
Nature Inspired Learning Models

Dymitr Ruta∗ and Bogdan Gabrys†

ABSTRACT
Intelligent learning mechanisms found in natural world remain are still in their learning performance and effi-
ciency of dealing with uncertain information coming in a variety of forms, yet remain under continuous challenge
from human driven artificial intelligence methods. This work intends to demonstrate how the phenomena ob-
served in physical world can be directly used to guide artificial learning models. An inspiration for the new
learning methods has been found in the mechanics of physical fields found in both micro and macro scale.
Exploiting the analogies between data and particles subjected to gravity, electrostatic and gas particle fields,
new algorithms have been developed and applied to classification and clustering while the properties of the
field further reused in regression and visualisation of classification and classifier fusion. The paper covers ex-
tensive pictorial examples and visual interpretations of the presented techniques along with some testing over
the well-known real and artificial datasets, compared when possible to the traditional methods.
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1 Physics of information

It is well known that information has clear ties with physical world. Every single item from the physical world
holds enormous amounts of information, we humans possibly barely know of. It is even believed that the
reality of material world arises at the very bottom from elementary yes-no questions capturing single bits of
information [1]. The comprehensive success of computing seems to support this concept of it from bit. Despite
the natural familiarity with information, there is still no uniform definition covering all aspects of information.
So far the most advanced theory of information assumes information entropy as a probabilistic measure of
information content [2]. Inspired by the analogy to the thermodynamic entropy it turned out that the entropy
of information effectively measures the uncertainty arising from the ambiguity of competitive choices. Vagueness
perceived as inability of making sharp distinctions in the world is another type of uncertainty, which due to crisp
perception of evidence, probabilistic models cannot capture [2]. The measure of fuzziness is just an example
of this new dimension of uncertainty arising from the fuzzy set theory [2]. Further investigations conducted
within mathematical theory of evidence revealed even more new dimensions of uncertainty [2]. Analogy between
information uncertainty and physical energy seems to be more than tempting. Similarly to energy appearing
in a variety of forms, there are many different types of uncertainty. Like for the energy measured in Jules, all
uncertainty measures yield values in the same units of logical bits. Moreover, energy viewed in general as a
capacity for doing work corresponds to uncertainty appearing as a capacity for obtaining information.

Pushing this analogy a step further one can expect similar relationship between data and matter. Like for
the matter being a stable representation of energy, the data points are the true unstructured embodiments of
information. Such inspirations are not unique in research. Already mentioned Shannon entropy representing
probabilistic interpretation of data randomness is an example of a direct counterpart to the thermodynamic
entropy describing the degree of order among physical gas particles. Ongoing advances in quantum information
theory show an excellent example where the information bits converge with the elementary matter units [3].
The mathematical concept of a field, so commonly observed in nature, has hardly been exploited in the pat-
tern recognition domain. In [4] Hochreiter and Mozer use electric field metaphor to Independent Component
Analysis (ICA) problem where joint and factorial density estimates are treated as a distribution of positive and
negative charges. In [5] Principe et al introduces the concept of information potentials and forces employing
unconventional definition of mutual information based on Renyi’s entropy. Torkkola used further these concepts
for linear [6] and non-linear [7] transformations of the data maximising their mutual information.
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This work intends to demonstrate how the phenomena observed in physical world can be directly used to
guide artificial learning process. In our approach inspiration for the new learning method has been found in the
mechanics of the potential fields found in both micro and macro scale. Across the artificial learning domain new
field based algorithms have been developed and applied to classification and clustering while the properties of
the field further reused in regression and visualisation of classification and classifier fusion. In all these methods
the data points were considered as particles that carry elementary units of charge generating a central field that
acts upon other samples in the input space.

Guided by the mechanics of the gravitational field we devised a new clustering method in which data points
embodied by mass particles became the sources of the attracting field naturally grouping the data up to the
ultimate collapse into a single cluster. Further refinement of such clustering method has been found following
gas particle dynamics defined by the Lennard-Jones potential. Here the field, like for gas particles, has dual
nature of attracting and repelling depending on the distance between sources, and for the clustering purposes
it has been made attracting on short distances and repelling on longer distances to encouraging better cluster
separation.

Gravity field was also the starting point for the supervised learning or classification. Unlike for clustering,
the labelled training patterns were static, kept affixed in the input space while the testing samples were let free
in the input space to ultimately meet one of the training pattern and share its label. In order to exploit the label
information coming as extra information on top of spatial data distribution, a refinement was proposed that
directly models the electrostatic field, yet allowing as many different types of source charges as many different
classes are in the dataset. As a result of this refinement a repelling force was devised as a field action between
differently labelled data which again encouraged better class separation and smoother class boundaries.

The field concept has been used also in other learning aspects. In the regression domain, the field was used
in a sense of building an interpolated regression surface out of the training samples. In the visualisation theme,
a field approach was used to show discriminant functions of various classifiers and advanced to the level which
allows to fully visualise not only classifiers but also classifier fusion methods.

The paper covers extensive pictorial examples and visual interpretations of the presented techniques. The
practical applicability of some model is examined and tested on the well-known real and artificial datasets and
compared when possible to the existing techniques.

The remainder of the paper is organized as follows. Section 2 explains gravity and electrostatic field inspired
classification models. The next section provides details of the clustering algorithms build upon principles in
gravity field and particle dynamics in noble gases. Section 4 explains how field can be reused in the regression
based on data interpolation and the following section presents interesting classification visualisation methodology
again with the aid of underlying field concept. In Section some results from experiments carried out on real
dataset are presented followed with the concluding remarks briefly presented in the closing section.

2 Classification field models

The concept of a field in classification is not new and in fact is related to the kernel methods [8]. The rationale
behind using the field concept is to ensure that every data sample is actively contributing in the formation
of final classification decision. All the data are considered to be a charged particles each being the source of
a central field affecting other samples. All the characteristics of such field are the results of the definition of
potential and can be absolutely arbitrarily chosen depending on various priorities. For classification purposes
the idea is to assign the class label to a previously unseen sample based on the class spatial topology learnt
from the training data. This goal is achievable within the data field framework if we assume testing samples to
be mobile and forced by the field to move towards affixed training data to share their label. The overall field
measured in a particular point of the input space is a result of a superposition of the local fields coming from
all the sources. Thus the positions of the training data uniquely determine the field in the whole input space
and by that determine the trajectories of the testing data during classification process. If the field is designed
in such a way that all trajectories possible end up in one of the sources then the whole feature space can be
partitioned into regions representing distinct classes. The boundaries between these regions form the ultimate
class decision boundaries, which completes the classifier design process.

2.1 Attracting gravity field model

Inspired by the field properties of the physical world one can consider each data point as a source of a certain
field affecting the other data in the input space. In general the choice of a field definition is virtually unrestricted.
However, for the classification purposes considered in this paper, we use a central field with a negative potential
increasing with the distance from a source. An example of such a field is the omnipresent gravity field. Given
the training data acting as field sources, every point of the input space can be uniquely described by the field
properties measured as a superposition of the influences from all field sources. In this paper we consider a static



field in a sense that the field sources are fixed to their initial positions in the input space. All dynamic aspects
imposed by the field are ignored in this work. Given a training set of n data points: X = (x1, ..,xn) let let each
sample be the source of a field defined by a potential Uj = −csif(−→rij) where c represents the field constant, si

stands for the source charge of xi, and f(−→rij) is a certain non-negative function decreasing with an increasing
distance |−→rij | = |rij| from the source xi to the point yj in the input space. In the gravitational field we simply
have f(rij) = 1/|rij|. Overall the potential Uj and field interaction energy Ej in a certain point yj of the input
space is a superposition of the potentials coming from all the sources:

Uj = −c

n∑

i=1

si

|rij| Ej = −csj

n∑

i=1

si

|rij| (1)

We can simplify model further by assuming that all data points are equally important and have the same charge
equal to the unit: si = 1 thus eliminating it from the equations 1. Another crucial field property is its intensity
Ej , which is simply a gradient of the potential and its solution leads to the following:

−→
Ej = Ej = −−→∇Uj = −

(
∂Uj

∂yj1
, ...,

∂Uj

∂yjm

)
= −c

(
n∑

i=1

yj1 − xi1

|rij|3 , ..,

n∑

i=1

yj1 − xi1

|rij|3
)

= −c

n∑

i=1

yj − xi

|rij|3 (2)

A field vector shows the direction and the magnitude of the maximum decrease in field potential. By further
analogy to gravitational field, the charged data point is affected by the field in the form of force attempting to
move the sample towards lowest energy levels. As the charge has been assumed uniformly of unit value and
excluded from the equations the force vector becomes identical to field intensity:

−→
Fj = Fj = sjEj = Ej.

The concept of the field forces will be directly exploited for the classification process. The field constant
c does not affect the directions of forces but only decides about their magnitudes, hence without any loss of
generality we can assume its value as unit and that way free the field equations from any parameters, apart
from the definition of the distance itself.

The labelled training data uniquely determine the field and all its properties in the whole input space, yet
there is no training process per-say other than just acknowledging the training data as field sources. All the
calculations required to classify new data are carried out online during the classification process. Computation-
ally the critical process is the calculation of the distances from the examined points and all the sources. Using
matrix formulation of the problem and the appropriate mathematical software, this task can be obtained rapidly
even for thousands of training sources. Denoting by Y [N×m] a matrix of N m-dimensional data points to be
classified and by X [n×m] the matrix of n training data, the task is to obtain the matrix D of all the distances
between the examined data and the training data. Introducing ”◦” as element-wise matrix multiplication and
1[n×m] as an n by m matrix with all unit elements, the distance matrix can be calculated instantly by:

D = Y ◦ Y • 1[1×n] − 2 • Y •XT + 1[N×1] •X ◦X (3)

Given the distance matrix the classification process is very straightforward. The data points to be classified
are simply placed in the input space and let to slide down the potential wells to meet one of the field source
and share its label. Ignoring the dynamics of sliding data i.e. removing the kinetic energy they gain during
descending towards field sources classification can be organised into a step-wise process at which testing data
is moved by 4Y [N×m] again efficiently calculated using matrix formulation by:

4Y =
d • F

(F ◦ F ) • 1[m×1] • 1[1×m]
(4)

where d is an arbitrarily small step. Negative potential definition (1) ensures that testing data will always
meet one of the field source. To avoid numerical problems the data should be normalised within the same
limits and distances limited from the bottom by a small interception threshold comparable to d which prevents
division by zero and ”overshooting” the field source. We call such model the gravity field classifer (GFC).
Figure 1 demonstrates the classification process with the GFC classifier applied to the artificial dataset of 240
2-D samples with 8 classes.

2.2 Repelling electrostatic field model

So far data have been only attracted to each other which was a consequence of the negative potential definition
resulting in the energy wells intercepting samples found in the neighbourhood. Such field does not use the
information about the class labels as all the samples are considered to hold the same charge. Ideally, the
attracting force should be acting only upon the data from the same class. At the same time the samples from
different classes should be repelled from each other to stimulate increased separability between classes. Again
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Figure 1: Visualisation of the static gravity field based classification process performed on the 8-classes 2-
D artificial data of 240 samples. 1(a) Dataset plot. 1(b) Vector plot of resulting field intensities. 1(c) 3D
visualisation of the classification process using GFC. 1(d) Class boundaries generated by the GFC classifier



nature offers a perfect guide in a form of electrostatic field, where opposite charges attract each other and
charges of the same sign repel from each other. To adopt this rule to the labelled data, the samples from the
same class should interact with negative potential as in previous case, whereas samples from different classes
should generate the positive potential of the same absolute value triggering repelling force.

The major problem with electrostatic data field is that testing samples do not have labels and cannot
straightforwardly interact with labelled training samples. Estimating the label of the testing sample means that
classification is accomplished. To avoid this trivial situation we assume that each testing sample is decomposed
into fractional subsamples labelled by all classes present in the field. Charges of such subsamples are proportional
to the class potentials and normalised to sum up to a unit.

Given the training set X = (x1, ..,xn) with labels LS = (l1, .., ln) where li ∈ (1, .., C), labels partition matrix
PN×C for the testing set Y = (y1, ..,yN) can be simply obtained by pjk = |Uk

j |/
∑C

i=1 |U i
j | where U b

a stands
for potential generated by samples xi coming from class indexed by b measured in point ya. Given this label
partition matrix the new definition of potential and field vector take the following form:

Uj =
n∑

i=1




∑
k 6=li

pjk

|rij|︸ ︷︷ ︸
repelling

− pjli

|rij|︸︷︷︸
attraction


 =

n∑

i=1

1− 2pjli

|rij| Ej =
∑

i=1

n

[
(1− 2pjli)

yj − xi

|rij|3
]

(5)

The numerator of the potential definition (5) can be both positive and negative depending on the class
partial memberships. In the presence of many classes, regardless of their topology, the absolute values of the
partition matrix P will naturally decrease to share the evidence among many classes. Effectively the potential
would grow positive with the repelling force dominating the field landscape.

In our model the data still have to slide down the potential towards the source samples. To satisfy this it
is sufficient to normalise the field such that the overall potential of the whole field should not be larger than
zero. Taking into account the fact that the field is substantially negative in the close neighbourhoods around
the training samples, it is sufficient to satisfy the condition of

∑N
j=0 Uj . To achieve this goal potential definition

has to be parameterised and solved with respect to the regularisation coefficient q as in the following:

N∑

j=1

Uj =
N∑

j=1

n∑

i−1

1− qpjli

|rij| (6)

In the model we use bisection method to find numerical estimation of the parameter q. Note that parameter
q has a meaningful interpretation as the value 1 − q says in general how many times should the attractive
interaction be stronger to compensate the excess of the repelling interaction coming from the multitude of
different classes. Having met all conditions discussed above the classification process follows the same routine
as in the gravity model, and this time due to direct inspiration from physical electrostatic field we will refer
to the presented method as electrostatic field classifier or shortly EFC. Example of such field is presented in
Figure 2 again showing the whole classification process applied to the same dataset as in Figure 1.

3 Clustering field models

In clustering the objective is to group the data objects into a set of disjoint classes, called clusters, such that the
objects within a class have high similarity to each other, while objects in separate classes are more dissimilar.
Clustering is an example of unsupervised learning in which all the data objects are automatically assigned to
a set of distinct classes, without using any predefined information about the classes or class structure. One of
the greatest problems in clustering is inability to formally justify the best number of clusters [9]. As a result
hierarchical clustering methods with a support of the dendrogram remain the most common as they have a very
flexible mechanism of delivering the clustering at any granularity level starting from n singleton data clusters up
to the single cluster. In the continuous numerical space considered in this work, the most convenient similarity
measure is simply an Euclidean distance and again attracting properties of the physical fields can be reused in
the attempt to construct a field based hierarchical clustering algorithms.

3.1 Hierarchical gravity based clustering model

In the simplest form we reuse again gravity field model to simulate self collapse of the data-particles as in the
case of attracting gravity field classifier. The only difference in the case of clustering is that the field is not
static and the field sources move along the field forces. Whenever two or more sources approach each other
at the arbitrarily small distance d they are considered a single yet heavier clusters which continuous to move
according to gravity mass dynamics equations. As before the kinetic energy that moving samples gain after each



(a) Vector field plot (b) Resulting class boundaries

Figure 2: Visualisation of the electrostatic field based classification process performed on the 8-classes 2-D
artificial data of 240 samples. 2(a) Vector plot of resulting field intensities. 2(b) Class boundaries generated by
the EFC classifier

step is cancelled such that the simulation has a character of converged all-to-one collapse rather than energy
preserving elliptical cycles. During the collapse the place of cluster merging is irrelevant. The only thing that is
important is the timing of mergers and what samples took part in the mergers. The stepwise sequence of such
mergers uniquely determines the clustering dendrogram and thereby completes the hierarchical clustering in a
single cluster around the data mean.

The process of field and forces calculation is here identical to the GFC classifier shown in (1)-(4) with the
only difference that the field charge multiplier si equal to the number of original data points in the ith cluster
can not be made redundant as it varies and needs recalculation at each step. Figure 3 shows how the 8-classes
2-D dataset from Figure 1(a) as well as well known Iris dataset groups here into converging clusters at different
point of time, which could correspond to the dynamic equivalent of dendrogram.

3.2 Lennard-Jones potential model

Due to the centrical nature of the gravity field clusters constructed as a result of its action tend to be elongated
radially from the data mean point. To introduce an element of resistance to this behaviour, attracting-only
gravity field can be replaced by the field that attracts locally and repels distant samples from each other
similarly to the electrostatic field classifier discussed in Section 2.2. Here again the inspirations have been found
in nature. Namely, copying gas molecules dynamics ruled by the Lennard-Jones potential [10]. In noble gasses
the interaction potential between a pair of molecules is given by:

Uij = 4ε
[
(σ/rij)12 − (σ/rij)6

]
(7)

If all n data points are considered to be such interacting field sources then each of them will be subjected to
the field intensity vector:

−→
Ej = Ej = −−→∇Uj = −

(
∂Uj

∂yj1
, ...,

∂Uj

∂yjm

)
=

24ε
∑n

i=1 sisj(yj − xi)
|rij2|

[(
σ

|rij|
)6

− 2
(

σ

|rij|
)12

]
(8)

The force being identical to the field intensity vector has been simplified to the following form:

Fj = c

n∑

i=1

sisj(yj − xi)

[(
σ

|rij|
)a

−
(

σ

|rij|
)b

]
(9)

which retains its character yet is simpler to interpret and handle computationally for lower powers of a and b
assuming a < b. From (9) it is clear that σ is the distance at which interaction potential disappears and there is
no force acting upon the data. For distances greater than σ the field exerts attracting force while for distances
smaller than σ the force changes the sign to positive and becomes repelling. Greater flexibility in designing the
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Figure 3: Visualisation of the hierarchical clustering using gravity field. Lightening trajectories correspond to
the passing time
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Figure 4: Visualisation of the hierarchical clustering using gas model based on Lennard-Jones potential with
the repelling barrier in the rage of 4(a) 3-6 and 4(b) 1-3

balance between repelling and attracting field can be obtained by enforcing exclusiv potential definitions on
different distance ranges. In our final gas model we define the following field:

Fj = c

n∑

i=1

sisj(yj − xi)

[(
(r > σ1

|rij|
)a

−
(

σ1 ≤ r ≤ σ2

|rij |
)b

+
(

r < σ2

|rij|
)a

]
(10)

where field is attracting in whole distance range excluding the range (σ1 : σ2) where the field is repelling. The
logical operators appearing in the numerators in 10 are assumed to return 1 if are true and 0 otherwise. Figure
4 shows an example of such model with the parameters a = 1 and b = 2. Note that for Iris dataset the presented
clustering model correctly grouped dataset into 3 classes, despite the fact that the two classes on the right are
quite attached to each other. As a rule of the thumb we assumed the width of the potential barrier to be a
third of the average data spread.

4 Interpolation based regression model

In the regression domain the task is simply to find the mapping between continuous input and output given some
observations of x → y used to train the regression model. There is many ways these task can be accomplished
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Figure 5: Example of various interpolation surfaces generated on a set of 100 random points (smaller red dots),
based on grid training set (large black dots) and overlayed on the true regression surface.

from simple linear regression up to the complex non-linear methods like neural networks [9]. Staying within the
field concept we consider the outputs of the training data as samples of the underlying field which is generated
by the input data. The assumption is that the field spreads along the whole space and the more input-output
pairs is available the more of the output field is revealed. From this perspective regression can be represented
by a simple interpolation that tries to find the location on the output field based on the neighbouring training
samples. There is a reach choice of interpolation methods. For a simple demonstration let us consider a simple
2-input to 1-output function z(x, y) = x(−x2 − y2). Let the training set be a regular unit grid in the range of
(−2 : 2) for both x and y and the output values are calculated according to the introduced function z(x, y).
A testing set of 100 input data points has been randomly sampled from the considered range and its output
obtained from interpolation based on the given grid of training data. Figure 5 shows the plots of function z(x, y)
and the interpolation surface aroused on the testing points.

5 Field based classification visualisation

In business applications the most valuable classifiers are those that work transparently such that the user
can control and understand the decisional process at all stages. Not surprisingly, a simple decision tree is by
far the most popular classifier used in commercial applications as it allows for a step-by-step monitoring and
understanding of the classification decision. It is psychologically proven that visuals transmit much more of
conscience packed information than text and are also much easier to be remembered. Surprisingly there is
not much evidence of this advantage being taken in commercial applications of pattern recognition. Many
visualisation techniques have been proposed in the sister domain of knowledge discovery [11], yet even huge
analytical packages like Mirage [12] miss out a comprehensive model snapshot that would visually explain how
classification models are generated, such that the user would understand the link between the data, the model
is built on, and the model itself. The field concept has a lot to offer in terms of model visualisation capability.
If we assume that instead of charge, as before, the data points are the sources of probabilistic evidence, than
the fields aroused on the labelled datasets become posterior class probability maps, usually called discriminant
functions and constitute the whole internal description of the classification model. Formally, given the feature
vectors x ∈ X, the objective of a classifier, is to assign the new pattern x to a relevant class ωj ⊂ Ω, where
Ω = {ω1, ..., ωC}, based on previous observations of labelled patterns: XT = {x, ω}. The classification model
takes the form of a set of discriminant functions gj(x) = P (ωj | x) calculated separately for all classes. Examples
of such discriminant function plots are shown for decision tree and quadratic classifier in Figure 6. The final
classification decision is formulated as:

ωd = arg
C

max
j=1

P (ωj | x) (11)

which visually means that the class corresponding to the top most discriminant surface becomes the classifier
decision for particular data point. Let the decision surface be defined by:

D =
C

max
j=1

P (ωj | x) (12)

Decision surface can be easily picked up from Figure 6, where it becomes simply the superposition of the top
most patches of individual class discriminant surfaces.

Using discriminant functions as internal model description, the fusion of classifiers becomes a straightforward
process. It involves fusing individual discriminant functions into a combined discriminant function for each of



(a) Decision tree (b) Quadratic classifier

Figure 6: Visualisation of the discriminant functions applied to the 3-class Iris dataset. 6(a) Discriminant
functions generated by the decision tree classifier. 6(b) Quadratic classifier discriminant functions

the classes and then selecting the class with the maximum combined posterior probability. There are many
fusion operators by means of which classifiers can be combined and all of them can be easily visualised by means
of plots of discriminant functions and ultimately combined decision surfaces.

Given a pool of N classifiers let Pij = Pi(ωj | x) stand for the discriminant function of the ith (i = 1, .., N )
classifier applied to the class ωj (j = 1, .., C). The major classifier fusion operators [13] can easily be expressed
by simple aggregation operations carried out on the discriminant functions Pij . Note that all combiners first
combine the discriminant functions for all classes and by doing so define a new composite classifier which has
its own set of combined discriminant functions. That means that one can similarly visualise the classifier fusion
and likewise define its decision surface by:

DF =
C

max
j=1

FN
i=1Pij (13)

where F denotes the specific fusion operator.
Although fusion of discriminant functions is scalable to many dimensions, the visualisation of it is meaningful

only in 2 or 3 dimensions which can be observed by the user. The most informative visualisation model would
capture not only the shape of the decision surface and the corresponding decision boundaries but also would
illustrate the data samples and their link to the process of the creation of discriminant functions. To achieve this
goal the decision surface is plotted upside down such that the observer looking from above can penetrate the
regions of lower posterior probability and hence observe misclassified samples. Figure 7(a) shows an example
of the complete visualisation of the decision tree classifier, while Figures 7(b)-7(f) illustrate the fusion of the
decision tree, quadratic and neural network classifiers by means of selected fusion operators. Decision surface
is plotted in the top half of the presentation cube such that one can clearly see the decision boundaries plot in
the bottom plane and understand where the boundaries are coming from. Note that the data points which do
not lie on the decision surface represent samples which are misclassified by the classifier or combiner. Moreover
their distance from the decision surface along vertical axis indicates how much more of posterior probability
was allocated by the model to the incorrect class compared to the true class, probability of which can be read
from the height of the data points.

6 Experiments

Due to space restrictions experimentation has been narrowed down to the performance tests of presented classi-
fication models. Both GFC and EFC classifier have been tested over 6 dataset along with 15 other classifiers for
comparison. Figure 8 shows the details of datasets and classifiers used in this experiment. For the first 4 datasets
we applied random splitting into two equal parts used for training and testing respectively. For the Segment
and Shuttle dataset, due to their large sizes we used 10-fold cross-validation for performance estimation. Table
1 shows averaged individual performances of classifiers from this experiment. Although the performances of
GFC and EFC classifiers is never the best they consistently remain among the best classifiers. This attribute
makes it an interesting alternative to other classifiers that could be particularly useful in combining classifiers.



(a) Decision tree (b) Mean combiner (c) Min combiner

(d) Max combiner (e) Product combiner (f) Majority voting combiner

Figure 7: Complete visualisation of the decision tree classifier and mean combiner built on decision tree,
quadratic and neural net classifiers applied to iris dataset.

Dataset samples features classes
Iris 150 4 3
Conetorus 400 2 3
Gaussians 250 2 2
Azizah 291 8 20
Segment 2310 19 7
Shuttle 58000 9 7

(a) Datasets

Classifier Description
klclc PCA based linear classifier
loglc logistic regression based classifier
fisherc Minimum least squares classifier
ldc Linear normal density based classifier
nmc Nearest mean linear classifier
qdc Quadratic normal density based classifier
qua Quadratic classifier
svc Support vector machine clasifier
knn k nearest neighbour classifier
parzenc Parzen density estimation classifier
subsc Random subspace classifier
treec Decision tree classifier
lmnc Feed-forward neural net clasdifier
rbnc Radial basis neural net classifier
bpxnc bpxnc - Back-propagation neural net classifier

(b) Classifiers

Figure 8: A list of 6 datasets (8(a)) and 15 classifiers (8(b)) used in experiments for performance comparison
with GFC and EFC classifiers.

Table 1: 10-fold cross-validation error rates [%] obtained for 17 classifiers and 6 datasets described in Table
iments.

klc log svc ldc nmc qdc qua svc knn par sub tre lmn rbn bpn gfc efc

Iri 2.47 4.72 3.39 2.43 7.97 2.53 3.23 4.16 4.49 4.25 2.85 5.85 4.59 11.28 4.28 4.56 4.33
Cnt 27.35 25.58 26.54 27.23 29.44 20.32 19.86 17.05 16.25 60.02 18.78 18.60 31.83 18.98 18.98 18.89 16.69
Gau 15.17 14.44 15.17 14.71 28.71 15.11 15.11 14.74 13.26 13.17 23.55 18.64 14.09 17.71 13.91 15.97 14.25
Azi 41.62 50.65 45.39 32.66 45.58 89.94 98.70 28.70 31.17 35.78 49.74 80.39 46.49 53.90 37.73 58.44 32.34
Seg 18.37 19.21 15.59 17.82 15.79 14.85 17.28 6.34 9.60 10.00 18.27 36.44 16.83 16.98 10.10 13.37 10.54
Shu 16.95 12.95 15.45 10.35 34.50 10.45 9.74 3.55 4.55 9.80 35.75 11.85 13.20 40.25 11.20 4.60 6.50



7 Conclusions

In this paper, we demonstrated that a number of natural physical phenomena can be directly used to devise
an artificial learning model. We looked across the learning domain and intended to show that a simple concept
of a potential field can be easily adapted to become interesting propositions of classification and clustering
models and provide further inspirations for regression and even visualisation of both classification and classifier
fusion processes. The thorough analysis of the field concept led us to embody data samples into certain charge
constituting the source of the field. In the case of classification, a superposition of the fields generated from each
data source fully determines the potential landscape which causes testing data to fall into aroused potential
wells and share the label of the samples at the bottom. We demonstrated that both attracting gravity field
and electrostatic field with repelling force can be used to construct a reliable classifier, yet EFC model provides
better class separation and smoother class boundaries, also reflected in the improved classification performance.

In the clustering domain we used again gravity field and an adjusted gas model based on Lennard-Jones
potential. We proposed a dynamic simulation-like models of hierarchical clustering for which user can extract
clusters at chosen level of granularity here determined by the time of the simulation. The gas clustering model
with the controllable repelling force appears to be better in terms of class separation yet it requires an insight
knowledge to properly set the parameters.

Some analogies have also been found between the field concept and the regression methodology. It has
been shown that, given a small but representable training sample, using simple interpolation can quite reliably
reconstruct the field, yet some problems with this approach have been identified for high-dimensional data.

Finally, the realisation that the discriminant functions used in classification are in fact certain field applied
upon the data, it has been shown that both classifier as well as classifier combiner can be intuitively visualised
such that it provides explanations and understanding of how the classifier or combiner arrives at the decision
boundaries. Such visualisation are considered particularly vital for classifier fusion models like mean, product or
majority voting combiner treated typically as very complex black boxes, now clearly visualised and transparent.

Further work into physically inspired learning models is planned to tune the growing pool of existing model
prototypes presented in this paper as well as to develop new techniques harnessing analogies between energy
and data evidence to manage multi-dimensional information uncertainty.
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