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Abstract— In this work we present an instance of an ar-
chitecture for the development of robust evolving predictive
models. The architecture provides a conceptual framework for
the development of such models while at the same time it
provides mechanisms for the minimisation of effort needed
for the development and maintenance of the models. These
mechanisms deal with the model and parameter selection,
model training, validation and adaptation. Another challenge
for the proposed instance is to deal with an industrial data
set containing several issues like missing data, outliers, drifting
data, etc. This fact calls for high robustness of the deployed
models. The success of the models lays in the goal oriented
application of several concepts like ensemble building, local
learning, parameter cross-validation which are provided by the
architecture and exploited by the discussed instance.

I. INTRODUCTION

Applying state-of-the-art predictive modelling techniques

from computational intelligence to industrial problems,

which are targeted in this work, remains a challenging

task. It is often the case that the techniques which show

superior performance on clean data, fail to deliver the same

performance on raw real-life data and are outperformed by

simpler methods which show higher robustness towards the

imperfect data. Even worse, the behaviour of the predictive

techniques often can not be predicted which causes further

problems with the model selection and parametrisation. The

failure to deliver acceptable performance is often caused by

outliers, missing values, measurement noise and drifts which

are common in industrial data sets. The most common way

how to deal with this problem is by attempting to clean the

data by applying various pre-processing steps. In this way the

data is transformed in favour of the modelling techniques (see

[1] for a review of such case studies). However, the drawback

of this approach is that because the data can dramatically

change from case to case, each new case requires new time

consuming manual pre-processing. Furthermore, once the

data is pre-processed the correct predictive method has to

be selected. This selection is critical for the performance

of the whole model since different techniques have different

strengths and weaknesses. Very often one can not see a-priori

which technique fits best the data and different methods and

their parameters have to be tried. Even more critically, in

industrial environment the model developers often have their

favourite technique and focus only on these without taking

any other approaches into account which is definitely not of

advantage for the final performance of the model.

The most commonly applied techniques to industrial mod-

elling problems are ranging from statistically based Principle
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Component Regression [2], Partial Least Squares Regression

[3] and Support Vector Machines [4] to techniques from

computational intelligence like Multi-Layer Perceptron [5]

and Neuro-Fuzzy Systems [6]. Although many applications

of these techniques have been published (see e.g. [1], [7]

for reviews) most of the authors claim that a certain effort

has to be spent on the preparation of the data (i.e. data

pre-processing) as well as the techniques (i.e. parameter

selection). Another problem is that one also can not separate

the two previously discussed tasks, i.e. data pre-processing

and predictive technique selection and parametrisation due

to their mutual influence on each other. This fact further

increases the number of possibilities to be tested in order to

identify a well performing model.

In this work we propose another way for dealing with

industrial modelling tasks. We approach the task by applying

established techniques from statistical machine learning and

computational intelligence like parameter cross-validation

[8], ensemble techniques [9], meta learning [10] to name

just a few of them. This is achieved by applying an instance

of a general conceptual architecture proposed in [11] for the

development of a robust predictive model. The conceptual

architecture does not focus only on the automated method

and parameter selection but provides also means for the

adaptation and evolution of the decisions in order to adjust

to the ever changing environment as it is often present in

the case of real-life modelling tasks. The instance proposed

in this work exploits this functionality and enables the

development of an effective evolving model while at the same

time the effort required for its development is kept low.

The rest of this paper is organised in the following

way: Section II shows a brief overview of the conceptual

architecture and outlines its most critical aspects necessary

for the understanding of the proposed instance. This is

followed by a methodology for the development of the model

and the way in which the data is typically provided in

industrial environment in Section III. Section IV is the main

contribution of this paper as it presents the actual instance of

the architecture and shows the mechanisms applied in order

to achieve the high robustness and adaptive capabilities. The

model is then evaluated in Section V by applying it to two

real-life data sets. Finally, the paper is concluded in Section

VI.

II. ARCHITECTURE OVERVIEW

This section gives a brief overview of the architecture

which is instantiated in this work. The architecture is in

more detail discussed in [11]. Due to space limitations the

figure showing the general structure of the architecture can

not be shown here however Fig. 6 showing an instance of the
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architecture can be used to see its structure. The architecture

consists of eight main modules which are together with their

functions outlined in Table I.

TABLE I

MODULES AND THEIR FUNCTIONS

Module Function

Data Source Data maintenance and provision

PPMP, CLMP Pools of pre-proc. and computational learning methods

Paths Environment where computational paths are maintained

Path Combinations Environment where path combinations are maintained

ISM Partitioning of the data space, receptive fields building

MLL Management of the high level functions

GPE Evaluation of the performance of the model

Expert Knowledge Parameter control, inserting a-priori knowledge, etc.

The aim of the architecture development was to define an

environment which unifies the main concepts from statistical

machine learning and computational intelligence into a single

complex structure with focus on dealing with industrial and

application oriented tasks. The key concepts represented

within the architecture are: (i) ensemble building; (ii) local

learning; and (iii) meta learning. Another particular focus

was set on the evolutionary and adaptation capabilities of

the architecture.

The information processing within the model is struc-

tured in a hierarchical manner. At the lowest level of the

architecture, there is a diverse set of data processing units

called computational path which are maintained in the Paths

module (see Fig. 1 for the internal path structure). The paths

consist of an arbitrary number of pre-processing methods

and one computational learning method. At the next level,

the paths are combined to path combinations which, apart

from the fact that they operate in another data space, do not

differ from the paths. At the highest level of the complexity,

a management of the underlying levels which evolves the ar-

chitecture towards the global goal defined by the underlying

task (e.g. best predictive performance in the Mean Squared

Error sense), takes place.
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Fig. 1. Computational path internal structure

As mentioned above, the architecture provides several

mechanisms for its adaptation. These mechanisms are repre-

sented at all three levels of information processing as shown

in Fig. 2. The instance of the architecture presented in Sec-

tion IV shows the implementation of adaptive mechanisms

at the path combination level (loop b in Fig. 2) and at the

meta level (loop c in Fig. 2)
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Fig. 2. Adaptation loops provided within the architecture

Due to the space limitation further details of the architec-

ture are skipped but interested readers can refer to [11] for

more details.

III. METHODOLOGY

In this work we assume the availability of two different

types of data, namely a batch of historical data and a stream

of real-time data which governs the structure of the instance

proposed in Section IV.

In many industrial cases there are automated procedures

for recording all measurement being done within the in-

dustrial processes. These historical recordings describe the

behaviour of the process in the past. We assume that a set

of such data (i.e. the historical data) is available and can be

applied for the initial training of the model.

Once the initial model building phase is finished, the

model is applied in an on-line operation and has to deal with

the real-time data stream. The real-time data is arriving in an

incremental way, i.e. one sample (or a batch of samples) after

another. In general, the sampling rate between the input and

the target data can differ and additionally there can also be

sys between them. The correct target values can be applied

to the evaluation of the model performance and its adaptation

during the on-line phase.

IV. INSTANCE OF THE ARCHITECTURE

This section presents an instance of the architecture dis-

cussed in Section II. According to the methodology discussed

in Section III one can distinguish two phases of the devel-

opment. The first stage, during which an initial version of

the model is built, is based on the historical data set. This

stage covers Steps 1 to 5 presented later in this section (see

Fig. 3). After this stage the model is deployed and provides

predictions for the (unlabelled) samples for the on-line data

(see Fig. 4). The target values are provided after a certain

delay (i.e. after making the prediction). Further on, they are

exploited for the adaptation of the model during the on-line

phase as discussed in Step 6.

Next the particular steps of the algorithm are presented.

A. Step 1 - Building of receptive fields

The initial step of the algorithm is the partitioning of the

available historical data Dhist into receptive fields. Ideally,

each receptive field should represent a distinct state of the

data. This goal is approached by using concept drift detection

techniques, as each receptive field corresponds to a concept
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Fig. 3. The proposed algorithm, training phase

of the data (see e.g. [12] for concept drift overview). Further

details of the implementation of the receptive field building

can be found in [13].

The partitioning of the historical data is performed within

the Instance Selection Management (ISM) of the architecture.

From the ISM, the built receptive fields are submitted to the

Pre-Processing Methods Pool (see Fig. 6).

The outcome of this stage is a set of partitions D1...n of

the historical data.

B. Step 2 - Learning of performance distributions

Provided the receptive fields, the next step is learning

the performance distributions P1...n of all available pre-

processing and computational learning techniques and their

parameters within each receptive field i := 1 . . . n. For a

given number of iterations, there is a computational path

built and evaluated for each iteration. The pre-processing

and predictive techniques as well as their parameters (e.g.

PCA with 10 principle components and MLP with 5 hidden

units) are drawn randomly from the set of available methods
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Fig. 4. Step 6: the on-line phase

provided by the two method pools (PPMP, CLMP) shown in

Fig. 6. The paths are trained on a random sub-sample of the

receptive field data samples and evaluated on independent

data (remaining samples from the same receptive field).

Provided the performance of the paths, the performance

distribution Pi is updated at the corresponding position (see

Fig. 7 for an example of the performance distribution func-

tion). After a sufficient number of iterations, the performance

distribution shows the relative performance of the methods

within the receptive field.

The distributions Pi are stored within the Meta Level

Learning (MLL) module of the architecture, from where

the distributions will be sampled in order to obtain the

parameters for the deployed paths as shown in the next step.

C. Step 3 - Building of local expert candidates

During this step, a set of computational paths FLEcand
i

is built for each receptive field and deployed in the Paths

module. The methods and parameters for the paths (or

local expert) candidates fLEcand
i,j are chosen by sampling

the performance distributions stored in the MLL module.

Since the performance distributions Pi show the relative

performance of the full path, i.e. the pre-processing and

predictive methods, a single sampling of these provides the

parameters for the whole path.

In order to increase the robustness of the paths, each of

them is a committee based on cross-validation of the data

samples within the receptive field. The diversity of the built

computational path is further increased by selecting a random

subset (e.g. 80%) of the samples within the receptive field as

an input for the cross-validation. After the training the sets

of local expert candidates FLEcand
i are available in the Paths

module.

D. Step 4 - Paths selection in a competitive environment

In order to remove paths showing poor generalisation

performance from the pools, the paths are evaluated on

independent data D
indep
i . The independent data are a subset

of the historical data which was not used during the training

of the particular path ( i.e. (Dindep
i ∈ Dhist) ∩ (Dindep

i /∈
Di)). The evaluation is done using the Local Performance

Function implemented within the paths (see Fig. 1). In this

work we use an evaluation function which is a combination

of the Root Mean Squared Error (RMSE) and the correlation

coefficient. Having the performance of the paths a subset of

best performing paths is selected. This scenario resembles a

competitive environment where only the best paths pass this

stage and are maintained as part of the model.

This functionality is implemented mainly in the Paths

module of the architecture. The performance of the paths is

reported to the Path Control from where a subset of the paths

with the best performance FLE
i is selected and kept while

the remaining paths are removed from the Paths module.

E. Step 5 - Paths selection in a cooperative environment

Prior to this step, there is a path descriptor li,j ∈ Li

built for each of the paths, see Fig. 8 for an example of

such a descriptor. This descriptor is a 2D map showing

the performance of the local expert in the space of each

input and the target variable. Therefore each path descriptor

consists of a set of 2D descriptors where the number of them

corresponds to the number of input variables. At a later stage

(see Section IV-F), this maps will be read at the positions

of the input variables and of the local expert predictions

and the sampled values used as combination weights for the

calculation of the final prediction.

The aim of this step is to select a subset of the paths which

cooperatively optimise their performance. The cooperative

performance is assessed by evaluating the distance between

a weighted sum (the weights are obtained from the path

descriptors) of the selected paths’ predictions and the correct

target values. The evaluation is based on a random subset

of the historical data Deval ∈ Dhist. The best team of local

experts is forwarded to the Path Combinations module where

they build the final model.

In contrast to the previous step, there are no paths removed

from the Paths module at this stage. It will be shown later that

one of the evolving capabilities of the model is a dynamic

re-evaluation of the paths ensemble and thus all paths which

entered this stage have to be kept.

The path descriptors Li are stored within the Meta Level

Learning module because they have to be accessible from the

Path Combinations module. The selected paths are combined

in the Path Combinations module where the final predictions

are built.

F. Step 6 - On-line prediction and adaptation

The proposed approach provides high robustness towards

issues of industrial data and an automated method and param-

eter selection, but this is not the only remarkable property of

it. Another advantage is the possibility to deal with changing

data by applying an evolving approach described in this

section and shown in Fig. 4. The changing data is the aspects

which very often leads to the necessity for manual tuning and

re-training of predictive models in industrial environment and
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thus to deal with this problem is one of the main focuses

of the architecture discussed in Section II and the proposed

model as an instance of the architecture makes use of this

functionality.

There are several positions where the model can be

updated. Starting from the path level, the particular path

can be adapted using e.g. the moving window technique,

which is the traditional way for the adaptation of predictive

models. However, since there are several problems with this

technique, like the estimation of the length of the moving

window, we avoid this techniques and focus on the adaptation

at higher levels of the model.

The model performs a prediction yp(t) given the un-

labelled instances of the on-line data stream xonline(t)
which is a weighted combination of the particular paths’

predictions. The weights are obtained by sampling the path

descriptors at position given on one hand by the input data

xonline(t) and by the path prediction fLE
i (t) on the other

hand.

As shown in Fig. 4, each time a target value yonline(t) of

the on-line data sample Donline(t) is received, the diversity

of the ensemble FLE is checked and adapted if necessary.

This action corresponds to a dynamic re-building of the team

of prediction experts which allows to maintain a constant

level of performance of the team despite the changing

environment.

Another possibility for adaptation is updating the path

descriptors. Provided the target value, the descriptors are

adapted locally in the neighbourhood of the input and target

value. As the main purpose of the descriptors is to provide the

combination weights, adapting the descriptors is equal to the

adaptation of the path’s contribution to the final prediction.

The adaptation of the descriptors is performed by applying

the Delta rule [14]. Applying this adaptation rule ensures

that the local experts improve their cooperative performance

in the neighbourhood of the current sample.

Finally, it should be noted that an important property of

the two applied adaptation approaches is their algorithmic

independence. This means that the mechanisms can be

applied independently to the underlying pre-processing and

predictive techniques.

V. EXPERIMENTS

In this section, two soft sensors for the on-line prediction

of the target variable are presented as a practical implemen-

tation of the architecture instance discussed in Section IV.

For the experimental evaluation we follow the methodology

from Section III and split the available data into two sets. A

set of historical data (30% of the available data sample) and

on-line data which are the residual 70% of samples. This

split of the available data is justified by the focus on the

evolutionary properties of the model.

A. The data sets

1) The drier data set: The target values of this data set

are laboratory measurements of the residual humidity of the

chemical process product. The data set has 19 input features,

most of them being temperatures, pressures and humidities

measured within the processing plant. The data set consists

of 1219 data samples covering almost seven months of the

operation of the process. It consists of raw unprocessed

data as it were recorded by the process information and

measurement system. For this reason some of the input

variables present some common issues of industrial data

like measurement noise, missing values, data outliers, etc.

Figure 5 shows two examples of variable affected by outliers,

missing values and measurement noise.
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Fig. 5. Drier pressure variable showing measurement noise and data outliers

2) The thermal oxidiser data set: This regression data set

deals with the prediction of exhaust gas concentration of an

industrial process. The task is to predict the concentrations of

NOx in the exhaust gases. The data set consists of 36 input

features (i.e. hard sensor measurements). The input features

are physical values like concentrations, flows, pressures and

temperatures measured during the operation of the plant. The

data set consists of 2053 sample points. For this data set

similar statements as for the drier data (see Section V-A.1)

are valid, i.e. the data are raw process data exhibiting a lot

of issues like data outliers or missing values.

B. The implementation

Figure 6 shows the developed model as an instance of

the architecture shown in Section II. Apart from the struc-

ture of the instance, which is inherited from the general

architecture, the figure shows the mechanisms which are

implemented within the different modules. The following

paragraphs present the key aspects of the instantiated model.

The Data Source module serves the data to the other

parts of the architecture according to the previously defined

methodology, i.e. the first 30% of the samples as a batch of

historical data Dhist and the rest as a stream of on-line data

Donline with delayed target values.

The Pre-Processing Methods Pool (PPMP) provides the

following objects:

• Standardisation (STD): mapping the particular variable

to the range (0, 1)
• Smoothing filter (SF): Smoothing the particular vari-

ables using an averaging sliding window

• Robust Principle Component Analysis (PCA): Variable

transformation [15]

The following methods are implemented in the Computa-

tional Learning Methods Pool (CLMP):

• Multiple Linear Regression (MLR): linear regression

object [16]

28



29



[90%, 95%, 99%]
• MLR- no parameters

• MLP- number of hidden units: [1, 3, 5, 7, 9, 11]
• RBF- number of Gaussian centres: [6, 9, 12]
• LWL- number of samples used to build a local model:

[10, 50, 100]

The performance distributions are built separately for each

receptive field. An example of such a performance dis-

tribution is shown in Fig. 7. The figure shows dominant

performance of the LWL method (with its parameter value

equal to 100) in combination with several pre-processing

methods (e.g. PCA covering 90% of the data variance

and four samples long smoothing filter). Another function
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Fig. 7. Performance distribution of various methods and their parameters

provided by the MLL is storing the path descriptors discussed

in Section IV-E. Example of which is shown in Fig. 8.
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Fig. 8. Example of a path descriptor

The Global Performance Evaluation (GPE) module defines

the global function which has to be optimised. Since the

focus of this case study is on obtaining best possible predic-

tion of the target variable, there is the Mean Squared Error

implemented in this module.

The role of the Expert Knowledge is rather minor for

this case. It is limited to setting the parameter ranges of the

methods as listed above.

C. Results evaluation

In this section the performance of the developed soft

sensor is assessed. The proposed algorithm is compared to

another state-of-the-art adaptive algorithm based on local

learning, namely the Locally Weighted Projection Regression

(LWPR) [18]. LWPR has some attractive features, like local

dimensionality reduction, which makes it relevant to indus-

trial data modelling. First, a deeper analysis of the trained

model based on the drier data set, which was presented in

Section V-A.1, is provided. This is followed by the applica-

tion of both algorithms with exactly the same parameters to

another industrial data set in Section V-A.2.

The parameter set-up of our algorithm was already dis-

cussed in Section V-B. After the training phase, there

are four receptive fields and a set of eight paths form-

ing the final ensemble. This initial ensemble consists of

four MLR models and four MLPs models. This ensem-

ble is changing throughout the on-line phase, while the

number of members varies between 8 and 30. As for

the LWPR method, its parameters were optimised us-

ing an exhaustive search through the space of reason-

able values. Best results were achieved using follow-

ing parameter values: (i) init_D=4; (ii) diag_only=0;

(iii) w_gen=0.9; (iv) w_prune=0.9; (v) penalty=1e-7;

(vi) meta_learning=0; (vii) update_d=0; and (viii)

kernel=Gaussian. This set-up leads to the building of

124 receptive fields based on the historical data. These are

extended to 366 receptive fields during the on-line phase

which is a large number compared to the four receptive fields

of our model.

As next, both models were applied to the stream of on-

line data. Each time after making a prediction on an incoming

sample, the models were provided the correct target value,

our model using the mechanisms described in Section IV-F

(i.e. adapting the teams of experts and the path descriptors)

and LWPR using its intrinsic adaptation method (for details

see [18]). The predictions of both models and the correct

target values are shown in Fig. 9. One can see from the figure,

that despite the impurities in the data both models provide

good, and almost equal, performance (MSE = 4.59e − 3
and correlation coefficient= 0.46 of our model vs. MSE =
4.34e − 3, correlation coefficient= 0.45 of LWPR). This

shows that both models succeed adapting with the data.

However, this situation changes dramatically when apply-

ing the models to another data set. Both of the models were

applied with the same parameter set-up as in the previous

experiment. After using the same procedure as before, the

LWPR approach fails to deliver a stable model. Whereas the

model based on the technique proposed in this work again

delivers a well performing model as shown in Fig. 10. In fact,

after a parameter optimisation the LWPR method delivers

similar performance to the one of our (unoptimised) model.

This demonstrates that the discussed approach provides, apart
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Fig. 9. Predictions on the independent test data of the adaptive models (drier data set)
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from the ability to adapt with the incoming stream of data,

also capability to adjust its structure in accordance with

the provided historical data which is a vital ability for the

achievement of the goals discussed in the introduction.

VI. CONCLUSIONS

This work demonstrates the applicability of an architecture

for the development of evolving data-driven models which

was proposed earlier by the authors. An instance of the ar-

chitecture, which makes use of some of the mechanisms pro-

vided for model development and maintenance, is shown to

have adaptation ability at different levels. A model developed

according to the architecture shows comparable performance

to another adaptive model based on the Locally Weighted

Projection Regression (LWPR) where the parameters of the

LWPR method were adjusted to deliver optimal performance

for the given modelling task. It is also presented that without

any additional parameter optimisation the LWPR technique

fails to deliver a working model on another data set. This is

in contrast to the instance of the architecture which succeeds

to deliver a working model for the new data set without

any parameter changes. These results demonstrate that the

developed model is able to evolve on one hand with changing

data and on the other hand with is able to adapts its structure

with the underlying data set and thus allows the application

of the same model across different modelling tasks.
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