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Aim Few studies have explicitly examined the influence of spatial attributes of forest fragments 

when examining the impacts of fragmentation on woody species. The aim of this study was to 

assess the diverse impacts of fragmentation on forest habitats by integrating landscape-level and 

species-level approaches. 

Location The investigation was undertaken in temperate rain forests located in southern Chile. 

This ecosystem is characterized by high endemism and by intensive recent land use changes.  

Method Measures of diversity, richness, species composition, forest structure and anthropogenic 

disturbances were related to landscape spatial attributes (size, shape, connectivity, isolation, and 

interior forest area) of forest fragments using generalized linear models. A total of 63 sampling 

plots distributed in 51 forest fragments with different spatial attributes were sampled. 

Results Patch size was the most important attribute influencing different measures of species 

composition, stand structure and anthropogenic disturbances. The abundance of tree and shrub 

species associated with interior and edge habitats were significantly related to variation in patch 

size. Basal area, a measure of forest structure, significantly declined with decreasing patch size, 

suggesting that fragmentation is affecting successional processes in the remaining forests. Small 

patches also displayed a higher number of stumps, animal trails, and cow pats and lower values 

of canopy cover as a result of selective logging and livestock grazing in relatively accessible 

fragments. However, tree richness and β diversity of tree species were not significantly related to 

fragmentation.  

Main conclusions This study demonstrates that the progressive fragmentation by logging and 

clearance is associated with dramatic changes in the structure and composition of the temperate 

forests in southern Chile. If this fragmentation process continues, the ability of the remnant 

forests to maintain their original biodiversity and ecological processes will be significantly 

reduced. 
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Habitat fragmentation is recognized as one of the main threats to biological diversity (CBD, 

2005). Fragmentation is a dynamic process in which the habitat is progressively reduced into 

smaller patches that become more isolated and increasingly affected by edge effects (Forman & 

Godron, 1986; Reed et al., 1996; Franklin, 2001; McGarigal, 2002). These alterations to spatial 

structure are well known to result in changes to community composition within the remnant 

patches (Saunders et al., 1991; Laurance et al., 1998; Drinnan, 2005) and to alter ecological 

processes such as nutrient cycling and predator-prey relationships (Bennett, 2003). However, the 

ecological consequences of forest fragmentation may depend on the spatial configuration of the 

fragments within the landscape and how the configuration changes both temporally and spatially 

(Forman and Godron, 1986; Drinnan, 2005). Recent studies reveal the importance of considering 

spatial configuration when assessing the impacts of fragmentation on herbaceous plants (Petit et 

al., 2004), as well as on the richness and composition of bird species (Vergara & Simonetti, 

2004; Castelletta et al., 2005; Martinez-Morales, 2005; Uezu et al., 2005), but few studies have 

explicitly considered the effect of spatial attributes when modeling the impacts of fragmentation 

on woody species (Metzger, 1997; Tabarelli et al., 1999; Metzger, 2000). Moreover, all of these 

studies are based on relatively few replicates. 

Three spatial attributes of fragmentation may be particularly important:  core area, shape, 

and isolation of forest fragments (Franklin, 2001; Ochoa-Gaona et al., 2004; Echeverría et al., 

2006; Cayuela et al., 2006).  The core area of a fragment has a micro-environment similar to that 

of intact forest. It is well known that some species require these forest interior conditions and are 

sensitive to edges (Laurance et al., 2000; Harper et al. 2005). At fragment edges, a range of 

physical and environmental transitions occur that have contrasting effects on different groups of 

organisms (Kapos et al., 1997; Bustamante et al., 2003; Asbjornsen et al., 2004; Tallmon & 

Mills, 2004; Aune et al., 2005; Fletcher, 2005). The shape of a patch is characterised by the 
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length of edges. Irregular shape of fragments as a result of forest fragmentation tends to increase 

the length of edges. Finally, isolation of forest fragments may reduce the possibility of 

movement of organisms between fragments (Bennett, 2003). Evidence shows that habitat 

fragmentation affects plants with specific dispersal modes (Tabarelli et al., 1999; Kolb & 

Diekmann, 2005). Thus, some plant species that depend on biotic pollinators and dispersers are 

becoming rare as a result of forest loss and fragmentation (Bustamante & Castor, 1998).    

 In addition to these effects, fragments may be subject to change as a result of ongoing 

human exploitation, such as selective logging and pasturing of domestic stock. Such human 

disturbances may affect forest structure (Pollman, 2002; Hitimana et al., 2004), tree diversity 

(Cannon et al., 1998), and mammal communities (Lambert et al., 2005). Some researchers 

suggest that human influences might play an important role in determining tree composition in 

tropical forest (Hill & Curran, 2001); however, the influence of human disturbance has not 

generally been the focus of study in fragmentation studies (Hobbs & Yates, 2003). In addition, 

little is known about whether relatively small forest fragments are particularly vulnerable to 

ongoing anthropogenic disturbances. 

80 

84 

88 

92 

96 

100 

In comparison with the large numbers of studies undertaken in the lowland tropics, few 

researchers have explored the influences of fragmentation in temperate forests (Fukamachi et al., 

1996; Gibson et al., 1988; Staus et al., 2002), and very little work has been done in southern 

hemisphere forests. Although some hypotheses have been stated on the processes influencing 

forest structure and composition in tropical forests (Hill & Curran, 2001; Laurance et al., 2006), 

little is known about the impacts of fragmentation on the floristic composition and stand 

structure of forest communities (Hobbs & Yates, 2003; Harper et al., 2005). In addition, most 

studies on spatial attributes have focussed on single species (Bustamante & Castor, 1998; 

Henríquez, 2004).  

The overall objective of this study was to assess the impacts of forest fragmentation on 

temperate rain forests in southern Chile. We took measurements in 51 fragments spread over 
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500,000 hectares of Chile with the aim of assessing the correlation between fragmentation, as 

quantified by various of spatial attributes, and the composition and structure of forest stands.  All 

of these fragments had been created sometime before 1976, and had remained in a similar state 

until 1999, as assessed by repeat satellite imagery.  The strength of our approach is that long-

term changes were measured, enhancing the chances of capturing the ecological impacts 

associated with fragmentation.  Within each patch we also recorded signs of human disturbances, 

such as harvesting of trees, paths and livestock presence, enabling us to test whether smaller 

patches were particularly vulnerable to ongoing human alteration.  Specifically, we hypothesized 

that (i) fragmentation of temperate forests is associated with substantial changes to tree and 

shrub species richness, and also to forest structure, (ii) woody species with different shade-

tolerance will respond differently to forest fragmentation, and (iii) small fragments are most 

likely to be subjected to ongoing human disturbances, because of their relative accessibility.   
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METHODOLOGY 

Study area 

The study was carried out in an area located between 41° 30’S, 73°W and 42° 20’S, 74°W in the 

Lake Region in southern Chile (Fig. 1). The prevailing climate is wet-temperate with strong 

oceanic influences (Di Castri & Hajek, 1976). Rainfall occurs throughout the year, with a mean 

annual precipitation of 2,090 mm. Two different types of soil occur in the area: a) acidic, 

shallow, poorly drained soil referred to as Ñadi (< 50 cm depth), derived from glacio-fluvial 

deposits which are classified as Gleysols; b) deep well-drained soil derived from volcanic ash 

deposits (FAO-UNESCO, 1971; INIA, 1985). The landscape is dominated by a mosaic of mixed 

broad-leaved evergreen forests within a matrix of pasture and agricultural lands. Since the early 

1800s, intense logging and human-set fires for clearance have shaped the landscape (Willson & 
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Armesto, 1996; Donoso & Lara, 1995; Lara et al., 2003). In Chiloé Island (Fig. 1), the process of 

deforestation by logging and cultivation started mainly in recent decades, due to its isolation 

from the mainland. At present, clearance for agricultural expansion and logging for fuelwood are 

still the most important causes of forest destruction and degradation in the study area (Lara et al., 

2002; Reyes, 2000). Chiloé Island is considerably less populated than the neighboring mainland 

where highways, industrial areas, towns and ports have expanded rapidly associated with the 

recent growth of the capital city of the region, Puerto Montt. 
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Floristically, the native forests are characterized by the presence of several broad-leaved 

evergreen tree species such as Amomyrtus luma, Amomyrtus meli (both Myrtaceae), Drimys 

winteri (Winteraceae), Eucryphia cordifolia (Eucryphiaceae), Laurelia philippiana 

(Moniniaceae), Nothofagus dombeyi (Nothofagaceae), accompanied by a dense understory 

composed mainly of Chilean bamboos (Chusquea quila and Chusquea spp., Gramineae) and 

ferns. In some sites, the long-lived conifers Fitzroya cupressoides and Pilgerodendron uvifera 

(both Cupressaceae) can also be found. Anthropogenic actions have led to the dominance by 

early successional stages, which are characterized by a high abundance of D. winteri and N. 

nitida. In such sites, it is common to find shrub species such as Berberis spp (Berberidaceae), 

Baccharis spp. (Asteraceae), and Gaultheria spp. (Ericaceae). 

We obtained forest cover data using a set of three Landsat satellite scenes acquired at 

different time intervals and from different sensors: 1976 (Multi Spectral Scanner, MSS) 1985 

(Thematic Mapper, TM), and 1999 (Enhanced Thematic Mapper, ETM+) (C.E., unpublished 

data). Each image was geometrically, atmospherically and topographically corrected and then 

classified using field control points and a set of thematic land cover maps developed by one of 

the most comprehensive cartographic studies of natural vegetation in Chile known as Catastro 

(CONAF et al., 1999). The following land cover types were distinguished in the satellite images: 

urban areas, pasture and agricultural lands, shrubland, arboreus shrubland, secondary forest, old-

growth forest, bare ground, water, and wetlands. These categories were based on the land cover 
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types defined by Catastro (CONAF et al., 1999). For the present study, maps of native forest 

were derived using the land cover types secondary and old-growth forests. Forest fragments were 

defined as those fragments dominated by tree species greater than 2 m height and of at least 50% 

of forest cover (CONAF et al., 1999). Each land cover map was validated using ground-based 

data. Overall agreement of classification was 88.8% for the 1976 MSS, 89.6% for 1985 TM 

image, and 91.9% for the 1999 ETM+ image. 
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Selection of fragments for field sampling  

From the classified images, we used the following indices to characterize the spatial attributes of 

the native forest fragments: a) patch size (ha), b) total edge length (km), c) total interior forest 

area (core area remaining after removing a edge depth of 100, 300, and 500 m, in hectares), d) 

proximity index (ratio between the size and proximity of all patches whose edges are within 1 

km-search radius of the focal patch), e) radius of gyration (mean distance between each cell in 

the patch and the patch centroid, in meters) (Franklin, 2001; Echeverria et al., 2006; Cayuela et 

al., 2006). These attributes were estimated in ARC VIEW 3.2 using the Spatial Analyst 2.0 

extension (©ESRI, 1999). We then constructed a correlation matrix for these attributes and 

discarded some which were closely correlated with others (i.e. if r > 0.6). By this approach we 

identified mean proximity index, patch size and radius of gyration as attributes to be used for 

fragment selection (Table 1). For each of these attributes, patches were divided into five bins, the 

boundaries of which were chosen so that each bin contained the same number of patches. For 

instance, in the case of patch size for the 1976 forest map the classes were 0.45-0.72; 0.73-1.08; 

1.09-2.16; 2.17-6.03; 6.04 -132,972 and each class contained 1,144 patches. The mean of the 

three attributes was then calculated and it was used to place each patch into one of five 

fragmentation categories: 1= 0.66-1.33; 2 = 1.66-2.33; 3 = 2.66-3.0; 4 = 3.33-4.0; 5 = 4.33-5.0. 

This classification was conducted for patches in the 1976, 1985 and 1999 forest maps.  
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Next, we discarded all patches for which the fragmentation category had changed over 

the study period (1976 - 1999). To ensure that we sampled patches which had been fragmented 

to more-or-less the same extent for at least 23 year. From the remainder, a total of 10 patches 

within each of the five fragmentation categories was then selected at random (Table 1) with the 

constraint that about half were located in the Ñadi soil type and half in the volcanic ash soil type 

(the total number of patches selected was 51).  

 

Field sampling 

We established a total of 63 sampling plots within the 51 fragments selected across the study 

area (Table 2). Owing to the different size of the fragments, the number of sampling plots per 

fragment depended on patch size (Table 2). Owing to the low number of large fragments in the 

landscape, we sampled all the fragments greater than 10,000 ha (n=4). Using Arc View to obtain 

coordinates, sampling plots of 20 x 25 m were located in the central area of each fragment. The 

plot was divided into 20 contiguous 5 x 5m subplots, in each of these subplots, shrub and tree 

species were identified and counted to estimate the number of individuals per species. Diameter 

at 1.3 m height was measured for each tree (> 5 cm diameter and > 1.3 m height) in the plot. The 

number of saplings (< 5 cm diameter and > 1.3 m height) and seedlings (< 1.3 m height) was 

recorded in a 2x2 m subplot located in the south-west corner of each 5x5m subplot.   
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Data analyses 

Measures of richness and species composition  

The diversity of fragments (β diversity) was estimated in R-statistical software, using Bray-

Curtis’ method (Faith et al., 1987). This method evaluates differences in species composition 

amongst fragments using measures of similarity. We also estimated the following measures of 

richness: a) total richness (shrub and tree species), b) tree species richness, c) shrub species 

richness, d) interior tree species richness, e) interior tree and shrub species richness, f) edge tree 
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species richness, and g) edge tree and shrub species richness. Tree richness was estimated by 

counting the number of tree species (including sapling and seedling) recorded in each sampling 

plot. For those large fragments with more than one sampling plot, the mean number of species 

per plot was calculated. Species were classified to interior and edge functional groups based on 

relative shade-tolerance and habitat usage characteristics described by previous studies (Donoso 

et al., 1999; Lusk, 2002; Donoso & Nyland, 2005).  
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To assess the influence of the spatial attributes on individual species, several Generalized 

Linear Models (GLMs, Crawley, 2005) were fitted using abundance of each tree and shrub 

species as response variables and proximity index, patch size and radius of gyration as the 

explanatory variables. The β slope coefficients resulting from the models were ranked in a list to 

assess the sensitivity of tree and shrub species to forest fragmentation. Those species with high 

absolute values of coefficient correspond to species that react more strongly to changes in patch 

size. 

 

Measures of forest structure 

The total basal area (m2 ha-1) of tree species and the mean quadratic diameter (diameter of the 

tree of mean basal area) were determined for each fragment. Similarly, the density (N ha-1) of 

trees, saplings, seedlings, and shrub was estimated for each species. The influence of the spatial 

attributes on these variables was conducted using also GLMs. 

In addition to the field based study of fragmentation, we examined the relationship 

between forest stand structure and patch size. To quantify the amount of secondary and old-

growth forests by patch size, the native forest cover map for 1999 was overlaid on a set of digital 

forest cover maps of the Catastro database (CONAF et al., 1999). Old-growth forest 

corresponded to uneven-aged stands of broad-leaved evergreen tree species, with at least 50% of 

canopy cover. Secondary forest corresponds to even-aged stands composed mainly of young 
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trees (CONAF et al., 1999). These two categories are widely distributed over the landscape and 

represent 38% and 62% respectively of the total forest area in the study area. 232 
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Measures of anthropogenic disturbance  

We assessed anthropogenic disturbances along four transects of 40 m length and 2 m width 

oriented in each cardinal direction from the central point of the sampling plot. We measured the 

following variables: a) canopy cover (%), b) number of stumps, c) number of animal trails, d) 

number of fire scars, and e) number of cow pats. Canopy cover (%) is defined as the fraction of 

ground covered by the vertically projected crown envelopes (Rautiainen et al., 2005). Canopy 

cover of undisturbed forests normally ranges from 75 to 100% in the study area (CONAF et al., 

1999). Selective logging (highgrading) can produce a reduction of the canopy cover which can 

be used as an indicator of human disturbances. The relationship between all these variables and 

the spatial attributes of fragmentation was assessed using GLMs. 

 

 

RESULTS 

GLM analyses 

Our best GLM model fits were obtained when patch size was the single spatial attribute used to 

assess the impacts of forest fragmentation (Table 3). Proximity index and radius of gyration did 

not have significant effect on any of the response variables when it was added after patch size in 

the GLMs. 

 

Species richness 

A total of 46 woody species were identified from all sampled fragments. Twenty-four of these 

species were native trees, one was an exotic tree (Acer sp.), 19 were native shrubs, and two were 

exotic shrubs (Rubus constrictus and Ulex europaeus).  
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Neither tree species richness ( 51,62.0,24.02

1
=== nPχ ), beta diversity 

( ), nor total richness (28.0,22.1
49,1

== PF 18.0,84.12

1
== Pχ ) was significantly related to patch 

size (Table 3). However, within functional groups there were some significant relationships 

between patch size and richness: richness of interior trees alone ( 05.0,71.42

1
<= Pχ ) and of 

interior tree and shrub species (

260 

01.0,60.82

1
<= Pχ ) was higher in large fragments. On the other 

hand, small fragments contained higher combined richness of edge tree and shrub species 

( 001.0,58.322

1
<= Pχ ) and of edge tree species ( 05.0,39.42

1
<= Pχ ). Similarly, richness of shrub 

species decreased significantly as patch size increased ( 01.0,81.72

1
<= Pχ , Table 3, Fig. 2a). 264 

 

Forest structure 

Total basal area was the variable most strongly related to patch size ( 001.0,41.20
49,1

<= PF , 

Table 3, Fig. 2b). Quadratic mean diameter was also positively related to patch size 

( ), while the other measures of forest structure were not (Table 3). The 

distribution of old-growth and secondary forests was closely related to the size of forest 

fragments (Fig. 3). Almost 70% of the forest stands that were classified as secondary forests 

were found in patches < 250 ha. A decreasing proportion of secondary forest was found in 

patches increasing in size from 500 to 1,000 ha, while forest fragments greater than 5,000 ha 

contained little secondary forests (Fig. 3). 
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05.0,11.4
49,1

<= PF

 

Effects of fragmentation on species composition     

The abundance of some tree species increased with patch size, while others decreased (Table 4). 

In particular, there was a significant decline in the abundance of Persea lingue, N. dombeyi, and 

Embothrium coccineum as patch size increased. In contrast, the abundance of N. nitida, 

Amomyrtus meli, Laurelia philippiana, Weinmannia trichosperma, and Saxegothaea conspicua 
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significantly increased as patch size increased. A set of 15 tree species showed no significant 

change, including Drimys winteri, Gevuina avellana, and Caldcluvia paniculata. 

A relatively similar order of the species was observed by ranking the b coefficients 

obtained using basal area as response variable in the GLMs in ascending order (Table 5). Patch 

size was negatively associated with the basal areas of P. lingue and E. coccineum. On the other 

hand, patch size was positively related to the basal areas of A. meli, W. trichosperma and S. 

conspicua. Similar to the trend observed for abundance, the basal areas recorded for G. avellana 

and D. winteri with β coefficients close to zero were not significantly related to patch size (Table 

5).  
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Shrub species were also grouped in terms of abundance across patch sizes (Table 6). The 

abundances of Ugni molinae, Rubus constrictus, Ribes magellanica, Azara integrifolia, and 

Aristotelia chilensis significantly decreased as patch size increased. Conversely, the abundance 

of Pseudopanax laetevirens and Crinodendron hookerianum were positively significantly 

associated with patch size. Some species such as Myrceugenia parvifolia recorded a β coefficient 

near zero and were not significantly affected by changes in patch size (Table 6).  

 

Human disturbance 

Significant relationships were found between patch size and most of the variables associated 

with human disturbances. Thus, number of animal trails ( 001.0,66.27
49,1

<= PF ), number of cow 

pats ( 001.0,52.252

1
<= Pχ ), and number of stumps ( 05.0,65.5

49,1
<= PF ) per plot decreased 

with increasing patch size (Table 3). Conversely, the percentage of canopy cover significantly 

increased as the patch size increased (

300 

001.0,62.172

1
<= Pχ ).  
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DISCUSSION 304 
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Patch size as an index of forest fragmentation 

Our results suggest that patch size was more important than proximity index and radius of 

gyration in terms of explaining richness of shrub species, richness of functional groups for tree 

and shrub species, forest structure, human disturbances, and abundance and basal area at the 

species level.  However, patch size was not significantly related to richness of tree species in the 

present study. Similar results were found for tree communities in Atlantic tropical forest in 

Brazil (Metzger, 1997), in which tree richness of the forest fragments appeared to be similar 

among patches of different sizes. Similarly, tree species richness in the Highlands of Chiapas 

Mexico, is not related to patch size and to any other spatial attribute (Ochoa-Gaona et al., 2004).  

However, it is important to mention that in our research the lowest richness of tree species 

(between one and three tree species per 500m2 plot) was recorded in the smallest fragments. In 

the Atlantic tropical forests, forest connectivity and the complexity of the matrix may be more 

important than fragment area and isolation in explaining variation in tree species richness 

(Metzger, 1997) and functional group richness (Metzger, 2000). However, patch size appears to 

have a significant relationship with shade-tolerant species in tropical forests (Metzger, 2000). 

Conversely, a previous study conducted in the montane Atlantic forests of southeastern Brazil, 

fragment size was found to be the major determinant of changes in woody plant composition and 

guild structure (Tabarelli et al., 1999).  

 

Effects on functional groups and species composition 

In the present study, as forest fragments increased in size, the richness of interior tree and shrub 

species (mostly shade-tolerant) increased whereas richness of edge tree and shrub species 

(mostly shade-intolerant) declined. A similar pattern was found in five fragments studied in the 

Atlantic forests, where the smallest fragment had more shade-intolerant species than the largest 
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one (Tabarelli et al., 1999). In tropical tree communities, shade-tolerant tree species appear to be 

more sensitive to forest fragmentation than shade-intolerant species (Metzger, 2000). 

Results from tropical forest studies have demonstrated that some bird species show 

distinct responses to habitat fragmentation (Uezu et al., 2005). Similarly, some of the tree 

species considered here benefited from fragmentation while others were highly sensitive to 

habitat loss. In particular, E. coccineum and A. chilensis are two very shade-intolerant species 

that are restricted to forest edge or open areas (Romero et al., 1987; Donoso et al., 1999; Lusk, 

2002). The greater abundance and basal area of E. coccineum in small fragments recorded here 

may be related to a greater density of seedings as forest patches become smaller and more 

irregular (Rovere et al., 2004). Similarly, A. chilensis readily colonizes open areas or small 

fragments as a result of its high production of seeds that are dispersed by birds (Donoso, 1993). 

Patch size was highly negatively correlated to edge length, so a reduction of fragment size also 

leads to an increase of edge areas which, in turn, leads to the creation of suitable sites for 

establishment of E. coccineum and A. chilensis. 
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As a result of the division of forest fragments, microclimatic changes near the edges have 

favored the establishment of alien species such as Rubus constrictus, extending into the center of 

some of the smallest fragments. In addition to such changes in microclimate, edge effects have 

been found to alter patterns of species colonization, growth, mortality and survival, as well as  

other ecological processes (Laurance et al., 2000), and may have negative consequences on the 

survival of interior tree species (Laurance et al., 1998). The increased density of fast-growing, 

invasive species such as R. constrictus may cause a decline in the abundance of some native 

plants, particularly in highly fragmented forests (Gigord et al., 1999). In central Chile, the 

decline of N. alessandrii, a critically endangered tree, has been associated with the expansion of 

industrial plantations of Pinus radiata (Bustamante & Castor, 1998), because P. radiata has been 

able to invade the small neighboring patches dominated by N. alessandrii (Bustamante et al., 

2003). 
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However, S. conspicua, L. philippiana, and A. meli recorded higher abundances and basal 

areas in larger forest fragments. The site conditions in the interior of these fragments facilitated 

the establishment and growth of these shade-tolerant tree species, which normally require a 

certain degree of canopy protection during the first stages of growth. Larger fragments contained 

larger areas of interior forest habitats, which are characterized by a great abundance of shade-

tolerant trees. The GLM analyses showed that the understory species Pseudopanax laetevirens 

and Crinodendron hookerianum were also significantly associated with relatively large forest 

fragments dominated by shade-tolerant species. These two species have also been described in 

old-growth and late-successional forest, where P. laetevirens may grow on branches of giant, 

emergent individuals of S. conspicua and W. trichosperma (Aravena et al., 2002). 
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The ranking of the species should be interpreted with caution, as some species appear to 

be reacting to other attributes other than shading. For instance, P. lingue is a shade-tolerant tree 

(Donoso et al., 1999) that was grouped with those species that benefited from fragmentation. 

This species is distributed in lowlands in the northern part of the study area, which is 

characterized mainly by small fragments of native forests. Owing to this, the abundance and 

basal area of P. lingue was significantly related to small patches. Conversely, results showed that 

W. trichosperma, a shade-intolerant tree, was more associated with large fragments, both in 

terms of abundance and basal area. After colonizing open areas, the great longevity of W. 

trichosperma trees has enabled them to persist in late-successional forests, which correspond to 

large forest fragments that occur in the landscape (Veblen et al., 1981; Donoso, 1989; Lusk, 

1999). This persistence of early colonizers of disturbed areas has also been described in New 

Zealand for some long-lived conifers such as Libocedrus bidwillii and Podocarpus hallii, and 

angiosperm species such as Weinmannia racemosa (Wells et al., 2001).  

Some studies have demonstrated that plant species with long-distance dispersal have the 

potential to migrate rapidly through fragmented landscapes (Pearson & Dawson, 2005). In the 

tropical forest of south-east Brazil, the high degree of connectivity among fragments was 
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positively related to tree species diversity because many species had high dispersal capabilities 

and used structures such as habitat corridors and ‘stepping stones’ for their dispersal through the 

landscape (Metzger, 1997). In Central Chile, concern has been expressed about several shade-

tolerant tree species of the Maulino forest that depend on biotic pollinators and dispersers that 

are becoming rare as a result of forest loss and fragmentation (Bustamante & Castor, 1998). In 

the present study, zoochorous species such as A. meli and A. luma and anemochorous species 

such as N. dombeyi and D. diacanthoides (Donoso, 1989) have higher capacity to colonize sites 

along the forest margin (Armesto et al., 2001). This suggests that a progressive division and 

isolation of the forested habitats might seriously affect shade-tolerant species such as S. 

conspicua and P. nubigena that are dispersed by gravity.  
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Changes in forest structure 

A reduction of patch size by fragmentation was related to a decline in the basal area of the 

fragments. The highest values of basal areas were found in large fragments of old-growth forest, 

where large trees of shade-tolerant species occur. Similar to this result, high basal areas are also 

associated with old-growth forests in Western Ghats, India (Bhat et al., 2000) and with larger 

fragments in south-eastern Madagascar (Ingram et al., 2005). A reduction of basal area in the 

study landscape represented a modification of the forest structure in which the forest returned to 

an earlier successional stage. This has also been described for the forests in Klamath-Siskiyou, 

Pacific North-west USA (Staus et al., 2002), where the forest stands have become younger and 

more fragmented in response to logging of the larger (and older) trees. The current analysis of 

forest structure distribution by patch size revealed that most of the mid-successional forests or 

secondary forests were concentrated in the smallest classes of fragment size. These forests 

contain the lowest basal areas recorded, as a result of a simpler forest structure characterized by a 

high abundance of saplings and young trees. These changes in forest structure may have negative 

consequences on some species dependent on particular characteristics of forest structure (Pardini 
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et al., 2005). For example, in the study area, the density of bird species associated with old-

growth forests may be reduced due to changes in availability of canopy emergent trees, snags, 

logs and understory bamboo cover (Diaz et al., 2005). Our results suggest that the landscape is 

increasingly becoming dominated by early successional forest fragments with low basal areas. 

This simplification of the evergreen forest may lead to a decline in regional bird species richness 

and abundance (Diaz et al., 2005). In Amazonian forests the accelerated dynamics due to 

fragmentation are likely to exacerbate changes in forest structure, floristic composition and 

microclimate of the forests, which could help drive the local extinctions of disturbance-sensitive 

species (Laurance et al., 1998; Laurance et al., 2006). While such processes may be occurring in 

the present study area (Aravena et al., 2002), the current analyses indicate that remaining forest 

fragments are also being affected by recurrent human disturbances. 
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Effects of ongoing anthropogenic disturbances 

In the present study, the fragmentation of temperate rain forests was related with an increase of 

ongoing human disturbances such as forest logging and animal grazing. In particular, smaller 

remnant fragments were highly vulnerable to ongoing disturbances as they were accessible for 

logging and clearance (Echeverría, 2005). Logging and clearance may be partly responsible for 

the decline in the basal areas within small fragments. In Madagascar, the spatial pattern analysis 

of forest structure showed that levels of basal area were associated with accessibility to the 

fragments (Ingram et al., 2005). In the present study, the significant decrease of forest canopy 

cover and increase of stumps in small fragments confirm that these small fragments are being 

seriously disturbed by logging. In particular, logging for fuelwood has caused a severe 

deterioration of the remnant forest, especially of those forests situated near urban centers (Reyes, 

2000). On the other hand, the significant increase in the number of animal trails and cow pats 

show that the smaller fragments are utilized by livestock. Small forest patches surrounded by 

pasture lands are frequently used as shelter for domestic animals that may disturb the dynamics 
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of the forests by browsing, grazing, and trampling of tree seedlings. In Mediterranean 

ecosystems of southern Spain, grazing has caused an alteration of the spatial organization of 

browse-sensitive species and a decline in the richness of some plants, particularly in the most 

heavily browsed sites (Alados et al., 2004). Such results suggest that animal disturbances may 

have negative consequences on the dynamics of the species that occur in the forest studied. This 

may become even more severe as the forest is also being altered by edge effects and gap 

formations by logging and other ongoing human disturbances.  
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CONCLUSIONS 

We found that patch size is closely correlated with other measures of habitat fragmentation such 

as variation in area of interior habitat, patch shape and connectivity. Patch size may be therefore 

used as an indicator of the integrity of forest ecosystems in this study and to monitor forest 

fragmentation over time and space.  

We observed that the responses to forest fragmentation are species-specific. The 

abundance and basal area of some species was strongly related to changes in fragment size while 

others did not exhibit significant changes. The long-term survival of species sensitive to forest 

fragmentation such as shade tolerant species depends on whether remaining forest patches are 

large enough to provide the suitable condition for the establishment and growth of these species.  

This study demonstrates that the progressive fragmentation is associated with dramatic 

changes in the structure and composition of the temperate forests in southern Chile. Our results 

also reveal that the fragmentation of temperate rainforests is significantly related to ongoing 

human disturbances such forest logging and grazing. Therefore, if the fragmentation process is 

maintained, the ability of the remnant forests to maintain their original biodiversity and 

ecological processes may be reduced.  

Some limitations of the present work should be considered. The sampling in the center 

did not include edge habitats in large fragments, which may contain different tree and shrub 
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species from those that occur in the interior areas. Additionally, the lack of repeated field 

sampling over time constrains the relationship between fragmentation and ecological impacts. 

Even though the number of fragments in this study was much higher than that used in other 

fragmentation studies (Metzger, 1997; Gigord et al., 1999; Tabaralli et al., 1999; Metzger, 2000; 

Cadotte et al., 2002; Murakami et al., 2005), further analyses should consider a larger number of 

fragments owing to the degree of variation in landscape characteristics. Further insights could 

also be provided by adopting an experimental approach to fragmentation, rather than the 

essentially correlative approach adopted here.  
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Table 1. Range of values assigned to each category of mean proximity index, patch size, and 

radius of gyration. Forest fragmentation decreases gradually from category 1 to 5. Values were 

used to stratify the selection of forest fragments in the field. 
Categor

y 

Mean Proximity Index Patch size 

(ha) 

Radius of Gyration 

(m) 

1 0 - 4.37 0.45 - 0.72 24 - 32.84 

2 4.38 - 14.49 0.73 - 1.08 32.85 - 41.71 

3 14.50 - 52.50 1.09- 2.16 41.72 - 58.61 

4 52.51 - 467.59 2.17 – 6.03 58.62 - 99.40 

5 467.60 - 369,603.5 6.03 – 132,972 99.41 - 17,007.7 

708  
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Table 2. Number of fragments sampled in each size class. 
Fragment size class 

 (ha) 

Number of selected 

fragments  

Number of sampling 

plots assigned per 

fragment 

0,1-25 21 1 

25-100 12 1 

100-1,000 10 1 

1,000-10,000 4 2 

>10,000 4 3 

Total 51 63 
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Table 3. Regression relationships between patch attributes (grouped into attributes associated 

with diversity, species richness, forest structure, and human disturbances) and patch area, A (in 

hectares).  The relationship y = a + b log10 (A) was fitted for each attribute using generalised 

linear modelling, and estimates of parameters a and b (± 1 SEM) are provided, and its statistical 

significance is shown. The extent of attribute variation in the field is illustrated in the final three 

columns, which provide means for different ranges of patch size.  
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 Attribute of patch  a ± S.E. b ± S.E. P-value Mean values when patch area is 
       < 50 ha 50-250 ha > 250 ha
Diversity         
 β diversity -0.344 ± 0.05 -0.025 ± 0.02 n.s. 0.70 0.56 0.65

Richnessa   
 Total richness (trees + shrubs) 2.671 ± 0.06 -0.040 ± 0.03 n.s. 14 13 13
 Shrub spp richness 1.620 ± 0.11 -0.158 ± 0.06 ** 5 3 3
 Interior tree spp richness 0.846 ± 0.14 0.132 ± 0.06 * 3 6 5
 Interior tree & shrub spp richness 1.195 ± 0.12  0.148 ± 0.05 ** 4 6 5
 Edge tree spp richness 0.599 ± 0.19 -0.208 ± 0.10 * 3 1 1
 Edge tree & shrub spp richness 1.690 ± 0.12 -0.394 ± 0.08 *** 4 3 2

Forest Structure      
 Total basal area (m2 ha-1) 3.375 ± 0.14 0.237 ± 0.05 *** 37 50 63
 Mean Quadratic Diameter (cm) 2.701 ± 0.09 0.076 ± 0.04 * 17 16 19
 Tree density (N ha-1) 7.545 ± 0.11 0.086 ± 0.05 n.s. 1,960 2,680 2,498
 Sapling density (N ha-1) 7.507 ± 0.12 0.089 ± 0.05 n.s. 1,786 2,675 2,597
 Seedling density (N ha-1) 8.514 ± 0.16 0.082 ± 0.07 n.s. 5,168 6,643 6,450
 Shrub density (N ha-1)   7.910 ± 0.26 -0.126 ± 0.13 n.s. 2,605 1,355 1,878

Human Disturbances      
 Canopy cover (%)a 4.214 ± 0.03 0.052 ± 0.01 *** 70 75 80
 Number of stumps 2.818 ± 0.21 -0.265 ± 0.12 * 14 9 7
 Number of animal trails 1.985 ± 0.13 -0.427 ± 0.08 *** 6 3 2
 Number of fire scars a -1.264 ± 0.50 -0.315 ± 0.29 n.s. 1 0 0
 Number of cow pats 2.011 ± 0.35 -1.095 ± 0.38 *** 4 1 0

a The residual errors were assumed to be Poisson distributed, and significance was assessed 
using χ2 tests.  For all other analyses, the residual errors were treated as quasipoisson distributed 
and significance was assessed using F tests.  There were 49 residual degrees of freedom. 
 
* p<0.05 
** p<0.01 
*** p<0.001 
n.s.: not significant 
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Table 4. Regression relationships between the abundance of tree species and patch area, A (in 
hectares). The relationship y = a + b log10 (A) was fitted for each species using generalised linear 
modelling, and estimates of parameters a and b (± 1 SE) are provided, and its statistical 
significance is showna. The variation in abundance of tree species in the field is illustrated in the 
final three columns, which provide means for different ranges of patch size.  

776 

784 

788 

 

 

 

780 Mean values when patch area is   Abundance (n ha-1) 
Species a ± S.E. b ± S.E. P-value < 50 ha 50-250 ha > 250 ha

Nothofagus obliqua 1 -2.154 ± 1.09 -1.958 ± 1.60  n.s.   2 0 0
Persea lingue 2 -1.284 ± 0.46 -1.565 ± 0.83  **   3 0 0
Nothofagus dombeyi 3 1.049 ± 0.17 -1.049 ± 0.21  ***   27 0 2
Embothrium coccineum 4 1.058 ± 0.85 -0.785 ± 0.22  **   73 25 22
Lomatia hirsuta 5 1.809 ± 0.57 -0.377 ± 0.37  n.s.   131 0 33
Blepharocalyx cruckhankii 6 2.302 ± 0.75 -0.328 ± 0.47  n.s.   170 0 157 
Myrceugenia exsucca 8 0.891 ± 0.74 -0.033 ± 0.35  n.s.   44 0 46
Eucryphia cordifolia 7 2.090 ± 0.33 -0.033 ± 0.16  n.s.   234 95 121
Drimys winteri 9 2.992 ± 0.24 -0.000 ± 0.11  n.s.   456 925 312
Caldcluvia paniculata 1 0.360 ± 0.82 0.030 ± 0.37  n.s.   36 0 22
Luma apiculata 1 1.839 ± 0.47 0.033 ± 0.21  n.s.   130 145 132
Gevuina avellana 1 1.846 ± 0.48 0.060 ± 0.21  n.s.   129 325 132
Amomyrtus luma 1 2.752 ± 0.31 0.231 ± 0.12  n.s.   355 315 669
Tepualia stipularis 1 0.784 ± 1.10 0.265 ± 0.42  n.s.   33 0 82
Lomatia ferruginea 1 -1.209 ± 0.91 0.279 ± 0.35  n.s.   5 15 12
Podocarpus nubigena 1 -0.573 ± 0.74 0.322 ± 0.28  n.s.   15 0 8
Myrceugenia planipes 1 0.669 ± 0.71 0.335 ± 0.25  n.s.   55 153 50
Aextoxicon punctatum 1 -1.847 ± 1.69 0.369 ± 0.59  n.s.   1 107 0
Amomyrtus  meli 2 -0.731 ± 0.59 0.616 ± 0.19  ***   82 345 246
Nothofagus nitida 1 -0.653 ± 0.71 0.658 ± 0.22  **   44 320 57
Laurelia philippiana 2 0.605 ± 0.54 0.730 ± 0.18  **   101 265 220
Weinmannia trichosperma 2 -4.858 ± 1.85 1.388 ± 0.48  ***   2 2 20
Saxegothaea conspicua 2 -5.382 ± 1.45 1.559 ± 0.37  ***   0 20 35

a:List of tree species ranked according to the values of slope coefficients (b) obtained in the 

GLMs. A F test was applied using a quasipoisson family distribution and log link function. 

Df=1, number of fragments= 51. 

S.E.: Standard error. 
* p<0.05 
** p<0.01 
*** p<0.001 
n.s.: not significant 
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Table 5. Regression relationships between the basal area of tree species and patch area, A (in 
hectares). The relationship y = a + b log10 (A) was fitted for each species using generalised linear 
modelling, and estimates of parameters a and b (± 1 S.E.) are provided, and its statistical 
significance is showna. The variation in basal area in the field is illustrated in the final three 
columns, which provide means for different ranges of patch size.  

792 

796  
 Basal area (m2 ha-1) Mean values when patch area is  
Species  a ± S.E. b ± S.E. P-value < 50 ha 50-250 ha > 250 ha
Nothofagus obliqua 1 -1.961 ± 1.09 -1.957 ± 1.39  n.s.   0.33 0 0
Persea lingue 2 -1.092 ± 0.78 -1.274 ± 0.80  ***   0.41 0 0
Embothrium coccineum 4 -0.697 ± 0.82 -0.866 ± 0.36  **   0.87 0 0.21
Caldcluvia paniculata 1 0.111 ± 0.84 -0.719 ± 0.69  n.s.   0.80 0 0.35
Lomatia hirsuta 5 1.271 ± 0.58 -0.542 ± 0.43  n.s.   3.66 0 0.31
Nothofagus dombeyi 3 0.729 ± 0.44 -0.503 ± 0.32  *   1.67 0 0.29
Drimys winteri 9 2.374 ± 0.20 -0.065 ± 0.10  n.s.   10.13 19.70 8.30
Gevuina avellana 1 0.730 ± 0.38 -0.033 ± 0.18  n.s.   2.03 3.04 1.77
Blepharocalyx cruckhankii 6 0.212 ± 0.81 0.141 ± 0.34  n.s.   1.15 0 2.67
Amomyrtus luma 1 0.945 ± 0.44 0.199 ± 0.18  n.s.   2.28 2.31 5.73
Lomatia ferruginea 1 -3.194 ± 0.85 0.206 ± 0.34  n.s.   0.05 0 0.06
Aextoxicon punctatum 1 -2.924 ± 1.53 0.350 ± 0.56  n.s.   0.05 1.22 0
Myrceugenia exsucca 8 -0.102 ± 1.40 0.360 ± 0.51  n.s.   0.53 0 2.88
Podocarpus nubigena 1 -1.319 ± 0.76 0.452 ± 0.26  *   0.47 0.00 0.98
Eucryphia cordifolia 7 1.483 ± 0.52 0.460 ± 0.17  **   7.60 20.13 21.68
Laurelia philippiana 2 0.605 ± 0.54 0.475 ± 0.18  **   3.00 9.78 9.54
Tepualia stipularis 1 -2.062 ± 1.28 0.477 ± 0.41  n.s.   0.11 0.0 1.51
Luma apiculata 1 -0.735 ± 0.55 0.495 ± 0.19  **   0.81 0.83 3.42
Myrceugenia planipes 1 -1.881 ± 0.87 0.584 ± 0.28  **   0.23 0.86 2,54
Amomyrtus  meli 2 -0.731 ± 0.59 0.616 ± 0.19  ***   0.62 0.57 4.42
Nothofagus nitida 1 -0.654 ± 0.70 0.658 ± 0.22  ***   0.79 5.7 6.12
Saxegothaea conspicua 2 -5.382 ± 1.45 0.977 ± 0.34  ***   0.00 4.98 7.16
Weinmannia trichosperma 2 -4.978 ± 2.22 1.427 ± 0.58  ***   0.12 0.20 1.37
 

a:List of tree species ranked according to the values of slope coefficients (b) obtained in the 

GLMs. A F test was applied using a quasipoisson family distribution and log link function. 

Df=1, number of fragments= 51. 800 

804 

808 

S.E.: Standard error. 
* p<0.05 
** p<0.01 
*** p<0.001 
n.s.: not significant 
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Table 6. Regression relationships between the abundance of shrub species and patch area, A (in 
hectares). The relationship y = a + b log10 (A) was fitted for each species using generalised linear 
modelling, and estimates of parameters a and b (± 1 S.E.) are provided, and its statistical 
significance is showna. The variation in abundance of shrub species in the field is illustrated in 
the final three columns, which provide means for different ranges of patch size.  

812 

 

 Abundance  (n ha-1) Mean values when patch area is  

Species Intercept ± S.E. Slope ± S.E. p-value < 50 ha 50-250 ha > 250 ha

Ugni molinae -2.591 ± 0.88 -9.471 ± 3.11 *** 16 0 0
Rubus constrictus 0.089 ± 0.36 -2.959 ± 1.13 *** 23 0 0
Ribes magellanica -1.736 ± 0.36 -2.499 ± 0.99 *** 19 0 0
Azara integrifolia -1.521 ± 0.49 -0.802 ± 0.48 ** 11 0 0
Aristotelia chilensis 1.236 ± 0.30 -0.774 ± 0.28 *** 312 53 5
Chusquea uliginosa 1.260 ± 0.42 -0.548 ± 0.32 n.s. 818 705 44
Ovidia pillo-pillo -1.406 ± 0.47 -0.476 ± 0.34 n.s. 19 0 0
Myoschilos oblonga -0.145 ± 0.55 -0.463 ± 0.39 n.s. 55 0 16
Berberis darwini 0.562 ± 0.53 -0.392 ± 0.34 n.s. 130 24 44
Fuchsia magellanica -0.924 ± 0.67 -0.299 ± 0.41 n.s. 13 20 0
Myrceugenia parvifolia 0.345 ± 0.40 -0.213 ± 0.22 n.s. 97 12 57
Rhaphithamnus spinosus 1.942 ± 0.22 -0.136 ± 0.11 n.s. 381 395 144
Berberis buxifolia -3.607 ± 1.54 -0.127 ± 0.84 n.s. 2 0 0
Gaultheria mucronata -1.340 ± 0.79 -0.112 ± 0.40 n.s. 27 0 9
Chusquea quila 1.043 ± 0.36 0.211 ± 0.14 n.s. 583 1852 833
Azara lanceolata -2.976 ± 1.15 0.238 ± 0.45 n.s. 2 12 9
Gaultheria insana -1.104 ± 0.71 0.262 ± 0.28 n.s. 50 40 44
Pseudopanax laetevirens -0.490 ± 0.56 0.459 ± 0.19 ** 72 120 210
Crinodendron hookerianum -1.317 ± 0.65 0.482 ± 0.22 ** 7 125 59
Azara serrata -3.910 ± 2.02 0.608 ± 0.65 n.s. 0 0 60
 

816 

820 

824 

828 

 
a Species have been ranked according to the values of slope coefficients (b) obtained in the 

GLMs. A F test was applied using a quasipoisson family distribution and log link function. 

Df=1, number of fragments= 51. 

S.E.: Standard error. 
* p<0.05 
** p<0.01 
*** p<0.001 
n.s.: not significant 
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Figure 1. Distribution of native forest fragments (in black) and other land cover types (in grey) in 

the study area in southern Chile.  832 

836 

840 

844 

 

Figure 2. Relationships between log10 (patch size +1, in hectares) and some of the most 

statistically significant response variables. Measures of richness, forest structure and canopy 

were obtained at the plot level. Number of animal trails was measured along four transects of 40 

m length and 2 m width oriented in each cardinal direction from the central point of the sampling 

plot. 

 

Figure 3. Proportion of old-growth and secondary forests in different patch size classes.  

The graph was generated by overlaying the position of all the forest fragments onto a thematic 

map of forest subtypes developed by national inventory and mapping known as Catastro 

(CONAF et al.,, 1999). 
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Figure 3.  
 

 

 

 



 

Appendix 1. Matrix of Spearman correlation coefficients1 of landscape spatial attributes for the 

sampled forest fragments. Core forest area is defined by distance to the edge of 100, 300, and 

500 m. 

912 

Index Core area -
100 

Core area -
300 

Core area -
500 

Radius of 
gyration Patch size Proximity 

index 
Edge 
length 

Core area (100 m) 1.00***       
Core area (300 m) 0.80**** 1.00***      
Core area (500 m) 0.96*** 0.70*** 1.00***     
Radius of gyration (m) 0.80*** 0.44*** 0.37***** 1.00***    
Patch size (ha) 0.90*** 0.68*** 0.58*** 0.86*** 1.00***   
Proximity index 0.49** 0.50**** 0.45***** 0.54** 0.51***** 1.00***  
Edge length (km) 0.91**** 0.69**** 0.55*** 0.92*** 0.95**** 0.72****** 1.00*** 
 

916 

920 

924 

** p<0.01, *** p<0.001 

1: The test of normality one-sample Kolmogorov-Smirnov revealed that each spatial attribute 
significantly differs from a normal distribution. Therefore, a Spearman correlation test (non-
parametric relations) was used.  
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