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ABSTRACT: This paper provides a description and experimental comparison of different forecast combination techniques for
the application of Revenue Management forecasting for Airlines. In order to benefit from the advantages of forecasts predicting
seasonal demand using different forecast models on different aggregation levels and to reduce the risks of high noise terms on
low level predictions and overgeneralization on higher levels, various approaches based on combination of many predictions
are presented and experimentally compared. We propose to evolve combination structures dynamically using Evolutionary
Computing approaches. The evolved structures are not only able to generate predictions representing well balanced and stable
fusions of methods and levels, they are also characterised by high adaptive capabilities. The focus on different levels or methods
of forecasting may change as well as the complexity of the combination structure depending on changes in parts of the input
data space in different data aggregation levels. Significant forecast improvements have been obtained when using the proposed
dynamic multilevel structures.

KEYWORDS: Forecast Combination, Adaptive Forecasting, Genetic Programming Airline, Revenue Management

1 INTRODUCTION

A typical approach to building a forecast model consists of a phase of data analysis, determination of a level of forecasting and
history building, model creation, determination of appropriate preprocessing, parameter calibration and validation. The model,
once built, is updated on a regular basis by model rebuilding or updating the history based on the most recent data. But even
if the calibration has been done well, it is likely that the real relationship between given inputs and the values to predict is so
complex that it can not be modelled perfectly. A common problem is also the detection of appropriate input data aggregation
levels on the basis of which forecasts are generated. If the aggregation level is too low, there is a risk of being able to observe
only a small number of historical data containing very high levels of random noise and not taking into account important
information. If, on the other hand, the data aggregation level is too high, there is a risk that important data characteristics are
not represented appropriately. This problem is becoming even more relevant if the underlying processes and data change over
time and the chosen settings are not optimal any more.

Considerable literature has accumulated regarding the combination of forecasts (for overviews see e.g. [1] or [2]) concluding
that the forecast accuracy can be substantially improved through the combination of multiple individual forecasts. In the
presented study different approaches for combining predictions are used in order to benefit from the advantages of forecasts
predicting on different levels of the input data space and at the same time to reduce the risks highlighted earlier. Combinations
using all forecasts in one combining process are compared to different multistep approaches.

We propose to evolve combination structures dynamically using Evolutionary Computing approaches. The evolved structures
are not only able to generate predictions representing well balanced and stable fusions of methods and levels, they are also
characterised by high adaptive capabilities. The focus on different levels or methods of forecasting may change as well as the
complexity of the combination structure depending on changes in parts of the input data space in the different data aggregation
levels.

We first discuss the problem in giving an introduction to combining approaches and a motivation of why we decided to use
multilevel forecasts on decomposed data. Then the use of static multilevel combination structures is shortly described. The
focus in this study is put on an investigation of how genetic programming approaches can be used in order to evolve dynamic
multilevel combination structures. We finally discuss experimental results which show a clear forecast improvement while
using dynamic multilevel combination strategies for the Revenue Management application of demand forecasting for airlines
with special focus on the component representing seasonal behavior.



1.1 COMBINATION APPROACHES

Forecast combination approaches are today a scientifically acknowledged procedure to model complex functional relationships
in producing not one optimal forecast, but a number of forecastsx̂m ∈ R and combining them for the final prediction̂x ∈ R.
The existing combination approaches differ in the description of the functional relationshipf : Rm → R which represents
the fusion process. In linear combination models the relationship is defined as a simple weighted linear sum of the individual
forecasts:

x̂ =
∑
m

wmx̂m, wm ∈ R ∀m. (1)

Individual forecast performance is taken into account to calculate the weights (for details concerning models see e.g.[1] and
[2]). A more complex and flexible group of combination models are nonlinear combination models. In this group, mostly
application specific approaches differ in the selection of external input information as well as in the general approach. Typical
nonlinear approaches include neural networks [3], (fuzzy) expert systems [4] and functional approaches.

It has been shown theoretically and experimentally (see e.g. [5]) that the best results can be achieved if different individual
forecasts are divers in the sense that they are able to provide diverse knowledge based on different input information in terms of
different available sources of information, different preprocessing or history pools, different functional or stochastic approaches
or different parametrisation of the models. So combination can also be used in order to profit from different parameter settings
or different views of historical data. It is even possible to use it to calibrate preprocessing like signal stabilisation and filtering
procedures. Note that the advantage here is that the combined forecast is profiting not only from one often very good solution
like one optimised parameter set, but from a whole set and additionally it is an adaptive procedure meaning that, e.g., a
parameter set would automatically adapt to new situations.

For our application of demand forecasting for airlines it was not possible to significantly outperform the individual forecasts
using the common combination models directly on different predictions made for the future demand. A reason for the only
small improvements can be found in the high covariance values between the individual forecasts. These result from high noise
terms in the data because of an extremely fine forecast level and forecast models which take into account the same demand
influencing factors and therefore produce results which are not very diverse. The process of learning the combining weights
is over-interpreting small changes in the forecasts, which leads to instabilities and data overfitting. The observed behaviour is
a common problem occurring with the use of combination models. For similar experiences described in the literature see e.g.
[5].

In order to improve the situation we followed the strategy of decomposition and multilevel forecasting. A motivation for this
decision is given in the next subsections.

1.2 DECOMPOSITION

Data is often influenced by a whole set of impacts, which are (hopefully) rather independent of each other. Generally not all of
these impacts are known or modelled. That is why predictions, even if generated using different models, often produce errors
which are correlated to the not modelled impacts and which are therefore also correlated among each other. This leads to the
problems for the combination process mentioned above.

The approach of decomposition offers not only a solution in order to avoid the combination of highly correlated forecasts (
see e.g. [6]), it also brings a lot of other advantages like the use of models and parameter sets which are specialised to the
characteristics of a specific component concerning e.g. its structure, dependencies on input information, stability and noise
level.

1.3 DETERMINATION OF APPROPRIATE FORECAST LEVELS

Real world forecasting problems are often not related to an isolated prediction, but to the task of predicting the future situation
in an application defined space. For the application of revenue management forecasts this means a whole network of flights,
routings or itineraries which again are containing different fareclasses, point of sales and other variables. A crucial problem
is to determine appropriate levels on which forecasts should be produced, on which the models are calibrated or structural
characteristics are determined. If a level is chosen too fine, there is a high risk of undesirable small numbers predictions in
connection with large noise terms in the data as observed in the experiments described above. Important characteristics or
relations may not or only badly be detected, which leads to unstable or structurally poor forecasts. If on the other hand the
chosen level is too general, important characteristics related to special parts in the input space may be ignored.

The task is getting even more difficult if the data is composed of different independent components. So it is likely that seasonal
behavior should be modelled on another level than a schedule change. In practice the level of calculation is often determined
based on static test data. This may become a problem when the behavior changes over time. So it can be for instance good
to learn seasonal behavior for a certain booking class on the class level, but if suddenly the amount of bookings in this class
is significantly reduced because a new competitor is on the market, the seasonal behavior should better be learned on a higher
level (e.g. per compartment) in the future.

Automatic approaches to solve the problem should ideally have the following characteristics:



• The forecasts should be able to profit from specialists knowledge (fine level forecasts).

• The forecasts should be able to profit from general structural knowledge (higher levels).

• Fine level noise influence should be reduced.

• The selection of the levels should be adapted automatically to changes in the data.

In [7] we have proposed to extend the use of combining models to generate forecasts on decomposed data, which use all
available information, meaning also different input data representationsx̂m

l ∈ R from different levelsl, and which are therefore
also able to adapt automatically to new situations present at different levels.

2 STATIC STRUCTURES OF MULTILEVEL COMBINATIONS

2.1 Flat Structures of Multilevel Combinations

When applying just one combination procedure on multilevel forecasts (see figure 1) a crucial problem is that the potential
number of forecasts to combine increases significantly. The experience described in the literature showed as well as our own
experiments that the use of a big number of forecasts can lead to solutions which are not able any more to identify relevant
information. There also exists a much higher risk of instabilities based on numerical problems because of noisy data or pour
generalisation ability due to data overfitting problems (see e.g. [8] and [2]).

Figure 1: Flat combination of6 forecasts produced using three functional approachesm1 to m3 at two levelsl1 andl2.

We could achieve forecast improvements if we did the ”correct selection” of not more than five multilevel input forecasts for
the combination, especially if these were connected with quite specialised nonlinear combination models. The inconvenience
here is that the choice of the ideal set of input forecasts demands a high level of special knowledge about the application and
that the approach is restricted in the sense that the choice is not adaptive to changes occurring in the future.

The observed effects correspond to what can be observed in the process of decision finding in the society. If to many people
are included into the process of discussion, the resulting decisions are often not optimal, but compromises tending to satisfy
everyone. Two kinds of alternatives have evolved in society: to reduce the number of people to a set of specialists or to build
up hierarchies and to generate the decisions in multistep procedures.

2.2 HIERARCHICAL STRUCTURES OF MULTILEVEL COMBINATIONS

As just mentioned, a possibility to handle the problem of the big set of potential input forecasts is not to combine all forecasts
but to use multistep approaches combining a number of forecasts and giving the result to a next combination step. We have
generated different intuitive hierarchical structures based on diversity aspects of potential input forecasts. The structures have
been generated in a manner that one step is generally combining predictions which are diverse concerning one diversity criteria
(e.g. the use of a functional approach to generate the prediction), but comparable concerning the others (e.g. concerning the
level of history building and parametrisation). Figure 2 illustrates one of the most successful structures. It is a hierarchical
top down approach meaning that first the forecasts of higher levels are combined and then the combination of the forecasts of
lower levels, but using also the combined forecast from the higher level, is performed.



Figure 2: Hierarchical multilevel forecast combination using three functional approachesm1 to m3 at two levelsl1 and l2.
First the higher level predictionŝxm1

l2
to x̂m3

l2
are combined, then the result is passed to the low level combination.

3 DYNAMIC STRUCTURES OF MULTILEVEL COMBINATIONS

The result obtained using the intuitive structures have been quite diverse. Some of the structures produced very encouraging
results, others did not outperform the flat structures or did even worse. But even if the good results show that the use of multistep
structures may be a way to overcome the problems described in the previous section, the approach of using predefined intuitive
structures is limited in the sense that it needs a lot of expert knowledge in order to identify promising ones. This task is getting
even harder by the fact that a lot of decisions have to be made in advance like the choice of the number of steps and the input
forecasts to include. Potential structures, once identified, then have to be verified by experiments using try and error principles.
And as the fixed structures contain only limited adaptive capabilities, they would have to be rebuilt on a regular basis.

The best structures do not necessarily need to be the intuitive ones. Often solutions found in nature do not follow our intuition.
All these reasons motivate to search for dynamic approaches generating and adapting structures automatically. The generated
optimal structures need to be able to work well in a changing environment. Evolutionary computation offers common algo-
rithms to solve such kind of problems. It simulates evolution in applying optimisation algorithms which iteratively improve
the quality of solutions until an optimal, or at least high quality solution is found. As evolution continues over time the it-
erative process generates solutions which have proven to be flexible in a changing environment by having survived different
generations.

3.1 SPECIFICATION OF THE OPTIMISATION PROBLEM

In order to be able to use evolutionary computation to generate combination structures dynamically, we first have to describe
our problem as an optimisation problem including a description of general conditions of the problem together with restrictions
and the criterium to be optimized. This will be described in this subsection. We start with a discussion of how to come to a
restricted set of input forecasts, continue with a description of our search space as a set of valid combination structures and
finally provide a criterium to be optimized which is based on forecast quality of the resulting combined predictions.

3.1.1 Input forecast selection

As individual forecasts can differ with regard to the use of

• different available sources of information,

• different functional or stochastic approaches,

• different parametrization or the

• different levels of decomposition,



the space of potential input forecasts to be combined can get very large. That is why it is generally not possible to include all
of them into a combination process. There are different options of how to handle this problem.

The first option is to chose a representative set randomly or by expert selection. The set should by chosen small in a manner
that it covers well the complete space of potential input forecasts. It can be expected that one does not loose to much relevant
information in including only those forecasts into the evolution, because forecasts differing in only one dimension, e.g. only
by small parameter changes, are often highly correlated so that the information loss is not critical.

The second option is also to start with a subset of input forecasts, but to extend or change this set during the evolution process.
If it is learned that certain forecasts are especially relevant, it may be useful to include other forecasts which have similar
characteristics.

3.1.2 Description of the search space

The search space is the space of valid combination structures which will be now described. A valid multistep combination
structure contains one or more combination procedures. Each combination procedure is related to a combination stepi,
different steps are connected by the fact that the input forecasts of a combination procedure of stepi > 1 correspond to result
forecasts of combination procedures of stepi− 1. The set of input forecasts of a combination procedure at step 1 is a subset of
the set of input forecasts.

Figure 3.1.2 shows a combination process as a tree. The calculation of the combination represented by the tree is carried
out from the leaves to the root. The leafs represent the input predictions used in the first combination procedures of step1.
All nodes represent combination procedures using one fixed or different combination methods and combining the predictions
passed to them from the lower subtree. The root is the final combination generating the combined forecast.

Figure 3: An example for a combination structure as a tree combining multilevel forecasts generated using using three func-
tional approachesm1 to m3 at two levelsl1 and l2. The different functionsf1 to f3 represent three different combination
methods.

Restrictions to the tree include the number of input forecasts as well as limitations in the number of steps, the maximal number
of forecasts to combine per combination procedure and the set of potential combination methods.

3.1.3 Definition of the optimum criterium

The most simple and intuitive criterium to optimize is defined by the quality of the resulting forecasts. We want to learn
combination structures which generate high quality combined predictions measured on an previously defined and unseen
testbed (details will be given in the experimental section). The error is calculated as a mean absolute deviation value on the
level of forecasting and is given as

E =
1

t2 − t1 + 1

t2∑
t=t1

|x̂(t)− x(t)|, (2)

where t represents a time index over the evaluation period[t1, t2]. More sophisticated versions can include additional in-
formation like errors calculated at different levels or penalty terms corresponding to the complexity of the structure or the
independence of the included combination procedures.



3.2 USING GENETIC ALGORITHMS

We started with the most common and simple approaches which are genetic algorithms. However it became clear quite quickly
that a fixed length bit- representation of the objects to evolve are not ideal in order to represent our tree based dynamic struc-
tures. Even if the number of input forecasts to the combination process is restricted, we could not avoid to get chromosomes
with a complex structure of genes if the size of potential steps is bigger than two and more than one combination model may
be used.

3.3 USING GENETIC PROGRAMMING

A more flexible representation which is perfectly fitting to the tree based multi step combination structures is offered by
the approach of genetic programming (see e.g. [9] or [10]). A genetic program (GP) can be interpreted as a tree with ordered
branches, in which each node represents the application of a primitive function on arguments passed to the node by the branches
from the next lower level. The leaves represent basic arguments called terminals. The root node represents the application of
the function generating the final result.

The process of the development to evolve combination structures using GPs includes the following steps (see [10]):

1. Determine the set of terminals and select the set of primitive functions.

2. Define a fitness function.

3. Define an initial population.

4. Define crossover and mutation operators.

The next subsections follow these steps.

3.3.1 Determine the set of terminals and select the set of primitive functions

The terminals correspond to our chosen subset of the set of potential input forecasts{x̂m
l }.

The set of primitive functions corresponds to the set{fk} of different combination methods included into the evolution process.
If we want to use only one predefined combination model, we have only one primitive function describing a combination
procedure.

3.3.2 Define a fitness function

The fitness function is modelled as a direct representation of the criterium to optimize, which means that it represents the quality
of the resulting forecasts in terms of a mean absolute forecast deviation value and potentially including other information and/or
penalty terms. Note that this definition makes the evaluation of the fitness function expensive in terms of performance, because
it may contain a new calculation of the weights or parameters of all combination procedures included in a combination structure
as well as a determination of error and correlation terms on the testbed.

3.3.3 Define an initial population

The population size is limited because of computational power and performance. As each member of the population represents
a combination structure consisting of different combination procedures for which the combination weights (or other parameters
if we have a nonlinear combination model) have to be learned for fitness evaluation, the population size should be as small
as possible in order to be able to run the evolution quickly. On the other hand we have to assert that the space of potential
solutions is well covered, at least in the domain where we can expect the optimal solution. That is the reason why it can be
worth focusing on the determination of good initial populations.

We have followed two strategies which were both based on input forecast selections as described in 3.1 . In the first strategy we
generated initial combination structures randomly only based on a few parameters like e.g. mean value and standard deviation
given for the number of input forecasts for each combination procedure, the number of steps or the number of combination
procedures to include per step.

In the second strategy we used our knowledge gained during the process of constructing the intuitive structures described in
section 2.2. We used different of our intuitively predefined structures as initial populations for the evolution of the dynamic
structures. The initial fitness following this second approach was slightly better than the one we achieved on average following
the first approach, but we could not achieve significantly better results after the evolution.



3.3.4 Define crossover and mutation operators

We can here use the standard operators described e.g. in [10]. The crossover operator randomly exchanges subtrees of the two
parents, for our combination structures meaning that there we exchange substructures or single combination procedures. For
our problem the crossover operator has to be restricted in the sense that limitations of the maximal number of steps are not
violated. Very stable versions of crossover allow only exchanges of subtrees representing the same step of combination.

The mutation operator randomly exchanges a terminal or a primitive function. Concerning the combination structures, mutation
means that the combination methods are changed in the combination procedures or that input forecasts are randomly exchanged
in the combination procedures of step1 (including the possibility to add or to remove an input forecast).

4 EXPERIMENTS

4.1 DESCRIPTION OF THE EXPERIMENTS

4.1.1 Description of the testbed

The experiments have been carried out with the objective to apply different combination techniques to seasonal demand fore-
casts of a German air carrier in order to improve the forecast quality.

The chosen testbed included10 representative origin- destination pairs (ODs)containing 2 transatlantic flights to America,
4 intercontinental flights to Asia, 2 European flights and 2 national flights as well as direct routings and routings containing
more than one segment.

The experiments started with historical data of 2001. Later the investigations have been extended to data containing 2 time
periods : the period from 1 of January 2001 to 1 of March 2002 and from 1 of October 2002 to 1 of April 2004. The data of
the period between March 2002 to September 2002 has not been available.
The data included

• the number of bookings of the testbed on the fine level ODIFPOS (routing, combination of flights on that routing,
departure date, fareclass, point of sale) at different times prior to departure,

• the availability information of the testbed on the fine level,

• an historically measured seasonal behavior at the departure per calendar week on a fixed level and

• expert estimations concerning market changes.

4.1.2 Description of the selected input forecasts and combination methods

All the reported forecasts are 8 weeks ahead out-of-sample forecasts.

Our first experiments have been carried out on not decomposed data (see also [7] and [11]). In order to illustrate the importance
of adaptation in the discussed application firstly seven different, well known time series forecasting techniques have been
applied to the above described data and their performance compared. Both the methods and their performance on the testing
data are shown in Table 1. Mean absolute error per departure shown in the second column of the table have been used as the
performance measure. As the mean demand at the departure for the examined data is about 2.6 bookings, the forecast errors
vary between about 80% to 120% of the demand. As can be seen from Table 1 the best results have been obtained using the
simple exponential smoothing method.

A highly specialised adaptation to seasonal behavior and other changes as well as to the current booking values is already
existing at the current forecasting system (for experiments related to different adaptations see [11]). This adaptation leads
to a forecast improvement of about 11%. In order to measure the impact of different combination approaches on an overall
forecast quality, in the following experiments the quality of certain approaches is always given in terms of a percentage forecast
improvement compared to this best performing individual forecasting method (i.e. the simple exponential smoothing method
together with the adaptation). The performance has been measured on unseen data meaning a time period which did not
correspond to the period of history building for the forecasts, to the period used to calculate combination weights of the
combination procedures or to the period used for fitness evaluation of the dynamic structures.

As the use of combination models on the toal demand predictions has not been very successful (only 1% of improvement could
be achieved), the following experiments were focused on the use of combination models combining forecasts calculated on
decomposed data.
Five different combining models have been used (for details see [2] and [12]):



Forecasting method Mean absolute error
Simple exponential smoothing 2.05
Brown model (without season) 2.13
Holt winters model (without season) 2.19
Linear regression 2.31
Autoregression 2.48
Moving average 2.53
ARMA 3.15

Table 1: Mean absolute error for different time series forecasting techniques without adaptation.

• (av) : the simple average model

• (outp) : the outperformance model as an example of rank based models

• (opt) : the optimal model with assumption of independence as variance based model

• (sigm) : a nonlinear functional approach expecting that different methods work well for low seasons and different for
high seasons. The parameters of the sigmoid functions used are learned using evolutionary strategies.

• (anfis) : the nonlinear neuro-fuzzy approach ANFIS

The special focus of our experiments was put on the component predicting seasonal behaviour. The generated predictions dif-
fered concerning the sources of information, the functional approach to predict the future behavior, smoothing parametrisation
for the preprocessing and the level of decomposition meaning the level on which the calculation of the current seasonal factor
was carried out.

We included two sources of information: the current season based on booking information already existing for the flights
departing in the future and the historical season measured based on the behavior of the previous years. Three functional
approachesm1 tom3 were included into the experiments,m1 representing an additive approach,m2 an multiplicative approach
andm3 a no season assumption.1 The decomposition was carried out on different levels concerning aggregation over day of
week (DOW), compartment(COMP), fareclass(F) and point of sale(POS).

We have chosen a fix subset of all potential input forecasts covering well the whole space. Table 2 shows a list of the12
included input forecasts.

Table 2: Input forecasts for seasonal behavior included into the evolution of dynamic structures.

nbr source of inform. funct. approach parametrisation decomp.∗

0 current season m1 no smoothing -

1 current season m2 slightly smoothed -

2 historical season m1 strongly smoothed COMP

3 current season m2 slightly smoothed DOW

4 current season m2 slightly smoothed POS

5 current season m2 slightly smoothed F

6 current season m2 slightly smoothed DOW, POS

7 current season m2 no smoothing DOW, F, POS

8 current season m2 no smoothing DOW

9 current season m2 strongly smoothed -

10 current season m1 strongly smoothed -

11 - m3 - -
(∗Listed are the dimensions which have been aggregated for decomposition.)

1Please note that due to the commercial sensitivity of the covered material both the data and the methods covered in this section could not be described in
any greater detail.



Table 3: Experimental results using different structural approaches and different combination models. The first column in-
dicates the structure of the combination process. The second column indicates if multilevel forecasts have been included or
not. Then the results are represented as an improvement percentage for the different combination methods. The last column
indicates that the structure included the choice of any linear combination method.

structure ml av outp opt sigm anfis flexible

flat (8 input fc) no -5 -2 -3 -15 -11 -

flat (best subset of 5 input fc) no -4 -1 +1 -3 -2 -

flat (12 input fc) yes -3 +1 -2 -1 -10 -

flat (best subset of 5 input fc) yes -3 +3 +2 +5 +2 -

static (best found structure) yes -3 +5 +4 +9 +6 -

dynamic (2 steps, restricted crossover) yes +6 +11 +9 - +2 +10

dynamic (up to 4 steps, restricted crossover)yes +6 +9 +9 - -2 +7

dynamic (up to 4 steps, flexible crossover) yes +5 +5 +4 - -15 -1

4.1.3 Description of the parameters for controlling the run

For the dynamic approaches we have chosen a population size of20 chromosomes. The maximal number of forecasts to
combine has been set to5 as well as the number of combination procedures per step. The maximal number of steps varied
between2 and4. The maximal number of iterations has been set to100. The learning process is also stopped if the fitness
has not been changed over the last20 generations. We have learned structures using a single combination method as well
as structures detecting the combination methods automatically out of the three included linear combination methods (in the
experimental results the method is referred as ”flexible”).

4.2 EXPERIMENTAL RESULTS

We have carried out a number of experiments to compare combinations based on the different static and dynamic structures.
Table 3 shows the resulting percentage improvement.

4.3 ANALYSIS OF THE RESULTS

It can be seen that for the flat structures the best results can be achieved using nonlinear combination models on multilevel
forecasts, but that there are also more relevant losses based on a higher risk of instabilities. The results achieved using these
structures also show that a reduction of the chosen input forecasts to a subset of up to5 forecasts leads to much better results,
especially for the more sensible combination methods like the nonlinear methods.

The dynamic structures clearly outperformed the static structures, the results achieved using the simple average model or the
outperformance model are surprisingly good. But the fact that the best result have been achieved using the most restricted
version of crossover and using the most stable combination models also indicate that we still have a problem of overfitting in
the more flexible cases. The same reason can be responsible for the relatively poor results of the structures which included the
automatic choice of the combination method.

This effect has been verified by a very simple analysis of the achieved percentage improvements compared to the number of
steps or the number of combination procedures. It clearly showed that the bigger structures achieved poor results because of
missing generalisation capabilities. These structures were often learned in situations were the number of bookings was very
low on the fine level which indicates that an extension of the fitness function with error terms measured at higher levels could
be advantageous.

It was also very interesting to see that the stable structures seemed to have a tendency to generate structures which clustered the
input predictions depending on their kind of diversity similar to the intuitive approach used when building the static structures.
So we could observe a clear tendency to combine first different forecasts generated at the same level but using different
functional approaches and then to combine the forecasts representing the different levels or visa versa.

Exceptions could often be explained by stability reasons. Especially in cases of very small numbers we could often achieve
structures clustering more stable forecasts of lower levels e.g. achieved with a stronger smoothing during preprocessing, with
more flexible forecasts coming from higher levels.



5 CONCLUSIONS AND FUTURE WORK

We have seen that dynamic multilevel combination models learned with the approach of genetic programming can be a powerful
approach in order to build a high quality and adaptive forecast system. We have compared models differing concerning
decomposition and multilevel combination structures and have achieved an improvement of forecast quality up to11 percent.
The best results have been achieved with highly restricted dynamic multilevel structures based on combination procedures
using very simple and stable linear combination methods.

Further investigations are related to the generation of more sophisticated and specialised versions of fitness calculation and the
crossover and mutation operators. We also continue the research in the direction of the choice of appropriate initial populations
as well as an automatic adaptation of the pool of included input forecasts during the evolution.
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