
A NPC BEHAVIOUR DEFINITION SYSTEM FOR USE BY PROGRAMMERS AND

DESIGNERS

Eike Falk Anderson

The National Centre For Computer Animation

Bournemouth University, Talbot Campus

Fern Barrow, Poole, Dorset BH12 5BB, UK

E-mail: eanderson@bournemouth.ac.uk

KEYWORDS
game-bots, behaviour definition, scripting language, virtual

machine, mini-language.

ABSTRACT

In this paper we describe ZBL/0, a scripting system for defining

NPC (Non Player Character) behaviour in FPS (First Person

Shooter) games. ZBL/0 has been used to illustrate the use of

scripting systems in computer games in general and the scripting of

NPC behaviour in particular in the context of a book on game

development [Zerbst et al 2003]. Many novice game designers

have clear ideas about how the computer game they imagine should

work but have little knowledge – if any – about how their ideas can

be implemented. This is why books on game creation (design,

programming etc.), as well as all-in-one game creation systems –

especially designed for ease of use and intended for an amateur

audience – enjoy great popularity. A large proportion of these

books however merely present solutions in the form of descriptions

and explanations of specific implementations with inadequate

explanations of principles. While this may benefit rapid application

development it often does not lead to a deeper understanding of the

underlying concepts. The understanding of rule-based behaviour

definition through simple scripting in computer games and the

development of such scripts by programmers and designers is what

we aim to address with the ZBL/0 system.

INTRODUCTION

Until very recently the major part of the artificially intelligent

behaviour displayed by game characters in computer games was

hard-coded into the game program itself. Any changes requested

by the game’s designers needed to be communicated to the game

programmers who would spend a large amount of development

time implementing these small changes to the game. A much more

efficient approach which is now used more and more frequently is

to empower designers to implement those changes themselves by

making games more extensible and easily modifiable and by

providing designers with the tools to extend and modify the games.

As a side effect, developers have realized that this also enables

players to modify a game themselves which adds value to a game

and dramatically adds to its shelf-life (see Table 1). The question

that now arises is how this extensibility can be achieved. This is

especially important when it comes to the modification of the NPC

(Non Player Character) behaviour in those extensible games. In

some cases where no hard-coded solutions are used the NPC

behaviour is generated by project-specific proprietary software

tools, other games use commercially available middleware systems

and some games use a scripting language of some sort. Scripting

removes a large part of the – previously hard-coded – internal game

logic from the game engine and transforms it into a game asset.

Are there any truly good reasons to build an

Extensible AI into your game?

Absolutely! 40%

Sure! 23%

Maybe. 29%

No way! 4%

Never! 2%

Other. 1%

Table 1 – computer game extensibility reasons poll

(source: http://www.gameai.com)

This allows the game to be modified without the need for the game

code to be recompiled, a task that can be accomplished by a game

designer alone. “Parallel development” becomes possible, which

means that the programmers’ time is freed up as they no longer

need to concern themselves with design elements which designers

can now manipulate themselves with scripts [Huebner 1997].

However, a scripting language that is supposed to be used by non-

programmers as well as by programmers needs to be designed

accordingly. It is likely that for some game designers this will be

the first programming language that they encounter so it is only

logical that it should embrace some of the methods used in

introductory programming languages.

THE RATIONALE BEHIND THE ZBL/0

SCRIPTING SYSTEM

The command syntax of the ZBL/0 language is similar to that of

related procedural languages like C [Kernighan and Ritchie 1988],

Pascal [Wirth and Jensen 1974] and especially PL/0 [Wirth 1977].

The ZBL/0 language only supports a limited set of control

structures (simple iteration, condition/alternative and sequence) and

the definition of simple procedures. In that respect, ZBL/0 can be

counted in the family of mini-languages (toy languages – see Figure

1) used in teaching [Brusilovsky et al 1997] and in this role it has

been used as a reference system to illustrate the development of

NPCs [Zerbst et al 2003] for FPS (First Person Shooter) games (see

Figure 2). Like other mini-languages ZBL/0 provides a task

specific set of instructions and queries which allow users to take

control of virtual entities acting within a micro world. In the case

of ZBL/0 the scripting system and programming language were

designed specifically with the definition of NPC behaviour in FPS

games in mind which is reflected in the functions and procedures of

the language. The use of computer games as the environment for a

mini-language programmed NPC is not a new idea. There are

several examples of games – most of which are available on-line

Figure 1 – Mini-language system “Niki the robot” which partially

inspired the development of the ZBL/0 language

(http://www.hupfeld-software.de/niki.php)

like Robocode [Li 2002], Crobots, Jrobots or GUN-TACTYX

[Boselli 2004]. In such games the player interaction is limited to

the programming of virtual entities that play the games. In addition

to the use of ZBL/0 as an educational tool, the development of the

ZBL/0 system is our first step towards the development of a generic

behaviour definition system for artificially intelligent entities in

computer games. We are using it to explore various system

architectures for integrating virtual machines into applications –

simple games and more complex game engines – that allow scripts

to be executed and interpreted in real-time. We have also used the

system as a test-bed for interfacing behaviour-definition systems

with computer games.

SCRIPTING LANGUAGES FOR

BEHAVIOUR DEFINITION IN GAMES

Many developers use well established existing generic scripting

systems or permutations of these systems (modified according to

the game’s requirements) to add scripting facilities to their games.

A popular choice for building the scripting solutions in games is the

scripting language Lua. Lua is a generic programming language

which was originally designed to be used to extend programs by

adding various scriptable features which is why the creators of Lua

have dubbed it an “extensible extension language” [Ierusalemschy

et al 1996]. Most of the other mature scripting languages which

can be embedded in computer game engines are generic, i.e. not

specialised for specific tasks [Varanese 2003]. A different

approach which is also frequently used is to have proprietary

purpose-built scripting languages that are dedicated to a single

game, like the scripting languages QuakeC in Quake, UnrealScript

in Unreal or Scrit in “Dungeon Siege”. When used to define game

character behaviours, in simple cases the sole use of scripts is the

initial configuration of the NPC behaviours. These initialization

scripts [Tapper 2003] are the simplest form of scripts. During

program runtime they are usually only executed once, at program

start-up, while the application is initialising, setting internal

program parameters to the values in the script. These scripts are

often nothing more than lists of values, sometimes using additional

syntactic elements to make them easier to read and edit. In more

complex event based scripting systems, the occurrence of an event

within the game triggers the execution of a script or part of a script.

This means that scripts do not run in a pre-defined order but rather

when a specific situation in the game-world has occurred. Some of

these scripting systems use events that are built into the game

engine as predefined events and scripts only define the event

handlers and possibly additional conditions that may influence the

Figure 2 – sample game implementation “Pandora’s Legacy”

trigger mechanism. More sophisticated scripting systems first

define the triggers and the situations in which they should act on

events in addition to the event handlers themselves. These also

include rule-based scripting systems which can be used for the

definition of domain knowledge in expert systems, an example of

which are intelligent NPCs in many computer games. The most

complex scripting solutions are programs that use high-level

abstract descriptions to define complex behaviours. A scripting

system that controls the behaviour of autonomous agents in a

virtual game world usually exists on two levels. The higher level is

a scripting language that is often modelled on “traditional”

procedural, functional or object oriented programming languages.

The lower level is the corresponding scripting engine which

interfaces with the game. Some of these systems will execute

scripts in a continuous loop, constantly (re-)evaluating the current

situation within the game. Other systems will execute a script only

once and any kind of repeating operation, to be executed by the

scripting system, will have to be implemented as a looping

operation within the script itself. An example of the latter is our

ZBL/0 scripting system. Scripting engines of this kind can take the

form of an interpreter which translates and executes scripts at run-

time. Alternatively it could be a virtual machine, executing scripts

that have previously been translated into an intermediate code by a

compiler. Both forms of scripting system provide the same benefits

to games, as both allow the alteration of NPC behaviour by

modifying a script program. This means that the game application

itself does not have to be recompiled for the changes to the game’s

NPCs to take effect.

Design Issues

While this is clearly advantageous for game development, for

computer game developers to truly benefit from any kind of

scripting system it has to be designed to be intuitive, i.e. the

scripting language must be easy to learn and possibly easier to use

than traditional programming languages. One way this could be

achieved would be by making it as similar to a natural language as

possible. It is our belief that a close resemblance of a behaviour

definition programming language to natural language as suggested

by Funge [Funge 1998] may easily prove counterproductive. This

is because natural languages are context sensitive and contain too

many ambiguities which require additional specification to clarify

problems and to resolve these ambiguities. We think that the

additional effort required to do this would negate all the benefits

gained from the use of a natural language structure in the first

place. Moreover, linking a programming language’s structure

intrinsically to a specific natural language would make it much

more difficult for non-native speakers of the natural language to

write meaningful computer programs, while it would become

practically impossible for programmers who do not know the

natural language to write programs at all. Providing multi-language

versions of a programming language is unrealistic, as the language

would have to be modified according to the structure of each of the

supported natural languages. We are also convinced that the notion

that a traditional programming language may be too complex for

non-programmers to use is incorrect. Robert Huebner’s [Huebner

1997] case study of how scripting support was implemented in the

game “Jedi Knight: Dark Forces” describes the C based proprietary

scripting language COG. The similarity of COG to the

programming language C not only simplified the development of

the language but it also made it easier to learn and understand for

the designers – non-programmers – who used COG for the creation

of the game. He concludes that the design was so successful that

designers managed to generate scenarios which would have

appeared inconceivable and very hard to realize if it had not been

for the COG scripting system. Further evidence for this can be

found in the film effects industry where many artists have been

using complex scripting systems for many years. For many

designers the use of a scripting system will be the first time they are

exposed to a programming language. An important consideration

in the design of a programming language for novice programmers

therefore is the analysis of how many of these non-programmers

will go about using this language. Poiker [Poiker 2002] explains

how novice programmers write programs employing a mixture of

“copy and paste” with “trial and error”. For this reason,

programming languages that are supposed to be used by novice

programmers need to have a WYSIWYG (What You See Is What

You Get) character with program source code being able to deliver

predictable results. In the context of the novice programmer’s

introductory programming language, McIver and Conway [McIver

and Conway 1996] have identified seven “deadly sins” and design

principles and their potential problems and benefits. They argue

that a language which has too many different features (“more is

more”) or too few features (“less is more”) or which contains too

many syntactical “false friends” (“grammatical traps”, “violation of

expectation”, “excessive cleverness”) would make it very hard for

users with little programming experience to comprehend the

language and to understand what a program does. However,

McIver and Conway conclude that the ideas they present can only

be taken as a guide – not a general solution – and that ultimately the

success of the language design can only be measured through user

feedback.

THE ZBL/0 SYSTEM

The requirements for the ZBL/0 scripting system were

straightforward:

• The system was to be used to define NPC behaviour as an

extension to computer games of the FPS genre.

• The NPCs defined by the language only needed to support

deterministic behaviour.

• No complex datatypes or control structures needed to be

implemented as the system was supposed to be used to

demonstrate general concepts of NPC behaviour scripting in

the context of a book on computer game development [Zerbst

et al 2003].

Consequently the development of the system from conception to

first use was achieved in a very short period of time. The first fully

working prototype for the ZBL/0 system for example was

completed over a period of little more than a fortnight. ZBL/0

[Anderson 2003] is a very simple scripting language for the

definition of game-bots. The ZBL/0 system consists of a compiler

for game-bot programs (NPCs) written in the ZBL/0 language and a

robust virtual machine that can be integrated into any game engine.

const do else

function if return

then var while

alive armour back

backstep blocked crawl

danger die duck

face find fire

front health idle

initialize jump jump_back

jump_left jump_right

jump_up left memorize

object object_ahead

obstacle owns respawn

right rnd spawn

spawned step strafe_left

strafe_right target

target_ahead target_alive

target_armour target_health

turn turn_left turn_right

use using

Table 2 – ZBL/0 keywords (instructions & intrinsic functions)

ZBL/0 is based on the PL/0 model programming language [Wirth

1977] and therefore belongs to the PASCAL family of

programming languages. There is only one variable datatype in

ZBL/0 which can be used to store numerical values (integer as well

as floating point). The function set for controlling bots is intrinsic

to the ZBL/0 scripting language, i.e. built into the language (see

Table 2). As a result they do not have to be enabled by means of

inclusion of a standard library of functions. This intrinsic function

set consists of 45 functions representing actions and sensor queries

that can be performed by an NPC in FPS games like turning

towards an opponent, moving in a specified direction or firing a

weapon. The function identifiers are self explanatory for easy

understanding. The current version of the language allows

functions to be user-defined, but function parameters in user-

defined functions are not supported. Instead they have to be

emulated through the use of global variables. The ZBL/0 system

uses a parallel stack-based virtual machine – the system is multi-

tasking and allows more than one ZBL/0 program to run

simultaneously. Run-time errors in ZBL/0 programs result in the

termination of the game-bot program but do not affect the execution

of the virtual machine within its host application. The ZBL/0

virtual machine is self-contained and accessible from the host

application solely through a fixed interface, the ZBL-API

(Application Programmer Interface). The interface to the ZBL/0

virtual machine provides games with the ability to associate NPC

functionality with in-game functions for actions which would be

expected to be performed by a player of these games, therefore

allowing NPCs to compete with human players on a level playing

field. Once a ZBL/0 program has been loaded into the virtual

machine only a single function-call to the API is required for each

main program loop to execute the game-bot programs. The

simplicity of the system lies in the fact that none of the game-bot

functions are provided by the language as such. Instead they need

to be implemented within the game engine – the host application –

and mapped to the corresponding intrinsic function identifier in

ZBL/0. The game engine itself does all the work while the script

only ties together the different game engine components that

provide the NPCs with functionality. A side effect to this is the

ability of the system to be adapted to games of different genres (see

Figure 3). The function bindings between the host application and

the ZBL/0 virtual machine are realised using the multiple-

inheritance functionality of the C++ programming language

[Stroustrup 1997]. Objects of a game-bot class can be registered as

NPCs with the virtual machine. This game-bot class is created by

inheriting player functionality from a player-class in the application

and the game-bot interface from an abstract class which is part of

the ZBL-API. This abstract class provides a number of methods

a moderately sophisticated CycleBot

var direction;

function random;

var r;

{

 r = rnd 20;

 if r > 5 & r < 15 then

 return 1;

 else

 return 0;

};

{

 spawn;

 direction = random;

 while alive = 1 do

 {

 if blocked front = 0 then

 {

 step;

 };

 else

 {

 if blocked left = 0 then

 {

 if blocked right = 0 then

 {

 if direction = 1 then

 {

 turn_left;

 };

 else

 {

 turn_right;

 };

 direction = random;

 };

 else

 {

 turn_left;

 };

 };

 else

 {

 if blocked right = 0 then

 {

 turn_right;

 };

 };

 step;

 };

 };

}.

Table 3 – a simple ZBL/0 game-bot script for a Tron-like

“lightcycle” game (see Figure 3)

that are equivalent to the intrinsic functions of the ZBL/0 language.

An implementation of these abstract methods in the inherited class

then allows ZBL/0 programs in the virtual machine to control a

game-bot character in the application. However therein also lies

the main weakness of the ZBL/0 system, as any NPC script – no

matter how well designed – cannot perform well if the NPC related

functions of the game engine do not work well. Also, while this

method makes it very easy for the virtual machine to execute

functions within the host application it also limits the extensibility

of the ZBL/0 system, as the type and number of the functions that

can be registered with the virtual machine is fixed by the ZBL-API.

On the other hand, this system allows the designer to create

effective NPCs through the combination of a small number of

simple functions (see Table 3).

Figure 3 – four ZBL/0 “lightcycles” competing for survival in the

demonstration application

A ZBL/0 Example Program

As an example for the capabilities of the ZBL/0 system as well as a

sample to demonstrate the integration of the ZBL/0 virtual machine

into a computer game we have created a version of the “lightcycle”

racing game (see Figure 3) that featured in the 1982 film Tron

(http://www.imdb.com/title/tt0084827). Players in the game move

their “lightcycles” across the playing field, dragging growing walls

of light energy behind them. The aim of the game is for players to

survive as long as possible by avoiding collision with walls while at

the same time trying to force other players to collide with walls by

reducing their freedom to manoeuvre. In our version of the game

all players are controlled by scripts written in the ZBL/0 language

(see Table 3). The sensors of the scripted players allow them to test

the path immediately in front of them for two steps ahead and one

step to each side. The strategy they employ to play the game does

not involve any planning but is only a small set of simple rules:

1. If the path in front of the “lightcycle” is not blocked, it moves

forward (intrinsic function “step”).

2. Otherwise if there is no obstacle to the left and no obstacle to

the right, the player chooses a random direction (determined

by function random) or if there is an obstacle to the right, the

player turns left (intrinsic function “turn_left”) and moves

forward.

3. In the case of an obstacle to the player’s left but no obstacle to

the right, the player turns right (intrinsic function “turn_right”)

and moves forward.

The result of this script is an effective player that is perceived to be

far more intelligent by onlookers than it actually is.

FUTURE WORK

The current version of ZBL/0 only provides the basic tools

necessary for using the system with game engines that are

programmed using the C++ programming language. As experience

has shown that the addition of tools is beneficial for the process of

program development, future work on the ZBL/0 system will

mainly focus on the expansion of the toolkit. The creation of a

graphical user interface – in addition to the command-line tools – to

complement the language interface of the system by providing a

text-editor incorporating a number of intuitive programming aids

found in modern program development tools (syntax highlighting,

code completion etc.) will be the first goal. Further goals will be

optimizations of the compiler, the addition of support for run-time

debugging as well as source-level debugging of ZBL/0 programs

and possibly the provision of language bindings for other

programming languages than C++. We have used ZBL/0 to test

possible architectures and interfaces for the virtual machine of a

more generic behaviour definition system for artificially intelligent

entities in computer games. This system that we propose is a

modular and easily extendable system that will provide game

developers with an intuitive method for the creation of game

character AI, as well as the tools for doing so. A newer,

experimental version of the ZBL/0 system which is still undergoing

testing can be dynamically extended through a plug-in architecture

which allows external libraries to be integrated with the system’s

virtual machine. This is an important feature which will also be

implemented in our more generic behaviour definition system.

CONCLUSION

We have presented ZBL/0, a simple behaviour definition system for

game characters in FPS games, designed to be used by game

programmers as well as by game designers. ZBL/0 is much

smaller, more restrictive and far less extensible than many other

scripting systems – the language is dedicated to only one genre of

computer games and the AI entities that populate them. Following

the example of mini-languages the ZBL/0 language is based on a

traditional programming language which has been reduced to the

simplest features to make the system easily accessible for

programmers and non-programmers alike. We strongly believe that

ZBL/0 is easy to learn and master. For the past fifteen years, artists

at the National Centre for Computer Animation have learnt to use

scripting languages and have successfully used that knowledge for

scripting procedural animation. This has convinced us beyond

doubt that the use of scripting systems can be picked up by users

with no prior knowledge of computer programming. The

functionality of ZBL/0 is entirely dependent on the implementation

of the host application, yet it shows how relatively simple methods

can be used effectively for NPC creation in computer games (see

Table 3). As an additional benefit this also allows the system to

transcend its limitations by allowing it to be adapted to other game

genres than only FPS games (see Figure 3). Some parts of the

ZBL/0 system have shown weaknesses in the original design

concept which we intend to address with our future work. For

instance the lack of extensibility provided by the method in which

function bindings are implemented in ZBL/0 has convinced us that

a different approach will have to be used for our more generic

behaviour definition system. For similar reasons we believe that

the use of mainly intrinsic functions results in the main cause of

inflexibility of the ZBL/0 system. An implementation using

external libraries to provide the core language with functionality

would have made the system much more extensible and flexible.

The plug-in architecture that was implemented in the latest version

of the ZBL/0 system will be able to deliver a partial solution to this

problem. This feature of the ZBL/0 virtual machine will be used in

a similar fashion in the creation of our more generic behaviour

definition system.

ACKNOWLEDGEMENTS

I would like to thank the members of the ZFX team (at

www.zfx.info) – especially Milo Spirig, Sebastian Pech and Oliver

Düvel – for their valuable feedback and for program testing. Their

suggestions and comments have been encouraging and very useful

for the design of the ZBL/0 system. I also need to thank Stefan

Zerbst for “mentioning” that a scripting extension to the game

“Pandora’s Legacy” might be beneficial, prompting me to design

ZBL/0 in the first place. Furthermore I need to extend my gratitude

to everyone whose comments and suggestions contributed to this

paper, especially Prof. Peter Comninos for inspiration, support and

help in the preparation of this paper and Steffen Engel for

encouragement.

REFERENCES

Anderson, E.F. (2003). “ZBL/0 - the ZFX Bot Language”. ZFX -

3D Entertainment – http://zbl0.zfx.info

Boselli, L. (2004). “GUN-TACTYX - Historical Background” –

http://gameprog.it/hosted/guntactyx/info.php#intro0

Brusilovsky, P., Calabrese, E., Hvorecky, J., Kouchnirenko, A., and

Miller, P. (1997). “Mini-languages: A Way to Learn Programming

Principles”. Education and Information Technologies 2 (1), pp. 65-

83.

Funge, J.D. (1998). “Making Them Behave: Cognitive Models for

Computer Animation”. PhD Thesis, University of Toronto

Huebner, R. (1997). “Adding Languages to Game Engines”. Game

Developer, Vol. 4(1997): nr 9

Ierusalemschy, R., de Figueiredo, L. H. and Celes, W. (1996).

“Lua–an Extensible Extension Language”. Software : Practice &

Experience, Vol. 26(1996): nr 6, pages 635-652

Kernighan, B.W. and Ritchie, D.M. (1988). “The C Programming

Language”, Prentice-Hall

Li, S. (2002). “Rock ’em, sock ‘em Robocode!” IBM

developerWorks: Java technology –

http://www-106.ibm.com/developerworks/library/j-robocode/

McIver, L. and Conway, D. (1996). “Seven Deadly Sins of

Introductory Programming Language Design”. Proceedings of

Software Engineering: Education and Practice (SE:E&P'96), pages

309-316

Poiker, F. (2002). “Creating Scripting Languages for

Nonprogrammers”. AI Game Programming Wisdom, Charles River

Media, pages 520-529

Stroustrup, B. (1997). “The C++ Programming Language”, 3rd

Edition. Addison Wesley

Tapper, P. (2003). “Personality Parameters: Flexibly and

Extensibly Providing a Variety of AI Opponents’ Behaviors”.

Gamasutra – http://www.gamasutra.com

Varanese, A. (2003). “Game Scripting Mastery”. Premier Press

Wirth, N. and Jensen, K. (1974). “PASCAL - User Manual and

Report”, Springer-Verlag

Wirth, N. (1977). “Compilerbau”, Teubner

Zerbst, S., Düvel, O. and Anderson, E. (2003). “3D-

Spieleprogrammierung”. Markt + Technik

