
EFFICIENT TECHNIQUES FOR SOFT TISSUE MODELING
AND SIMULATION

ALPASLAN DUYSAK

A thesis submitted in fulfillment of the requirements of Bournemouth University
for the degree of Doctor of Philosophy

September 2004

This copy of the thesis has been supplied on condition that anyone who consults it is

understood to recognise that its copyright rests with its author and due
acknowledgement must always be made of the use of any material contained in, or
derived from, this thesis.

11

ABSTRACT

Performing realistic deformation simulations in real time is a challenging problem in

computer graphics. Among numerous proposed methods including Finite Element

Modeling and ChainMail, we have implemented a mass spring system because of its

acceptable accuracy and speed. Mass spring systems have, however, some drawbacks

such as, the determination of simulation coefficients with their iterative nature. Given

the correct parameters, mass spring systems can accurately simulate tissue

deformations but choosing parameters that capture nonlinear deformation behavior is

extremely difficult. Since most of the applications require a large number of elements

i. e. points and springs in the modeling process it is extremely difficult to reach real-

time performance with an iterative method. We have developed a new parameter

identification method based on neural networks. The structure of the mass spring

system is modified and neural networks are integrated into this structure. The input

space consists of changes in spring lengths and velocities while a "teacher" signal is

chosen as the total spring force, which is expressed in terms of positional changes and

applied external forces. Neural networks are trained to learn nonlinear tissue

characteristics represented by spring stiffness and damping in the mass spring

algorithm. The learning algorithm is further enhanced by an adaptive learning rate,

developed particularly for mass spring systems.

In order to avoid the iterative approach in deformation simulations we have developed

a new deformation algorithm. This algorithm defines the relationships between points

and springs and specifies a set of rules on spring movements and deformations. These

rules result in a deformation surface, which is called the search space. The

deformation algorithm then finds the deformed points and springs in the search space

with the help of the defined rules. The algorithm also sets rules on each element i. e.

triangle or tetrahedron so that they do not pass through each other. The new algorithm

is considerably faster than the original mass spring systems algorithm and provides an

opportunity for various deformation applications.

We have used mass spring systems and the developed method in the simulation of

craniofacial surgery. For this purpose, a patient-specific head model was generated
from MRI medical data by applying medical image processing tools such as, filtering,

the segmentation and polygonal representation of such model is obtained using a

surface generation algorithm. Prism volume elements are generated between the skin

and bone surfaces so that different tissue layers are included to the head model. Both

methods produce plausible results verified by surgeons.

IV

PUBLICATIONS

Q Duysak A, Zhang J. J., Ilankovan V., 2003, Efficient Modeling and Simulation of
Soft Tissue Deformation Using Mass-Spring Systems, The 171h International
Congress and Exhibition on Computer Assisted Radiology and Surgery (CARS
2003, London), pp. 337-342.

Q Duysak A, Zhang J. J., 2003, Identification of Simulation Parameters Using
Neural Networks, The 6`h International Conference on Computer Graphics and
Artificial Intelligence (31A 2003, France)

Q Duysak A, Zhang J. J., 2004, Fast Simulation of Deformable Objects,
International symposium on Computer Animation, The 8`h International
Conference on Information Visualization, IEEE Computer Society, (IV 2004,
London), pp. 422-427.

V

List of Contents

Abstract iii

Publications v
Table of Contents vi

List of Tables x

List of Figures xi
Acknowledgements xv

1 Introduction 1

1.1 Motivation 3

1.2 Related Work 5

1.2.1 Finite Element method (FEM) 6

1.2.1.1 FEM Applications 7

1.2.1.2 Recent Trends 9

1.2.2 Mass-Spring systems (MSS) 10

1.2.2.1 MSS Applications 11

1.2.2.2 Recent Trends 14

1.2.3 The ChainMail Algorithms 16

1.2.3.1 The ChainMail Applications 18

1.2.4 Medical Data Analysis 19

1.2.5 Polygonalization 19

1.2.6 Neural network System Identification 20

1.2.6.1 CMAC Neural Networks 22

1.2.6.2 Parameter Identification 25

1.3 Thesis organization 29

2 Mass Spring Systems (MSS) 31

2.1 Mass-Spring Structure 31

2.1.1 Spring Dynamics 34

vi

2.1.1.1 Length Change 35

2.1.1.2 Velocity Change 36

2.1.1.3 Total Spring Force; Internal Force 36

2.1.2 Point Dynamics 37

2.1.2.1 Explicit Euler Integration 38

2.1.2.2 Implicit Euler Integration 38

2.1.2.3 Approximated Implicit Method 39

2.1.3 A Dynamic Model 40

2.2 Implementation 42

2.2.1 Stability 42

2.2.2 System Coefficients 42

2.2.3 The Choice of Integration Method 44

2.2.4 Excessive Spring Elongation 44

2.3 A Solution; Nonlinear Parameters 46

2.4 Collision Analysis 47

2.4.1 Collision with the Environment 48

2.4.1.1 Mass-Point Polygon Collision 48

2.4.1.2 Edge-Edge Collision 50

2.4.2 Self Collision 50

2.4.3 Collision Time 51

2.4.4 Collision Response 52

2.5 External Forces 53

2.6 Application 54

2.7 Summary 56

3 Simulation of Soft Tissue Deformations 57

3.1 Surgery Simulation Systems 59

3.2 Medical Image Data 61

3.2.1 Data Acquisition 61

3.2.1.1 Slice Data 62

3.2.1.2 Volume Data 63

3.2.2 Volume of Interest (VOI) 64

3.2.2.1 Segmentation 64

3.2.2.2 Manipulations and Measurements 67

3.3 Polygonal Model generation 71

vii

3.3.1 Triangulation 72

3.3.2 Decimation 74

3.4 Craniofacial Surgery Simulation 75

3.4.1 Mass-Spring System Model Generation 75

3.4.1.1 Generating Prism Elements 76

3.4.1.2 Assigning Mass-Points and Springs 79

3.4.2 Bone Realignment 80

3.5 Simulation Result 82

3.6 Summary 89

4 Neural Network System Identification 90

4.1 The Cerebellar Model Articulation Controller (CMAC) Neural
Networks 92
4.1.1 The Operation of a CMAC Neural Network 93

4.1.1.1 Input Quantization 94
4.1.1.2 Conceptual Memory and Memory Mapping 96

4.1.1.3 Calculation of the Output 99
4.1.2 CMAC Training 99

4.1.2.1 The Batch Algorithm 101

4.1.2.2 The Non-Batch Algorithm 101
4.1.3 The Multidimensional Input Case 102

4.1.4 An Address Mapping Formula 105

4.2 System Identification 107
4.2.1 Previous Methods 108

4.2.2 A New Parameter Identification Model 110

4.2.2.1 Input-Output Data 112
4.2.2.2 The Training Model 114

4.2.2.3 Learning Rate 116
4.2.2.4 The Weight Update Law 117

4.2.2.5 The Training Data 119

4.3 Results 120

4.4 Summary 124

5A New Deformation Algorithm; Mass-Spring Chain (MSC) 126

5.1 Motivation 127

vii'

5.2 Mass-Spring Chain (MSC) Algorithm 129

5.2.1 Definitions 130

5.2.2 Deformation Pattern; Movement Propagation 131

5.2.3 Boundaries of Movements and Deformations 134

5.2.3.1 Movement Limits 135

5.2.3.2 Deformation Length Limits 138

5.2.3.3 The Deformation Region 140

5.2.4 Finding The Deformed Positions 142

5.2.4.1 The New Orientation Vector 142

5.2.4.2 The Deformation of Active Springs 144

5.2.4.2.1 Magnitude of the Deformation 144

5.2.4.2.2 The Direction of the Deformation 145

5.2.4.3 The Deformation of Semi-Active Springs 146

5.2.4.3.1 The Deformation Magnitude 146
5.2.4.3.2 The Direction of the Deformation 147

5.2.5 Fine Tuning 148
5.2.6 Ending The Deformation Propagation 149
5.2.7 Special Cases 149

5.2.7.1 Multiple Movement 150
5.2.7.2 Shape Alteration (Cell Conversion) 152

5.3 Summary of the Algorithm 158

5.4 Applications and Results 159

5.4.1 2D Applications 160

5.4.2 3D Applications 162

5.4.3 Craniofacial Surgery simulation 166

5.5 Comparisons 170

5.6 Summary 173

6 Conclusion 175

6.1 Contributions 176

6.1.1 Model Generation 177

6.1.2 Neural network System Identification 178

6.1.3 The New Deformation Algorithm 179

6.2 Future Work 180

Ix

List of Tables

4.1 The row vector 0 indicates which cells in the conceptual memory are

activated by the quantization level qk .
97

4.2 Conceptual memory addresses activated by the quantization levels ql

through qq for A'` =4.98

4.3 Addresses of weights for input x; 1.102

4.4 Addresses of weights for input x! . 103 2

4.5 Conceptual memory found by address concatenation. 104

4.6 Addresses of the memory locations obtained using equation 3.13. 106

4.7 Mean -Squared-Errors between neural network outputs and the

original coefficients. 124

5.1 Simulation times of the mass-spring system versus the new method. 172

5.2 A performance comparison with other published results. 172

X

List of Figures

1.1 Deformation: An object interacting with a tool. 3

1.2 Continuous domain is subdivided into discrete elements, FEM representation. 6

1.3 Mass-spring representation of a deformable body. 11

1.4 The ChainMail modeling of deformable body. 16

1.5 The set limits for the deformation and the deformation region. 17

1.6 A sketch of a biological neuron. 21

1.7 A basic representation of artificial neuron. 22
1.8 Identification of an unknown process using neural networks. 26

2.1 Illustration of a 3D Mesh and its mass-spring structure. 32

2.2 A typical representation of a mass-spring model between two points. 34

2.3 Point dynamics receives external and internal forces and finds the new

Positions of the mass-point. 37

2.4 Mass-spring dynamics (TD: Time Delay). 41

2.5 Cloth simulation using different spring stiffness values but the same values

for other parameters under the same the initial conditions (i. e. the same

external forces). 43

2.6 A stress-strain diagram for biological tissues. 43

2.7 Spring elongation occurs at hanging points (left) and correction (right). 45

2.8 Cloth simulation with different stiffness functions. (a) Uses constant

coefficient, (b) and (c) uses the function defined by equation 2.12. 47

2.9 Ray-triangle intersection. 48

2.10 Hanging cloth simulation with and without the self collision test. 51

2.11 Spring structure is used to create cloth models. 54

2.12 Cloth simulation. 55

2.13 Soft tissue interacting with a surgical tool. 55

3.1 A Basic surgery simulation system. 60

3.2 MRI slice images of a human head. 62

3.3 A voxel is formed between two consecutive slices. 63

X1

3.4 Segmentation of soft tissues from a head image. 65

3.5 A segmented head image. 65

3.6 Segmentation of bones. 66

3.7 Bones segmented from head image. 66

3.8 The upper and lower jaw with some marks for cutting. 67

3.9 (a) The lower jaw is measured and marked to be cut. 68

3.9 (b) The other side of the lower jaw ready for cutting. 68

3.10 (a) The lower jaw view from top showing the cutting operation. 69

3.10 (b) The jaw cut, a side view. 69

3.10 (c) Bone structures for all cutting operations are complete ready for

movement. 70
3.11 Bone structure after movement of lower jaw. Upper and lower jaws are

aligned. 70

3.12 Forming a surface with the marching cubes algorithm. 72

3.13 Brain surface model generated using the marching cubes algorithm that

consists of 12264 vertices and 24473 triangles. 72
3.14 The triangular mesh decimation of a brain image. The output model was

reduced to 486 vertices and 997 triangles. 74

3.15 The surface representation of the skin and bones of a human head. 76

3.16 Projecting skin vertices on the bone surface. 77

3.17 Facial surface, bone surface and two center points shown together. 78

3.18 A prismatic element between the skin surface and the bone surface. 79

3.19 The upper and lower jaws are aligned using the triangular representation

of skull model, which is used in the actual simulations. 81

3.20 Lower jaw is rotated representing mouth opening. 82

3.21 Face surface before the bone realignment and simulation. 83

3.22 Face after the surgical simulations. 83

3.23 Both pre and post surgery images superimposed together showing the

changes on facial tissue. 84

3.24 Facial image frontal view before the surgery. 84

3.25 Facial image front view after the simulation. 85

3.26 Instead of pushing the lower jaw backward to align with upper jaw, we

Pushed it forward by about 8 mm. 85

3.27 Lower jaw is rotated by various degrees to represent the opening of the mo uth

and the resulting facial expression is simulated. 86

X11

3.28 The mouth is opened more widely. 87

3.29 The open mouth pose before the surgery. 88

3.30 The open mouth pose after the surgery. 88

4.1 The operation of CMAC neural networks. 94

4.2 Input quantization. 95

4.3 Nurnberger's identification model. 109

4.4 Forces generated by springs. 111

4.5 Neural network representation of the spring forces. 112

4.6 Training neural networks NK (") and ND (") .
115

4.7 Error function versus number of iterations using a constant learning rate. 121

4.8 Error function versus number of iterations using an adaptive learning rate. 121

4.9 The original and the NN approximation of parameter K, with a linear
learning rate. 122

4.10 The original and the NN approximation of K, with an adaptive

learning rate. 122

4.11 The original and the NN approximation of parameter D with a linear

learning rate. 123

4.12 The original and the NN approximation of parameter D with an adaptive
learning rate. 123

5.1 Definition of points and springs. 131

5.2 The deformation pattern (deformation propagation) of the proposed algorithm:

(a) the initial mesh, (b) the first wave, (c) the second wave and (d) the

last wave (the end of the propagation). 133

5.3 The determination of the movement limits due to vertex displacement. 137

5.4 The movement surfaces formed by the limit vectors. 138

5.5 Spring length limits. 138

5.6 Spring length criteria. 139

5.7 The deformation region is formed by the movement and deformation limits. 140

5.8 The initial position (thick black) and the rigid movement (red) are shown

with the deformation surfaces in different colors for each spring. 141

5.9 The orientation vector varies from the elastic limit to the rigid limit (a) and

a new location for the spring after the movement is between these limits. 143

5.10 Deforming the springs, based on the parameters, d max and ß8 . 145

5.11 Deforming semi-active springs. 148

5.12 Multiple movement. 151

X111

5.13 Example of shape alteration. 153

5.14 Shape alteration (a), the deformation surface (b) and the deformation

region (c). 154

5.15 The new deformation surface (a) and deformation region (b). 156

5.16 Shape alteration and its detection. 157

5.17 A simple simulation to demonstrate shape alteration and handling. 158

5.18 A 2D simulation example carried out using MSS (blue) and MSC (red)

algorithms. 161

5.19 An example of a 2D application where the simulation parameters vary. 162

5.20 A simple model is simulated using different values of a. 163

5.21 The simulation of a plastic duck using different values of a. 164

5.22 Soft tissue simulation: A stomach model in interaction with a simple tool. 166

5.23 A Craniofacial surgery simulation using mass-spring chain algorithm:
(a) initial model and (b) model after the simulation. 167

5.24 Both before and after surgery images. 168

5.25 Facial animations using the same head model. 169

5.26 Comparison of simulation outcomes between the mass-spring systems

algorithm and the new algorithm. The first column shows MSS results

and second column gives MSC outcome. 171

xiv

AKNOWLEDMENTS

I would like to acknowledge my supervisors Prof. Jian J. Zhang and Prof. Peter
Comninos for their advice, guidance and support. I would like to acknowledge Ari
Sarafopoulos for his friendship and help. Craig Senior is also thanked for his
assistance with all types of software and hardware problems.

I am grateful to all my friends: Serdar, Hasan, Mehmet, Abdurrahman (Apo),
Mudassar and Russell.

I would like to thank my family members, especially my wife Zuleyha and my sons
Omer and Girayhan. I wish that I could spend more time with them, I am deeply sorry
for that. I finally like to remember my parents and like to dedicate this work to for
their memories.

xv

CHAPTER 1

INTRODUCTION

Computer graphics and its applications in the form of animation or simulation have

entered our everyday life in many forms mainly in entertainment, the recreation or

prediction of real world phenomena and training. Movies are partly or fully realized in

a computer environment and similarly video games have become increasingly popular

thanks to their image quality and realistic implementation. Besides the entertainment

industry, computer animation and simulations are indispensable tools in science. We

can now accurately simulate galaxies based on the governing physics and simulate

molecules and elements with the correct chemical behavior. Nowadays engineers are

able to design electrical or mechanical circuits and simulate their real world responses

before going through to the implementation phase. Simulation has become a de facto

in pilot training by providing enormous benefits including cost efficiency and safety.

Surgical planning and training systems are increasingly becoming popular and gaining

significant attention from the medical community. This is because they have proven

to be a very powerful tool for the planning surgical operations and for training

surgeons who can learn and rehearse complex surgical operations without any risk to

the patient. In addition, such systems encompass some of the most challenging fields

I

of research in computer graphics: physically correct tissue deformation, real-time

performance with haptic feedback and photo realistic visualization. A typical

computer-based medical simulation system mainly consists of.

0 Medical image data analysis: Data acquisition and segmentation.

0 Simulation module: Polygonal model generation and simulation algorithms.

0 Haptic feedback: Collision detection and interaction with the user.

0 Virtual Reality: Visualization and texture mapping.

Designing such a simulator also requires inputs from a variety of disciplines including

computer graphics, computer vision, robotics, material science, mechanics and finally

medicine itself. A number of attempts in developing such simulators are reported in

literature (KISMET, Haptica, Simulab). The essential part of any simulator of this sort

is the modeling and simulation of soft tissue behavior. Only then the objective of

achieving physically realistic tissue deformation in real time will be met. Ideal

modeling and simulation algorithm needs to meet the following requirements:

" Speed: 30 Hz for visual update rate and 1000 Hz for haptic update rate.

" Physical realism: Nonlinear and inhomogeneous tissue characteristics and

interaction with the environment e. g. surgical tools, other organs.

" Topological changes: Cutting and suturing.

There have been numerous simulation methods proposed (Gibson and Mirtich 1997)

that are mainly divided into two categories: non-physically based and physically

based. There are some fundamental limitations in non-physical methods such as, the

deformation characteristic of the object is not taken into account and the deformation

2

accuracy is based on the user expertise. Physically based models, on the other hand,

incorporate the physical properties of the object, thus produce more realistic

deformations.

Among physically based methods, finite element modeling and mass-spring systems

have been widely used in a variety of areas from cloth simulations to soft tissue

simulations. An example of a deformation simulation is given in figure 1.1, where an

object is subject to a deformation due to its interaction with a tool. In the following

section we outline the advantages and limitations of such methods. We also propose

our strategy to satisfy the requirements of the ideal modeling and simulation system

mentioned above.

i\
4

Figure 1.1 Deformation: An object interacting with a tool.

1.1 Motivation

The finite element modeling technique produces more accurate results for soft tissue

deformations, as discussed by many previous publications. These publications also

reveal that achieving real-time performance is a very difficult task and that reaching

haptic interaction speeds is almost impossible to realize with the current technology.

Mass-spring systems on the other hand, as indicated by previous publications,

produce plausible results and are potentially suitable for real-time interactive

3

applications (Keeve et al. 1998). This thesis therefore focuses on mass-spring

systems.

Accuracy of mass-spring models mainly depends on the choice of simulation

parameters such as, the spring stiffness and damping coefficient (Louchet et al. 1995,

Jaukhader and Laugier 1997, D'aulignac et al. 1999, Numberger et al. 2001, Bhat et

al. 2003). In practice, such parameters are mostly determined by trial and error, based

on the visual results of the simulation. This is not only time consuming but also

determining physically correct parameters that capture complex deformation

characteristic of soft tissue is almost impossible. As a consequence, almost all-

existing applications use constant coefficients, which are far from capable of

representing nonlinear tissue behavior.

The speed of mass-spring systems depends on the choice of integration methods such

as, explicit and implicit Euler integration (Provot 1995, Baraff and Witkin 1998).

Real-time performance is almost impossible to achieve with the explicit integration

method, because the simulation algorithm needs to use a very small time step for

stability reasons. The implicit integration scheme allows the use of large time steps

but still the performance of overall simulation depends on the number of elements

used i. e. mass-points and springs. There are other derived integration methods

proposed to further speed up the mass-spring algorithm. The approximated implicit

method works faster than the main integration scheme, implicit integration, at the

expense of simulation accuracy. Similarly, the quassi-static method sacrifices realism

in order to achieve faster simulations. Even with these speed up methods the target

visual and especially haptic update rates are difficult to reach for many applications.

This is because mass-spring systems use an iterative approach to reach steady state.

4

We propose the following: We investigate the use of neural networks in soft tissue

simulation applications in terms of increasing the simulation accuracy (physical

realism) and performance (speed). To this end, we will study mass-spring systems and

neural networks. Our aim is to develop and integrate a neural network parameter

identification method into the mass-spring system. Since real parameters representing

deformation characteristics of soft tissue will be learnt, by the neural networks, the

simulation algorithm will produce physically realistic deformations. The second part

of the study (increasing speed) yields the development of a new deformation

algorithm whose structure is not based on an iterative approach. Both old and new

algorithms will be applied to model and simulate craniofacial surgery where soft

tissue deformation is predicted.

1.2 Related Work

In our work we have carried out extensive research on simulation techniques, finite

element methods, mass-spring systems and the ChainMail algorithm. We have also

examined various other subjects. In order to be able to obtain medical models we

studied medical data analysis. This study enabled us to read, segment and manipulate

medical data in various formats. The geometrical representation of such data was also

part of our work. To this end, we have studied triangulation and decimation

algorithms. Since this thesis investigates the use of neural networks in soft tissue

modeling and simulation, neural networks, system identification and parameter

identification was also the focus of the thesis.

In this section we provide a detailed literature review on the related subjects studied in

this thesis.

5

1.2.1 Finite Element Models (FEM)

A FEM is a standard simulation and analysis method extensively used in various

engineering applications. It has also gained popularity in the simulation of soft tissue

deformation. The advantage of the FEM method is its unsurpassed computational

accuracy compared with other simulation methods. This is due to the fact that

accuracy usually is of paramount concern in many engineering applications. The

downside of this method, however, is its substantial computational cost. Although this

is not really a problem in engineering practice, it does represent a difficulty in

interactive graphics applications.

A FEM method assumes that the model has potential energy, which is related to the

displacement of tissue from its initial to its deformed condition (Bro-Neilsen and

Cotin 1996). A solution to the deformation is then found when the potential energy is

minimized. In order to solve a deformation problem, the finite element method

discretizes the region of interest into a set of finite elements (i. e. tetrahedra). A sample

disretizetion is shown in the figure 1.2 where a tetrahedral element is shown as well.

region of interest
element

Figure 1.2 Continuous domain is subdivided into discrete elements, FEM

representation.

6

Displacement of a point in the element is expressed as a function of the displacement

of the vertices of the element. An element vertex displacement vector for the

deformable body can be described as:

ue =[(uI)T(u2)T... (un)T]T

where ue are the vertex displacement vectors of each element e. The displacement at

a point x is expressed in terms of vertex displacements as follows:

ne

u(x) =1 Ne(x)uj
i=1

where Ne (x) are the shape functions defined on each element (e. g. the natural

coordinates of the elements). At equilibrium, the first variation of the total energy is

given as:

ýBEe(u) =0
e

where Ee (u) is the total energy of the model under load (DiMaio 2003). This

equilibrium equation can be expressed as a linear matrix representation:

Ku =f

where K is the global stiffness matrix, u is the vertex displacement vector for the

entire model and f is the force vector. For a given force vector the above equation is

solved for the vertex displacement vector representing the tissue deformation.

1.2.1.1 FEM Applications

Early works generally used pre-computed linear FEM models; Bro-Nielsen and Cotin

(1996) studied the use of FEMs in surgical simulation. They implemented a linear

elastic material model, which yields a linear matrix system along with a condensed

system in order to achieve real-time performance. Condensation is achieved by

7

eliminating internal nodes from the system equation. For cutting and tearing

operations, performed in real time, represented by FEMs they used a domain

decomposition technique. Fast finite element modeling (Bro-Neilsen 1998) was

developed and was applied in their later work (Bro-Neilsen et al. 1998) on abdominal

surgery simulation.

Cotin et al. (1999) also used linear elasticity theory in their FEM application to

simulate soft-tissue behavior. They admitted that "Since pre-computations allowing

real-time interactions depend on the geometry of the mesh, it seems impossible to use

only finite element models in the simulator. " In their more recent work (Delingette et

al. 1999, Cotin et al. 2000), they introduced a hybrid elastic model that consists of a

static and a dynamic model of the organ. The static model pre-computes the

deformations and forces, thus allowing real-time interactions. This model, however,

does not permit any topological changes, such as cutting or tearing. Their dynamic

elastic model requires more computation time, but allows topological changes to take

place. Besides implementing linear elasticity, the combined model has two

drawbacks. Firstly, the contact regions must be predefined so that the dynamic model

is assigned to these parts. Secondly, interactions between static and dynamic models

at boundaries are not well defined.

There are some publications dedicated to facial tissue simulations using FEMs. An

implementation of FEMs for soft-tissue simulation is given in (Roth et al. 1998).

Instead of linear elasticity theory, Roth et al. used a higher order polynomial

interpolation functions using a Bemstein-Bezeir formulation, therefore aiming for

more accurate results and admitting higher computational cost. The main drawback of

their work is the lack of global C` continuity, which results in lower quality surfaces.

8

An anatomy based 3D finite element tissue model was developed by Keeve et al.

(1996a, 1996b). Their work includes a comprehensive flexibility that allows for any

craniofacial operation on the bone structure. Keeve et al. improved their early work

by taking into account the individual patient's anatomy (1998,1999). They used six

node prisms to discritise the face model.

Koch et al. (1996,2002) developed a facial surgery simulation based on volumetric

finite element modeling. Their implementation aims for physical accuracy therefore

includes geometric and topological detail added interactively to the model, which

represents a facial volume by prismatic shape functions. This model provides globally

Cl and internally CO continuity. In their work, they registered 3D laser scan data

with CT data to achieve photo realistic appearances. Results from their simulations

are compared to real surgery images for several different patients. Koch et al. (1998)

also used a FEM model to implement a facial expression editor. Their generic facial

model uses medical data and correct facial anatomy in defining muscle groups.

Accuracy was the main concern in early applications, while speed became more

important in recent works (where researchers modified the FEM algorithm in order to

increase its performance).

1.2.1.1 Recent Trends

In recent years researchers have focused on improving the algorithm in order to

achieve physical realism and real-time performance. Debunne et al. (2000,2001b)

have implemented a space and time adaptive sampling method to achieve real-time

performance. The idea here is that the algorithm adaptively adjusts the resolution in

the regions that deform the most. They also address the problems associated with

adaptive sampling such as different vibration modes between different resolutions, as

9

well as contact regions between them. In order to avoid vibration, which yields

instability, they used arbitrarily and independently defined meshes representing levels

of details. In order to handle large displacements and global rotations they used the

(green) strain tensor formulation. Some researchers developed better FEM models

(Wu et al. 2001), which use adaptive nonlinear finite elements. The aim here is to

improve the realism by using nonlinear terms in their modeling. In addition to this,

they also implemented an adaptive mesh refinement scheme to allow real-time

applicability. Similarly, a multi-scale finite element algorithm was developed (Lim et

al. 2004) in order to increase the performance of the original algorithm, which

concentrates detail where it is needed while still providing global deformations. In

(Hauth et al. 2004) a polar decomposition technique was implemented with

hierarchical finite elements. Their work enhanced the stability and increased the speed

at the expense of higher error.

1.2.2 Mass-Spring Systems (MSS)

The use of MSSs leads to a simplified simulation model. In this model any

deformable objects can be represented as a set of mass points connected with springs

(Baraff and Witkin 1999,2001). A simple representation is given in figure 1.3.

Although this configuration does not accurately represent the physical structures of

the objects to be simulated, it is usually able to achieve perceptually realistic effects

as long as the parameters of the MSS, such as spring stiffness and viscosity, are

properly specified. Because of their simplicity and generality, mass-spring systems

have become indispensable tools in many simulation applications, such as cloth

animation, facial animation and surgical simulations. A detailed study of this

technique is presented in chapter 2. Some of the applications using mass-spring

systems are shown below.

10

element
region of interest

Figure 1.3 Mass-spring representation of a deformable body.

1.2.2.1 MSS Applications

Mass-spring systems are successfully used in cloth-like object animations. Provot

(1995) simulated cloth behavior in his early work, where he implemented a detailed

mass-spring system structure for cloth modeling and studied the super-elastic effect.

An adaptive refinement scheme is described in (Hutchinson et al. 1996) where the

algorithm simplifies the geometric mesh adaptively. Unwanted coarse discretization is

avoided and the speed of the algorithm is therefore improved. In (Howlett and Hewitt

1998), adaptive components called non-active points were introduced to a mass-

spring system in order for the new system to adapt the shape of the cloth at different

types of edges. Therefore, visually convincing cloth animation is achieved (especially

the simulation of draping cloth over irregular objects). In (Eischen and Bigliani 2000)

a comparison of the algorithms in cloth simulation was studied. In their paper, they

provided a detailed study of the use of FEMs, MSSs and particles in cloth modeling.

Baraff and Witkin (1998) studied one of the biggest problem of mass-spring system;

the small time step that is necessary to stabilize the system at the cost of a slower

simulation time. Their simulation system couples a new technique for enforcing

constraints on individual cloth particles with an implicit integration method. They

11

used a combination of implicit integration and the direct constrained satisfaction

method. Instead of using reduced coordinates for the acceleration or the velocity of a

particle, which introduce complications by altering the size of the derivative matrices,

or penalty functions, which add extra stiffness to entire system, or additional

Lagrange multipliers, which introduce extra variables into the system they employed a

different approach. They modified the mass of particles. In their differential equation,

a constant inverse mass is used for each particle. If a 3-dimensional matrix

representing the mass of each particle is used, they show that constrains can be

imposed on dimensions. The modifications allow them to use larger time steps

providing an interactive frame rate for many applications. Their implicit integration

scheme allows the mass-spring system to be used in interactive animation.

Desburn et al. (1999) derived an integration scheme from the implicit method in order

to achieve real-time interaction for virtual reality applications using mass-spring

systems. They further improved their early work in (2000) and in (Debunne et al.

2001a) for interactive animations of cloth-like objects in virtual reality. The implicit

integration scheme was modified to avoid solving a linear system through an

approximation of the Hessian matrix. A predictor-corrector approach was introduced

to speed up the system, i. e. positions of vertices at the next time step were predicted

and corrected. Approximation was done by splitting the force equation into two parts,

namely, the linear and nonlinear components. Correction was done through an inverse

dynamic relaxation phase, which also included the simulation of nonlinear behavior.

Mass-spring systems are also used in a variety of other simulation applications. In

(Duchille et al. 1999), the authors introduced a novel haptic approach for the direct

manipulation of physics-based B-spline surfaces. Their mass-spring system permits

12

the user to interactively sculpt virtual material with a standard haptic device with

force feedback. This work demonstrates the interactive potential of mass-spring

systems. By employing either a mass-spring system or a FEM in (Chen et al. 1998), a

voxel-based animation technique is presented. In (Giacomo and Thalmann 2003), a

mass-spring system is modified in order to increase speed in the simulation of flexible

thin or thick liner bodies, such as strings, ropes or pipes.

An MSS is also used in soft-tissue simulations. A real-time muscle deformation using

an MSS was studied in (Nedel and Thalmann 1998). Using a new kind of spring type,

called an angular spring, the authors simulated a surface-based muscle model.

Terzopoulos and Waters (1991) and Lee et al. (1995) successfully used an MSS for

realistic facial modeling and simulation. A detailed facial model represented by a

four-layered mass-spring model. In their motion equation, they include volume

preservation forces and other constraint forces, such as skull penetration forces. U.

Kuhnapfel et al. (1999,2000 and Cakmak and Kuhnapfel 2000) implemented an MSS

in their system for simulating soft tissues. They integrated a mass-spring system

simulation module into their surgical training system, which is capable of performing

several surgical tasks (such as grasping and cutting). In (Webster et al. 2001) a mass-

spring system is used in a prototype haptic sturing simulator. They designed a

simulator system working in real-time to teach basic suturing for simple wound

closure.

In recent years, researchers have focussed on improving physical realism as well as

performance of the mass-spring algorithm.

13

1.2.2.2 Recent Trends

Some researcher focused on improving the performance of the MSS (Kang et al.

2000a, 2000b, 2001). Here the authors introduced a method to overcome the

computational burden of the implicit method. The velocity of vertices at the next time

step is approximated using a special formula therefore avoiding having to solve the

Hessian matrix as in (Baraff and Witkin 1998) or use the pre-computed filter as in

(Desburn et al. 1999). They also addressed the stability issue of such a system by

employing a stable damping function. Although their proposal for damping does not

represent the real damping force it provides overall stability. Their work purely aims

to produce faster simulations at the expense of the accuracy of the results.

Bourguigron and Cani (2000) studied the excessive spring elongation causing an

unrealistic appearance in MSS applications. In their work, the user can choose a

region of interest and the mechanical properties of the material along a given number

of axes. Since these mechanical properties and force directions are manually changed

for the specified regions where spring elongation may occur, this work provides a

means of controlling anisotropy. A solution to excessive spring elongation was

proposed by Provot (1995), which however does not have any mathematical

justification and its sole purpose is to achieve good visual effects.

Teschner et al. (1999a, 199b and 2000) used an optimization approach to improve the

physical realism as well as the performance of mass-spring systems. A multi-layer

soft tissue model of the head was developed including the skin turgor and sliding

effect between soft tissue and bone. They employed a variety of different optimization

methods and compared them with regard to the computational cost and the robustness

of their results. They showed that the conjugate gradient method is a fastest method,

which provides reliable results. They achieved a speed of less then 4 seconds for a

14

facial model consisting of 2092 points and 16547 springs. Although simulation time is

increased, it is not clear how accuracy is improved. Brown et al. (2001) used MSS for

soft tissue simulation with some modifications, such as the introduction of a quasi-

static algorithm with real-time performance. In their quasi-static algorithm they

neglected dynamic internal and damping forces, creating a static but simplified

equation. They also constrained the iteration process so that the iteration is concluded

within a given time interval, guaranteeing real-time performance. In order to enhance

the performance of such a method they developed a node-ordering algorithm, which

only takes into account regions of the model saving major computational costs. Their

method reaches 24 iterations at 30 Hz for a model with 216 nodes and 1440 edges.

Again accuracy is sacrificed to gain speed.

A new simulation technique using MSS was proposed in (Muller et al. 2002) where

stability and performance is addressed. A linear stiffness matrix is precomputed and a

tensor field describing local rotations is calculated during the simulation. Their

method allows the use of larger time steps for linear and non-linear cases without

effecting stability. Multiresolution techniques frequently used in FEM applications

were also integrated into the MSS algorithm (Choi et al. 2002) for performance

reasons. Using a modified butterfly interpolation subdivision, which produces smooth

surfaces while preventing shrinking, their method locally refines the surface mass-

spring models at different levels of detail. They also introduced a shape preserving

spring to prevent the surface model from collapsing during simulation. In their paper,

they present a comparison between the conventional implementation and their

method. For a model that consists of 450 nodes and 1344 spring, while conventional

method takes approximately 10 seconds to compute, their method reduces the

computation time to approximately 3 seconds. The mesh refinement introduces some

15

problems that need to be addressed, such as the oscillation between different regions

and the problem of interaction between them.

1.2.3 The ChainMail Algorithm

The ChainMail algorithm performs deformation locally comparing only two

neighboring nodes. It therefore does not involve any matrix inversion or iteration in

the deformation process. When the volume is manipulated, the object stretches and

contracts to satisfy the minimum and maximum allowable distance between the

neighboring elements (Gibson 1997). These simple deformation rules enable the

ChainMail algorithm to perform deformations at an interactive rate. The basic concept

of the algorithm is illustrated in figure 1.4. Each element in the volume is linked to its

six nearest neighbors. Displacements are transferred to neighbors by these links.

4I41 -1
II

region of interest

Figure 1.4 The ChainMail modeling of deformable body.

element

The allowable distances (limits) between the neighboring elements are defined as

follows. Each element must lie within a horizontal range of min Dx and max Dx from

its left and right neighbors. It must lie within a vertical range of min Dy and

max Dy from its top and bottom neighbors. These limits control the stretching and

contraction of the material. In addition to these limits, each element must lie within

16

+ /- max HorizDy from its horizontal (left and right) neighbors and within

+ /- max VertDy from its vertical (top and bottom) neighbors. These limits control

the maximum amount of shear that is possible in the material.

maxVertDy
-* --º

maxHorizDx

Left neighbor

min Dx 1m

------------ ------------ maxDx

mihDy
iT

'Bottom neighbor

Figure 1.5 The set limits for the deformation and the deformation region.

A possible deformation region defined by these limits is shown in figure 1.5. This

figure only shows a 2D representation of this algorithm. The 3D extension is given in

(Schill et al. 1998). In the 3D version of the algorithm a cubic cell is formed around

each element and the same rules for deformation apply. When an element (point) is

moved, its old and new positions are added to a list of moved elements. Its six nearest

neighboring elements are also added to the top, left, bottom and right lists of the

candidates for movement. The deformation algorithm then processes these candidate

lists in turn from right, left, top and bottom order. The set limits are checked and if

they are violated, necessary adjustments are made according to the defined limits. An

elastic relaxation step further ensures that neighboring elements satisfy the

constraints.

17

The deformation conditions for the ChainMail of figure 1.5 is given by following if-

then construct:

if (x - x1eft) < min Dx then x= xxlefl + min Dx

if (x - xleft) > max Dx then x= xxieft + max Dx

if (Y - Yleft) <- max HorizDy then y= yle ft - max HorizDy

if (Y - Ylefi) >- max HorixDy then y= ylefi + max HorixDy

Although the ChainMail algorithm allows the deformation of models containing

thousands of elements in real time, it has not gained sufficient popularity among the

scientific community. This may be due to its simple deformation rules that are only

designed for efficiency. A number of applications of the ChainMail algorithm are

given below.

1.2.3.1 The ChainMail Applications

The ChainMail algorithm was designed to produce very fast deformation rates

because only very simple deformation rules are defined between the individual

elements of the chain. This algorithm therefore is aimed at interactive frame rates for

large networks and sacrifices accuracy. This algorithm was further developed in

(Schill et al. 1998) where the modeling capabilities of the original chainmail

algorithm were further expanded to handle inhomogeneous material. A detailed

analysis of the ChainMail algorithm and its applications are given in (Gibson 1999),

where collision detection was also examined. An elastic relaxation phase was also

integrated into this algorithm. The ChainMail algorithm was modified in (Park et al.

2002) to take into account the residual energy left in the model after its interactions

with other objects. Their work emphasized the shape retaining property, which was

18

not addressed in the original algorithm. They also implemented a force-voltage

analogy concept into the ChainMail algorithm in order to compute reflected forces.

1.2.4 Medical Data Analysis

In order to perform surgical simulations, patient-specific medical data from various

imaging modalities must be obtained. The image then undergoes various medical

image-processing operations, such as registration, filtering and segmentation. Other

necessary operations, including measurements, cutting and separation are also

performed. This phase can be called the pre-simulation phase, which prepares medical

data for the simulation as well as helps the user to decide details of the operations and

treatments to be applied to the data.

There are many commercially available medical data analysis packages that deal with

all the image processing necessary for the pre-simulation phase. Some of the well-

known commercially available programs are Analyze (Analyze), Amira (Amira) and

3D Doctor (3d Doctor). Some of the programs are freely available, such as 3D Slicer

(3D Slicer) and Opedx (Opendx). In our work we use a program called 3DWIEVNIX

(3Dwievnix) developed by the University of Pennsylvania. This is a simple program

that enables us to segment and manipulate medical data.

There are research groups that specialize on medical data analysis and simulations. A

virtual reality training system for minimally invasive surgery was developed in

Germany (KISMET). MIRLab (MIRLab) has long been specializing on medical data

analysis and simulations. Some of the other research centers are based at Stanford

University (Stanford), INRIA (INRIA) and the computer graphics lab (CGL).

19

1.2.5 Polygonalization

Once the medical data is registered and segmented, we need to represent its voxel data

by a set of geometric primitives suitable for the simulation algorithm. The FEM and

MSS methods work on triangular (tetrahedral) representations. There are many

different methods for converting voxel data into a surface representation. One method

uses an unorganized point set in order to do the triangulation based on either a surface

or a volume approach (Amenta et al. 1998, Boissonnat 1984, Veltkamp 1995).

Another method was reported as a triangulation using contours, (Christiansen and

Sederberg 1978, Edelsbrunner and Mucke 1994, Schumaker 1990). Since the medical

images obtained from MRI or CT imaging modalities came as slices, a set of contours

in each slice are then connected to each other with triangles. Lorensen and Cline

proposed a well known and frequently used algorithm called the marching cubes

algorithm (Lorensen and Cline 1987). This algorithm generates high quality meshes

from volume data but produces a large number of triangles, which need to be reduced.

Triangles, specifically in the flat regions, can be merged or removed in order to

reduce the number of triangles representing the object without significantly

compromising the accuracy of the approximation. This will allow for faster rendering,

less storage space and simpler manipulations. There have been many algorithms

reported in the field for mesh simplification (Schroeder et al. 1992, Ciampalini et al.

1997, Hoppe 1993,1996, Ropovic 1997).

1.2.6 Neural Network System Identification

Neural networks were developed in an attempt to duplicate the information processing

capabilities of the human brain. A neuron in the brain is a simple processing unit,

which is connected to many other neurons. Each neuron receives a signal form other

connected neurons through its input paths. A neuron fires (i. e., produce output) if the

20

received signal is strong and modifies its synaptic junctions (weights). This process

constitutes learning. A representative diagram of a biological neuron is given in figure

1.6 and its basic representation (artificial neuron) is given in figure 1.7. Although

modern computers, compared to the human brain, are much faster in numerical

computation, the human brain is superior in solving complex problems. This is

because simple neurons in the brain have so many interconnections making them

massively parallel computing systems. This attractive property makes them widely

useful in many areas of research including (Uhrig 1995, Jain and Mao1996):

0 Modeling complex systems.

9 Pattern classification.

0 Function approximation.

0 Prediction.

0 Control.

0 Character recognition.

0 Text-to-speech conversion.

« e11 body
4

vr! /

synapses

Figure 1.6 A sketch of a biological neuron.

21

ýýýý input weights sum output transfer function

Figure 1.7 A basic representation of artificial neuron.

There are a number of neural network configurations proposed in the literature,

including (Jain and Mao 1996): Multilayer feed-forward networks that are the most

commonly used networks especially in data analysis, classification and function

approximation. Kohonen's self-organizing maps can be used for projection of

multivariate data, density approximation and clustering. Typical application areas are

speech recognition, image processing and process control. Hopfield networks are

recurrent neural networks and work on the energy minimization principle. They can

be used as an associate memory and in finding optimal solutions.

In this thesis we use the Cerebellar model articulation control (CMAC) neural

network, which is a two-layer feed-forward neural network developed by Albus

(1972,1975a, 1975b).

1.2.6.1 CMAC Neural Networks

CMAC neural networks did not receive much attention until the late eighties, because

of their large memory requirements and the lack of analytical results regarding their

training algorithm convergence. Recently, however, it has been shown that CMACs

are a powerful alternative to the well-known back propagation trained multilayer

22

neural networks (Miller et al. 1990). In comparison to other neural network

architectures, the CMAC network has two desirable features. First, the training

algorithms converge at speed orders of magnitude faster than back propagation

learning for real problems. Second, there are no local minima on the error surface

used in training.

CMACs gained more attention after Miller (1987) used the CMAC network for real-

time control of a full-scale multidegree-of-freedom industrial robot with considerable

success. CMAC controllers are widely used in robotic applications. For example,

Miller (1989) applied a CMAC-based controller to a robot system, which used image

feedback. Another application of CMACs was reported by Lin and Song (1992).

CMACs are utilized to perform feed-forward kinematics control of a four-legged

robot in straight-line walking and step climbing. Nelson and Kraft (1994) used a

CMAC neural network in a pole-balancing system. They designed a linear regulator

controller and used a CMAC network to adjust the linear controller in order to

compensate for nonlinearities and noise. Shiraishi et al. (1995) used a CMAC

controller for a fuel-injection system and experimentally evaluated the CMAC's

performance on a research vehicle in a configuration fully compatible with production

hardware.

The performance of CMAC neural network control systems has been compared

against that of other control methods. Kraft and Compagna (1990) compared a CMAC

controller against a self-tuning regulator (STR) and a lyapunov-based model reference

adaptive control (MRAC) with respect to closed-loop system stability, speed of

adaptation, noise rejection, the number of required calculations, and system training

performance. They found that the neural network approach functions well in noise,

23

works for linear and nonlinear systems, and can be implemented very efficiently for

large-scale systems. Another comparison is given in (Ananthraman and Gargk 1993),

where dynamic control of a robotic manipulator is achieved using both a back

propagation-based neural network controller and a CMAC controller. This work

indicated that the CMAC controller performed better than the back propagation-based

controller, both in terms of trajectory tracking and the number of iterations required

for a reasonable solution.

Although many papers describing the application of a CMAC controller have been

published, far less literature is available on the stability of the closed-loop system and

the convergence properties of the training algorithms. In (Kraft and Ho 1991), where

the CMAC controller is used as part of the feedback loop, the stability of the CMAC

network itself is analyzed in terms of a simplified linear model. They found that the

eigenvalues of the open loop and closed loop systems depend on the structure of the

CMAC neural network. Other researchers also investigated the stability of closed-

loop systems using neural networks (Chen and Chang 1994). They showed that the

CMAC-based control system is not guaranteed to be stable, and suggested some

methods for improving its stability.

Parkz and Militzer (1992) studied five training algorithms for associative memory

systems (AMS), particularly for CMAC networks. After testing the training

algorithms, they recommended the maximum error (ME) algorithm. Two training

methods are studied in (Thompson and Kwon 1995), the neighborhood sequential

training and the random training method. In the first method, the strategy is to select

points in the input space, which would train the CMAC system in the most rapid

manner possible. The random method is found to converge on the training function

24

with the greatest precision, although it requires longer training periods than the

neighborhood sequential training method.

Albus did not manage to prove that the CMAC training algorithm converges. It is now

known (Wong and Sideris 1992) that the CMAC learning always converges with an

arbitrary accuracy for a set of training data. Wong also proposed an alternative way to

implement CMAC neural network. Improvements in the original CMAC neural

network architecture have been also reported. A method for adaptively determining

the quantization resolution was given in (Kavamato et al. 1995) and (Kim and Lin

1992). The quantization resolution was increased over the range where the input

values were likely to occur so that more information would be captured. In (Wen et al.

1996), a mapping function, which mapped quantization input states to physical

memory locations by using a memory banking technique was developed. This

approach exploited the sparse distribution of weight addresses, and as a result reduced

the memory requirement.

1.2.6.2 Parameter Identification

Most of the real-world dynamic processes are nonlinear and therefore developing

mathematical models of such systems may not be possible due to the lack of

information and difficulties in determining system parameters (Narendra et al. 1990).

Using the observed input-output data, system identification is increasingly used by

providing models such as the so-called "black-box" model where the system is

completely unknown or the "gray-box" model where the system structure is known

with undetermined parameters. If there is not enough physical information about a

dynamic system or the system is too complex, then the "black-box" representation is

used based on measured input-output data (Narendra et al. 1990,1992). Figure 1.8

25

represents the general system identification model. Here the main idea is to apply the

same input to both the neural network and the unknown system and to compare their

outputs. The error between these two outputs is then used to update the weights of the

neural network model until the error is minimized. At this stage the neural network is

said to converge and the neural network model produces the same output as the

unknown system for a given input.

input

NN
/

output 9

x

Model

error

Unknown output Y

Model

Figure 1.8 Identification of an unknown process using neural networks.

The determination of the spring parameters is crucial to capturing the non-linear

material properties, as well as, to prevent unrealistic behavior of such systems while

maintaining system stability. Much research effort has been expended on this research

topic in recent years. In (Louchet et al. 1995), an optimization method was suggested

to identify spring stiffness. The authors set up an objective function that is minimized

using the positional difference between the simulation model and the real object for

cloth simulation. In this work only the spring stiffness was identified. This is a

relatively straightforward approach especially for constant coefficients. In (Koch et al.

1996), a method called intensity-based segmentation of volume data was used to

compute the spring stiffness. This method did not consider the dynamic behavior of

soft tissues because it assumed a relationship between color density and stiffness.

There is no proof that this assumption reflects the behavior of its real life counterpart.

26

Using genetic algorithms, (Joukhadar et al. 1997) proposed a method for the

identification of the parameters of an MSS in the simulation of a tie and its interaction

with a robot. This was again done based on an assumed constitutive model. In a recent

work (Bhat et al. 2003) an algorithm for estimating cloth parameters from video

images was presented. This is again an optimization based model fitting approach. In

their paper, they identified folds in the original cloth simulation and used a metric

comparing both the video sequence and the parameter model. An optimization method

was used to minimize the measured error. This approach may produce a parameter

model mimicking the cloth behavior for similar situations where the error used in

optimization process is taken. Their model lacks the generalization ability that is

provided by neural networks.

Neural networks (NN) are a widely used approach in engineering applications for

system identification (Narendra et al. 1990, Sjoberg et al. 1995, Pearson and Pottmann

2000). Recently, NNs have also found applications in MSS simulations and animation

control (Bouzas and Arnold 1998). In (Grzeszczuk et al. 1998) NNs were used for

various animation tasks. NNs were used to learn specific behaviors rather than system

parameters. NNs were then used with a larger step size to speed up the animation

process. Work relating to the identification of MSS parameters has been presented in

(Ishikawa et al. 1998), where the authors used markers on a human face to capture the

data representing facial expressions. The data were then used to train the NN to

identify system parameters. However, no detail was given in the paper as to how the

identification process was carried out.

A parameter identification method in a satellite orbit determination application was

proposed in (Sinha 2000) where they compared the neural network approximation

27

with the Kalman Filter. A two-layer recurrent neural network was employed in (Lu et

al. 2003) in order to identify the damper parameter of the switched reluctance motors.

An online identification was carried out and results were validated from the operating

data. NN parameter identification was implemented in (Almeida and Voit 2003) in

order to identify parameters in S-system models of biological networks. Narendra et

al. (1996) proposed identification models for unknown systems and for systems with

unknown parameters. Based on Narendra's models a system identification and control

has proposed in (Duysak 1997) using CMAC neural networks. In (Horvath et al.

1996) a CMAC neural network is used for system identification. They studied

different ways of system identification by modifying the original network.

So far the most detailed research on this topic was carried out by Numberger et al.

(1998,1999,2001). They developed a problem-specific neural network model for

parameter identification using a mass-spring system and applied this technique in

some medical visualization applications. Their identification network model

represents the entire mass-spring structure using neural network. Each of the dynamic

parts of the mass-spring system, spring stiffness, damping, spring force, acceleration,

velocity and position represented by the neural networks. Using the only available

data, the positions of mass spring, six neural networks were trained. They also

addressed the basic concepts in neuro-fuzzy techniques for the identification and

simulation of time-dependent physical systems. As examined later in the related

chapter of this thesis, this identification model has its drawbacks and limitations.

Their model however provides a good base for developing a system identification

model specific to mass-spring system modeling and simulation. A detailed study of

such a method is given in chapter 4.

28

1.3 Thesis Organization

Chapters in the thesis are organized as follows:

" Chapter 1: This chapter provides a detailed literature review on relevant subjects,

deformation modeling algorithms (FEM, MSS, ChainMail), medical data analysis,

polyganization methods, neural networks and parameter identification.

" Chapter 2: We study and implement a mass-spring system to simulate a variety of

deformable objects such as cloth and soft tissue. A detailed theory of the

algorithm is presented and a dynamic model is obtained. This chapter also reviews

collision detection and collision forces. The spring elongation problem and its

solutions are also addressed here. The advantages and disadvantages of such a

method are outlined.

" Chapter 3: In this chapter, we examine medical data image analysis.

Segmentation, filtering measurements and manipulations (i. e. cutting and

separation) fall in the scope of this chapter. The main purpose of this chapter is to

produce a patient-specific head model suitable for our applications. This head

model further undergoes triangulation and has a decimation algorithm applied to it

in order to generate a polygonal model suitable for mass-spring simulations. At

this stage, polygonal representations of skin and bone surfaces are further

modified to obtain a volume tissue model including different tissue layers. We

then simulated facial tissue deformation caused by the underlying bone

realignment using a mass-spring algorithm. The simulation application also

includes facial animation by the developed head model.

29

" Chapter 4: We integrate the application of neural networks to mass-spring systems

in order to increase the physical realism of the simulations. This results in a

unique identification method specific to a mass-spring system. Our neural network

identification method successfully learns unknown nonlinear system parameters

and therefore increases the physical accuracy of the simulation outcome. Neural

network algorithms in general and particularly the CMAC neural network are

studied in detail. The neural network system and its parameter identification are

included in this study.

" Chapter 5: We examine simulation methods along with FEM, MSS and ChainMail

and come up with a deformation technique suitable for a neural network

implementation. A detailed theory of the developed model is presented in this

chapter. Its application to various deformation simulations, including the

simulation of craniofacial surgery is given. A comparison with a mass-spring

system for accuracy and speed is presented. A comparison with other applications

presented in the literature in terms of performance is given.

" Chapter 6: We finally discuss the work done in this thesis as well as provide a list

of our contributions. Future work is also proposed.

30

CHAPTER 2

MASS SPRING SYSTEMS (MSS)

Mass-spring systems have been widely used in computer graphics applications

because of their simplicity, speed and their acceptable accuracy. This chapter presents

a detailed analysis of mass-spring theory, its implementation and its application to

cloth-simulation as well as soft tissue deformation. Since the theory of mass-spring

systems is a well-studied subject we take a different approach in this work. By

dividing its dynamic structure into two parts we analyze the individual dynamics of

such systems and drive their governing mathematical equations. Our analysis is

constructed in a way that yields a dynamic model development to be used in neural

network system identification in later chapters. The study includes different

integration schemes, collision detection and forces. We also address the downsides of

the mass-spring algorithm such as the determination of system parameters and

stability of the simulations.

2.1. Mass-Spring Structure

In mass-spring simulations the geometry of a deformable object is represented by a

3D mesh consisting of n nodes, which are interconnected by m links. Each node in

the mesh represents a virtual mass and is called a mass-point. Displacements of these

mass-points describe the deformation of the object. The total mass of the object under

31

consideration is distributed among these mass-points. The links between each pair of

mass-points are virtual springs with damping elements. It is assumed that the springs

are weightless. These springs define the distance relationships between mass-points

because the deformation characteristic is embedded into the 3D mesh by spring

parameters; namely stiffness and damping. A simple representation of such a system

is shown in figure 2.1. The object under consideration is firstly represented by a set of

geometric elements (triangles). The edges of the triangles are then considered as being

springs and their vertices are assigned as mass-points. Each spring element consists of

two parts. One part simulates resistance to external forces while the other is

responsible for energy dissipation.

~ýý-ý'
Figure 2.1 Illustration of a 3D Mesh and its mass-spring structure.

32

The mass-spring system given in figure 2.1 can be considered as a mechanical system

whose behavior is described by a coupled system of second-order ordinary differential

equations. Before analyzing the system dynamics, in detail we present a brief

description of the notation used throughout this thesis.

" Xi (i = 1,2,..., n) is the position of the mass-points (P;) in the 3D mesh given in

Cartesian coordinates.

" mi is the mass of each point in the mesh and may be the same for all the mass-

points.

9 Klj and Di j, (j =1,2,..., n), are the spring stiffness and damping factors

associated with each link or spring between mass-points i and j, i#j. For

clarity we will omit the use of indexes.

" fK represents the spring force caused by spring stiffness. In the following

sections this force is abbreviated to fK to aid readability.

" fö is the damping force and it is similarly abbreviated to fo

" fit is the internal force (total spring force), which is abbreviated to fs .

" f; t represents the external force applied to the mass-point i.

" fi is the total mass-point force (=fit + f,.,).

0 Ai and Vi are the acceleration and velocity of the mass-point i, respectively.

0r and ro represent the spring length at the current state and the spring length at

the rest state (between mass-points i and j, i*j), respectively.

" dt is the time step of the integration algorithm.

" Bold letters are used to represents vectors.

33

Figure 2.1 depicts the modeling structure of the mass-spring algorithm. As figure 2.1

suggests mass-spring systems consist of two forms of dynamics: spring dynamics and

point dynamics (modeling is achieved by springs and points). The two forms of

dynamics are not independent from each other but can be analyzed separately.

2.1.1 Spring Dynamics

A spring between two points and its detailed dynamics is given in figure 2.2. A

typical spring consists of two components represented by spring stiffness and

damping. Any changes at the two ends of the spring start a dynamic process.

Therefore the internal forces in the MSS are generated by the springs because of the

changes in their lengths and velocities. These changes are caused by external forces or

by the movement of the mass-points. Together with the external forces, the internal

forces will alter the rest positions of the mass-points. A mass-spring system

eventually will reach a steady state, where these changes represent energy stored in

the springs. This state represents the deformed shape of the original object. The

changes and their effects on the system equations are examined in the following

sections.

sdffnes s

Xi-. x1

damping

Figure 2.2 A typical representation of a mass-spring model between two points.

34

2.1.1.1 Length Change

It has been shown (Witkin et al. 1997, Baraff and Witkin 1999,2001) that the spring

force due to the spring length change is related to the changes in its length by the

following formula:

Xi xi

F; =K(IXj -Xi I-ro)
(xi - Xi)

(2.1)
1 xi -Xi I

where I Xj - Xi I is the current length of the spring. The last part of the equation is a

unit vector in the spring direction and can be defined as:

(Xi -X1)
Uy UK (2.2)

I Xj - XII

Equation (2.1) can now be represented as:

F; =K(r-r0)uK

where r (Xi - Xj) is the current spring length.

(2.3)

If we drop the use of the direction vector (unit vector) in the force equation 2.3, the

spring force due to the length change can be expressed in a generic form:

fK =K*dr (2.4)

where dr is the change in length of the spring between its current length and its rest

length. Due to this change in its length the spring offers a resistance related to its

stiffness, therefore equation (2.4) represents the spring force due to spring stiffness.

This formula is valid for linear cases in which stiffness is constant. It is also known

experimentally that this coefficient is not constant but is a nonlinear function of spring

length change, i. e. K(dr).

35

2.1.1.2 Velocity Change

The spring force due to its velocity change across the spring is given in the literature

(Nurnberger et al. 1998, Howlett and Hewitt 1998) as:

vi vi
Fl = D(Vj -Vi) (2.5)

where (Vj - V1) is the velocity change of the spring. This equation can be

represented in the form of a force function due to spring stiffness as in (equation 2.4).

A unit vector representation for the spring direction of the spring velocity can be

given as:

(vi - Vi)
uy=up= (2.6)

1 v; -vi I

If we substitute equation 2.6 into equation 2.5 and define a new variable dv as the

velocity change in magnitude (I Vj - Vi I) between the two ends of the spring, this

new form of the spring force due to spring damping is given as:

fD =D*dv. (2.7)

Although more research is needed to determine the relationship between damping and

spring velocity change, we assume that they are nonlinearly related, i. e. D(dv). In

almost all applications however constant damping coefficients are used.

2.1.1.3 Total Spring Force; Internal Force

There are two common formulas used in the literature to calculate the total spring

force. Basically they sum the forces caused by the spring stiffness and damping

36

elements (Baraff and Witkin 1999,2001). Using the simplified equations given in

(2.4) and (2.7), the total spring force can be given as:

fs =K*dr+D*dv. (2.8)

A second formula, which is also commonly used, is given as:

fs =K*dr+D*dr"dy (2.9)
dr

where the symbol ̀ "' represents dot product of the two vectors.

The spring force is measured in the direction of the spring itself. Therefore, the

formulas given by the equation (2.8) and (2.9) are multiplied by the relevant unit

vector in the spring direction of each spring.

2.1.2 Point Dynamics

Each point in the MSS receives internal forces generated by the connected springs and

the applied external forces. Point dynamics is then responsible for finding the

acceleration, velocity and finally the new position of the mass-point, see figure 2.3.

Point
F dynamics

Figure 2.3 Point dynamics receives external and internal forces and finds the new

positions of the mass-points.

Given the internal and external forces, there are well-established physical formulas for

calculating point dynamics. Newton's law gives the relationship between the applied

forces and the acceleration of each mass-points as:

f =ma. (2.10)

37

Once the acceleration is known, there are well-known integration methods, proposed

in the literature that can be used to determine the velocity and the new mass-point

positions.

2.1.2.1 Explicit Euler Integration

One of the best-known and straightforward methods for calculating point dynamics is

the explicit Euler method, whose integration scheme is given below (Barall and

Witkin 1999,2001):

V (k + 1) =V (k) +
dt

F(k)
m

X(k+1) = X(k)+dtV(k+1). (2.11)

This algorithm takes internal and external forces at the current time step (k) and

calculates the velocity and position for the next time step (k + 1) . Stability comes in

the picture here because the velocity and position for the next time step is blindly

calculated using the current values available. To achieve stability in this integration

method the time interval denoted by dt must be chosen to be very small. This alone

sometimes is not enough to ensure stability, which also depends on the choice of other

system parameters. This technique is very easy to implement but because of its small

time step requirement, it is often difficult to achieve real time performance by using it.

In order to improve stability and allow large time steps the explicit Euler method is

often modified.

2.1.2.2 Implicit Euler Integration

With the explicit method, given the total mass-point force and the initial conditions,

we can determine the next mass-point position. If the time step is too large, a very big

change in the position occurs because the internal forces are constant over that period.

38

With the implicit Euler integration method, however, the new mass-point position is

consistent with the applied forces, because the next position is evaluated using the

force at that instance. The algorithm of the implicit integration method is summarized

below (Baraff and Witkin 1999,2001):

V (k + 1) =V (k) +
dt

F(k + 1)
m

X(k + 1) = X(k) + dtV(k + 1). (2.12)

The only change between the two methods (equation 2.11 and 2.12) is the choice of

the force function, which determines the velocity. The implicit method uses the force

in the next time step to calculate the velocity in that step. This simple change ensures

an unconditional stability thus allowing the choice of arbitrary time steps.

There are, of course, disadvantages to using this method. The force function F(k + 1)

can not be calculated at the current instance k. An approximation of this function can

be used instead by taking the first-order derivative for its linear coefficients. The

resulting solution involves a Hessian matrix of the system (Baraff and Witkin 1998).

This means solving a 3n x 3n matrix at each time steps. Use of this method then

introduces an additional computational burden to the simulation system. As indicated

in (Kang et al. 2000a, 2000b, 2001), implicit integration allows larger time steps to be

used but the performance of such systems will still be far from interactive.

2.1.2.3 Approximated Implicit Method

There are two methods proposed to further speed up the integration method using

implicit integration. Desburn at al. (1999) suggested a precomputed filtering method

to approximate The Hessian matrix method. Their method, as indicated in (Kang et al.

2000a), is faster than the original implicit method but it fixes the stiffness matrix

39

whose values can not be changed dynamically. A more direct approximation of the

implicit method is proposed by Kang et al. (2000 a, 2000 b, 2001).

The implicit integration algorithm given by equation (2.13) calculates velocity for the

next time step. Their work produced a method that approximates the velocity of the

next time step using the force function at the current time step:

F(k) + dt2KVF(k)dt
(m+dtZKn) V(k + l) = (2.13)

m+dt2Kn

where n represents the number of mass-points that are connected to each of the mass-

points in the algorithm. Since the velocity for the next time step is known the

positions of the mass-points can be calculated.

Their method does not require the solution of large linear systems, thus it is much

faster compared to the original implicit method or the precomputed filtering method.

The downside of this method is that it assumes a uniform spring constant. This may

cause problems for applications when nonlinear coefficients are used. In addition, this

algorithm introduces further approximations, therefore sacrificing more accuracy.

2.1.3 A Dynamic Model

The mass-spring structure studied above is shown to consists of two different types of

dynamics; spring dynamics (including damping) and point (mass-point) dynamics.

Spring dynamics are responsible for generating nonlinear spring forces (internal

forces), driven by the spring stiffness and spring damping (see sections 2.1.1.1 and

2.1.1.2). Point dynamics use the internal forces from the connected springs and any

applied external forces to determine the acceleration, velocity and finally the new

40

position of the point (see section 2.1.2). Using the explicit Euler integration method

the dynamics are represented by a block box as shown in figure 2.4.

In this figure, the nonlinear function fK represents the spring force (see equation 2.4)

caused by the spring stiffness, similarly the nonlinear function fo represents the

damping or viscosity force (see equation 2.7). The summation of these two forces

represented by F (see equations 2.8 and 2.9) is the total spring force exerted on the

mass point from individual springs. This part of the block diagram is called spring-

dynamics. The point-dynamics part of the diagram receives two inputs: an internal

force, F, from connected springs and an external force, Fet , from the environment.

The combination of these two forces is called the total point force, which drives the

acceleration, velocity, and position of that individual point (see equations 2.11 and

2.12).

F__, (k+1)

fK F(k) X;
0- 57

fD

. 44 lip
spring

dynamics

V (k+l) X (k+l)

dt dt

TD TD

point
dynamics

Figure 2.4 Mass-spring dynamics (TD: Time Delay).

The dynamic model given in figure 2.4 summarizes the mass-spring system. This

model is used in chapter 5 to develop a neural network identification model. Here we

provide some of the considerations that one has to take into account in order to

implement mass-spring systems.

41

2.2 Implementation

There are several issues that have to be taken into consideration while implementing

an MSS algorithm. Stability is the first consideration in any simulation project. There

are other concerns specific to MSSs, such as excessive spring elongation and the

choice of system parameters. These considerations are examined in detail in the

following subsections.

2.2.1 Stability

Stability is the main concern in every simulation system. In mass-spring systems the

stability is strictly dependent on the choice of system parameters and on the

integration techniques used. These dependencies are given by the formulas

(Kuhnapfel et al. 1999):

Dýdt*K_M
2 dt

dt<D+
D2+2MK

2
(2.14)

One must choose system parameters according to the above formulas. In general the

choice of parameters is based on the time step of the simulation system that is

inversely proportional to the square root of its spring stiffness. An unconditional

stability is quarantined by the implicit integration method.

2.2.2 System Coefficients

One of the biggest problems in implementing an MSS is the choice of the system

parameters. In order to overcome the instability issue one may choose a different

integration scheme or take equation (2.14) into account while determining the

parameters. There is no easy solution in establishing the system coefficients. In most

of the applications they are determined by trial and error, based on the visual

42

appearance of the simulation outcome. As an example, figure 2.5 shows a cloth model

simulated using different spring stiffness values. These simulations are carried out

over the same number of iterations. As clearly seen from the figure, the choice of

system parameters dramatically effects the simulation outcome.

_ tiSt1ýýý
ý, ý 31

' -4ýr t ýýý #-rý#
ýr ýyº y, -

ý"
"k y

Figure 2.5 Cloth simulation using different spring stiffness values but the same values

for other parameters under the same the initial conditions (i. e. the same external

forces).

Figure 2.6 shows a typical stress-strain relationship for biological tissues (Kuhnopfel

et al. 1999). As the figure suggest this relationship is nonlinear and can not be

represented by simple constant values. Choosing the linear values themselves is

difficult and determining complex nonlinear parameters may be impossible using

conventional methods.

Figure 2.6 A stress-strain diagram for biological tissues.

43

2.2.3 The Choice of Integration Method

Implicit Euler integration gives a guaranteed stability with large time steps, therefore

it is very desirable to use this method despite the fact that it does not still yield a real-

time performance for most applications. Approximated implicit methods further

increase the speed but also further decrease the accuracy of the simulation. The choice

of the integration method is then depended on the nature of the application. In the

simulation of cloth models implicit or approximated implicit Euler methods can be

chosen because generally linear coefficients are used and accuracy is not the main

concern. In other simulations, such as medical simulations, explicit Euler integration

is often employed (Kuhnapfel et al. 1999,2000, Cakmak and Kuhnapfel 2000). Other

methods such as the Runge-Kutta method (Montgomery et al. 2002) may be used as

an alternative to the explicit Euler method in terms of accuracy and performance but

they are not appropriate for collision handling.

2.2.3 Excessive Spring Elongation

In mass-spring simulations some of the springs are being over-stretched and an

undesirable appearance occurs. Super-elongated springs are found in places where the

mass-points are constrained. Figure 2.7 illustrates this problem. A cloth model lying

flat constrained from two of its corners is simulated using only gravitational force.

Both figures have exactly the same parameters (mass, stiffness, damping and number

of iteration). The left image of this figure shows that elongation occurs at the hanging

points.

Provot (1995) proposed a simple and effective inverse dynamics process to resolve

this problem. In his solution, springs that are excessively stretched are aligned in

order to meet predefined conditions. Each spring is allowed to deform to a certain

44

percentage of its rest length. If this condition is violated his algorithm adjusts the

spring length. As accepted by the author himself, this solution has no mathematical

justification although it may produce plausible results in some applications. The right

image of figure 2.7 implements Provot's algorithm for elongation correction. As seen

from this image the elongation is corrected but the two images are considerably

different from each other.

" s-
ý, ýýý{

t
yi +ý } }t' a

sý ;ý 4-ýýýýýý ýýý
,3ýý ýý; =ýý

ýýýý_

Figure 2.7. Spring elongation occurs at hanging points (left) and correction (right).

Provot's algorithm was further developed in (Kang et al. 2000 b). In the original

proposal, the order in which the springs were to be adjusted was not given. This

matter was investigated with an ordering algorithm, which produces a list where the

springs are ordered according to their elongated lengths. Then these springs are

adjusted based on this order. This problem was also addressed in (Bourguigron and

Cani 2000), where the user can choose a region of interest and the mechanical

properties of the material along a given number of axes. Since the mechanical

properties and force directions are manually changed for the specified regions where

spring elongation may occur, this work provides a means of controlling anisotropy.

None of the previous work provides a real solution to this problem. It is well known

that a force/displacement curve is nonlinear as the stress-strain diagram shows (see

45

figure 2.6). This curve cannot be approximated by linear parameters correctly. This

implies that spring parameters should be nonlinear. Even in linear cases, however,

determining these parameters is not easy. Therefore in most applications such

parameters are determined by trial and error based on the visual results of the

simulation

2.3 A Solution: Nonlinear Parameters

Stability of the simulation system and super-elongation of the springs all depend on

the choice of system parameters as discussed above. If system parameters are properly

chosen springs will not elongate excessively while system stability is maintained.

More research, however, is needed in this area to determine the complex nonlinear

relationships between spring stiffness and spring length change as well as between

spring damping and spring velocity change. In chapter 4 we will propose a way of

establishing these parameters by means of system identification.

To demonstrate this concept we give an example here. Suppose that the spring

stiffness is nonlinearly related to spring length change by the following formula:

K(dr) = ko (1 + k, * dr2)
. (2.15)

where the parameters ko and k, are constants. For simplicity we now use a constant

coefficient for damping and formula (2.15) in the following example. We also

implemented Provot's algorithm for elongation correction. The results are shown in

figure 2.8 for the same number of iterations. The image in black is obtained using the

spring elongation correction algorithm while the image in red is obtained using a

nonlinear coefficient. Figure 2.8 suggests that the spring coefficients are nonlinear

and that if they are established correctly the difficulties discussed in sections 2.2.1-

46

2.2.3 are avoided. In the following section we will discuss another implementation

issue, collision detection which is an essential part of any simulation algorithm.

(a) (b) (c)

Figure 2.8 Cloth simulation with different stiffness functions. (a) Uses constant

coefficient, (b) and (c) use the function defined by equation 2.15 with different values

for ko and k,.

2.4 Collision Analysis

Collision detection and handling is the computationally expensive phase of

deformable object simulation algorithms. This is because the algorithm searches for

any possible collisions and responds to this at each time step of the integration.

However, collision detection is an essential part of dynamic simulations where objects

interact with each other. Therefore this subject is the focus of many researchers who

have already made significant progress and provided efficient collision detection

algorithms (Yang and Thalmann 1993, Provot 1997, Wagner et al. 2002, Algorithms

2004). There are two possible ways in which collision may take place: a collision with

another objects in the simulation environment (collision with the environment) and a

collision of the object with itself (self-collision).

47

2.4.1 Collision with the Environment

Most simulation applications require more than one object in the scene and

interactions between them. In surgical simulations, for example, organ models are

manipulated with surgical tools as well as interacting with the surrounding areas.

There are two types of collision possible between two objects.

2.4.1.1 Mass-Point Polygon Collision

This type of collision occurs when one of the mass-point in the 3D mesh goes through

a polygon (triangle). If the path of the mass-point is considered as a ray, then the

collision detection becomes a ray-polygon intersection. Ray-polygon intersection

algorithms are well studied (Badouel 1990, Mooller and Trumbore 1997) and we

provide a detailed analysis of a ray-polygon intersection algorithm here. This

algorithm will be used in chapter 3 in order to generate prismatic volume elements

representing different tissue layers.

V2

'R
r

r

r

V1

Plane

V0

Figure 2.9 Ray-triangle intersection.

The algorithm we employed here uses direct 3D computations to determine inclusion,

thus avoiding projections into a 2D coordinate plane (O'Rourke 1998). Figure 2.9

depicts a ray R intersecting a triangle T, defined by vertices V0, Vl and V2. The

48

ray-triangle intersection algorithm starts by determining whether the ray and the plane

(of the triangle) intersect. If they do not intersect, this means that the ray also does not

intersect with the triangle itself. If they do intersect, we need to find their point of

intersection.

The plane equation in terms of the vertices of the triangle is given as:

V (s, t) = V0 +3(v I-
VO) + t(V 2-

VO)

=Vo+su+tv (2.16)

where s and t are parameter values and u= (V1 - VO) and v= (V2 - Vo) are the

edge vectors of the triangle. The intersection point is in the triangle if

s >= 0, t >= 0 and s+t <=1. The intersection point is on an edge of the triangle if

one of the following conditions is true: s=0, t=0 and s+t =1. In such a case, each

condition corresponds to one edge.

The problem is then reduced to finding the coordinates of the intersection points and

checking the above inequalities to determine if the intersection is inside the triangle.

A detailed description of the above algorithm can be found in (Sunday 2001), where

the parameter values are computed as:

(u " v)(w " v) - (v " v)(w " u)
(u"v)2

-(u"u)(v"v)

(u " v)(w" u) - (u " u)(w" v) (2.17)
(u" v)2 -(u"u)(v"v)

where w= PI - VQ (PI is the point of intersection of the ray and triangle) and ` "'

represents dot product of two vector. The intersection point is then found as

Pj =V (s, t) . (2.18)

49

2.4.1.2 Edge-Edge Collision

Edges of two polygons can collide with each other without having any mass-point

collision involved. Again this is a well-studied problem. Here we will provide the

underlying concept of the edge-edge collision algorithm and the refer reader to

various sources (Moore and Wilhelm 1988, Volino and Thalmann 1995).

Such an algorithm consists of three stages. First, collisions are considered between

two polyhedra, one of which may have vertices inside the other. Determining if such a

collision is accomplished by finding the dot product between the two normals of the

faces of the first polyhedron and vertices of the second polyhedron. If this dot product

is negative the vertex of the first polyhedron is inside the volume of the second

polyhedron. In this case the algorithm proceeds to the second stage which determines

edge collisions. The singed perpendicular distances of the two end points of an edge

of the first polyhedron from the plane of the face of the second polyhedron are

determined. If the two distances differ in sign, then the edge is said to intersect the

face of the polyhedron. The last stage of the algorithm deals with a situation where the

faces of the two polyhedra are perfectly aligned. The centroid of the face of one of the

polyhedra is computed and the vertex-polygon intersection is determined (the first

stage of the algorithm). If this centroid is found to be inside the volume of the second

polyhedron then a collision occurs.

2.4.2 Self Collision

The underlying idea here is that each mass-point has to be checked against its

neighborhood and other mass-points. Since adjacent mass-points can not pass through

or collide with the surface of the object to which they belong, self-collision detection

algorithms prevent these situations from happening.

50

The implementation of such an algorithm is very simple; a virtual sphere is placed

around each mass-point and points are prevented from getting any closer to each other

than the radius of this sphere. If there is a collision, the colliding mass-point is pushed

away towards to the surface of this sphere and its position and velocity are adjusted

accordingly. The reader is referred to the work of Volino and Thalmann (1994,1995)

and Lafluer et al. (1991). In figure 2.10, we show the original image of a piece of

cloth hanging from its two corners, (left image). In the middle image we have moved

one of its corners closer to the other and simulated the cloth behavior. This image

shows the output of the simulation algorithm ignoring self-collisions. As is clearly

seen from the figure, some of the mass-points have passed through the surface of the

cloth, which looks unrealistic. The right image employs a self-collision test and

therefore looks more realistic.

Figure 2.10 Hanging cloth simulation with and without the self collision test.

2.4.3 Collision Time

If there is a collision we need to determine its exact time thus allowing the algorithm

to respond to it. This subject is explored in (Kang et al. 2000 b) where the authors

51

provide a collision time calculation for mass-point triangle collisions and edge-edge

collisions. The collision time is computed using the following equations:

tE [to, to +dt]

U, vE [0,1], u+ vS1 (2.19)
AP(t) = uAB(t) + vAC(t)
AP(t). (AB(t) x AC(t)) =0

where P is a point and A, B and C are vertices of a triangle. The time calculated

using above equation gives the actual collision time in the corresponding time

interval. The algorithm needs to respond to the collision at that time. Alternatively,

the algorithm sets a threshold distance dt and detects the collisions. If the distance

between the deformable object and the other objects are less then this defined distance

the collision time is adjusted as:

t=t _dV (2.20)

where tI is the adjusted collision time.

2.4.4 Collision Response

When two objects collide with each other there will be friction and energy dissipation.

If the collision is elastic, there will not be any energy dissipation. In the opposite case,

where the total energy is dissipated during an inelastic collision, the collision

algorithm needs to adjust the velocity of the mass-points just before the collision time.

The velocity is adjusted by the following formula (Kang et al. 2000 b):

ifIVT 1ý! KfI"N I
fV V : VT-KfIVNIýý7TI-KdVN

(2.21)

ifIVT1<KfIVNI
Vý_ -KdVN

52

where VN = (V. N)N is the normal component of the velocity before the collision and

VT =V- VN is the tangential component. The coefficients Kf and Kd represent

friction and dissipation constants respectively.

2.5 External Forces

There are various types of external forces acting on each mass-point deforming

deformable objects. The most common of these are caused by gravity, air resistance

(fluid) and interaction with various tools. The gravitational force is given as:

fg =mg (2.22)

where g represents the acceleration constant given as 9.81 7sec2

When air is in contact with the simulated surface it exerts a force on each of its mass-

points. In general an object can be considered as if it is inside a fluid that has a certain

velocity. Ignoring the lift force of the fluid, the magnitude of the drag force is given as

(Kang et al. 2000 b):

f drag I= 2C drag PIV 12 S sin 0 (2.23)

where Cdrag is the drag force coefficient, p is the density of the fluid, V is the

relative velocity of the object, S is the area of the object surface and 0 is the angle

between object's velocity and surface vectors.

The force applied to the deformable object from external tools, such as surgical

instruments, is calculated using the depth information. The actual force is not known

exactly, but experimental approximations can be used. The determination of such a

force is completely application dependant.

53

2.6 Application

A simulation algorithm is developed based on the concept examined in this chapter.

The algorithm is then used in cloth simulations and the simulation of soft tissue

deformations. The simple structure shown in figure 2.11 is used to develop cloth

models. Three types of springs are used in this model. First, all mass-points are

connected to each other by structural springs (shown as black). They are also

connected by shear springs, which are diagonal springs (shown in blue). In order to

simulate bending and wrinkles a spring type called bending spring is used (shown in

red).

A cloth model is obtained using 289 (17 x 17) mass-points. The model consists of 544

structural springs, 512 shear and 510 bending springs. In the simulation of the cloth

model a collision algorithm is used but no elongation correction algorithm is used.

The simulation was run for 300 iterations and the result is shown in figure 2.12. A

second example simulates soft tissue deformation. A face model was generated

(examined in detail in chapter 3) and the model interacted with a probe. The model

consists of 2437 mass-points and 6722 springs. The simulation output is shown in

figure 2.13.

s tcuc tur l springs

±nass-point

shear springs

-----º bend springs

Figure 2.11 Spring structure is used to create cloth models.

54

Figure 2.12 Cloth simulation.

Figure 2.13. Soft tissue interacting with a surgical tool.

55

2.7 Summary

In this chapter we have examined a mass-spring algorithm in great detail, including

integration techniques, collision analysis and spring elongation. In addition we have

outlined the importance of simulation parameters. The coefficients used in the mass-

spring algorithm have an enormous effect on the simulation outcome as well as the

stability of the simulation. The concept was demonstrated by examples. A major

application of such an algorithm will be given in chapter 3 where we examine a

surgery simulation. Specifically, a mass-spring algorithm is applied to a craniofacial

surgery simulation.

56

CHAPTER 3

SIMULATION OF SOFT TISSUE DEFORMATIONS

Surgery simulator systems will become increasingly popular, as flight simulators are

now for pilots. This is because they have proven invaluable in assisting surgical

training and planning during pre-operative and intra-operative procedures. One of the

core parts of the surgery simulator systems is the modeling and simulation of soft

tissue deformations. There are numerous methods available, as discussed in chapter 1,

for such a task. In chapter 2 we have studied mass-spring systems to be used in our

simulations to predict soft tissue deformations. We now examine the process of

obtaining a suitable model from medical image data for the simulation algorithm. This

model will then be used in the simulation of a craniofacial surgery, where the lower

jaw is cut and aligned with the upper jaw.

Simulating facial tissue deformations due to the underlying bone realignment requires

several stages of preparation. These stages include reading and visualization of the

medical image data. At the second stage, measurement and manipulation of the data

takes place. At this stage, experts decide the required surgical operations and

procedures. Once surgery has been planned, the medical data is processed by a

57

number of algorithms in order to generate a polygonal model. A mass-spring

algorithm then assigns springs and mass-points to the polygonal model and finally

runs the simulation.

Simulating craniofacial surgery is one of the most challenging applications in

deformable object simulation for the following reasons. It is very important that the

outcome of the simulation is as accurate as possible. This is a challenge because facial

tissue consists of several different tissue layers with different deformation

characteristics. It is also very important that the simulation concludes as quickly as

possible. Since very high numbers of springs are used in the polygonal model to

approximate the facial appearance, simulation takes a long time to perform. Polygonal

models must include different tissue layers as well as their connections with the skull.

Finding connections may introduce problems because of the skull's unique structure.

Finally, the simulation algorithm must carefully choose simulation parameters that

capture the tissue characteristics. Each of these concerns is addressed while the model

is created during the simulation.

This chapter deals with every aspect of model generation, including the reading of the

medical image data and medical image processing, such as filtering, segmentation and

measurements (see section 3.2). Our main contributions here, are the generation of a

realistic facial tissue model for the jaw area and the simulation of facial tissue

deformation. In section 3.3, we will generate polygonal models of skin and bone

surfaces. By connecting vertices on the skin surface to bone surface, we will obtain

prism volume elements representing different tissue layers (see section 3.4). This

model takes into account the curves on the facial surface and the holes on the bone

structure as well as different tissue thickness around the jaw. We will then use this

58

model to implement the mass-spring systems algorithm examined in chapter 2, in

order to simulate the facial tissue deformation. Results are presented in section 3.5

where we also use our model to generate facial animations.

3.1 Surgery Simulation Systems

The standard procedure for surgery simulation starts with the acquisition of 3D

medical images of patients. Images obtained using different imaging modalities need

to be transformed into a common spatial alignment. This process is called image

registration and allows the comparison and interpretation of different image data. The

volume of interest is then extracted from the original 3D image using various

segmentation methods. Segmented volumes are then represented by geometric models

described by a set of triangles. This is achieved using isosurface generation

algorithms. The output of the triangulation algorithm is often fed into a decimation

process in order to allow real-time manipulation and fast rendering. The resulting

geometric model can then be used in simulations where surgical operations are

possible. Simulation systems may include hardware components allowing user

interaction. Figure 3.1 shows the outline of a basic surgery simulation system.

Figure 3.1 suggests that surgical simulation systems involve several disciplines

including data acquisition, segmentation, surface generation, simulation and

visualization. Interaction of the user through a virtual reality environment with haptic

feedback (KISMET, PHANToM, Bar-Cohen and Breazeal 2003) is not addressed in

this work. If there are more than one datum from different image modalities or from

the same image modality but at different time instances, these images need to be

registered. There are numerous methods for image registration. One is based on a set

of landmark points, which can be externally placed or anatomical landmarks can be

59

used. Another image registration method uses geometric image features such as

surfaces and finally third a method uses the intensity of images for different tissue

types. This subject is outside the scope of this thesis and we refer the reader to the

following references (Arun et al. 1987, Maes et al. 1997, Maintz and Viergever 1998,

Maurer et al. 1996, Van den Elsen et al. 1995, Woods et al. 1993). In our work, we

use a visualization package called 3DVIEWNIX developed by the University of

Pennsylvania (3Dviewnix). This package is not as sophisticated as other

commercially available programs but it enables us to read, manipulate and take

measurements from the medical data. Other necessary programs were developed to

work with 3DVIEWNIX. The relevant parts of the diagram are briefly examined in

the following sections.

data acquisition registration
MRI alligned
CT 3D data

decimation

polygonal model mesh optimization

user interaction

Figure 3.1 A Basic surgery simulation system.

Vol Image Data

MSS
Model

tysical model ""

simulation
`ý; Simulation

60

3.2 Medical Image Data

Medical images are often presented as pictures, but they differ significantly from

conventional photographs, which only captures how the object reflects and transmits

light. In the field of medical imaging on the other hand, an MRI image (for example)

is computed numerically. The object (body) is placed in a strong magnetic field and

responses of the different tissue types to radio-frequency pulses are measured.

Different responses representing the various body parts such as muscle or bone then

form the medical image. In the following sections we briefly explain how medical

imaging is obtained in different forms.

3.2.1 Data Acquisition

The two most common techniques used in acquiring 3D medical images are

Computerized Topography (CT) and Magnetic Resonance Imaging (MRI). There are

other imaging modalities (IMAGE), including Possition Emission Topography (PET),

Single Photon Emission Computed Topography (SPECT), and 3D Ultrasonic

Imaging. The medical images obtained using these technologies provide detailed

information about the anatomical structures of patients. This information will be

complementary because the modalities are based on different physical phenomena.

For example MR imaging, which is based on nuclear magnetic resonance, is very

suitable for soft tissue analysis. On the other hand CT, which is based on X-rays,

successfully detects bone structures.

In this study we use data provided by Poole Hospital (PooleHospital). The head image

is 512*512 pixels in size and consists of 22 slices in the DICOM file format

(DICOM). Slice spacing is 4.91 millimeters and maximum density is 4095.00 while

minimum density is 0.00. The pixel size is 0.39 by 0.39 millimeters. The image

61

captures the whole head of a patient. Data is read using the 3DVIEWNIX software

and then it is visualized.

CT and MRI imaging have become very popular because they create cross-sectional

sliced images, which can be stacked to form volume data showing the internal

structures as well as outer surface of a body. In the following sections we briefly

explain how 3D volume data is formed from slices generated by the MRI or CT

imaging techniques and how pre-operative procedures such as measurement and

cutting are performed.

3.2.1.1 Slice Data

Imaging modalities produce a series of cross-sectional slice images representing

specific body parts or the whole body. Currently, MRI technology is able to offer sub-

millimeter accuracy. The slice image consists of a number of pixels with various

densities representing different tissue types. Each scan is called a slice image.

Examples of such slice images, representing a human head, are shown in figure 3.2.

Only few selected slices of the head are shown in this figure.

Figure 3.2 MRI slice images of a human head.

62

Image slices provide valuable information for diagnosis and planning. As can be seen

from figure 3.2, it is possible to identify specific parts of the head and brain from the

sliced images. In addition, some measurements can be taken from the slices. Slices are

also be used in the process of manual image segmentation. More importantly,

continuous 2D slices can be stacked one on top of the other to form 3D volume data.

3.2.1.2 Volume Data

When two slices of the same image are put one on top of the other, the pixels in the

2D slices can be interpolated to create cubic voxels by using the four corners from

each pixel. Therefore a total of eight corners from the two pixels form a voxel. This

process is illustrated in the figure 3.3 where two consecutive slices numbered with k

and k+l are shown. A voxel V(x, y, z) is three dimensional, where the first two

dimensions refer to the pixel location and the third dimension refers to the slice

number.

pixel

slice(k)

Figure 3.3 A voxel is formed between two consecutive slices.

63

Volume data provides more opportunities in the analysis and diagnosis of medical

treatment as well as allowing surgical simulations. It is easier to differentiate various

structures, make assessments and take measurements from volume data. A volume

image is constructed as shown in figure 3.5 from a series of slices given in figure 3.2.

3.2.2 Volume of Interest (VOI)

A volume medical image is constructed from slices of data. Some image processing

tools, such as filtering, may be used at this stage to remove slice artifacts from the

image. Such artifacts are visible in figure 3.5. It is essential to identify or specify the

regions of the object before any further processing takes place. This process is defined

as selecting a volume of interest. Determining a VOI will allow better diagnostics as

well as produce specific models for the simulations. Segmentation is the first step

towards this direction.

3.2.2.1 Segmentation

Image segmentation subdivides an image into surgically identifiable structures

making it more useful to the operator. Segmentation is achieved by categorizing

voxels as belonging to certain tissue types such as bone or fat (Atkins and

Mackiewich 1998, Cohen et al. 1992, Collins et al. 1996, Szekely et al 1996). This is

achieved using two different methods. The first method searches the differences in

pixel grey level and detects structure boundaries. The second method looks for

similarities in pixel grey level for the detection of object regions. Since analyzing

complex 3D structures from a series of slices is a very difficult task, image

segmentation provides following advantages:

It generates 3D models for visualization of complex structures.

64

It allows the operator to see how these structures lie in relation to one another.

It provides volume measurements and better operative planning.

Segmentation can be done mostly with semi-automatic procedures using thresholding,

region growing or manually on each slice. We have employed a simple thresholding

method to extract skin and bone surfaces. Figure 3.4 shows thresholding in operation

while obtaining tissue elements from the slice data. There may be several attempts to

obtain the best results. The result of the segmentation procedure is shown in figure 3.5

where a head image is depicted.

Figure 3.4 Segmentation of soft tissues from a head image.

Figure 3.5 A segmented head image.

65

Threshold levels are different for bones and soft tissues. Segmenting the bone

structure is represented as seen in figure 3.6 and the corresponding skull image is

shown in figure 3.7. Once an object of interest is segmented, the next step involves

further localizing the volume image. Necessary measurements are taken on the

volume image allowing us to make assessments. Cutting and separating of the volume

image may then be required as examined in the following sections.

Figure 3.6 Segmentation of bones.

Figure 3.7 Bones segmented from head image.

66

3.2.3.2 Manipulations and Measurements

Based on the requirements of the operation and planning, segmented objects may

need to be cut and separated. Individual pieces may be translated and rotated allowing

the operator to make assessments for different variations preparing for surgical

planning. Surgeons can make necessary measurements, which can be 2D or 3D. This

is essential for surgical planning because most of the decisions are made at this stage.

The head model given by figure 3.7 is cut to focus on the jaw area (VOI), where the

operation takes place. The resulting image is shown in figure 3.8, where some marks

are placed. The operator can put marks on the image for measurements or cutting

purposes. Whereas image 3.9 (a) and (b) shows some measurements and markings for

cutting, figure 3.10 (a) and 3.10 (b) shows the top and side view of a jaw cut on the

marked places. The image shown in figure 3.10 (c) include all the parts used in

modeling, the lower and upper jaw. Individual parts can now be moved or rotated.

The lower jaw is pushed backward by about 8mm to close the gap caused by the

cutting operation. The final image is shown in figure 3.11.

Figure 3.8 The upper and lower jaw with some marks for cutting.

67

Figure 3.9 (a) The lower jaw is measured and marked to be cut.

Figure 3.9 (b) The other side of the lower jaw ready for cutting.

68

pw

Figure 3.10 (a) The lower jaw view from top showing the cutting operation.

Figure 3.10 (b) The jaw cut, a side view.

69

Figure 3.10 (c) Bone structures for all cutting operations are complete ready for

movement.

Figure 3.11 Bone structure after movement of lower jaw. Upper and lower jaws are

aligned.

70

ý`

This phase includes several attempts to determine on how much bone cutting is

necessary movement direction of the parts. The operator reaches a decision after

seeing the outcome of these attempts. A final decision of course is reached after the

simulation of the soft tissue changes based on the cutting and movement of these

bones. It may well be necessary to come back to this stage and repeat these

manipulations.

Once the necessary operations are determined it is required to obtain a polygonal

model of the VOL This model is used in the mass-spring simulation, which operates

on mesh representations. Obtaining such a model is examined next.

3.3 Polygonal Model Generation

The first step in the reconstruction of 3D geometric models is segmentation,

extracting regions or features of interests. The second step is to generate a surface

representation of segmented volumes. The geometric models representing the surface

of a 3D segmented volume are often described by a set of triangles because of their

simple structure. This structure allows fast mathematical manipulations and it is very

suitable for surgical simulations using mass-spring systems and finite element

modeling. There are many methods proposed for the isosurface generation. The

marching cubes algorithm (Lorensen and Cline 1987) is one of the most popular

methods used in generating surface triangulation because of its sub-voxel processing

that produce high quality meshes. Here, we will briefly describe the algorithm by

explaining how it forms triangulated surfaces using voxel information. Since the

marching cubes algorithm produces a very large number of triangles, we will also

examine decimation algorithms.

71

3.3.1 Triangulation

The marching cubes algorithm uses the pixel information at the eight corners of a

voxel and compares the density information of these pixels with a given threshold

value, thus determining how the surface intersects the voxel. Therefore, this algorithm

can be seen as being a thresholding algorithm. The voxels (cubes) are considered to

fall within the object, if their eight corners (vertices) are above the given threshold.

Alternatively, if all eight corners are below this threshold value, then the cube is

considered to be completely outside the object. For the remaining cubes, each corner

of a cube is classified as being either inside or outside the isosurface of the volume.

The isosurface is formed at cube edges where one vertex of the edge lies inside the

volume and the other outside. Triangle vertices are then computed by finding the

points of intersection of the cube edges that penetrate the isosurface. The intersection

point is determined using the density information of the pixels.

voxel

surface

Figure 3.12 Forming a surface with the marching cubes algorithm.

Figure 3.12 depicts a voxel that is partially inside the volume. As seen from this

figure, four of the cube's vertices are above the threshold value, while the remaining

are below it. The isosurface is then formed somewhere between the vertices that are

below and those that are above the given threshold value. It is important to note that

72

the figure shown here only represents one of the 23 possible cases of the marching

cubes algorithm (MarchingCubes).

Triangulation algorithms are a well-researched subject and the original marching

cubes algorithm has been significantly improved. In our work we use the version of

the algorithm developed by Nielson (Nielsen). We have used this algorithm on the

brain image data, mentioned above, to generate the surface representation. The result

is shown in figure 3.13. As expected the marching cubes algorithm produces a large

number of triangles, which needs to be reduced in order to allow fast rendering. This

was achieved by using the decimation algorithms examined below.

Figure 3.13 Brain surface model generated using the marching cubes algorithm that

consists of 12264 vertices and 24473 triangles.

73

3.3.2 Decimation

The marching cubes algorithm produces a very good surface approximation.

Unfortunately, it produces a large number of triangles that usually are difficult to

manipulate and render in real time. Therefore the large number of triangles produced

needs to be reduced to a reasonable number without significant loss of surface detail.

There have been many mesh simplification (decimation) algorithms developed, which

are based on the elimination of degenerate triangles and triangles located in the flat

regions. Neilsen's algorithm, which is based on an edge collapse technique, was used

to decimate the triangle mesh. Details of his algorithm can be found in (Nielsen). The

generated brain volume image shown in figure 3.13 was then decimated and the

output of the decimation algorithm is shown in figure 3.14.

Figure 3.14. The triangular mesh decimation of a brain image. The output model was

reduced to 486 vertices and 997 triangles.

74

3.4 Craniofacial Surgery Simulation

Simulation of facial tissue deformations is a very challenging task because it consists

of a number of difficult subtasks including:

9 The generation of appropriate models for the different tissue layers.

9 The determination of the unknown model parameters.

" The verification of the simulation output.

In the following sections we obtain a facial model consisting of bone and skin

surfaces. The different tissue layers between the two surfaces are represented using

volume prism elements. A new method is used for finding the connections of the

prism elements to the bone structure. Once the model is obtained the mass-spring

systems algorithm can be employed to run the simulation.

3.4.1 Mass-Spring System Model Generation

The bone and face surfaces are generated using the marching cubes algorithm and the

results are then decimated ensuring the number of triangles generated is suitable for

the simulation algorithm. Both surfaces are shown in figure 3.15, where the face

surface consists of 6292 vertices and 10519 triangles and the bone surface has 10056

vertices and 19770 triangles.

In some applications only this data, i. e. the triangular representation of the surface, is

used in simulations. This type of modeling does not capture the volume characteristics

of the soft-tissue behavior. Therefore volume modeling between the face surface and

the bone surface is necessary to simulate the interior structure of the object. To model

the volume, many different building blocks have been proposed, the most popular of

75

which include the use of thetrahedra and prismatic elements. We have implemented

our model using prismatic elements.

1,4

"Al

ti11.

. -"r.
ý-

0

" I , ri
Jl '

"ýr

Figure 3.15. The surface representation of the skin and bones of a human head.

3.4.1.1 Generating Prism Elements

The tissue between the face surface and the bone surface is represented by a number

of small prismatic volumes. Given that the skin and bone surfaces are represented by

triangles, prismatic elements can be generated using various methods. Each vertex of

a triangle of the skin surface is projected on to the bone surface. This is done by

finding the intersection points between the normal vectors of each skin vertex and the

bone triangles. For better and smooth results the normal vertex is determined by

averaging the normals of the triangles meeting at this vertex. Since the face surface

contains curved regions, it may be impossible to find an intersection point for every

normal vector of a skin vertex. Besides, there are hollow areas on the bone structure

preventing an intersection. In addition, some of the intersection points found may be

76

at completely the wrong places. Therefore using the skin vertex normal will not result

in a good representation of tissue layers.

In (Keeve et al. 1998) a method tracing a ray from each skin vertex to a

predetermined point on the bone structure (or a point inside the skull) is used in the

generation of the prismatic elements. An average point, called the center point, is

determined for all bone triangles. Each skin vertex is then traced towards this point

and intersections with the bone surface are recorded. This process is illustrated in

figure 3.16. If there is no intersection, then by interpolating the neighboring points of

intersection we generate a false point of intersection. This method guaranties an

intersection point for each skin vertex but may not produce very good prismatic

element shapes. In addition some prisms may overlap. This happens because a single

center point can not realistically represent the midpoint of the face, which is not a

sphere. Interpolating neighboring elements in order to assign a connection point may

result in an unrealistic approximation as well.

pint

Figure 3.16 Projecting skin vertices on the bone surface.

77

skin surface bone surface

We modified the method mentioned above as follows. Figure 3.15 reveals that the

facial model is higher than it is wide, resembling an ellipsoid. Therefore assigning

two center points may better represent the facial model in terms of finding the origin.

As shown in figure 3.17 we placed two center points into the bone structure. The lip

level at the skin surface determines which skin vertices use a specific center point.

Vertices above the lips level are traced back to the center point at the upper part of the

jaw. Vertices below the lip level use the center point at the lower jaw. Each skin

vertex is then traced back to one of the two center points and any intersection with the

bone triangles is recorded. On this first run we also determine an average thickness

based on the intersected rays. On the second run we assign an intersection point to

those vertices that did not get a hit in the ray direction on the first run. The average

thickness is used to determine the depth of these intersections. This method also

guaranties an intersection for each skin vertex and produces better-shaped prism

elements, representing different tissue layers, while minimizing any possible overlaps.

Figure 3.17 Facial surface, bone surface and two center points shown together.

78

The ray tracing algorithm was examined in chapter 2. Using this algorithm, prism

elements are obtained. A typical prism element between the skin and bone surfaces is

shown in figure 3.18. The number of prism elements is equal to the number of skin

triangles. It is important to note that none of the skin vertices above the bone level are

used in this process. The skin and bone surfaces as well as the bone level can clearly

be seen from figure 3.17. Therefore the number of skin vertices involved in finding

the prism element is 2628 and the number of the skin triangles is 4606. The next

section explains how prism elements are used in the mass-spring simulation.

Skin Surface

Bone Surf ac e

Figure 3.18 A prismatic element between the skin surface and the bone surface.

3.4.1.2 Assigning Mass-Points and Springs

Once the prism elements representing different tissue layers between the skin and

bone surfaces are obtained, it is necessary to explain their roles in the mass-spring

systems simulation. Their roles are determined by defining spring types and system

parameters. Some of the springs are classified as boundary springs, whose lengths are

not affected by any movements. Springs on the bone surfaces and springs on the

edges of the face fall in this category. Springs on the face surface are called skin-

79

springs, while springs connecting tissue layers are defined as layer-springs. Springs

diagonally connecting different tissue layers are called shear-springs.

Different springs in the mass-spring representation will use different parameters,

simulating various visco-elastic representations of tissue characteristics. It is very

difficult to set the unknown parameters of the springs. In many of the previous

applications, the parameter values used were not reported. This is mainly because they

were set by trial and error to produce plausible results. They were not physically

validated. In our work we adapted the values given in (Koch et al. 1996). Skin

springs were set at high values such as 200. The stiffness value of the shear springs

was chosen as 100 and finally, layer springs were assigned a value of 80. We set the

damping value of all the spring to 0.2 and their mass value to 0.001. This essentially

corresponds to 2.6 kg of weight for the entire face. The parameters of the boundary

springs were set to zero, to prevent any movement at defined boundaries.

3.4.2 Bone Realignment

Once the volume elements between the two surfaces (skin and bone) are found, bone

realignment, can take place. A simple operation aligning the upper and lower jaw is

performed. As explained in section 3.2.3.2, the lower jaw is cut and pushed back by

about 8mm as shown in figures 3.10 and 3.11. The very same operation is performed

on the triangulated bone model shown in figure 3.19. Part of the lower jaw is cut

according to the measurements found in section 3.2.3.2. The front part of the jaw is

pushed back to cover the gap. This operation is performed on vertices found on the

bone structure by the ray tracing algorithm. In other words, vertices connecting tissue

layers to bone structure are translated to close the gap, created by bone cutting

operation. Other vertices on different tissue layers or on the skin surface are not

80

affected by this operation. This operation will start the simulation, since the initial

configuration of the mass-spring systems is now changed. Each part of the model

given in figure 3.19 can easily be moved individually. We took advantage of this and

also produced various bone animations by moving or rotating the lower jaw. The

resulting facial tissue changes were then simulated. An example for this animation

experiment is given in figure 3.20, where the lower jaw is rotated by a small angle.

Figure 3.19 The upper and lower jaws are aligned using the triangular representation

of skull model, which is used in the actual simulations.

81

Figure 3.20 Lower jaw is rotated representing mouth opening.

3.5 Simulation Results

A mass-spring network is formed based on the vertices of the prisms acting as mass-

points and the edges acting as springs. The lower jaw is cut and pushed back to align

it with the upper jaw as illustrated in figure 3.19. The intersection points connecting

tissue layers to bone structure were translated to close the gap created by the cutting

operation. Changes in the bone structure cause the deformation of the soft tissue. This

is because these changes will alter the spring rest lengths, defined in the original

settings at the edges of the prism elements. There were no external forces applied in

this simulation.

We carried out our simulations with a number of different tissue layers. Using one

layer of tissue clearly did not work. The smoothness of the skin surface is

compromised. Our experiments revealed that using 2 or 3 tissue layers works quite

well. For performance reasons, we decided to use 2 layers of tissue volumes between

the skin and bone surfaces. The number of iterations was determined after running the

simulation several times.

82

The first part of the experiment simulates tissue deformation, whose original shape is

given in figure 3.21. The face after the simulation is given in figure 3.22, while figure

3.23 gives both pre and post images together. Figures 3.24 and 3.25 represent the

frontal view of the face before and after the simulation, respectively. As figure 3.22

reveals, a smooth deformation is achieved, where the lower and upper lips are aligned

as well.

Figure 3.21 Face surface before the bone realignment and simulation.

Figure 3.22 Face after the surgical simulations.

83

Figure 3.23 Both pre and post surgery images superimposed together showing the

changes on facial tissue.

Figure 3.24 Facial image frontal view before the surgery.

84

Figure 3.25 Facial image front view after the simulation.

The second part of the experiment demonstrates various facial expressions caused by

bone movement. One such expression is given in figure 3.26, where the lower part of

the jaw is pushed forward. This is an opposite movement to the one performed above

for the craniofacial surgery simulation. The resulting image shows that the alignment

of the upper and lower lips gets worse.

Figure 3.26 Instead of pushing the lower jaw backward to align with upper jaw, we

push it forward by about 8 mm.

85

Figure 3.27 Lower jaw is rotated by various degrees to represent the opening of the

mouth and the resulting facial expression is simulated.

86

V

1

1ý

Figure 3.28. The mouth is opened more widely.

1

a

87

Figure 3.29 The open mount pose before the surgery.

NO

Figure 30 The open mount pose after the surgery.

Another experiment was carried out by rotating the lower jaw by various degrees. It

must be noted that in the original medical image the lips are completely closed, as

88

17

shown in figure 3.5. In order to animate the opening of the mouth we cut the lips at

the middle with a small line. This may cause an unrealistic appearance of the lips

during the animation. Figure 3.27 and 3.28 show the mouth opening simulation from

the frontal and side views. Figures 3.29 and 30 show the open mount before and after

the surgery simulation, respectively.

3.6 Summary

In previous applications, the head model, consisting of tissue layers between face and

bone surfaces, was generated using only one center point (assuming the face is a

sphere). The tissue layers are represented with prism elements, which may overlap. In

addition, some skin vertices were connected to wrong bone parts causing unwanted

face deformation. These problems were addressed by assigning two center points in

the determination of the tissue layers. An average tissue thickness was also found and

was used for establishing the depth of the prism elements. In our model possible

overlaps are minimized and correct intersection with accurate tissue thickness is

achieved. The simulation algorithm then successfully predicts the soft tissue changes

due to bone manipulations (Duysak et al. 2003). Using this model, simulation of facial

expressions is also possible. The results, however, need to be verified by comparing

them with the post-operation image. Although verification using real data was not

done due to the lack of the post-operation images, the results were verified visually by

the surgeons. The most difficult part in simulating soft tissue deformations, using

mass-spring systems, is choosing appropriate simulation parameters. Given the

correct parameter values (for the spring stiffness and damping) any type of tissue

deformation can be simulated. There is, however, no straightforward way of

determining these parameter values. In the next chapter we will develop a specific

method that provides a means of selecting such parameter values.

89

CHAPTER 4

NEURAL NETWORK SYSTEM IDENTIFICATION

Mass-spring systems are an approximation to their real life counterparts. However,

due to their simplicity to construct and economy to compute, they have been widely

used in numerous applications of computer graphics, virtual reality and medical

simulation. A key to achieving an accurate simulation result is to use appropriate

system parameters, such as spring stiffness and viscosity. In practice, as these system

parameters are not available, trial-and-error is the most common means for their

determination. Although they are usually significantly nonlinear, for simplicity they

are assumed to be linear in almost all existing systems, which often leads to

unrealistic simulation results. In this chapter we employ neural networks to identify

and determine, simulation parameters, which are nonlinear functions.

The determination of simulation parameters in mass-spring systems still remains a

challenge. Appropriate parameters need to be assigned not only for reasons of

accuracy but also for reasons of stability. Although there is a mathematical relation

between simulation parameters, which will maintain stability, there is no

90

straightforward way of choosing simulation parameters, which will achieve accurate

results.

In the literature such parameters are determined based on the outcome of simulations.

Clearly this is very time consuming and nonlinear parameters leading to physically

correct simulation are almost impossible to determine. Some researchers use intensity

based approaches, which evaluates intensity values as spring stiffness. There is no

physical foundation between static intensity values and nonlinear parameters

representing dynamic deformation behavior. Some researchers use genetic algorithms

to minimize a cost function leading to the identification of simulation parameters.

This is again done based on an assumed constitutive model and only one parameter is

identified at a time. Neural networks on the other hand have been successfully used in

the identification of unknown systems as well as parameters in engineering

applications.

Neural networks can be considered as a data processing system consisting of a large

number of simple but highly connected elements capable of learning to do many tasks

by training, which use input-output data. Since neural networks themselves are

nonlinear black-box models, they are often trained to replace other unknown systems

(system identification). If the structure of the system is known with some

undetermined parameters, neural networks can also be used in identifying those

parameters. In chapter 2a dynamic structure for mass-spring systems was derived

based on the explicit-Euler integration method. This structure is further investigated in

this chapter to obtain a general mass-spring model, which includes unknown system

parameters. An identification method is then developed to fit the mass-spring model

and to identify its unknown coefficients. In this chapter we also explain the type of

91

neural network used in detail. A cerebellar model articulation controller (CMAC)

neural network is used in our work for the following reasons. CMAC neural networks

are extremely fast to converge compared to other networks. CMAC neural networks

also require very little computation time, therefore they do not impose a substantial

computational burden on the simulation system. They therefore are suitable for on-

line applications.

4.1 The Cerebellar Model Articulation Controller (CMAC) Neural Networks

Anatomical and neurophysical studies of the brain have motivated a number of

researchers to propose mathematical models that explain the information-processing

characteristics of the cerebellum, which is the structure responsible for learning and

execution of reflexive and voluntary motions (Albur 1972). Based on the known

human memory and neuromuscular control principles, Albus (1972,1975a 1975b,

1979) proposed a neural network algorithm called the cerebellar model articulation

controller (CMAC). The CMAC is a feedforward neural network and can be

considered as an associative memory performing two consecutive mappings from

input space to output space.

Before giving a detail analysis of the CMAC neural networks we provide some of

their attractive properties, which include:

9 Good generalization. In many cases, the performance of neural networks is

degraded when a given input is not part of the training data. In contrast, the

CMAC neural network has better performance in this regard (Miller 1988).

CMACs are said to have good generalization, because they generate reasonable

output even when their input is not part of the training data.

92

" Good training properties. In comparison with other networks, CMAC training

requires less iteration (Miller et al. 1990). Furthermore, it has been shown that for

off-line training, the CMAC parameters converge to a least-squares solution.

" Easy software and hardware implementation. Realization of a CMAC network in

software is easily accomplished even for large networks (Miller 1988). In

addition, it has also been shown that CMAC algorithms are well suited for

implementation using integrated circuits (Wen et al. 1996).

9 Fast computation time. CMACs need fewer computations and less time for weight

update and output generation than other types of neural network models (Miller

1988). Therefore CMACs are preferred in applications which are required to work

in real-time.

4.1.1 The Operation of a CMAC Neural Network

A CMAC network is used to approximate a nonlinear function of the form:

Yt =f(x1) (4.1)

where x; is a multidimensional input vector, and yj is a multidimensional output

vector.

A CMAC network is an associative neural network, in that the input xi serves as an

address key to memory locations whose contents are summed to form the network

output. Figure 4.1 shows that a CMAC network performs the mapping from xi to yj

in several stages. The individual stages are now considered in detail.

93

W1

W2

q, W3
X

input

input qft_

quantization q n
WN_1

quantized WN
input state

conceptual
memory

Figure 4.1 The operation of CMAC neural networks.

4.1.1.1 Input Quantization

ýý) Yi

For simplicity, this section considers the case where both the input xi and the output

yt of the CMAC are scalars. It is assumed that xi is bounded and the range of xi is

known. The input x; is first quantized into one of n possible values, ql to q,,, which

span the input space. The quantization levels can be fixed or variable. As an example,

figure 4.2 shows a function that represents the input decoder (quantization) of Figure

4.1. The input is x; and the output is the quantization level qk :

4k = Q(xi : xmin, xmax , 4max) , (4.2)

where k represents the quantization levels, xniI, and x are the minimum and

maximum values of the input, respectively, and qmax is the total number of available

quantization levels.

As shown in figure 4.2, the distance between adjacent quantized levels can vary

depending upon the range of expected input. It is reasonable to use a small distance

94

for the ranges of x, which are more likely to occur. For simplicity, in this thesis, the

quantization resolution is fixed as:

r=
xmax -x nun

9max

where r is the quantization resolution.

quantization
levels

max
g' ------------ Max

'. X

X max

0

Figure 4.2 Input quantization.

(4.3)

For situations where the quantization resolution is variable, the resolution r is

adjusted adaptively. References (Kim and Lin 1992) and (Kawamato et al. 1995)

examine the use of adaptive quantization in CMAC neural networks. The quantization

function in equation 4.2 is defined as:

9k = Q(xi) =
xi - xmin Lr (4.4)

where xe [znm , x,] and LP] is the largest integer less than the real number p.

The function Q(x1) returns an integer qk for the input xi and qk ranging from 0 to

(9max -1).

95

4.1.1.2 Conceptual Memory and Memory Mapping

A CMAC neural network contains a conceptual memory whose contents are summed

to form the CMAC output. In section 4.1.1.1, it was shown that each input xi is

represented by quantization level qk .
Quantization level qk maps into A* memory

cells of the conceptual memory. A* represents the number of memory cells that are

activated at any time by a particular quantization level. Any two adjacent quantization

levels activate memory cells that overlap by A* -1. It follows that if there are q,,, a, (

quantization levels, then the conceptual memory has:

NC =9n-ax + A* -1

memory cells.

(4.5)

It is convenient to introduce a row vector 8 that indicates which memory cells in the

conceptual memory are activated by a given quantization level qk . The number of

columns in 0 is equal to the size of the conceptual memory. For example, using

max =9 and choosing the number of active weights as A* = 4, equation 4.5 shows

that the conceptual memory contains a total of twelve memory locations. The vector

0 associated with each quantization levels qk in this example is shown in table 4.1.

By observation, the sum of the elements in 9k is equal to A*. In addition, from table

4.1, whenever the input changes by one quantization level, one element is dropped

and another is added. This feature provides the CMAC neural network with a good

generalization property. That is, inputs that have adjacent quantization levels are

likely to produce similar outputs. When considering the multidimensional input vector

xi, it is useful to represent addresses of the conceptual memory using lower case

96

letters. Each element of 6k in table 4.1, can then be represented by a unique letter

representing its position in 6k
. For example, the vector 01T is represented as:

9ý T =[11110... 0] _ [a bcd0... 0]. (4.6)

1 1 1 1 1 0 0 0 0 0 0 0 0

2 0 1 1 1 1 0 0 0 0 0 0 0

3 0 0 1 1 1 1 0 0 0 0 0 0

4 0 0 0 1 1 1 1 0 0 0 0 0

5 0 0 0 0 1 1 1 1 0 0 0 0

6 0 0 0 0 0 1 1 1 1 0 0 0

7 0 0 0 0 0 0 1 1 1 1 0 0

8 0 0 0 0 0 0 0 1 1 1 1 0

9 0 0 0 0 0 0 0 0 1 1 1 1

Table 4.1 The row vector 0 indicates which cells in the conceptual memory are

activated by the quantization level qk .

Using this approach table 4.1 is rearranged by eliminating the locations that are not

activated. Memory cells not activated by a given quantization level are represented by

zeros in table 4.1. Table 4.2 shows the addresses of the quantization levels.

As shown in table 4.2, the twelve memory addresses in the conceptual memory are

labeled as a, b, c, ..., 1. The weights stored in the memory cells are contained in a

column vector w

w=[wa, Wb, wc, wd,..., wl) (4.7)

97

qk address

ql abcd

q2 ebcd

q3 efcd

q4 efgd

q5 efgh

q6 ifgh

q7 ijgh

q8 ijkh

99 ijkl

Table 4.2 Conceptual memory addresses activated by the quantization levels ql

through qq for A* =4.

As mentioned earlier, consecutive quantization levels qk and qk+1 activate memory

cells that overlap by A* -1. In general, the amount of the overlap is A* - Hy , where

Hy is the Hamming distance between quantization levels qj and qj and is defined

as (Albus 1972):

n
Hid_J OU - 9ik

k=1
(4.8)

where 9; k is the kth element of 9j ,n=1,2,..., Nc and j=1,2,..., Nc . If two inputs

have a small Hamming distance, there will be more overlap. For example, when

A` =4 and Hk, k+1 =1, there is an overlap of A* - Hk, k+1 =3 between the memory

98

cells activated by the quantization levels qk and qk+1 " If two inputs are separated by

a large Hamming distance, there will be less overlap between their corresponding

association cells. No overlap occurs if the Hamming distance is larger than A*. This

fact gives CMAC neural networks their ability to dichotomize inputs separated by a

large Hamming distance.

4.1.1.3 Calculation of the Output

It has been shown that any given input xi activates A* memory locations in the

conceptual memory. The weights stored in these memory locations are summed to

produce the output:

yi = ei w (4.9)

where i=1,2,..., qI�a,, , and w is a NC xI column vector. As an example, assume that

the input excites the second quantization level, q2 in table 4.2. In this case, the

activated weights are we, wb, w, wd and the output Y2 is the sum of these weights.

The next section shows how we obtain the values of the weight vector w.

4.1.2 CMAC Training

In order to determine the weight vector w the response of the CMAC network is

compared to a desired response for a number of different inputs xi. The weights are

adjusted so that the output of the CMAC network approximates the desired output. In

the training algorithm presented by Albus, the network is presented with a series of m

data pairs (xk , dk) where xk is the input and dk is the desired response. For the krh

training sample, the error between the desired output dk and the network output yk

is e(k) = dk - yy. Albus proposed the iterative training law (Albus 1975a 1975b):

99

w(i + 1, k) = w(i, k) + /3
ex e(k) (4.10)

A

where ß is the learning factor, k=1,2,..., m and i is the iteration. This method

evenly distributes the error e(k) to the weights that are excited by the kth input.

The designer must carefully choose both the numbers of data points and their values.

It is not necessary to provide a training pair (xk ,d k) at every point in the input space

because of the network's generalization property. However, it may be necessary to

repeat the training several times if two inputs are separated by small Hamming

distance to produce different outputs. This may require a large difference in some

weights that are not in common for those two inputs. The training iterations are

completed when the magnitude of e(k) falls below a specified value for each data

pair (xk , dk).

The final weight vector w is determined by many parameters including the number of

active weights A*, the size of the CMAC memory NC, and the learning factor 8. A

large conceptual memory typically requires more iteration to complete the training.

This can be overcome by choosing a smaller value of A*, but this may cause

insufficient generalization. On the other hand, if A* is large and NC is small, CMAC

may fail to converge using the training law shown in equation 4.10. A large value of

A* causes the CMAC to lose its generalization ability. Albus recommended that

NC >100 A* . In (Xu et al. 1994), it was shown that Nc =1OA* also works well.

There are several ways to train a CMAC network, but only two of these methods are

considered here.

100

4.1.2.1 The Batch Algorithm

In this algorithm, the weights are updated using the following rule:

W(1 +1) = W(1)+ 2k (dk -ekw(i))
k=IA

_ OT (d - Ow(i)) (4.11)
A

where 0= [91 , 62 ,..., OTx] and d= (d l, d2,..., dm_1, dm). The selection of the

range of the learning factor was examined in (Duysak 1997), which also showed that

this algorithm always converge to a LMS solution for a specified range of 6. If ß is

one, the process is called one-shot error correction and the training algorithm does not

always converge.

4.1.2.2 The Non-Batch Algorithm

In this algorithm the weights are updated each time an input is applied. The following

rule is used:

w(i + 1, k) = w(i, k) +ß 9k (dk - Ok w(i, k)) (4.12)

where k =1,2,..., m is the sample number and i represents the iteration. For iterative

learning, it was shown (Duysak 1997) that the non-batch CMAC learning converges

only to a limit cycle whose radius is determined by the learning factor 6. In this case

a small ß leads to a smaller radius of the limit cycle, but more iterations are required.

This method has the advantage that any learning factor in the range O<ß <2 will

cause the algorithm to converge. Although the CMAC non-batch algorithm converges

only to a limit cycle, this method provides the opportunity to train a CMAC neural

network on-line.

101

4.1.3 The Multidimensional Input Case

The CMAC network described in section 4.1.1 is easily modified to account for

multidimensional input signals. For example, suppose the input xi is a vector with

two components xi 1 and xi 2. In general, each component is quantized using a

different rule. For example, consider the case where xi l is quantized into one of five

levels qk , while xi2 is quantized into one of seven levels qk .

As described in section 4.1.1, for multidimensional inputs it is desirable to specify

addresses in the conceptual memory using letters. In this example, addresses activated

by the quantization levels qk , are indicated by upper case letters, while addresses

activated by qk are indicated by lower case letters. For simplicity, we use A* =4 for

both inputs. Tables 4.3 and 4.4 show the addresses activated in the conceptual

. memory by the quantization levels qk and q2

q1 k
address

q1 ABCD

q2 EBCD

q3 EFCD

q4 EFGD

q5 EFGH

Table 4.3 The addresses of weights for input x, 1.

102

q2 k
address

ql abcd

q2 ebcd

q3 efcd

q4 efgd

q5 efgh

q6 ifgh

q7 ijgh

Table 4.4 The addresses of weights for input x2.

If the CMAC is implemented using two conceptual memories, each associated with

different inputs; a total of 18 weights are needed. For a given input xi = (xi , x?) , it is

necessary to address Al + A2 =8 memory locations and sum the corresponding

weights to produce the output. In order to decrease the number of cells that must be

addressed, as well as to decrease the number of addition operations required, Albus

proposed to concatenate the two separate conceptual memories into a single large

conceptual memory. The disadvantage of this approach is that it requires a large

number of memory locations.

As seen from tables 4.3 and 4.4, if input one and input two both excite the first

quantization level, then the corresponding address of the weights is [AaBbCcDd],

which is the concatenation of [ABCD] and [abed]. If input one excites the first

103

quantization level while input two excites the third quantization level, then the

corresponding weight address is [AeBfCcDd]. The complete mapping is shown in

table 4.5.

ijgh 7 AiBfCgDh EiBjCgDh Ei, Fj, Cg, Dh EiFjCgDh EiFjGgHh

ifgh 6 AiBfCgDh EiBICgDh EiFftgDh EiFfGgDh EiFfGgHh

efgh 5 AeBfCgDh EeBfCgDh EeFfCgDh EeFI GgDh EeFß3gHh

efgd 4 AeBfCgDd EeBfCgDd EeFfCgDd EeFfGgDd EeFfGgHd

efcd 3 AeBfCcDd EeBfCcDd EeFfCcDd EeFfGcDd EeFfGcHd

ebcd 2 AeBbCcDd EeBbCcDd EeFbCcDd EeFbGcDd EeFbGcHd

abcd 1 AaBbCcDd EaBbCcDd EaFbCcDd EaFbGcDd EaFbGcHd

- - 1 2 3 4 5

- - ABCD EBCD EFCD EFGD EFGH

Table 4.5 Conceptual memory found by address concatenation.

As expected, while 18 weights are needed to implement two individual mappings, 20

weights are necessary to implement a single mapping from the input quantization

levels to an address in the conceptual memory. In general, if each element of the input

vector has R quantization levels, then an n-dimensional input vector has R" points

that must be mapped to the conceptual memory. It follows that the number of required

memory locations is of the same order of magnitude as R'. For many applications,

the size of the conceptual memory is too large to be physically implemented. Albus

solved this problem by using hash-coding, where the large conceptual memory is

mapped into a smaller physical memory. Readers are referred to (Wang et al. 1996)

for details of hash-coding method.

104

Instead implementing the hash-coding technique, which causes collision problems, we

employed an address mapping formula.

4.1.5 An Address Mapping Formula

In order to avoid problems associated with collisions, in this thesis we do not use hash

coding. It follows that the conceptual and physical memories are identical. This

section presents an equation that maps a multidimensional input into addresses of

activated weights in the memory. The algorithm considered was first introduced by

(Wen et al. 1996):

1
-J qn -J 91 J

Aj =[1+ max

n -J qn-1_J qn_J
+ [1 +

q"ia"ý]k�+k* (4.13)
AAA

where Aj is an address in the Jth memory bank and [pl is the largest integer less

than the real number p.

Equation 3.13, divides the CMAC memory into A* memory banks based on the

values of J, where J=1,2,..., A*. A given quantization level qk activates exactly one

address Aj given by equation 3.13 in each of the A* memory banks. The A*

activated weights are then summed to form the CMAC output.

105

91 q2 kk
Al A2 A3 A4

11 0 0 0 0
12 1 0 0 0
13 1 1 0 0
14 1 1 1 0

15 1 1 1 1
16 2 1 1 1
17 2 2 1 1
21 3 0 0 0
22 4 0 0 0
23 4 1 0 0
24 4 1 1 0
25 4 1 1 1
26 5 1 1 1
27 5 2 1 1
31 3 3 0 0
32 4 3 0 0
33 4 4 0 0
34 4 4 1 0
35 4 5 1 1
36 5 4 1 1
37 5 5 1 1

41 3 3 2 0
42 4 3 2 0
43 4 4 2 0
44 4 4 3 0
45 4 4 3 1
46 5 4 3 1
47 5 5 3 1
51 3 3 2 2
52 4 3 2 2
53 4 4 2 2
54 4 4 3 2
55 4 4 3 3
56 5 4 3 3
57 5 5 3 3

Table 4.6 Addresses of the memory locations obtained using equation 3.13.

106

The mapping equation is now explained with an example. For the two-dimensional

input case examined in section 4.1.1, the addresses of the conceptual memory are

given in table 4.5. Because A* =4, there are four memory banks A, through A4 .

Memory banks Al and A2 have six weights which are addressed by 0 to 5, while

memory banks A3 and A4 have four weights addressed by 0 to 4. Using the equation

4.13, for the same number of quantization levels and number of active weights, the

addresses of memory locations in the conceptual memory are given in table 4.6.

Recall that for the quantization level ql = q2 =1, the addresses given in table 4.5

were [AaBbCcDd]. These addresses are found using the equation 4.13 as [0,0,0,0].

For quantization level q1 = q2 = 2, the addresses obtained by address concatenation

are [EaBbCcDd], for the same quantization level the addresses obtained using

equation 4.13 are [1,0,0,0]. As a result, the size of the conceptual memory obtained by

address concatenation is the same as the size of the conceptual memory found by the

equation 4.13.

4.2 System Identification

Neural networks have been widely used in the identification of completely unknown

systems (Sinha 2000, Lu et al. 2003, Almedia and Voit 2003). In some cases, the

structure of a dynamic process can be obtained by using first principles of physics but

some unknown system parameters may exists. If the system structure is known,

specific models can be developed to identify the unknown system elements. Narendra

(1996) proposed neural network identification models for known and unknown

structures for general cases. A more specific parameter identification model for a

mass-spring system is proposed by Nurnberger et al. (1998,1999,2001). Based on

107

both studies we have developed a parameter identification method for determining the

coefficients of the mass-spring systems examined in chapter 2, where a dynamic

model is given by figure 2.4 This model includes unknown parameters such as spring

stiffness and damping. We briefly describe the method developed by Neirnberger in

the next section before describing the new method.

4.2.1 Previous Methods

There have been several investigations in the literature for the identification of

simulation parameters of mass-spring systems (Louchet et al. 1995, Koch et al. 1996,

Joukhadar and Laugier 1997, Ishikawa et al. 1998, Bhat et al. 2003). None of these,

however, provides a model or detailed information on how the identification was

carried out. The most detailed work on this subject was reported by Nurnbergel et al.

(1998,1999,2001) who developed a problem specific neural network model and

identification method.

Their method is illustrated here in figure 4.3 using the basic structure of mass-spring

systems where two mass-points are connected by a spring. The spring between the

two mass-points is considered to have three dynamic elements representing spring

stiffness, damping and total spring force. Each point is also thought to have three

dynamic parts generating acceleration, velocity and position. The model shown in

figure 4.3 can best be understood by analyzing the dynamic model developed in

chapter 2 and shown in figure 2.4.

Each dynamic part of figure 2.4 is replaced by a neural network model whose task is

to learn the dynamic it replaces. The neural network given by N fs is replaced with

the dynamic parts responsible for generation the spring forces due to the spring

108

stiffness, therefore this neural network learns the spring stiffness. Similarly, Nfd

learns the spring damping. Using particular activation functions these coefficients are

converted into forces. The total spring force is represented by NF. The neural

network NA is used for the acceleration whereas, NV gives the velocity. The

positions of the mass-points are used to train the neural networks in their model,

which has a total of six neural networks.

F eat

F

Pi

spring dynamics

Figure 4.3 Numberger's identification model.

P

109

pi Vi vi

V

Point dynamics

This caused some problems. The determination of the teacher signal is very difficult,

if not impossible, for each neuron. This is because the only accessible information is

the position. Error accumulation causes convergence problems since the outputs of the

neural networks are used to feed other neural networks. In addition portability is not

guaranteed if the position neural network model, N, is trained. As indicated in their

latest work (Numberger et al. 2001), the proposed network does not converge to the

original parameters but minimizes the error metric. This may cause significant

problems if the trained neural network model is used in different applications where

the input spectrum is different from the training data.

We, therefore, develop a new identification model that is specific to mass-spring

systems. This model aims to reduce the number of neural networks used, and

addresses the converge and portability problem along with a wider input space for

training data.

4.2.2 A New Parameter Identification Model

Our model assumes that most of the nonlinearities come from the spring dynamics

where the spring parameters are unknown. There exist many well-developed methods,

given in Chapter 2 section 2.1.2, for calculating point dynamics. Therefore it is logical

to focus on spring dynamics. In addition, the only unknown parameter in point

dynamics is m (the mass of each point), which can be determined using various

methods. The forces going into point dynamics (figure 2.4) are forces from the

environment (Ft) and forces generated by the springs themselves (fK and fD). A

typical mass-spring system force dynamics are then given by the following equation.

The total force exerted on each mass-point at time instant (k) is:

110

fs (k) = fK (k) + fD (k) + F, (k) (4.14)

Since the external force is assumed to be known, this force can be added into the point

dynamics leaving the unknown spring forces. The remaining forces are considered as

spring forces, which are expressed as follows:

fs =fK(k)+fD(k)

=K*dr*uK +D*dv*uD (4.15)

where fK(k) and fD(k) are nonlinear spring forces due to spring stiffness and

damping. The formula governing spring dynamics, given by equation 2.4 and 2.7 in

chapter 2, can be represented in the following nonlinear form:

fs = K(dr) * dr *uK+ D(dv) * dv *uD (4.16)

where K(dr) and D(dv) are nonlinear functions that represent spring stiffness and

spring damping, respectively. The known values UK and UD are vectors associated

with spring stiffness and damping given in chapter 2 by equations 2.2 and 2.6.

fs(k)

dv (k) D(.) u
+

uK {. ý-ý Kt. } ý-- dr (k)

Figure 4.4 Forces generated by springs.

The spring dynamics, in terms of spring forces, is then given by figure 4.4. The inputs

to the dynamics are examined in the next section. Equation 4.16 can then be expressed

in the following representation using neural networks:

111

A
fs = NK(")*UK +ND(")*UD (4.17)

where neural networks NK (") and ND () are used to learn nonlinear parameter

functions K(dr) and D(dv), respectively. The forces generated by the springs can

then be given using the neural network representations shown in figure 4.5.

A
+f S(k)

dv (k) _(" UD

UK HNct)ý'"-- dr (k)

Figure 4.5 The neural network representation of the spring forces.

The next step is to establish proper input-output signals for training the two neural

networks.

4.2.2.1 Input-Output Data

In previous applications positions and velocities were chosen as inputs to neural

networks. In our work we use a different approach. Since spring force is driven by the

changes of the velocity and the length of springs (see Chapter 2), the inputs are

therefore defined to be:

dr=lXj -Xi
I-r0 (4.18)

where dr is the length change of the spring and

dv=lVj -Vil (4.19)

where dv is the velocity change across the spring. Here, X and V define the current

position and velocity of each mass-point and rp is the original spring length.

112

Using positions and velocities as inputs, the neural network model will have a very

large but sparse input space, which will result in poor learning. This will also limit the

generalization abilities of the neural networks used. A wider input spectrum for the

neural networks can be established by using changes in the spring length and velocity.

This solution will also address the portability problem as well. Positions of mass-

points, in our method, do not effect the input space as much as in previous methods.

Therefore trained networks can be used in different applications, where similar types

of springs are used.

Since the point dynamics are calculated using one of the well-known techniques

presented in chapter 2, the choice of the output (teacher signal) is also different in our

model. The output signal is the total spring force given as the sum of two forces from

the spring stiffness and damping (see equation 4.15). This force can be determined in

terms of known variables using the dynamic structure shown in figure 2.4. The output

for the next time step is:

X(k + 1) = X(k) + dt x V(k + 1). (4.20)

The velocity for the same instance is:

V (k + 1) =V (k) +
dt fs (k). (4.21)
m

Equations 4.20 can be rearranged to give:

dt xV (k) = X(k) - X(k - 1). (4.22)

Equation 4.20 can be rearranged by substituting equation 4.21,4.22 and 4.14:

X(k + 1) = X(k) + [X(k) - X(k -1)] +
mt

[fs (k) + Fext (k + 1)]. (4.23)

The above equation 4.23 is then rearranged once again to obtain the total spring forces

in terms of the positional changes and external forces as:

113

fs (k) =d2 [AX(k + 1) - zX(k)] - Fexr (k + 1) (4.24)

where zX(k + 1) = X(k + 1) - X(k) and iX(k) = X(k) - X(k -1) represent the

positional changes of each mass-point.

As the above formulation (4.24) reveals, the external forces are included in the point

dynamics instead of the spring dynamics (examined in the previous section). Based on

the neural network representation of spring dynamics (see equation 4.17) and the

input-output choice, a training model is presented in the next section.

4.2.2.2 The Training Model

Given the input-output data dr (equation 4.18), dv (equation 4.19) and fs (equation

4.24), the nonlinear functions K(") and D(") are approximated using neural networks

NK (.) and ND(") , respectively. The neural network model output shown in figure 4.5

is compared to the actual mass-spring system output shown in figure 4.4. The neural

networks NK(") and ND(-) are trained using the error between the neural network

representation and the mass-spring systems to minimize the cost function:

J= [fs (k) - fs (k)]2

M
_ e(k) (4.25)

1

where M represents the number of training samples.

The neural network model integrated into the spring dynamics shown in Figure 4.6 is

used to train the two neural networks NK (") and ND 0. The neural network

114

responsible for learning the spring stiffness takes the length changes of the springs as

input and its output is multiplied by the appropriate vectors associated with the

springs. The second neural network, approximates spring damping, receives velocity

changes as inputs and its output is also multiplied by a measurable vector. These

multipications vectorize the output of both neural networks. It is important to note that

both inputs to the neural networks are scalars and consequently the neural networks

also produce scalar outputs representing the spring coefficients. The outputs of neural

networks are vectorized to obtain the total spring forces in the x, y and z directions.

The sum of both outputs is then compared to the desired output resulting in an error

signal. This error signal is used to train both neural networks. To ensure better

learning and convergence, we propose a new learning rate called "adaptive learning

rate" that is examined next.

IF fb%

dv (k)

Figure 4.6 Training neural networks NK () and ND 01

e (k)

115

4.2.3 Learning Rate

The conventional learning algorithms are derived based only on the force errors at the

mass-points. Although this appears correct, it does not produce satisfactory results.

This is because it only considers the aggregate effect of all the springs incident at the

mass-point rather than the contributions from these individual springs. It is

understandable that the same displacement of a mass-point will result in different

length change and velocity change for each spring depending on the structure of the

mass-spring system. Therefore each of these springs will contribute a different

amount to the movement of the mass-point. In the existing literature, however, the

weights of neural networks are updated without acknowledging this important fact.

This implies that the neural network is forced to produce the same output for different

inputs. Consequently the errors may be minimised but the exact physical parameters

may not be identified, resulting in unrealistic simulations.

It is well known that the spring force is a function of the changes of the spring length

and velocity. In linear cases it is given by equations 2.8 and 2.9. The error given by

equation 4.25 is also a function of the spring length and velocity changes. In the

training process this error should be distributed to each state of the neural network. As

there is no access to individual spring forces or errors, to get around this problem we

introduce an adaptive learning rate. For the spring stiffness this rate is related to

spring length changes and it is given by the following formula:

QK (dr) = Qo (1- e-(Idrl
lyl drl)) (4.26)

where ßßo is a constant learning rate and I drl is the total length change of the

springs incident at each mass-point. The additional term in the formula effectively

accounts for the contribution of the length change of each individual spring.

116

A similar adaptive learning rate can be chosen for the damping coefficient based on

the velocity changes of the springs:

PD (dv) = Qo (1-e -(dv l Y_ dv) (4.27)

where dv is the total spring velocity at each mass-point.

4.2.4 The Weight Update Law

The weight update rules of the CMAC neural network are given by equation 4.11 and

4.12. The weights of the CMAC neural network can be updated using either non-

batch (where the weights of the networks are adjusted after each training pair of

inputs and outputs is presented to the network) or batch methods (where the weights

are updated after a block of data is presented to the network). Non-batch training is

used here because, as it is shown in (Sayil and Lee 2002), the non-batch error

correction presented by Albus is the fastest method. It is therefore very suitable for

on-line training. This method has the advantage that any learning factor in the range

0 <, 8 <2 will cause the algorithm to converge.

The weight update law for both spring stiffness and damping can be given by the

following formulations adapted from equation 4.12:

WK (i + 1, k) = wK (i, k) + #8K 6K [e(k)] (4.28)
K

wD (i + 1, k) = WD (i, k) +
4D

OD [e(k)] (4.29)
D

where wK and wD represent the weight vectors for spring stiffness and damping, the

learning rate 8 is defined by equation 4.26 and 4.27, k=1,2,..., m is the sample

number and i represents the iteration. The error function in equation 4.28 and 4.29

can be given as:

117

e(k) _ Ifs I- Iu K8K WK (k) +U DODWD (k)I (4.30)

We make the following assumption in the weight update law: the output of the neural

networks is compared with initial set values and if this output is found to be less than

initial value, then the weights are not updated. This criterion is used to prevent

learning negative coefficients. This is especially the case where there is lack of

training data, which produces negative values on the right hand side of equations 4.28

and 4.29. This type of unwanted weight update produces negative learning (i. e. it

produce negative values for stiffness and damping). In order to avoid this, the

problem learning algorithm prevents updating the weights in those situations. The

pseudo-code description of the weight update law is given as follows:

Initialize the weights: CK, CD
Loop

A
- Find NN model output, fs

A
Find the error, e= fs - fs

Find the learning rates, ßx and JOD
Modify the weights using, Eq. 4.28,4.29
Find the outputs NK (") and No (")
If(NK()<CK)

wK (k + l) = wK (k)
If(ND(")<CD)

wo (k + l) = wD (k)
If (error< 8), loop terminates.

End of loop

The weights of the neural networks can be initialized randomly or set to known

values. It is logical to set the initial values of the weights by best guest. The learning

factors can also be chosen as constant values (i. e. the traditional way) or by using

equations 4.26 and 4.27. The number of quantization levels and the number of active

weights are determined by the designer's experience and the requirement of the

118

application. In our application we used (A*) 80 active weights and 1000 quantization

levels. The learning factor 60 for both networks was set to 0.15.

4.2.5 The Training Data

In this section, we examine how training data for our neural network based

identification method is obtained. In our experiment, we assign the values for the

stiffness and damping coefficient. Then using the neural network based identification

system developed above, we try to identify these given values. The training data for a

mass-spring system should be obtained by experimentation. In order to test the

accuracy of the proposed method, we generated the training data mathematically. This

is because it is difficult to obtain real data. This is in fact an open research subject.

Our experiment was carried out using the CG head model, which was generated in

chapter 3.

Here we assume that all springs used have the same coefficients (i. e., we assume the

same non-linear function for the coefficients). As discussed in (Teschner et al. 2000),

spring stiffness is a non-linear function of length change, and it is defined as:

K(dr) = ko (1 + k1 * dr * dr) (4.31)

where ko and kl are constants. In this example, we set ko =1 and k1=10. Similarly,

the damping is also represented by a function:

D(dv) = do (1 +d1* dv) (4.32)

and we set do to be 0.1 and constant dl to be 0.01. We initialized the weights of the

neural networks randomly, and let Nx (") = 0.2 and ND 0=0.02. The simulation was

run for number of iterations and the positional changes were recorded. The total

spring forces effecting each mass point were found using equation (4.24). Using the

119

configuration depicted in Figure 4.6 two neural network models were trained. These

results are examined in the next section.

4.3 Results

CMAC networks (see section 4.1), were utilized in the parameter identification

method (see section 4.2) for learning spring stiffness and damping. The training data

generated in Chapter 3 was used. The parameters used in the data generation are

known values so that we can compare the learnt coefficients with their original values.

We carried out the training process using the developed identification model with

both the conventional and the proposed weight update law.

The error function defined by equation 4.25 was plotted against the number of

iterations for both neural networks. Figure 4.7 shows the graph for a constant learning

rate and figure 4.8 shows the graph for an adaptive learning rate. In the first case the

teaming rate was 0.15 and for the second case it was defined by equations 4.26 and

4.27. The neural network model with the adaptive learning rate clearly minimises the

error function with a final value of 0.043, while the neural network with the constant

learning rate minimises the error to some constant with an average final value of 0.6.

The adaptive learning rate ensures better teaming, therefore the neural network model

is able to generate almost the exact forces as the original mass-spring systems.

Another issue that we have considered for the identification process is whether the

neural network converges to the original coefficients. In Figures 4.9 and 4.10, we

have plotted the original values of the coefficients and the neural network outputs.

The x axis of the graph represents changes in spring length and the y axis represents

the corresponding value for spring stiffness. As can be clearly seen, the adaptive

learning rate improves the neural networks approximation significantly.

120

2.4

1.8
L.

1.2
0

0.6
0

iteration

Figure 4.7 Error function versus number of iterations using a constant learning rate.

1.8

1.2
I- 0
m

0.6

0

iteration

Figure 4.8 Error function versus number of iterations using an adaptive learning rate.

121

0 20 40 60

0 20 40 60

20

16

12

8

4

0

Idyl

Figure 4.9 The original and the neural network approximation of parameter K, with a

linear learning rate.

16

12

8

4

0

Idd

Figure 4.10 The original and the neural network approximation of K, with an adaptive

learning rate.

122

0 0.7 1.4

0 0.5 1 1.5

0.5-

0.4-

0.3-

0.2-

0.1

0
0

Figure 4.11 The original and the neural network approximation of parameter D with a

linear learning rate.

0.24

0.18

in 0.12

0.06

0

dv

Figure 4.12 The original and the neural network approximation of parameter D with

an adaptive learning rate.

123

10 20 30 40 50 60
dv

0 20 40 60

Figures 4.11 and 4.12 show the original values and the neural network outputs for

spring damping. The first figure is obtained using a constant learning rate, while the

second figure illustrates the damping coefficient obtained using an adaptive learning

rate. As seen from figure 4.11, the conventional learning algorithm fails to learn the

damping successfully. Use of the adaptive rate in our learning algorithm, on the other

hand, once again significantly increases the neural network learning.

In addition, to quantify the training error, the mean-squared error (see equation 4.32)

of all the springs are shown in Table 4.7. This table indicates how closely these

parameters are learnt. The mean-squared error is calculated by the following

formulas:

M
MSEK =I (K(dr) - NK ()) 2

M
MSED =m (D(dv) - ND (")) 2 (4.32)

1

where m is the number of training samples.

Constant Q Adaptive
,8

MSEK 0.9749 0.0092

MSED 0.0157 0.00004

Table 4.7 The mean -Squared-Errors between the neural network outputs and the

original coefficients.

4.4 Summary

The previous chapter revealed that the choice of simulation parameters is the most

important part of the mass-spring simulation. In this chapter we investigated ways of

determining these parameters. SYstern identification using neural networks is a well-

124

established method in engineering applications but little effort has been expended in

computer graphics. In (Numbergel et al. 1998,1999,2001), six neural networks were

used in identification process. This caused some problems since the only accessible

information is the positions of the mass-points and the "teacher" signals for all

neurons can not be determined. Error accumulation also presents a problem because

the output of some of the neurons are used to feed other neurons. If the output neuron

in previous model is trained, portability is not guaranteed. In addition, they admitted

that their identification process did not always convergence to the original parameters.

We, therefore, have developed a specific identification technique for the mass-spring

algorithm (Duysak and Zhang 2003). We only used two neural networks to identify

spring stiffness and damping coefficients. Changes in the spring length and velocity

are used as inputs to neural networks in order to increase the generalization of the

networks as well as to overcome the portability issue. The proposed adaptive learning

rate improves the convergence of the developed technique.

Experiments show that the developed model is able to identify system parameters

with very high accuracy. The developed model was tested using data generated by

mass-spring system simulations. We anticipate that this model will find an effective

use in the simulation of real life systems, where the deformation data is obtainable

using experimental means (Brouwer et al. 2001, Kerdok et al. 2001). It is also

possible to use this method with the implicit integration scheme (Kang et al. 2000)

and the quasi-static formula (Brown et al. 2002) to improve the simulation efficiency.

Current identification systems use data generated mathematically from mass-spring

systems or from finite element modeling and testing our model with real data is part

of future work.

125

CHAPTER 5

A NEW DEFORMATION ALGORITHM; MASS-SPRING-

CHAIN (MSC)

Depending on the requirements of the applications, researchers may use different

simulation techniques for soft tissue simulation. The finite element method is a

common choice if accuracy is the main concern while mass-spring systems may be

preferred if speed is essential. But even with the mass-spring system, real-time

performance, which is essential in many surgical simulation applications, is difficult

to achieve, since most real applications involve a large number of soft tissue (e. g.

muscles) elements. In addition the mass-spring system is an iterative method, which

uses numerical iteration to perform deformation. Surgical simulations that requires

MHz update rates and further more real-time simulations with haptic interactions,

which require IkHz update rates are still a challenge to realize. Therefore, whilst

much research effort has been spent on improving such techniques in the area of

physical accuracy and performance, other methods, such as the ChainMail algorithm

(which is not physically-based), have been proposed for real-time interactive frame

rates,

126

Unlike the finite element model or mass-spring system techniques that use reduced

resolution but complex formulations to calculate deformation, the ChainMail

algorithm operates on full or very high resolution and uses very simple calculations.

In addition, the ChainMail algorithm is not an iterative method that takes many steps

to reach the final state. It only needs one or two simple steps, hence it is very fast. The

ChainMail algorithm models the object by a large number of vertices, which are

interconnected with links. A cubic cell is formed around each vertex defined by its six

immediate neighboring vertices in three mutually perpendicular directions. When a

point is moved, its neighboring vertices may be moved according to the defined rules.

The affected vertices may in turn move their neighbors and so on. The movement is

thus spread to the whole model, leading to the deformation of the object. According to

this algorithm's deformation law, vertices are allowed to move within set limits

representing the minimum and maximum distances from each other.

in this chapter we propose a new method for deformation simulation in order not just

to achieve real-time performance but also to reach the required haptic rate. The

method is non-iterative and its structure is suitable for neural network design. Before

going into the detail for combining physically and non-physically based methods, our

motivation is described next.

5.1 Motivation

We observe that the ChainMail algorithm determines the deformed positions using

defined geometric constraints with one or two simple steps, while mass-spring

systems use an iterative approach (with hundreds of steps). Therefore, the

performance of the ChainMail algorithm is considerably faster than that of mass-

spring systems. Mass-spring systems on the other hand use a more sophisticated

127

deformation algorithm and therefore produce more accurate results. Finding a

deformation technique with one or two simple and fast steps while improved accuracy

at the same time motivated us to study closely both the mass-spring systems and

ChainMail algorithms. A new method is developed to combine the desirable

properties from both these algorithms while eliminating or at least ameliorating their

drawbacks. Here we list some of the undesirable properties of both the mass-spring

systems and the ChainMail algorithms and finally at the end of this chapter we

provide the properties of the new algorithm.

The ChainMail algorithm possesses some disadvantages including:

It does not work on tziangulated models. Since most of the applications use

triangulated data or models, the ChainMail algorithm is not suitable for these

applications.

0 It assumes that each neighbor of any point lies in the vertical, horizontal, top,

or bottom directions. Thus it works only on voxel-type structures.

It uses a very simple deformation formula that is difficult to justify physically.

It is difficult to determine geometric constraints representing the physical

characteristics of material.

It does not take rotation into account.

Some special cases examined in following sections are not handled by this

algorithm.

The mass-spring systems algorithm on the other hand, also has some disadvantages:

9 It uses an iterative approach, therefore it is not suitable for real-time

applications in many cases.

128

0 Some modifications are employed (e. g. the approximated implicit method in

(Kang et al. 2000a) or the quasi-static method (Brown et al. 2001)) to achieve

real-time performance at the expense of simulation accuracy.

0 Although the mass-spring system's algorithm uses a well defined deformation

algorithm, it is very difficult to obtain its simulation parameters (Chapter 4).

It does not handle rotation and special cases are not addressed.

It causes spring elongation, which can be avoided using additional

computations but causes accuracy and speed problems.

In the following sections we will describe our algorithm in detail. First a pattern is

developed to process deformations on a 3D mesh. The boundary limits are established

for the spring movements and deformations. A surface where the deformation occurs

is then identified. A method is proposed to find the exact locations of the deformed

points on this surface. We also address multiple vertex movements and cell

conversion that is likely to occur in such applications. Finally, the algorithm is

summarized and applied to simulate various objects, including simple geometric

figures and complex soft tissue deformations due to craniofacial surgery.

5.2 The Mass-Spring-Chain (MSC) Algorithm

The Mass-Spring-Chain algorithm models the object in a similar way to the mass-

spring systems algorithm in that the object consists of a number of mass-points

connected with springs. As in the mass-spring system's algorithm, springs perform a

deformation by stretching or compression. The deformation starts from the moved

mass-points and propagates through the entire 3D lattice of springs. The movements

and deformations of the springs are constrained by pre-set conditions. Spring

movement is limited between two extremes; rigid movement and elastic movement.

129

The spring length is also constrained between the allowed maximum compression and

stretching. The deformation algorithm is then responsible for finding the necessary

movements and the amounts of deformation of the springs within these set limits. We

begin by introducing some definitions that will aid us in the description of the overall

deformation process of this algorithm

5.2.1 Deflnitions

The 3D lattice is initially considered to be in a passive state, which implies that all

points and springs in the mesh are not under the influence of any external force.

Figure 5.1 illustrates such a lattice. When a point is subject to an external force (by

grabbing it and moving it) this particular point becomes an active point or, in other

words, a source point for the deformation. An active point is shown as black in figure

5.1. A deformation starts from an active point and travels through the rest of the

lattice in every direction using the springs. The springs connected to the active point

are now defined as active springs, because they are subject to movement and

deformation. The other end points of the active springs are called semi-active points,

because they will be repositioned (causing the deformation), and will become active

points themselves in the next step of the algorithm. Semi-active points are shown in

green in figure 5.1. Springs connecting semi-active points are called semi-active

springs.

Some of the points in the lattice can be utilized as boundary points in order to enforce

some constrains and to model connections with other objects. The springs connected

to boundary points are called boundary springs. During the deformation process all

the points and springs in the 3D mesh are labeled using one of the above definitions.

They are all subject to deformation.

130

active point

active spring

boundary sp

boundary p oin

semi-active point

semi-active spring

Figure 5.1 Definition of points and springs.

5.2.2 Deformation Pattern: Movement Propagation

The deformation pattern can be compared to a wave on water where the wave is

started by an external force (e. g. the fall of a pebble) and travels trough the entire

surface of the mesh or until it diminishes. During the first cycle of the wave, active

springs, semi-active points and semi-active springs are determined and the

deformation takes place as explained in following sections. Before moving onto next

cycle of the wave, the springs processed in the current cycle are turned off to allow

only forward movement. The next cycle of the wave starts from the semi-active points

of the previous cycle. Thus, these are now the source points for the movement and the

deformation. Similarly, active springs, semi-active points and semi-active springs are

found and deformed before they are turned off.

These cycles of waves go on until all the springs are visited and deformed.

Alternatively, cut-off criteria can be set to stop the propagation and deformation as

discussed in later sections. We now explain the defonnation propagation through an

example.

131

The deformation pattern of the algorithm is illustrated in figure 5.2. Figure 5.2(a)

shows the initial mesh before the deformation starts. The point PO is moved by an

external force and becomes an active point (moving point or source point). This point

is shown in black in figure 5.2(b). The springs connected to the active point,

sO, s5, s6, now become active springs and are shown in green. These springs are

subject to deformation because of the movement of one of their end points. The

direction of the deformation is indicated by the arrowhead on these springs. The other

end points of the active springs, PI, P5, P6, are semi-active points, shown in green.

The springs connecting the semi-active points, s7, sl 3, are semi-active springs and are

indicated by double headed arrows. This implies that both ends of the springs are

moving. Thus deformation takes place at both ends of the spring. After the active

springs are processed (deformed), the semi-active springs have to be deformed as

well. Therefore, the positions of each semi-active point are updated based on the

deformation of the active and semi-active springs. The first wave is completed as

shown in figure 5.2 (b).

p0
So

P1
Si

so Si so S9
p6 Sis

Ss

u5s13

Sii
S12

S ps a

(a)

P2

Sz
P

3 10

S3
P4

132

P1

P 0o s6

s5

S1 P6

P5

(b)

Pl

S$
P6

14

P5

Si Ps

P7
S12

S4

(c)

10
ýý11

1

P4

T

P
3

ý4

(d)

Figure 5.2. The deformation pattern (deformation propagation) of the proposed

algorithm: (a) the initial mesh, (b) the first wave, (c) the second wave and (d) the last

wave (the end of the propagation).

133

Before the first wave of the propagation ends the deformed springs 30, s5, s6, S7-513

are turned off. The semi-active points PI, P5, P6 of the previous step now become the

active points of this step, shown in black in figure 5.2 (c). The new active springs are

sI, s4, s8, sI2, sI4, the new semi-active springs are sq, sjO, sjj and the new semi-

active points are P2, P4, P7. The second wave of the deformation is concluded by

performing the deformation on these active and semi-active springs and finally

turning them off. The last cycle of the wave is shown in figure 5.2(d) where there are

only two active springs left, 32,33, and P3 is the only semi-active point.

Since all the points and springs have been processed the deformation propagation is

terminated at this point. In the next section we analyze the movements and

deformations of the individual springs.

5.2.3 Boundaries of Movements and Deformations

This section deals with establishing limits on the spring movements and deformations.

We have taken into account the spring theory examined in chapter 2 and the

ChainMail algorithm to determine the deformation constraints concerning the spring

movement and deformations. Both theories suggest that neighboring points

(connected by links in the ChainMail algorithm and connected by springs in mass-

spring systems algorithm) have to satisfy some conditions relative to each other. In

the mass-spring system's case, these conditions are embedded into the system by

some parameters such as spring stiffness and damping. If the spring stifffiess is high,

for example, it will be harder to move and deform the springs. The ChainMail

algorithm defines the conditions geometrically assigning a bonding box determining

the limits of the point movements. The movements of each point are restricted to be in

134

this bounding box. There is not, however, a parameter given by the algorithm that

controls the location of points in this bonding box.

The ChainMail algorithm only performs a deformation if a set of limits is violated.

The mass-spring system's algorithm on the other hand, deforms the springs at any

condition dynamically given by external forces. For example, let us assume that two

mass-points are connected by a spring/link. If one of the points is moved, the spring is

deformed according the theory examined in chapter 2. In the ChainMail algorithm,

hovewer, the spring will only be deformed if the new spring length violates the

minimum and maximum spring length criteria. A desirable method should defonn the

spring dynamically based on the changes of the conditions of the external forces or of

the vertex movements. Next we give details on how to set these limits in the new

algorithm.

5.2.3.1 Movement Limits

We assume that there are two extreme cases possible regarding spring movements.

one is defined as a rigid movement without any rotation. When a point is moved, a

connected spring moves accordingly. The initial spring and the moved spring are now

parallel to each other and the distance between them is equal to the distance traveled

by the moving point. A vector called the rigid movement vector, Ur, defines this new

position and sets the rigid limit or, in other words, the upper limit beyond which there

will not be any movement. The opposite situation is known as super elastic

movement and deformation. It is assumed that the spring offers no resistance to its

movement, i. e. while one end is moving the other end stays still. A vector, represented

by Ue, from the moving end to the stationary end of the spring sets this limit. It is

therefore our assumption that the moved and deformed spring will be somewhere

135

between the rigid and elastic limit vectors. The fon-nation of the limit vectors is shown

in figure 5.3 where (a) gives the initial triangle. The point PO is moved to a new

location PO'. Figure 5.3 (b) shows the limit vectors for the spring between points PO

pe to and Pl. As seen from this figure point P, can be moved from one extreme,

another Pj'. Figure 5.3 (c) represents movement limits for the spring between points

PO and P2. In general the limit vectors are defined as follows:

ur = Pm Pi

Ue = PmPi (5.1)

where m represents the moved point and i gives the connected semi-active points.

A

p2 p1

(a)

PO

P 1e 0,

p2qZ

ý
P1

Ue

(b)

P0..

r
ýop1

Ur

136

P2
r; r

A0

P P2
P1

Ue j
Ur

(c)

W,

Figure 5.3 The determination of the movement limits due to vertex displacement.

While determining the movement limits, the springs are moved individually as if there

were no connection to any other spring. As shown in figure 5.3 for example, the two

sets of limits are formed independently from each other. It is assumed that the effects

of connected springs fall into these limits. The springs are allowed to travel from the

elastic limit to the rigid limit. Thus, the limit vectors form a surface called the

movement surface on which locations of the springs are to be deten-nined. Figures 5.4

(a) and (b) show movement surfaces formed by the elastic and the rigid limits (shown

in figure 5.3 (b) and (c) respectively).

pn 0

4

pi e
pr

oQ1

P2 pi 2u Ur

(a)

137

PO

u_A P p,

n P

C-' r P2

e -ý "r

11r

(b)

Figure 5.4 The movement surfaces formed by the limit vectors.

5.2.3.2 Deformation Length Limits

The previous section deals with establishing the movement limits of springs after

point movement. In this section the deformation of the springs is examined. Springs

are allowed to stretch or compress for a certain percentage of their original lengths ro.

The current spring length r varies between the maximum compression length rmc

and the maximum stretch length r,,, . Figure 5.5 shows a sample spring at its rest,

maximally stretched and maximally compressed states.

r0

r

rmc

Figure 5.5 Spring length limits.

At maximum stretch, the spring length can be defined as:

rms = rp +dn, ax (5.2)

138

where drnax is the maximum stretch allowed. When the spring is under maximum

compression its length is given by:

rmc = ro - Cmax (5.3)

where cnm is the maximum compression defined. Figure 5.6 shows the initial

configuration of a triangle (in dotted lines) and the defonned triangle (in solid lines).

The spring defined by the mass-points PO - P, is maximally stretched while the other

spring between two points PO - P2 is maximally compressed.

np Po
.*00

4
rmcs r

m

.0p

n
pA

Pý
2

Figure 5.6 Spring length criteria.

In addition to the movement limits, varying the spring lengths sets further limits

known as the deformation limits, which represent the deformation characteristics of

the springs. For example, a constraint can be set such that a spring can be stretched

20% of its original length and be compressed 10% of initial length. For some

materials this limit can be 200% of the initial length (i. e. plastic) based on the system

requirements. During the deformation process the lengths of springs will vary

between these limits. The limits eventually form a closed surface known as the

deformation region. This region is also known as the search space of the deformation.

139

5.2.3.3 The Deformation Region

In section 5.2.3.1 we have defined the movement boundaries shown in figure 5.3 and

in section 5.2.3.2 we have set deformation criteria shown in figure 5.6. The movement

surface given in figure 5.4 is further narrowed down by the deformation limits

resulting in a closed region, which is shown in figure 5.7 for movement surface

depicted in figure 5.4 (a). The boundaries of this region therefore can be given by the

elastic limit vector Ue 9 the rigid limit vector u, the minimum length constraint rmc

and the maximum length criteria rms. The deformation region (DR) can be

fonnulated as follows:

n
DR = Uermcurrms

pn
ok

0

%
% pl, %

Ue deformation region Ur

(5.4)

Figure 5.7 The defon-nation region is formed by the movement and deformation

limits.

This region is called the deformation region since the defon-ned springs and points are

contained in this region. Each spring connected to a moving point will form a similar

region. In figure 5.8 we give an example of the deformation process, where the initial

configuration is shown in thick black lines while red lines represent the rigid

movement of the triangles without any deformation or rotation. Point PO is moved to

140

a new location R' The first part of the figure represents a pulling and the second part 01

a pushing operation that starts the defonnation. The defonnation surfaces are shown

in different colors for each active spring. Thin black lines represent possible defonned

shape of the original figure. Our goal in the following sections is to obtain a method

which will allow us to determine exactly where in this region the (semi active) points

lie.

. ý.
ux 2

U3

3

Pý

U12

u3

u`
i

Figure 5.8 The initial position (thick black) and the rigid movement (red) are shown

with the defonnation surfaces in different colors for each spring.

141

p

P2 Pl

u2" ul

ux
ul

2

5.2.4 Finding The Deformed Positions

Our strategy is first to find the new positions of springs due to the movement of active

points. We then determine the amount of deformation and find the direction of this

deformation. Finally, the new locations of the semi-active points are found. Let us

now explain each of these steps in detail.

5.2.4.1 The New Orientation Vector

In order to establish the spring location after the movements we employ a vector

called the orientation vector whose purpose is to indicate where the spring lies

between the movement limits Ue and Ur on the movement surface. Depending on the

material properties, the spring's location will vary between the two limit vectors as

shown in figure 5.9 (a) for the limits given in figure 5.3 (b). The orientation vector

therefore spans the entire movement surface (region). Therefore an equation for the

orientation vector can be expressed in terms of the limit vectors as:

Uo = CMe + (I - a)u, (5.5)

where a represents the deformation characteristics of the object under consideration.

if the object is very elastic in nature, then the orientation vector is expected to be

closer to the elastic limit. Alternatively if the springs are defined with a higher

stiffness then the orientation vector approaches the rigid limit. Thus, the parameter a

can also be considered as a control cocfficicnt for the spring movement.

Equation 5.5 determines the direction of the orientation vector whose magnitude is

determined based on the spring's original length. In figure 5.9 (b), the initial spring is

now moved to a new position, which is described as new the orientation: P0. One I

end of the spring is already known (i. e. the active point pn) and the other end is 0

142

established by the orientation vector. The semi-active point is then moved to its new

position by a vector known as the movement vector V,,. Since the original spring

length is already known the new orientation can easily be established, as shown in

figure 5.9 (b). The movement vector is given by:

Vm =pip,
Finding the defonnation is examined next.

(5.6)

n Pý

orientation
vector

e
pr

Ue Ur

(a)

n Pý

PO

pepr

P2
'00ý

P1 vm Pi

Ue Ur

(b)

Figure 5.9. The orientation vector varies from the elastic limit to the rigid limit (a) and

a new location for the spring after the movement is between these limits.

143

5.2.4.2 The Deformation of Active Springs

Once the new locations of the springs are determined with the help of the orientation

vectors, the deformation of the spring is considered. Different types of spring will

follow different sets of rules in the deformation process. Springs are classified, by

definition, as active, semi-active or boundary springs. Boundary springs may follow

special rules depending on the application requirements, since they forrn the

connection between different objects. Deforming active springs is relatively

straightforward because only one end of the spring is deformed. The deformation

algorithm first finds out how much deformation occurs and then deten-nines the

direction of the deformation.

5.2.4.2.1 Magnitude of the Deformation

As in the mass-spring system's algorithms, the current spring lengths are found and

compared with their initial (pre-set) lengths. There are three possible outcomes from

this comparison. If there is no difference between them, there will be no spring

deformation. The current spring length may be larger then its rest length. In this case,

the spring is being stretched. In opposite case, where the initial spring length is larger

than the current spring length, thus the spring is being compressed. In both cases the

spring is deformed and the amount of the deformation needs to be determined.

The magnitude of the deformation may be calculated using many different

formulations. Here, we use the following:

dr
def = d,, ý,, (I -e ro (5.7)

where drmx is the allowed maximum stretch or compression, dr is the difference

between the current and the rest length and the slope parameter 8 represents the

144

deformation rate. A typical plot of such a function is given in figure 5.10 for nominal

values of the variables.

As seen in figure 5.10, the deformation has an upper limit set by dnaý, (I in this case)

and depending on the deformation rate 8, the spring's deformation will reach a

maximum at varying speeds (at different values of dr). For example, when dr=1.5,

(from the figure) def is either 0.7 or 0.9 depending on the function used. As can be

seen from the figure 5.10, two different functions are plotted for the two different

values of the 8. These parameters allow us to model different objects with distinct

deformation characteristics. This equation also allows continuous deformation, In the

ChainMail algorithm, however, links are only deformed if their lengths violate the

length constraints.

1.2

0.8
0 0.6
E

20
0.4

0 ß 0.2

0

lenghtchange

Figure 5.10. Deforming the springs, based on the parameters, d.,, x and 8.

5.2.4.2.2 The Direction of the Deformation

In our work, for simplicity we choose the direction of the orientation vector as the

deformation direction. If the spring is being compressed, then the deformation

145

0123456

direction is opposite to the orientation direction. The amount of deformation is then

subtracted from the original spring length, leaving the current spring length shorter

than the original length. If the spring is being stretched, then the deformation direction

is the same as the orientation direction. In this case the deformation is added to the

original spring length elongating the spring. The direction of the deformation,

however, can be effected by many factors, such as the connected springs.

5.2.4.3 The Deformation of Semi-active Springs

Deforming semi-active springs is slightly more complex than deforming active

springs. The strategy is different for semi-active springs because unlike active springs

both their endpoints are moving at the same time. Semi-active springs are allowed to

move and deform freely during the deformation of active springs. Then the

deformation algorithm checks if the semi-active springs violate the spring length

criteria. If the maximum stretch and the maximum compression conditions are

satisfied, no action is taken. Otherwise, the semi-active springs are deformed to meet

the set conditions. As in the deformation of active springs, here as well, the

deformation magnitude and direction will have to be determined.

5.2.4.3.1 The Deformation Magnitude

The process for finding the deformation magnitude of semi-active springs is the same

as that given for active springs. Since both endpoints of the spring are moving the

spring is deformed at both endpoints. The distribution of the deformation to the spring

endpoints depends on the distances traveled by each endpoint of the spring. If one end

of the spring travels a longer distance than the other end, this implies that this

endpoint is leading and it is considered as an active end. The other end, which travels

a shorter distance, is known as the semi-active endpoint. The semi-active endpoint is

146

subject to more deformation than active endpoint. This is based on the assumption

that the spring is pulled by its active endpoint. The semi-active endpoint follows and

lags behind causing deformation. The amount of deformation is distributed according

to following formulation:

def rB def
X. rA +rB

defB rA def (5.8)
rA +rB

where defA and defB (defA + defB = def) represent the required deformations at the

two endpoints of the spring, rA and rB give the distances traveled by each endpoint

of the spring.

5.2.4.3.2 The Direction of the Deformation

The direction of defonnation can be chosen to be in the spring direction. Any

defonnation (i. e. reduction or increase in spring length) occurs in the spring direction.

A deformed. triangle is shown in figure 5.11, where points P, and P2 are adjusted

based on deformations on the active springs sl and s2. The deformation based on the

semi-active spring, s3, is shown in the same figure. The new position for the points

are R' and P" Arrows indicate the direction for the deformations of the spring S3 12'

Choosing the spring vector as the deformation direction has, however, a downside.

The lengths of active springs are affected by this adjustment. In some situations this

may yield constraint violations for active springs. The deformation direction can be

chosen in a way that the length of active springs remains the same after deforming the

147

semi-active springs. The deformation algorithm handles this problem in the fine-

tuning phase examined next.

n PO
S, S2

P2
n

P,
P2

S3

Figure 5.11 Deforming semi-active springs.

5.2.5 Fine Tuning

Active and semi-active springs are deformed and the positions of their vertices are

updated using the procedure discussed above. Some of the springs, however, may still

violate the length criteria set in section 5.2.3.2. In the following section we provide a

method to deform springs in order to ensure that these constraints are satisfied. Before

this phase of the algorithm starts, the new orientation, the deformation and therefore

the new deformed positions have already been determined. This part of the algorithm

revisits all the springs (active or semi-active) processed at previous states. Their

lengths are found and their pre-set length criteria are checked. If any of these springs

is in violation of their length constraints, their lengths are adjusted. In this sense the

fine-tuning phase is very similar to the elastic relaxation phase used by the Chainmail

algorithm. The adjustment part is however different. Here we use the same method as

that for finding the deformation, as discussed in section 5. The direction of the

adjustments is chosen to be in the spring direction. This phase of the algorithm further

enforces the spring length criteria already checked by the main body of the algorithm,

as discussed in section 5.2. Thus the spring elongation problem is addressed for a

second time.

148

This phase of the algorithm also represents the end of each wave deformation pattern.

After fine-tuning is performed, the deformation algorithm moves to the next step, i. e.

a new deformation wave. This part of the algorithm may be optionally included into

the deformation algorithm. If it is, the algorithm becomes a two step approach and

slows down.

5.2.6 Ending the Deformation Propagation

The deformation can be ended when all the points and springs in the mesh are

processed. Alternatively, cut-off constraints can be defined. We may, for example, set

a condition such that if the movement is less than a certain amount, then propagation

in that direction is stopped. This property of the algorithm provides extra control not

just on the deformation but also on the deformation time. The deformation can have

different propagation speeds in different directions and therefore can be terminated at

different times in different direction. The connection to other organs or objects can be

simulated using this technique.

5.2.7 Special Cases

The deformation algorithm has to be able to handle the situations where there may be

more than one spring affecting one point. From the nature of the modeling, each

spring can be analyzed (deformed) individually, but points are generally under the

influence of more than one spring. Therefore one single point may be subject to

change of position and deformation by several springs. The other special case may be

described as cell conversion or shape alteration. In this case the building blocks,

triangles or tetrahedral elements, are forced to change their original shapes.

Consequently the deformation starts from changed (altered) shapes and yields

unrealistic results. We examine these situations in detail in the following sections.

149

5.2.7.1 Multiple Movement

A simple 2D mesh is shown in figure 5.12, where points given in black indicate

moving points. Consequently the points represented by PI, P2, P3 (in green) are semi-

active points and are subject to deformation. Point P, is under the influence of one

spring but the other two points are pulled by two moving springs. Therefore for the

point P2, for example, the combined effect must be found. In figure 5.12 (a), the

initial configuration (before movement) is given. Figure 5.12 (b) shows the point P2

and the connected moving springs separately. After the movement, the new positions

of the springs are shown in figure 5.12 (c) where point P2 is forced to move in two

different directions, tenninating in two different locations. These locations are

12 indicated by the vectors vm and vm. These vectors show the movement paths for

this particular point. Point P2, however, will not move in any of these directions but

will follow another vector and terminate at a center location, which represent the

combine effect of both pulling springs. This center location is found by combining the

12
path vectors vm and vm. This center location and the movement are shown in figure

5.12 (d), where the movement vector is given by Vm.

Moving Points

P
1

(a)

p2

(b)

150

m
vrn

---------- v2p P2 m2

(c)

Figure 5.12 Multiple movement.

(d)

There could be a number of ways to find the center location and the movement vector,

Vm, The most obvious solution is to compute an average vector. This can be

formulated as:

vI+v2 vm -- m2m (5.9)

This solution may not produce very realistic results simply because the effect of the

larger of the two movements is not taken into account. One would expect that P2 will

2
move closer to the direction represented by vector vm. This is because P2 is pulled

and forced to travel a grater distance in this particular direction rather than in the other

direction. A weighting method can be employed to take into account the vector

magnitude as given in the following formulation:

r1vI+r
2V2

vm =mmm 12
rm + rm

(5.10)

where rm' represents vector magnitude (i. e. the distance traveled). Naturally, vectors

with larger magnitudes will have grater influence and the movement and center

151

locations will appear closer to them. Equation 5.10 can be given in more general form

as follows:

xvi
VM rmi --m E rmi

(5.11)

This method is used in finding the orientation, as well as, in finding the deformation

of semi-active points. The orientation vector is found using equation 5.3. This vector

moves an attached semi-active point. There may be several active springs connected

to a single semi-active point, giving several orientation vectors. Each of these vectors

will try to move the semi-active point in a different direction as shown in figure 5.12

(c). The above method is employed to find only one path to a center point. Each

spring now has new and different orientations but a connected point only moves into

one location as shown in figure 5.12 (d).

In the deformation process, a single point may be forced to deform by different

mnount in different directions, because of deformations from various connected

springs. A center point corresponding to a combination of these deformations is also

found using above method.

5.2.7.2 Shape Alteration (Cell conversion)

The mass-spring systems algorithm works by measuring the current spring length and

comparing it with the original spring length. The difference is then used, as discussed

in chapter 2, in order to determine the deformation. The downside of this technique is

that the deformation law does not consider any shape violation because it is not able

to detect shape alterations. Therefore shape conversion (cell conversion) is likely to

happen in some situations where a very large force is applied or the shape is altered

by external movements (Ganovelli et al 1999).

152

Shape alteration occurs, in this study, by external movement of vertices. A new shape

emerges when one of the vertices of the triangle passes through one of its edges.

Figure 5.13 shows a shape conversion. The triangle on the left shows the initial shape

before the movement. Point P3 is externally moved to a new location given by pn 3

This movement and the new triangle formed are shown on the right hand diagram of

figure 5.13. If the deformation starts from the newly shaped triangle, inaccurate

results will be produced. This is because, as in the mass-spring systems algorithm, this

deformation algorithm measures edges of the new triangle, compares them with the

original setting and finally updates the positions of the vertices. This process clearly

does not take into account the movement of point P3.

Pl

p2

Figure 5.13 Example of shape alteration.

F

P,

------------ ---- 7-ý(D p

P2

in theory if one of the vertices moves to a new location it is expected that the

connected springs (forming the triangle) should move and deform accordingly. Figure

5.14 (a) shows a triangle (POP2P,) with a vertex that is moved to a new location given

by Pon. As can clearly seen from the figure 5.14 (a) this vertex passes through one of

the edges of this triangle and creates a new triangle given by PO"P2PI. The mass-

153

spring systems algorithm performs the deformation based on this newly generated

triangle. This will of course cause problems in terms of accuracy and topology

changes.

PO

24

n4 p
0

(a)

PO

ut

2

---------- -------------------------
p %, def ormation

surf ace

Au

(b)

PO

UC

.............. I-
P def omation 0

region

(c)

Figure 5.14 Shape alteration (a) the defonnation surface (b) and defonnation region

(c).

154

Figure 5.14 (b) represents the deformation surface while S. 14 (c) shows the

deformation region for the developed algorithm. If the shape alteration was ignored,

the deformation would have been searched in this region. The shape of the triangle at

the beginning of the deformation process is completely different to the original shape.

The deforination results will be completely different than of those a simulation that

starts from original shape. In addition, the result may not even be a triangle.

A simple modification, moving the original triangle to a new location, will solve this

problem. It is our assumption that moving point PO means moving the triangle below

to its new location. Let us assume that the triangle is not subject to deformation. In

this case the triangle moves (transition) to a new location preserving its original

shape. This is illustrated by the triangle P6'P, 'P2' in figure 5.15. The deformed triangle

then must lie between the new non-deformed triangle and the surface defined by S

where the active point pn lies. The deformation surface and region defined between 0

them are also shown figure 5.15 (a) and (b), respectively.

PO

p

2 Cý- PI

PrL

................ ------ I-

u

ma: don
surf ace P2 d

-0
PI

(a)

155

PO
:,

0

p

----------------

def om&tiorL
region P2

LL

(b)

Figure 5.15. The new deformation surface (a) and defonnation region (b).

The rigid movement vector ur is derived as defined in section 5.2.3.1. The difference

in this case is in defining the elastic limit vector. Recall that the elastic limit vector is

formed between the moved point and the original point, as given in figure 5.14. In

order to be able to handle cell conversion, the elastic limit vector is redefined. Since

the new surface (S) is now a minimum limit, we can choose the surface equation as

the elastic limit, thus preventing the orientation vector from going behind this limit

(surface) as illustrated in figure 5.15.

There are two ways of detecting any shape alteration. Let us define the angle between

the elastic limit vector and the new plane (S) vector as 01, the angle between the rigid

limit vector and the new plane vector as 02 and the angle between the limit vectors

themselves as 0. The first case is shown in figure 5.16 (a), where crossing occurs

inside the triangle. In the first case, as seen from the figure 5.16 (a), the sum of two

angles, 01 and 02 is equal to the angle between the limit vectors and this sum is less

than 180 degrees. This implies that shape alteration occurs because the new plane is

156

located between them and the elastic limit vector is replaced by a vector parallel to the

plane as follows:

Ue : -- (5.12)

The second case occurs outside the triangle, in figure 5.16 (b) the sum of the angles

(01+02+0) is equal to 360 degrees. In the second case, the direction of the new

vector is just opposite to the plane vector. In both figures, the triangle in red depicts

the rigid movement without any rotation or deformation.

=

-s
Po

ý
Pi

-P p:
1-. 0 t.

ýI All. Jý

192

P,

(a)

Y0

.........
. ------------

Pr&

P2,

IA

(b)

Figure 5.16 Shape alteration and its detection.

(5.13)

157

This process is illustrated in figure 5.17. A simple structure is simulated using both

the mass-spring system's algorithm and the new algorithm. The results of the mass-

spring system's algorithm are shown in blue and those of the new algorithm in red. In

first two diagrams of this figure both algorithms appear to work, but in the last one

where cell alteration occurs, the new algorithm successfully simulates this special

case while the MSS algorithm cannot detect the situation and can not simulate it

correctly.

Figure 5.17 A simple simulation to demonstrate shape alteration and handling.

5.3 Summary of the Algorithm

The disadvantages of both the mass-spring systems and the ChainMail algorithms

were presented in section 5.1. The new algorithm posses several advantages over

them while avoiding their disadvantages:

0 It operates on triangular meshes.

0 It only requires one or two steps, therefore it is very fast.

0 It is very suitable for interactive applications and force feedback.

0 It uses a more sophisticated deformation law.

9 Material properties can be embedded in deformation law.

System parameters can be identified from real data.

0 It handles both rotation and transition.

0 It handles cell conversion (shape alterations).

158

0 The spring elongation problem is resolved.

0 It is open for future developments (developing new deformation techniques,

including physical properties by means of identifying system parameters).

The new algorithm can be summarized by the following pseudo-code:

Initialize the network Establish connectivity and initial conditions.
While (active points)

Fin& active springs
For (each active spring)

If (spring ON)
Find: semi-active point

If (! Boundary point)
Find limits: Ur, Ue

Detect andprevent shape alterations
Find orientation
Find deformation
Turn spring OFF

For (each semi-active point)
Update orientation
Update deformation
Find Semi-active springs

For (each semi-active spring)
Determine violations
Find and distribute deformation
Turn spring OFF

For (each spring)
Dofine-tuning.

If (! pre-set condition)
Active points = semi-active points

Stop

5.4 Applications and Results

The developed algorithm was used in a variety of simulation algorithms. We first give

examples ftom simple 2D simulations in order to show clearly how the new method

works in comparison to the mass-spring systems method. Next, we demonstrate the

capabilities of the new algorithm in several 3D simulations. We also demonstrate the

159

effects of model parameters on simulation outcomes. Finally, a craniofacial surgery

simulation as performed in chapter 3 is repeated here with the new algorithm.

5.4.1 2D Applications

The algorithm is applied to the simulation of very simple structure, a 2D model

consisting of few triangles. Points are grabbed and moved and the resultant

deformation is simulated as shown in figure 5.18 where the leftmost points are

constrained. In these figures, the original shape is shown in black, while blue

represents the mass-spring systems algorithm output and red represents the output of

the new algorithm. As can clearly be seen from these figures, the mass-spring systems

and the new algorithms produce quite similar outputs in some cases, see figure 5.18

(a). In other cases, where one point passes through a triangle, the new algorithm

simulates the deformation but the mass-spring system's algorithm fails to produce

reasonable looking deformations, see figure 5.18 (b). Figure 5.18 (a) shows that both

methods produce similar outputs for different deformation cases. In figure 5.18 (b),

the first and last figures are examples of situations where the mass-spring system's

algorithm fails to detect shape alterations, therefore producing unrealistic results.

(a)

160

1'
(b)

Figure 5.18 A 2D simulation example carried out using MSS (blue) and MSC (red)

algorithms.

The second example is shown in figure 5.19, where a 2D rectangular surface is

triangulated and constrained at the bottom and top vertices. The top left figure of row

(a) gives the initial configuration. From left to fight deformations are produced by

changing the value of the parameter a (0.4,0.6 and 0.8). The second row (b)

represents the deformation of the rectangular object produced by moving one of the

vertices on the interior of the object. As can clearly be seen, the triangles do not pass

through each other or change their structure, which shows that the shape alteration

part of the algorithm works very well. Similarly, the last row (c) shows various vertex

movements in the interior of the object produced by varying parameter a.

(a)

161

(b)

(c)

Figure 5.19 An example of a 2D application where the simulation parameters vary.

5.4.2 3D Applications

The second application is a simulation of a simple model shown in figure 5.20, where

5.20 (a) represents the ofiginal shape. The model consists of 285 vertices and 566

triangles. The model is constrained at its top right tip. The simulation is car7ied out

using different values of a (0.2,0.3,0.6, and 0.9). The simulation time for this model

is less than 0.001 seconds. Pulling and pushing a specific vertex: deforms the object-

As can be seen from the figure different parameters values produce different

deformed shapes (b, c, d, e). Figure 5.20 (f) is an example of a deformation where

vertex is moved inside the object.

162

(a) (b) (c)

(d) (e) (0

Figure 5.20 A simple model is simulated using different values of a.

A similar application is shown in figure 5.21, where a plastic duck is simulated. The

results produced by using different simulation parameters are shown. Experiments

were carried out by manipulating vertices of the objects (by pulling or pushing them).

These simulations demonstrate that plausible looking deformations can be achieved

with the new method and that the outcome of the simulations can be controlled by

system parameters. Tuning these parameters (a ,
8, and dna,,) will allow us to

produce more realistic deformations. The parameter a, whose range is given in [0-1],

controls the elasticity of the defon-nation. If the value of a approaches 0, this implies

163

that elasticity of the object is increased and similarly more rigid deformations are

achieved when the value of a approaches 1.

Figure 5.21 The simulation of a plastic duck using different values of a.

A soft tissue defon-nation simulation is shown by figure 5.22, where the model of a

stomach interacts with a surgical tool. The stomach model (from 3D Cafd, whose

original shape was subdivided to obtain smoother surfaces) consists of 1340 vertices,

4272 triangles and 4808 springs. Figure 5.22 (a) shows the initial shape before the

deforination, while figure 5.22 (b) shows the deformation of the stomach model due

to the interaction of some of its vertices with a simple tool. This figure clearly shows

a uniform deformation, which appears very realistic.

The deformation due to the pulling of some vertices is shown in figure 5.22 (c). In

these simulations the stomach model is constrained at both canals at its two ends. The

simulation time is still in the range of interactive frame rates (i. e. 0.03 seconds per

fraine).

164

(a)

(b)

165

(c)

Figure 5.22 Soft tissue simulation: A stomach model in interaction with a simple tool.

5.4.3 Craniofacial Surgery Simulation

A more sophisticated simulation experiment is realized on the head model developed

in chapter 3. Craniofacial surgery (see section 3.4 in chapter 3) is simulated using the

new method. Results are very satisfactory and similar to those of the mass-spring

systems algorithm. The facial appearance before the surgery is shown in figure 5.23

(a). The bone realignment examined in section 3.4.2 is performed causing facial tissue

deformations. Figure 5.23 (b) shows the face after the simulation is performed. Both

models are shown superimposed in figure 5.24. These images are compared with the

images of figures 3.22 and 3.23 produced by the mass-spring system's algorithm.

We also carried out some facial animation with the new method. The same head

model is used in these simulations where the lips are moved to certain locations.

These Results are depicted in figure 5.25.

166

(a)

(b)

Figure 5.23 A craniofacial, surgery simulation using mass-spring chain algorithm: (a)

initial model and (b) model after the simulation.

167

Figure 5.24 Both before and after surgery images.

(a)

168

(b)

(c)

Figure 5.25 Facial animations using the same head model.

169

5.5 Comparisons

Simulation results from the new method are compared to the results from the mass-

spring systems algorithm outlined in chapter 2. Both methods produce acceptable and

quite similar results. The results from both methods are shown in figure 5.26, where

left-hand side shows the mass-spring system algorithm output, while the right-hand

side shows the results of the new method. A virtual force is used in the mass-spring

system's simulations except in the craniofacial simulation because the mass-spring

system produces better results with external forces instead of vertex movements. If

one of the vertices moves inside the figure (passing through other triangles) instability

occurs. A simple rectangular 2D model simulation is given in figure 5.26 (a) for the

mass-spring system's method and (b) for the new method. The mass-spring method

seems to produce smoother results at the outlines. This may be the result of force

usage instead of the vertex movement used by the new method.

Experiments show that the results of the new method are greatly effected by the

choice of simulation parameters, which can be tuned for better accuracy. When a

vertex is pushed inside the object, the new method seems to more accurately simulate

the deformation. This is because the area of the object is not effected with the MSS

method, while with the new method the object is compressed as expected.

Figures 5.26 (c) and (d) show the deformation simulation of a stomach model. As

seen from the figure the results are quite similar. This is also the case in the

craniofacial surgery simulation, where both methods work very well as shown in

figure 5.26 (e) and M.

i7o

(a)

(c)

(e)

(b)

(d)

(f)

Figure 5.26 Comparison of simulation outcomes between the mass-spring system's

algorithm and the new algorithm. The first column shows mass-spring system's

results and second column gives mass-spring chain outcome.

171

Ili 11 --7

A performance comparison (simulation time in seconds) between the two methods is

given in table 5.1. For models consisting of around 300 vertices and 600 triangles the

new method reaches haptic frame rate, i. e. 1000 force samples per second. For models

with 1300 vertices and 4500 triangles it works in real time, 30 images per second. For

the craniofacial surgery simulation, the new method is about 50 times faster than the

mass-spring system's method.

Model # Vertices # Triangles MSS (sec) New method (sec)

Simple Model 285 566 0.001

Bird 2502 5000 - 0.04

Stomach 1340 4272 3.95 0.03

Face 7884 19724 Springs 24.19 0.46

Table 5.1 Simulation times for the mass-spring system versus the new method.

Work Nodes Simulation. Time (sec)

Choi, 2002 133 3.136

Sarah, 1999 5000 0.23

Lim, 2004 138 0.016

James, 2001 559 0.0056

Table 5.2 A performance comparison with other published results.

The performance of the new method is also compared against that of other published

works. These comparisons are given in table 5.2. As seen from this table our method

is one of the fastest algorithms available. Compared to the results presented in Choi et

172

al. (2002) and Lim et al. (2004), the new method is much faster and compared to the

results presented in James and Pai (2001), our method is of similar speed. Sarah's

work (1999) using the ChainMail algorithm with approximately 5000 nodes requires

0.23 seconds and our method with approximately 7884 nodes takes about 0.46

seconds.

A craniofacial surgery simulation was done in (Teschner et al. 1999b) where they

reached 4.5 second simulation time for a model consisting of 183 8 vertices and 11763

springs on a 175MHz workstation. We have achieved 0.46 seconds simulation time

for our craniofacial surgery simulation with a model consisting of 7884 vertices and

19724 springs on an 80OMHz Pentium 3 PC.

6. SummM

A new deformation algorithm as an alternative to the mass-spring system and

ChainMail algorithm was developed based on the working principles of both these

methods. The algorithm is fast because it reaches the deformed state in one or two

simple steps. It is accurate because the deformation characteristics are controlled by a

few parameters, which represent material properties and are easy to tune. In addition,

cell conversion leading to unrealistic deformations is prevented. The proposed

algorithm is used in the simulation of deformations for a number of different

applications, from simple 2D rectangular objects to complex facial tissue simulations.

We have compared the performance of the new algorithm to that of the mass-spring

system's algorithm. The results were given in table 5.1. Another performance

comparison was made in table 5.2, where published results using different methods

were presented. The tables show that the new method is much faster than the mass-

spring system as well as most other methods. Visual comparison between the results

173

of the new method and the mass-spring system was also shown in figure 5.26, which

reveal that both methods produce quite similar results.

The new method with its structure can be used as a basis for the development of a

new deformation algorithm using neural networks. Its geometrical structure and the

one or two step approach for the solution permits for such a development. This

subject is further discussed in the future work section.

174

CHAPTER 6

CONCLUSION

Deformable object simulation is very important and one of the most challenging topics

in computer graphics. It is challenging because simulation algorithms are required to

produce physically accurate results and are required to operate in real time. Both

accuracy and performance are in the scope of this thesis. We started out by

implementing the mass-spring system's algorithm for the following reasons: As many

previous applications indicated that the mass-spring system's algorithm is more suitable

for real-time applications and it produces plausible results. This algorithm has been

studied in detail covering different integration techniques and collision detection

algorithms and has been used to simulate cloth-like objects as well as soft-tissue

deformations.

Since our main application area is prediction of soft-tissue deformation, we examined

medical data analysis and medical image processing methods. This is necessary for the

pre-processing stage involving the acquisition of organ models for the simulation

algorithm. At this stage medical data in different formats was read, visualized,

interpolated, segmented, filtered and was subjected to some measurements and

manipulations, such as cutting and separating. The model obtained through medical

image processing tools, however, was not suitable for the simulation algorithm. Our

175

study therefore also included triangulation and decimation algorithms. A triangulation

algorithm produces a polygonal representation of an organ model and the resultant

number of triangles are reduced to a reasonable number without significant lost of

surface detail for fast rendering.

Our studies along with previous studies showed that mass-spring systems suffer from

lack of physical realism mainly because of the choice of simulation parameters. Given

the exact parameters representing the deformation behavior of the material mass-spring

system can successfully simulate deformations. These parameters are complex and

nonlinear, therefore it is difficult to obtain them. In addition, in practice most

applications use constant coefficients to represent nonlinear tissue behavior. For these

reasons we employed neural networks, which were successfully used in system

identification for the unknown system parameters in many engineering applications.

We were able to integrate neural networks into mass-spring systems to improve the

accuracy of the simulation algorithm by determining the simulation parameters. The

performance of the mass-spring system however was not improved because of the

structure of the mass-spring system's algorithm, which relies on an iterative approach.

Our search to achieve real-time performance using mass-spring systems and neural

networks led to the development of a new method. This method is the product of

combining different methods and assumptions. In the following sections we outline our

contributions to the field.

6.1 Contributions

Our contributions can be viewed under three different topics. These are: to obtain a

head model which can be used in craniofacial. surgery simulations, the identification of

178

simulation parameters using neural networks and finally the development of a new

simulation algorithm that provides a suitable structure for neural network applications

besides achieving real-time performance.

6.1.1 Model Generation

A head model was generated in order to simulate surgical operations around the head.

Some previous works use only surface representations as model, which is clearly not

suitable for realistic simulations. This is because internal structures are not taken into

account. Other researchers attached surface triangles to the underlying bone structure in

order to simulate internal behavior of the face tissues. These types of models do not

represent different tissue layers such as fat and muscle tissues. The best model proposed

so far traces skin vertices to a center point of the bone structure. Intersections with bone

triangles are recorded and an intersection point is assigned by interpolating neighboring

intersected points, if tracing fails to find an intersection. This process eventually forms

prism elements between the skin surface and the bone surface. The prisms are then

divided into different thickness representing different tissue layers.

This model however uses only one center point that fails to represent the human head

accurately, which is not a perfect sphere. This method therefore may produce skin

vertices attached to the wrong bone parts and may produce inaccurate tissue thickness.

In our model, we assigned two center points one for the upper and one for the lower

jaws. We also set boundary conditions for skin and bone vertices. This boundary starts

form the bottom of the nose and ends at the bottom of the neck. The skin vertices above

the lip level are then traced to the upper center point and the remaining skin vertices

below the lip level are traced to lower center point. Intersections with bone triangles are

then recorded. During this first phase we also determined an average tissue thickness

177

is used to assign prism elements that have not found any intersections in the first

rm This algorithm ensures the appropriate formation of prism elements between the

two surfaces with best approximation of tissue thickness. The model obtained by this

technique is then used to simulate soft-tissue deformations caused by surgical

operafions around the head.

6.1.2 Neural Network System Identiflcation

Tbe biggest challenge in simulations using mass-spring systems is the determination of

symem parameters. It is crucially important to use the correct coefficients, which

dramatically effect the accuracy of the simulation outcome as well as the stability of the

simulation. In previous works, some researchers targeted only one parameter and some

tried to identify all parameters using pre-set conditions. The best approach proposed so

for is to use neural networks, which have already proved to be a powerful tool for

system identification. A method used in the literature with six neural networks however

M not converge to the original system parameters but instead learnt a combination of

ilm&mW forces for those specific conditions and applications.

We proposed a new identification method based on the mass-spring structure and

specifically for mass-spring systems. This method requires only two neural networks to

be trained to leam nonlinear spring stiffness and spring damping. We have also

developed a new learning algorithm that involves an adaptive leanting rate. In

conventional learning algorithms the error signal is used to update the weights of the

neural networks. In mass-spring systems the error between the desired output and the

ngwW network output is formed by contributions from several springs. Using the very

swne error to modify the weights of networks for each spring, which has a different

Smunt of contribution will clearly result in inappropriate learning. Based on spring

i7l

theory, we developed an adaptive learning rate, which makes sure that weights are

updated according to the contributions from each spring. This learning algorithm also

prevents identifying negative values for coefficients by constraining the leaming

algorithm. Negative learning occurs at the early stages of the leaming process and in

situations where not enough data is presented. Our algorithm is shown to be very fast to

converge and very accurate in leaming nonlinear system parameters. Given a set of

training data, which may be derived, either from a mathematical model or from

experimentation, our model is able to extract system parameters accurately, leading to

better simulation realism. Our method was tested using the data generated by the mass-

spring systems simulation. Unknown nonlinear parameters were successfully identified.

6.1.3 The New Deformation Algorithm

The most significant contribution of this thesis is the development of a new deformation

algorithm. We have studied various deformation algorithms specifically the mass-spring

system and ChainMail algorithms because the former produces plausible results in

reasonably fast time and the latter is extremely fast making it suitable for real-time

interactive applications. As in other deformation techniques, these two algorithms

define the relationships between vertices of the building blocks of the model to be

simulated. The deformation is then a means of updating these vertices (finding their

new locations) based on defined relationships. The problem can be summarized as

defining the relationships between these vertices and finding the new positions of

vertices.

Inspired by the mass-spring system and the ChamMail algorithms, we defined a formula

representing spring length changes and set limits forming a search space where the

deformed vertex positions lie. These limits narrow down the solution space making the

IT9

algorithm work faster. The limits are based on the minimum and maximum allowed

vertex movements and spring elongation. These limits are controlled by some

parameters, which relate to the properties of material being simulated. Once the search

space is reduced, we assign a position vector (orientation vector) whose purpose is to

determine the new locations of the vertices and springs. The orientation vector itself is

controlled by a parameter representing the deformation characteristics of the object

being deformed. In the next step of the algorithm springs are deformed according to a

defined formula to obtain their final deformed positions. Deforming the spring length

also includes some parameters. These parameters give great flexibility to represent

various deformation characteristics and provide user control over the accuracy of the

deformation.

This algorithm does not use an iterative approach, it visits each spring once or twice

depending on the implementation and is therefore very fast. Since the deformation

search space and the deformation itself is controlled by user defined parameters the

accuracy of the algorithm is very high. Its physical accuracy can further be improved by

tuning these parameters. We have implemented the new algorithm to simulate various

models. Our results show that this algorithm can achieve reasonable accuracy and that

the simulation time is reduced by about an order of 100 compared to that of the mass-

spring systems algorithms.

6.2 Future Work

The work on improving the accuracy and speed of mass-spring systems led us to use

neural networks for better physical realism by approximating system parameters. Our

research also led to the development of a new deformation algorithm, which is very fast

and suitable for real-time interactive applications. Future work will continue to focus on

the above-mentioned subjects; Mass-Spring Systems, MassSpringChain and Neural

Networks.

The work specifically will be focused on improving the new deformation algorithm. We

will focus on the determination of the exact locations of mass-points within the

established limits after the movement. Instead of using a single vector to find the

deformed locations, we will use energy minimization or optimization methods. Since

the limits are already set to decrease the search space, these methods will still work very

fast.

Second, emphasis will be placed on the identification of the parameters of the new

deformation law, such as a nonlinear parameter representing the material characteristics

of the objects and a nonlinear parameter controlling the stretch and compression

characteristics of materials. A neural network identification algorithm will be developed

for this specific case and these parameters will be determined. A powerful aspect of the

new algorithm is that it allows real data to be used in the identification process. Since

mass-spring systems represent an iterative approach it is extremely difficult to obtain

real data at each time step of the iteration algorithm. With our method, however, before

and after surgery data will be enough for the identification process. This was one of the

main targets in developing such a method. A series of before and after surgery data

(easy to obtain) can be presented to the neural network model. The neural network

model at the initial state is fitted to the "before surgery data". The network is then

deformed and its parameters are adjusted until it matches the "after surgery data".

Ultimately we will modify the new method as a neural network structure and only use

neural networks to simulate soft-tissue deformations. This is likely to produce very

realistic simulations since neural networks will learn from real data and will also work

in real-time interactively since the algorithm's structure is designed to be very fast.

REFERENCES

Albus, J. S., 1972. Theoretical and experimental aspects of a cerebellar model,
Ph. D. dissertation, University of Maryland.

2. Albus, J. S., 1975a. A New Approach to Manipulator Control: The Cerebellar
Model Articulation Controller (CMAC), Trans. ASME J Dynamic System.
Meas. Contr, Volume 97, No. 3, pp 220-227.

3. Albus, J. S., 1975b. Data Storage in the Cerebellar Model Articulation
Controller. (CMAC). Trans. ASME J. Dynamic System. Measurement. Control,
Volume 97, no. 3, pp 228-233.

4. Albus, J. S., 1979. Mechanism of Planning and Problem Solving in the Brain,
Math. Biosci, Volume 45, pp 247-293.

5. Algorithms 2004: littp: wýNw. ganicsppxoni alý,, ý)ritliiiis/collisioiidetectioii.

6. Almeida, J. S., Voit, E. 0., 2003. Neural-Network-Based Parameter Estimation
in S-System Models of Biological Networks, Genome Informatic, 14: pp. 114-
123.

7. Amenta, N., Bern, M., Kamvysselis, M., 1998. A new Voronoi-Based Surface
Reconstruction Algorithm, International Conference on Computer Graphics
and Interactive Techniques, pp. 415-521.

8. Amira. littLi: ý, aiiiii-a. zib. de/papers/vei-tical/iiiedical. 1111111

9. Analyze. littp: //www. iiiavo. edtiibir/Software/AliaIyze/AtialyzeI. Iltnil

10. Ananthraman, S., Gargk, D. P., 1993. Training, Backpropagation and CMAC
Neural Networks for Control of a SCARA Robot Artif. Intell., Vol. 6, No. 2,
pp. 105-115.

183

11. Arun, K. S., Huang, T. S., Blostein, S. T., 1987. Least-squares Fitting of two 3-
D Point Sets, IEEE Trans Pattern AnaL Machine Intell., 9(5), pp. 698-700.

12. Atkins, K. S., Mackiewich, B. T., 1998. Fully Automatic segmentation of the
brain in NIRI, IEEE Trans. Med. 1mag. 17 (1), pp. 98-107.

13. Badouel, D., 1990. An Efficient Ray-Polygon Intersection. Graphics Gems.

14. Baraff, D., Witkin, A., 1998. Large Steps in Cloth Simulation. SIGGRAPH, pp
43-54.

15. Baraff, D., Witkin, A., 1999. Physically based modeling course notes, Course
36, SIGGRAPH'99.

16. Baraff, D., Witkin, A., 2001. Physically based modeling course notes
litt 1: ýý " ". pixarxom companyfill'o research phni-loo-i .

17. Bar-Cohen, Y., Breazeal C. L., 2003. Biologically-Inspired Intelligent Robots,
SPIE Press Mongraph, Vol. 122.

18. Bhat, S. K., Twigg, C. D., Hodgins J. K., Khosla P. K., Popovic, Z., Seitz, S. M.,
2003. Estimation Clot Simulation Parameters from Video.
EurographiesISIGGRAPH Symposium on Computer Animation, pp. 3 7-5 1.

19. Boissonnat, J. D., 1984. Geometric Structures for Three-Dimensional Shape
Representation, ACM Trans. Graph., 3(4), pp. 266-286.

20. Bourguigron, D., Cani, M., 2000. Controlling Anisotropy in mass-spring
systems.

COMPUterafliýfla, (i&, 7a, 7d-rlln-l-, Ialion'00 PP. 113-123.

21. Bouzas, M., Arnold, D., 1998. Experiments in animation control by neural
networks. Information Visualization, Proceedings IEEE Conference on, pp.
252-260.

22. Brown, J., Sorkin, S., Bruyns, C., Latombe, J., Montgomery, K., Stephanides,

M., 2001. Real-time simulations of deformable objects; tools and application.
Computer Animation, Stanford University.

23. Brouwer, I., Ustin, J., Bentley, L., Sherman, A., Dhruv, N., Tendick, F., 2001.
Measuring in Viva animal soft tissue properties for haptic modeling in surgical
simulations. Medicine Meets Virtual Reality, pp. 69-74.

24. Bro-Nielsen, M., Cotin., 1996. Real-Time Volumetric Defon-nable Models for
Surgery Simulation Using Finite Element and Condensation, Computer
Graphics Forum, 15(3): pp. 57-66.

25. Bro-Nielsen, M., 1998. Finite Element Modeling in Surgery Simulation.
Proceedings of the IEEE, Volume 86, No. 3, pp. 490-503.

26. Bro-Nielsen, M., Helffick, D., Glass, B., Zeng X., Connacher, H., 1998. VR
Simulation of Abdominal Trauma Surgery, Medicine Meets Virtual Reality 6
(UMVR-6), pp. 117-123.

184

27. Cakmak, H. K., Kuhnophel U., 2000. Animation and Simulation Technique for
VR-training Systems in Endoscopic Surgery, Europraphics Workshop on
Animation and Simulation, pp. 173-185.

28. CGL:

29. Chen, Y., Zhu, Q., Kauftnan, A., 1998. Physically-Based Animation of
Volumetric Objects. Computer Animation, Proceedings, pp. 154-160.

30. Chen, F. C., Chang, C. H., 1994. Practical Stability Issues in CMAC Neural
Network Control Systems, Proceedings of the Control Conference Baltimore,
Maryland, pp. 29-45.

3 1. Choi, Y. J., Hong, M., Choi, M. H., Kim, M. H., 2002. Adaptive Surface
Deformation Model with Shape-preserving Spring. Proceedings of
International Conference on Virtual systems and Multimedia, pp. 1-39.

32. Christiansen H. N., Sederberg, T. W., 1978. Conversion of Complex Contour
Line Definitions into Polygonal Elements Mosaics, International Conference on
Computer Graphics and Interactive Techniques, pp. 187-192.

33. Ciampalini, A., Cignoni, P., Montani, C., Scopigno, R., 1997. Multiresolution
Decimation based on Global Error. The Visual Computer, 13(5), pp. 228-246.

34. Cohen, I., Cohen, L. D., Ayache, N., 1992. Using Deformable Surfaces to
Segment 3-13 Images and Infer Differential Structures, Proceedings of the
Second European Conference on Computer Vision, pp. 648-653.

35. Collins, D. L., Holmes, C. J., Peters, T. M., Evans, A. C., 1996. Automatic 3-D
Model Based Neuroanatomical Segmentation, Human Brain Mapping, 4, pp.
190-208.

36. Cotin, S., Delingette, H., Ayeche, N., 1999. Real-time Elastic Deformations of
Soft Tissue for Surgery Simulation. IEEE Transactions on Visualization and
Computer Graphics, Volume 5, No 1, pp. 62-73.

37. Cotin, S., Delingette, H., Ayache, N., 2000. A Hybrid Elastic Model Allowing
Rea-Time Cutting, Deformations and Force-Feedback for Surgery Training and
Simulation. The Visual Computer, 16(8): pp. 437-452.

38. d'Aulignac, D., Laugier, C., Cavusoglu, M. C., 1999. Towards a realistic
echographic simulator with force feedback. Proceedings of the 1999
IEEEIRV International Conference on Intelligent Robots and Systems, Vol. 2,
pp. 727-732.

39. Debunne, G., Desbrun, M., Cani M. P., Barr A. H., 2000. Adaptive Simulation
of Soft Bodies in Real Time in Computer Animation, Proceedings of the 2000
Conference on Computer Animation, pp. 15.

185

40. Debunne, D., Desbrun, M., Barr, A. H., 2001 a. Interactive Animation of Cloth-
Like Objects in Virtual Reality. Journal of Visualization and Computer
Animation, 12(l): pp. 1-12.

41. Debunne, G., Desbrun, M., Cani M. P., Barr A. H., 2001b. Dynamic Real Time
Deformations Using Space & Time Adaptive Sampling. Computer Graphics
Proceedings, SIGGRAPH, pp. 31-36.

42. Delingette, H., Cotin, S., Ayeche, N., 1999. A Hybrid Elastic Model Allowing
Real-time Cutting, Deformations and Force-feedback for Surgery Simulation.
Computer Animation, Proceedings, pp. 70-8 1.

43. DICOM: littp:, w\\w. dclLinie. com.

44. DiMaio, S. M., 2003. Modeling, Simulation and planning of Needle Motion in
Soft tissues, Ph. D. Thesis, University of British Colombia, September 2003.

45. Desbrun, M., Schroder, P., Barr, A., 1999. Interactive animation of structured
deformable objects. In Proceedings of Graphics Interface (GI 1999), pp. 1-8.

46. Desbrun M, Meyer M., Barr, A. H., 2000. Interactive animation of Cloth-Like
Objects for Virtual Reality, Cloth Modeling and Animation, pp. 219-239.

47. Duchille ix F., Qin, H., Kaufman, A., El-sana, J., 1999. Haptic Sculpting of
Dynamic Surfaces. Symposium on Interactive 3D Graphics, pp. 103-110.

48. Duysak, A., 1997. System identification and model reference control using
CMAC neural networks. The Pennsylvania State University, Master Thesis.

49. Duysak A, Zhang J. J., Hankovan V., 2003, Efficient Modeling and Simulation
of Soft Tissue Deformation Using Mass-Spring Systems, The 17'h International
Congress and Exhibition on Computer Assisted Radiology and Surgery (CARS
2003).

50. Duysak A, Zhang J. J., 2003, Identification of Simulation Parameters Using
Neural Networks, The 6 th International Conference on Computer Graphics and
Artificial Intelligence (31A 2003), pp. 337-342.

51. Duysak A, Zhang J. J., 2004, Fast Simulation of Deformable Objects,
International symposium on Computer Animation, The 8h International
Conference on Information Visualization, IEEE Computer Society, (IV 2004),
pp. 422-427

52. Edelsbrunner, H., Mucke, E. P., 1994. Three-Dimensional Alpha Shapes, ACM
Trans. on Graphics, 13(l), pp. 43-72.

53. Eischen, J., Bigliani, R., 2000. Continuirn Versus Particle Representations.
Cloth Modeling and Animation, pp. 79- 122.

54. Ganovelli, F., Gignoni P., Scopigno, R., 1999. Introducing Multiresolution
Representation in Defonnable Object Modeling, SCCG, Conference
Proceedings, pp. 149-158.

186

55. Giacomo, T. D., Magnenat-Thalmann N., 2003. Bi-L Y ered Mass-Spring Model
for Fast Deformations of Flexible Linear Bodies. 16T' International Conference
of Computer Animation and Social Agents (CASA), pp. 48-54.

56. Gibson, S. F. F., 1997 (a). 3D Chainmail: A Fast Algorithm for Deforming
Volumetric Objects. Proc. Symp. Interactive 3D Graphics, pp. 149-154.

57. Gibson, S. F. F., Mirtich, B., 1997 (b). A Survey of Deformable Modeling in
Computer Graphics. MERL Technical Report TR97-19, littp: - wwo, - ined. con].

58. Gibson, S. F. F., 1999. Using Linked Volumes to Model Object Collisions,
Deformation, Cutting, Carving, and Joining. IEEE Transactions on
Visualization and Computer Graphics, Volume 5, No 4, pp. 333-348.

59. Grzeszczuk, R., Terzopoulos, D., Hinton, G., 1998. NeuroAnimator: fast neural
network emulation and control of physic-based models. SIGGRAPH'98,
Conference Proceeding, pp. 9-20.

60. Haptica: littp: /, hapticaxoni.

61. Hault, M., Strasser, W., 2004. Corotational Simulation of Deformable Solids, In
Proc. WSCG, pp. 133-145.

62. Hoppe, H., 1996. Progressive Meshes. Proc. SIGGRAPH, pp. 99-108.

63. Hoppe, H., DeRose, T., Duchamp T., McDonald J., Stuetzle, W., 1993. Mesh
Optimization, Computer Graphics Proceedings, SIGGRAPH, pp. 19-26.

64. Horvath, G., Dunay, R., Pataki, B., 1996. Recurrent CMAC: a Powerful Neural
Network for System Identification, IEEE Instrumentation and Measurement
Technology Conference, Vol. 2, pp. 992-997.

65. Howlett, P., Hewitt, W. T., 1998. Mass-spring Simulation Using Adaptive Non-
Active Points. EUROGRAPHICS, Volume 17, No 3, pp. C346-353.

66. Hutchinson, D., Preston, M., Hewitt, T., 1996. Adaptive Refinement for
Mass/Spring Simulations, Eurographics Workshop on Computer Animation and
Simulation, pp. 31-45.

67. IMAGE: littp: //www. conip. leeds. ac. uk/coniir/resoLii-ccs, 'Iiilks c. html.

68. INRIA: littp: //www. iiii-izi. ri-.

69. Ishikawa, T., Sera, H., Marishima, S., Terzopoulos, D., 1998. Facial image
reconstruction by estimated muscle parameters. Automatic Face and Gesture
Recognition, Proc. Third IEEE International Conference on, pp. 342-347.

70. Jain, A. K., Mao, J., 1996. Artificial Neural networks: A Tutorial, IEEE on
Neural Networks, pp. 31-44.

187

71. James, D. L., Pai, D. K., 2001. A Unified Treatment of Elastostatic Contact
Simulation for Real Time Haptics. Haptics-e Vol. 2, Number 1, pp. 1- 13.

72. Joukhadar, A., Laugier, G. C. H., 1997. Constraint-based identification of a
dynamic model. I International Conference on Robots and Systems, IROS'97,
pp. 3373-42.

73. Kang, Y. M., Choi, J. H., Cho, H. G., 2000 (a). Fast and stable animation of cloth
with an approximated implicit method. Proceedings of the Computer Graphics
1nternational (CGI'00), pp. 247-255.

74. Kang, Y. M., Choi, J. H., Cho, H. G., Lee D. H., Park C. J., 2000 (b). Real Time
animation technique for Flexible and Thin Objects, In proceedings of the Winter
School of Computer Graphics (WSCG 200o), pp. 322-329.

75. Kang, Y. M., Choi, J. H., Cho, H. G., Lee D. H., 2001. An Efficient Animation of
Wrinkled Cloth with Approximated Implicit Integration, The Visual Computer,
17(3), pp. 147-157.

76. Kawamato, I., Liquni, Y., Adachi, N., 1995. Design of a Cerebellar Model
Arithmetic Computer with Adaptive Resolution and its Application to
Nonlinear Signal Processing, Electronics and Communications in Japan, part 3,
vol. 78, no. 9, pp. 31-38.

77. Keeve, K., Girod, S., Pfeifle, P., Girod, B., 1996 a. Anatomy-based Facial
Tissue Modeling Using the Finite Element Method. Visualization, Proceedings,
pp. 21-28.

78. Keeve, E., Girod, S., Girod, B., 1996 b. Computer-aided craniofacial surgery.
Proc. Of Computer Assisted Radiology CAR'96, pp. 757-763.

79. Keeve, E., Girod, S., Kikins, R., Girod, B., 1998. Deformable modeling of
facial tissue for craniofacial surgery simulation. Invited Paper, Computer aided
surgery, pp. 1-10.

80. Keeve, E., Kikinis, R., 1999. Deformable Modeling of Facial Tissue.
Proceedings of the First Joint BMESIEMBS Conference, Vol. 1, pp. 502.

81. Kerdok, A. E., Cotin, S. M., Ottensmeyer, M. P., Galea, A., Howe, R. D.,
Dawson, S. L., 2003. Truth Cube: Establishing Physical Standards for Real Time
Soft Tissue Simulation. Medical Image Analysis, pp. 283-29 1.

82. Kim, H., Lin, C., 1992. Use of Adaptive Resolution for Better CMAC Leaming,
IJCNN92, pp. 517-522.

83. KISMET 3D simulation software: iitifj '11rcjýi-1. iai. tzk. dc.

84. Koch, R. M., Roth, S. H. M., Grass, M. H., Zimmermann, A. P., Soiler, H. F.,
2002. A framework for facial surgery simulation.. Proceedings ofACMSCCG
lit! p: //grapiiics. etliz. cli/main. plip'? Meiiti=5&StibnlClILI 1.

188

85. Koch R. M., Gross, M. H. Bosshard A. A., 1998. Emotion Editing Using Finite
Elements, Proceedings of the Eurographics, Computer Graphics Forum, Vol.
17, NO. 3, C295-C302.

86. Koch, R. M., Gross, M. H., Buren, D. F., Fankhauser, G., Parish, Y. I. H., Carls,
F. R., 1996. Simulating facial surgery using finite element models. ACM
Computer Graphics SIGGRAPH, pp. 421-428.

87. Kraft, L. G., Campagna, D. P., 1990. A Comparison Between CMAC Neural
Network Control and Two Traditional Adaptive Control Systems, IEEE Control
Systems Magazine, Vol. 10, pp. 36-43.

88. Kraft, L. G., Ho, S., 1991. Stability Properties of CMAC Neural Networks,
IEEE Control Magazine, pp. 31-33.

89. Kuhnopfel, U., Cakmak, H. K., Maab H., 2000. Endoscapic surgery training
using virtual reality and deformable tissue simulation. Computers&Graphics
24 (2000), pp. 621-632.

90. Kuhnopfel, U., Cakmak, H. K., Maab, H., 1999.3D Modeling for Endoscopic
Surgery, Proc. IEEE Symposium on Simulation, pp. 22-32.

91. Lafluer, B., Magnenat-thalmann, N., Thalmann, D., 1991. Cloth Animation with
self-collision Detection. Modeling in Computer Graphics, pp. 179-187.

92. Lee, Y., Terzopoulos, D., Waters, K., 1995. Realistic modeling for facial
animation. ACM Computer Graphics, Vol. 29, pp. 55-62, Aug. 6-11.

93. Lim, K. M., Wang, F., Poston, T., Zhang, L., Teo, C. L., Burdet, E., 2004.
Multi-Scale Simulation for Microsurgery Trainer. IEEE International
Conference on Robotics and Automation.

94. Lin, Y., Song, S., 1992. A CMAC Neural-Network-Based Algorithm for the
Kinematic Control of a Walking Machine. Engng Applic. Artif Intell., vol. 5,
no. 6, pp. 539-551.

95. Lorensen, W. E., Cline, H. E., 1987. A High Resolution 3D Surface
Construction Algorithm. ACM Computer Graphics, Volume 2 1, No 24, pp. 163-
169.

96. Louchet, L., Provot, X., Crochemore, D., 1995. Evolutionary identiflcation of
cloth animation models. In proceedings of the 6 1h Eurographics Workshop on
Animation and Simulation, pp. 44-54.

97. Lu, W., Keyhani, A., Fardoun, A., 2003. Neural Network Based Modeling and
Parameter Identification of Switched Reluctance Motors, IEEE Transactions on
Energy Conversion, Vol. 18, No. 2, pp. 284-290.

98. Maes, F., Collignon, A., Vandermeulen, D., Marchal, G., Suetens, P., 1997.
Multimodality Image Registration by Maximization of Mutual Information,
IEEE Trans. Med. Imag., 16(2), pp. 187-198.

ISO

99. Maintz, J. B. A., Viergever, M. A., 1998. A Survey of Medical Image
Registration. Med Image Anal., 2(l), pp. 1-36.

100. MarchingCubes:

101. Maurer, C. R., Aboutanos, B., Dawant, B. M., Maciunas, R. J., Fitzparick, J.
M., 1996. Registration of 3-D Images using Weighted Geometrical Features,
IEEE Trans. Med. Imag., 15(6), pp. 836-849.

102. Miller, W. T., 1987. Sensor-Based Control of Robotic manipulators Using a
General Leaming Algorithm IEEE Journal of Robotics and Automation., Vol.
ra-3, no. 2, pp. 157-165.

103. Miller, W. T., 1988. An Overview of the CMAC Neural Network, IEEE
Control System Magazine, pp. 20-27.

104. Miller, W. T., 1989. Real-Time Application of Neural networks for Sensor-
Based Control of Robotics with Vision, IEEE Transactions on Systems, Man,

and Cybernetics), vol. 19, no. 4, pp. 825-83 1.

105. Miller, W. T., Glantz, F. H., Kraft, L. G., 1990. An Associative Neural Network
Alternative to Backpropagation, Proceedings of the IEEE., Vol. 78, no. 10, pp.
1561-1567.

106. MIRALab: hup: /www. niirq1ab\výN%%A11ý1g1'1, Ch.

107. Mooler, T., Trumbore, B., 1997. Fast, Minimum Storage Ray-Triangle
Intersection, J Graphics Tools, 2(l): pp. 21-28.

108. Moore, M., Wilhelm, J., 1988. Collision Detection and Response for Computer

Animation, Computer Graphics, 22(4), pp. 289-298.

109. Montgomery, K., Bruyns, C., Brown, J., Thonier, G., Tellier, A., Latombe, J.
C., 2002. Spring: A General Framework for Collaborative, Real-Time Surgical
Simulation, Medicine Meets Virtual Reality (MMVR02).

110. Muller, M., Dorsey, J., McMillan, L., Jagnow, R., Cutler, B., 2002. Stable Real-
Time Deformations, Eurographies Symposium on Computer Animation, ACM
SIGGRAPH, pp. 49-54.

111. Narendra, K. S., Parthasarathy, K., 199o. Identification and Control of
Dynamical Systems Using Neural Networks, IEEE Trans. Neural Networks,
vol. 1, pp. 4-27.

112. Narendra, K. S., Mukhopadhyay, S., 1992. Handbook of Intelligent
control: Neural, Adaptive, and Fuzzy Approaches, pp. 141-183, Van Nostrand.

113. Narendra, K. S., 1996. Neural Networks for Control: Theory and Practice,
Proceedings of the IEEE, vol. 84 no. 10, pp. 13 85 -1406.

190

114. Nedel, L. P., Thalmann, D., 1998. Real Time Muscle Deformations Using
Mass-spring Systems. Computer Graphics International, Proceedings, pp. 156-
165.

115. Nelson, J., Kraft, L. G., 1994. Real Time Control of an Inverted Pendulum
System Using Complementary Neural Networks and Optimal Techniques,
Proceedings of the American Control Conference, pp. 2553-2554.

116. Nielsen, F. A. Polygon Generation Program. rip: ck indA111111AWAk

117. Numberger, A., Radetzky, A., Kruse, R., 1998. A problem specific recurrent
neural network for the description and simulation of dynamic spring models.
Proceedings of the International Joint Conference on Neural Networks, pp.
486-473.

118. Numberger, A., Radetzky, A., Kruse, R., 1999. Determination of elastodynamic
model parameters using a recurrent neuro-fuzzy system. Proceedings of the ; "h
European Congress on Intelligent Techniques and Soft Computing (EUFIT'99),
pp. 1-8.

119. Numberger, A., Radetzky, A., Kruse, R., 2001. Using recurrent neuro-fuzzy
techniques for the identification and simulation of dynamic systems.
Neurocomputing 36, pp. 123-147,

120. Opendx: Imp: www. opendx. org/.

12 1. O'Rourke, J., 1998. Segment-Triangle Intersection, Computational geometry in
C (2nd Edition).

122. Park, J., Kim, S. Y., Son, S. W., Kwon D. S., 2002. Shape retaining Chain Linked
Model for Real-Time Volume Haptic Rendering, Proceedings of the 2002 IEEE
Symposium on Volume Visualization and Graphics, pp. 65-72.

123. Parks, P. C., Militzer, J., 1992. A Comparison of Five Algorithms for the
Training of CMAC Memories for Learning Control Systems, Automatica, Vol.
28, no. 5, pp. 1027-1035.

124. Pearson, R. K., Pottmann, M., 2000. Grey-Box Identification of Block-Oriented
Nonlinear Models, Journal of Process Control, 10: pp. 3 01-3 15.

125. PHANToM: littp: //www. sensable. coni, indevasl).

126. PooleHospital: ht! p: //www. poolehos. or .

127. Provot, X., 1995. Defon-nation constraints in a mass-spring model to describe
rigid cloth behavior. Proc. Of Graphics Inierface'95, pp. 147-154.

128. Provot, X., 1997. Collision and Self Collision Handling in Cloth Model
Dedicated to Design Garments. Proceeding of Graphics Interface'97, pp. 177-
189.

4n4

129. Ropovic, J., Hoppe, H., 1997. Progressive Simplicial Complexes. Proc.
Siggraph pp. 217-224.

130. Roth, S. H. M., Gross, M. H., Turello, S., Carls, F. R., 1998. A Bemstein-Bezier
Approach to Soft Tissue Simulation. EUROGR, 4PHICS, Volume 17, No 3, pp.
C285-294.

131. Sayil, S., Lee, K. Y., 2002. An Hybrid Neighborhood Training and Maximum
Error Algorithm for CMAC, World Congress on Computational Intelligent,
5,31,2002.

132. Schill M. A., Gibson S. F. F., Bender, H. J., Manner, R., 1998. Biomedical
Simulation of the Vitreous Humor in the Eye using an Enhanced ChainMail
Algorithm, MICCAI, pp. 679-687.

133. Schroeder, W. J., Zarge, J. A., Lorensen, W. E., 1992. Decimation of Triangle
Meshes. Computer Graphics (SIGGRA PH'92 Proc.) 26(2): pp. 65-70.

134. Schumaker, L. L., 1990. Reconstruction of 3D Objects using Splines, SPIE, Vol.
Curves and Surfaces in Computer Vision and Graphics, pp. 130-140.

135. Shiraishi, H., lpfi, S. L., Cho, D. D., 1995. CMAC Neural Network Controller
for Fuel-Injection Systems, IEEE Trans. on Control Systems Technology, vol. 3,
No. 1, pp. 32-36.

136. Simulab: http:,, www. simulab. com.

137. Sinha, N. K., 2000. Identification of Continious-Time Systems from Samples of
Input-Output Data: An Introduction, Sadhana, Vo. 25, Part. 2, pp. 75-83.

138. Sjoberg, J., Zhang, 0., Ljung, L., Benveniste, A., Delyon, B., Glorennec, P.,
Hjalmasson, H., Juditsky, A., 1995. Nonlinear Black-Box Modeling in System
Identification. A Unified Overview, Automatica, 31(12): pp. 1691-1724.

139. Stanford: littv: //biocoiiiV. staiif'ord. edii,.

140. Sunday, D., 2001. Intersections of Rays and Segments with Triangles in 3D,
May 2001 Algorithms. IMP: /SMISLirferxoni algorithin archive. litni.

141. Szekely, G., Kelemen, A., Brechbuhler, C., Gerig, G., 1996. Segmentation of 2-
D and 3-D objects from MR1 Volume Data using Constrained Elastic
Deformations of Flexible Fourier Contour and Surface Models, Med Image
Anal. 1 (1), pp. 19-34.

142. Terzopoulos, D., Waters, K., 1991. Techniques for realistic facial modeling and
animating. Proc. Of Computer Animation'91, pp 59-73.

143. Teschner, M., Girod, S., Girod, B., 1999a. Optimization approaches for soft-
tissue prediction in craniofocial surgery simulation. Second Int. Conf. On
Medical Image Computing and Computer-Assisted Intervention MICCAI'99,
pp. 1183-1190.

192

144. Teschner, M., Girod, S., Girod, B., 2000. Direct computation of nonlinear soft-
tissue deformation. Vision, Modeling, and Visualization VAIV'00, pp. 383-390.

145. Teschner, M., Girod, S., Girod, B., 1999b. Interactive Osteotomy Simulation

and Soft-Tissue Prediction, Proc. Vision Modeling Visualization, pp. 405-412.

146. Thompson, D. E., Kwon, S., 1995. Neighborhood Sequential and Random
Training Techniques for CMAC, IEEE Trans. on Neural Networks, vol. 6, no.
1, pp. 196-202.

147. Uhrig, R. E., 1995. Introduction to Artificial Neural networks, Proceedings of
the 1995 IEEE IECON 21" International Conference, Vol. 1, pp. 33-37.

148. Van den Elsen, P. A., Maintz, J. B. A., Pol, E. J. D., Viergever, M. A., 1995.
Automatic Registration of CT and MRI Brain Images Using Correlation of
Geometrical Features, IEEE Trans. Med Imag., 14(2), pp. 384-396.

149. Veltkamp R. C., 1995. Boundaries Through Scattered Points of Unknown
Density, Graphical Models and Image Processing, 57(6), pp. 441-452.

150. Volino, P., Magnenat-thalmann, N., 1994. Efficient Self-collision Detection on
Smoothly discretized Surface Animations using Geometric Shape Regularity.
Proceedings of Eurographics'94,13(3): pp. 155-166.

151. Volino, P., Magnenat-Thalmann, N., 1995. Collision and Self Collision
Detection: Efficient and Robust Solutions for Highly Deformable Surfaces.
EUROGRAPHICS workshop, Maastricht, The Netherlands, pp. 55-65.

152. Yang, Y., Magnenat-thalmann, N., 1993. An Improved Algorithm for Collision
Detection in Cloth Animation with Human Body. In Proceedings of Pacific
Graphics, pp. 237-25 1.

153. Wagner, C., Schill, M. A., Manner, R., 2002. Collision Detection and Tissue
Modeling in a VR Simulator for Eye Surgery, Proceedings of the Workshop on
Virtual Environment, pp. 27-36.

154. Wang, Z., Schiano, J. L., Ginsberg, M. D., 1996. Hash-coding in CMAC Neural
Networks, In Proceedings of International Conference on Neural Networks, pp.
1698-1703.

155. Webster, R. W., Zimmerman, D. I., Mobler, B. J., Melkonian, M. G., Haluck R.
S., 2001. A Prototype Haptic Suturing Simulator, Medicine Meets Virtual
Reality, pp. 567-569.

156. Wen, R. C., Ker, J. S., Kuo, Y. H., 1996. A CMAC Neural Network Chip for
Color Correction IEEE Conference on Neural Networks, no. 3, pp. 1943-1948.

157. Witkin, A., Baraff, D., Kass, M., 1997. An introduction to Physically Based
Modeling: An Introduction to Continuum Dynamics for Computer Graphics.
SIGGR, 4PH'97, hup. wwww-

193

158. Wong, Y. F., Sideris, A., 1992. Leaming Convergence in the Cerebellar Model
Articulation Controller, IEEE Transactions on Neural Networks, vol. 3, no. 1,
pp. 115-121.

159. Woods, R. P., Mazziotta, J. C., Cherry, S. R., 1993. MRI-PET Registration with
Automated Algorithm, Journal of Computer Assisted Topography, 17(4), pp.
536-546.

160. Wu, X., Downes, M. S., Goktekin, T., Tendick, F., 2001. Adaptive nonlinear
finite elements for deformable body simulation using dynamic progressive
meshes. EUROGRAPHICS 2001, Volume 20, pp. 349-358.

161.3DVIEWNIX: littp: //www. mipý,,. tipenii. edii/-Viieýý,,,.

162.3D Doctor: lit! p: //www. ablesw. com/3d-doctor/3ddoctor. html.

163.3D Slicer: lit! p: //www. slicer. orm.

164.3D Cafe: littp: //www. 3dcafe. com/asp/freesttiff. as .

165. Xu, L., Jiang, J. P., Zhu, J., 1994. Supervised Learning Control of a Nonlinear
Polymerization Reactor Using the CMAC Neural Network for Knowledge
Storage, IEE Proc. Control Theory Appl., Vol. 141, No. 1, pp. 33-38.

194

