
ISML: An Interface Specification Meta-Language

Simon Crowle1 and Linda Hole2

1 Bournemouth University, Royal London House,
Christchurch Road, Bournemouth Dorset,UK

e-mail:scrowle@bournemouth.ac.uk,
WWW home page: http://dec.bournemouth.ac.uk/staff/scrowle/

2 Bournemouth University, Poole House, Talbot Campus,
Poole, Dorset, UK

e-mail:lhole@bournemouth.ac.uk,
WWW home page: http://dec.bournemouth.ac.uk/staff/lhole/index.htm

Abstract. In this paper we present an abstract metaphor model sit-
uated within a model-based user interface framework. The inclusion of
metaphors in graphical user interfaces is a well established, but mostly
craft-based strategy to design. A substantial body of notations and tools
can be found within the model-based user interface design literature,
however an explicit treatment of metaphor and its mappings to other
design views has yet to be addressed. We introduce the Interface Spec-
ification Meta-Language (ISML) framework and demonstrate its use in
comparing the semantic and syntactic features of an interactive system.
Challenges facing this research are outlined and further work proposed.

1 Introduction

Xerox’s Star system [33] is the most famous, early example of the application of
metaphors in the design of a graphical user interface (GUI). Later generations of
this ‘desktop metaphor’ are found in many of today’s commercial personal com-
puter systems with little apparent modification other than superficial changes
in presentation. Metaphors are said to enhance a user’s understanding and ma-
nipulation of the system state through the provision of interactive entities that
mimic the appearance and behaviour of real-world objects [31]. In this way users
are able to achieve their goals without having to re-cast their problem to fit the
domain native to the computer system.

To date, human-computer interaction (HCI) practitioners enjoy relatively
limited support for the development of novel user interface metaphors. Those
who wish to develop interfaces in this way may turn to psychological accounts
of metaphor [22][21][12] or a few highly abstract, mathematical models [18][20].
Whilst providing useful insights into the nature of metaphor generally, this work
has relatively little to offer in terms of advice for interface development. For this,
designers may refer to a number of case-studies found in the literature providing
quantitative and qualitative evidence for the application of specific metaphori-
cal ‘devices’ to design problems (see [35][25][14][5]). More general guidelines for

metaphor design can also be found in [13][23]. Arguably, the most formalized
approach to design can be found in Alty’s framework [3][4]. Here, a six stage
process is outlined in which the intended system functionality and work envi-
ronment is examined for potential metaphor ‘vehicles’ - these are subsequently
evaluated against a set of guidelines. Although approaches such as these outline
useful methods for developing user interface metaphors, they remain strongly
craft-based and not integrated with contemporary HCI design methods.

An emerging field in HCI, model-based user interface design (MB-UID) meth-
ods offer the designer a variety of frameworks, notations and tools with which to
integrate a number of design perspectives. In a review of contemporary MB-UID
research, da Silva [10] posits three major advantages of the approach:

1. Higher levels of abstraction not provided by traditional UI development tools
2. Systematic development of UI in which models may be refined and reused
3. Provision of an infrastructure that provides automatic support for design

and implementation

Many notations and tools support abstractions for various design views includ-
ing devices [26][19], graphical components and direct manipulation [16][9][27],
task models [34][30] and domain modelling [15][11]. However, advances in user
interface technology present the MB-UID community with new challenges, most
particularly with respect to designing for multiple platforms and task contexts
[7][32]. Recent advances in interface technologies have resulted in multiple hard-
ware and software platforms each of which implement varying degrees of techni-
cal capability. Currently, model-based methods do not adequately address this
complexity or exploit the potential found in the diversity of these technologies
[28].

To address this problem, it is necessary to expand the design views currently
addressed in MB-UID beyond that of the ubiquitous desktop user interface.
Breaking this mould is an opportunity to reconsider the use of metaphors in
design and their role in the generation of new model-based methods. We argue
that the abstraction of a metaphor model can provide a useful mechanism for
carrying user interface design solutions between platforms since:

1. Metaphors are frequently implied in many user interface designs
2. A metaphor can be ‘carried’ from platform to platform
3. High fidelity interface technologies invite metaphor development

It would be difficult to find popular commercial software that did not make use
of metaphorical concepts such as the desktop, files, folders, cutting and pasting,
dragging and dropping and so on. However, features such as these are frequently
an implicit part of the implementation solution, and are not explicitly specified
in model-based design. Consequently, the underlying concepts and mechanics of
the metaphor are hidden behind a higher level of component-based abstraction.
The numerous variants of the desktop metaphor that can be found on different
hardware and software platforms illustrate this phenomenon: the ‘look and feel’
of each system might vary considerably, but the basic concepts remain more or
less constant.

The pace of change in user interface technologies is rapid, however. As the
increasing availability of high performance multimedia, 3D graphic and mobile
computing hardware grows, so too does the potential for entirely new forms of
interaction. The application of these technologies has already been demonstrated
in the field of information visualization [8]. Delivery of graphically rich and
interactively complex environments is a common feature in the computer games
industry where such features are highly attractive to users. Such systems present
the user with objects, behaviours and interactions that have high congruities
with the physical world.

The increasing diversity of the means with which to interact with comput-
ing devices, coupled with the expansion of graphically and semantically rich
environments is therefore an enormous challenge to the HCI community. It is
unlikely that existing abstractions of user interface components will be sufficient
to express the concepts for the next generation GUI designs. One possible way
forward is to examine how an explicit metaphor model might be used to extend
design concepts in the MB-UID community.

In the proceeding sections, we introduce a high-level framework that supports
metaphor models (section 2), followed by a more detailed look at its five principal
layers (section 3). Finally, we examine the utility of this approach with respect
to mapping metaphorical design concepts to multi-target platforms (section 4).

2 An overview of ISML

In this section, we provide a high-level overview of the Interface specification
meta-language (ISML). From the outset, ISML was developed with the inten-
tion that metaphors (shared concepts between the user and the computer) be
made explicit in design. Further, this mechanism in itself has no absolute mani-
festation with respect to its implemented appearance and operation at the user
interface. ISML de-couples the metaphor model from any particular implemen-
tation, and expresses mappings between the concepts shared between the user
and the system. For such a model to become useful, ISML provides a frame-
work that supports mappings between both user-oriented models (such as task
descriptions) and software architecture concerns (interactor definitions). The
ISML framework composites these concepts within five layers, using a variety
of mappings to link them together (see figure 1). Each of these layers is sup-
ported by computational formalisms similar to those already found within the
literature (including communicating objects [6]; state modelling [1]; abstract-to-
concrete mappings [24]; event modelling [6]; and task models [30]). The layers in
the model inherit or implement abstractions from one another using this shared
computational basis.

Devices are simple abstractions of user interface input/output hardware used
to model entities such as the mouse, keyboard and graphics adapter. Logical ab-
stractions of user input and output objects are specified as components, these
map to devices for implementing their function. Meta-objects define the under-
lying metaphor model, expressed using rules governing the semantics and syntax

Fig. 1. ISML framework

of inter-communicating objects. This abstraction is also used for part of the task
model, and forms the basis for the ‘concrete’ implementation of the metaphor.
There are two advantages to this approach. First, the translation between a user’s
task model and its execution through a metaphorical medium is expressed using
the same language. Secondly, since the implementation of the concrete user in-
terface is based on the meta-object layer, it is possible to show how components
express metaphor.

Interactor definitions use meta-objects as a basis for a specific design solu-
tion using just such a mapping - this is accomplished through the mapping of
components to interactor ‘display parts’ (similar to those found in MVC or PAC,
see [17]). The task layer combines meta-object definitions of objects and actions
with a simple, hierarchical decomposition of tasks, similar to the approaches
found in [30].

Finally, the intersection of meta-objects in use in both interactor and task
models is described in the metaphor mapping definition. This definition specifies
potential analogies between the execution of actions on objects in the task model
and their equivalencies in the metaphor model, actualized through interactors.
In the proceeding sections, we will examine each layer in more detail and then
examine how an underlying meta-object model might be implemented using two
different intraction styles.

3 The ISML layers

The framework ISML uses a Backus-Naur Form based grammar to specify the
user interface, presented here in the XML language. Since space does not permit
a detailed examination of the ISML, only brief outline is provided - for a more
detailed coverage, readers are directed to the main author’s web site. For the
sake of brevity, most of the XML structures used to express the ISML framework
will be presented graphically, using Altova’s XML Spy graphical notation [2].

3.1 Attributes, logic and state models

Throughout the ISML framework, attributes, states and logic are used exten-
sively. Attributes have a required name, type and access. Basic types of ISML
attribute include common programming data types of boolean, integer, float and
string ; attributes may also be of type set. Procedural expressions may be in-
serted at various points within an ISML specification; it is important to stress
that ISML is not a programming language, but may contain programming lan-
guage fragments (at present, expressed using the ‘C’ grammar) for the expression
of mathematical formula, conditional logic tests.

A basic, non-recursive state model is supported in ISML in which nodes and
transitions are connected together by a topology. Each state may have one or
many fire statements, executed when the model enters the state.

3.2 Devices

Input and output devices in ISML are specified as an abstraction of their basic
attributes and low-level software related functions. Devices are not abstractions
of computer hardware, but instead provide hooks for low-level APIs such as
Microsoft’s DirectX and encapsulate I/O operations such as polling for input
or the direct rendering of graphical primitives. A definition of a simple mouse
device, for example, might include a boolean and two integers representing the
hardware button state and a motion vector. Presently, these definitions only pro-
vide a rudimentary lexicon for input/output devices (supporting only pointing
devices, keyboards and 2D display devices) but in principle could be extended
in the future.

3.3 Components

A component definition specifies the presentation features of a ‘concrete’ inter-
face object - it may contain attributes such as ‘height’ or ‘width’ or ‘font name’.
State models are also allowable in component definitions and may be used to
poll devices for new input information or render graphics (such as displaying
images of a button in an armed or ‘unarmed’ state).

Rendering is managed through the specification of ‘render lists’ of which
only one may be active at any one time (this is called the ‘render focus’). Each
render list is a collection of functional calls to the devices associated with the
component.

3.4 Meta-objects

Central to the ISML framework is the meta-object part in which the syntactic
and semantic definitions that underpin the metaphorical aspects of a user inter-
face are specified. This abstraction can be logically sub-divided into two parts:
i)syntax, semantics and meta-objects and ii) meta-interactor definitions.

Fig. 2. ISML Meta-object abstraction

Syntax and semantics At the beginning of any meta-object abstraction (see
figure 2), syntactical and semantic rules must be described such that relation-
ships between meta-objects and communications between them can be specified.
‘Action-events’ are syntactic descriptions of all possible communications between
objects. For example, one object may request ‘ownership’ (see below) of another
object by invoking an action-event:

<AE Name="RequestOwnershipAction">
<Parameters>

<Param Name="eventSender" Type="SET"/>
<Param Name="x" Type="INTEGER"/>
<Param Name="y" Type="INTEGER"/>

</Parameters>
</AE>

Here, the parameter event sender identifies the calling object and the x,y
parameters specify a method of object selection, based on the principle that
objects occupy space in at least two dimensions.

A concept such as dragging is expressed using a mapping-constraint expres-
sion that may contain morphisms and constraints based on mathematical and
logical arguments. Both specify source and target attributes upon which to oper-
ate; in the example below the yPosition of the target object is evaluated within
a range specified by min and max attributes in the source:

<Constrain>
<Target>yPosition</Target>
<Source>

<AttrRef>min</AttrRef>
<AttrRef>max</AttrRef>

</Source>
<Predicate>
<Statement>

((target > min) && (target < max))
</Statement>
</Predicate>

</Constrain>

Note: XML characters are not ‘escaped’ for clarity

Whilst in operation within a meta-object, mappings are continuously enforced
whilst constraints may be tested for satisfaction by an internal state model.

Meta-object definition Metaphorical objects specified in the ISML framework
are defined as meta-object types, the abstract parts of which are comprised of
attributes and state models. The semantics section determines the object’s use of
previously defined action-events and mapping-constraints which may be classed
as either affective, effective, both affective and effective or exclusively affects.
In this way, each meta-object is determined as being capable of enforcing, or
being subject to, the syntax and semantics of the metaphor abstraction. Any
object enforcing a mapping-constraint maintains a set that holds references to
the objects it affects. For every action-event an object is subject to, a handler
must be defined within which a response to an action takes place. Responses may
include set operations, tests or procedural logic. Operations on local mapping-
constraint sets include emptying, adding and subtracting, or the ability to invoke
actions on the members of that set. Tests include checking an object’s existence,
state, class type, affective and effective capabilities or satisfaction of constraint.

Meta-interactor definition The ISML meta-object part concludes with def-
initions of interactor types based on the meta-objects already defined for use
in the proceeding part of the specification. Interactors will actualise some or all
of the properties of the metaphor model at the user interface through the in-
heritance of meta-object abstractions. This is achieved by defining display and
controller parts and binding them with a meta-object. Display parts are subse-
quently mapped to component abstractions in later interactor declarations (see
section 4). This allows derived interactor classes the ability to receive input from
or render to multiple components. It may be desirable for interactors to tem-
porarily suspend their behaviour according to the state of the underlying system.
For this reason, controller definitions list a collection of mapping-constraints or
action-events that can be turned on or off as appropriate.

3.5 Interactors

The interactor abstraction realizes the underlying metaphor through refinement
and mapping to previously defined components. Derived from a meta-interactor
(and consequently, a meta-object abstraction) the interactor may also include
attributes, state models, handle over-loaded or additional action-events of its
own and make calls to underlying system functionality.

Display bindings map the display parts associated with the interactor to
components. Subsequent attribute bindings link the attributes found within the
interactor (or parent meta-object) to attributes implemented by the component.
Rendering of the mapped components is achieved through an explicit render
directive. Interactors that shared the same display type may also re-target the
destination of the rendering with one another.

3.6 Tasks

The ISML ‘task world’ re-uses the basic meta-object abstractions (mapping-
constraints, action-events and meta-objects) to describe extant task related en-
tities and their role within a hierarchical description of tasks. Presently, an ISML
task model is a very simple hierarchy of linked nodes, each of which may be ab-
stract or action-based. Abstract nodes serve to label higher order task plans or
goals. Nodes that contain actions refer to a source object performing some af-
ferent action upon a target (based on the meta-object definitions). Sequences of
actions are specified in node lists (including a parent node, excepting the ‘root’
sequence), either serializing nodes or specifying a choice using the enable and or
connectives respectively. A node may also specify an iterate condition for any
action. In this case, a task node is said to continuously repeat until either a
mapping-constraint test (see section 3.4) or logical test of an object’s attributes
evaluates to true.

3.7 Metaphor mapping

The final part of the ISML specification builds mappings from the objects and
actions defined in the task model to the interactors and interactions at the user
interface. Object maps may be simple name-space mappings indicating interac-
tor equivalents of some task object, or they be may refined further by including
mappings of specific attributes or states. Action analogies are drawn from the
linking of a task object and action to one or many interactor and action cou-
plings. Since interactors are derived from the underlying meta-object model, it
is therefore possible to show how a particular user interface design does (or does
not) represent and enact an underlying user interface metaphor.

4 Discussion

The ISML framework extends the application of existing formalisms used in
model-based user interface design through the introduction of a metaphor ab-
straction layer. Metaphorical mappings are expressed in two important ways:

1. Interactor designs are built on top of an underlying metaphor
2. User tasks can be translated to physical interactions that enact the metaphor

design.

In the following sections, we outline how the ISML framework can map different
physical implementations to a common design, and also show to what extent a
specific implementation allows direct engagement with underlying metaphorical
concepts.

4.1 Abstract metaphor as a basis for concrete design

Unlike many other MB-UID technologies, ISML does not resolve to any par-
ticular component-based implementation (such as Microsoft’s Foundation Class
or Sun’s Java Swing classes). The definition of components based on abstract
devices affords an ISML specifier some useful freedoms. For example, within
a metaphorical environment, it may be desirable to describe a pointing entity
(such as a hand). The implementation of this object may be realized in many
different ways, depending on both the devices and components available for use.
The display mappings of the interactor expression of the hand (the screen cursor)

Fig. 3. Implementing metaphors

may have two parts; one for input, another for output. Input to the cursor may
be received from a component that describes relative motion as a vector. The
actual device that describes that motion may be a mouse, or a graphics stylus
or a keyboard, depending on the particular component’s mapping. Similarly, the
technology used to display the cursor image can be flexibly determined by the
choice of pointer image component (and its particular mappings to output tech-
nologies). In both cases, the technologies used to implement the component are

decoupled from other design views, since it is the mapping of attributes exposed
by the component that are used by the interactor (see figure 3). The de-coupling

Fig. 4. Simplified ISML views of moving a file

of a common metaphor ‘fragment’ is illustrated in figure 4, in which a high-level
view of the moving of a file named ISMLDesktop.xml into a folder called ISML
is presented. Irrespective of either interactive solution, a fundamental analogical
model of the nature of files and folders (or ‘directories’) must be understood by
the user for the task to be completed successfully. The very least that can be said
of this model is that files are entities that are contained by folders. In addition,
a file may also be moved from one place to another. This action can be further
split up into three stages: a) the selection of a specific file (action-event ‘Select’),
b) the removal of its presence from an existing folder (action-event ‘Pick’) and
c) its subsequent appearance in another (action-event ‘Drop’). The movement

of the file object begins with a pick action and its motion is expressed as a
mapping-constraint (MC: DragItems) in which the spatial properties of the file
are translated by the pointing entity, controlled by the user. Movement ends on
the execution of a drop action, at which point the file object is removed from
the mapping-constraint set. Two additional action-events (‘Disown’ and ‘own’)
are used to a) execute the removal of the reference to the file object maintained
by the source folder (stored in the mapping-constraint set ‘Contain’) and b) to
add a new reference to the target folder.

Implementing the meta-model shown in figure 4 requires the derivation of
each meta-object to an interactor that is coupled to actual user interface com-
ponents. In the case of the command line interface (CLI), some of the properties
of the file and folder objects (such as name and type) are rendered as lines of text
whilst input from the user is polled from the keyboard and sent to the display
in the same way. For the GUI example both file and folder objects have images
and co-ordinates in space that can be modified. The user communicates via a
mouse and a cursor display is modified by vectors polled by the mapped mouse
device.

In addition to clear qualitative differences in appearance, the implementation
of the underlying actions can also be compared. The ‘user’ interactor for the CLI
solution must interpret commands (sequences of keystrokes, ending in the return
key). Here, the user does not use the input device to enact actions on objects
directly, but instead must allow the system to act as a proxy. The interactor
object dealing with user interaction in this case must internally translate the
parameters passed by the user into equivalent action-events. By contrast, the
GUI implementation maps direct, spatial actions executed by the user through
the mouse to their equivalencies in the meta-object model.

4.2 Enacting tasks at the physical interface

The de-coupling of task, interactor and metaphor views that the ISML frame-
work provides allows the designer to more clearly specify the translation of user
goals into interactions with the system. In Norman’s approximate theory of ac-
tion [29], users are said to continually execute a cycle of action specification
and output evaluation. To accomplish a goal, users must formulate intentions
for changing the system state that are expressed as actions, and executed at the
user interface. Any changes to the system are reflected at the interface, inter-
preted by the user and evaluated with respect to their progress towards their
goal (see figure 5). The ‘articulatory’ and ‘semantic’ distances that a user must
traverse, argues Norman, are reduced if the user interface reflects the problem
domain with which the user works.

Meta-object abstractions form the basis for both the eventual user interface
design and the task model; this allows the designer to consider the semantic
and articulatory distances a user must travel in order to complete their goals. If
the mappings expressed between task and interactors cannot be demonstrated
to map back to the underlying metaphor then, arguably, the user has a greater

Fig. 5. Norman’s model [29]

semantic distance to travel. In the example described above, the CLI implemen-
tation increases this semantic distance since operations executed by the user do
not have the spatial properties or direct engagement of action that the natural
movement of an object from one place to another entails.

A comparison of the interactions required for both the CLI and GUI im-
plementations also show differences in ‘syntactic’ distance. In the former case,
commands must be recalled by the user (these are related to, but not an ex-
plicit part of, the underlying meta-object model) and subsequently translated
by the interactor abstraction to affect action-events. Furthermore, the use of the
‘dir’ command is required to provide feedback on the state of the objects being
manipulated. Here, a user must recall the functionality of the system to check
the success of their task rather than utilize the immediate, spatial features of
the GUI. The relationship between system functionality (S) and metaphorical
interface design features (M) is described as intersection by Alty et al. [4]. Each
of the four conditions can be shown as continuous or discontinuous mappings
within the ISML framework:

1. S+M+: those features of the system that map directly to the metaphor.
In ISML, this means the underlying metaphor is directly represented and
enacted by derived interactors (that also make calls to system functionality),
which in turn can be mapped to task actions and objects.

2. S+M-: system functionality that does not exist in the metaphor features of
the interface. Within an ISML specification, this means that the interac-

tor layer must either translate the implemented interaction to meta-object
abstractions (if they exist) or make calls directly to system functionality.

3. S-M+: here, features of the metaphor model do not map to system function-
ality. In this case, mappings from the meta-object to interactor layers may
not exist at all, or if they, do not actually result in calls to the underlying
system functionality.

4. S-M-: neither system nor metaphor features exist. In this case, no mappings
can be made from the task model to the interactor layer to support the
completion of a task.

Through explicitly modelling a metaphor abstraction and providing mappings
to interactors and tasks, it is therefore possible to identify aspects of a user
interface design that support the user’s work domain as well as those that do
not.

5 Conclusion

In this paper we have introduced the ISML framework and examined its use
in explicitly specifying a metaphorical concept and its mappings to more than
one possible implementation. ISML was developed to make metaphors an explicit
part of model-based design, de-coupling the metaphor model from specific imple-
mentation details. The framework uses a Backus-Naur Form based grammar to
specify the user interface, interactor-based implementations of designs are built
on top of an underlying metaphor. User tasks can be examined as translations
to physical interactions that enact the metaphor design. Currently, the ISML
XML schema and tool-based support is still in the very early stages of develop-
ment. An XSLT-based transformation that will allow semi-automatic translation
to executable code (supported by an ISML run-time kernel) is in progress. We
hope to report on further work, including a case-study using ISML, in the near
future.

References

1. Accot, J., S. Chatty, et al.: A Formal Description of Low Level Interaction and
its Application to Multimodal Interactive Systems. 3rd International Eurographics
Workshop on Design, Specification, and Verification of Interactive Systems, Namur,
Belgium, Springer-Verlag (1996)

2. XML Spy, Altova. http://www.altova.com/ (2003)
3. Alty, J. L. and R. P. Knott.: Metaphor and human computer interaction: a model

based approach. Proceedings of Computation for Metaphors, Analogy and Agents:
An International Workshop. (1998)

4. Alty, J. L., R. P. Knott, et al.: A framework for engineering metaphor at the user
interface. Interacting with Computers 13(2) (2000) 301-322

5. Ark, W., D. C. Dryer, et al.: Representation Matters: the Effect of 3D Objects
and a Spatial Metaphor in a Graphical User Interface. Proceedings of HCI 98, the
Conference on Human-Computer Interaction, Springer. (1998)

6. Bastide, R. and P. Palanque.: A visual and formal glue between application and in-
teraction. Journal of Visual Languages and Computing 10(5) Academic Press. (1999)
481-507

7. Braubach, L., A. Pokahr, et al.: Using a Model-based Interface Construction Mech-
anism for Adaptable Agent User Interfaces. Proceedings of AAMAS Workshop 16 -
Ubiquitous Agents on Embedded, Wearable, and Mobile Devices. (2002)

8. Card, S. K., J. D. Mackinlay, et al.: Readings in Information Visualization: Using
Vision to Think. San Francisco, CA, Morgan Kaufmann Publishers. (1999)

9. Carr, D.: Interaction Object Graphs: An Executable Graphical Notation for Specify-
ing User Interfaces. Formal Methods for Computer-Human Interaction. P. Palanque
and F. Paterno’, Springer-Verlag (1997) 141-156.

10. da Silva, P. P.: User interface declarative models and development environments: A
survey. Interactive Systems. Design, Specification, and Verification, 8th International
Workshop, DSV-IS 2001, Glasgow, Scotland, Springer-Verlag Berlin. (2001)

11. Eisenstein, J., J. Vanderdonckt, et al.: Applying model-based techniques to the
development of UIs for mobile computers. International Conference on Intelligent
User Interfaces archive Proceedings of the 6th international conference on Intelligent
user interfaces, Santa Fe, New Mexico, United States, ACM Press. (2001)

12. Gentner, D., B. Bowdle, et al.: Metaphor is like analogy. The analogical mind:
Perspectives from cognitive science. D. Gentner, K. J. Holyoak and B. N. Kokinov.
Cambridge, MA, MIT Press. (2001) 199-253.

13. Gillan, D. J. and R. G. Bias.: Use and Abuse of Metaphor in Human-Computer
Interaction. Proceedings of the IEEE International Conference on Systems, Man, and
Cybernetics, San Antonio. (1994)

14. Golovchinsky, G. and M. H. Chignell.: The newspaper as an information explo-
ration metaphor. Information Processing and Management 33(5) Elsevier Science
(1997) 663-683.

15. Griffiths, T., P. J. Barclay, et al.: Teallach: a model-based user interface develop-
ment environment for object databases. Interacting with Computers 14(1) Elsevier
Science (2001) 31-68.

16. Hartson, H. R., A. C. Siochi, et al.: The Uan - a User-Oriented Representation for
Direct Manipulation Interface Designs. Acm Transactions on Information Systems
8(3) (1990) 181-203.

17. Hussey, A. and D. Carrington.: Comparing the MVC and PAC Architectures: a
Formal Perspective. IEE Proceedings of Software Engineering 144(4): (1997) 224-236.

18. Indurkhya, B.: Constrained Semantic Transference - a Formal Theory of
Metaphors. Synthese 68(3) (1986) 515-551.

19. Jacob, R. J. K., L. Deligiannidis, et al.: A Software Model and Specification Lan-
guage for Non-WIMP User Interfaces. ACM Transactions on Computer-Human In-
teraction 6(1): (1999) 1-46.

20. Kuhn, W. and A. U. Frank.: A Formalization Of Metaphors And Image-Schemas
In User Interfaces. Cognitive and Linguistic Aspects of Geographic Space. D. Mark
and A. U. Frank. Technical University Vienna, Austria, Kluwer. (1991) 419-434.

21. Lakoff, G.: The Contemporary Theory of Metaphor. Metaphor and Thought. A.
Ortony, Cambridge University Press (1992)

22. Lakoff, G. and M. Johnson.: Metaphors We Live By, University of Chicago Press,
Chicago. (1980)

23. Lovgren, J.: How to Choose Good Metaphors. Ieee Software 11(3) (1994) 86-88.
24. Luyten, K. and Coninx,K. : An XML-Based Runtime User Interface Description

Language for Mobile Computing Devices In: C. Johnson (Ed.): Interactive Systems:

Design, Specification, and Verification 8th International Workshop, DSV-IS 2001.
Glasgow, Scotland, (2001) 1-15

25. Maglio, P. and T. Matlock.: Metaphors we surf the web by. Workshop on Person-
alized and Social Navigation in Information Space, Stockholm, Sweden. (1998)

26. Massink, M., D. Duke, et al.: Towards Hybrid Interface Specification for Virtual
Environments. Interactive Systems. Design, Specification, and Verification, 6th In-
ternational Workshop, DSV-IS 1999, Braga, Portugal, Springer-Verlag. (1999)

27. Navarre, D., P. Palanque, et al.: A Tool Suite for Integrating Task and System
Models through Scenarios. Interactive Systems. Design, Specification, and Verifica-
tion, 8th International Workshop, DSV-IS 2001, Glasgow, Scotland, Springer-Verlag.
(2001)

28. Nilsson, E. G.: Combining Compound Conceptual User Interface Components with
Modelling Patterns - a Promising Direction for Model-based Cross-platform Inter-
face Development. Interactive Systems. Design, Specification, and Verification, 9th
International Workshop, DSV-IS 2002, Rostock, Germany, Springer. (2002)

29. Norman, D. A. and S. W. Draper.: Cognitive Engineering. User Centred System
Design. D. A. Norman and S. W. Draper, Lawrence Erlbaum Associates. (1986) 31
- 61.

30. Paterno’, F. and C. Mancini.: Developing Task Models from Informal Scenarios.
Proceedings ACM CHI’99, Pittsburgh, ACM Press. (1999)

31. Preece, J., Y. Rogers, et al.: Human-Computer Interaction, Addison-Wesley. (1994)
32. Pribeanu, C., Q. Limbourg, et al.: Task Modelling for Context-Sensitive User Inter-

face. Interactive Systems. Design, Specification, and Verification, 8th International
Workshop, DSV-IS 2001, Glasgow, Scotland, Springer. (2001)

33. Smith, D. C., C. Irby, et al.: Designing the Star User Interface. Byte 7(4) (1982)
242-282.

34. van der Veer, G. C. and M. van Welie.: Groupware Task Analysis. Tutorial Notes
for the CHI99 workshop Task Analysis Meets Prototyping: Towards seamless UI
Development. (1999)

35. Zajicek, M. P. and R. Windsor.: Using Mixed Metaphors to Enhance the usability
of an electronic multimedia document. IEE Colloquium Human-Computer Interface
Design for Multimedia Electronic Books, Washington. (1995)

