
Do Robots Dream of Virtual Sheep: Rediscovering the
"Karel the Robot" Paradigm for the "Plug&Play

Generation"

Eike Falk Anderson
eanderson@bournemouth.ac.uk

Leigh McLoughlin
lmcloughlin@bournemouth.ac.uk

The National Centre for Computer Animation
Bournemouth University, Talbot Campus

Fern Barrow, Poole, Dorset BH12 5BB, UK

Figure 1: ”The Meadow” virtual environment.

ABSTRACT
We introduce ”C-Sheep”, an educational system designed to teach
students the fundamentals of computer programming in a novel and
exciting way. Recent studies suggest that computer science educa-
tion is fast approaching a crisis - application numbers for degree
courses in the area of computer programming are down, and poten-
tial candidates are put off the subject which they do not fully under-
stand. We address this problem with our system by providing the
visually rich virtual environment of ”The Meadow”, where the user
writes programs to control the behaviour of a sheep using our ”C-
Sheep” programming language. This combination of the ”Karel the
Robot” paradigm with modern 3D computer graphics techniques,
more commonly found in computer games, aims to help students
to realise that computer programming can be an enjoyable and re-
warding experience and intends to help educators with the teaching
of computer science fundamentals. Our mini-language-like system
for computer science education uses a state of the art rendering en-
gine offering features more commonly found in entertainment sys-
tems. The scope of the mini-language is designed to fit in with the
curriculum for the first term of an introductory computer program-

In Proceedings of Game Design and Technology Workshop and Conference
2006, Liverpool, UK, pages 92-95.

ming course (using the C programming language).

Categories and Subject Descriptors
K.3.2 [Computers and Education]: Computer and Information
Science Education—Computer Science Education

General Terms
Human Factors, Languages

Keywords
Pedagogy, Programming, Visualisation, Games

1. INTRODUCTION
In recent years there has been a major shift in computer science
curricula with the adoption of the ”objects first” approach (empha-
sizing object-oriented design and programming). This has subse-
quently led to a redesign of many introductory computer program-
ming courses. New studies suggest that computer science educa-
tion is fast approaching a crisis as enrolment numbers to degree
courses have fallen to extremely low levels [7]. One of the reasons
why that may be is a general misconception of computer science
and programming among prospective students. A lack of knowl-
edge of the subject area may well be the underlying reason for
this bias against computer science. Computer science itself as well
as related subjects are wrongly perceived as boring (non-creative),
unglamorous and difficult (i.e. actually requiring work) and com-
puter programming especially is often regarded as a monotonous
and uninteresting task. We have encountered prospective students



who appear intimidated by the technological aspects of the course
we offer, as well as the maths involved. Other students are over-
confident after having taken an information technology course (lit-
tle more than a computer literacy course) at school, only to quickly
lose interest once they have embarked on the computer science re-
lated course (or module) as soon as they realise their mistake, an
observation also made by Beaubouef and Mason [2]. While this
misconception might in part explain the drop in student numbers,
the fact that educators now also debate ”whether or not the ob-
jects early approach has failed” [19] might indicate that a return to
the older ”procedures first” method of computer science education
might be called for. It has been suggested that one way to achieve a
greater uptake of computer science would be to make programming
”more fun” [7]. This is much easier said than done, as the challenge
that educators face when teaching computer science in general and
computer programming in particular is to maintain the interest of
students in the subject. A major part of this problem appears to
be a lack of patience that we have observed among students. The
students from the ”Plug&Play generation” expect to see immediate
(and spectacular) results, often before they have learned enough to
achieve anything remotely spectacular. An analogy for this would
be an illiterate person setting out to write a bestselling novel. A side
effect of this clash of realities is that students’ programs often have
unintended results, causing confusion and once faced with difficul-
ties (a recent study of which was made by Lahtinen et al [13]), their
motivation suffers and they quickly lose interest in the subject. In
our experience the result of this is that the students fall behind in
their studies which causes frustration and a further loss of motiva-
tion, ending in a downwards spiral and eventual exam failure. Mo-
tivation is a major factor in the success of students of programming
who need to practice writing programs to improve their skills [10].
The fact that students have taken up a course involving program-
ming is alone no indicator for the existence of motivation. This is
something we have observed among students of our course (Com-
puter Animation and Visualisation), an arts degree with a strong
technical component. Our students come from very diverse back-
grounds, often with little prior experience with computers. As a
result we especially face motivational problems among those stu-
dents who joined the course out of interest for its artistic elements,
who consider the computing aspects of the course as a necessary
evil. We intend to address these problems with our C-Sheep system
(see figure 2), a re-imagination of the ”Karel the Robot” paradigm
using modern 3D computer game graphics that today’s students are
familiar with, our aim being to motivate students to take up pro-
gramming and to provide them with an enjoyable experience at the
same time.

2. TEACHING WITH ROBOTS IN VIRTUAL
WORLDS

It is generally understood that programming cannot be learned from
reading books on the subject alone, but only by practicing it by ac-
tually writing programs on a computer. The question that therefore
needs to be answered is: ”how can students be motivated to practice
programming?”

A suitable answer to this question is provided by the ”Karel the
Robot” paradigm which has been reported to have proven itself as
highly successful [12, 20].

2.1 The "Karel the Robot" Paradigm
The ”Karel the Robot” paradigm consists of the use of a mini-lan-
guage [5], that provides a small number of instructions and which

Figure 2: ”The Meadow” and the C-Sheep UI (running on a
low-spec graphics card)

allow users to take control of virtual entities, acting within a mi-
cro world. It is named after the very successful ”Karel the Robot”
program [17], one of the widest known computer science teaching
tools which uses a program structure based on the syntax of the Pas-
cal programming language. Untch describes Karel as ”essentially
a programmable cursor that can move across the flat world” of a
2D grid with obstacles (walls) that cannot be passed and objects
(beepers) that can be placed in or removed from the micro world
[21]. The instructions found in mini-languages are usually a set of
actions to be taken by the virtual entity in the virtual environment,
as well as a set of (sensor) queries, providing information about the
immediate surroundings of the virtual entity in the micro world it
inhabits.

The success of the ”Karel the Robot” paradigm is based on a num-
ber of factors:

• By providing a game-like setting for the task of computer
programming, the students’ imagination is captured and their
interest is maintained. Students are motivated to spend more
time programming and are rewarded with an enjoyable ex-
perience. In our experience, this heightened motivation is
likely to have the side effect that fewer students question the
relevance of tasks they have been set, a problem often faced
by educators if students are confronted with toy-problems in
programming exercises.

• The graphical representation of the micro world provides in-
stant visualisation of the algorithms used in the programs
controlling the virtual entities - their position and orienta-
tion within the virtual world show the current state of the
program. This is especially useful as many problems faced
by novice programmers can possibly be traced back to an
inadequate understanding of program state [9]. The visual
feedback is invaluable to the understanding of how a given
algorithm works, where in the program potential errors oc-
cur and, consequently, how these errors can be debugged.

• Data required by programs is less complex than would be in a
real-world programming language. This is achieved by scal-



ing down the data representation to the visual program state
- the mini-language uses minimal syntax and is kept vari-
able free to provide an environment with minimal complex-
ity, making this program state ”more real to ... students than
collections of alphanumeric values stored in aliased memory
locations” [6].

2.2 Shortcomings of ’Traditional’ Mini-Lan-
guages

Despite the pedagogical benefits described above, the traditional
mini-languages have several shortcomings. While existing systems
may again be relevant, we believe that they are now severely out-
dated. Whereas two decades ago, students would be intrigued by
the 2D top-down representation of the micro world (often restricted
to ASCII characters in text-mode), we are convinced that it is ex-
tremely difficult - not to say impossible - to maintain the interest
of students from today’s ”Plug&Play generation” by using a text-
based graphical representation. This assumption is reinforced by
the negative student reaction to the 2D top-down representation of
the Robocode system [14], reported by Bierre et al [3]. To pre-
vent mini-language based teaching from becoming obsolete, exist-
ing systems cannot just be recycled but must be updated. While
traditional mini-language systems have employed a strictly 2D top-
down representation, more recent offerings also use pseudo 3D
graphics (using isometric projection). Surprisingly few examples,
such as Alice or the MUPPETS system [8, 18], use true 3D graphics
which are ”attractive and highly motivating to today’s generation
of media-conscious students” [16] for their micro world represen-
tation. It is this use of the visual gimmickry of modern computer
games for representing the virtual world, however, which is most
likely to help with meeting the high expectations of the ”Plug&Play
generation”.

A different problem is often the choice of programming language
on which the mini-language is based. Real-world programming
languages often require a lot of work and understanding before
meaningful results are obtained, which tends to frustrate impatient
students. On the other hand, very abstract ’toy languages’ that
could be used as an alternative and which offer immediate results
but require only little understanding are often too far removed from
real-world systems to appear relevant. We believe that the solution
in this case must be a sort of ’toy language’ which is not purely
a learning instrument but both simple and close to real-world sys-
tems.

We aim to overcome these problems with our C-Sheep system: The
C-Sheep programming language, ”The Meadow” virtual environ-
ment and the C-Sheep library.

3. C-SHEEP
C-Sheep replaces robots with sheep and places them into a 3D
computer-game-like virtual environment instead of a simple 2D
grid. As the course that C-Sheep was designed for uses the C pro-
gramming language [11], the C-Sheep language has been designed
as a subset of ANSI C. Within the confines of this C subset, C-
Sheep implements the control structures that are required for teach-
ing the basic computer science principles encountered in structured
programming [4], these being the (unconditional) sequence, condi-
tional statements and loops. In terms of C, the control structures
available in C-Sheep are the block, if and if-else alternatives, as
well as while and do-while loops. C-Sheep supports the declaration
and use of variables. While this might be considered as a potential

problem by some since it adds a further level of complexity to the
mini-language, others have observed that a lack of variables will
lead to problems in a transition to real-world languages [21]. C-
Sheep allows the use of variables for arithmetic expressions which
may be useful to track object’s histories in the virtual environment
(as non-visual states), which has been recognised as possibly ben-
eficial [9]. Like C, C-Sheep has mechanisms for the definition of
sub-routines which may be called recursively. Pre-defined actions
(instructions for controlling sheep entities in ”The Meadow” vir-
tual environment) and (sensor) queries that can be performed by the
sheep entity are disguised as library functions: To introduce novice
programmers to the concept of code modularisation and libraries,
C-Sheep programs must contain an include statement to (suppos-
edly) parse the function prototypes in order to access library func-
tions, while internally these functions are actually intrinsic to the
virtual machine. Some of these sheep-specific instructions allow
the querying of states in the virtual world (e.g. the current state of
the weather - see figure 3). These world states can be altered inter-
actively by the user (while C-Sheep programs are running), adding
a separate layer of interactivity to the learning game. By instigat-
ing a state change in the virtual environment, the user can cause
different sections of C-Sheep programs to be executed, allowing
experimentation with different behaviours of the sheep entity from
within the same C-Sheep program. Dann et al state that this use of
3D computer graphics to represent program state is ”intrinsic in the
natural way to view the data itself” [9].

The C-Sheep program controlled entities exist in the 3D virtual
environment of ”The Meadow” virtual world. This 3D game-like
representation is essential to interest students from the ”Plug&Play
generation” in computer programming. ”The Meadow” is based on
our proprietary ”Crossbow” game engine [15]. The Crossbow En-
gine is a compact game engine which is flexible in design and offers
a number of features common to more complex engines. Designed
specifically for ”The Meadow”, it incorporates a robust virtual ma-
chine for executing C-Sheep programs which is based on the ZBL/0
virtual machine [1].

The C-Sheep system also includes a counterpart library (in the cur-
rent stage of development only visualising C-Sheep programs in a
2D top-down view) for programs written in the C programming
language. The functions provided by this library mirror the C-
Sheep instructions for the virtual entities. As suggested by Untch,
the purpose of such a library is to simplify the migration from the
educational mini-language to real-world systems [21], in our case
from C-Sheep to the C programming language. Using the library,
C-Sheep programs can be compiled into an executable using a nor-
mal off-the-shelf C/C++ compiler, allowing novice programmers
to make an easy transition from using the C-Sheep system to C.
The compiled executable can then be run from within the native
working environment of the operating system.

4. SUMMARY AND FUTURE WORK
Computer programming is an essential skill for software develop-
ers and as such is always an integral part of every computer science
curriculum. However, even if students are pursuing a computer sci-
ence related degree, it can be very difficult to interest them in the
act of computer programming, the writing of software, itself. To
address this problem we have presented C-Sheep, an educational
system for the teaching of computer science principles and a tool
for learning the basics of the C programming language. It contains
only a small number of reserved words from the C programming
language, acting as a mini-language subset. C-Sheep follows in



Figure 3: Weather in ”The Meadow”

the tradition of mini-languages, started by ”Karel the Robot”, but
employs a state-of the art games rendering engine for algorithm vi-
sualisation. C-Sheep consists of a task-specific set of instructions
and queries, which allow users to control virtual entities (in the case
of C-sheep, sheep) within ”The Meadow” 3D virtual environment,
the micro world which they inhabit. C-Sheep uses a real-world lan-
guage (ANSI C) as its basis and also provides a counterpart library
for easy migration from the C-Sheep system to real world compil-
ers. This is where C-Sheep differs from other educational systems
as even those that use a more C/C++ or Java-like system are often
severely limited in the syntax they use - mainly because their (often
variable-free) design explicitly tries to remove language complex-
ity.

There are several directions that we are planning to explore in fu-
ture versions of the C-Sheep system. Greater interactivity (includ-
ing communication among several sheep), additional in-game ob-
jects and entities (like a sheep-dog) and an integrated development
environment with a JIT (just-in-time) compiler are possible ex-
tensions to the system. The current prototype uses colour-coded
bitmap-images to store game levels and C-Sheep program source
code is written in a normal text editor, so better - possibly integrated
- authoring tools for creating different scenarios would be a highly
desirable improvement. Further refinement of the system would be
the provision of more comprehensive documentation (in addition
to the current language specification). Finally, feedback from us-
ing C-Sheep in the classroom will hopefully allow us to fine-tune
the system. The C-Sheep system itself has not yet been used for
teaching. So far students have only been exposed to a problem
solving and algorithm design exercise (on the white-board) using
the C-Sheep language. This exercise was very well received by the
students which leads us to believe that our system is suitable for the
task it was designed for, but conclusive proof will only be available
after we have collected data from a trial run of the C-sheep system.
For this we are planning to introduce the current prototype of the
C-Sheep system as a teaching tool for the first term of the first year
computer programming unit at the National Centre for Computer
Animation (Bournemouth University).

Further information on the C-Sheep system is available at
http://ncca.bmth.ac.uk/eanderson/C-Sheep/

5. ACKNOWLEDGEMENTS
First and foremost we would like to express our gratitude towards
our supervisor, Prof. Peter Comninos. Without his support this
project would not have been possible. We would also like to thank
our colleagues, especially Olusola Aina, for their comments and
suggestions that have contributed to this project. Finally we need
to mention Dominic Halford. It is his ”fault” that our programs
control sheep instead of other animals.

6. REFERENCES
[1] E. F. Anderson. A npc behaviour definition system for use by

programmers and designers. In Proceedings of CGAIDE
2004, pages 203–207, 2004.

[2] T. Beaubouef and J. Mason. Why the high attrition rate for
computer science students: some thoughts and observations.
ACM SIGCSE Bulletin, 37(2):103–106, 2005.

[3] K. Bierre, P. Ventura, A. Phelps, and C. Egert. Motivating
oop by blowing things up: an exercise in cooperation and
competition in an introductory java programming course. In
SIGCSE ’06: Proceedings of the 37th SIGCSE technical
symposium on Computer science education, pages 354–358,
2006.

[4] C. Böhm and G. Jacopini. Flow diagrams, turing machines
and languages with only two formation rules.
Communications of the ACM, 9(5):366–371, 1966.

[5] P. Brusilovsky, E. Calabrese, J. Hvorecky, A. Kouchnirenko,
and P. Miller. Mini-languages: A way to learn programming
principles. Education and Information Technologies,
2(1):65–83, 1997.

[6] D. Buck and D. J. Stucki. Jkarelrobot: a case study in
supporting levels of cognitive development in the computer
science curriculum. In SIGCSE ’01: Proceedings of the
thirty-second SIGCSE technical symposium on Computer
Science Education, pages 16–20, 2001.

[7] L. Carter. Why students with an apparent aptitude for
computer science don’t choose to major in computer science.
ACM SIGCSE Bulletin, 38(1):27–31, 2006.

[8] S. Cooper, W. Dann, and R. Pausch. Alice: A 3-d tool for
introductory programming concepts. Journal of Computing
Sciences in Colleges, 15(5):107–116, 2000.

[9] W. Dann, S. Cooper, and R. Pausch. Making the connection:
Programming with animated small world. In Proceedings of
the 5th annual SIGCSE/SIGCUE ITiCSE conference on
Innovation and technology in computer science education,
pages 41–44, 2000.

[10] T. Jenkins. The motivation of students of programming. In
ITiCSE ’01: Proceedings of the 6th annual conference on
Innovation and technology in computer science education,
pages 53–56, 2001.

[11] B. W. Kerninghan and D. M. Ritchie. The C Programming
Language. Prentice Hall, 1988.

[12] K. L. Krause, R. E. Sampsell, and S. L. Grier. Computer



science in the air force academy core curriculum. In SIGCSE
’82: Proceedings of the thirteenth SIGCSE technical
symposium on Computer science education, pages 144–146,
1982.

[13] E. Lahtinen, K. Ala-Mutka, and H. J&#228;rvinen. A study
of the difficulties of novice programmers. ACM SIGCSE
Bulletin, 37(3):14–18, 2005.

[14] S. Li. Rock ’em, sock ’em robocode! IBM developerWorks:
Java technology - http://www-
106.ibm.com/developerworks/library/j-robocode/,
2002.

[15] L. McLoughlin and E. F. Anderson. I see sheep: A practical
application of game rendering techniques for computer
science education. Poster at Future Play ’06 Conference,
2006.

[16] B. Moskal, D. Lurie, and S. Cooper. Evaluating the
effectiveness of a new instructional approach. ACM SIGCSE
Bulletin, 36(1):75–79, 2004.

[17] R. E. Pattis. Karel the Robot, a Gentle Introduction to the Art
of Programming. John Wiley and Sons, 1981.

[18] A. M. Phelps, B. K. J., and D. M. Parks. Muppets: multi-user
programming pedagogy for enhancing traditional study. In
CITC4 ’03: Proceedings of the 4th conference on
Information technology curriculum, pages 100–105, 2003.

[19] S. Reges. Back to basics in cs1 and cs2. In SIGCSE ’06:
Proceedings of the 37th SIGCSE technical symposium on
Computer science education, pages 293–297, 2006.

[20] E. Roberts. Strategies for encouraging individual
achievement in introductory computer science courses. In
SIGCSE ’00: Proceedings of the thirty-first SIGCSE
technical symposium on Computer science education, pages
295–299, 2000.

[21] R. H. Untch. Teaching programming using the karel the robot
paradigm realized with a conventional language. On-line at:
http://www.mtsu.edu/˜untch/karel/karel90.pdf, 1990.


