension was a good first attempt for the

implementation of an object-oriented extension to the VHDL. It showed the

limits of a component-like ADT and allowed the research community to

focus on composite type based (record like) ADT alternatives.

4.3 Study of the Active Proposals

This analysis of competing proposal is conducted using a number of

comparison points derived from the OOVHDL study group requirements

list. These are: Class interface definition. method defInition, abstract classes,

encapsulation and visibility control, inheritance. instantiation. initialisation,

assignment and copying, aggregation. method invocation. polymorphism and

genericity.

4.3.1 Class Interface Definition

The SUAVE (Ashenden 1997.2)/Oldenburg proposal uses the VHDL

language feature namely: The package. Furthermore the functionality of the

package is modifIed to suit the requirements of a flexible abstract data type.

The package in the SUAVE extension no longer needs to be a design unit and

can be declared in other declarative parts. An example of a class describing a

counter is given in Figure 4-3:

119

package counter is
-- Declarations

end package counter;

Packages in the SUAVE proposal are no longer design units when they are

used as ADTs. As a result, one can question the need for using the existing

package since, such a language decision will create an overlap with the existing

VHDL semantics as well as inconstancies. We do not believe that any benefits

are grained from selecting existing language constructs if they are not adapted

to the implementation of an orthogonal extension to the VHDL.

The Objective VHDL (Radetziki 1997.2) proposal relies on the creation of a

new kind of composite type: The class. A class type is parented to the VHDL

record type and contains both fields (instance variables) and their associated

subprograms. The example in Figure 4-4 describes a counter using both the

Objective VHDL and our proposal:

type counter is class
-- Declarations

end class counter;

All proposals provide similar mechanisms for data encapsulation and method

implementation. The SUAVE and Oldenburg proposals are alike and the

Objective VHDL class is identical to our proposal.

4.3.2 Method Definition

While SUAVE/Oldenburg as well as Objective VHDL use the VHDL

subprograms, their formal parameter list differs. For the SUAVE/Oldenburg

proposal. any method requires at least one formal parameter that carries the

120

object (or data structure) on which the operation is to be performed. The

example in Figure 4-5 demonstrates the declaration of two methods:

package counter is
type value_t is tagged record

value: integer;
end record;
function read(val : value_t) return integer;
procedure write(val: inout value_t;

signal clk: in std logic;
value_in: in integ;r);

end package counter;

The objective VHDL gives the methods, implicit access to the attributes of

the class that declares them. As a result the formal parameter list only

contains useful input!output arguments. This style of method declaration is

the most commonly implemented in other object-oriented programming

languages. An example of method declaration in Objective VHDL is given in

Figure 4-6:

type counter is class
class attribute value : integer;
function read return integer;
procedure write(signal elk: in std_logic;

value_in: in integer);
end class counter;

Our proposed extension does not rely on subprogram calls for implementing

method calls. Although this requires the addition of the new keyword

'method', the motivations are justified. In VHDL and numerous other

programming languages there are two kinds of subprograms: functions and

procedures. While both subprograms share a large amount of common

features, their small differences justify their unique identity. The main

differences between functions and procedures are execution time, number of

121

output parameters and their usage as part of an expression. The procedure

permits the suspension of processes (to perform signal update) whilst

executing. In other words, one can use the VHDL wait statement inside a

procedure body. The execution of a function is considered instantaneous;

therefore no waiting is permitted inside the function body. Furthermore the

function is not allowed to call internally a procedure contains a wait

statement Similarly, the proposed 'method' construct gathers some of the

singular properties of both VHDL subprograms and rejects others. The

method accepts any number of input parameters of signal constant and file

class; however only one return value is allowed. This resembles the function

call and was implemented to allow method calls to be used as part of

expressions. Unlike Objective VHDL or SUAYE, there are no distinctiom

made on which type of subprogram to use (function or procedure):

depending on the application (statement or expression) the method

constructor is used independently. This method style simplifies the creation

of classes and broadens the class' applications. Furthermore this relates

directly to most object oriented programming languages. A 'method' in the

proposed extension allows the use of wait statements. This feature is akin to

the VHDL procedure and allows expressions/statements to be executed in

no time or after a user definable delay. Consequently, the functionality

required for the creation of a well-suited method implementation justifies the

building of a new separate language mechanism. The solutions offered by the

SUAVE and Objective VHDL represent a compromise that promotes

ambiguities with existing and different VHDL constructs.

An example of a counter class with the proposed extension is given in Figure
4-7:

122

type counter is class
instance variable value: integer;
method read return integer;
method write(signal clk: std logic;

value_in: integer);
end class counter;

4.3.3 Non Instantiable (abstracV Classes

All proposals support the creation of abstract classes. Whereas SUAVE

requires an explicit declaration using the keyword 'abstract' (not specified in

the Oldenburg proposal), both our proposed extension and the Objective

VHDL one use an implicit defInition. When a class is defmed with methods

that have not yet been defIned, the class becomes an abstract class. An

example of an abstract class declaration in SUAVE is given in Figure 4-8:

package packet_t is
type abstract new data t with record

parity: boolean; -
end record value_t;
procedure process-packet(value: inout data_t);

end package packet_t;

The benefIt of using an extra keyword to qualify ifa class is 'abstract' or not is

minor. With SUAVE, the user may get an error earlier in the compilation

sequence since the compiler will check if all methods are defined in a non­

'abstract' class. However, with the Oldenburg, Objective VHDL and our

proposed extension, the error issued when the user attempts to instantiate

objects of an abstract class type. Similar behaviour is found in standard

VHDL when using anon-fully defmed 'deferred' constant An example of an

abstract class declaration in Objective VHDL is given in Figure 4-9:

123

type packet is class
class attribute parity: integer;
procedure process-packet;

end class packet;

The equivalent code using our proposed extension is given in Figure 4-10:

type packet is class
instance variable parity: integer;
method process-packet;

end class packet;

4.3.4 Encapsulation Control and Visibility Control

Encapsulation control is implemented at different levels in the three

proposals. The SUAVE/Oldenburg version relies on two separate

mechanisms: the package body and the defInition of a private area in the

package header (not in the Oldenburg proposal). The package body is used to

hide sub-programs from the class user. The private part ofa package header is

used to hide the implementation of a type. Types and sub-programs declared

outside the private part of a package header are visible by the class user

without any restrictions. The declaration of a class containing both visible and

non-visible declarations is given in Figure 4-11:

124

package fifo is
type fifo t is tagged record

value 7 std_logic_vector(7 downto 0);
is_full : boolean;
is_empty : boolean;

end record fifo t;
procedure push(~al: inout fifo t;

signal clk: in std logic;
value_in: in std_l~gic);

end package fifo;
package body fifo is

procedure push(val: inout fifo t;
signal clk: in std logic;
value_in: in std_l~gic) is

-- some code
end procedure push;
procedure async_write(val: inout fifo_t) is

-- some code
end procedure async write;

end package fifo; -

In this example. the type Jifo_tand the procedure push are visible. whereas the
procedure asyncwrite isn't.

The semantics in Figure 4-12 would hide the type Jifo_t

125

package fifo is
type fifo_t is tagged private;
procedure push (val: inout fifo_t;

signal elk: in std_logic;
value_in: in std_logic);

private
type fifo_t is tagged record

value: std logic vector(7 downto 0);
is_full : boolean7
is_empty : boolean;

end record fifo_t;
end package fifo;

For the example in Figure 4-12, the type fifo_t is declared as a private type and

defined in the private part of the package header.

The Objective VHDL proposal implements encapsulation via: an

encapsulation rule and the use of a class body. The encapsulation rule in

Objective VHDL defmes that none of the 'class attributes' are visible outside

the class that defmes them. Any access to the 'class attributes' has to be made

through the use of sub-programs. However. unlike the SUAVE/Oldenburg

proposals. the designer can specify if a given 'class attribute' is to be visible

inside child classes or not. The visibility of a 'class attribute' after inheritance

is achieved by declaring the 'class attribute' inside the header part of a class.

The declaration of a 'class attribute' inside the body part of a class will cause

the 'class attribute' to be lost during the inheritance process. Similarly. a sub·

program in Objective VHDL is visible if declared inside the class header.

Alternatively. a sub-program can be hidden if declared in a class body. This

mechanism is identical to the existing package header / package body in

standard VHDL. Figure 4-13 demonstrates the declaration ofvisible and non·

visible sub-programs and class attributes.

126

type fifo is class
class attribute value: std_logic_vector(7 downto 0);
class attribute is_empty: boolean;
class attribute is full : boolean;
procedure push(si~al clk: in std_logic;

value_in: in std_logic);
end class fifo;

type fifo is class body
procedure push(signal clk: in std_logic;

value_in: in std_logic) is
-- some code

end procedure push;
procedure async_write(value_in: in std_logic);

end class body;

For the example in Figure 4-13, the sub-program push is visible and the sub­

program asyncwrite is hidden. None of the 'class attributes' are visible outside

the class Bfa; however, since they have been declared inside the class header.

they will be inherited by all child classes. The code in Rgure 4-14 illustrates

how to exclude the 'class attributes' is_emptyand is_full during derivation.

type fifo is class
class attribute value: std_logic_vector(7 downto 0);
procedure push(signal clk: in std_logic;

value_in: in std_logic);
end class fifo;

type fifo is class body
class attribute is_empty: boolean;
class attribute is full : boolean;
procedure push(signal clk: in std_logic;

value_in: in std_logic) is
-- some code

end procedure push;
procedure async_write(value_in: in std_logic);

end class body;

Figure 4-14. Hidden Attribute Declarations in Objective VHDL.

Both 'class attributes' have been moved to the class body part hence they will
not be inherited by any of the child classes.

127

The proposed extension implements a thorough encapsulation mechanism

for 'instance variables', method access and inheritance control. Encapsulation

uses three identifiers 'public', 'private' and 'restricted'. As with Objective

VHDL and SUAVE (Oldenburg relies only on VHDL's package visibility

mechanisms), 'instance variables' can be hidden from the class user by using

the keyword 'private' in front of the variables' definition. Nevertheless, unlike

Objective VHDL any 'instance variables' can be made visible to the class user

by using the keyword 'public' instead of 'private'. Furthermore the proposed

extension allows each individual 'instance variable' of the class to have a

different encapsulation control; this cannot be done with the

SUAVE/Oldenburg proposal. In SUAVE, all or none of the fields of the

record type are set to be visible or hidden. The example in Figure 4-15

illustrates the declaration of 'instance variables' and methods with different

encapsulation controls:

type fifo is class
public instance variable is full : boolean;
public instance variable is-empty: boolean;
restricted instance variabl; value :

std logic vector (7 downto 0);
public method push(signal clk : std_logic;

value_in: std_logic) is
-- some code

end method push;
restricted method async_write(value_in : std_logic) is

--some code
end method async write;

end class fifo; -

r1gure 4-10. .t.ncapswation Lontrol ill our Proposal.

Figure 4-15 demonstrates the flexibility of the proposed extension over

competing proposals. As shown in this example, both variables is_run and

is_empty have been declared as public hence visible outside the class that

dermes them; whereas the variable value is hidden inside the class lifo. We

believe that this flexibility, only present in our proposal, is essential for the

128

construction of aversatile ADT. Figure 4-16 demonstrates the use of a public

instance variable:

architecture rtl of data_line is
object fifo 1 : fifo;

begin -
process
begin

wait until elk = '1';
if fifo_l.is_empty then

fifo_l.push(clk, in1);
more code

In Figure 4-16, the state Vs_Ml) of the fifo_1 object is accessed through a

'method-like' message. This style presents two main benefits: consistency and

increased maintainability level. Since the access to a public instance variable is

semantically identical to a method call, object access remains consistent

Furthermore, if the user decides at a later stage to implement the query QsjulJ,

is_empfJ} using methods instead of 'instance variables', the supporting code

used to access an instance of the flfo class is not required to be updated since

the calls will be identical.

The use of three distinct encapsulation kinds in the proposed extension has

added benefits during the inheritance process. By specifying if an 'instance

private. public or restricted, the class designer has

full control over what should and what should not be present in a derived

child class. This inheritance control is similar to what is found in the

Objective VHDL extension. However, the distinction between a public type

and a restricted type in the proposed extension offers further levels of

flexibility. This distinction will be detailed during the study of inheritance

across proposed extensions.

129

In addition to the limits encountered in the defInition of encapsulation in

SUAVE/Oldenburg and Objective VHDL, these proposals rely on a

confusing and over complicated data hiding mechanism. The encapsulation

mechanism found relies on a standard VHDL package-body 'like' hiding

mechanism. The standard VHDL language defmes that declarations made at

the package-body level are only visible within the package that declares them.

This defInition has an important role in the context of the separation of

VHDL's primary and secondary design units and design units' compilation

rules. Pragmatically this rule allows a designer to make changes to the content

of a package-body, without having to recompile any other design units that

might be referencing the altered package. The VHDL language permits this

since the content of the package body is hidden from the rest of the design.

Although, this is a complex encapsulation mechanism. it is justifIed by the

existence of two separate design units (primary and secondary). However, the

complexity involved in the use of a similar mechanism in SUAVE and

Objective VHDL is not justifIed. In SUAVE, the new package ADT is no

longer a design unit hence will not be compiled on its own if the package has

been declared as part of an architecture declarative part. Consequently the

need for a distinct package-body for implementing parts of an ADT is over

complex and irrelevant It can be assumed that this package-header/ package­

body split has been kept in SUAVE to resemble the original standard VHDL

package construct at the expense of conciseness. Furthermore the SUAVE

extension adds extra overlap in the VHDL language by declaring a private

part of a package-header. From these observations we conclude that the use

of the package construct and encapsulation mechanism does not represent a

suitable implementation of an ADT.

Unlike the SUAVE/Oldenburg extensions, Objective VHDL relies on a new

ADT construct. However, the encapsulation mechanism Is still similar to the

SUAVE proposal with the distinction between a header and a body part of a

non-design unit. For the same reasons developed for the SUAVE proposal

130

we do not believe that this represent a useful complication of the VHDL

language.

4.3.5 Inheritance

Single inheritance and method overloading are provided in all the proposed

extensions; however. multiple inheritance is only present in our proposed

extension. The discussions over the benefits of single versus multiple

inheritance are beyond the scope of this study. Nevertheless. we believe that

the use of multiple inheritance in conjunction with flexible mapping

mechanisms. offers designers a higher level of reuse than the one achieved

through single inheritance. To highlight the benefits of using multiple

inheritance. we will use a simple case study. The study assumes the existence

of the class structure in Figure 4-17:

ReQ'ister

Restricted Value: biCvector

Public Reset

Public Read

Public Write

./

I
~PUbIiC ~PUbIiC

Counter Shifl.register

Public Is_empty: boolean

Public Count public Is_full: boolean

Public ShifUeft

Public Shifl.right

Figure 4-17. Example Class Structure.

131

The case study also assumes that the designer is required to create a new class

called Add_shift The Add_shift class is an aggregation of both. a counter and

a shift register functionaIities and should contain the methods and instance

variables shown in Figure 4-18:

/

restricted Value: bievector
Public Is_empty: boolean

public Reset

public Read

public Load

public Count

public Shift

Figure 4-18. Example Add_shift Class.

Using the proposed extension. the creation of such a class requires the

inheritance of the two existing classes counter and shifcregister. However, a

number of elements of the inherited classes are not needed by the Add_shift

class; furthermore. some of the inherited methods require different names. As

a result, the undesired elements should be hidden from the user and the

methods with different identifiers should be renamed. The code in Figure 4­

19 illustrates the implementation of the Add_shift class using our proposed
extension:

132

type add_shift is class use (public COUNTER,
restricted shift_register) is

feature map (WRITE => LOAD,
is_empty -> public is_empty;
shift_left -> public shift);

begin
end class add_shift;

t'lgure 4-HI. t'eature Mappmg mour t'ropOSal.

In Figure 4-19. add_shift is created from a public inheritance of the counter class

and a restricted inheritance of the shifCregister class. Since both the counter and

shiftJegister class come from the same origin (register class), all common

features are collapsed into single elements. The merging of common features

insures the availability of only one version of: value, read, write and reset inside

the add_shift class. Furthermore. the language extension dermes that the

encapsulation kind with the highest visibility (publii) is chosen for collapsed

features. Thus, the collapsed methods read, write and reset will be publicly

visible due to the inheritance encapsulation kind of the counterclass.

The inheritance encapsulation kind for the two parent classes. was chosen

according the required features in the add_shift class. A public inheritance of

the counter class insures the visibility and inheritance of all the public and

restricted features of that class. A restricted inheritance of the shifcregister class.

sets the default encapsulation kind of all public features of that class to be

restricted in the derived add_shift class. This allows the features isjull, is_empty.

shift_right and shifUeftto be hidden in the add_shiftclass.

The feature map construct in this example. is used for two purposes: name

mapping and encapsulation kind overwrite. The name mapping is used to

rename both write and shifUeft into load and shift respectively. In addition. the

keyword public is used in front of shift and is_empty in order to overwrite the

133

default encapsulation kind, set by the restricted inheritance kind of the

shifCregister class.

The implementation of the same add_shift class with the SUAVE/Oldenburg

and Objective VHDL extensions would present a number of problems. Due

to their lack of support for multiple inheritance, the designer would have to

select a unique parent and add manually the missing code required for the full

implementation of the add_shift class. This will lead to code redundancy hence

making the design more error prone and less maintainable. Furthermore the

SUAVE/Oldenburg and Objective VHDL extensions support a limited

encapsulation mechanism which does not allow them to adapt inherited

features to the needs of the child class. In contrast, the proposed extension

implements a feature mapping mechanism This makes the ability to hide,

make visible, or rename features before and after inheritance a simple and

flexible process. The example in Figure 4-20 illustrates an implementation of

the add_shift class using the SUAVE/Oldenburg proposals.

134

package add_shift is
type add shift t is new counter t with record

is_empty: boolean; -
end record;
procedure load(value : inout add_shift_t;

value in : in bit vector) ;
procedure shift(value : inout add shift t;

value_in : in bit:vecto~) ;
procedure empty(value : inout add_shift_t;

value_out : out boolean) ;
end package add_shift;

package body add_shift is
procedure load(value : inout add_shift t;

value_in : in bit_vector) is
-- some code

end procedure load;
procedure shift(value : inout add shift t;

value_in in bit:vecto~) is
-- some code

end procedure shift;
procedure empty(value : inout add shift t;

value_out : out boolean} is
-- some code

end procedure empty;
end package add_shift;

Some of the limits of the SUAVE/Oldenburg extensions inheritance/

encapsulation mechanisms are demonstrated in Figure 4-20. Since the

shifcregister class could not be inherited at the same time as the counter class,

the shift procedure had to be re-implemented in the add_shift class. The load

procedure has been created to conform to the specifications. However, with

this implementation, both the newly defmed load procedure and the inherited

write procedure will exist inside the add_shift class and have the same

behaviour. Another limitation found in the SUAVE/Oldenburg extension is

the non-ability to mix encapsulation kinds within the class's data structure.

For this reason we had to create a procedure empty to access to the new private

instance variable is_empty.

135

The example in Figure 4-21 demonstrates similar limitations found with the

Objective VHDL proposal.

type add_shift is new class counter with
class attribute is empty: boolean;
procedure load(value in : bit vector);
procedure shift(value_in : bit_vector);
function empty return boolean;

end class add_shift;
type add_shift is class body

procedure load(value_in : bit_vector) is
-- some code

end procedure load;
procedure shift(value_in : bit_vector) is

-- some code
end procedure shift;
function empty return boolean is

-- some code
end function empty;

end class body add_shift;

Figure 4-21. Inheritance Limits in Objective VHDL.

The Objective VHDL implementation has similar limitations to the

SUAVE/Oldenburg extensions. The class attribute is_empty and the

procedure shift were created due to the lack of multiple inheritance support.

The load procedure was created to conform to the class's specifications:

however. since feature mapping is not allowed in Objective VHDL, the write

procedure inherited from the counter class becomes redundant in the add_shift

class. As with the SUAVE/Oldenburg example. the function empty had to be

built to allow access to the is_emptyclass attribute.

Along with multiple inheritance. our proposed extension supports repeated

inheritance. Repeated inheritance occurs whenever (as a result of multiple

inheritance), two or more ancestors of a class have a common parent This

class is often called a repeated descendant. Figure 4-22 (Left) shows a

repeated inheritance for an hand-bell counter.

136

Bounded
Counter

HandBeli
Counter

Up
Counter

Counter

Complex
Counter

Down
Counter

Figure 4.22. Repeated Inheritance for an Hand-bell Counter.

This simple form is called repeated inheritance and corresponds to the case

when the hand-bell counter is a repeated child of the bounded counter. Another

form of repeated inheritance is shown in Figure 4-22 (Right) in which the

parent UpCounter of ComplexCounter is a proper descendant of the Counter class

and one or more other parents (such as the DownCounter are descendants of

the Counter class. With repeated inheritance. in our extension. if no feature

mapping is performed. the multiple inherited features are merged in a single

one.

Repeated inheritance is not supported by any of the other proposed

extensions.

137

4.3.6 Instantiation

The instantiation ofa class's object is a requirement to the implementation of

an object-oriented extension to the VHDL programming language. However.

the realisation of object's instantiation varies significantly between both the

SUAVE/Oldenburg and Objective VHDL proposals. when compared to our

extension. With the SUAVE/Oldenburg and Objective VHDL. signals.

variables and constants are used for the creation of a class instance (object)

whereas. our proposed extension, promotes the creation of a new VHDL

building element. the 'object'. The examples in Figure 4-23 and Figure 4:.24

demonstrate the instantiation of objects in the three proposals:

architecture rtl of edge is
signal countl : counter;

begin
process

variable fifol : fifo;
begin

-- some code
end process;

end rtl;

. nstantiation m

architecture rtl of edge is
object countl : counter;

begin
process

object fifol : fifo;
begin

-- some code
end process;

end rtl;

.t'lgure 4-l4. UbJect InstantiatiOn mour t'ropOSal.

There are numerous considerations in the choice of a mechanism for

implementing classes instantiations (objects). The selection of one

138

implementation over another depends on the means defmed within the

language extension for accessing an object

Pragmatically. objects can be considered as resources that can be queried or

altered by a client. This is implemented by most programming language via

two kind of resources: constants and variables. Both kinds carry mechanisms

used to read and assign values; specifically, constant can only be read and

variable can be read as well as altered without any notion of time delay.

Nevertheless, due to its concurrent and sequential nature. the VHDL

language has to feature a new kind of assignment mechanism, which allows

the description of deterministic concurrent assignments. Consequently. the

signal kind was created to implement anon-blocking assignment mechanism.

The existence of the blocking and non-blocking assignment mechanisms

inside the VHDL language is a determining factor in the creation of a class

instance (object). The proposed instantiation mechanislTlS in both

SUAVE/Oldenburg and Objective VHDL is identical. Objects in those two

proposals can be accessed in a blocking or non-blocking fashion depending

on the kind of declaration used (signal, variable or constant). The figure 4.23

illustrates the declaration of an object using a signal; therefore this implies that

the •counted' object can only be assigned using a non-blocking assignment

style. Similarly, if the designer needs to access to an object using a blocking

assignment style. the declaration of this object should be of the variable kind.

This implementation of object declaration represents a compromise between

minimal language change and a flexible object-oriented extension to VHDL.

From the two existing kinds of assignment in the VHDL language, we argue

that only the blocking kind is useful for the implementation of class instance.

For that reason our proposed extension only features one kind of element

akin to the VHDL'93 shared variable.

139

Although the use of signals for implementing object updates through a non­

blocking mechanism is a sensible approach. we do not believe that the

complexity of the non-blocking mechanism brings any significant benefits

over the use of blocking assignments in the context of an object oriented
extension.

In a non object oriented version of the VHDL language. non-blocking

assignments are used for conveying information between concurrently

interacting processes or entities (ports) in a deterministic way. This

mechanism was introduced to VHDL in order to overcome the phenomenon

of HDL race found in languages such as Verilog. A HDL race condition

occurs on a shared resource when two distinct values are assigned (blocking

assignment) at the same simulation time (eg.25 ns) but on different delta

cycles. The end result is non-deterministic since the order in which the two

assignments are performed can not be established. Unlike the blocking

assignment, non-blocking assignments will always guarantee a deterministic

value on a common resource according to the output ofaresolution function

An example of the behaviour of blocking assignments is shown in Figure 4­
25:

data <= datal when enl ~ '1' else 'Z';
data <= data2 when en2 = '1' else 'Z';

Figure 4-25. Multiple Drivers Assignment in VHDL.

140

In this example. the common resource 'data' is of a resolved type such as

stdJogic. Nevertheless. aside from this application. hardware resources are

never accessed (written to) by multiple concurrent processes. This rule is

dictated by safe design practice as well as synthesis tools restrictions. Figure 4­

26 and Figure 4-27 demonstrate improper and proper VHDL descriptions for
a counter.

process (reset)
begin

if reset = '1' then
count <= 0;

end if;
end process;

process (elk)
begin

if clk • '1' then
count <= count + 1;

end if;
end process;

Figure 4-26. Improper Description ofa Counter.

process (elk, reset)
begin

if reset = '1' then
count <= 0;

e1sif clk'event and clk • '1' then
count <= count +1;

end if;
end process;

Figure 4-27. Proper Description ofa Counter.

141

Although syntactically correct, the solution shown in Figure 4-26 cannot be

exploited as, the style used in this example Figure 4-26 will be regarded as

non-deterministic and will not be accepted by synthesis tools. This is due to

the two processes are concurrently accessing acommon resource count.

Since coding styles based on concurrent non-blocking assignments are

forbidden in a VHDL design flow, we argue that objects should not be

accessed (written too) by multiple concurrent processes in order to avoid

non-deterministic behaviours.

Unlike non-blocking assignments, the creation of a class instance through a

variable-like (blocking) declaration is supported by all proposals. The

SUAVE/Oldenburg and Objective VHDL variable declarations and visibility

scopes are restricted to the process. With our proposed extension, object

declaration is permitted at the package, architecture, block, and process level,

hence giving a greater variation in accessibility scopes. However, unlike

VHDL 'shared variables', objects do not support multiple concurrent access

(writing) to their 'instance variables'. As demonstrated, the need for multiple

instantiation mechanisms found in SUAVE/Oldenburg and Objective

VHDL (signal, variable and constant) is not justified. A single and versatile

new mechanism provides a more suitable solution to object instantiation in an

object-oriented extension to VHDL.

Besides static objects, the instantiation of dynamically allocated objects is

implemented in all proposals through the use ofVHDLaccess types.

4.3.7 Initialisation

Objective VHDL and our proposed extension allow class attribute

initialisation. This follows the VHDL standard initialisation mechanism being

either "(type'left) " or a user defmed value. Nevertheless our proposed

extension supports a more sophisticated initialisation mechanism with creator

methods. Creator methods use the same names as the class that defmes them.

142

A creator method can be overloaded and will be executed at elaboration time.

The argument for more advanced initialisation mechanisms is based on the

potential complexity of object-oriented data structures in comparison to the

VHDL scalar or composite types.

Unlike Objective VHDL or our proposed extension, the SUAVE/Oldenburg

extensions does not support user defined initialisation.

4.3.8 Assignment and Controlling Copying

All proposals support deep copy. The Shallow copy is implemented in both

SUAVE and our proposed extension; however, the Objective VHDL

proposal allows the overloading of objects' operators.

Object assignments are also supported by all proposals providing the

assignments comply with the inheritance rules for implementing dynamic

types. With the SUAVE/Oldenburg and Objective VHDL proposals, object

assignment follows VHDL's signals, variables and constant mechanisms.

With the proposed extension, only one mechanism is used: '=='. This

assignment assigns references to objects as opposed to the object themselves.

4.3.9 Aggregation

Object aggregation is supported equally in all the proposed extensions.

Classes are permitted to declare instance variables of other class types.

4.3.10 Method Invocation

Method invocation has been implemented differently in SUAVE/Oldenburg,

Objective VHDL and our proposed extension.

The implementation of methods in SUAVE/Oldenburg relies on VHDL's

subprograms. Consequently, method invocation in those proposals is in effect

a VHDL subprogram call. Although this mechanism provides a solution to

message passing, we argue that this style is not a practical implementation of

message passing in an Object-Oriented programming language. Most OOPLs

143

aside from ADA 95, implement message passing through the use of the 'dot'

notation. This notation is consistent and permits the use of a method call

either as a statement or as an expression; this represents a significant

advantage as detailed in section 3.2.11. The subprogram style of message

passing forces the class designer to take decisions regarding the nature of

message calls: either statements (procedures) or expressions (functions).

Unlike method calls using the 'dot' notation, once the style of subprogram

message call is set, the given message will only be used following the chosen

defInition style.

In addition to the restricted use of subprogram calls, the SUAVE/Oldenburg

proposal requires the destination object for a call, to be passed as an inaul

actual parameter. Although this style follows VHDL's semantics, it represents

a cumbersome implementation. Lastly, the SUAVE/Oldenburg

implementation of message passing violates the VHDL LRM defInition for

the formal parameter class (fIle, signal, variable, constant). This is due to the

fact that the SUAVE/Oldenburg proposals allow the creation of variable,

signal and constant objects. To fIx this violation, the VHDL language would

have to be modifIed to allow the sub-programs parameter classes (signal,

constant, and variable) to be part of the selection mechanism during

overloading. Figure 4-28 illustrates message passing with the

SUAVE/Oldenburg proposals.

144

package reg is
type reg_t is tagged record

value: std logic vector(7 downto 0);
end record reg- t; -
procedure write (signal val: !nout fifo_t;

signal elk: in std logic;
value in : in std logic) ;

function read(signal val: inout fifo_t)
return std logic;

end package reg_t; -

architecture rt1 of sample is
signal reg_l: reg_t;

begin
write (reg_l, clock, 33); -- statement style
out_a <z '1' when read (reg_1) = 10 -- expression style

else '0'
-- more code

Figure 4-28. Message Passing in SUAVE/Oldenburg.

The Objective VHDL solution to message passing resembles the

SUAVE/Oldenburg insofar that it uses sub-program calIs. However. this

proposal relies on the 'dot' notation to associate the target object with a

message. Although this style is more suited for the implementation of an

Object-Oriented message mechanism. the use of sub-program calls as

statements or expressions restricts the message passing abilities of the

proposed extension. Furthermore. to support the use of different object

implementations (signals. variables. constants), the Objective VHDL proposal

requires the building of a complex object configuration mechanism. This

configuration mechanism defines the behaviour of methods according to the

object declaration (signal, variable and constant). This creates a significant

amount ofcode redundancy for the creation ofaversatile class.

The example in Figure 4-29 demonstrates the use ofmessage passing with the

Objective VHDL proposal.

145

type reg is class
class attribute value: std_logic_vector(7 downto 0);
for signal

procedure write(signal elk: in std_logic;
value_in: in std_logic);

function read return std logic;
end for; -

end class reg;

architecture rtl of sample is
signal reg_l: reg;

begin
reg_l.write(elock, 33); -- statement style
out_a <= '1' when reg_l.read = 10 -- expression style

else '0'
-- more code

end rtl;

Figure 4-29. Message Passing in Objective VHDL.

Unlike SUAVE/Oldenburg or Objective VHDL. our proposed extension

implements a truly Object-Oriented-like message call mechanism. This is

achieved by using a newly defmed method mechanism as opposed to VHDL

sub-programs. This style enables us to create flexible method calls that do not

need to be identified and previously defined as statements or procedures.

Method calls are used as both statements and expressions on a single type of

element: the object Unlike the SUAVE/Oldenburg or Objective VHDL

proposals. the use of a unified object mechanism instead of signals. variables

and constants largely simplifies the creation of methods. No special

configuration or complex and redundant overloading operation is required for

the use of objects through message passing. Furthermore. our proposed

extension defines two kinds of message calls: blocking and non-blocking.

These call variations present a significant modelling advantage over other

proposed extensions (as detailed in section 3.3.3). This mechanism is

borrowed from the Verilog world and enables sequential activities to be

146

spawned in parallel as well as sequentially. An example of message passing

with our proposed extension is given in Figure 4·30.

type reg is class
instance variable value : std_logic_vector(7 downto 0);
method write (signal elk: in std logic;

value_in: in std_logic);
method read return std_logic;

end class reg;

architecture rtl of sample is
object reg_l: reg;

begin
reg l.write(clock, 33); -- statement style
out:a <= '1' when reg_l.read • 10 -- expression style

else '0'
-- more code

end rtl;

t'lgure h~U. Message t'assmg mour t'roposea .tXlenslon.

4.3.11 Polymorphism/Dynamic Types

All proposed extensions support polymorphism. The SUAVE/Oldenburg

and Objective VHDL. require the defInition of signals. variables, constants or

parameters of class wide types. With our proposed extension. no specifIc

indications are required for implementing aclass-wide type.

Errors regarding dynamic type mismatches will occur during run time for all
proposed extensions.

4.3.12 Generidty.

All proposals implement class genericity. The SUAVE proposal allows

creation of generic types as well as generic constants. Generic types are akin

to c++ templates and can be seen as a signifIcant benefIt for the creation of

reusable classes. However. we do not feel that such a mechanism is suited for

a strongly typed language such as VHDL. The use of template-like

mechanisms might compromise the type system of the language and confuse
the language users.

147

4.4 Conclusions

This chapter has defmed the approach taken by the main OOVHDL

proposals. It highlighted the strengths and weaknesses of the languages

through examples based on applications and suggested novel mechanisms to

tackle modelling issues not supported by current extensions. A number of

conclusions can be drawn from this assessment. Although all proposals are

implementing the language design requirements specified by the IEEE

OOVHDL study group. the implementation choices have a significant effect

on the usability of the different proposals. The SUAVE/Oldenburg proposals

require a minimum number of syntactic constructs to implement a form of

Object-Orientation. However. the support is minimal: dynamic typing and

single inheritance. Furthermore we demonstrated that the choice of existing

VHDL constructs (packages. sub-programs. signals. constants) was

inadequate. Such constructs added an overlap with the existing VHDL

mechanisms as well as restricting the implementation of Object-Orientation

inside VHDL. The Objective VHDL solution takes a more pragmatic

approach to the implementation of an OOVHDL. The creation of a new

ADT gives an advantage to this solution over the SUAVE/Oldenburg

proposals. However although this proposal demonstrates a level of

independence from the ADA95. it still relies on non adapted mechanisms for

object implementations. Furthermore. like the SUAVE/Oldenburg proposals

no class adaptation mechanisms are provided in Objective VHDL. Our

proposed extension has shown its superiority in terms of language integration

and Object-Orientation implementation. In our proposal. further mechanisms

are provided to implement encapsulation control, multiple inheritance, run

time validity checking. feature mapping. and dynamic typing.

148

Chapter 5.

CASE STUDY: THE EDGE FILTER DESIGN

5.1 Introduction.

This chapter docwnents a test case object-oriented VHDL model. designed

to include the characteristics found in a typical hardware design.

The test case implements an Edge Filtering image processing function on a

raster scan input image. using 3X3 pixel masks. This chapter contains an

overview of the Edge Filtering function; defIDes the partitioning of the design

and includes adescription of the supporting class structure implementation. It

concludes with a discussion of the benefits of using object-oriented VHDL

models compared to equivalent standard VHDL models.

5.2 Overview of Function.

An Edge Filter is an Image Processing function which identifies the edges of

objects within an image. where the image is defIDed in terms of a pixel array

of intensity values. An object within the image is defIDed as an area of pixels

with little variation in intensity. Edges of objects are represented by pixels

with a wide variation in intensity. and the direction of the object edge is

perpendicular to the direction of intensity variation.

The operation of the edge filter circuit chosen is summarised below. A more

detailed description is given in (IEEE 1982).

The edge strength for each pixel is calculated by comparison with all adjacent

pixels in the image using a 3X3-pixel mask. Mask coefficients determine the

contribution ofeach pixel to the central pixel's edge strength. i.e.

149

c-l c c+l

r-l

r

r+l

a b c

d e f

g h i

For a particular pixel (c.r), the edge strength is given by:

E(c.r) = [a x P(c-l. r-l) + b x P(c, r-l) + c xP(c+l. r-l) +
dx P(c-l. r) + ex P(c. r) + fx P(c+l. r) +
gx P(c-l, r+l) + h x P(c. r+l)+ i x P(c+l, r+l)] / j

Where 'a' to 'i' are mask coefficients, 'j' is the mask divisor, and P&e.y) are

pixel intensities in the adjacent rows and columns to the current pixel.

Two masks are used to detect edges in the West/East direction (WE) and in

the North/South direction (NS) using the following coefficients.

-I -2 -I

0 0 0

1 2 1

NS edge mask

For both masks, the mask divisor is 4.

-I 0 1

-2 0 2

-I 0 1

WE edge mask

These masks serve to fIlter out low variations of intensity over the pixel area

covered by the mask. The greater the intensity variation in the direction

covered by the mask. the greater the edge strength generated by the mask.

Each mask (WE, NS) generates edge strengths for each pixel location. The

strength can be either positive or negative depending on the direction of

increasing intensity for the edge. The absolute value of edge strengths is

150

compared to a threshold. The binary result of the comparison signifies the

presence of an edge on either the NS, WE or both directions of the image.

5.3 Filter External Interface.

enable
wr nrd

data io(1S:0)
""·n,

ack
1

seene(7:0) ifelk

fs
EdQe FilterIs

rp~pt
edge

elk
edQe_fsc1k4

Figure 5-1. Edge Filter Top Level.

Image intensity data is input as an 8-bit unsigned bit vector (scene) in a raster

scan format, synchronised to a pixel clock (elk). Also synchronised to the

pixel clock are single bit frame (fs) and line sync as) inputs for the image data,

and a quad-speed clock (clk4). A reset input bit is also used (reset).

Binary edge data (edge) is output in a raster scan format. together with a
single bit frame sync output (edge_fs) which is set for the last pixel edge data

in a frame. The edge data can be read out in short bursts (one line maximum)

at a higher rate than the pixel clock. An output status bit (fIfo_empty) is

cleared when edge data is available for output.

Information is written to and read from the filter via a bi-directional 16-bit

databus (data_io), using a 3-bit address input (address) to access internal

registers and aread/write input bit (wcnrd) to control dataflow direction. An

151

input interface enable bit (enable) and an output acknowledge bit (ack) are

used to synchronise input and output of data. A separate clock (ifclk) is

required by the interface.

5.4 Filter Partitioning.

Figure 5-2. Edge Filter Decomposition.

The filter is partitioned into a mask block. a threshold and an interface block

as shown in Figure 5.2. The partitioning of the filter is based on functional

decomposition. This style of decomposition is the most commonly used in

VLSI design and was chosen to illustrate how the proposed semantic

improvements can be beneficial when used in typical VHDL based designs.

Alternatively. a completely object oriented design decomposition could be

used; however. we do not believe that this would be a pragmatic approach to

aRegister Transfer Level style of design.

SA.l Mult-Mask.

This block implements the two 3X3 pixel mask fllters and two Line Store

FIFO's. The block contains two instances of a mask model (NS Mask. WE

Mask) and two instances of a generic FIFO model (Line Store). The FIFO's

152

are required to store the pixel intensity data from previous image lines for the

top and middle rows of the mask fllters.

Mult Mask also contains a small state machine which uses the frame and line

sync inputs to synchronise the Edge Filter to the start of a new frame after

reset, and to generate new frame and result blanking signals for the output

data. Result blanking sets the mask result data to a default value over areas of

the image where not all the mask data is valid. e.g. the fIrst two lines of an

image where the top and middle rows of the mask do not contain current

image data.

5.4.1.1 Mask blocks (wemask, nsmask).

too in(7:Q)

middle in(7:0)

bottom in(7:0) MASK mask out(15:0)

reset
elk
elk3

Figure 5-3. Mult-Mask Top Level.

The Mask block inputs 8-bit intensity data from the external data input and

from both Line Store FIFO's and it shifts each data input through a register

bank representing the three rows and three columns of the mask. On each

shift, the mask will multiply each mask location by the appropriate coeffIcient

and sum the results.

153

5.4.1.2 Line Store.

wr data(7:0)

reset L1NESTORE rd data(7:0)

Is elk

Figure 5-4. Line-Store Top Level.

Each Line Store is a FIFO based on a RAM with eight-bit words for the

intensity data and six. bit addresses representing the maximum image length

allowable.

5.4.2 Threshold Multiplexor.

threshold(14:0)
data sel(1 :0)

ns result(14:0) average(14:0)

we result(14:0)
Threshold mux bit

reset MUltiplexor
frame syne

elk
new frame

Figure 5-5. Threshold Multiplexor Top Level.

This block converts the 15 bit unsigned edge strength data, from the two

mask filters, into a single binary output bit. Both mask results are compared

to a threshold value to convert them into binary. The specific binary data to

be output is determined by the 2-bit data_sellnput according to the following

table:

154

data_sel Output comment

01 NS NS (row) edges

10 WE WE (column) edges

11 NSORWE row and column edges

00 NSANDWE "diagonal" edges

Table 5-1. Threshold Decoding Table Top Level.

This block also contains an "averager" function. which calculates a running

average of the IS-bit edge strength data from the masks. The averager uses

data_sel to determine which mask output to average. i.e. if only one of the

mask outputs is selected. the averager only uses that output. Ifboth masks are

selected, the largest edge strength is used. In all cases. zero edge strengths are

ignored to avoid skewing the average result In a real application. average

infonnation would be important in deciding asuitable value for the threshold.

The threshold and data select values are written into the filter via a

microprocessor interface. The running average value is read out via the

microprocessor interface.

155

5.4.3 Interface.

averaae(14:Q) enable.. . A·m wr nrd
data sel(1 :0) Interface data io(15:0)

address(2:Q)
reset ack
ifclk

Figure 5-6. Interface Top Level.

The interface handles read and write cycles initiated by the asynchronous

microprocessor interface bus. There are two write and one read cycle

operations as follows:

cycle Data address Databus bits

write Threshold 010 oto 14

Data select 001 Oto 1

read Average 100 Oto 14

Table 5-2. Detail of Wnte and Read Operations.

All input/output data communication is with the threshold multiplexor block.

Interface must detect read or write cycle initiation on the microprocessor

interface and input or output data as required using the acknowledge output.

5.4.4 RAM

156

:0

RAM

we
we c

Figure 5-7. RAM Top Level.

The RAM is a synchronous memory. with registered address lines. Two

separate data ports are used for reading from and writing to the RAM block.

The RAM block is used as part of the Line Store block for implementing a

line FIFO. Two RAM blocks are used in the Edge Filter design for the

storing the top and middle lines.

5.4.5 RAM Write

clk4

RAM Write

Figure 5-8. Ram Write Top Level.

The RAM-write block produces the write enabling signals for the FIFO

RAMs.

157

The Filter Core module connects all the sub-components of the Edge Filter

Design.

5.5 Supporting Class Structure

In order to create the edge filter design. a generic class structure was created

(see Appendix B.l). The initial classes were made as abstract as possible. to

allow the class structure to grow as new objects were created during the

building of the edge filter sub-blocks. Generic parameters and virtual classes

were used for this purpose.

158

5.5.1 Storage Element

Storage Element

Generic: Width
Value: Value_t

Read
Write(Value_in)

The storage element class is the base element of the class structure. It was

decided to use the stdJogic_vector type for the value instance variable. The

integer type would have been more suited for most arithmetic operations,

however using the Synopsys 'std_Iogic_unsigned' package

(www.synopsys.com) compensates for the limitations of VHDL's vector

arithmetic. A subtype valuet was created to simplify the sizing of the value

instance variable throughout the entire class tree. The Generic parameter depth

is used to set the dimension of value and provide a flexible data structure for

the class.

Two methods were created a read and write method both publicly accessible.

The read method only returns the content of the instance variable value. The

write method changes the content of the instance variable value. The default

mode of operation for both read and write was set to be asynchronous to allow

the definition of classes that feature both asynchronous and an asynchronous

behaviour later in the design stage.

159

5.5.2 Synchronous Storage Element

/ SyncSE

GlobalCLK

Write(Valuejn)

The derived synchronous storage element class is a small variation of the

previous class. This time the write method has been overloaded to provide a

synchronous version. The inherited write method was mapped into a new

name: writCasync; this will protect from ambiguities in the two styles of

operations. The global element elk was created to allow the visibility of a

common control signal throughout all the subsequently derived classes.

Although the use of a global element can be seen as a violation of the

encapsulation principle; pragmatically when modelling hardware modules,

synchronisation signals are often required and do not represent information

(part of the data flow) as such. For this reason, control and synchronisation

signals should be declared as global.

5.5.3 Shift Register

Shift Register

The virtual class shift register is one of the variations of the syncse class. This

class only defmes one virtual method shift. The method is said to be virtual

since its implementation will be defined in later classes. The shift register class

will be used in designs where late binding is required.

160

5.5.4 Shift Right Logic & Shift Left Logic

Shift Left Logic Shift Right Logic

Both classes are derived from the virtual shift register class. The two classes
are defmed since they both implement their own version of the virtual shift

method defined in their parent class.

5.5.5 Counter

Counter

Generic Terminal_Count

Count

The virtual counterclass is derived from the synchronous storage element This class

defmes a virtual method countas well as a generic parameter terminal_count The

generic will be used to set the top boundary for the counter.

5.5.6 Up Counter & Down Counter

Down

Count

Up Counter

Count

The two classes up counter and down counter are derived from the virtual counter

class; Both classes implement variations of the virtual count method.

161

5.5.7 Up-Down Counter

F
Up Down Counter

Up_Counter.Count => CounCUp
Down_Counter.Count => CounCDown

The up down counter class is derived from both the up counter and down counter

classes. The method map construct was used to map the count method of both

parent classes into a count,up and count,down method. The remaining elements

of both classes are merged into unique elements inside the up down counter

class. No code is required for the creation of this class since all the required

functionality is already inherited from both parents.

5.5.8 Register Array

Generic: Depth

Read(Address)
Write(Value_in)
Write_Async ryalue_in)
Write(Address)

The register array class is based on the synchronous element class: it defines a new

generic parameter: depth. In addition, the class redefmes all the inherited

methods as well as the instance variable value. The value instance variable is

dermed as an array of stdJogic_vector of dimensions width*depth The

Mite_asJ7lcmethod will asynchronously write its formal parameter (value_~ to

162

all locations of the array. The write method is overloaded and can

synchronously either fill the array with the value of its formal parameter or

write a single element by using the address formal parameter. The read method

performs a read at a defmed location of the array. The register array class

should be used to model a synchronous RAM or a register bank.

Although this class redefmes all of its inherited properties. it is still useful to

categorise it as a child of the synchronous storage element class since they

share common behaviours such as the synchronous and asynchronous write.

5.5.9 Queue

Queue

Push(Value_in)
Read

The virtual queue class is derived from the register array class; it defmes two

virtual methods: push and read. The two methods were identified as common

to most queues regardless of their implementations. The queue class will only

be used in designs to promote late binding and polymorphism.

5.5.10 First In First Out (FIFO)

FIFO

Push(Value_in)
Read

The fifo class is a child of the queue class. It defmes the implementation of

both push and read methods. The push method will write sequentially the

163

formal parameter valuCin to the value array. The read method will extract the

fIrst value WIitten to the value array and point to the next element in the

sequence.

Two instance variables isjulJ and is_empty have been declared. These two

public variables are used as flags to display the fifo scurrent status. The user of

the FIFO class can directly interrogate (no method calls needed) the fifo status

by reading the values of those two flags.

The fifo uses an up_doWILcounter object to implement the address pointer. This

dependence is represented in the class structure diagram by a connection line

ended by a circle.

5.6 Edge Filter implementation

5.6.1 Mult Mask

Division of the sum of the mask coeffIcient and pixel intensity products by

the mask divisor is carried out in this model.

Two objects of the shift left logic class are used in the process data_reg for

creating alatency of two clock cycles on the two signals ls_s)71cand Is_sync.

The two objects are defmed with a generic set to 2and a global connection to

the dk signal. The initialisation of the objects is done asynchronously on the

reset signal. The shift operation is done synchronously on the edge of the

signal dk Two concurrent method calls Oast two statements) continuously

update the value of the ls_s)71cand fs_s)71c signals.

5.6.2 Mask Blocks (NS mask, WE mask)

The masks must carry out nine multiplications and sum nine results within a

single clock period In order to save on arithmetical resources, the calculation

is carried out over three clock periods using a quad-speed clock elk4. with a

specifIc phase relationship to the input data clock elk The mask calculation is

164

carried out on three banks of three 8 bit registers. The register banks are

implemented as FIFO objects ofsize 3*8 bits namely: top, mid and bot

The three FIFOS are gathered into an array (fifo_arm» to facilitate global

operations. The process mask_shift resets the FIFOs asynchronously on the

reset signal. The reset operation is done globally by sending the write_async

request to the fifo_array. Furthermore, the masJcshift process updates the

contents of the top. mid and bot FIFOs on an edge of the dk signal.

The content of the three FIFOs is read inside the calcomb process in order to

perform the required arithmetic operations. Although a normal FIFO would

only allow read access to its fIrst element, in our case, the DIo class is derived

from the register arrayclass which permits access to its elements by providing

an address.

5.6.3 Line Store

A dual port RAM is used for the FIFO. An output from the RAM Write

block is used as the RAM write-enable. Read and write pointers are set one line

length apart on reset, and increment on the positive and negative edges

respectively of the pixel clock, wrapping to zero at the end of the line. The

two counters (rd_ptr, wcpti) are implemented using instances of the up counter

class. The global elk signals are mapped to the signals Is_elk and noUs_dk

respectively. This allows the counter to increment their value on the negative

and positive edges of the ls_dk signal. The two counters have been aggregated

into a counter array add...,ptr to facilitate the execution of common operations.

The process 'read_wite_pointer' asynchronously resets the counters on the

reset signal and increments them on a change of the ls_dk signal. The internal

values of the two counters are then multiplexed into the inLad (memory

address) signal depending on the value of the ls_elksignal.

5.6.4 Threshold Multiplexor

The threshold and multiplexor functions are straightforward. The averager

function is slightly more complicated, since three separate comparison

165

operations are required. Inequality comparators check NS and WE edge

strengths are not equal to zero, and a "less than" comparator checks if NS

edge strength is greater than WE. No objects were used in this block since the

functionality implemented is very specific and cannot benefit from the use of

predefmed classes.

5.6.5 Interface

Interface uses a clock input (ifcm to synchronise the read/write cycle

operations. Address, read/write enable, and the databus are registered on the

falling edge ofenable The registered data, plus enable, are then synchronised to

the clock using double registers to avoid meta-stability problems. The

interface clock is not assumed to be synchronous to the input data pixel

clock, so the average data input from the threshold multiplexor block is

double registered to the interface clock at the inputs. The interface block

defmes three fifo objects for the address, data and average In addition, two shift

register objects for the write and enable signals are declared. Both the fifo and shift

register objects are used to introduce a latency of two clock cycles into the data

path. The process syncreg resets all the objects synchronously and updates

their value on a positive edge of the elk signal. A number of intermediate

signals (wm: date2, addr2 and enable) have been declared to facilitate access to

objects' content Concurrent assignments are made to the intermediate signals

at the beginning of the architecture block; this allows access to part of the

signals (slices ofan array) when needed by the rest of the design.

5.6.6 RAM Write

The RAM Write module relies on a Gray counter active on elk4. The WT..pulse

is created by combining two bits of the counter's output. This

implementation did not require the use of any objects.

166

5.6.7 RAM

The RAM block uses a clocked process to synchronise the reading and

writing to the signal elk The Register Array object is used to implement the

RAM. Additional statements are used to enable the writing operations using

the we signal.

5.7 Comparative Study

This study compares the implementation of the same edge fllter design using

both, the proposed object-oriented extension and standard RTL VHDL. This

analysis highlights the differences in terms of number of lines of code per

process as well as an estimate of the amount of code reuse in the object­

oriented version of the design. Both design fIles can be found in Appendix B.

From a fIrst look at the comparative table. it can be seen that some modules

benefIt more than others from the use of the proposed semantics extension.

Modules with a small number of statements such as: Filter Core. RAM Write

and RAM do not show improvements in terms of number of lines.

Depending on their application specificity, those modules are either almost

completely created from reusable code (RAM) or not at all. This result is to be

expected of any higher-level design method. Similar results can be observed

when comparing the building of low level gate primitives such as a

multiplexor at both the transistor level and the gate level. Remarkably.

although it would require more silicon to construct a multiplexor using a

higher level modelling method (OUT = INl AND NOT SELECT OR

IN2 AND SELEC'I). with the proposed object-oriented models. no

additional implementation effort (aside from the building of the original class

structure) is required.

Modules ofa larger size have a more varied level of code reuse. The Line Store

module has the highest level of reuse amongst large size modules. This level

of reuse is due to efficient use of object instances, polymorphism and a low

level of application specific code. In this example the number of sequential

167

statements is lowered by 60 percent. However, the number of concurrent

statements has slightly increased in order to implement the polymorphism

(array of counters).

In contrast, the level of reuse in the MuIt Mask module is limited. This is the

result of the high level of specificity of that module.

Similarly, the Thresholdmodule is specific to the Edge Filter design and cannot

benefit from the use of generic objects.

The remaining modules: Interface, WE Mask and NS Mask use an estimated 30

percent of reused code. This is an expected level of reuse for less application­

specific modules. When the object oriented extensions to the semantics are

used, a 30 to 50 percent code reduction is observed at the process level.

However, the number of concurrent statements is constantly higher when

using the new semantics. This increase in the number of concurrent

statements is due to the use of temporary signals to access objects' instance

variables. This can be easily avoided by changing the encapsulation control of

instance variables from restricted to public Although the change of

encapsulation level would represent the simplest solution to instance variable

access, this would go against the principle of data hiding.

Looking at the overall design, the size of the version using the proposed

semantic enhancements has been reduced by 11 percent Although this

represents a smaIl improvement in terms of numbers of lines of code, 22

percent of the code needed for the creation of the object-oriented version of

the design is made of reusable components. This suggests a faster design

capture and a higher level of reliability.

168

Module Standard VHDL 00 Extension Reuse (%)

13Maskshift

Concurrent

Maskshift 27

Concurrent 0

ns_complete 15 15

we_complete 15 15

state_reg 11 11

state_assign 58 58

data_reg 25 21

Concurrent 5 9

Averager 27 27

ConCregs 16 16

Thresh_reg 23 23

169

Concurrent 4

Table 5-3. Case Study Comparative Table.

5.8 Conclusions

This design study compared two functionally identical implementations of a

moderately complex design using both the standard VHDL RTL style and

our proposed object-oriented semantic extensions. This design represented a

real example and contained a balanced amount of control logic and data path

logic.

From the functional decomposition. basic building blocks were identified. A

class structure was created to support the requirements of the Edge Filter

design. The design of the class structure was a top-down and bottom up

process. Numerous virtual classes were created to facilitate inheritance and

promote the use of polymorphism and late binding. The depth of the class

tree was voluntarily kept to a maximum of 4. so as to ease the use of the

classes. After the creation of the design. a comparative study was carried out

to highlight the strengths and weaknesses of the proposed extension. The

study has shown that the benefits of using an object oriented implementation

170

depends greatly on the level of specificity ofa given module. For the example

chosen. a 30 to 50 percent code reduction was achieved at the process level.

In addition. the amount of reused code reached 22 percent on the overall

design. Consequently. this study demonstrated the benefits of the enhanced

semantics in terms of faster design capture. better reliability and reduced

verification effort

The calculation of the given reuse figure was derived from the count of the

. number of both sequential and concurrent statements imide the standard

VHDL deScription as well as the Object-oriented description. This study did

not consider the creation of the test harness. Nevertheless. due to the

behavioural nature of a VHDL simulation test harness. similar or further

levels of reuse are expected. The creation of classes of pattern generators such

as preset, random. sequential or file-based could be envisaged. Furthermore

existing objects created for the edge filter design may also be used in the

creation ofa complex test harness.

171

Chapter 6.

PREPROCESSOR DESIGN

6.1 Introduction

A number of small test cases were developed during elaboration of the

Object-oriented VHDL semantics. These test cases were validated by

manually translating Object-oriented VHDL code into standard VHDL then

simulating the results using generic VHDL simulators. Although this

translation process was suffident for validating individual test cases. it soon

became apparent that the creation of an automated translation mechanism or

·pre-processor" was required for larger projects. The development of the pre­

processor is described in this appendix. The semantics for the proposed

extension presented in this appendix use an earlier style used during the

refmement process of the fmal language extension. However. the translation

mechanism presented can equally be applied the latest version of the language
extension.

6.2 Requirements

Since VHDL is a platform and tool independent language. the manual

translation of Object-oriented VHDL to standard VHDL produced code

suitable for any standard VHDL simulator. However, the choice of operating

system and development language used for the pre-processor limited its

portability. Since IBM sponsored this research project. there was a

requirement for the pre-processor to be executable on RS6000 workstations.

using the AIX (UNIX like) operating system. Nevertheless. since the

accessibility of RS6000 workstation is scarce in the engineering world. the

pre-processor also had to be developed on SUN and Hewlett Packard

workstations. A PC (LlNUX) based version of the pre-processor was also

created at a later stage. The UNIX based development tools were: GNU C,

172

Dupllcate DesIgn
Unlts & Generate

Output Files
3

(f)lex • (b}yacc and sed. Lex and Yacc were used for the creation of the

scanner and parser part of the pre-processor. GNU C was used for the

creation of the object-oriented to standard VHDL translator. Sed was used

for text fIle processing and fonnatting.

6.3 System Design

The functions required by the pre-processor can be split into three categories:

1. Creation of the abstract syntax tree (treebuild.Iex. treebuild.yacc.

treebuild.c).

2. Extraction/Creation ofsupporting design units (fIle_handling.c).

3. Fonnatting of the original code into standard VHDL code (process.c.

top.c).

The activities are summarised in Figure 6-1.

ObJect-Ortented VHDL File

~

r-==-l ~
~ L!-J
l/ l/ 1

Abstract Translated
Syntax Tree DesIgn Units ~

Standard VHCL Result Files

Figure 6-1. Operation of Pre-Processor

173

6.4 Specification of the Translation Mechanism

The main issue in the design of the pre-processor was the creation of human

readable standard VHDL code. The results found from the language study

(detailed in chapter 2) were used and expanded for the creation of the
translator part of the pre-processor.

In order to implement classes, VHDL packages were used. Methods were

translated into procedures whose visibility depended on their encapsulation

(Public/private/restricted). Similarly. "shared variables" were used to

implement the class's instance variables. Figures 6-1 and 6-2 illustrate the

translation mechanism for a basic class.

class SHIFT REG is
type vector is array (9 downto 0) of integer;
value : vector;

begin
public method reset is
begin

value :~ (others -> 0);
end method reset;

public method shift(signal clk: bit; value_in: integer);

public method read return vector is
begin

return value;
end method read;
end class SHIFT_REG;

Figure 6-2. Class Declaration

174

package shift_reg is
type vector is array (9 downto 0) of integer;
shared variable value: vector;

procedure reset;
procedure read (return_l : out vector);

package body shift_reg is

procedure reset is
begin

value :c (others => 0);
end reset;

procedure read(return 1 : out vector) is
begin -

return l:c value;
end read; -

t'lgure b-J. "lranslated versIOn otthe Class l)eclaration.

The translation of a derived class requires information to be collected from

the parents' classes (multiple inheritance). The translation is done according

to the encapsulation attribute of the inherited items, as well as the type of

inheritance specified. Furthermore, due to the mapping capabilities defmed in

the extension. the translator has to perform a number of name changes and

merging (instance variables, methods. etc.) in the derived class. These changes

are done according to the mappings formally specified. Table 6-1 summarises

the translation process according to the encapsulation attribute and the type
of inheritance.

175

:nheritance Type
capsulation Type Public Private Restricted
blic PH/PB PB PB
Ivate PB PB PB
~tricted PB PB PB

Table 6-1. Translation Process According to Inherited Attributes

PH: Signifies the declaration of the translated element in the Package Header.

PB: Signifies the declaration of the translated element in the Package Body.

In the proposed extension, the inherited code from parent classes does not

physically appear in a child class. However, when the translation of a child

class is performed, all the code required for the creation of the corresponding

standard VHDL package is required. This explains why, elements of private

and restricted encapsulation type have to be copied to the package bodies

after an inheritance takes place. The translation of a derived class is shown in

Figures 6-46-5.

class ShiftRightReg use public shift reg is
begin -
public method shift(signal elk: bit; value_in: integer) is
begin

if elk'event and elk='l' then
value := value_in & value (9 downto 1);

end if;
end method shift;
end class ShiftRightReg;

Figure 6-4. Child Class of the 'shift_reg' Class.

The VHDL language reference manual (DASC 1993) specifies that a package

is shared across the design units that declare it. Consequently, for a number of

objects N of a given class declared inside a design, there shouJd be N

different instances of the same package defined. The translator gathers th

176

I
I

I

I

I

I

I

I

!
I
I

I
I

I

I

I

I
I

number of objects of the same class from the abstract syntax tree. As a result,

separate copies of the original package are created. each with a unique name.

package shiftrightreg is
type vector is array (9 downto 0) of integer;
shared variable value: vector;
procedure shift(signal clk: bit; value_in: integer);
procedure reset;
procedure read(return 2 : out vector);

end shiftrightreg; -

package body shiftrightreg is
procedure shift(signal elk: bit; value_in: integer) is
begin

if clk'event and clk-'l' then
value :- value_in & value (9 downto 1);

end if;
end shift;

procedure reset is
begin

value :- (others -> 0);
end reset;

procedure read(return 2 : out vector) is
begin -

return 2:- value;
end read; -

end shiftrightreg;

l'lgure 0-0. Translated VersIon or a ChIld lAass.

The last step of the translation consists in converting object-oriented method

calls to standard VHDL procedure calIs. Once the translation is performed.

the remaining Starldard VHDL code is appended to the translated code.

An example of object use is shown in Figure 6-6.

177

process
variable temp: integer :- 33;

begin
shift_regl.reset;
shift reg2.reset;
shift:reg3.reset;
eounterl.reset;
wait for 30 ns;
for i in 0 to 3 loop

wait until elk~ '1';
shift_regl.shift(clk, 10);
eounterl.eount;

end loop;
-- temp :- shift_regl.read;
shift_reg2.shift(clk, temp);
shift_reg3.ShiftRight(clk, temp);
wait until elk = '1';
shift reg3.ShiftLeft(clk, temp);
wait for 20 ns;

end process;

Figure 6-6. Object-Oriented Method Calls.

process
variable temp: integer :_ 33;

begin
work.shift regl.reset;
work.shift:reg2.reset;
work.shift reg3.reset;
work.counterl.reset;
wait for 30 ns;
for i in 0 to 3 loop

wait until c1k- '1';
work.shift regl.shift(elk, 10);
work.eounter1.eount;

end loop;
-- work.shift_reg1.read(temp);
work.shift_reg2.shift(elk, temp);
work.shift reg3.shiftright(clk, temp);
wait until-elk - '1';
work.shift_reg3.shiftleft(elk, temp);
wait for 20 n8;

end process;

Figure 6-7. Translation for Method Calls.

178

6.5 Full Application Example

This example features all of the mechanisms presented in this section. A base

class 'shift_reg' is declared with two defined methods: 'reset' and 'read' and a

virtual method 'shift'. Two classes are directly derived from the virtual class

'shift_reg', namely: 'ShiftRightReg' and 'ShiftLeftReg'. These two child classes

defme the virtual method 'shift' inherited for the 'shift_reg' class. Two

additional child classes are defined: 'Counter' and 'BidirShiftReg' using single

and multiple inheritance respectively. In addition to multiple inheritance, the

'BidirShiftReg' class illustrates the feature-mapping mechanism.

In this example, four different objects are declared. The declared objects are

then used in a process to illustrate different method call styles.

The following code shows both the original Object-Oriented code and the

translated version

The Original Object-Oriented Code is shown in figure 6-8.

179

entity my_design is
end my_design;

architecture 00 of my_design is

class SHIFT REG is
type vector is array (9 downto 0) of integer;
value : vector;

begin

public method reset is
begin

value :- (others -> 0);
end method reset;

public method shift(signal elk: bit; value_in: integer);

public method read return vector is
begin

return value;
end method read;

end class SHIFT_REG;

class ShiftRightReg use public shift_reg is
begin

public method shift(signal elk: bit; value_in: integer) is
begin

if elk'event and elk.'l' then
value :. value_in & value(9 downto 1);

end if;
end method shift;

end class ShiftRightReg;

class ShiftLeftReg use public shift_reg is
begin

public method shift(signal elk: bit; value_in: integer) is
begin

if elk'event and elk.'l' then
value :- value(S downto 0) &value_in;

end if;
end method shift;

end class ShiftLeftReg;

180

I

I

I

I

I

I

i
I

r

I

I
I
I

class counter use public shiftrightreg is
begin

public method count is
begin

for i in 0 to 7 loop
value (i) :- value(i) + 1;

end loop;
end method count;

end class counter;

class BidirShiftReg use public ShiftRightReg, public ShiftLeftReg
is

generic (delay: time :- 3 ns);
method map (Shift of ShiftRightReg -> ShiftRight;

Shift of ShiftLeftReg -> ShiftLeft);
begin

-- no delta coding required
end class BidirShiftReg;

Objects declaration using CLASS types and generic maps.

object shift_regl
object shift reg2
object shift:reg3
object counterl :

ShiftRightReg;
ShiftLeftReg;
BidirShiftReg;

counter;

Signals declaration.

signal clk: bit:_ '0';

begin

clk <- not clk after 10 ns;

181

process
variable temp: integer :- 33;

begin
shift regl.reset;
shift=reg2.reset;
shift reg3.reset;
counterl.reset;
wait for 30 ns;
for i in 0 to 3 loop

wait until clk- '1';
shift regl.shiftCelk, 10);
eounterl.eount;

end loop;

-- temp :- shift_regl.read;
shift reg2.shiftCelk, temp);
shift:reg3.ShiftRightCelk, temp);
wait until elk _ '1';
shift_reg3.ShiftLeftCelk, temp);
wait for 20 ns;

end process;
end 00;

Figure 6-8. Object-Oriented Version of the Example.

The translated version of the ShiftRightReg is shown in figure 6-9.

182

package shift_regl is

type vector is array (9 downto 0) of integer;
shared variable value: vector;

procedure shift(signal elk: bit; value_in: integer);
procedure reset;
procedure read(return_2 : out vector);

package body shift_regl 18

procedure shift(signal clk: bit value_in: integer) is
begin

if clk'event and clk-'l' then
value :- value_in & value(9 downto 1);

end if;
end shift;

procedure reset is
begin

value :- (others _> 0);
end reset;

procedure read(return_2 out vector) is
begin

return 2:- value;
end read; -

end shift_regl;

Figure 6-9. Translated Version of the ShiftRightReg.

The translated version ofthe ShifLLefReg is shown in Figure 6-10.

183

package shift_reg2 is

type vector is array (9 downto 0) of integer;
shared variable value: vector;

procedure
procedure
procedure

shift(signal clk: bit; value_in: integer);
reset;
read(return_3 : out vector);

package body shift_reg2 is

procedure shift(signal c1k: bit value_in: integer) is
begin

if c1k'event and clk-'l' then
value :_ value(S downto 0) & value_in;

end if;
end shift;

procedure reset is
begin

value :- (others -> 0);
end reset;

procedure read(return_3 : out vector) is
begin

return 3:- value;
end read; -

Figure 6-10. Translated Version of the ShiftLeftReg.

The translated version of the BidirShiftReg is shown in figure 6-11.

184

package shift_reg3 is

type vector is array (9 downto 0) of integer;
constant delay: time;
shared variable value: vector;

procedure shiftright(signal elk: bit; value_in: integer);
procedure reset;
procedure read(return_5 : out vector);
procedure shiftleft(signal elk: bit; value_in: integer);

package body shift_reg3 is

constant delay: time : .. 3 ns;
procedure shiftright(signal elk: bit

is
value_in: integer)

begin
if clk'event and elk.. 'l' then

value :a value_in & value (9 downto 1);
end if;

end shiftright;

procedure reset is
begin

value :- (others a> 0);
end reset;

procedure read(return_S out vector) is
begin

return 5: .. value;
end read; -

procedure shiftleft(signal elk: bit value_in: integer) i.
begin

if clk'event and clk.'l' then
value:. value(S downto 0) & value_in;

end if;
end shiftleft;

Figure 6-11. Translated Version of the BidirShiftReg.

The translated version of the Counter is given in figure 6-12.

185

package counterl is

type vector is array (9 downto 0) of integer;
shared variable value vector;

procedure
procedure
procedure
procedure

end counterl;

count;
shift(signal clk: bit; value_in: integer);
reset;
read (return_4 : out vector);

package body counterl is

procedure count is
begin

for i in 0 to 7 loop
value (i) :- value(i) + 1;

end loop;
end count;

procedure shift(signal clk: bit value_in: integer) is
begin

if clk'event and clk='l' then
value :_ value_in & value (9 downto 1);

end if;
end shift;

procedure reset is
begin

value :- (others -> 0);
end reset;

procedure read(return_4
begin

return 4:- value;
end read; -

end counterl;

out vector) is

Figure 6-12. Translated Version of the Counter.

186

6.6 Conclusions

A demonstration pre-processor that runs on SUN. HP, RS6000 and LINUX

workstations has been developed. This enables larger Object-Oriented

VHDL descriptions to be validated in an automated way. The Object­

Oriented constructs supported by the pre-processor, are limited to the

capabilities of the Standard VHDL language. As a result. the pre-processor

does not support polymorphism.

Further work should concentrate on creating a full compiler and simulator to

enable the demonstration of all proposed enhancements

187

Chapter 7

OVERALL CONCLUSIONS AND RECOMMENDATION FOR

FURTHER WORK

The aim of this research project was to demonstrate the benefits of applying

Object-Orientation to HDL based design and to propose a new hardware

description language semantics based on inheritance, encapsulation and late

binding. To validate this methodology a pre-processor was created and

applications were developed.

A study of design techniques used for the creation of large hardware devices

was carried out It revealed that although design methods evolved to cope

with the ever-growing level of complexity of silicon chips a design

methodology that focuses on aspects such as reusability and maintainability

had yet to be introduced to the hardware design world. The latest design­

capture methods use hardware description languages created from software

languages such as Cor ADA. As a result, a number of approaches for tackling

reusability and maintainability in software programming languages were

identified and further researched. These included the use and extension of

composite data structures to create higher-level data abstraction. This

approach was selected as a base for the creation of a new Objet-Oriented
hardware description language semantics.

The existence and wide support for the VHDL hardware description

languages in the EDA industry lead us to consider this language for the

creation of an Object-Oriented hardware description language.

In order to limit the impact on existing designs and minimise the changes to

the VHDL semantics, the VHDL language and its use to achieve higher levels

ofabstraction was studied.

188

Various means for achieving data abstraction with the VHDL language were

found. It was detennined that the 'component', 'block' and 'package' syntactic

constructs can be suitable for implementing abstract data types when used in

specific ways.

The VHDL 'component', although considered as the most obvious

mechanism for promoting object abstraction, was also proven to be the least

well suited due to its encapsulation limits. Using 'block' statements for

building of ADTs is particularly suitable for architecture level reuse, however,

our study highlighted that blocks have a very limited accessibility scope since

they are not classified as VHDL design units. This led us to consider other

available syntactic constructs such as the VHDL 'package'. The package

proved to outperform the other solutions when comparing the building of

abstract components. We demonstrated that the use of packages allowed

loose data-function binding. In addition, unlike components, packages

provided a way to reach higher levels of abstraction through the separation of

declarations in both the package header and the package body. We concluded

that when used as abstract data types, packages represented the only

substantial option for implementing an Object-Oriented-like hardware

description as part of an overall object-based design methodology.

Nevertheless the use of packages when considering inheritance has proven

unsuccessful. Implementing Object-Orientation concepts such as

encapsulation and inheritance with packages could only be achieved at the

expense of code clarity. This meant compromising the concept of

maintainability to the benefit of reusability.

It was demonstrated that forms of 'binding' could only be achieved in

standard VHDL through the use of the configuration mechanism. As a

language requirement, all VHDL design units have to be elaborated before

any simulation run. Consequently, it was found that configuration only

represented a static version of polymorphism and could not serve the full

189

purpose of a true Object-Oriented abstract data type. Mter study and

comparison of available standard VHDL constructs, it was decided that new

abstract data typing abilities were required to be added to the VHDL language

to provide full Object-Orientation support.

From the study of the VHDL language and the requirement list set by the
IEEE OOVHDL Study Group, we derived an extension to the language.

A new-referenced type 'class', was created to implement flexible abstract data

typing. It differed from the basic VHDL types in the sense that, an object

declared ofa referenced type did not represent a value of type but a reference

to an object containing a value. Operations on this object were defmed as part

of the properties of the referenced type. The class semantics were deliberately

made similar to those for a package. However, from the conclusions drawn in

chapter 2 it was decided not to make the class a design unit but rather a

composite type. The proposed ADT supported genericity, feature mapping,

virtual defmition, three encapsulation levels and contract based

communications support. Message passing was implemented though method

calls. Methods were designed to resemble VHDL subprograms and hence

supported sequential statements as well as blocking and non-blocking calls.

This last feature proved to be particularly useful for modelling object activities

for both the sequential and the concurrent mode. Furthermore. an extra set of

attributes was added to the language to provide for better documentation.

Late binding support on the newly created ADT was added to the language,

backed up by a selective multiple inheritance mechanism. Selective multiple

inheritance was chosen to enable better control over encapsulation of derived

features.

The new semantic for our proposed extension was evaluated by comparing it

to other existing proposals. A set of benchmarks derived from the design

objectives was used to that effect. Our study showed that our semantic

190

presented a clearer and more versatile implementation of Object-Orientation.

Inheritance was restricted to single in the VISTA, Oldenburg. SUAVE. and

Objective VHDL proposals and did not offer mapping capabilities.

Encapsulation was only of public or private mode in the other competing

proposals. hence demonstrating a weaker support for derivation operations.

No contract based communication mechanisms were implemented outside

our proposed extension.

In order to highlight the benefits of our proposed extension when compared

the standard VHDL code. we implemented a complex case study. The chosen

design was implemented using both VHDL and the proposed extension to

the language. This study demonstrated an average of 22 % gain in

productivity achieved with our proposal through design reuse.

A demonstration pre-processor that ran on SUN. RS6000. HP and Linux

environments was created to validate the semantics and test their

performance. This·enabled our Object-Oriented description to be tested via

conventional VHDL simulators. The generated code used shared variables

and packages (ADT form) as core syntactic constructs. Consequently, the

resulting VHDL code could not be synthesised. This however did. not

diminish the level of achievement since the main objective of this research

was to demonstrate the benefits of an Object-Oriented hardware description

language for addressing design maintainability and reusability issues. Late

binding could not be implemented due to the existing VHDL simulator

limitations.

A number of recommendations for future enhancements have been made.

Key recommendations include the development of classes of components

inspired from the Ubrary Parameterisable Modules standard. to promote

design reuse. An Object-Oriented VHDL to C or C++ pre-processor would

have to be created to allow a more seamless integration of the proposed

extension with commercial simulators and the implementation of full

191

polymorphism. Mechanisms such as the PLI (programming Language

Interface) or the foreign code interface would provide the required platform

for such integration

The emerging Dynamically Re-configurable Field Programmable Gate Array

devices represent another area of applications. Due the nature of dynamically

re-configurable FPGA, a hardware programming language providing dynamic

allocation of hardware components (referred as objects) represents the ideal

design approach. As a result further research is required on the creation of

synthesis algorithms that will exploit scheduling and automatic resources

sharing on dynamic hardware logic blocks.

Results from this research have been published at five international

conference proceedings and presented to the IEEE OOVHDL study group.

Furthermore, the research community has acknowledged this work though

numerous references to our publications. As a longer-term goal. the

recognition of the proposed extension by the IEEE Design Automation

Standardisation Committee would represent the acceptance by the hardware

design world of an alternative and better-suited design methodology to cope

with large sub-micron VLSI chip designs. This thesis document is already

being examined by the Cadence EDA research group and will be submitted

to the IEEE DASC for review.

192

REFERENCES

Armstrong, R M. (1994). "Uses and abuses of inheritance:, Software
EngineeringUanuary 1994), pp 19-26.

Ashenden P., Wilsey P., (1997). ·SUAVE: Painless Extension for an Object­
Oriented VHDL. ", VIUF Fall 97 Conference, pp 60-67.

Ashenden P., Wilsey P., (1998). "SUAVE: Extending VHDL to Improve
Data Modelling Support. ", IEEE Design and Test of Computers 1998 ,
VoI.15, no 2, pp 34-44.

Ashenden P., Wilsey P., (1998.2). "SUAVE: Object-Oriented and Generidty
Extensions to VHDL for High-Level Modelin{ pp 34-41.

Atkinson, C. (1990). "DRAGOON: An Object-Oriented Notations
supporting the reuse and distribution of ADA software." ADA Letters X(9):
50-59.

Bakowski, J. C. (1992). "System performance modelling with the functional
scheme on VHDL. ", Microprocessing, Microprogramming Conference 1992,
pp 23-36.

Barbacci (1981). "Syntax and semantics of CHDLs:, IFIP Computer
hardware description languages and their applications, pp 243-257.

Berger, W. N., et al. (1995). "Requirements and design objectives for an
Object-Oriented extension of VHDL ", IEEE Object-Oriented VHDL Study
Group (http://vhdl.org).

Booch, G. (1991). "Object-Oriented design with applications. ", Benjamin!
Cummings.

Cabanis D., Medhat S. (1995). "Object-Orientation Applied to VHDL
DeSCriptions. ", VIUF Spring 95 Conference pp. 3.9-3.15.

Cabanis D., Medhat S. (1996). "Object-Orientated Extensions to VHDL: The
Classification Orientation. ", SIG-VHDL Spring 96, pp 9-19.

Cabanis D., Medhat S. (1996). "Classification-Orientation for VHDL: A
Specification. ", VIUF Spring 96 Conference pp.265-274.

Cabanis D., Medhat S. (1996). "Perspectives of Object-Oriented Technology
Arplied to Hardware Description Language Based Designs. ", Proceedings of
3' International Conference on Concurrent Engineering and Electronic
Design Automation, Poole, UK Jan 18-191996, pp.448-453.

193

Cabanis D. (1997) MProposed Object-Oriented Extensions to VHDL."
Report Version 1.0, Bournemouth University available by email at
dcabanis@cadence.com.

Cabanis D., Meclhat S. (1997) MFrom Structured to Object-Oriented Design
Methods" VIUF spring 1997, pp 5.11-5.22.

Cargill, T. (1991). ·Controversy: The case against multiple inheritance in
, Computing System 4(1), pp 69-83.

Chu (1965). MAn algol like computer design language.", ACM 1965 pp 3.10­
3.25.

Chu, H. C. (1993). MAn executable specification language for mixed timing
control circuits. ", CHDLand their applications, IFIP, pp 96-103.

Coad, E. Y. (1991). MObject-Oriented analysis", 2nd Edition, Prentice HaIl.

Coen-Porisini, A. M. (1991). "Specification and verification of hardware
systems using the temporal logic language TRIO.", CHDL and their
applications IFIP, pp 27-39.

Covnot, D. H., S. Swang (1994). "OOVHDL-An Object-Oriented VHDL." ,
VIUF'94, pp 126-135.

Cox, B. (1990). ·Planning the software industrial revolution.", IEEE
Software, pp 25-33.

Cyre (1989). "Towards synthesis from English descriptions.", 26th
ACWIEEE Design Automation Conference, pp 5.22-5.35.

Dahl, K. N. (1966). ·Simula - an algol based simulation language." ACM
9(9), pp 671-672.

DASC, 1. (1993). "IEEE Standard VHDL Language Reference Manual",
IEEE Std 1076-1993, IEEE Publications.

Dargupta (1981). "S*A: a language for describing computer architectures.",
5th International conference on CHDI.. pp 151-159.

Douglas, D. (1994). "Object-Oriented extensions to VHDL.", VIUF'94 Fall,
pp 4.43-4.51.

Duley, D. D. (1968). MA digital system design language.", IEEE transactions
on computer(September), pp 12.21-12.37.

194

Ecker, W. (1996). "An Object-Oriented view of structural VHDL
descriptions.", VIUF'96 Spring. pp 178-190.

Ellens. A (1994). "Object-Oriented Software Development.". Addison­
Wesley.

Faura.]. M. e. a. (1997). "VHDL modelling of fast dynamic reconfiguration
on novel multi-context RAM based field programmable devices.", VIUF
Europe '97, Toledo. Spain pp 34-46.

GIWlZ. W. (1998). "Integrating SDL VHDL for system hardware design.",
CHDL and their applications IFIP 1998. pp 7.41-7.56.

Goldberg. D. R (1989). ·SmaIltaIk-80: the language its implementation. "
Reading. MA.

Gourgand, S. N. (1993). "Petri net based technology for task scheduling on
.Simulations(September). pp 67-80.

Harel (1987). "STATECHARTS: a virtual formalism for complex systems.",
Science of computer programming. North Holland pp 6.9-6.21.

Kartsu (1991). "UDL/I standardisation effort another approach to HDL
standard. ". Euro ASIC'91, pp 173-182.

Keating. P. B. (1998). "Reuse Methodology Manual for System on a Chip
Design", KAP Publications.

Khoshafian (1989). "Concepts, Languages. Data Bases. User Interfaces.",
New York. wiley.

Kumar.]. A, et al. (1993). "A framework for hardware/software co-design."
IEEE Computer(December) pp 9.37-9.50.

Kurup. T. A, et al, (1998). "It's the methodology stupid", Bytek Designs, inc.

Lahitis, M. S., et al, (1991). "SADE: A graphical tool for VHDL based on
system analysis. ", ICCAD'91, pp 59-70.

Lanffy. 1. V. (1968). "General system theory, foundation. development,
applications.", New York. G. Braziller Publishing.

Leung (1979). "ADL an architecture description language for packet
communication systems.", 4th International Symposium on computer
hardware description languages, pp 4.93-4.104.

195

Lieber herr. S. K. (198!). "ZEUS: an hardware description language.". 5th
international conference on CHDL. pp 3.59-3.71.

IEEE: Patern Recognition and Image Processing (1982). IEEE Publications
ISBN 9993772313

Mammen. W. T. (1994). "Object-Oriented macro-modelling of analogue
devices.", CEEDA'94. pp 342-354.

Meyer, B. (1992). "Eiffel: The language", Prentice. Hall.

Mills. M. (1993). "Programming Enhancements to the very high speed
integrated circuit hardware description language". Wright Laboratory. can be
obtained at http://vhdl.org.

Morison, N. P. (1985). "The design rational ELLA. a hardware description
language.". 7th international conference on CHDL, pp 4.45-4.57.

Muller. W. (1990). "ODICE: Object-Oriented hardware descriptions in CAD
environment ". CHDL and their applications. IFIP. pp 2.12-2.26.

Nelson, G. M. (1992). "Concurrent Object-Oriented programming in classic
•ACM Letters XII(5), pp 77-81.

Nixon. S. W. (1986). "A micro architecture description language for
retargetting fIrmware tools.". 19th Annual workshop on programming pp
231-243.

Oczko. A. (1990). "Hardware design with VHDL at a very high level
abstraction. ", European conference on VHDL methods, pp 127-136.

OOVHDL Study Group. O. S. (1995). "Participation in the defInition of
needs and requirements and analysis of existing proposals in the defInition of
Object-Oriented extensions to VHDL", IEEE DASC can be obtained at
http://vhdl.org.

Pawlak. J. j. (1981). "MODLAND a language for multi-level description and
modelling of digital systems.", 5th international conference on CHDL 1981,
pp 6.12-6.24.

Pawlak, A. (1987). "Modem Object-Oriented programming language as an
HDL." CHDLs and their applications. IFIP pp 4.45-4.57.

Perry. D. (1992). "Applying Object-Oriented techniques to VHDL." ,
VIUF'92 Springpp 191- 200.

196

Ramesh, C. (1994). "Object-Orienting VHDL for component modelling."
VIUF'94 Fall, pp 198-211.

Radetzki. M • Putzke W. (1997) "Objective VHDL Language DefInition".
OFFIS Research Institute, Oldenburg, Germany, REQUEST Deliverable 2.1
A (http://eis.informatik.uni-oldenburg.de/research/objective_vhdl.shtml.

Radetzki M, Putzke W, Nebel W. Maginot S, Berge j-M, Targant (1997.2) A.
"VHDL Language Extensions to Support Abstraction and Reuse.".
Proceedings of Workshop on Libraries. Component Modelling and Quality
Assurance, Toledo, Spain 1997 pp 17-30.

Rosenberg, j. (1994). Hardware acceleration using cache logic FPGAs. Silicon
Design Show. can be obtained at http://www.atmel.com.

Seidewitz, E. (1991). MObject-Oriented programming through type extension
in ADA (X.r. ADA Letters XI(2) pp86-97.

Shelor, C. (1994). MNew philosophy aids shift from schematic-based to HDL-
Publication pp 119-124.

Shumacher. W. N. (1995). "Inheritance concept for signals in Object­
Oriented Extensions to VHDL.". Euro-DAC'95, IEEE Computer Society
Press pp 2.12-2.23.

Shumacher, W. N.• W. Putzke. M. Wilmes (1996). "Applying Object-Oriented
techniques to hardware modelling-A case study." VHDL-Forum for CAD in
Europe / Sig VHDL spring pp 211-223.

Smith, R G. (1986). "Technology transfer between. VLSI design and
software engineering: CAD tools and design methodologies." Proceedings of
the IEEE 74(6) pp 875-885.

Taft, S. T. (1993). "ADA 9X: From abstraction-oriented to object-oriented.".
OOPSLA'93. pp 64-75.

Takeuchi, A. (1981). "Object-Oriented description environment for computer
hardware." Computer hardware description languages and their applications,
IFIP. pp 3.21-3.35.

Vahid, S. N. (1991). "SpecChart: A language for system level synthesis.".
CHDL and their applications, IFIP pp 6.42-6.54.

Vasilko, D. C. (1999). "A technique for modelling dynamic reconfIguration
with improved simulation accuracy." IEICE Transactions, pp 77-90.

197

Vista OOVHDL Language reference (1994.2), IEEE RASSP Technical
report, can be obtained at http://www.vhdl.org.

Vista (1994). "OOVHDL: Object-Oriented Extensions for VHDL", IEEE
DAC 1994 pp 33-41.

Waldo,]. (1991). ·Controversy: The case for multiple inheritance in C++."
Computing systems 4(2) pp 157-171.

Willis. j. (1994). "A proposal for minimally extend VHDL to achieve data
encapsulation, late binding and inheritance.· VIUF Fall, pp 118-131.

Wirth, N. (1998). "Hardware Compilation Translating Programs into
Circuits." IEEE ComputerUune 1998). pp 25-31.

Xilinx (1997). "Xilinx XC6200 field programmable gate array. advanced
product informations version 1.8", can be obtained at
http://www.xilinx.com.

Zippelius. M. G. (1992). "An Object-Oriented extension ofVHDL." VHDL
Forum Europe Spring pp 212-224.

198

.....
<D
<D

S.....gc Element "'" I It I.A I'l, .A PI"

Oe....r. "'~d1b --('o-u....,.<-.."--- .
V.klt; Valuc_' R.g~ter A'lIy

Oo"eric Tenui"ol_('olll'
Rud ~mlc:~lh

Wrile_,,")'II<{Voh.._in) COIIIII . V.hle: V.III._'
\. RoadIAd<hs_)

1 I Wrile(V••,ejn) : .
I'IJb I PI" 1 I'Ilb Wr~e_,,"ync(V.b.oJ.l

__...L~__ A Wr~e(Addrm)

SyneSH OownComter IIpColll'er '- .-__"

~~ 1
Wrilt(Valuc_in) . ('01111 CoII,,1 I'IJb

I 1 1 I Queue:. ..
I'IJb Pub ..1 Pub 1'",h\Vable_hl)

Slit Rtgislcr Up 00';'.,. 011111I«R_cod_.,.__-'

Up_CoUlter.CoUll-;> COIIILUp 1
00'''1 Coult,r.CoI". -> CO.1l1 Oo"'n

ShiA(V.k1fJnl - . - I'IJb

I AmI I'IJ& ,lPub I I-....:....:....:...._....:....~

Shift Lei Lo,ie Sh.ft R.,bt Lo'le P"'h(V.lue.Jn)
Re.ad

S..t(Value_.... ShifllV.lllaJn)

~
~

> tJ
'0 ­'0 X

Cl> >5. ..
x· tr:l
> tJ
I GJ
~ tr:l
tr:l "r1
p,. ­OQ l'
Cl> t-1
"r1 tr:l
~ ::=t'
Cl> til
'"t c::
Q ""Cl
'" ""Cl
~ 0
g Ej
~ Z
E; GJ
Cl> n

~
til
tr:l
til

Appendix A-2. Class Structure Code

library IEEE;
use IEEE.STD LOGIC 1164.all;
use IEEE.STD:LOGIC:UNSIGNED.all;

type STORAGE_ELEMENT is class
generic (DEPTH: integer := 1);
subtype VALUE_T is std_logic_vector (DEPTH-1 downto

0) ;
begin

method READ return VALUE T;
method WRITE {VALUE IN : VALUE T);

end class STORAGE_ELEMENT; -

type SYNC_SE is class use (public STORAGE_ELEMENT)
interface (CLK : std_logic);
feature map (WRITE -> WRITE ASYNC) ;

begin -
method WRITE (VALUE IN : VALUE T);

end class SYN_SE; - -

type SHIF_REGISTER is class use (public SYNC_SE)
begin

• method SHIFT{VALUE IN : std logic);
end class SHIFT_REGISTER; -

type SHIFT RIGHT LOGIC is class use (public
SHIFT REGISTER) -

begin
method SHIFT{VALUE IN : std logic);

end class SHIFT_RIGHT:LOGIC; -

type SHIFT LEFT LOGIC is class use public SHIFT_REGISTER
begin - -

method SHIFT{VALUE_IN : std_logic);
end class SHIFT_LEFT_LOGIC;

type COUNTER is class use (public SYNC_SE)
generic {TERMINAL COUNT VALUE T :- (others -> '1'»;

begin - -
method COUNT;

end class COUNTER;

type UP COUNTER is class use (public COUNTER)
begin -

method COUNT;
end class UP_COUNTER;

type DOWN COUNTER is class use {public COUNTER)
begin -

method COUNT;

200

end class DOWN_COUNTER;

type UP_DOWN_COUNTER is class use (public UP_COUNTER,
public DOWN COUNTER)

feature map (COUNT of UP_COUNTER 0:> COUNT_UP,
COUNT of DOWN_COUNTER -> COUNT_DOWN);

begin
end class UP_DOWN_COUNTER;

type REGISTER_ARRAY is class use (PRIVATE SYNC_SE)
generic (WIDTH: integer :0: 1);

begin
method WRITE_ASYNC(VALUE_IN: VALUE_T);
method WRITE (VALUE_IN: VALUE_T);
method WRITE(ADDRESS: integer; VALUE_IN: VALUE_T);
method READ(ADDRESS: integer) return VALUE_T;

end class REGISTER_ARRAY;

type QUEUE is class use (public REGISTER_ARRAY)
begin

method PUSH(VALUE_IN : VALUE_T);
method READ return VALUE_T;

end class;

type FIFO is class use (public QUEUE)
begin

method PUSH(VALUE_IN : VALUE_T);
method READ return VALUE_T;

end class FIFO;

end package STD_CLASS;

package body STD_CLASS is

type STORAGE ELEMENT is class
instance variable VALUE: VALUE_T :- (others -> '0');

begin
method READ return VALUE_T is
begin

return VALUE;
end method READ;

method WRITE(VALUE IN VALUE_T) is
begin -

VALUE : .. VALUE_IN;
end method WRITE;

end class STORAGE_ELMENT;

type SYNC SE is class
begin -

method WRITE(VALUE_IN : VALUE_T) is
begin

if CLK'event and CLK - '1' then
VALUE :- VALUE_IN;

201

end if;
end class SYN_SE;

type SHIFT_RIGHT_LOGIC is class
begin

method SHIFT(VALUE_IN : std_logic} is
begin

this.WRITE(VALUE IN & VALUE(DEPTH-l downto l});
end method SHIFT; -

end class SHIFT_RIGHT_LOGIC;

type SHIFT LEFT LOGIC is
begin - -

method SHIFT(VALUE_IN : std_logic} is
begin

this.WRITE(VALUE(DEPTH-2 downto 0) & VALUE_IN};
end method SHIFT;

end class SHIFT_LEFT_LOGIC;

type UP COUNTER is class
begin -

method COUNT is
begin

if VALUE • TERMINAL COUNT then
this.WRITE(to std logic vector(O,

VALUE' length} }; - - -
else

this. WRITE (std_logic_vector (unsigned CVALUE} +
1» ;

end if;
end method COUNT;

end class UP_COUNTER;

type DOWN COUNTER is class
begin -

method COUNT is
begin

if VALUE = 0 then
this. WRITE (to_std_logic_vector(TERMINAL_COUNT,

VALUE 'length} };
else

this.WRITE(std_logic_vector(unsigned(VALUE} -
1» ;

end if;
end method COUNT;

end class DOWN_COUNTER;

type REGISTER ARRAY is class
type REG_ARRAY_T is array (0 to DEPTH-l) of VALUE_T;
instance variable VALUE : REG ARRAY T;

begin - -
method WRITE_ASYNC(VALUE_IN: VALUE_T} is
begin

for I in VALUE'range loop
VALUE (I) :- VALUE_IN;

202

end loop;
end method WRITE_ASYNC;

method WRITE(VALUE_IN : VALUE_T) is
begin

if CLK'event and CLK s '1' then
for I in VALUE'range loop

VALUE (I) :s VALUE IN;
end loop; -

end if;
end method WRITE;

method WRITE(ADDRESS: integer; VALUE_IN: VALUE_T);
begin

if CLK'event and CLK - '1' then
VALUE (ADDRESS) :.. VALUE IN;

end if; -
end method WRITE;

method READ(ADDRESS: integer) return VALUE_T is
begin

return VALUE(ADDRESS);
end method READ;

end class REGISTER_ARRAY;

type FIFO is class
public instance variable IS_FULL: boolean :- FALSE;
public instance variable IS EMPTY: boolean :- TRUE;
object READ POINTER: UP DOWN COUNTER

generic map (TERMINAL COUNT => DEPTH-l);
begin

method PUSH(VALUE_IN : VALUE_T) is
variable FIRST : BOOLEAN :- TRUE;

begin
for I in DEPTH-l downto 0 loop

this -> WRITE(I, VALUE(I-l), CLK);
end loop;
this -> WRITE(O, VALUE_IN, CLK);
if not FIRST then

if READ_POINTER.READ I- DEPTH-l then
READ_POINTER. COUNT_UP;
IS_FULL :- FALSE;

else
IS_FULL :- TRUE;

end if;
else

FIRST :- FALSE;
IS_FULL := FALSE;

end if;
end method PUSH;

method READ return VALUE T is
begin -

return VALUE(READ_POINTER.READ);

203

if READ_POINTER.READ f. 0 then
READ_POINTER. COUNT_DOWN;
IS EMPTY := FALSE;

else -
IS_EMPTY := TRUE;

end if;
end method READ;

end class FIFO;

end package STD_CLASS;

204

APPENDIX B: EDGE FILTER CODE
Appendix B-l. Mult Mask Code Using the Proposed Extension

-- Description: Dual mask, dual linestore controller

-- File name: mult_mask.vhd
Version 1.0

-- Author David Cabanis

---_ ..

LIBRARY flowlab;
USE flowlab.mask_types.ALL;

LIBRARY IEEE;
USE IEEE.STD LOGIC 1164.ALL;
USE IEEE.std-logic-arith.all;
USE WORK.std:class:ALL;

ENTITY mult mask
PORT (scene

Is,fs
reset
clk
clk4
wr.Jlu1se
new_frame
ns_result
we result
Is-out

END mUltjnask;

IS
IN slvs;
IN STD_LOGIC;
IN STD_LOGIC;
IN STD_LOGIC;
IN STD_LOGIC;
: IN STD_LOGIC;
: OUT STD_LOGIC;

: OUT slv1S;
: OUT slv1S;

OUT slvS);

ARCHITECTURE rtl OF mult_mask IS

-- mult mask states
constant sync_fs : std_logic_vector(ll downto 0):­

"000000000001";
constant sync_Is : std_logic_vector(ll downto 0):­

"000000000010";
constant last-pxl : std_logic_vector(ll downto 0):­

·000000000100";
constant first line: std_logic_vector(ll downto 0) I_

·000000001000·; -
constant end first : std_logic_vector(ll downto 0) I_

·000000010000";-

205

IN image_data;
IN image_data;
IN image_data;
IN STD_LOGIC;
IN STD_LOGIC;
IN STD LOGIC;
OUT filt_data),

IN image_data;
IN image_data;
IN image_data;
IN STD_LOGIC;
IN STD_LOGIC;
IN STD LOGIC,
OUT filt_data);

constant sec_line std_logic_vector(ll downto 0) :­
·000000100000·;

constant end line std_logic_vector(ll downto 0):­
·000001000000·;-

constant blank std_logic_vector(ll downto 0):­
·000010000000";

constant valid std_logic_vector(11 downto 0):­
"000100000000";

constant frame_sync std_logic_vector(ll downto 0):­
·001000000000";

constant start_last std_logic_vector(ll downto 0):­
"010000000000";

constant last_line : std_logic_vector(11 downto 0):­
"100000000000";

-- mult mask state variables
signal L_SYNC, F_SYNC: std_logic_vector(l downto 0);
SIGNAL current state,

next_state: std_logic_vector(ll downto 0);
SIGNAL next_new_frame, new_frame_sync:STD_LOGIC;
SIGNAL scene_reg : image_data;
SIGNAL top_data, middle_data: image_data;
SIGNAL top_data_reg, middle_data_reg:image_data;
SIGNAL blankop, blankop_cap : BOOLEAN;
SIGNAL ns_mask_out, we_mask_out:filt_data;
SIGNAL nS_filt, we_filt:abs_filt;
object LS_SHIFT, FS_SHIFT SHIFT_LEFT_LOGIC

GENERIC MAP(DEPTH -> 2)
INTERFACE MAP (CLK ->

CLK);
COMPONENT nsmask

PORT(bottom in
middle::in
top_in
reset
clk
clk4
mask_out

END COMPONENT;
COMPONENT wemask

PORT(bottom in
middle-in
top_in­
reset
clk
clk4
mask_out

END COMPONENT;
COMPONENT linestore

PORT (wr_data IN image_data;
rd_data OUT image_data;
reset IN STD_LOGIC;
wr-pulse IN STD_LOGIC;
18 clk IN STD LOGIC,
clk4 IN STD:LOGIC);

206

END COMPONENT;
BEGIN

midrow:linestore
PORT MAP (wr_data "'> scene_reg,

rd_data "'> middle_data,
reset c> reset, wr-pulse => wr-pulse,
ls_clk c> clk, clk4 "'> clk4);

toprow:linestore
PORT MAP (wr_data "'> middle_data_reg,

rd_data c> top_data, reset => reset,
wr-pulse => wr-pulse,
ls_clk c> clk, clk4 => clk4);

nthsth:nsmask
PORT MAP (bottom_in "'> scene_reg,

middle_in -> middle_data_reg,
top_in "'> top_data_reg,
reset -> reset, clk => clk, clk4 =>

clk4,

wstest:wemask
PORT MAP (bottom_in => scene_reg,

middle_in c> middle_data_reg,
top_in -> top_data_reg,
reset "'> reset, clk => clk,
clk4 e> clk4, mask_out "'> we_mask_out);

complete mask operation by normalising absolute mask
result

ns_complete:
PROCESS (ns_mask_out, blankop_cap)

VARIABLE ns filt : slv16;
BEGIN -

nS_filt :_ conv_std_logic_vector(ns_mask_out, 16);
IF ns filt(lS) e '1' THEN

nS_filt :'" unsigned(NOT(ns_filt» + '1';
END IF;
ns filt :e ·00· & ns filt(lS downto 2);
IF-blankop_cap THEN -

ns_result <'" (OTHERS e> '0');
ELSE

ns_result <e ns_filt(14 downto 0);
END IF;

END PROCESS ns_complete;

we_complete:
PROCESS (we_mask_out, blankop_cap)

VARIABLE we filt : slv16;
BEGIN -

we_filt :- conv_std_logic_vector(we_mask_out, 16);
IF we filt(lS) - '1' THEN

we_filt:_ unsigned(NOT(we_filt» + '1';
END IF;

207

we_filt :_ ·00· & we_filt(lS downto 2);
IF blankop_cap THEN

we_result <= (OTHERS -> '0');
ELSE

we_result <- we_filt(14 downto 0);
END IF;

END PROCESS we_complete;

-- write linestore alp to external port for RAM test read
-- access
ls_out <- conv_std_logic_vector(top_data, 8);

state_reg:
PROCESS (CLK, RESET)
BEGIN

IF reset .. '1' THEN
current_state <- sync_fs;
blankop_cap <- TRUE;

ELSIF clk'event AND clk - '1' THEN
current state <- next state;
blankop:cap c.. blankop;

END IF;
END PROCESS state_reg;

state_assign:
PROCESS (current_state, fs_sync, ls_sync)
BEGIN

next state c_ current state;
blankopc-true; - default is input is

blanked
next_new_frame <_ '0'; default is not new frame

IF current_state .. sync_fs THEN
IF fs_sync .. '0' THEN

next_state c= sync_lsi
END IF;

ELSIF current_state .. sync_ls THEN
IF ls_sync .. '0' THEN

next_state c= last-pxl;
next_new_frame <= '1';

END IF;
ELSIF current_state = last-pxl THEN

IF ls_sync .. '1' THEN
next_state c- first_line;

END IF;
ELSIF current_state .. first_line THEN

IF ls_sync - '0' THEN
next_state <= end_first;

END IF;
ELSIF current state .. end first THEN

IF ls_sync :- '1' THEN ­
next_state <_ sec_line;

END IF;
ELSIF current state - sec line THEN

IF ls_sync ='0' THEN ­
next_state <_ end_line;

208

END IF;
ELSIF current state = end line THEN

IF ls_sync ; '1' THEN
next_state <= blank;

END IF;
ELSIF current state = blank THEN

next_state ;= valid;
ELSIF current state = valid THEN

blankop<=false;
IF Cls_sync = '0' AND fs_sync = '0') THEN

next_state <= frame_sync;
ELSIF Cls_sync = '0') THEN

next_state <= end_line;
END IF;

ELSIF current_state = frame_sync THEN
IFCls_sync = '1' AND fs_sync '1') THEN

next_state <= start_last;
END IF;

ELSIF current_state = start_last THEN
next_state <= last_line;

ELSIF current_state = last_line THEN
blankop<=false;
IF ls_sync = '0' THEN

next_state <= last-pxl;
next_new_frame <= '1';

END IF;
END if;

END PROCESS state_assign;

data_reg:
PROCESSCclk, reset)
BEGIN

IF reset - '1' THEN
scene_reg <= 0;
middle data reg <= 0;
top_data_reg <= 0;
LS SHIFT.WRITE ASYNCC"ll");
FS:SHIFT.WRITE:ASYNCC"ll");
new_frame <= '0';
new_frame_sync <= '0';

ELSIF clk'event AND clk = '1' THEN
scene_reg <= conv_integerCunsigned(scene»;
middle_data_reg <= middle_data;
top_data_reg <= top_data;
LS_SHIFT.SHIFT(LS);
FS_SHIFT.SHIFTCFS);
new_frame_sync <= next_new_frame;
new_frame <= new_frame_sync;

END IF;
END PROCESS data_reg;

L_SYNC <= LS_SHIFT.READ;
F_SYNC <= FS_SHIFT.READ;
LS_SYNC <= L_SYNC(l);
FS_SYNC <- F_SYNC(l);

209

END rtI;

210

Appendix B-2. NS & WE Mask Code Using the Proposed Extension

---.

-- Description: customised nsmask

File name: nsmask.vhd
Version 1.0
Author David Cabanis

LIBRARY flowlab;
USE flowlab.mask_types.ALL;

LIBRARY IEEE;
USE IEEE.STD_LOGIC_1164.ALL;

USE WORK.std_class.ALL;

ENTITY nsmask IS
PORT (bottom_in

middle_in
top_in
reset
elk
clk4
mask out

END nsmask; -

IN image_data;
IN image_data;
IN image_data;
IN STD_LOGIC;
IN STD_LOGIC;
IN STD LOGIC;
OUT filt_data);

ARCHITECTURE rtl OF nsmask IS
TYPE mask row IS ARRAY (0 TO mask size) OF image data;
TYPE FIFO:ARRAY_T IS ARRAY (0 TO 2) OF FIFO; -
OBJECT TOP, MID, BOT: FIFO

GENERIC MAP(DEPTH -> 3, WIDTH ->
8)

INTERFACE map (CLK .> CLK);
OBJECT FIFO ARRAY : FIFO ARRAY T;
SIGNAL prelim, prelim_reg :filt_data;
TYPE calc state t IS (init, top, middle, bottom,

pause); --
SIGNAL calc_state:calc_state_t;

BEGIN
FIFO_ARRAY _. (TOP, MID, BOT);

maskshift:
shift mask scene data and read in new values

-- from top and middle linestores, and scene data
input

211

PROCESS (clk, reset)
BEGIN

IF reset .. '1' THEN
FIFO_ARRAY.ALL.WRITE_ASYNC(CONV_STD_LOGIC_VECTOR

(0,8»;
mask_out<=O;

ELSIF (clk'event AND clk = '1') THEN
TOP->PUSH(TOP IN);
MID->PUSH(MIDDLE IN);
BOT->PUSH(MIDDLE-IN);
output mask calc~lation result
mask_out<=prelim;

END IF;
END PROCESS maskshift;

calcseq:
state machine to calculate mask arithmetic row by

row
prelim to store running total

PROCESS (clk4, reset)
BEGIN

IF reset = '1' THEN
calc_state<-init;
prelim_reg<-O;

ELSIF (clk4'event AND clk4 - '1') THEN
prelim_reg<=prelim;
CASE calc_state IS

WHEN init =>
calc_state<=pause;

WHEN pause ->
calc_state<=top;
prelim_reg<=O;

WHEN top =>
calc_state<=middle;

WHEN middle ->
calc_state<-bottom;

WHEN bottom ->
calc_state<=pause;

WHEN OTHERS - >
calc_state <- init;

END CASE;
END IF;

END PROCESS calcseq;

calcomb:
PROCESS (calc_state, FIFO_ARRAY, prelim_reg)

VARIABLE left v, right_v : INTEGER RANGE 0 TO
«(2**image_width)-1)*2);

BEGIN
left v :- 0;
right_v :- 0;
CASE calc_state IS

WHEN top ->
left_v :- BOT.READ(2);
right_v :- TOP.READ(2);

212

WHEN middle ..>
left v := BOT.READ(O);
right v := TOP.READ(O);

WHEN bottom =>
left v :- 2*BOT.READ(1);
right_v := 2*TOP.READ(1);

WHEN OTHERS .. >
left_v := 0;
right_v := 0;

END CASE;
prelim <= (left_v - right_v) + prelim_reg;

END PROCESS calcornb;
END rtl;

--

-- Description: customised wemask

--

File name: wemask.vhd
Version 1.0
Author David Cabanis

LIBRARY flowlab;
USE flowlab.mask_types.ALL;

LIBRARY IEEE;
USE IEEE.STD_LOGIC_1164.ALL;

USE WORK.std_class.ALL;

ENTITY wemask IS
PORT(bottom in

middle:in
top_in
reset
clk
clk4
mask out

END wemask; -

IN image_data;
IN image_data;
IN image_data;
IN STD_LOGIC;
IN STD_LOGIC;
IN STD LOGIC;
OUT filt_data);

ARCHITECTURE rtl OF wernask IS
TYPE mask row IS ARRAY (0 TO mask size) OF image data;
TYPE FIFO-ARRAY T IS ARRAY (0 TO '2) OF FIFO; -
OBJECT TOP, MID; BOT: FIFO GENERIC MAP(DEPTH -> 3,

WIDTH -> 8)
INTERFACE MAP(CLK -> CLK);

OBJECT FIFO_ARRAY FIFO_ARRAY_T;

213

SIGNAL prelim, prelim_reg :filt_data;
TYPE calc state t IS (init, top, middle, bottom,

pause); --
SIGNAL calc_state:calc_state_t;

BEGIN
FIFO_ARRAY =z (TOP, MID, BOT);

maskshift:
shift mask scene data and read in new values

-- from top and middle linestores, and scene data
input

PROCESS (RESET, CLK)
BEGIN

IF reset = '1' THEN
FIFO ARRAY.ALL.WRITE ASYNC(CONV STD LOGIC VECTOR

- - (0,8»; - -
mask_out<",O;

ELSIF (clk'event AND clk '1') THEN
TOP->PUSH(TOP_IN);
MID->PUSH(MIDDLE_IN);
BOT->PUSH(MIDDLE_IN);

-- output mask calculation result
mask_out<=prelim;

END IF;
END PROCESS maskshift;

calcseq:
state machine to calculate mask arithmetic row by

row
prelim to store running total

PROCESS (clk4, reset)
BEGIN

IF reset = '1' THEN
calc_state<"'init;
prelim_reg<=o;

ELSIF (clk4'event AND clk4 '1') THEN
prelim_reg<=prelim;
CASE calc_state IS

WHEN init =>
calc_state<",pause;

WHEN pause =>
calc_state<=top;
prelim_reg<=O;

WHEN top "'>
calc state<=middle;

WHEN middle "'>
calc_state<=bottom;

WHEN bottom =>
calc_state<=pause;

WHEN OTHERS • >
calc_state <= init;

END CASE;
END IF;

END PROCESS calcseq;

214

calcomb:
-- of clk4
PROCESS (calc_state, FIFO_ARRAY, prelim_reg)
BEGIN

CASE calc_state IS
WHEN top ->

prelim <= (BOT. READ (2) - TOP.READ(2»
+ prelim_reg;

WHEN middle "'>
prelim <= (BOT. READ (0) - TOP.READ(O»

+ prelim_reg;
WHEN bottom ..>

prelim <- (2*BOT.READ(1) - 2*TOP.READ(1»
+ prelim_reg;

WHEN OTHERS .. >
prelim <-prelim reg;

END CASE; -
END PROCESS calcomb;

END rtl;

215

Appendix B-3. Line Store Code Using the Proposed Extension

--

-- Description: 8 bit, 32 word FIFO, based on dual-port RAM.

--

File name: linestore.vhd
Version 1.0
Author David Cabanis

LIBRARY IEEE;
USE IEEE.STD_LOGIC_ll64.ALL;
USE IEEE.std_logic_arith.ALL;

LIBRARY flowlab;
USE flowlab.mask_types.ALL;
USE WORK.std_class.ALL;

ENTITY linestore IS
PORT (wr_data

rd_data
reset
wr-pulse
ls_clk
clk4

END linestore;

IN image_data;
OUT image_data;
IN STD_LOGIC;
IN STD_LOGIC;
IN STD LOGIC;
IN STD:LOGIC);

- 1

STD_LOGIC_VECTOR(7 DOWNTO 0)
STD_LOGIC_VECTOR(4 DOWNTO 0) ;
STD_LOGIC ;
STD_LOGIC_VECTOR(7 DOWNTO 0)

IN
IN
IN
OUT

UP COUNTER
-GENERIC MAP (DEPTH ->

ARCHITECTURE struct OF linestore IS
SUBTYPE line-pointer IS INTEGER RANGE 0 TO

line length;
- SIGNAL rd_slv, wr_slv:STD_LOGIC_VECTOR(image_width

DOWNTO 0) :- (others ->'0');
SIGNAL logic_O : STD_LOGIC;
SIGNAL NOT_LS_CLK : STD_LOGIC;
COMPONENT generic_ram

port (
d
address
we, clk
q
) ;

END COMPONENT;
OBJECT RD_PTR

LINE_DATA_WIDTH)
INTERFACE MAP(CLK _>

216

INTERFACE MAP(CLK oo> NOT_LS_CLK);
IS ARRAY (0 TO 1) OF COUNTER;
ADDR_PTR_T;

UP COUNTER
- GENERIC MAP(DEPTH oo>

TYPE ADDR_PTR_T
OBJECT ADDR_PTR

BEGIN
ADDR_PTR ... (RD_PTR,

OBJECT WR_PTR

LINE_DATA_WIDTH)

memory: generic_ram
PORT MAP(q => rd_slv, d => wr_slv,

address oo> int_ad,
we oo> wr-pulse, clk oo> clk4);

read_write-pointers:
PROCESS (LS_CLK, NOT_LS_CLK, RESET)
BEGIN

IF RESET .. '1' THEN
ADDR PTR.ALL.WRITE(CONV STD LOGIC VECTOR(O,

- LINE:=DATA_WIDTH)) ;
ELSE

ADDR_PTR. ALL. COUNT;
END IF;

END PROCESS;

int_ad <oo WR PTR.READ WHEN ls_clk .. '1' ELSE RD_PTR.READ;
END struct;

217

Appendix B-4. Threshold Mult Code Using the Proposed Extension

-- Description: Threshold, multiplex and average
calculation•.

File name: thresh_mux.vhd
Version 1.0
Author David Cabanis

--

LIBRARY IEEE;
USE IEEE.STD LOGIC 1164.ALL;
USE IEEE.std:logic:arith.ALL;

LIBRARY flowlab;
USE flowlab.mask_types.ALL;
USE WORK.std_class.ALL;

ENTITY thresh mux IS
PORT (ns_result IN slv15;

we_result IN slv15;
new_frame IN STD_LOGIC;
clk IN STD_LOGIC;
reset IN STD_LOGIC;
threshold IN slv15;
data sel IN slv2;
frame_sync: OUT STD_LOGIC;
average OUT slv15;
mux_bit OUT STD_LOGIC
) ;

END thresh_mux;

ARCHITECTURE rtl OF thresh mux IS
SIGNAL thresh_reg : slv15;
SIGNAL average_i, average_reg : abs_filt;
SIGNAL thresh_we, thresh_ns:STD_LOGIC;
SIGNAL data sel reg:slv2;
CONSTANT zero:slv15:-(OTHERS -> '0');

BEGIN
averager:
PROCESS (ns_result, we_result, data_sel_reg, reset,

average_reg, new_frame)
BEGIN

IF reset. '1' THEN
average_i <_ 0;

218

ELSIF new_frame = '1' THEN
average_i <= 0;

ELSE
average_i <= average_reg;
CASE data_sel_reg IS

WHEN nsbinary =>
IF ns result 1= zero THEN
ave~age i <= (average reg I 2) +

(conv_integer(unsigned(ns_result» I 2);
END IF;

WHEN webinary =>
IF we result 1= zero THEN

average_i <= (average_reg I 2) +
(conv_integer(unsigned(we_result» I 2);

END IF;
WHEN OTHERS =>

IF (ns result 1= zero)
AND (ns result > we result) THEN

average_i-<= (average:reg I 2) +
(conv_integer(unsigned(ns_result» I 2);

ELSIF we result 1= zero THEN
average_i <= (average_reg I 2) +

(conv_integer(unsigned(we_result» I 2);
END IF;

END CASE;
END IF;

END PROCESS;

-- threshold ns result
thresh_ns <= '1' WHEN ns_result > thresh_reg

ELSE' 0';

-- threshold we result
thresh_we <= '1' WHEN we_result> thresh_reg

ELSE '0';

cont_regs:
-- update threshold and data_sel on new_frame
PROCESS (reset, clk)
BEGIN

IF reset = '1' THEN
thresh_reg <= zero;
data_sel_reg <= "00";

ELSIF clk'event AND clk = '1' THEN
IF new_frame = '1' THEN

thresh_reg <= threshold;
data_sel_reg <= data_sel;

ELSE
thresh_reg <= thresh_reg;
data_sel_reg <= data_sel_reg;

END IF;
END IF;

END PROCESS;

register mult_mask result outputs

219

thresh_regs:
PROCESS
BEGIN

WAIT UNTIL clk'event AND clk='l';
IF reset = '1' THEN

average_reg <= 0;
frame_sync <- '0';
mux_bit <- '0';

ELSE
average_reg <= average_i;
frame_sync <- new_frame;
-- select bit value to output
CASE data_sel_reg IS

WHEN nsbinary =>
mux bit <= thresh ns;

WHEN ;ebinary => ­
mux_bit <- thresh_we;

WHEN nsorwe ->
mux_bit <- thresh_ns OR thresh_we;

WHEN OTHERS - >
mux_bit <- thresh_ns AND thresh_we;

END CASE;
END IF;

END PROCESS;

-- write average output
average <= conv_std_logic_vector(average_reg, 15);

END rtl;

220

Appendix B-S. Interface Code Using the Proposed Extension

Description: Asynchronous processor interface model.
Part of edge filter testcase model.

File name: interface.vhd
Version 1.0
Author David Cabanis

LIBRARY flowlab;
USE flowlab.mask_types.all;

LIBRARY IEEE;
USE IEEE.STD LOGIC 1164.ALL;
USE IEEE.std:logic:arith.ALL;

ENTITY interface
PORT (clk

reset
address
dataio
wr_nrd
enable
average
ack
threshold
data sel
); -

END interface;

IS
IN STD_LOGIC;
IN STD_LOGIC;
IN slv3;
INOUT slv16;
IN STD_LOGIC;
IN STD_LOGIC;
IN slvlS;
OUT STD_LOGIC;
OUT slvlS;
OUT slv2

ARCHITECTURE rtl OF interface IS

SIGNAL addr_reg, addrl, addr2 : slv3;
SIGNAL data_reg, datal, data2 : slv16;
SIGNAL wnr_reg, wnrl, wnr2 : std_Iogic;
SIGNAL enablel, enable2 : std_logic;
SIGNAL averl, aver2, thresh_reg, threshold_i
SIGNAL datasel_reg, data_sel_i : slv2;
SIGNAL data_in slv16;
SIGNAL tri_bus : STD_LOGIC;

BEGIN

slvlS;

-- intermediate signals used to read output ports
threshold c_ threshold_i;

221

async:
PROCESS (reset, enable)
BEGIN
-- async reset
IF reset = '1' THEN

addr_reg <- (OTHERS => '0');
data_reg <= (OTHERS => '0');
wnr_reg <= '0';

ELSIF (enable'event AND enable='O') THEN
-- register input on falling edge of enable

addr_reg <= address;
data_reg <= data_in;
wnr_reg <'" wr_nrd;

END IF;
END PROCESS async;

if_rw:
PROCESS (wnr2, data2, addr2, enable2, thresh_reg,

datasel_reg)
BEGIN

ack <'" '1';
unacknowledged

tri_bus <= '1';
bus

threshold i <= thresh reg;
data_sel_I <= datasel:reg;

default is

default is tristated

IF enable2 .. '0' THEN
-- bus activity - inputs valid
IF wnr2 '" '1' THEN

-- write cycle
CASE addr2 IS

WHEN "010" =>
-- threshold data
threshold_i <= data2(14 DOWNTO 0);

WHEN ·001" =>
-- data select,
data_sel_i <'" data2(1 DOWNTO O)i

WHEN OTHERS =>
null;

END CASE;
ack <= '0'; acknowledge write

ELSE
-- read cycle
IF addr2 '" "100" THEN

-- read average result value
-- un-tristate buffers
tri_bus <= 'O'i

END IF;
ack <= '0'; -- acknowledge read cycle

222

END IF;
END IF;

END PROCESS;

sync_reg:
PROCESS (clk)

-- double buffer i/p data to sync to interface clk
BEGIN

IF clk'event AND clk='l' THEN
IF reset .. '1' THEN

-- reset signal sync'ed to clk, so sync reset
averl <= (OTHERS => '0');
aver2 <= (OTHERS => '0');
addrl <= (OTHERS => '0');
datal <= (OTHERS => '0');
wnrl <= '0';
enablel <= '1';
addr2 <= (OTHERS => '0');
data2 <= (OTHERS => '0');
wnr2 <= '0';
enable2 <= '1';

ELSE
averl <= average;
aver2 <= averl;
addrl <= addr_reg;
datal <= data_reg;
wnrl <= wnr reg;
enablel <= enable;
addr2 <= addrl;
data2 <.. datal;
wnr2 <.. wnrl;
enable2 <= enablel;

END IF;
END IF;

END PROCESS sync_reg;

store_reg:
PROCESS (reset, clk)

-- register threshold and data_sel between write cycles
BEGIN

-- reset signal not sync'ed to elk, so async reset
IF reset .. '1' THEN

thresh_reg <.. (OTHERS => '0');
datasel_reg <= (OTHERS => '0');

ELSIF clk'event AND clk='l' THEN
thresh_reg <.. threshold_i;
datasel_reg <.. data_sel_i;

END IF;
END PROCESS store_reg;

-- only data output is average data
WITH tri bus SELECT

dataio <= ('0' & aver2) WHEN '0',
(OTHERS => 'Z') WHEN OTHERS;

223

data_in <- NOT(dataio);

END rtl;

224

Appendix B-6. RAM Write Code Using the Proposed Extension

-- Description: Read/write pulse generator for linestore and
bitstore

FIFO models

File name: ramwrite.vhd
Version 1. 0
Author David Cabanis

LIBRARY flowlab;
USE flowlab.mask_types.ALL;

LIBRARY IEEE;
USE IEEE.STD LOGIC l164.ALL;
USE IEEE.STD:LOGIC:ARITH.ALL;
USE WORK.std_class.ALL;

ENTITY ramwrite IS
PORT (clk4 : IN STD_LOGIC;

reset IN STD_LOGIC;
wr-pulse : OUT STD_LOGIC);

END ramwrite;

ARCHITECTURE rtl OF ramwrite IS
SIGNAL count:slv2;
TYPE t_lookup IS ARRAY (0 to 3) of std_logic_vector(l

downto 0);
CONSTANT table: t_lookup := ("10", "00", "11", "01");

BEGIN
gray_code:
PROCESS (clk4, reset)
BEGIN

IF reset ... '1' THEN
count <- ·00";

ELSIF clk4'event AND clk4 = '1' THEN
count <- table(CONV_INTEGER(UNSIGNED(count»);

END IF;
END PROCESS gray_code;
wr-pulse <- count(l) AND NOT count(O);

END rtI;

225

: IN STD LOGIC VECTOR(7 DOWNTO 0)
: IN STD:LOGIC:VECTOR(4 DOWNTO 0)

: IN STD_LOGIC;
: OUT STD_LOGIC_VECTOR(7 DOWNTO 0) :-

Appendix B-7. RAM Code Using the Proposed Extension

Description: 8 bit, 32 word synchronous single port RAM

File name: generic_ram.vhd
Version 1.0
Author David Cabanis

Library IEEE
use IEEE.std logic 1164.all ;
use IEEE.std:logic:arith.all ;
--use IEEE.std_logic_unsigned.all

ENTITY generic ram IS
PORT (-

d
address
we, clk
q

(others => ' 0')
) ;

END generic_ram

Infered single port RAM models

ARCHITECTURE rtl OF generic_ram IS
TYPE mem_type IS ARRAY (2**5 DOWNTO 0) OF

STD LOGIC VECTOR(7 DOWNTO 0) ;
SIGNAL mem : mem_type := (others=>(others->'O'»

SIGNAL int_ad : STD_LOGIC_VECTOR(4 DOWNTO 0) :­
(others ->'0');

BEGIN

Synchronous RAM
PROCESS (clk)

226

BEGIN
IF elk' EVENT AND elk .' l' THEN

int_ad <= address;
IF (we = '1') THEN

mem(CONV_INTEGER(UNSIGNED(address») <= d
END IF ;

END IF;
END PROCESS;

q <= mem(CONV_INTEGER(UNSIGNED(int_ad»)

END RTL

227

Appendix B-8. Filtercore Code Using the Proposed Extension

Description: Top level structural model for
edge filter testcase model.

File name: filtercore.vhd
Version 1.0
Author David Cabanis

LIBRARY IEEE;
USE IEEE.STD LOGIC 1164.ALL;
USE IEEE.std-logic-arith.ALL;- -
LIBRARY flowlab;
USE flowlab.mask_types.ALL;

ENTITY filtercore IS
PORT (

dataio : inout slv16;
address: IN slv3;
lsram_op: OUT slvS;

test
scene IN slvs;
ifclk IN STD_LOGIC;
elk IN STD_LOGIC;
elk4 IN STD_LOGIC;
edge_fs OUT STD_LOGIC;
fs IN STD_LOGIC;
ack OUT STD_LOGIC;
enable : IN STD_LOGIC;
wr_nrd : IN STD_LOGIC;
edge : OUT STD_LOGIC;
ls : IN STD_LOGIC;
reset : IN STD LOGIC

); -
END filtercore;

-- proc ilf r/w address
linestore RAM output for

input intensity data
fast clk for ilf

o/p data frame sync
image sync control
proc ilf acknowledge
proc ilf enable
proc i/f r/w
o/p binary edge data
image sync control
reset control

ARCHITECTURE struct OF filtercore IS

SIGNAL ns_result, we result : slv15;
SIGNAL new_frame, wr:pulse : STD_LOGIC;
SIGNAL average:slv15;
SIGNAL data_sel:slv2;
SIGNAL data out:slv16;
SIGNAL threshold:slv15;

228

COMPONENT ramwrite
PORT (elk4 : IN STD_LOGIC;

reset IN STD_LOGIC;
wr-pulse : OUT STD_LOGIC);

END COMPONENT;

COMPONENT mult_mask
PORT (seene IN slva;

ls,fs IN STD_LOGIC;
reset IN STD_LOGIC;
elk IN STD_LOGIC;
elk4 IN STD_LOGIC;
wr-pulse : IN STD_LOGIC;
new_frame : OUT STD_LOGIC;
ns_result : OUT slvlS;
we_result : OUT slvlS;
ls_out OUT slva);

END COMPONENT;

COMPONENT thresh_mux
PORT (ns_result IN slv15;

we_result IN slv15;
new_frame IN STD_LOGIC;
elk IN STD_LOGIC;
reset IN STD_LOGIC;
threshold IN slv15;
data_sel IN slv2;
frame_sync: OUT STD_LOGIC;
average OUT slv15;
mux_bit OUT STD_LOGIC
) ;

END COMPONENT;

COMPONENT interface
PORT (elk

reset
address
dataio
wr nrd
enable
average
ack
threshold
data_sel
) ;

END COMPONENT;

BEGIN

IN STD_LOGIC;
IN STD_LOGIC;
IN slv3;
INOUT slv16;
IN STD_LOGIC;
IN STD_LOGIC;
IN slv15;
OUT STD_LOGIC;
OUT slv15;
OUT slv2

ramwr: ramwrite
PORT MAP(elk4, reset, wr-pulse);

double:mult_mask
PORT MAP(scene, ls, fs, reset, elk, elk4, wr-pulse,

229

thrmux:thresh mux
PORT MAP(ns_result, we_result, new_frame, elk, reset,

threshold, data_sel, edge_fs, average, edge);

proeif:interfaee
PORT MAPCifelk, reset, address, dataio, wr_nrd,

enable,
average, aek, threshold, data_sel);

END struet;

230

Appendix B-9. Mult Mask Code Using RTL VHDL

-- Description: Dual mask, dual linestore controller and
instantiator.

Part of edge filter testcase model.

File name: mult_mask.vhd
Version 1.0
Author David Cabanis

USE flowlab.mask_types.ALL;

LIBRARY IEEE;
USE IEEE.STD LOGIC 1164.ALL;
USE IEEE.std:logic:arith.all;

ENTITY mult mask
PORT (scene

ls,fs
reset
clk
clk4
wr"pulse
new_frame
ns_result
we_result
ls_out

END mUlt_mask;

IS
IN slvS;
IN STD_LOGIC;
IN STD_LOGIC;
IN STD_LOGIC;
IN STD_LOGIC;
: IN STD_LOGIC;
: OUT STD_LOGIC;

: OUT slv15;
: OUT slv15;

OUT slvS);

ARCHITECTURE rtl OF mult_mask IS

-- mult mask states
constant sync_fs std_logic_vector(ll downto 0)

:- "000000000001";
constant sync_ls std_logic_vector(ll downto 0)

:- "000000000010";
constant last"pxl : std_logic_vector(ll downto 0)

:- "000000000100";
constant first_line : std_logic_vector(ll downto 0)

:- "000000001000";
constant end_first : std_logic_vector(ll downto 0)

:_ "000000010000";
constant sec_line std_logic_vector(ll downto 0)

:- "000000100000";
constant end_line std_logic_vector(11 downto 0)

231

:= "000001000000";
constant blank std_logic_vector(ll downto 0)

:= "000010000000";
constant valid std_logic_vector(ll downto 0)

: .. "000100000000";
constant frame_sync : std_logic_vector(ll downto 0)

:= "001000000000";
constant start_last : std_logic_vector(ll downto 0)

:= "010000000000";
constant last_line : std_logic_vector(ll downto 0)

: .. "100000000000";

-- mult mask state variables
SIGNAL current_state,

next_state: std_logic_vector(ll downto 0);

SIGNAL ls_cap, fs_cap, ls_sync, fs_sync:STD_LOGIC;
SIGNAL next_new_frame, new_frame_sync:STD_LOGIC;
SIGNAL scene reg :image data;
SIGNAL top_data, middle:data:image_data;
SIGNAL top_data_reg, middle_data_reg:image_data;
SIGNAL blankop, blankop_cap : BOOLEAN;
SIGNAL ns_mask_out, we_mask_out:filt_data;
SIGNAL ns_filt, we_filt:abs_filt;

COMPONENT nsmask
PORT (bottom in

middle-in
top_in­
reset
clk
clk4
mask_out

END COMPONENT;

COMPONENT wemask
PORT (bottom_in

middle in
top in­
reset
clk
clk4
mask_out

END COMPONENT;

IN image_data;
IN image_data;
IN image_data;
IN STD_LOGIC;
IN STD_LOGIC;
IN STD LOGICI
OUT filt_data) I

IN image_data;
IN image_datal
IN image_datal
IN STD_LOGICI
IN STD_LOGICI
IN STD LOGICI
OUT filt_data) I

COMPONENT linestore
PORT (wr_data

rd_data
reset
wrJ'ulse
ls_clk
clk4

END COMPONENT;

BEGIN

IN image_data;
OUT image_data;
IN STD_LOGIC;
IN STD_LOGICI
IN STD LOGIC;
IN STD:LOGIC) i

232

midrow:linestore
PORT MAP (wr data z> scene reg, rd data z>

middle_data, reset =>-reset, wr-pulse -> wr:pulse,
ls_clk z> clk, clk4 => clk4);

toprow:linestore
PORT MAP (wr data => middle data reg, rd data z>

top_data, reset => reset, wr-pulse .; wr-pulse, ­
ls_clk => clk, clk4 => clk4);

nthsth:nsmask
PORT MAP (bottom_in => scene_reg, middle_in ->

middle_data_reg, top_in => top_data_reg,
reset z> reset, clk => clk, clk4 -> clk4,

mask_out => ns_mask_out);
wstest:wemask

PORT MAP (bottom_in => scene_reg, middle_in ->
middle_data_reg, top_in => top_data_reg,

reset -> reset, clk => clk, clk4 -> clk4,
mask_out => we_mask_out);

-- complete mask operation by normalising absolute mask
result

ns_complete:
PROCESS (ns_mask_out, blankop_cap)

VARIABLE nS_filt : slv16;
BEGIN

nS_filt := conv_std_logic_vector(ns_mask_out, 16);
IF ns filt(lS) z '1' THEN

nS_filt := unsigned(NOT(ns_filt» + '1';
END IF;
nS_filt :- "00" & ns_filt(lS downto 2);

IF blankop_cap THEN
ns_result <= (OTHERS -> '0');

ELSE
ns_result <z ns_filt(14 downto 0);

END IF;
END PROCESS ns_complete;

we_complete:
PROCESS (we_mask_out, blankop_cap)

VARIABLE we_filt : slv16;
BEGIN

we_filt :z conv_std_logic_vector(we_mask_out, 16);
IF we filt(lS) - '1' THEN

we_filt:- unsignedCNOT(we_filt» + '1';
END IF;
we_filt :- "00" & we_filtC1S downto 2);

IF blankop_cap THEN
we_result <- COTHERS -> '0');

ELSE

233

we_result <- we_filt(14 downto 0);
END IF;

END PROCESS we_complete;

-- write linestore o/p to external port for RAM test
ls_out <= conv_std_logic_vector(top_data, 8);

state_reg:
PROCESS (CLK, RESET)
BEGIN

IF reset. '1' THEN
current_state <= sync_fs;
blankop cap <= TRUE;

ELSIF clk7event AND clk = '1' THEN
current_state <= next_state;
blankop_cap <= blankop;

END IF;
END PROCESS state_reg;

state_assign:
PROCESS (current_state, fs_sync, ls_sync)

BEGIN

next_state <= current_state;
blankop<=true; default is input is

blanked
next_new_frame <= '0'; default is not new frame

IF current_state = sync_fs THEN
IF fs_sync • '0' THEN

next_state <= sync_lsI
END IF;

ELSIF current_state - sync_ls THEN
IF ls sync. '0' THEN

next_state <= last-pxl;
next_new_frame <- '1';

END IF;

ELSIF current_state - last-pxl THEN
IF ls sync - '1' THEN

next_state <- first_line;
END IF;

ELSIF current_state - first_line THEN
IF ls_sync - '0' THEN

next_state <- end_first;
END IF;

ELSIF current state - end first THEN
IF ls_sync ; '1' THEN -

next state <- sec line;
ENDI~ -

234

ELSIF current_state = sec_line THEN
IF ls_sync = '0' THEN

next_state <= end_line;
END IF;

ELSIF current_state = end_line THEN
IF ls_sync = '1' THEN

next_state <= blank;
END IF;

ELSIF current state = blank THEN
next_state ;= valid;

ELSIF current_state = valid THEN
blankop<=false;
IF (ls_sync = '0' AND fs_sync - '0') THEN

next_state <= frame_sync;
ELSIF (ls_sync = '0') THEN

next_state <= end_line;
END IF;

ELSIF current_state = frame_sync THEN
IF(ls_sync = '1' AND fs_sync = '1') THEN

next_state <= start_last;
END IF;

ELSIF current_state - start_last THEN
next_state <= last_line;

ELSIF current state = last_line THEN
blankop<=false;
IF ls_sync = '0' THEN

next_state <= last-pxl;
next_new_frame <= '1';

END IF;

END if;

END PROCESS state_assign;

data_reg:
PROCESS (clk, reset)
BEGIN

IF reset - '1' THEN
scene_reg <- 0;
middle_data_reg <= 0;
top_data_reg <= 0;
ls_cap <= '1';
fs_cap <- '1';
ls_sync <- '1';
fs_sync <= '1';
new_frame <- '0';
new_frame_sync <_ '0';

ELSIF clk'event AND clk - '1' THEN
scene_reg <- conv_integer(unsigned(scene));

235

middle_data_reg <= middle_data;
top_data_reg <= top_data;
ls_cap <= ls;
fs_cap <= fs;
ls_sync <= ls_cap;
fs_sync <= fs_cap;
new_frame_sync <= next_new_frame;
new_frame <= new_frame_sync;

END IF;
END PROCESS data_reg;

END rtl;

236

Appendix B-IO. NS Mask and WE Mask Code Using RTL VHDL

-- Description: customised nsmask

File name: nsmask.vhd
Version 1.0
Author David Cabanis

LIBRARY flowlab;
USE flowlab.mask_types.ALLi

LIBRARY IEEE;
USE IEEE.STD_LOGIC_1l64.ALLi

ENTITY nsmask IS
PORT (bottom_in

middle in
top_in­
reset
clk
clk4
mask_out

END nsmask;

IN image_data;
IN image_data;
IN image_data;
IN STD_LOGICi
IN STD_LOGIC;
IN STD_LOGIC;
OUT filt_data);

ARCHITECTURE rtl OF nsmask IS

TYPE mask_row IS ARRAY (0 TO mask_size) OF image_data;

SIGNAL topl_data, topm_data, topr_data:image_data;
SIGNAL midl data, midm data, midr data:image data;
SIGNAL botl-data, botm-data, botr-data:image-data;
SIGNAL prelIm, prelim_reg :filt_data; -
TYPE calc state t IS (init, top, middle, bottom, pause);
SIGNAL calc_state:calc_state_t;

BEGIN

maskshift:
-- shift mask scene data and read in new values
-- from top and middle linestores, and scene data input
PROCESS (clk, reset)
BEGIN

IF reset - '1' THEN
topl_data <- 0;
topm_data <- 0;

237

topr_data <"' 0;
midl_data <= 0;
midm_data <= 0;
midr_data <= 0;
botl_data <= 0;
botm_data <= 0;
botr_data <= 0;
mask_out<=o;

ELSIF (clk'event AND clk = '1') THEN
topl_data <"' topm_data;
topm_data <= topr_data;
topr_data <= top_in;
midl_data <= midm_data;
midm_data <= midr_data;
midr data <= middle in;
botl:data <- botm_data;
botm_data <= botr_data;
botr_data <= bottom_in;

-- output mask calculation result
mask_out<=prelim;

END IF;
END PROCESS maskshift;

calcseq:
-- state machine to calculate mask arithmetic row by row
-- prelim to store running total
PROCESS (clk4, reset)
BEGIN

IF reset = '1' THEN
calc_state<=init;
prelim_reg<-O;

ELSIF (clk4'event AND clk4 .. '1') THEN
prelim_reg<=prelim;
CASE calc_state IS

WHEN init =>
calc_state<=pause;

WHEN pause '">
calc_state<=top;
prelim_reg<.O;

WHEN top =>
calc_state<-middle;

WHEN middle ->
calc_state<-bottom;

WHEN bottom ->
calc_state<"'pause,

WHEN OTHERS ->
calc_state <- init;

END CASE;
END IF;

END PROCESS calcseq;

calcomb:
PROCESS (calc_state, topl_data, topm_data, hotl_data,

238

topr_data, botm_data, botr_data, prelim_reg}
VARIABLE left v, right v : INTEGER RANGE 0 TO

(((2**image_width)-1}*2); -
BEGIN

left v := 0;
right_v := 0;
CASE calc_state IS

WHEN top =>
left_v := botl_data;
right_v := topl_data;

WHEN middle =>
left_v := botr_data;
right_v := topr_data;

WHEN bottom ->

left v := 2*botm data;
right_v := 2*topm_data;

WHEN OTHERS =>
left_v := 0;
right_v := 0;

END CASE;
prelim <= (left_v - right_v) + prelim_reg;

END PROCESS calcomb;

END rtl;

-- Description: customised wemask

File name: wemask.vhd
Version 1.0
Author David Cabanis

LIBRARY flowlab;
USE flowlab.mask_types.ALL;

LIBRARY IEEE;
USE IEEE.STD_LOGIC_1164.ALL;

ENTITY wemask IS
PORT(bottom in

middle-in
top_in­
reset
clk
clk4
mask_out

END wemask;

IN image_data;
IN image_data;
IN image_data;
IN STD_LOGIC;
IN STD_LOGIC;
IN STD LOGIC;
OUT filt_data};

239

ARCHITECTURE rtl OF wemask IS

TYPE mask_row IS ARMY (0 TO mask_size) OF image_data;

SIGNAL topl data, topm_data, topr_data:image_data;
SIGNAL midl:data, midm_data, midr_data:image_data;
SIGNAL botl_data, botm_data, botr_data:image_data;
SIGNAL prelim, prelim reg :filt data;
TYPE calc_state_t IS (init, top~ middle, bottom, pause);

BEGIN

maskshift:
-- shift mask scene data and read in new values
-- from top and middle linestores, and scene data input
PROCESS
BEGIN

WAIT UNTIL (clk'event AND clk ~ '1');
IF reset = '1' THEN

topl_data <= 0;
topm_data <= 0;
topr_data <= 0;
midl_data <= 0;
midm_data <~ 0;
midr_data <= 0;
botl_data <= 0;
botm_data <~ 0;
botr_data <~ 0;
mask_out<=o;

ELSE
topl_data <~ topm data;
topm_data <- topr:data;
topr_data <= top_in;
midl_data <~ midm data;
midm_data <~ midr-data;
midr_data <= middle_in;
botl_data <= botm_data;
botm_data <= botr data;
botr_data <= bottom_in;

-- output mask calculation result
mask_out<~prelim;

END IF;
END PROCESS maskshift;

calcseq:
-- state machine to calculate mask arithmetic row by row
-- prelim to store running total
PROCESS (clk4, reset)
BEGIN

IF reset = '1' THEN

240

calc_state<=init;
prelim_reg<=O;

ELSIF (clk4'event AND clk4
prelim_reg<=prelim;
CASE calc state IS

WHEN init ->
calc_state<=pause;

WHEN pause =>
calc_state<=top;
prelim_reg<-O;

WHEN top =>
calc_state<=middle;

WHEN middle =>
calc_state<=bottom;

WHEN bottom =>
calc_state<=pause;

WHEN OTHERS ..>
calc_state <= init;

END CASE;
END IF;

END PROCESS calcseq;

'1') THEN

calcomb:
-- of clk4
PROCESS (calc_state, topl_data, midl_data, botl_data,

topr_data, midr_data, botr_data, prelim_reg)
BEGIN

CASE calc_state IS
WHEN top ->

prelim <= (botr_data - botl_data) + prelim_reg;
WHEN middle ..>

prelim <= (topr_data - topl_data) + prelim_reg;
WHEN bottom ->

prelim <= (2*midr_data - 2*midl_data) + prelim_reg;
WHEN OTHERS .. >

prelim <=prelim_reg;
END CASE;

END PROCESS calcomb;

END rtl;

241

Appendix B-l1. Line Store Code Using the RTL VHDL

Description: 8 bit, 32 word FIFO, based on dual-port RAM.
Part of edge filter testcase model.

File name: linestore.vhd
Version 1.0
Author David Cabanis

LIBRARY IEEE;
USE IEEE.STD_LOGIC_1164.ALL;
USE IEEE.std_logic_arith.ALL;

LIBRARY flowlab;
USE flowlab.mask_types.ALL;

ENTITY linestore
PORT (wr_data

rd_data
reset
wr"pulse
ls_clk
clk4

END linestore;

IS
IN image_data;
OUT image_data;
IN STD_LOGIC;
IN STD_LOGIC;
IN STD_LOGIC;
IN STD_LOGIC);

ARCHITECTURE struct OF linestore IS

SUBTYPE line"pointer IS INTEGER RANGE 0 TO line_length;

SIGNAL wr ad, rd ad,
int ad:STD LOGIC vECTOR(line data width-l DOWNTO 0) :-
(others _>70 I); - --

SIGNAL rd_slv, wr_slv:STD_LOGIC_VECTOR(image_width - 1
DOWNTO 0) :- (others ->'0');

IN STD_LOGIC_VECTOR(7 DOWNTO 0)
IN STD_LOGIC_VECTOR(4 DOWNTO 0)
IN STD_LOGIC;
OUT STD_LOGIC_VECTOR(7 DOWNTO 0)q

) ;

COMPONENT generic ram
port (-

d
address
we, clk

242

END COMPONENT;

BEGIN

memory: generic_ram
PORT MAP(q .. > rd_slv, d '"> wr_slv,

address -> int_ad,
we -> wr-pulse, clk -> clk4);

read-pointer:
PROCESS

VARIABLE rd-ptr:line-pointer := 0;
BEGIN

WAIT UNTIL (ls_clk'event AND ls_clk - '1');
IF reset .. '1' THEN

rd-ptr:.O;
rd_ad <. CONV_STD_LOGIC_VECTOR(rd-ptr, line_data_width);

ELSE
-- read cycle finished

IF rd-ptr - line_Iength-l THEN
rd-ptr:= 0;

ELSE
rd-ptr:.rd-ptr + 1;

END IF;
rd_ad <- CONV_STD_LOGIC_VECTOR(rd-ptr, line_data_width);

END IF;

END PROCESS read-pointer;

write-pointer:
PROCESS

VARIABLE wr-ptr:line-pointer :- 0;
BEGIN

WAIT UNTIL (ls_clk'event AND Is_elk - '0');
IF reset - '1' THEN

wr-ptr:- 0;
wr_ad <= CONV_STD_LOGIC_VECTOR(wr-ptr, line_data_width);

ELSE
-- write cycle finished

IF wr-ptr - line_Iength-1 THEN
wr-ptr:-O;

ELSE
wr-ptr:-wr-ptr + 1;

END IF;
wr_ad <- conv_std_logic vector(wr-ptr, line_data_width);

END IF; -

243

END PROCESS write-pointer;

int_ad <~ wr_ad WHEN ls_clk = '1' ELSE rd_ad;

END struct;

244

Appendix B-12. Threshold Multiplexor Code Using the RTL VHDL

-- Description: Threshold, multiplex and average
calculation..

File name: thresh_mux.vhd
Version 1.0
Author David Cabanis

LIBRARY IEEE;
USE IEEE.STD LOGIC 1164.ALL;
USE IEEE.std:logic:arith.ALL;

LIBRARY flowlab;
USE flowlab.mask_types.ALL;

ENTITY thresh_mux IS
PORT (ns_result IN slv15;

we_result IN slv15;
new_frame IN STD LOGIC;
clk IN STD_LOGIC;
reset IN STD_LOGIC;
threshold IN slv15;
data_sel IN slv2;
frame_sync: OUT STD_LOGIC;
average OUT slv15;
mux_bit OUT STD_LOGIC
) ;

END thresh_mux;

ARCHITECTURE rtl OF thresh_mux IS

SIGNAL thresh_reg : slv15;
SIGNAL average_i, average_reg : abs_filt;
SIGNAL thresh we, thresh ns:STD LOGIC;
SIGNAL data_sel_reg:slv2~ -

CONSTANT zero:slv15:-(OTHERS _> '0');

BEGIN

averager:
PROCESS (ns_result, we_result, data_sel_reg, reset,

average_reg, new_frame)

245

BEGIN
IF reset = '1' THEN

average_i <= 0;
ELSIF new_frame = '1' THEN

average_i <- 0;
ELSE

average_i <= average_reg;
CASE data_sel_reg IS

WHEN nsbinary - >
IF ns result f- zero THEN
ave~age_i <= (average_reg f 2) +

(conv_integer(unsigned(ns_result)) f 2);
END IF;

WHEN webinary • >
IF we result f= zero THEN
ave~age_i <= (average_reg f 2) +

(conv_integer(unsigned(we_result)) f 2);
END IF;

WHEN OTHERS =>
IF (ns result f. zero) AND

(ns-result > we result) THEN
average_i <= (average_reg f 2) +

(conv_integer(unsigned(ns_result)) f 2);
ELSIF we result f. zero THEN

average_i <- (average_reg f 2) +
(conv_integer(unsigned(we_result)) f 2);

END IF;
END CASE;

END IF;
END PROCESS;

-- threshold ns result
thresh_ns <- '1' WHEN ns_result > thresh_reg

ELSE '0';

-- threshold we result
thresh_we <- '1' WHEN we_result> thresh_reg

ELSE '0';

cont_regs:
-- update threshold and data_sel on new_frame
PROCESS (reset, clk)
BEGIN

IF reset - '1' THEN
thresh_reg <= zero;
data_sel_reg <- "00";

ELSIF clk'event AND clk - '1' THEN
IF new_frame. '1' THEN

thresh_reg <- threshold;
data_sel_reg <- data_sell

ELSE
thresh_reg <- thresh_reg;
data_sel_reg <- data_sel_reg;

END IF;
END IF;

246

END PROCESS;

register mult_mask result outputs
thresh_regs:

PROCESS
BEGIN

WAIT UNTIL clk'event AND clks'l';
IF reset - '1' THEN

average_reg <= 0;
frame_sync <= '0';
mwe_bit <= '0';

ELSE
average_reg <- average_i;
frame_sync <= new_frame;
-- select bit value to output
CASE data_sel_reg IS

WHEN nsbinary =>
mwe bit <= thresh ns;

WHEN ;ebinary => -
mwe_bit <- thresh_we;

WHEN nsorwe "'>
mwe_bit <= thresh_ns OR thresh_we;

WHEN OTHERS - >
mwe_bit <= thresh_ns AND thresh_we;

END CASE;
END IF;

END PROCESS;

-- write average output
average <- conv_std_logic_vector(average_reg, 15);

END rtl;

247

Appendix B-13. Interface Code Using RTL VHDL

Description: Asynchronous processor interface model.
Part of edge filter testcase model.

File name: interface.vhd
Version 1.0
Author David Cabanis

LIBRARY flowlab;
USE flowlab.mask_types.all;

LIBRARY IEEE;
USE IEEE.STD LOGIC l164.ALL;
USE IEEE.std=logic=arith.ALL;

ENTITY interface
PORT {clk

reset
address
dataio
wr_nrd
enable
average
ack
threshold
data_sel
) ;

END interface;

IS
IN STD_LOGIC;
IN STD_LOGIC;
IN slv3;
INOUT slv16;
IN STD_LOGIC;
IN STD_LOGIC;
IN slvlS;
OUT STD_LOGIC;
OUT slvlS;
OUT slv2

ARCHITECTURE rtl OF interface IS

SIGNAL addr_reg, addrl, addr2 : slv3;
SIGNAL data_reg, datal, data2 : slv16;
SIGNAL wnr_reg, wnrl, wnr2 : std_logic;
SIGNAL enablel, enable2 : std_logic;
SIGNAL averl, aver2, thresh_reg, threshold_i
SIGNAL datasel_reg, data_sel_i : slv2;
SIGNAL data_in slv16;
SIGNAL tri_bus : STD_LOGIC;

BEGIN

slvlS;

-- intermediate signals used to read output ports
threshold <- threshold_i;

248

async:
PROCESS (reset, enable)
BEGIN
-- async reset
IF reset a '1' THEN

addr_reg ClIO (OTHERS -> '0');
data_reg ClIO (OTHERS => '0');
wnr_reg ClIO '0';

ELSIF (enable'event AND enable",'O') THEN
-- register input on falling edge of enable

addr_reg ClIO address;
data_reg ClIO data_in;
wnr_reg ClIO wr_nrd;

END IF;
END PROCESS async;

if_rw:
PROCESS (wnr2, data2, addr2, enable2, thresh_reg,

datasel_reg)
BEGIN

ack ClIO '1';
unacknowledged

tri_bus ClIO '1';
bus

threshold i c= thresh reg;
data_sel_I c= datasel:reg;

default is

default is tristated

IF enable2 = '0' THEN
-- bus activity - inputs valid
IF wnr2 '" '1' THEN

-- write cycle
CASE addr2 IS

WHEN "010" =>
-- threshold data
threshold_i ClIO data2(14 DOWNTO 0);

WHEN ·001" =>
-- data select,
data_sel_i ClIO data2(1 DOWNTO 0);

WHEN OTHERS '" >
null;

END CASE;
ack c- '0'; acknowledge write

ELSE
-- read cycle
IF addr2 _ "100" THEN

-- read average result value
-- un-tristate buffers
tri_bus c- '0';

END IF;
ack c- '0'; -- acknowledge read cycle

249

END IF;
END IF;

END PROCESS;

sync_reg:
PROCESS (clk)

-- double buffer i/p data to sync to interface clk
BEGIN

IF clk'event AND clk='l' THEN
IF reset = '1' THEN

-- reset signal sync'ed to clk, so
sync reset

aver1 <'"' (OTHERS => ' 0 I) ;

aver2 <'"' (OTHERS => '0') ;
addr1 <'" (OTHERS 0=> '0') ;
datal <'" (OTHERS 0=> '0') ;
wnrl <'" '0' ;
enablel <0= '1' ;
addr2 <'" (OTHERS "'> '0') ;
data2 <'" (OTHERS '"'> '0') ;
wnr2 <= '0' ;
enable2 <'" '1' ;

ELSE
aver1 <'" average;
aver2 <- aver1;
addrl <0= addr_reg;
datal <- data_reg;
wnrl <= wnr_reg;
enablel <- enable;
addr2 <'" addr1;
data2 <= datal;
wnr2 <= wnrl;
enable2 <- enable1;

END IF;
END IF;

END PROCESS sync_reg;

store reg:
PROCESS (reset, clk)

-- register threshold and data_sel between write cycles
BEGIN

-- reset signal not sync'ed to clk, so async reset
IF reset - '1' THEN

thresh_reg <'" (OTHERS -> '0');
datasel_reg <= (OTHERS -> '0');

ELSIF clk'event AND clk='l' THEN
thresh_reg <0= threshold_i;
datasel reg <'" data sel i;

END IF; - - -
END PROCESS store_reg;

-- only data output is average data
WITH tri bus SELECT

dataio <= ('0' & aver2) WHEN '0', (OTHERS _> 'Z')

250

WHEN OTHERS;

data_in <= NOT(dataio);

END rtl;

251

Appendix B-14. RAM Write Code Using RTL VHDL

Description: Read/write pulse generator for linestore
FIFO model
Part of edge filter testcase model.

File name: ramwrite.vhd
Version 1.0
Author David Cabanis

LIBRARY nowlab;
USE flowlab.mask_types.ALL;

LIBRARY IEEE;
USE IEEE.STD_LOGIC_1164.ALL;
USE IEEE.STD_LOGIC_ARITH.ALL;

ENTITY ramwrite IS
PORT (clk4 : IN STD_LOGIC;

reset IN STD_LOGIC;
wr-pulse : OUT STD_LOGIC);

END ramwrite;

ARCHITECTURE rtl OF ramwrite IS

SIGNAL count:slv2;
TYPE t_lookup IS ARRAY (0 to 3) of std_logic_vector(l

downto 0);
CONSTANT table: t_lookup :- ("10", "00", "11", "01");

BEGIN

gray_code:
PROCESS (clk4, reset)

BEGIN
IF reset. '1' THEN

count <- "00";
ELSIF clk4'event AND clk4 - '1' THEN

count <- table(CONV_INTEGER(UNSIGNED(count»);
END IF;

END PROCESS gray_code;

wr-pulse <- count(l) AND NOT count(O);

END rtl;

252

253

Appendix B-15. RAM Code Using RTL VHDL

--

Description: 8 bit, 32 word synchronous single port RAM

File name: generic ram.vhd
Version 1.0
Author David Cabanis

Library IEEE
use IEEE.std_logic_1164.all
use IEEE.std_logic_arith.all ;
--use IEEE.std_logic_unsigned.all

DOWNTO 0) :-

DOWNTO 0)
DOWNTO 0)

: IN STD_LOGIC_VECTOR(7
: IN STD_LOGIC_VECTOR(4

: IN STD LOGIC ;
: OUT STD_LOGIC_VECTOR(7

ENTITY generic_ram IS
PORT (

d
address
we, clk
q

(others -> '0')
) ;

END generic_ram

Infered single port RAM models

-- e.

ARCHITECTURE rtl OF generic_ram IS
TYPE mem_type IS ARRAY (2**5 DOWNTO 0) OF

STD LOGIC VECTOR(7 DOWNTO 0) ;
SIGNAL ;em : mem_type :_ (others->(others->'O'»

SIGNAL int ad STD_LOGIC_VECTOR(4 DOWNTO 0) := (others
->'0'); -

BEGIN

Synchronous RAM
PROCESS (clk)

254

BEGIN
IF elk'EVENT AND elk ~'l' THEN

int_ad <= address;
IF (we = '1') THEN

mem(CONV_INTEGER(UNSIGNED(address») <- d
END IF ;

END IF;
END PROCESS;

q <= mem(CONV_INTEGER(UNSIGNED(int_ad»)

END RTL

255

Appendix B-16. Filtercore Code Using RTL VHDL

Description: Top level structural model for
edge filter testcase model.

File name: filtercore.vhd
Version 1.0
Author David Cabanis

LIBRARY IEEE;
USE IEEE.STD_LOGIC_1164.ALL;
USE IEEE.std_logic_arith.ALL;

LIBRARY flowlab;
USE flowlab.mask_types.ALL;

inout slv16;
IN slv3;
OUT slvS;

IN slvS;
IN STD_LOGIC;
IN STD_LOGIC;
IN STD_LOGIC;
OUT STD_LOGIC;
IN STD_LOGIC;
OUT STD_LOGIC;
IN STD_LOGIC;
IN STD_LOGIC;
OUT STD_LOGIC;
IN STD_LOGIC;
IN STD_LOGIC

ENTITY filtercore IS
PORT (
dataio
address
lsram_op

access
scene
ifclk
clk
clk4
edge fs
fs -
ack
enable
wr_nrd
edge
ls
reset

) ;

END filtercore;

proc iff r/w address
linestore RAM output

input intensity data
fast clk for iff

o/p data frame sync
image sync control
proc iff acknowledge
proc iff enable
proc iff r/w
o/p binary edge data
image sync control
reset control

ARCHITECTURE struct OF filtercore IS

SIGNAL ns_result, we_result : slv15;
SIGNAL neW_frame, wr-pulse : STD_LOGIC;
SIGNAL average:slv15;
SIGNAL data_sel:slv2;
SIGNAL data_out:slv16;
SIGNAL threshold:slv15;

256

COMPONENT ramwrite
PORT (clk4 : IN STD_LOGIC;

reset IN STD_LOGIC;
wr-pulse : OUT STD_LOGIC);

END COMPONENT;

COMPONENT mult mask
PORT(scene - IN slva;

ls,fs IN STD_LOGIC;
reset IN STD_LOGIC;
clk IN STD_LOGIC;
clk4 IN STD_LOGIC;
wr-pulse : IN STD_LOGIC;
new_frame : OUT STD_LOGIC;
ns_result : OUT slV15;
we_result : OUT slv15;
ls_out OUT slva);

END COMPONENT;

COMPONENT thresh_mux
PORT (ns_result IN slv15;

we_result IN slv15;
new_frame IN STD_LOGIC;
clk IN STD_LOGIC;
reset IN STD_LOGIC;
threshold IN slv15;
data_sel IN slv2;
frame_sync: OUT STD_LOGIC;
average OUT slv15;
mux_bit OUT STD_LOGIC
) ;

END COMPONENT;

COMPONENT interface
PORT (clk

reset
address
dataio
wr_nrd
enable
average
ack
threshold
data sel
); -

END COMPONENT;

BEGIN

IN STD_LOGIC;
IN STD_LOGIC;
IN slv3;
INOUT slv16;
IN STD_LOGIC;
IN STD_LOGIC;
IN slv15;
OUT STD_LOGIC;
OUT slv15;
OUT slv2

ramwr: ramwrite
PORT MAP(clk4, reset, wr-pulse);

double:mult_mask
PORT MAP(scene, ls, fs, reset, clk, clk4, wr-pulse,

257

thrmux:thresh mux
PORT MAP(ns_result, we_result, new_frame, elk, reset,

threshold, data_sel, edge_fa, average, edge);

proeif:interfaee
PORT MAPCifelk, reset, address, dataio, wr_nrd,

enable,
average, aek, threshold, data_sel);

END struet;

258

I

I

I

I
I
I

I

I

I
I

Appendix B-17. Mask Types Code Using RTL VHDL

-- Description: Package of constant and type declarations
for

edge filter testcase model.

File name: mask_types.vhd
Version 3.0
Author David Cabanis

LIBRARY IEEE;
USE IEEE.STD_LOGIC_1164.ALL;
PACKAGE mask_types IS

CONSTANT line_data_width:NATURAL:=5;
CONSTANT line_length :NATURAL:=2**line_data_width;
CONSTANT frame_length:NATURAL:=line_length;

CONSTANT image_width:NATURAL:-8;
SUBTYPE image_data IS INTEGER RANGE 0 TO (2**image_width)­

1;

CONSTANT mask_length:NATURAL:=3;
CONSTANT mask_size:NATURAL:-{mask_length-1);

CONSTANT mask_divisor:NATURAL:=4;

SUBTYPE filt data IS INTEGER RANGE -32768 TO 32767;
SUBTYPE abs_filt IS INTEGER RANGE 0 TO 32767;

SUBTYPE slv2 IS STD LOGIC VECTOR{l DOWNTO 0);
SUBTYPE slv3 IS STD-LOGIC-VECTOR{2 DOWNTO 0);
SUBTYPE slv8 IS STD-LOGIC-VECTOR{7 DOWNTO 0);
SUBTYPE slvlS IS sm LOGIC VECTOR{14 DOWNTO 0),;
SUBTYPE slv16 IS STD:LOGIC:VECTOR{lS DOWNTO 0);

-- data select multiplexor values
CONSTANT nsbinary:slv2:."01";
CONSTANT webinary:slv2:."10";
CONSTANT nsorwe :slv2:."11";
CONSTANT nsandwe :slv2:."00";

259

	274144_001
	274144_002
	274144_003
	274144_004
	274144_005
	274144_006
	274144_007
	274144_008
	274144_009
	274144_010
	274144_011
	274144_012
	274144_013
	274144_014
	274144_015
	274144_016
	274144_017
	274144_018
	274144_019
	274144_020
	274144_021
	274144_022
	274144_023
	274144_024
	274144_025
	274144_026
	274144_027
	274144_028
	274144_029
	274144_030
	274144_031
	274144_032
	274144_033
	274144_034
	274144_035
	274144_036
	274144_037
	274144_038
	274144_039
	274144_040
	274144_041
	274144_042
	274144_043
	274144_044
	274144_045
	274144_046
	274144_047
	274144_048
	274144_049
	274144_050
	274144_051
	274144_052
	274144_053
	274144_054
	274144_055
	274144_056
	274144_057
	274144_058
	274144_059
	274144_060
	274144_061
	274144_062
	274144_063
	274144_064
	274144_065
	274144_066
	274144_067
	274144_068
	274144_069
	274144_070
	274144_071
	274144_072
	274144_073
	274144_074
	274144_075
	274144_076
	274144_077
	274144_078
	274144_079
	274144_080
	274144_081
	274144_082
	274144_083
	274144_084
	274144_085
	274144_086
	274144_087
	274144_088
	274144_089
	274144_090
	274144_091
	274144_092
	274144_093
	274144_094
	274144_095
	274144_096
	274144_097
	274144_098
	274144_099
	274144_100
	274144_101
	274144_102
	274144_103
	274144_104
	274144_105
	274144_106
	274144_107
	274144_108
	274144_109
	274144_110
	274144_111
	274144_112
	274144_113
	274144_114
	274144_115
	274144_116
	274144_117
	274144_118
	274144_119
	274144_120
	274144_121
	274144_122
	274144_123
	274144_124
	274144_125
	274144_126
	274144_127
	274144_128
	274144_129
	274144_130
	274144_131
	274144_132
	274144_133
	274144_134
	274144_135
	274144_136
	274144_137
	274144_138
	274144_139
	274144_140
	274144_141
	274144_142
	274144_143
	274144_144
	274144_145
	274144_146
	274144_147
	274144_148
	274144_149
	274144_150
	274144_151
	274144_152
	274144_153
	274144_154
	274144_155
	274144_156
	274144_157
	274144_158
	274144_159
	274144_160
	274144_161
	274144_162
	274144_163
	274144_164
	274144_165
	274144_166
	274144_167
	274144_168
	274144_169
	274144_170
	274144_171
	274144_172
	274144_173
	274144_174
	274144_175
	274144_176
	274144_177
	274144_178
	274144_179
	274144_180
	274144_181
	274144_182
	274144_183
	274144_184
	274144_185
	274144_186
	274144_187
	274144_188
	274144_189
	274144_190
	274144_191
	274144_192
	274144_193
	274144_194
	274144_195
	274144_196
	274144_197
	274144_198
	274144_199
	274144_200
	274144_201
	274144_202
	274144_203
	274144_204
	274144_205
	274144_206
	274144_207
	274144_208
	274144_209
	274144_210
	274144_211
	274144_212
	274144_213
	274144_214
	274144_215
	274144_216
	274144_217
	274144_218
	274144_219
	274144_220
	274144_221
	274144_222
	274144_223
	274144_224
	274144_225
	274144_226
	274144_227
	274144_228
	274144_229
	274144_230
	274144_231
	274144_232
	274144_233
	274144_234
	274144_235
	274144_236
	274144_237
	274144_238
	274144_239
	274144_240
	274144_241
	274144_242
	274144_243
	274144_244
	274144_245
	274144_246
	274144_247
	274144_248
	274144_249
	274144_250
	274144_251
	274144_252
	274144_253
	274144_254
	274144_255
	274144_256
	274144_257
	274144_258
	274144_259
	274144_260
	274144_261
	274144_262
	274144_263
	274144_264
	274144_265
	274144_266
	274144_267
	274144_268
	274144_269
	274144_270

