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Abstract. Intelligent data analytics gradually becomes a day-to-day reality of today's businesses. However, despite rapidly 
increasing storage and computational power current state-of-the-art predictive models still can not handle massive and noisy 
corporate data warehouses. What is more adaptive and real-time operational environment requires multiple models to be 
frequently retrained which fiirther hinders their use. Various data reduction techniques ranging from data sampling up to 
density retention models attempt to address this challenge by capturing a summarised data structure, yet they either do 
not account for labelled data or degrade the classification performance of the model trained on the condensed dataset. Our 
response is a proposition of a new general framework for reducing the complexity of labelled data by means of controlled 
spatial redistribution of class densities in the input space. On the example of Parzen Labelled Data Compressor (PLDC) we 
demonstrate a simulatory data condensation process directly inspired by the electrostatic field interaction where the data are 
moved and merged following the attracting and repelling interactions with the other labelled data. The process is controlled 
by the class density function built on the original data that acts as a class-sensitive potential field ensuring preservation of 
the original class density distributions, yet allowing data to rearrange and merge joining together their soft class partitions. 
As a result we achieved a model that reduces the labelled datasets much further than any competitive approaches yet with 
the maximum retention of the original class densities and hence the classification performance. PLDC leaves the reduced 
dataset with the soft accumulative class weights allowing for efficient online updates and as shown in a series of experiments 
if coupled with Parzen Density Classifier (PDC) significantly outperforms competitive data condensation methods in terms of 
classification performance at the comparable compression levels. 
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INTRODUCTION 

Rapid increase of cheap storage space and computational power led to a massive expansion of terabyte data-
warehouses and boosted the demand for accessing and processing these massive information sources. Data analytics 
and mining continuously gain in importance for virtually any business today [ 1 ]. On the one hand increasing number of 
automated intelligent data-driven processes require information processed in real-time, on the other hand complex an­
alytical and predictive models are being deployed for a variety of on-demand services. All these technologies attempt 
to use the most advanced data mining and machine learning models, yet the disparity between the requirements and 
model capabilities is worryingly growing due to inability to process vast amounts of data in real time. Classification 
methods are at the very heart of pattern recognition and machine learning yet the most advanced models like neural 
networks, support vector machines or density based classifiers [2] are computationally very expensive with respect to 
the number of samples to be processed. Such classifiers struggle with the data sizes of the order of tens of thousands 
yet face now the data sources with millions or even billions or records. To deal with this problem the data needs to be 
reduced to the manageable size. The challenge is to achieve it with a minimum information loss and no harm on the 
subsequent classification performance. 

The simplest and possibly the most common data reduction methods are random sampling techniques [3]. They are 
suitable for large datasets with simple structure but fail on smaller noisy data particularly with large density or class 
imbalances as they tend to ignore less populated data subspaces. It is believed that the proper condensation method 
should make use of all of the original data points [2]. The state-of-the-art data condensation methods in its majority try 
to select a subset of data that maximally retains the original data density or other characteristics like quantisation error 
etc [4]. A number of methods in this group work around the principle of removing samples from the less dense regions 
in favour of strengthening the evidence in the denser regions such that the deviation from the original data density is as 
minimal as possible [4], [6]. Other methods use multi-resolution spatial analysis to split data into partitions or clusters 
[7] and use centres of these clusters as new condensed dataset. 
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Classification-based condensation methods are relatively new and serve directly the purpose of retaining or im­
proving classification performance given the reduced training set. Typical examples of such classification focussed 
condensation are the reduced nearest neighbour rule, iterative condensation algorithm [5] or locally variable conden­
sation models based on neural networks [8]. In all these efforts none of the methods try to actively change the data from 
its original position. It is reasonable to assume that releasing data from their original positions could fiirther improve 
classification performance or at least allow for further condensation given similar classification performance. In [6] 
Girolami and He obtained improvement of the Parzen density fit of the reduced set by finding the optimal data weights 
on the course of constrained optimisation process. A natural extension of such model would be to include data vectors 
themselves into the variables to be optimised yet this would undoubtedly trap the process into large number of local 
optima building up on the excess of the degrees of freedom for this very-high dimensional search space. In a response 
to this challenge a new condensation model is here proposed which applies electrostatic-like data field to condense and 
transform labelled dataset in order to retain or boost the performance of a classifier trained on such dataset. A set of 
2 model variations is presented and tested in a form of dynamic iterative simulations carried out on standard datasets 
used for classification benchmarking. 

The remainder of the paper is organised as follows. The next section discusses kernel-based data density estimation 
as a prerequisite to further analysis. The following section introduces main assumptions of the electrostatic interaction 
applied to labelled data. Then details of the dynamic condensation process are discussed in the following section along 
with the model update and tuning techniques. The next section shows the results of some comparative experiments 
demonstrating condensation and classification performance of the proposed model and follows with brief conclusions. 

KERNEL-BASED CLASS DENSITY ESTIMATION 

Kernel methods have been proven useful in a number of applications [9]. The rationale behind using kernels for density 
estimation is to ensure that every data point is actively contributing in the formation of the final density landscape. 
There is an extensive literature on kernel-based density estimation methods applicable to both labelled and unlabelled 
data [10]. In both cases Parzen Window Density Estimator (PWDE) with Gaussian kernels is widely used. However, in 
a business environment with massive temporally evolving datasets kernel based density estimation methods struggle 
on a number of fronts. First of all they rely on costly-to-obtain distance measures between all the pairs of data which 
scale rather badly with the dimensionality of the data. Moreover, it is not immediately possible to store a summarised 
density model and each time a density estimate is required it needs recalculation of contributions from all other data 
points in the input space. If on top of that the data itself changes for example along the time then the whole distance 
matrix needs to be continuously rebuilt which would most certainly be intractable for larger dataset. We propose a 
novel solution to all of these problems in the context of classification data where additionally it is important to make 
provisions for maintaining class separability and ensuring maximum possible classifier performance. By an analogy 
to the charged particles in the physical world one can consider the data as charged particles each being the source of 
a central field affecting other samples in the input space [11], [13], [14]. All the characteristics of such field are the 
results of the definition of a charge potential or kernel function and can be absolutely arbitrarily chosen depending 
on various priorities and requirements. We have shown in our previous work that one can construct a classifier or 
a clustering model using a dynamic data fields methodology [11]. In this work the focuss is on building the most 
compact representation of the labelled dataset that maximally retains the original class density landscape and thereby 
allowing for fast application of well performing classifiers. For that purpose we use Gaussian kernels for class density 
estimation and apply electrostatic data condensation in a specifically designed controlled environment. 

Letxl"^™] stand for the matrix of n m-dimensional data vectors Xj where / = l,..,n and let (Ot G {Qi,..,Qi} mark 
the class label of the i"' data point. Following a Parzen Window approach [2] an estimate of the data density at point 
Xj can be obtained by calculating: 

where V„ is a window volume, Kisa specific kernel function and his a smoothing parameter. Since density / shares 
the characteristics and properties of the kernel function it is often selected such that it has mathematically tractable 
properties, such as continuity or differentiability. For that reason a Gaussian kernel is an ideal candidate and as we 
show later it also acts as a perfect definition of class potentials to be used later in the condensation model. Given a 
Gaussian kernel the density fimction for each class takes the form: 
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^^' 2K"'/^h"'n,. ^t^, 
(2) 

i,<3),=Q; 

In the general case, instead of crisp labels, each data point Xj could be considered to belong to all the classes with 
various degrees of membership represented by some soft measures like fuzzy membership or probability measure. 
For each such data point one can assign a corresponding class membership vector Ci = [cii,..,CiL] that form a class 
membership matrix C'"^ [ci,.., Cn] . In that case the class density function becomes: 

1 iz^l^ 
(3) 

Note that if for each data point class memberships add up to a unit i.e.: V,=i_.._„Xf'=i '^n = 1 then the soft density 
estimation as given by (3) can be always applied even if only crisp class labels are provided. 

Such class density estimates can be easily converted into a soft classifier. Let pji = j9(Q;|xj,X,C) stand for an 
approximation of the posterior probability that point Xj belongs to class Q;. Applying a simple transformation and 
normalisation to sum up to a unit the class posterior probability pji can be obtained as follows: 

Pji = 
1/(1 -gji] 

I i i l / ( l + e - ^ i * ) 
(4) 

The optimal smoothing parameter h can be found through a simple leave-one-out maximum likelihood optimisation 
that minimises the classification error [2]. 

ELECTROSTATIC INTERACTION OF LABELLED DATA 

So far we have shown how to obtain a class density at any point in space for the multi-class data. Now we show how to 
define an interaction among these data points that would try to reduce the spatial data complexity and at the same time 
retain the original class densities as much as possible, while additionally separate different classes from each other. 
In a search for such interaction we were inspired by the well known electrostatic field which causes the carriers of 
an electric charge to attract or repel depending on the sign of charge with the magnitude proportional to the squared 
inverse of a distance and the product of the charge absolute values. Formally the electrostatic field vector Ej at any 
particular point in space Xj emerges as a gradient of the potential Vj that was generated from the individual charge 
carriers' contributions i.e.: 

Ej=^ = -'^Vj = 
dVj 
dXji' • "' f)x-

_ d 1 « qt 

<9xj4;reo,tt |xj-Xi| 

1 
Aneo i=l 

(5) 

where q, are the charges of individual carriers and l/4neo is a field constant which we can drop for our analysis. The 
actual force acting on the carrier located in point Xj would depend on the field vector Ej as well on the size and the 
sign of the charge placed in the point Xj such that: 

F j = ^ ; E j (6) 

Adopting the electrostatic model to the labelled data points one can consider class labels as sources of certain 
potential proportional to the soft class membership value c,7 for each class. To encourage reduction of spatial data 
complexity the proposed interaction needs to result in attracting data from the same class while repelling different 
classes from each other. In order to achieve such interaction we embody Parzen density estimate into class-sensitive 
potential. In the calculation of the potential we assume that at the probe measuring point Xj all the classes are 
equipartitioned i.e. V;=i ._iĈ 7 = l/L. The class sensitive potential becomes: 

•' 2 ; r '« /2 / i '»n 

n L 

-Oil - - { \ - C i i ) 

attraction repultion 

i r r 
"2 h 

1 
2;j:m/2/jm„ 

i=\ 

1-L i l ^ j - ' - iP 

(7) 
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Note that electrostatic interaction between two points with soft class partitions effectively breaks down into an 
interaction between two sets of L points each with the weights equal to the class partitions. Given (7) and the 
assumption of equipartitioned probe data point the following holds: 

• Given just 1 class factor (2 - l)/L becomes a unit and the whole field remains attracting only 
• For 2 classes the whole potential vanishes to nil. 
• For 3 and more classes factor (2 - l)/L becomes negative hence there will be always an excess of repelling 

interaction. 

An attractive property of such representation of the potential is that the field vector Ej at any point of the input space 
can be immediately obtained by a simple calculation of the gradient from potential: 

The simple formula for the field potential given by (7) effectively stands for the energy of an interaction with 
labelled data Xj per unit of class-equipartitioned charge positioned in point Xj. In the general case, however, uniform 
distribution of class partitions is a very unlikely simplification and the energy of interaction would have to be derived 
from sums of all individual pairwise interactions among class partitions over all the labelled data points in the input 
space i.e.: 

1 « L 1 ["j-"! p 1 « 1 ["j-"! p 

where " x" denotes standard matrix multiplication operator Generalising even more one could assume that data 
points could have different charge weight. Thus, instead of assuming that qi = Xf=i Cu = 1 there could be arbitrary 
different charge values qi scattered in the input space and in that case the potential energy of interaction between points 
Xj with charges qi and class partitions q and the point Xj with charge qj and class partition vector Cj becomes: 

l i V ^ . r o . . ^ .T i l i r ^ l ^ 
Us = --JL^ll^[2ciXcI-l]e-^\ " I (10) 

K"'l^h"'n i=\ 

Similarly, if the electrostatic field vector is applied to an arbitrary labelled data point Xj with a charge qj and class 
partitions Cj the simple form of field vector as expressed in (8) becomes a force vector Fj which inline with (9) and 
(10) can be expressed by: 

'ij V ^ . r o . . ^ . T 
il=r^|2 

Fj = - ^JL.2. 1 g- [2*̂] x'^I-'] (̂ J -^i)^'^I ' I (11) ^m/lhm+l^ 
i=\ 

Note that the only quantity that decides about the direction of force is the term 2cj x c?̂  — 1 describing distribution 
of class partitions while the charges themselves decide about the magnitude of force. 

DYNAMIC CONDENSATION PROCESS 

Given the forces acting upon all the labelled data points in the input space we can now release the data from their 
original locations and let them move along the data forces towards more stable lower energy states. In order to 
preserve the original class densities we propose two methods of constraining the electrostatic field: one through a 
direct interaction of the mobile condensing data with the fixed uncondensed original data and the second through a 
dynamic reevaluation of the mobile data class partitions q according to the original Parzen density classifier Both 
methods allow to dynamically control and change the interaction among the moving data depending on the proximity 
to the other mobile data cross-referenced with the original data locations. On the course of such guided simulation the 
data particles are allowed to merge and join their class charges if the distance between them falls below an arbitrary 
threshold value d. The condensation process continues until the total energy stops falling i.e. the system reached the 
equilibrium state. 
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Before we formally describe the condensation process using the above mentioned two different options let us 
simplify the notation using matrix formulation. Let "o" denote element-wise or Hadamard matrix multiplication, and 
let ll"'™] be an n by m matrix with all unit elements. Let us consider a generalised case in which an interaction is 

between the data stored in a matrix X'"̂ ^ >xM and the data 7l"J'''«l with with the corresponding soft class charges g]^ 
the class charges Qy' '^'. Note that the class charge matrix is different from class partitions as it could accumulate 
class charges and unlike for class partitions their sum for individual points can exceed the unit. We also associate the 
mass of individual data point with the sum of charges such that the vector of data points masses will be denoted by 
Q = exi[^ ' i i . 

Let A and B stand for the auxiliary matrices expressed as follows: 

l\L,L' 

( ^ 
1...1 0... . 
0...0 1...1 0 

0 

I 

. ...0 
0 

0 1...1 
L 

\ 

BIL'M = 

J 

/ I 0 .. 0\ 
0 1 .. 0 
0 
0 . . . . 1 
1 0 0 0 
0 1 0 0 
0 
0 . . . . 1 

1 0 0 0 
0 1 0 0 
0 

\o .. .. ij 

(12) 

What is interesting about these matrices is that given the class charges matrices Qx and QY the term [Qx x ̂ ] x [5 x 
Qy] generates a matrix of all the possible products combinations across all the points and classes between datasets X 
and Y. That way all the balanced repelling and attracting interactions among class contributions can be captured in a 
single matrix H^y'"^ that given the (11) and (12) can be calculated by: 

H^xf'"'^ = [Qx xA]x[Bx Q^y] - 2Qx x gf (13) 

For computational complexity the critical operation is a calculation of distances between all the pairs of data points. 
Using matrix formulation of the problem and the appropriate mathematical software, this task can be accomplished 
rapidly even for thousands of training sources. Given our dataset X we want to obtain the matrix of distances 
£)[nx,nr] ; {dij} where ij' = 1,.., n. The distance matrix can be then calculated instantly by: 

DxY = ^ ( ( ^ o X ) X ll'"'"^! X - 2 X 7^ + ll"^'"! x 7^ o 7^) 

Let D^y stand for the matrix of all individual differences x^ -yjk along k"' dimension given by: 

D' XY : X k X l [ i ' " y l - l [ " ^ ' i l x Y k ^ 

(14) 

(15) 

where Xt, Yt are the vectors of all the values for the k"' dimension. 
Denoting further the fixed terms in (10) by scalars a = (2;r'"/^/i'")^' and b = -(2/i^)^' we can now obtain a vector 

with potential energies of all the data inX caused by the interaction with the data in 7 in a single matrix operation: 

Ux = -—//x7oe*^^^xl["^'il 
rix 

(16) 

Similarly the force matrix Fx = [F^, • •, F™] can be obtained in a single matrix operation for each dimension i.e: 

F\= ~HxYoD'j,yoe'^ xl^"^''^ (17) 

The examples of the potential energy and force vectors generated by the labelled data points of the famous Iris 
dataset are presented in Figures 1 and 2. 
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FIGURE 1. Potential energy of the electrostatic interactions among the labelled points in Iris data set 

4.5 5 5.5 6 6.5 7 7.5 

FIGURE 2. Force vectors pointing at directions of the maximum fall of energy of the interactions among the classes in Iris dataset 

608 

Downloaded 05 Dec 2007 to 150.140.180.190. Redistribution subject to AIP license or copyright; see http://proceedings.aip.org/proceedings/cpcr.jsp



The forces act upon all the data X in the input space and cause them to move and merge. Assuming the force 
vector does not change within proximity of points the distance by which the data move in a small time period At is 
proportional to the force and the inverse of the charge and can be approximated by FAt^jQ. In order to guard against 
overshooting the time period applied to each step is set such that each data point moves by a distance of at most d i.e.: 

Atd = max. / f^ = max, dQ x ll^.i] o ^ = (18) 

Given Atd, the matrix of shifts in all dimensions at each step can be simply obtained by: 

1 .2 AX = FAt^,o^ _ , ^ „ , (19) 

After the shifts all the points are tested against mergers i.e. if any pair of points is closer than d from each other then 
they are merged into a single point with the summed class charges and the merge location of the new point at: 

Xmerge (Xj, Xj) = Xj /• h Xj -^ (20) 
9i + 9j Qi + Qj 

Then the whole process repeats and the data continue to move until the equilibrium is found in which the total 
energy does not fall any more. 

Summarising, the condensation process can be formalised in the following steps: 

Build Parzen density classifier PDE on the the original labelled data (F, Qy) as shown in (3) and (4) 
Calculate distance matrix D^ between all the pairs of points between X and Y using (14) 
Prepare the charge matrix Qx by taking the class labels or applying soft PDE estimate according to (4) 
Using DxY, Qx and QY calculate the class interaction matrix HXY using (13) 
Using DxY and HXY calculate the force matrix Fx according to (17) and/or energy vector Ux using (16) 
Using Qx and Fx calculate the optimal time period Atd as shown in (18) 
Using F and Atd calculate the matrix of shifts AX according to (19)and move the points to the new locations 
Apply the merge test to all the pairs in X and merge the points that were tested positive by calculating the new 
weighted location according to (20) and summing the corresponding soft class charges. 
If total energy of interaction measured atX did not decrease then STOP else go to step 2. 

Now in the first option of the condensation process one could consider X to be a mobile data-particles that can move 
and merge as an interaction of the fixed dataset Y that stays unchanged. That way the data inX are continuously guided 
by the original uncompressed datasets Y. In the other option of the algorithm the datasetsX and Y are considered to be 
the same and the moving points interact with each other rather than with their original "ghost" copies. For both options 
the guidance of the original class densities can be further strengthened by continuous reevaluation of the charge matrix 
Qx such that it is in proportion with the original Parzen density estimates i.e. at step resetting the charge to the original 
Parzen density enforced values: 

e x = exxl[^ '^ loP (21) 

where pl"-*''-̂ ! is a Parzen density based evaluation of the class posterior probabilities obtained according to (4) 

MODEL TUNING AND ONLINE UPDATE 

The advantage of the presented data reduction technique is that at any moment as well as at the equilibrium it contains 
all the necessary state parameters and can be easily updated by the incoming data or even appended by the whole whole 
new dataset. The only requirement is that the new data have to be consistent in terms of dimensionality and the number 
of classes with the original dataset. Before we get into details on condensation model update let us summarise the 
model parameters and their meaning for controlling condensation process. So far there are only two model parameters: 

• The Gaussian width h controls the balance between local and global strength of the data density field and is 
optimised with respect to the generalisation performance of the Parzen density based classifier built on this data 
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• Data merger distance disa threshold distance below which a pair of point is merged and is set to be about 1/500 
of the maximum distance between 2 points found in the input space. 

In cases of labelled data with well beyond 2 classes there could be a risk of imbalance between attracting and repelling 
interaction caused by the excessive repulsion from many combinations of differently labelled data. In order to remove 
this imbalance we can introduce a generic adjustment to the class interaction matrix H which can be parametrised 
using regularisation parameter s to the general form: 

H^XY'"'^(S) =H,= \QXA X [5 X Q^Y\ - 2sQx x Q^ (22) 

Parameter s is defacto a factor expressing how many times the attracting interaction is to be stronger/weaker than 
the repelling interaction. To free the user from setting this parameter arbitrarily we can introduce a generic rule that 
sets s such that total energy of the data interaction cancels out to nil. To achieve this we have to solve the following 
matrix equation: 

J^Ux= l[''"^l X (//,oe^^^J-) X l["^''l = 0 (23) 

with respect to the regularisation parameter s. In the model we used bisection method to find numerical estimation 
of the parameter s. That way we always achieve a balanced field such that the excess of inter-class repulsion is always 
compensated by the boosted intra-class attraction and vice versa in cases of small number of well separated classes. 

After each iteration as well as in the equilibrium state the state of the condensed dataset is fully defined by the matrix 
of current locations X and the summarised charges matrix Q. Following multiple mergers individual class charges qu of 
certain points Xj can be in excess of tens or hundreds. Such points typically sit in the local maxima of class-conditional 
Parzen density estimates and are resistant to move due to interaction with low charge particles. The class charges serve 
here two purposes: on the one hand they represent the amount of class represented in data-point units and secondly in 
the absence of kinetic effects they are the sole sources of particles' inertial momentum that in that case is a tendency to 
maintain the current position in the input space. These properties allow for easy updates of the condensed data by the 
new data point or even whole new datasets without the need to rerun the condensation. The update process is achieved 
by simply releasing the new data in their original locations in the input space and letting them move down the potential 
until the updated system reaches the new equilibrium state. The same applies to an update by multiple data points or 
larger new datasets. 

The PLDC model can be updated in two different modes: accumulative and adaptive. In the accumulative mode the 
sum of class charges keeps increasing by the new labelled data. In the adaptive mode, the sum of class charges is kept 
constant by renormalisation following the new additions, i.e. when the new dataset X„gw with the class charges Q„ew 
is added to the existing partially or fully condensed dataset Xou with class charges Qou then the new overall dataset 
becomes: 

il'-"oMlxe„Mxil̂ -'l in,.n 1 ^'^'^^ 
l | l .«owlxe„MXll^' 'l+ll ' '"««»'lxe„e„,xlli ' ll 

nln„id+n„ew,L] _ l'-"''"'xe„MXl'"-'' tp Q 

where operation [A;B\ means merging the two matrices A and B together along the first dimension. 

EXPERIMENTS 

The presented electrostatic condensation model has been evaluated in terms of classification performance obtained 
once trained on the reduced datasets and compared with the performance obtained for training on the original data. 
A number of well-known datasets from the UCI Repository ^ have been selected for evaluation. A brief summary of 
these datasets is presented in Table 1. 

All the datasets were compressed using both options of the algorithm and their final states containing compressed 
data locations and the class charge matrices stored and used further to build Parzen density classifiers. Figures 3 and 4 
show the compressed states for Iris and Land Satellite Images datasets overlayed over the original data plots. The sizes 
of the compressed data points are proportional to the sum of class charges Y.j Qij accumulated during the mergers with 
other data points. 

University of California Repository of Machine Learning Databases and Domain Theories: ftp.ics.uci.edu/pub/machine-leaming-databases 
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TABLE 1. A list of datasets used in the ex­
periments 

Dataset Size Features Classes 

Iris 150 4 3 
Ionosphere 351 34 2 
Diabetes 768 8 2 
Satimage 6435 36 6 
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FIGURE 3. Iris dataset compressed using electrostatic interaction (left) with the fixed density guidance (right) with the dynamic 
class relabelling 

The trained models were then applied to classify the corresponding original uncompressed datasets and obtain 
misclassification errors that were compared to the standard 10-fold cross-validation error obtained without any 
compression. These errors together with the compression rates obtained for both options of the PLDC model are 
presented in Table 2. 

Please note that dynamic PLDC achieves higher compression levels yet results in worse classification performance 
than static PLDC which is in agreement with the intuitive trade-off between complexity of the data structure and the 
accuracy of the model buih on this data. 

Now using the same criterion of the compression rate and misclassification error we have compared PLDC method 
with other data reduction techniques. Three other methods were picked for comparison, two rather simple ones based 
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FIGURE 4. Land Satellite dataset compressed using electrostatic interaction (left) with the fixed density guidance (right) with 
the dynamic class relabelling 
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4.00 
13.1 
25.1 
13.2 

4.3 
13.3 
25.8 
13.3 

92.0 
91.6 
95.3 
95.4 

5.3 
14.8 
29.4 
14.1 

98.0 
98.1 
98.7 
98.9 

TABLE 2. Classification errors and compression levels obtained from application of PLDC to different 
datasets from UCI Repository 

10-fold cross-validation Fixed PLDC Reduction Dynamic PLDC Reduction 
Dataset error [%] error [%] level [%] error [%] level [%] 

Iris 
Ionosphere 
Diabetes 
Satimage 

TABLE 3. Comparison of various data reductions tech­
niques with PLDC for the Land Satellite dataset. 

Method Error [%] Reduction level [%] 

10-foIdc-v 13.2 0 
Fixed PLDC 13.3 95.4 
RSDE 15.7 82.3 
Random Sampling 18.1 95.0 
K-means clustering 16.8 95.0 

on k-means clustering and random sub-sampling and a more advanced condensation method called Reduced Set 
Density Estimator (RSDE) introduced in [6]. Due to complexity of the problem and a lack of presentation space 
the comparison has been carried out only for Land Satellite dataset and the results are shown in Table 3. 

For the k-means and random sampling methods the level of compression has been fixed to 95% such that it is 
comparable to the fixed PLDC compression levels. The results clearly indicate that at the same compression rates 
PLDC allows to obtain higher classification performance close to the original performance of the classifier trained on 
the complete uncompressed dataset. 

CONCLUSIONS 

This work introduces a new methodology of labelled data reduction that is directly optimised to a particular classifi­
cation model. The rationale behind such coupled data reduction technique is to exploit specific modelling engine of a 
particular classifier in order to strengthen the importance of key data points while weaken or remove points that play 
a minor role in shaping the class distributions and uhimately class boundaries. The data reduction takes place as a 
result of dynamic data condensation caused by an electrostatic-type interaction that causes the data to move and merge 
in a search for stable local energy minima. The interaction among the data has been designed in a class-sensitive yet 
balanced manner such that the infra-class attraction and inter-class repulsion are normalised to resuh in a zero total 
interaction energy. The presented data reduction methodology is generic and applicable to any classifier yet is partic­
ularly effective for classifiers capable of delivering soft class probabilities as has been shown in detail for the Parzen 
density classifier. This particular instance of the condensation model called PLDC has been shown to reduce all the 
tested datasets down to few percent of their original sizes yet virtually retaining the spatial class distribution in-tact 
such that the classifier trained on the reduced dataset performs as well as if trained on the uncompressed data. We have 
shown two ways of constraining the reduction process by the original class densities. In the first method called fixed 
PLDC the mobile data were interacting with the fixed original data which resuhed in a less condensed data though bet­
ter matching the original class distributions and better subsequent classification performance. The other model version 
called dynamic PLDC used continuous redistribution of class charges according to the original class distributions and 
resulted in very high condensation levels often exceeding 98%. Such high condensation have been achieved for the 
price of only slightly worse classification performance. Future advancements will include attempts to incorporate cat­
egorical data and provide automated field tuning mechanisms along with an attempt to make the presented algorithms 
more scalable and numerically stable. 
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