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Forecast Combination in Revenue Management Demand Forecasting 

Abstract 
The domain of multi level forecast combination is a challenging new domain 

containing a large potential for forecast improvements. This thesis presents a the- 

oretical and experimental analysis of different types of forecast diversification on 

forecast error covariances and resulting combined forecast quality. Three types 

of diversification are used: (a) diversification concerning the level of learning (b) 

diversification of predefined parameter values and (c) the use of different forecast 

models. 

The diversification is carried out on forecasts of seasonal factor predictions in 

Revenue Management for Airlines. After decomposing the data and generating 

diversified forecasts a (multi step) combination procedure is applied. We provide 

theoretical evidence of why and under which conditions multi step multi level fore- 

cast combination can be a powerful approach in order to build a high quality and 

adaptive forecast system. We theoretically and experimentally compare models 

differing with respect to the used decomposition, diversification as well as the ap- 

plied combination models and structures. 

After an introduction into the application of forecasting seasonal behaviour in 

Revenue Management, a literature review of the theory of forecast combination 

is provided. In order to get a clearer idea of under which condition combination 

works, we then investigate aspects of forecast diversity and forecast diversification. 

The diversity of forecast errors in terms of error covariances can be expressed in 

a decomposed manner in relation to different independent error components. This 

type of decomposed analysis has the advantage that it allows conclusions concern- 

ing the potential of the diversified forecasts for future combination. We carry out 

such an analysis of effects of different types of diversification on error components 

corresponding to the bias-variance-Bayes decomposition proposed by James and 



Hastie [James 96]. 

Different approaches of how to include information from different levels into 

forecasting are also discussed in the thesis. The improvements achieved with multi 

level forecast combination prove that theoretical analysis is extremely important in 

this relatively new field. The bias-variance-Bayes decomposition is extended to the 

multi level case. An analysis of the effects of including forecasts with parameters 

learned at different levels on the bias and variance error components show that 

forecast combination is the best choice in comparison to some other discussed 

alternatives. The proposed approach represents a completely automatic procedure. 

It realises changes in the error components which are not only advantageous at the 

low level, but have also a stabilising effect on aggregates of low level forecasts to 

the higher level. We also identify cases in which multi level forecast combination 

should ideally be connected with the use of different function spaces and/or thick 

modelling related to certain parameter values or preprocessing procedures. 

In order to avoid problems occurring for large sets of highly correlated fore- 

casts when considering covariance information, we investigated the potential of 

pooling and trimming for our case. We estimate the expected behaviour of our 

diversified forecasts in purely error variance based pooling represented by a com- 

mon approach of Aiolfi and Timmermann [Aiolfi 04] and analyse effects of differ- 

ent kinds of covariances on the accuracy of the combined forecast. We show that 

a significant loss in the expected forecast accuracy may ensue because of typical 

inhomogeneities in the covariance matrix for the analysed case. 

If covariance information is available in a sufficiently high quality, it is possible 

to run a clustering directly based on covariance information. We discuss how to 

carry out a clustering in that case. We also consider a case (quite common in 

our application) when covariance information may not be available and propose 

a novel simplified representation of the covariance matrix which represents the 

distance in the forecast generation space and is only based on knowledge about 

the forecast generation process. A new pooling approach is proposed that avoids 



inhomogeneities in the covariance matrix by considering the information contained 

in the simplified covariance representation. One of the main advantages of the 

proposed approach is that the covariance matrix does not have to be calculated. We 

compared the results of our approach with the approach of Aiolfi and Timmermann 

and explained the reasons for significant improvement. Another advantage of our 

approach is that it leads to the generation of novel multi step, multi level forecast 

generation structures that carry out the combination in different steps of pooling. 

Finally, we describe different evolutionary approaches in order to generate 

combination structures automatically. We investigate very flexible approaches as 

well as approaches that avoid the expected inhomogeneities in the error covariance 

matrix based on our theoretical findings. 

The theoretical analysis is supported by experimental results. We could achieve 

an improvement of forecast quality up to 11 percent for the practical application 

of demand forecasting in Revenue Management compared to the current optimised 

forecasting system. -- 
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Overview of Original Contributions 
Before starting with an introduction to the problem in the following sections, 

this section provides a brief summary of the major original findings arising from the 

thesis. The study has been summarised in a number of peer reviewed publications 

[Riedel 03][Riedel 04][Riedel 05a][Riedel 05b] [Riedel 07a](and [Riedel 07b] sub- 

mitted) encompassing both theoretical and experimental material realising the project 

goals. 

Experimental analysis of forecast combination in Revenue Management 

seasonal demand forecasting 

The first contribution is concerned with an analysis of the potential of known 

linear and nonlinear combination models for the application to seasonal forecast- 

ing in Revenue Management for Airlines. Different known combination models 

described in Chapter 3 are applied to demand forecasts generated for a sample of 

20 origin destination itinerary pairs of a major European Carrier. The combination 

is carried out on total demand predictions (Section 3.4) as well as on decomposed 

predictions in relation to the seasonal demand component (Section 4.6). 

Discussion of the effects of diversification of different types of parameters 

in relation to the bias- variance- Bayes error decomposition 

A novel summary of effects of diversification of different types of parame- 

ters is provided in Section 4.3. The analysis is based on the error bias- variance- 

Bayes decomposition proposed by James and Hastie [James 96]. The analysis of 

the effects of diversification of different types of parameters on different error com- 

ponents is provided. The results of this analysis allow to make conclusions for the 

combination of forecasts diversified by these types of parameters. 

Analysis of multi level forecast combination in relation to the bias- 

variance- Bayes error decomposition 

Multi level forecasting is based on the idea of learning information at different 

levels of data aggregation. Different approaches have been described in the litera- 

ture [Fliedner 01] in order to determine the ideal level and to distribute the learned 
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information to other levels. We analyse the approaches of using the information 

learned at different levels and to use forecast combination approaches for a fu- 

sion of the learned behaviour. We carry out an investigation of multi level forecast 

combination in relation to the forecast error bias- variance- Bayes decomposition 

[James 96] in Chapter 5. We provide the extension of this decomposition for the 

multi level case. 

Comparison of multi level forecast combination with other approaches us- 

ing multi level information 

The analysis of the decomposition of forecast errors when combining forecasts 

generated at different levels allows a comparison with alternative approaches of in- 

cluding information available at different levels. In Chapter 5 we analyse different 

cases of typical situations occurring at different levels concerning, e. g., noise at the 

low level of data aggregation and special behaviour in comparison to the higher 

level. We show that in many cases forecast combination can be used in order to 

take advantage of the potential of information provided at the different levels, but 

we also identify cases in which the pure multi level approach would not result in 

large forecast improvements. In order to solve this problem we identify alternative 

types of diversification which are able to handle such cases. 

Analysis of effects on error covariances when different types of diversifi- 

cation are used at the same time 

The results of the analysis of multi level forecast combination motivate a theo- 

retical analysis of effects of forecast diversification on error covariances. We have 

carried out this analysis for the special case of forecasts that have been diversified 

by three different methods: with parameters learned at different levels, by thick 

modelling and with the use of different function spaces. In Chapter 6 we provide 

a novel view of effects of these methods of diversification on the decomposed er- 

ror components. We express the "diversity" of different forecasts in relation to 

different error components and propose a measure in order to quantify it. 

Analysis of effects of error variance based pooling in case of multi level 
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forecast combination 

We also analyse what effects different kinds of covariances can have on the 

quality of purely error variance based pooling as proposed by Aiolfi and Timmer- 

mann [Aiolfi 04]. We could observe that if only error variance pooling is used for 

multi- level forecasts there is a loss in expected forecast accuracy because of typi- 

cal inhomogeneities in the covariance matrix which frequently occur. If covariance 

information is available in a sufficiently high quality, it is possible to take it into 

account during the pooling process. 

Proposition of a simplified covariance representation that can be used for 

pooling 

In Section 6.4 we study the difficult case in which covariance information can- 

not be measured properly and propose a novel simplified representation of the co- 

variance matrix which is only based on knowledge about the forecast generation 

process. We propose a new pooling approach that avoids inhomogeneities in the 

covariance matrix by considering the information contained in the simplified co- 

variance representation and compare it with the approach of Aiolfi and Timmer- 

mann [Aiolfi 04]. In Section 6.5 we lead with a novel discussion of how to use 

covariance information if available in a reliable or less reliable quality. Based on 

this analysis we propose different options of how to include this information into a 

pooling procedure. 

Evolution of multi step multi level combination structures 

Novel aspects of Chapter 7 concern the generation of multi step multi level 

combination structures defined as optimisation problems that can be solved by 

evolutionary computation. We propose and analyse different approaches and con- 

straints informed by to the theoretical findings provided in the previous chapters, 

which allow to explain differences in the results obtained in experiments. We ob- 

tain systems which are able to evolve well performing multi level combination 

structures automatically. 

Additional Benefits 
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In addition to the theoretical and experimental contributions described in this 

thesis the knowledge gained about forecast combination could be used in differ- 

ent areas and has already influenced the implementation of recent components in 

the Revenue Management product ProfitLine. Yeld/O&D. So different large and 

medium size airlines already profit from forecast improvements achieved with a 

sophisticated fusion of time series and passenger name record based noshow fore- 

casts. New models to predict market and price sensitive demand for airlines devel- 

oped for ProfitLine. Yield/O&D and ProfitLine. reld/Rembrandt are based on fore- 

cast fusion approaches as well. 
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Overview of Mostly Used Variables and Indices 

Variables 
x input data 
y target data 

estimation/prediction 
e random noise 
E average value 
32 (error) variance (component) 
p covariance 
o correlation 
0 parameter 
w linear combination weight 
e forecast error 
E covariance matrix 
77 unit vector 
rk forecast rank 
S fitness 
Functions 
f functional relationship between input data and target to be predicted 
ha function from function space 9-l used in order to approximate f 
F combination function 
G subfunction in combination function 
Indices 
t unspecified time period 
td departure date 
tp process date 
td, T departure date d measured at a certain time T prior to the departure 
c data component 
i level, subspace of the input space 
m index in an ordered set of forecasts (used as input in a forecast combination) 
s position in the forecast generation space 
k function space type 

step in a combination structure 
parameter values used for thick modelling 

comb combined forecast 
n dimensions of a function space 
n dimensions of a parameter vector 
e total error 
h error bias component 
¢ error variance component 
y error Bayes component (random noise) 
Position of Indices 
, nyt4 forecast for component c at time t and level i generated with method m 
lka function space/method based on type of function and fixed parameter values 
hka (x, 00 function from lka with parameters 0 estimated on level i 
Eck°i5e forecast error component by the used function space, the level of learning 

and the error component 



1. INTRODUCTION 

There are clear and obvious advantages in combining forecasts, both 

to better understand the generating mechanism of the series and also 

to pragmatically achieve better forecasts. (Granger and Ramanathan, 

[Granger 84]) 

1.1 Introduction to Revenue Management 

This PhD is a cooperation project with Lufthansa Systems Berlin GbmH and re- 

lated to the industrial application of Revenue Management forecasting for airlines. 

In order to motivate the theoretical relevance of the line of research followed in the 

PhD, we will start with a short introduction into Revenue Management and issues 

occurring in Revenue Management demand forecasting. 

The product of the airline industry are seats on airplanes offered with differ- 

ent booking conditions and for different levels of comfort. To maximise revenue, 

priority is given to high revenue booking classes. Capacity must be protected for 

high revenue passengers usually arriving shortly before a plane's departure. Based 

on the size of the protected capacity, the capacity of low revenue classes needed to 

fill up the aircraft can be determined. Therefore, the central question of revenue 

management is: How much of the overall capacity should be made available for 

low-yield customers? Or in other words: How much space should be reserved for 

the high-yield segment? 

To answer this question, the following technical components are used: a) an 

inventory to control capacity; b) a forecasting for assessing the demand in advance; 

and c) an optimisation to maximise the revenue by capacity control. 
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While the focus of this thesis is placed on forecasting of the demand, more 

detailed information about all revenue management components can be found in 

[McGill 99] [Talluri 04][Weatherford 92][Cross 97][Zaki 00][Pak 02]. 

Effects of Revenue Management on the revenue of an airline can be illustrated 

with the following example. Figures 1 and 2 show the booking process for two 

flights, a high demand flight and a low demand flight, with and without Revenue 

Management. 

Generally, the low yield passengers book earlier than the high yield passengers. 

If they have the choice they book the high demand flight. Without Revenue Man- 

agement the high demand flight is already nearly fully booked a long time prior to 

departure. There is no capacity remaining for later booking passengers booking in 

high yield fareclasses, which means that these bookings must be turned away. The 

result is a high demand flight filled with low yield passengers, which is bad, and a 

low demand flight flying with a lot of empty seats, which is even worse. 

low yield passengers hook 

early on high demand flight 

ýý 
liýiclkIJiniaiýýl 

lurnrcl: nýaý 
ýi 

Revenue: $30,000 ý 
::;;..;;;;;..;;;;,;,;;;;; 

lum LIcni, inil Ili=Ill cnl1wý 

Revenue: $5,000 

" low yield passengers 
" high yield passengers 
" empty seats 

Monday 12: 15, low demand flight 

Fig. l: An example of two typical flights with booking behaviour without Rcvenuc Man- 
agement system. 

With Revenue Management system in place the high yield demand is assessed 
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in advance (as well as the low yield demand). This allows the blocking of seats 

in the high demand flight for the later arriving high yield customers. The early 

booking low yield passengers cannot book the high demand flight any more and 

partly move to the low demand flight. The result is a high demand flight filled 

with mostly high yield passengers and a low demand flight flying with low yield 

passengers, which brings an acceptable revenue for both flights. 

ý 
u', uti hlu. h. (l I()i I, u: 

arri%ing high Nirlil Im, riwri 
\1 

Revenue: $50,000 

" low yield passengers 
" high yield passengers 
" empty seats 

.......... 
__ý. __. n-ý. cc ý_" ýý.., .. ILA 

iviunuay ui: », nign aemanu nignt ý 

Revenue: $20,000 

Monday 12: 15, low demand flight 

Fig. 2: An example of two typical flights with hooking behaviour with Revenue Manage- 
ment system. 

1.2 Demand Forecasting in Revenue Management 

1.2.1 Segment versus O&D Forecasting 

As traditional airlines (in contrast to some lowcost airlines) allow bookings not 

only for single flights, but for whole trips, it is a crucial Revenue Management 

system task not only to control the different types of demand concerning yield, but 

also to take into account network effects. 

As a result, it has to be decided, for instance, if a local passenger should be 

accepted for a national flight or if it is advantageous to wait for the passenger 

i 

Low yield passengers moved 
to low demand flight 
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using this flight as an inbound flight to a high yield intercontinental flight. Such 

passengers would only be the best choice if not enough passengers are expected to 

take the intercontinental flight, because two local passengers generate in total more 

revenue than one connecting passenger. 

To handle such effects, larger airlines have started using prediction systems 

which do not predict the demand per scheduled flight (segment), but per origin 

destination pair (O&D). Figure 3 shows an example for an ODI (origin destina- 

tion itinerary) represented by different segments. As the optimisation controls the 

demand depending on yield, separate forecasts have to be calculated not only for 

different ODIs of the network, but also for different fareclasses (F) and different 

point of sales (POS). 

AAA-BBB, C, Orig 

,,,,,, 
flightXX100 

flight XX2(>n 

BBB-CCC, C, Orig 

Fig. 3: Segment versus O&D view. The example shows two flights, a national flight AAA- 
BBB with flight number XX100 and a second intercontinental flight BBB-CCC 

with flight number XX200. The figure shows the demand in fareclass C (typical 
business passengers) and point of sale Orig (Country of Origin). Three ODIs are 
illustared, the two ODIs representing bookings without connection as well as the 
connection ODI for both flights. 
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1.2.2 Issues of O&D Forecasting 

The Issue of a Large Number of Small Numbers Predictions 

Demand at such a fine level of forecasting (i. e. ODI F POS) can be modelled as 

a time series, e. g. per departure date. Formally, one can say that we have a time 

series (ytd), td = 1.. tt, given denoting historical total demand for departure date 

trJ. The last date tt, represents the current process date. The general problem is to 

forecast the demand for future departure dates (ytp+i, ), It EN>1. An example 

of the demand values and a one step (h = 1) ahead forecast is shown in Figure 4. 

15 
14 
13 
12 
11 

ytd 10 
9 
8 
7 
6 
5 

4 
3 
2 
1 
0 

! III 1IILIV16IIII 1. A II 
i IN' Iºiý UA 

z -ý wUöwzm 
cn ozoýw 

departure date tl 

Fig. 4: Example of the demand values per departure date (black line) with one step (h=1) 
ahead forecasts (orange/light line). 

Issues resulting from predicting small numbers at a very fine level are also 

quite common in other applications [Armstrong 01 ] [Fliedner 01]. On this level, 

the data is extremely noisy and exhibits frequently multiple structural breaks. In 

our application, these structural breaks in the time series data reflect the changes in 

booking behaviour caused by seasonal changes, special events, such as holidays or 

fairs, changes in the flight schedules of both the airlines for which the predictions 

are made and the competitors, or changes of the political or cultural situation of a 

country. All these changes have to be handled in the forecasting process. 

The reaction to large noise components and in consequence structurally poor 
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forecasts at the fine level of forecasting is often the decision to learn structural 

information or causal effects at higher levels meaning learning based on aggregates 

of the target data. So it is for instance possible to learn seasonal factors on the 

O&D level and to apply the learned factors for all fareclasses and point of sales. 

This decreases noise but leads to an information loss related to effects which occur 

only at the fine level. 

The choice of the level of learning often results from a data analysis. How- 

ever, even if the data analysis has been performed well, it is likely that the real 

relationship between given inputs at different levels and the values to predict is so 

complex that it is not possible to identify an optimal level for learning. This prob- 

lem becomes even more relevant if the underlying processes and data change over 

time. 

In this thesis we discuss issues relating to this type of hard, real world fore- 

casting problems in relation to the approach of forecast combination. We discuss 

effects of forecasting at different levels on the forecast error. The bias-variance- 

Bayes error decomposition proposed by James and Hastie [James 96] will be used 

in order to explain effects of different approaches in order to identify potentials for 

error reduction. This includes issues caused by estimation errors in cases of noisy 

training data as well as the difficult task of using information available at different 

levels. 

The Issue of Adaptation 

Due to its broad applicability forecasting time series is a very well researched and 

discussed topic (good introductions to the topic are provided in [Armstrong 01] 

and [Brockwell 87]). Unfortunately, only a few methods could generate well per- 

forming forecasts for our application because of the already mentioned issues of 

noisy and quickly changing data on the very detailed level of forecasting. The 

world is changing so quickly that in general only a small number of historical 

data can be reliably used for predictions. Simple and robust models, such as sim- 
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ple average, different versions of exponential smoothing [Brown 63] or regression 

models [Granger 86], provide significantly better results than more sophisticated 

methods [Brockwell 87]. The reason for the better performance of simple models 

lays in their ability to make adequate forecasts even on a small number of very 

noisy historical data and their ability to adapt more quickly to new situations. We 

will present more references to the literature as well as applied approaches for our 

application in Section 2. 

A typical approach to building a forecasting model consists of a phase of data 

analysis, determination of appropriate levels and preprocessing, model creation, 

parameter calibration and validation of the forecast model. For future forecasting, 

data is interpreted only at the level that has been chosen for learning. The input 

information is restricted to noisy data measured only for the most important influ- 

encing features. And if the demand changes, the chosen methods and parameter 

settings are not optimal any more. All of these aspects lead to a loss of information 

for the forecasting process. After some time, forecast quality tends to decrease be- 

cause of a lack of adaptation concerning not only the chosen models, but also the 

relevance of information available at different levels. 

One of the main tasks in order to adapt to new situations is to identify which 

parts of the demand depend on which input variables. That is the reason why 

decomposition strategies are used to split the demand into different components 

which may each depend on different input variables and therefore need to be pre- 

dicted separately. Decomposition allows the prediction of demand changes sepa- 

rately, which are commonly overlapping and may be hard to identify. This enables 

the application of less complex and therefore more stable forecast models. It also 

allows: a) the determination of the efficiency of different inputs and different mod- 

els per component; b) the selection of appropriate preprocessing; and c) the deter- 

mination of appropriate levels for history representation and forecasting depending 

on the different stability of the components. 

All of the decisions just mentioned (like the choice of preprocessing, levels of 
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learning or parametrisation) can become suboptimal in case of a changing situation. 

They also represent a restriction of the forecasting process in terms of a restriction 

of used input information and predefined decisions concerning, e. g., the applied 

models and therefore an information loss. If, e. g., relevant information changes to 

a level that is not considered in the learning process, we will observe a decreasing 

forecast accuracy. We therefore investigate options of how to automatically adapt 

these type of choices to new situations and how to use information available in 

relation to, e. g., different levels or parameter values. 

We follow the general idea of a) using different methods, levels and parame- 

ter values in order to ensure that all information is theoretically available; and 

b) applying an automatic and adaptive fusion process that identifies the relevant 

information and generates a final prediction. Forecast combination approaches 

represent such a type of processes. 

1.3 Combination of Forecasts 

1.3.1 Information Fusion 

Fusion of distinct information can be carried out on many different levels from 

pure data to the decisions of individual experts operating on different parts of the 

available information [Hall 92][Bezdek 99][Keller 97][de Menezes 00]. It turned 

out that even if applied on the same task using the same data, a joint decision 

of combined forecasts is potentially more effective than any one individual. The 

different levels of abstraction at which information fusion can be carried out are 

closely connected with the flow of a forecasting process: data level fusion, feature 

level fusion, and decision fusion [Bezdek 99]. 

Data fusion 

Data fusion is a fusion at the basic level of data sensing [Pedrycz 98]. It has been 

used for instance to resolve the occlusion problem in vision systems [Bezdek 99] 
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and for improved object detection by overlapping many partially discriminative 

projections [Hathaway 96]. 

Feature fusion 

There is little evidence of the feature fusion in the literature. Fusion on this level is 

considered more general compared to the data fusion and often resembles forecast 

fusion techniques. An example of feature fusion has been shown by Keller and 

Gader [Keller 97] where the data features extracted from Geo-Centers GPR system 

have been combined by a fuzzy rule incorporating some shape characteristics of the 

raw data. 

Decision fusion 

Decision fusion relates in general to combining information partially or fully pro- 

cessed by forecast or classifier models and therefore is perceived to be the most 

general [Bezdek 99]. The major motivation driving decision fusion is that different 

models learn from the data imperfectly, and because they are different, it is likely 

that their imperfections result in different forecast errors. Individual errors made 

by some forecast models for some input data could be compensated by other mod- 

els performing well for that particular data. This thesis is related to decision fusion 

in terms of forecast combination. 

1.3.2 Forecast Combination 

Forecast combination approaches are today a scientifically acknowledged proce- 

dure [Clemen 89][de Menezes 00][Timmermann 05] to model complex functional 

relationships by producing not one optimal forecast y. but a number of forecasts 

{'18y} and combining them for the final prediction CO1riby E R. The existing 

combination approaches differ in the description of the functional relationship 

f: Rm --º R which represents the fusion process. An overview of the devel- 

opment in this field as well as the most common models and their relation will be 
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presented in Chapter 3. 

There are two common groups of combination models. In linear combination 

models the relationship is defined as a simple weighted sum of the individual fore- 

casts: 
camb - m^ y- wm y 

m 
(1.1) 

with combination weights w�a E 7Z. Beside the simple average model [Bates 69], 

which gives the same weight to all individual forecasts, there are two common 

groups of linear combination models, in which individual forecast performance is 

taken into account to calculate the weights. While rank based models [Bunn 75] 

[Russell 87] [Klapper 98b] describe forecast performance based on ranks of past 

performance without directly taking into account the statistical properties of fore- 

cast errors, variance / covariance based models [Bates 69] and ordinary least 

squares regression based models [Granger 84] use error variance and covariance 

information for calculation of the weights. 

A more complex and flexible group of combination models are nonlinear com- 

bination models [Sharkey 96] [Genest 86] [Jacobs 95] [Xu 92]. In this group, mostly 

application specific, approaches differ in the selection of external input information 

as well as in the class of methods used. Typical nonlinear approaches include neu- 

ral networks [Shi 99] and (fuzzy) expert systems [Fiordaliso 98]. 

1.4 Influences on Combination Efficiency 

As there are different combination models available, we have to answer the ques- 

tion of how to choose appropriate sets of input forecasts and which combination 

model to apply under which conditions. Different approaches have been developed 

to explain the performance of the combined forecasts based on error variances and 

covariances of the individual forecasts. It has been shown theoretically and exper- 

imentally that the best results can be achieved if different individual forecasts are 

diverse in the sense that they are able to provide some kind of "diverse" knowledge 



1. Introduction 43 

to a forecasts combination process. This diversity can be achieved by using 

" different input information in terms of different available sources of infor- 

mation, different preprocessing or history pools; 

" different functional or stochastic modelling approaches; or 

" different parametrization of the models. 

We study these influences for the case of the above mentioned forecasting prob- 

lems that have to handle small numbers and very noisy data in a quickly changing 

environment. We discuss how we can measure diversity and under which condi- 

tions forecast combination provides improved results. We describe the diversity 

achieved by different types of forecast diversification in relation to different error 

components. In Chapter 4, for instance, we will see that the complexity of the ap- 

plied forecast model can influence the error components in a different manner to 

the choice of diverse sets of data used for learning. The applied forecast diversifi- 

cation affects the covariances of the achieved set of predictions and with that the 

potential for forecast combination. The provided analysis of effects of diversifica- 

tion on various components of decomposed forecasting error enables an analysis 

of how we can actively generate sets of divers forecasts. 

1.5 Aspects of Multi Level Forecasting 

We consider cases in which each prediction represents the situation in concrete sub- 

spaces of the given target space. We illustrate our argumentation using an example 

of seasonal demand predictions for airlines. As we have already mentioned, these 

have to be generated for different origin destination itinerary pairs (ODI) as well as 

different fareclasses (F) and different point of sales (POS). This level of forecast- 

ing, which we also call the fine/low level, is very detailed (the seasonal behaviour 

for a given ODI F POS combination) and therefore characterised by small numbers 

and very noisy data. Therefore analysts also need aggregates of the generated low 
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level forecasts for decision making. Modem Graphical User Interfaces support this 

need. They offer the functionality of a data and forecast fusion to different higher 

levels, which represent in our example, for instance, the ODI level or even higher 

levels such as country or market pairs, as shown in Figure 5. 
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Fig. 5: A view of the low and the high le%cl oI measured historical seasonal behaviour. 
Seasonal factors y'""'"°" are shown per calendar week Cu' at a low level i; repre- 
senting a special ODI Fareclass Point of Sale combination as well as at the high 
level I aggregate representing the whole ODI. 

Large noise at the low levels often leads to the decision to learn structural 

information or causal effects based on aggregates of the input data or, in other 

words, to carry out an input data fusion with the objective of noise reduction. There 

is no obvious answer to the question about the adequate level for learning. Learning 

at different levels is related to different types of risk. If the level is chosen too fine, 

relevant structural information often can not he detected properly. If on the other 

hand the chosen level is too general, important characteristics related to special 

parts in the input space may be ignored. For our example this means that if we 

learn seasonal factors, for instance at the ON level, we do not take into account 

seasonal effects in special fareclasses or point of sales properly. An introduction to 

such a type of problems as well as an overview of literature related to learning at 
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different levels and effects of forecast aggregation are provided in Chapter 5. 

In practice, the problem to find the ideal level of learning is often resolved 

with trial and error approaches. The choice is made only on the basis of low level 

forecast errors. But if analysts make relevant decisions on the basis of a fusion of 

low level forecasts to a higher level, the need for high quality forecasts at higher 

levels should also be taken into account for the choice of the level of learning 

structural information. 

In Chapter 5 we analyse effects of learning at two levels on the resulting fore- 

cast errors measured at these two levels. Choices that are purely made on forecast 

errors measured at the low level can be unfavourable with regard to the quality of 

the aggregated forecasts. We base our argumentations on the error bias, variance 

and Bayes decomposition proposed by James and Hastie. We provide this error 

decomposition for the multi-level case. This enables us: (a) to analyse effects of 

aggregation of forecasts generated with learning at the low level to the error com- 

ponents at the high level, and (b) to analyse the effects of using forecasts generated 

with learning at the high level to the error components at the low level. 

As we will see the learning at both levels works well only in some cases, we 

also discuss the option of using forecast combination in order to make an auto- 

mated choice or even to profit from knowledge at both levels. The positive effects 

of forecast combination in many applications have been explained in relation to 

different aspects and different decompositions of forecast errors and their corre- 

lation. We provide the analysis of the error components of combined multi-level 

forecasts at the low as well as at the high level. The analysis is based on the simpli- 

fied version of the well known optimal model [Bates 69], the optimal model with 

assumption of independence [Granger 84], which takes into account the problem 

of high estimation errors of the inverse covariance matrix [Bunn 85] and is purely 

based on past error variances. We also discuss different cases of data configura- 

tions and the relation between the levels in order to show that forecasts combination 

works very well in cases where it represents an automatic choice of the appropriate 
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level as well as in cases where knowledge of both levels is relevant for learning. 

This includes a detailed discussion about what happens to the error components 

in different concrete situations illustrated using an artificial example. We will see 

that the approach of forecast combination allows not only an intelligent automatic 

choice of the superior level, if it exists, but also the generation of predictions that 

are more stable in terms of the quality of aggregates to higher levels and in case 

of changing environments. We will also show that a multi level forecast combina- 

tion should ideally be connected with the use of different function spaces and/or 

diversification related to certain parameter values. 

1.6 Generation of Multi Step Multi Level Combination Structures 

A side effect of the multi level approach is that the number of forecasts to com- 

bine can get very large. It is often not possible to estimate covariances prop- 

erly because of noisy training data or changing environments. Various studies 

[Russell 87][de Menezes 00] have shown that the resulting errors in the estimated 

covariance matrix can lead to large weight estimation errors for the optimal model 

especially for a large number of forecasts which in turn lead to unstable and poor 

combined forecasts. We therefore apply the approaches of pooling and trimming 

[Aiolfi 04] in order to handle that problem. 

In experiments, which we have carried out in order to analyse the effects of 

different static and dynamic combination structures achieved by applying different 

kinds of pooling and trimming for the application of seasonal demand forecasting 

for airlines, we were surprised to see that the most promising structures seemed to 

have a tendency to cluster the input predictions depending on the type of diversify- 

ing procedure used. We could observe a clear tendency to combine first different 

forecasts generated at the same level but using different functional approaches and 

then to combine the forecasts representing different levels, or visa versa. 

In Chapter 6 we provide a theoretical analysis which explains this behaviour. 

We start with an analysis of effects on covariances occurring for our special case 
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of combining forecasts that have been diversified by three different methods: with 

parameters learned at different levels, by fixed parameter value diversification and 

by the use of different function spaces. In order to explain differences in covari- 

ance values, we provide a novel view of effects of these methods of diversification 

on decomposed error components based on the bias- variance- Bayes error decom- 

position. We express the "diversity" of different forecasts in relation to different 

error components and propose a measure in order to quantify it. 

We also analyse what effects different kinds of covariances can have on the 

quality of purely error variance based pooling. We refer to the approaches of 

Aiolfi and Timmermann [Aiolfi 04] who propose to pool forecasts based on the 

total error variances using k-means clustering. The results enable us to estimate 

the expected behaviour of our diversified forecasts. We will see that if only error 

variance pooling is used there is a loss in expected forecast accuracy because of 

typical inhomogeneities in the covariance matrix which frequently occur. 

If covariance information is available in a sufficiently high quality, it is pos- 

sible to take it into account during the pooling process. This means that we can 

run a clustering directly based on covariance information. We study the difficult 

case in which covariance information cannot be measured properly or is not cal- 

culated in case of applications with strong calculation time restrictions. Based on 

the determined effects of diversifying our forecasts in relation to different error 

components we propose a novel simplified representation of the covariance matrix 

which is only based on knowledge about the forecast generation process. 

We propose a new pooling approach that avoids inhomogeneities in the covari- 

ance matrix by considering the information contained in the simplified covariance 

representation. We compare the results of our approach with the approach of Aiolfi 

and Timmermann and explain why it works better. We also mention that apply- 

ing our approach again in the combination that combines the pools leads to the 

generation of multi step multi level forecast combination structures which carry 

out the combination in different steps of pooling and trimming. These multi step 
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multi level combination structures correspond to those which have generated sig- 

nificantly improved forecasts in our experimental work. 

In Chapter 7 we finally describe different evolutionary approaches in order to 

evolve multi step multi level combination structures dynamically. We will see that 

evolving very flexible dynamic structures may lead to a problem of overfitting. We 

therefore discuss different options of how to restrict the search space. We will use 

our theoretical findings in order to define restrictions that avoid the generation of 

structures suffering from the covariance inhomogeneities mentioned above. Ex- 

tensions of such evolutions allow the generation of stable and flexible multi level 

multi step combination structures containing good adaptive capabilities. 

1.7 Organisation of the Thesis 

The thesis is organised as follows: 

After the introduction provided in this chapter we start with an introduction 

to the used notation as well as used forecasting approaches and methods for the 

application of Revenue Management forecasting in Chapter 2. 

Then we provide a discussion and literature review concerning the topic of 

forecast combination in Chapter 3. Chapter 4 extends this analysis with a closer 

look at influences on the efficiency of forecast combination. We discuss the topic 

of forecast diversity in relation to: a) its impact on resulting forecast errors; b) the 

question of how we can quantify diversity; and c) options of how we can actively 

generate diverse forecasts. This chapter also provides discussions of which combi- 

nation methods to use under which conditions and of the negative effects resulting 

from weight estimation errors. 

We then discuss aspects of multi level learning in Chapter 5. After an introduc- 

tion into the problem of choosing an appropriate level for learning we discuss the 

effects of such choices on different error components. We provide an extension of 

the error decomposition of James and Hastie to the multi level case and carry out 

an extensive analysis, answering the question of why the combination of predic- 
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tions using information learned at different levels constitutes a significantly better 

approach in comparison to using only the predictions generated at one of the levels 

or other multi level approaches. 

Chapter 6 is then related to different questions of pooling. After a motivation 

why pooling is useful for our type of problem, we analyse the effects of the appli- 

cation of different types of diversification on forecasts error covariances and results 

accuracy if pure error variance based pooling is applied. We propose a simplified 

version of the covariance matrix and propose a new pooling approach that does not 

suffer from these type of problems. Finally, we discuss the dynamic generation of 

combination structures in Chapter 7 and finish with a summary, conclusions and 

potential for future work in Chapter 8. 

Each chapter finishes with its own experimental section where we present the 

most relevant experimental results in order to motivate the ideas followed in the 

next chapters. Detailed results as well as a description of how to install the software 

used for the experiments are available in the appendix. The software is available 

on the CD accompanying the thesis. 



2. INDIVIDUAL FORECAST GENERATION 

2.1 Notation of a Forecasting Problem 

2.1.1 Time Series 

A large number of techniques for forecasting can be found in the literature 

[Armstrong 01][Brockwell 87] [Franses 63][Granger 86][Kennedy 92] 

[Masters 95] [Elliott 07]. Parametric models assume that a relationship exists be- 

tween given historical or currently available data and the data to forecast. The 

model describes how the data is expected to be composed as well as dependencies 

on given input data. We can, for instance, model a correlation over time or a linear 

dependency on another data set. 

Models are normally built using sets of noisy data. Often it is of interest to see 

how series of such data develop over time. Time series define such series of data. 

In this thesis we use a common definition of time series similar to the one used by 

Brockwell and Davis in [Brockwell 87]. 

Definition 2.1 (Stochastic Process, Time Series): Let tE (1, """ , T) =: TcN 

be a countable index set. A stochastic process is a set (yt), tET of random 

variables yt E Rn. A stochastic process (yt), tET, t=1... T which is defined 

for the index set T of equidistant time intervals is called time series. 

2.1.2 Causal Models 

Causal models represent relationships between time series xt E R" and yt E R. We 

assume that xt can be measured properly, that we have random noise in yt and that 

an "ideal" functional relationship f exists in order to approximate yt based on xt. 
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We can represent the functional relationship between input vector xt E 1Zn and 

yt E 1Z by the function f and a random noise term e: 

yt =f (xt) + Eyt, (2.1) 

with f the "true model" and a Gaussian with EY N N(0,62y) an independent 

residual component. The vector x may also contain past values or predictions of y 

as described in the model in [Timmermann 05]. 

A predefined class of functions h: R" x1 -º R is used in order to ap- 

proximate the relationship between xt and yt. We first define the function space 

comparable to the definition given in [Hansen 00]: 

Definition 2.2 (Function Space): Let xt E R' be a time series and h: R" x4 -º 
R be a function with input xt and let it depend on the parameters 0E1C R", then 

the function space of h is the linear space IL consisting of all possible functions 

h(; 0) obtained by varying 0 in the domain I. 

In order to increase readability we will remove the parameter tin all following 

equations, so we write the true relationship as 

y=f ýx) + ey. (2.2) 

We further assume that a best estimation of parameters 0 exists in order to 

approximate f by h(; 0) 

f (x) P-- h(x, 0) (2.3) 

and that we have a training set (x, y)7h of historical data which we use in order 

to estimate the parameter vector ¢ by so that y= h(x, ý) represents our best 

estimation for the relationship between x and y. In the following we will always 

use the "hat" symbol in order to indicate estimations or predictions. 
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2.1.3 Decomposition 

Data is often influenced by a whole set of factors which are assumed to be in- 

dependent of each other. Some of the typical factors found in many forecasting 

applications are related to trends and seasonal effects. The approach of data de- 

composition is based on the idea of splitting the data y corresponding to these 

independent factors. The dependency on input data representing the impact can 

then be modelled for each factor separately. This approach is often advantageous 

[Armstrong 01] because it allows, for instance, the use of simpler models and pa- 

rameter sets which are tuned to the characteristics of a specific component con- 

cerning, e. g., its structure, dependencies on input information, stability and noise 

level. With decomposed data it is also possible to satisfy different needs related to 

adaptation. 

Corresponding to this approach we can write the target y depending on inde- 

pendent components yc plus the noise term. For each component the functional 

relationship yc .:; f c(xc) is modelled separately. We can now use different func- 

tion spaces he in order to approximate the different functions f c(xc) hc(xc, Oc) 

We use a representation of y which assumes the target data to depend on one 

stable basic component co as well as other components representing deviations 

from component co. A motivation for this approach will be given in section 2.2.3. 

We assume 

y= y°p (1-}- E Y') + ey. 
c54co 

We achieve a representation 

(2.4) 

hc0 (xc0, ¢c0 )1+E hc(x', ¢c) . (2.5) 
eOco 

with hc0 (xcO, q5c0) representing a function that describes the behaviour of the sta- 

ble component cO in absolute values and all other functions hc(xc, 0c) estimating 

factors, such as seasonal factors or deviations based on special events. 
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2.2 Forecasting in Revenue Management 

2.2.1 Demand Forecasting 

As part of a modem Revenue Management system for airlines one of the critical 

tasks is to predict how many people would like to make a booking (if they were 

accepted). The target variable yt in this case therefore represents the demand. The 

demand is related to different departures, so the time index t= td represents in our 

application the departure date. 

In Revenue Management applications the task is not to generate a single pre- 

diction, but a whole set in relation to the following properties: 

" O&D -a pair of the airport of origin and the airport of destination, separated 

by 

ROUTING - an ordered set of airports of the itinerary, separated by 

ODO -a routing used on flights departing at specified time periods 

"F-a fareclass, which represents a fare structure connected with ticket rules 

and regulations 

" POS -a point of sale of the ticket, in our case separated only by "country of 

origin", "country of destination" and "others". 

Figure 6 shows an example of demand at different departure dates for one ODO 

F POS combination. For exact definitions of these and other terms related to the 

airline industry please see Appendix A. 

As mentioned before, the level on which the forecasts have to be generated is 

very detailed (i. e. demand per ODO F POS td), but analysts or related computer 

systems also use aggregates of the generated forecasts to higher levels (like traffic 

between countries). The aggregates are used for decision making or further calcu- 

lation in various reports or in using a graphical user interface showing the expected 

situation at different levels. 
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Fig. 6: Example for the time series of the demand at a given ODO DOW F POS combina- 

tion. 

2.2.2 Bookings versus Constrained and Unconstrained Demand 

The most relevant information for demand prediction is the historical hooking data 

as well as bookings that have already been made for a future flight for which the 

demand has to be predicted. However, there is a difficult problem occurring in all 

revenue management applications. The measured hooking data is used to generate 

forecasts for the future demand. These forecasts serve as an input for the optimi- 

sation process which decides how many bookings will he accepted in the future in 

different fareclasses. As often not all bookings are accepted, the optimisation influ- 

ences the number of bookings that will be observed in the future, which represent 

the input data for later forecasting. Figure 7 shows this spiral of influences. 

The problem for the forecasting process is that the observed data does not rep- 

resent the values which we would like to predict, i. e. the demand, which is the 

number of people who would like to make a booking. The bookings represent only 

that part of the demand which has been accepted. That is why the bookings are also 

called the constrained demand. The complete demand, also called unconstrained 

demand, cannot be measured and has to be approximated by an uncon. straining 

procedure. The consequence is that for the fareclasses closed by the optimisation 
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Fig. 7: The spiral of influences between bookings, forecasting and optimisation. 

system we do not have any data given against which we can properly evaluate the 

generated unconstrained demand forecasts. 

Frequently, demand forecasts can only be evaluated against data which is not 

real measurements, but approximations based on models which are comparable to 

those used to produce the forecasts. 

2.2.3 Demand Components 

Unfortunately, in practice only a few methods have been found to produce adequate 

forecasts for our application because of the structure and quality of the existing 

data [Talluri 04]. For the Revenue Management application the world is changing 

so quickly that in general only a small number of historical data is available and 

frequently a number of relevant values are missing. Multiple Lufthansa Systems 

Berlin internal studies on this topic have shown that for our data the simple and 

robust time series forecasting models, such as simple average, different versions of 

exponential smoothing [Brown 63] or regression models [Granger 86], are signifi- 

cantly better than a number of well known more sophisticated methods [Brockwel1 87]. 

The reason for this lies in the simple methods' ability to make adequate forecasts 

even on a small number of historical data and their ability to adapt more quickly to 

new situations. 

One of the common problems is that of predicting small numbers which result 

from the very fine level on which the forecasts have to be performed. On this level, 
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the data is extremely noisy and exhibits frequent multiple structural breaks. These 

structural breaks in the time series data reflect the changes in booking behaviour 

caused by seasonal changes, special events, such as holidays or fairs, changes in 

the flight schedules of both the airlines for which the predictions are made and the 

competitors, or changes of the political or cultural situation of a country. Figure 

8 shows some of the most important influences. All of these changes have to be 

handled in the forecasting process and are the focus of adaptation mechanisms used 

within the forecasting system. 
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Fig. 8: Example of a demand curve together with potential influences. 

The demand components related to the changes are based on abstract terms of 

attractiveness, attractiveness changes and short term influences. The decomposi- 

tion model assumes that the changes requiring adaptation can be categorised into 

two major groups: permanent changes, such as market changes or long term sched- 

ule changes, and short term changes, such as seasonal behavior, events or schedule 

changes, only influencing some departures. 

Attractiveness and Short Term Influences 

The (unconstrained) demand at a given departure date depends on many factors. 

Our model assumes that some of them influence the structure and the amount of 

the demand in general and are relevant in a long term sense. The most important 
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of these influences are demographic and economic conditions of the origin and 

destination of the O&D, the DOW, the time slot (departure and arrival time), the 

reputation of the airline in the countries of origin and destination and the number 

and reputation of competitive airlines. These general influences define the attrac- 

tiveness, that represents the stable world behaviour of the demand. 

Definition 2.3 (Attractiveness): Let t(j ET be a given departure date and iC 

(9D0 xFx POS indicate a subspace of routing, departure times, fareclass and 

point of sale. The attractiveness y°«r is a demand component that represents the 

expected unconstrained demand at the subspace occurring for the departure date 

t(J if there would be no random noise, no flight specific behaviour and no quickly 

changing influences, such as season, events and short term schedule changes in the 

data. 

Figure 9 shows an example of total demand y together with an estimation of 

the attractiveness y trr 
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Fig. 9: Example of demand data (orange/light) together with an estimation of the attrac- 
tiveness (blue/dark). 

There are influences on the demand which have only short term effects. Most of 

them are not known. A short term influence is the known influence on the demand 
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occurring during a restricted time period and caused, e. g., by seasonal behaviour, 

events or short term schedule changes. 

Definition 2.4 (Short Term Influence): A short term influence y`t' is a deviation 

of the unconstrained demand y from the attractiveness y"ttr at a given departure 

td caused by a known influence, such as seasonal behaviour, events or short term 

schedule changes. 

An example for booking values together with an estimation of these values 

based on attractiveness and short term influences is given in figure 10. 
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Fig. 10: Example of demand data (orange/light) together with an estimation hased on at- 
tractiveness and short term influences (hluc/dark). 

As all known influences have an effect on the demand whether in a general 

sense or in a short term sense, the total demand differs from the demand modelled 

using the attractiveness and the short term influence components only by parts 

which cannot be explained and which are summarised in the random noise term ýy. 

We can therefore write the demand model similar to (2.5) as 

y=y, ttrýl +ýy 41) + (2.6) 
sti 
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sti representing an index over all given short term influences. The random noise 

term ey is also called "flight specific behaviour", because it can also be interpreted 

as an unknown influence occurring on specific flights. 

2.2.4 The Process of Demand Forecasting 

The model in equation (2.6) can be used to generate predictions. In correspon- 

dence to the decomposition model predictions are calculated separately for the 

attractiveness and the different short term influences. With given predictions for 

the attractiveness and all the short term influences we get the final prediction as: 

y=y ttr 1+ [ý y ti = hattr (Xattr, oattr ý1+ý hsti (xsti 
, 
ýsti ). (2.7) [stJi 

sti 

A discussion explaining the reasons for the separate calculation and details 

related to the decomposition are provided in Chapter 4. We will now discuss how 

to predict these different components. 

2.2.5 Forecasting the Attractiveness 

To predict the attractiveness we have to model long term changes. These changes 

are called attractiveness changes. 

Definition 2.5 (Attractiveness Change): An attractiveness change y0C is a change 

of the attractiveness starting at a departure date td for a given subspace 

iC ODO x .7x POS caused by a known influence, such as a long term schedule 

change, a market change or a price change. 

Based on this definition, the attractiveness for a future departure date td can be 

predicted with an estimation of the current attractiveness ytPt' with tp denoting the 

process date and all expected attractiveness changes 511 expected between tp +1 

and td by 
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ytatr = ytytr + [ý y 

ac 

(2.8) 

As the prediction of attractiveness changes is not the focus of this thesis and 

because of commercial sensitivity we will not go into detail concerning the predic- 

tion of attractiveness changes. Some details can be found in [Riedel 03]. Only test 

data without relevant attractiveness changes have been chosen for experiments so 

that in the following we will assume 

ytd ttr = yt ttr 
p 

(2.9) 

for all future departure dates td. 

The current attractiveness y""'* is estimated based on the series of historical 

decomposed data that represent previous attractiveness estimations. Let us assume 

that we have T historical decomposed demand data yt ttr given for a time period 

t< tp ET as well as historical attractiveness changes y°C. 

For each element of t we can calculate an approximation for yttt' by 

tytýttr = yý ttr + [ý Vac 

ac 
(2.10) 

with ac containing all attractiveness changes between t+1 and tp. 

Calculating this approximation for different historical departures t leads to the 

generation of a time series (related to the time index t) containing different approx- 

imations for ytpt''. This time series enables us not only to generate a prediction for 

the attractiveness with reduced approximation error, but also to determine unex- 

pected small long term attractiveness changes corresponding to slow and regular 

changes of the attractiveness which can, e. g., be represented as a long term trend. 

We can use different function spaces hattr(xattr, 04et) in order to model 

fattr(xattr) The most successful approaches that have been found are very simple 

and stable approaches originating from the theory of time series forecasting like 
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the constant function 

ýittr (xattr 
, 
oattr ý_ oa0ttr (2.11) 

with learning O "t' based on the series tytttr corresponding to the methodology of 

simple exponential smoothing [Brown 63] or with the simple average 

oaOttr =1 
tyt ttr 

v 
t 

(2.12) 

over the given set of T estimations based on historical data. We can also assume a 

linear trend 
ý2ttr(xattr, oattr) = oQattr + oittr * (td - tp), (2.13) 

with parameters learned using the Brown method [Brown 63] or linear regression 

[Granger 86]. More sophisticated approaches like ARMA models [Brockwell 87] 

are possible as well, but have shown worse results because of the high noise in 

the data in connection with decomposition errors and short history pools caused by 

quickly changing environments. 

2.2.6 Learning and Forecasting Short Term Influences 

The currently modelled short term influences correspond to the (periodic) seasonal 

behaviour, special events (like fairs, conferences and holidays), short term schedule 

changes (sometimes caused by events), short term market changes and short term 

price changes. 

As we have found that seasonal impacts in the demand are especially relevant 

for the forecast accuracy we will now describe the methods used to predict seasonal 

behaviour. All other impacts have been eliminated for our experiments in choos- 

ing a testset without relevant schedule changes , market changes or price changes. 

Relevant event periods have been excluded from the forecast evaluation as well as 

from the history pools. 

Two general approaches are used for seasonal forecasting: 
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" the season is predicted based on the behaviour of the past years or 

" the season is predicted based on the given booking data that have already 

occurred for a future departure. 

The available input information x8ea807 for seasonal predictions contains the 

calendar week cw to be predicted corresponding to the ISO standard as well as 

information about the current demand ytd, of the future departure td measured at 

time tp and estimations of the attractiveness at the current moment ytät' and at the 

departure ytýttr (both estimated based on historical departures). Historical seasonal 

factors y8O" are used as input information as well. 

In the following subsections we refer always to seasonal predictions, we will 

not write the upper index "eeaeon" in order to increase readability. 

Predicting seasonal behaviour based on decomposed historical demand data 

Let us assume we have weekly decomposed historical seasonal factors yt given 

over several years. The data can be related to a special day of week or to aggregated 

demand of the whole week. 

Figure 11 shows yt depending on the calendar week ew together with two ex- 

amples for learned seasonal factors based on this data. They are both based on 

estimations of the seasonal factors y,,, 

y,,,, = E(min(max( [ycw+jý, 0tow)ý Ohigh))" (2.14) 
2ý 

1 

ý+1 j_-Oi 

which are calculated per calendar week for each year. The estimates j7 are then 

averaged over the two years in order to represent an estimation for the total histor- 

ical behaviour. 

The two examples of learning the seasonal behaviour differ concerning the used 

parameters Oj, and c5high" Parameter cj represents the size of the neighbour- 

hood of a calendar week that is taken into account for the estimation of the seasonal 
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behaviour. A bigger value means a noise reduction and the generation of smoother 

seasonal curves. But it also represents a restriction in modelling quick changes 

in the seasonal behaviour between neighboured weeks. The other two parameters 

ßh1,,,,. and 61�9F, are also used for stabilisation purposes. They represent a lower and 

an upper limit to the expected seasonal factors. Strong restrictions again mean a 

noise reduction and allow, for instance, the avoidance of a "zero season" assump- 

tion in case of no historical bookings measured at the ODIFPOS level for a given 

calendar week, but represent also a restriction in flexibility of the learned seasonal 

factors. Improved versions of learning use simple exponential smoothing over the 

different years instead of taking the simple average in order to enforce the impact 

of newer data and consider also different impacts depending on the neighbourhood 

distance j. 
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Fig. 11: Measured seasonal factors during 2 years with two learned curves yC2L,. Learning 
l is carried out with the parameters that allow very high flexibility. Learning 2 is 

carried out with the parameters that generate a more stable curve. 

The learned seasonal factors can be used in order to generate predictions for 

future seasonal behaviour. We have to consider already measured unconstrained 
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bookings ytd T for a future departure td that should be predicted. We define 

Predicting seasonal behaviour based on current booking data 

) 
cwý 4, (ytätr - ytät; 

ý 
ý1 x' t 

unc + (l+9 
2. (0)d 

- 

ytd, 
r 

yt ttr 
d 
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Seasonal effects may not only be predicted based on the past years observations. 

Current booking data gives additional indicators about seasonal behaviour as well, 

especially a short time prior to departure. Two models are used in order to pre- 

dict the season based on current demand. It has been observed that the seasonal 

behaviour affects not only the additional demand caused by the season at the depar- 

ture, but also the time when the demand occurs. So we could, for instance, observe 

a clear tendency that the demand of the Economy compartment occurs earlier in 

high seasons. The two predictions h2 (x, 0) and h3 (x, y) represent two special 

cases in relation to this expected behaviour. One model assumes the additional de- 

mand occurring extremely early, the other model expects that the demand occurs 

in a manner similar to the attractiveness. 

In both models we estimate the future behaviour based on the current seasonal 

impact ytd,, with 

(x, 0)td = 
ytä, + (1 + 0, * min(ma2(ytd,,, ýiow), ýhighýý * (ýtdtr - Jtdt; ý 

yt ttr 
d 

(2.16) 

Parameter (Pco,. r E [0,1] describes how much we transfer the measured season to 

the future and how much we apply a "no season assumption" for the future. 

Model h2 (x, ¢) uses I , r,. = 0: 

unc ^attr ýattr) Ytd 
T+ (ytd - td 

Ir- 

4 

h2 (xý td = Jt ttr " (2.17) 

This means that it is expected that the complete additional or missing demand has 

already occurred. 

The third model expects a seasonal factor for the future demand that corre- 
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sponds to a stabilised version of the currently observed seasonal factor y l,,.,, we set 

ýcorr =1 and get 

iinc ^attr attr) 

, /, 
ytý. 

r 
+ (1 + miit, (m, ax, (yt�, 

r, 
ýlow)ý 011, 

yt1 
)) * (ytd - ytdr 

h3(x, Ad 
- ýrzttr ytý 

(2.18) 

Figure 12 shows an example in order to illustrate the idea of the second and 

the third model. The blue/dark lines show the current unconstrained booking val- 

ues yurac together with an estimation of the attractiveness y ittr. The difference 

between the two is used in an additive or multiplicative manner in order to estimate 

the seasonal behaviour in future dcps T. The resulting total forecasts are shown 

in orange/light lines. It can be seen that the additive adaptation h2(. r, 0)) corre- 

sponds to the application of a constant offset to the attractiveness estimation, the 

multiplicative adaptation h3(x, ¢)) stretches the future reference values. 
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Fig. 12: Additive and multiplicative interpretation of seasonal behaviour. 

The current combination of the predictions 

The current version of the Revenue Management product ProfitLine. Yield/O&D 

uses a combination 
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h(x, Gi ý"ý * hi (x, 
i=1 

in order to generate a final prediction for the expected seasonal behaviour. 

The weight functions GI(. ) to G3(. ) each return values between 0 and 1 and 

fulfil 
3 

ý Gi(. ) =1 
: =i 

(2.20) 

for all possible input configurations. They depend on different input values 

in a nonlinear manner and are fixed in the sense that they do not contain learned 

parameters. Because of commercial aspects neither the concrete functions nor their 

inputs are provided in this thesis, but we can state that the functions have been the 

result of an extensive data analysis and that they have been constantly tuned during 

the past years. 

2.3 Experiments 

All experimental results in this thesis are related to the testbed described in the next 

Subsection 2.3.1. All experimental data as well as the applied software, a detailed 

description of the different experiments and the experimental results are available 

on the CD accompanying this thesis. More details in relation to the software and 

the data can be found in Appendix B. 

After the description of the testbed, we offer an impression of the given book- 

ing and availability data by providing some statistical properties in Subsection 

2.3.2. In Subsection 2.3.3 different individual forecast methods are experimentally 

compared. 

2.3.1 Testbed Description 

The chosen testbed includes data of 10 representative O&Ds consisting of 

"2 transatlantic O&Ds from Europe to America 
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T 
td - tp 

0 
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12 
14 

1 
182 

13 
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2 
140 

14 
10 

3 
126 

15 
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98 

16 
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5 
70 

17 
5 

6 
56 

18 
4 

7 
49 

19 
3 

8 
42 

20 
2 

9 
35 

21 
1 

10 
28 

22 

0 

11 
21 

Tab. 1: DCP Grid: the table shows at which days prior to departure td - tp, with td the 
departure date and tp the process date, new booking and availability information is 
available and new forecasts are calculated. Each of these "data collection points" 
(dcp) are described by an index r with r=0 the earliest time of forecasting about 
one year prior to departure and r= 22 the day of the departure. 

"1 intercontinental O&D from Europe to Asia 

"1 intercontinental O&D from Europe to Africa 

"1 intercontinental O&D from Asia to America 

"5 European O&Ds 

and containing 9 direct routings, as well as 2 routings with more than one segment. 

The O&Ds contain 1 to 3 ODOs. 

All data is available for 20 fareclasses (F) and the 3 point of sales (POS) "coun- 

try of origin", "country of destination" and "rest of world". 

The data covers a departure date period form October 2004 to March 2007. 

The number of bookings is available at 23 data collection points r in relation to 

each departure date. Table 1 shows the applied snapshot grid. 

The following data has been available per level i=ODO DOW F POS, departure 

date td and days prior to departure r: 

" the number of individual bookings bi, td ,r and 

" the availability information av=, td, r with av=, td,, r =1 if the booking class has 

been closed at time td, T and avi, td r=0 otherwise. 

For confidentiality reasons, the data is presented in a disguised form. Different 

O&Ds and ODOs as well as fareclasses are represented by an artificial indicator. In 
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POS F DOW ODO DW DCP_0 ... DCP22 
21 
2 

9 
9 

11 
1 

1 
2 

11 
1 

ý0 
2 

3 
8 
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Tab. 2: Example for the structure of the provided booking data. The first 5 columns con- 
tain the description of Point of Sale, Fareclass, Day of Week, ODO and Departure 
Week. The following columns contain the number of total bookings for each data 
collection point (dcp), so that the last column contains the number of bookings at 
the day of departure. 

order to enable history pooling per day of the week, the departure date information 

is provided as a pair of departure week and day of week td = (dwd, dowd). The 

first three fareclasses 0 to 2 represent the First Class Compartment, the following 

five fareclasses belong to the Business Compartment and all other fareclasses be- 

long to the Economy compartment. The fareclasses are ordered corresponding to 

their nesting [McGill 99], which can be interpreted as if they were ordered in re- 

lation to the quality of the corresponding product (from more expensive and more 

flexible products to cheaper and less flexible products). 

Table 2 shows an example of the representation of the data. The complete data 

tables are available on the CD accompanying this PhD thesis. 

Some further characteristics of the data: 

" Days without any values indicated in the files have not been valid departures 

(no flight on this day). 

" The booking data is so called gross bookings. This means that even if some 

of these bookings have been subsequently cancelled, they are counted in the 

booking curves without considering this fact. 

" The O&Ds have been chosen in a manner that there have been no significant 

schedule or market changes in order to simplify the experiments. 
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2.3.2 Statistical Properties 

The software allows a determination and visualisation of some common statistical 

properties of the data in relation to all dimensions of the data (like Fareclass, Point 

of Sale, Day of Week, Departure Week and so on). Experiment 1 (see Appendix 

B. 6.1) contains an interface of data loading. Then it is described how the data can 

be visualised and basic statistical properties can be determined. These properties 

contain the sum, average value, standard deviation, number of missing data as well 

as the number of zeros in relation to each value of each data dimension. 

The following Figures 13 to 16 show some of the most relevant distributions of 

the input data: 

" averaged number of bookings per 

- departure week dw at the time of departure, 

- data collection point r, 

- fareclass F at the time of departure, 

- point of sale POS at the time of departure and 

" averaged availability information per fareclass F (over all T) 

Detailed information about the statistical distributions are provided via the ex- 

perimental results of Experiment 1. 

The Figures show that the number of bookings is very low, which illustrates 

the fact that we have the problem of small number predictions. In contrast to a 

complete Revenue Management system, most of our O&Ds correspond to direct 

routings, the average number of bookings in a complete system would still be much 

lower. Most of the passengers book in the Economy compartment. This can be 

clearly seen in Figure 15. The Figure also shows that we do not have a balanced 

distribution of demand in different fareclasses. Figure 16 shows the tendency that 

the average availability decreases for higher fareclasses (per compartment). This 

effect can be explained with the strategy of closing cheaper fareclasses first. 
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Fig. 13: Average bookings per departure week dir. The dotted lines indicate the yearly 
cycles. 
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Fig. 14: Average txxoking' per data collection point T. 

2.3.3 Individual Forecast Performance 

A pool of promising individual forecast methods has already been available at 

Lufthansa Systems as part of the Forecasting Kernel. It contains different meth- 

ods for prediction of the attractiveness as well as for prediction of seasonal effects. 

Different methods to adapt to flight specific behaviour based on incoming Lxx)kings 

are available as well. The six most promising methods are described in "l'ahle 3. 

For details related to the methods see Sections 2.2.5 and 2.2.6. 

Figure 17 shows an example of real data at the 0011l'OS level together with 

predictions °; ij to sy calculated at time r= -5 (70 days prior to departure). 
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Fig. 15: Average bookings per fareclass F and point of sale POS. 
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Fig. 16: Averaged availability (0=open, l=closed) per fareclass: The figure shows quite 
well the tendency that within compartments cheaper fareclasses are closed before 

more expensive fareclasses. The dotted lines indicate the different compartments. 

After having produced the individual forecasts, the forecast errors have been 

analysed. Tables 4 and 5 and Figure 18 illustrate the errors predicting the final dcp 

T= 22 from each dcp T (x axis) on the fine level (ODOFPOS) and the high level 

(ODO). 

It can be seen that method 0 is the best performing method. In the following 

chapters we will refer to these forecasts as "best individual forecast OF' and use it 

as a baseline for the evaluation of combined forecast quality. 

As error covariance values have a relevance for combination (this will be dis- 

cussed in the following chapters), Tables 2.3.3 show examples of error covariance 
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m1 1 fc attractiveness (see section 2.2.5) 
y h, ttr(x, (simple exponential smoothing model 2.11) 
y hlttr(x, (simple exponential smoothing model 2.11) 
y h2ttr(x, (Brown model 2.13) 
y hittr(x. o) (simple exponential smoothing model 2.11) 
y h2ttr(x, ¢) (linear regression 2.13) 

'7y hattr(X, 4) (linear regression 2.13) 
y h2ttr(x, ß) (linear regression 2.13) 

FM- fc seasonal effects (see section 2.2.6) 

y hSeaso"(x, o) (combined model 2.19) 

3""" (X, o) (multiplicative model 2.18) 
y s eaSO"(x, ¢) (multiplicative model 2.18) h3 

s eQSO"(x 0) (additive model 2.17) h2 
h3eaSO" (x, (multiplicative model 2.18) 

y hse"son(x 0) (historical model 2.15) 

y hs easo" (x, 0) (additive model 2.17) 2 

Tab. 3: Different individual forecast models used for linear combination. The description 
is separated into the prediction of the stable component (the attractiveness) and the 
parts covering seasonal effects. 
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Fig. 17: Forecasts °y to cy generated for O&D=O, ()DO=O, DOW=all (sum), I: areclass= 16. 
POS=O, r=6 together with the unconstrained demand y. The x-axis represents 
different departure weeks. The y- axis represents the demand. 
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Fig. 18: Graphical representation of the mean absolute error e"`°d per individual forecast 

method and dcp T measured at the ODO level. 

values of the forecasts calculated for O&D=O, DOW=O at T=5 (70 days prior to 

departure) on the fine level ODO F POS and aggregated to the ODO level. 

The calculated predictions can be reproduced with Experiment 2 (see Appendix 

B. 6.2). Details of the experimental results are also available on the CD. 
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T1 1 emn ema ema emn mad 5 
ema emo 

0 43.31 54.98 54.13 50.23 56.19 45.39 51.76 
1 41.19 54.87 55.07 47.20 55.51 41.06 46.52 
2 38.88 51.01 51.10 44.61 51.33 38.45 43.96 
3 36.99 48.62 48.68 42.27 48.96 36.60 41.57 
4 33.90 45.11 45.13 38.95 45.28 34.00 38.20 
5 31.25 42.29 42.36 35.82 42.43 31.80 35.33 
6 28.61 39.20 39.36 32.49 39.41 29.50 32.13 
7 25.86 35.31 35.48 29.05 35.62 26.89 28.77 
8 22.19 29.94 30.07 24.86 30.21 23.28 24.61 
9 19.90 26.30 26.40 22.40 26.55 21.09 22.25 
10 17.48 22.02 22.08 19.82 22.21 18.70 19.65 
11 14.74 17.48 17.48 16.99 17.45 16.00 16.86 
12 13.04 15.23 15.21 15.28 15.17 14.30 15.18 
13 11.61 13.46 13.43 13.94 13.38 13.00 13.85 
14 9.41 11.12 11.08 11.79 11.01 10.96 11.70 
15 8.20 9.88 9.83 10.68 9.79 9.88 10.60 
16 6.84 8.50 8.46 9.24 8.39 8.62 9.18 
17 6.16 7.86 7.83 8.51 7.75 7.98 8.45 
18 5.53 7.31 7.28 7.89 7.20 7.40 7.84 
19 4.87 6.74 6.72 7.20 6.74 6.86 7.20 
20 4.26 6.17 6.15 6.50 6.17 6.24 6.50 
21 3.11 5.21 5.20 5.34 5.23 5.24 5.36 
22 0.00 0.00 0.00 0.00 0.00 0.00 0.00 

Tab. 4: Mean absolute error emad per individual forecast method and dcp r measured at 
the high level ODO. 
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T1 1 emad 
I ,d 2 ema mad 4 mad 5 mad to ema 

0 2.50 2.64 2.65 2.62 2.72 2.61 2.71 
1 2.20 2.51 2.51 2.33 2.52 2.27 2.34 
2 2.09 2.36 2.36 2.22 2.37 2.17 2.23 
3 2.01 2.27 2.27 2.14 2.29 2.10 2.16 
4 1.89 2.14 2.14 2.03 2.16 2.00 2.05 
5 1.78 2.01 2.01 1.91 2.05 1.90 1.94 
6 1.66 1.88 1.88 1.79 1.92 1.79 1.83 
7 1.51 1.71 1.71 1.64 1.75 1.65 1.68 
8 1.32 1.50 1.51 1.44 1.54 1.46 1.49 
9 1.19 1.36 1.37 1.32 1.40 1.34 1.35 
10 1.05 1.20 1.20 1.17 1.23 1.19 1.20 
11 0.88 1.01 1.01 1.00 1.04 1.01 1.02 
12 0.78 0.89 0.89 0.89 0.91 0.90 0.91 
13 0.68 0.80 0.80 0.79 0.81 0.80 0.81 
14 0.55 0.66 0.66 0.66 0.67 0.67 0.67 
15 0.48 0.58 0.58 0.59 0.59 0.59 0.60 
16 0.39 0.50 0.50 0.50 0.50 0.50 0.51 
17 0.35 0.45 0.45 0.46 0.45 0.46 0.46 
18 0.30 0.41 0.41 0.41 0.41 0.41 0.41 
19 0.25 0.36 0.36 0.36 0.36 0.36 0.37 
20 0.20 0.31 0.31 0.31 0.31 0.31 0.31 
21 0.12 0.22 0.22 0.22 0.23 0.23 0.23 
22 0.00 0.00 0.00 0.00 0.00 0.00 0.00 

Tab. 5: Mean absolute error emad per individual forecast method and dcp r measured per 
ODO F POS. 

11 0123456 

0 
1 
2 
3 
4 
5 
6 

0 2.47 2.55 2.33 2.55 2.38 2.65 2.66 
1 2.55 2.80 2.59 2.81 2.57 2.91 2.93 
2 2.33 2.59 2.58 2.57 2.41 2.62 2.60 
3 2.55 2.81 2.57 2.82 2.48 2.94 2.95 
4 2.38 2.57 2.41 2.48 3.02 2.67 2.59 
5 2.65 2.91 2.62 2.94 2.67 3.07 3.10 
6 2.66 2.93 2.60 2.95 2.59 3.10 3.13 

0123456 
0.16 0.17 0.17 0.17 0.12 0.16 0.16 
0.17 0.18 0.19 0.18 0.13 0.18 0.18 
0.17 0.19 0.19 0.18 0.13 0.19 0.18 
0.17 0.18 0.18 0.20 0.09 0.18 0.19 
0.12 0.13 0.13 0.09 0.34 0.13 0.09 
0.16 0.18 0.19 0.18 0.13 0.18 0.18 
0.16 0.18 0.18 0.19 0.09 0.18 0.19 

Tab. 6: Error covariances for O&D=O, ODO=O, DOW=4. The upper table shows the co- 
variances at the low level for fareclass= 13 and POS=O, the table below shows the er- 
ror covariances corresponding to forecasts aggregated over all farclasses and point 
of sales. 



3. FORECAST COMBINATION MODELS 

3.1 Introduction to Forecast Combination 

Combining forecasts is a well-established procedure for improving 

forecast accuracy which takes advantage of the availability of both 

multiple information and computing resources of data-intensive fore- 

casting. (Bunn, [Bunn 89]) 

The general idea of forecast combination is quite simple. In order to profit from 

the information of different forecast models, not a single prediction is produced, 

but a whole set of forecasts which are then aggregated in a second step. 

The superiority of this approach has been proved theoretically and experimen- 

tally for a lot of applications. To cite just one of the most common examples: 

Makridakis et al [Makridakis 82] carried out an extended study to compare fore- 

cast quality of different forecast methods including two different approaches of 

forecast combination. The study showed clearly that related to forecasts made for 

about 1000 time series the combining approaches outperformed on average the in- 

dividual forecast models. Other studies [Makridakis 93][Russell 87] were carried 

out with the same results so that the combination of forecasts became a scientifi- 

cally acknowledged procedure. 

In this section we describe what combination of forecasts means and have a 

short discussion why it works. Different approaches to forecast combination are 

then presented in more detail in the following sections. 

What is forecast combination? 

Forecast combination is a procedure of generating one (combined) forecast 
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based on different individual forecasts and potentially additional information. It 

can be seen as a fusion procedure, represented by a function F, which receives as 

inputs a set of 11 individual forecasts and returns a combined forecast °"'dye 

(see Figure 3.1). 

Definition 3.1 (Combination Function): Let a level i of forecasting be given as 

well as a set of predictions {"`y} for a future time index t. A combination func- 

tion F is a function F: Rý' ---ý R that calculates a combined forecast °"'hy = 

F({`y}) based on the given input forecasts and potentially additional information. 

In the following we will always indicate additional information about forecasts 

or their generation as a left upper index (like the index "m" or "comb"). 
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Fig. 19: Forecast combination as a black box 
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The task of the different combination approaches is to describe the functional 

relationship which represents the fusion. 

Why is this simple idea working so well? 

In the beginning of the discussion related to combination approaches different 

authors argued that if forecast combination works, this simply shows that the indi- 

vidual models representing the input for the combination process are not correct. If 

it is possible to generate a combined forecast which in the end represents nothing 

more than a relationship between different inputs (those of the individual forecasts) 

and one output (which is the combined forecast) and this output is better than each 



3. Forecast Combination Models 78 

individual forecast, it would have been possible to model that relationship directly 

in one forecast model. This in turn proves that the relationship modelled in the 

individual forecasts is not optimal and there is no need for forecast combination. 

So why does forecast combination produce good results? 

Bates and Granger stated in 1969 [Bates 69] that combination works well be- 

cause different forecasts consider different independent information of two kinds: 

one forecast might be based on variables or information that another forecast has 

not considered or the forecasts make different assumptions about the functional 

form of the relationship between the variables. It can also be that there is a non- 

stationarity in the parameters of the model which can be resolved by including 

forecasts based on different parameter sets into a combination process. 

Granger and Ramanathan [Granger 84] discussed the second point and argued 

that if two forecasts are based on the same information set and the combination 

outperforms the individual predictions, it is true that this means that neither is op- 

timal. If , e. g., the forecasts make different assumptions about the functional form, 

it shows that the best functional form is neither of those originally selected. This 

has been confirmed by Newboldt and Granger [Newboldt 74] who observed that 

different individual models represent different aspects of the underlying stochastic 

process and one can never be certain that a particular model is the most appropriate. 

Winkler and Makridakis [Winkler 83] summarised in 1983: 

The traditional approach of forecasting involves choosing the fore- 

casting method judged most appropriate of the available methods and 

applying it to some specific situations. The rationale behind such an 

approach is the notion that a "best" method exists and can be identi- 

fied. An alternative to the traditional approach is to aggregate infor- 

mation from different forecasting methods by aggregating forecasts. 

This eliminated the problem of having to select a single method and 

rely exclusively on its forecasts. 

More concrete and scientifically reasoned arguments for the usefulness of fore- 
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cast combination will be provided during the analysis in the following chapters. 

3.2 Linear Combination Models 

The simplest, but also the most common are the linear combination models. The 

reason to use linear combination models lies in the simplicity of these models as 

well as in their robustness. In linear combination models the combined forecast is 

defined as a weighted sum of different given individual forecasts. This means that 

the models expect a stable relationship between the individual models which does 

not depend on time or other influences and can therefore be determined based on 

historical forecast performance. 

Definition 3.2 (Linear Combination Function, Linear Combining Weight): Let a level 

i of forecasting be given as well as a set of time series predictions {my}, mEMC 
N for a future time index t. 

A linear combination function Flip calculates the combined forecast CO"`by = 
Flip({y}) by 

F'lin({y}) =Z wm *m y. 

m 

The parameters wm E 1Z Vm EM are called linear combination weights. 

(3.1) 

Different linear combination models differ in the manner of how to estimate 

the optimal combining weights w�, based on historical forecast performance. 

In a lot of combination models the values or the sum of the combining weights 

are restricted. Some models restrict the sum of the combining weights to 

M 

=1. 
E 

WM 

m=1 

(3.2) 

The advantage of this restriction is that if the individual forecasts are unbiased, 

this restriction asserts that the combined forecast is unbiased, too. 
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Other models restrict each weight to 

0<w�z<1 dmEM (3.3) 

for stabilisation purposes. 

The following subsection provides a short overview of how the theory of linear 

combination models has developed. We will also provide references to the most 

important papers related to linear combination models. Subsection 3.2.2 gives an 

overview of different approaches to determine combining weights. Then the most 

common linear combination models are subsequently discussed in more detail in 

the subsections 3.2.3 to 3.2.7. The description of the models finishes with a com- 

parison of the different models in subsection 3.2.8. 

3.2.1 Historical Development 

During the last forty years a number of studies related to combination methods 

have been carried out. According to Stigler (1974) the idea goes back, in the con- 

text of estimation, at least to Laplace. The seminal work directly related to linear 

combination models was presented by Bates and Granger in 1969 [Bates 69]. In 

this paper the authors propose some of the most common linear combination mod- 

els and prove experimentally that combination models may be used to increase 

forecast quality. 

A very good review of the most important linear combination methods was 

published by Clemen in 1989 [Clemen 89]. Menezes, Bunn and Taylor [de Menezes 00] 

review the most important papers from the perspective of the choice of the appro- 

priate model. This review is also useful because it contains not only references 

to more recent papers, but also describes the most common models in a short and 

consistent notation. A good overview also concerning newer findings has been 

published by Timmermann in [Timmermann 06]. Good practical guidelines for the 

use of forecast combination are provided in [Armstrong 01 ]. 
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Here are some of the most important papers related to the linear combination 

of forecasts: 

1969 

1974 

1982 

1983 

1984 

Bates and Granger [Bates 69] published their seminal paper about fore- 

cast combination, in which the most common combination models are pro- 

posed. 

Newboldt and Granger [Newboldt 74] analysed combinations of different 

time series forecasts for 80 time series using different estimates of the 

weights. They concluded that methods assuming independence between 

the individual forecast errors perform better than the optimal model pro- 

posed by Bates and Granger. They suggested to use a small number of 

forecasts. 

Makridakis et al. [Makridakis 82] carried out a general forecast competi- 

tion of 1001 time series (later known as M- competition). They used two 

combinations of six forecasts, the simple average and the optimal model. 

A surprising result was that simple average combinations produced better 

results than error (co)variance based combinations. 

Winkler and Makridakis [Winkler 83] used the 1001 time series of the 

M- competition to compare the different models proposed by Bates and 

Granger. The results confirmed the results of Newboldt and Granger. 

But this time weighted average combinations outperformed simple average 

combinations. 

Granger and Ramanathan [Granger 841 proposed the combination of fore- 

casts as an unlimited least squares regression with an intercept. They 

showed that if predictions are biased, unlimited regression models are su- 

perior to the optimal method. 
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1985 

1987 

1989 

1990 

In a theoretical and simulation study Bunn [Bunn 85] evaluated the quality 

of combination methods dependant on three statistical values: the variance, 

the correlation coefficient and the length of the time series. The outcome 

was a theoretical explanation for the different performance of the models 

under different circumstances as well as proofs based on experiments with 

artificial and real data. 

Russell and Adam [Russell 87] proposed different rank based combination 

models and ran experiments with a dynamic selection of the forecasts to be 

used for combination. They found out that rank based models may perform 

well and that an intelligent choice of forecasts may be beneficial compared 

to combinations using a bigger set of forecast models. 

Flores and White [Flores 891 evaluated subjective against objective combi- 

nations of predictions. Their experiment covered 93 students as predictors 

and two different kinds of time series. They agreed with Newboldt and 

Granger and proposed not to combine more then four different predictions. 

Clemen [Clemen 89] has evaluated in his study about 209 articles related to 

the combination of forecasts and asked the question why the simple average 

performs so well in a lot of situations and under which conditions other 

methods perform better. 

Schmittlein et al. [Schmittlein 90] discussed potential methods for the 

switching between different methods of combination. 

Holden [Holden 90] proposed regression based combinations with an in- 

cluded intercept but weights summing up to 1. 
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1992 

1993 

1994 

The empirical work of Gunther [Gunter 92] and Aksu and Gunther 

[Aksu 92] compared the quality of different least squares methods of com- 

bination and the simple average. They found out that the simple average 

and regression using weights restricted to be non-negative performed better 

than the unrestricted regression models. 

Makridakis et al [Makridakis 931 carried out the M2- competition. The ob- 

jective of this competition was the measurement of the quality of ten fore- 

casts, five of them made by human experts. They found out that approaches 

using forecast combination performed very well compared to other ap- 

proaches. 

Deutsch et al. [Deutsch 94] introduced combination methods with chang- 

ing weights which are calculated by switching regression models. 

MacDonald and Marsh [MacDonald 94] reported on experiments in which 

they used OLS regression as the method of combination for the prediction 

of exchange rates because of the presence of Bias in the single predictions. 

The superiority of the regression method has been confirmed in a number 

of following papers. But papers also exist which oppose this view with 

empirical proofs for the superiority of the optimal method over the OLS- 

regression. For details and references related to this discussion see, e. g., 

[de Menezes 00]. 
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1998 

2000 

2001 

2004 

2005 

Klapper [Klapper 98b] proposed extensions of rank models. He outper- 

formed the models proposed by Russell and Adam by using second or 

higher power rank information. He also proposed multivariate versions of 

the models. 

Fischer and Harvey [Fischer 99] discussed under which conditions subjec- 

tive combination may outperform objective combination of forecasts. Their 

paper also contained a good overview of literature related to judgemental 

combination of forecasts. 

Menezes, Bunn and Taylor [de Menezes 00] summarised guidelines for the 

choice of the appropriate linear combination model depending on statistical 

properties of forecast errors. 

Hansen discussed in his PhD Thesis [Hansen 00] the topic of forecast com- 

bination in relation to different bias- variance forecast error decomposi- 

tions. 

Armstrong provided practical guidelines for the use of forecast combination 

in [Armstrong 01]. 

Granger and Jeon introduced "thick modelling" in [Granger 04]. 

Aioflfi and Timmermann [Aiolfi 04] analysed forecast combination in rela- 

tion to different error variance based approaches of pooling. 

Yang [Yang 04] studied some methods of combining procedures for fore- 

casting a continuous random variable. Statistical risk bounds under the 

square error loss are obtained under distributional assumptions on the fu- 

ture given the current outside information and the past observations. 

Elliott and Timmermann [Elliott 05] compare several time varying and 

static forecast combination models. 
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2006 

2007 

Timmermann [Timmermann 05][Timmermann 06] summarised newer 

findings in forecast combination and provided a consistent mathematical 

description. 

Sancetta [Sancetta 07] proposes online forecast combination for dependent 

heterogeneous data. The algorithm is an extension of Yang [Yang 04]. It 

holds for more general data series (e. g. the moment generating function 

does not need to exist) and a wide variety of loss functions are allowed. 

3.2.2 Overview of Linear Combination Models 

The most common models described below differ concerning the following points: 

" the performance of the individual models is taken into account or not 

" the correlation of the individual models is taken into account or not 

" the manner in which the performance of an individual forecast is evaluated 

in comparison to other individual forecasts 

" the weights are restricted to sum up to 1 or not 

" the weights are restricted to a given interval like [0,1] or not 

" there is a constant term included in the combination or not 

The simplest model is the simple average model (see subsection 3.2.3), which 

gives the same weight to all individual forecasts. As they are constant, the weights 

are highly restricted and the individual forecast performance or correlation is not 

taken into account. 

There are two common groups of models which take the individual perfor- 

mance into account: rank based models, which are described in subsection 3.2.4, 

and error variance / covariance based models, which we discuss in subsection 3.2.5. 

They differ in the manner of how forecast performance is represented. While 

rank based models describe forecast performance based on ranks of past perfor- 

mance without interpreting statistical properties of forecast errors, the variance / 
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covariance based models use error variance and covariance information to repre- 

sent forecast performance. Finally, we have the group of regression based models 

(described in subsection 3.2.6), in which forecast combination is modelled as an 

ordinary least squares regression problem and which is strongly related to variance 

/ covariance based models. 

In the following subsections the most important models are described in detail. 

To indicate which model has been used to calculate combining weights, an abbre- 

viation of the model is used as an upper index. The abbreviations used here for the 

different models are given after the name of each model. 

3.2.3 The Average Model 

The average model [Bates 69] is a very robust model which is often the first choice 

in practical applications because of its simplicity. In this model each prediction 

gets the same weight. It is 

E J1ý1. w,, a := A1, m (3.4) 

The model performs very well in a lot of practical applications. For a discus- 

sion why this is the case see Section 4.4.2. 

3.2.4 Rank- Based Models 

Rank- based models [Bunn 75][Russell 87] determine the weights depending on 

the ranks of past performance of the individual forecasts. The general idea is to 

give higher weights to models which have performed well and lower weights to 

poor models. As a basis for the decision, which forecast is expected to be good and 

which to be bad, the term of the rank rk of forecasts is defined. 

Definition 3.3 (Rank of Forecasts): Let a time series y be given for a historical 

time period. Let {my}, mE Jul be a set of Al forecast series predicting y. Let me 
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be the measured squared error le = (y -1 y)2 of the forecasts for a given time 

index t. Then the rank function is the function rk :R -º [1 
... M] CN which 

gives an indicator value of '1' to the best model, '2' to the second best, '3' to the 

third best and so on. This means that the rank function fulfils 

rk(ml y) < rk("`2 y) s 'n' e<m2 e dml, m2 E , /Vl. (3.5) 

The Outperformance Model (outp) 

In the outperformance model proposed by Bunn in 1975 [Bunn 75] each individual 

weight is interpreted as a probability that the corresponding individual prediction 

will perform the best in the future. The probability is estimated as percentage of 

times, where the individual prediction has performed best in the past. 

w°'ýtý' .-11. 
rk(met) =1 

m 'T) 
tr: T 0: otherwise 

(3.6) 

The outperformance model is a simple, robust, intuitive model which gives 

good results even for short historical data. It is also possible to easily incorporate 

expert knowledge into the weights. 

Generalised Rank Based Models (rk, rk< j >) 

Generalised rank based models use not only the information about which model 

has performed best, but also the information about the other ranks. They were 

proposed by Russell and Adam [Russell 87] in 1987 (in their paper referred to as 

model CCIV3). The weights are defined as 

wrk 
EtET (M ý-1- rk(et)) (3.7) 

- rk(met)) mý Em EtET (M +1 
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which simply means that for each historical time interval an influence of Al is 

given to the best model with decreasing values for the lower ranked models and 

ending with 1 given to the worst model. The influence values are then added up 

over all time intervals and scaled so that they sum up to 1. 

Versions using second or even higher order rank information also exist. 

For these models, it is 

wrk<j> ; __ 
ýtE7 (Al -}-1- rk(et))ý 

m ým ýtET (Al +1- rk(met))j 
(3.8) 

with jEN. The term '< j >' in the title of the model stands for the value of 

j. In experiments carried out by Klapper [Klapper 98b] the versions rk2 and rk4 

outperformed the basic model of Russell and Adam. 

3.2.5 Variance/Covariance- Based Models 

Variance/ covariance-based models calculate the weights based on a given variance 

or covariance structure of the forecast errors of the individual predictions. The gen- 

eral idea is that forecasts with a low error variance should get a higher combining 

weight. The simplest and robust approach calculates the weights directly on the ba- 

sis of the error variances. A well known extension is the optimal model which also 

takes into account that the individual forecasts may be correlated. For an extreme 

example, suppose that we have three methods and that the correlations among their 

forecast errors are zero for method I and 2, zero for methods I and 3, and one 

for methods 2 and 3. In this case, the forecasts provided by methods 2 and 3 are 

redundant and should not each be given the same weight as that given to the first 

method. The weights assigned to the different forecasting methods, then, should be 

related to the covariance matrix of forecast errors. 

A large variety of extensions handling for instance bias and skewness effects 

also exist [de Menezes 00][Genest 86]. 
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The Variance Model (var) 

In the variance model the weights are based on the inverses of variances of the 

individual forecast errors. The model has been proposed by Bates and Granger 

[Bates 69] for two individual forecasts and generalised and studied in more detail 

by Granger and Ramanathan [Granger 84]. 

The weights are given as 

1 

wmvar rnbz 
-ý1 

Em +ý+1bi 
' 

where m52 represents the error variance of forecast method m, 

ma2 := , rl 
(+ýy - y)2 

E 

(3.9) 

(3.10) 

The weights are based on the inverse of the error variance which means that 

forecast models performing well get a higher weight. The values are forced to sum 

up to 1 through dividing them by the sum of the inverses of error variances of all 

methods included in the combination. 

The Optimal Model (opt) 

The optimal model has been proposed in the seminal paper of Bates and Granger 

[Bates 69]. In that model the weights are calculated so that the variance of the error 

of the combined forecast is minimised. This is done under the condition that each 

individual prediction has no bias. The model takes into account that correlations 

among the errors of the forecasts may exist. That is why not only error variance 

information of the individual forecasts but also their covariances are included in 

the model. 
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The combining weights are calculated as: 

ýt "- 
VE-'771 

wfz 
m' 

(3.11) 

where 71 = [1]M represents the [hf * 11 unit vector and EE R'ºfxaf is the covari- 

ance matrix of the forecast errors containing covariances 

n`1in`ZP :_ ýT) 
E [(m'y - y)("`, y - y)l, 

dml9m2 E M. (3.12) 

tET 

Granger and Ramanathan (1984) [Granger 84] showed in 1984 that the method 

is equivalent to a least squares regression, in which the constant is suppressed and 

the sum of the weights is restricted to 1. The difficulty of the approach is that p has 

to be known to calculate the weights. 

In practice the matrix p is often not stationary, so it has to be estimated on a 

regular basis using a restricted historical time period T. 

The motivation for the approach is given by Bates and Granger using an exam- 

ple of two forecast models 111 y and f2 If we assume that the performance of the 

two models is consistent over time with error variance 

mla2 :=1 
D"'iU-v)2, 

i7--i 
tET 

(3.13) 

with m282 analogous for all time periods T, and the covariance m1, m2p as defined 

in (3.12), the error variance X82 ER of the unbiased combined forecast corre- 

sponding to (3.1) with restriction (3.2) 

comba2 .- ýT ý 
[: (cornb-_ y)s 
tET 

can be calculated as 

(3.14) 

combÖ2 = w, nl *ml S2 + w, nz *mz b2 +2 *'"1r'"2 p* wmlwmz. (3.15) 



3. Forecast Combination Models 91 

The weight Wm2 can be substituted from (3.2), which leads to 

comb52 = w, nl *ml S2 -I- (1- wml )2 *M2 S2 -I- 2 *ml, m2 p* Wmi (1- Wml ). (3.16) 

We get the minimum of comb52 by differentiating with respect to wmi and equating 

to zero. The minimum of comb62 occurs for 

m2a2 -ml, mz p 
wmi 'n1 Ö2 .. Fmz a2 -2 *ml, m2 p 

(3.17) 

This corresponds to equation (3.11) for the case of two forecast models. In this 

case the covariance matrix p corresponds to 

mla2 m1, m2P 
E_. (3.18) 

m1, m2P M2 52 

and the inverse is 

E-1 ^ 
1 -m2a2 ml, m2p 

ml, m2p2 -mi 62 *m2 62 
* 

m19m2p -mla2 
(3.19) 

The application of this inverse matrix in (3.11) leads to weights as described in 

(3.17). 

The Optimal Model with restricted Weights (optrw) 

In the optimal model with restricted weights equation (3.11) has the additional 

restriction that no individual weight is allowed to be outside the interval [0,1]. 

The model was also proposed by Granger and Ramanathan [Granger 84] in 1984. 

It showed results that are much more stable in relation to small data changes. An 

explanation for this behaviour will be given later in Section 4.4. The inconvenience 

is that the calculation of the weights is not as straightforward as for the optimal 

model. 
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3.2.6 OLS- Regression Models 

The Regression Model (ols) 

In combinations with regression models the individual predictions are regressors 

in an ordinary least squares regression (OLS) with use of a constant. 

Equation (3.1) is extended to 

wm' *m y+ wldtf+l? (3.20) 

with w, °n9 ER `dm EM= [1, 
... , 1LlJ, wAt+i ERa parameter that represents a 

constant term. 

Granger and Ramanathan [Granger 84] argue that this method is superior to 

the optimal methods, because an unbiased prediction is produced, even if the sin- 

gle predictions contain a systematic error. They proved that the optimal model is 

nothing more than an OLS regression without use of a constant. From a theoret- 

ical point of view there is no reason to expect that the individual forecasts must 

be unbiased. The authors propose the use of an OLS regression containing a con- 

stant term, because it represents an extension of the optimal model which combines 

biased forecasts in an optimal manner. 

The Regression Model with restricted Weights (olsrw) 

The outcome of the experiments of Granger and Ramanathan [Granger 84] has 

also been a regression model with restricted weights corresponding to the regres- 

sion model, but containing the restriction described in (3.2), which means that the 

combining weights must sum up to 1. 

3.2.7 Other Models 

Since the beginnings in 1969 other linear combination models have been proposed 

[de Menezes 00][Littlestone 92][Flores 89], but have rarely been applied in practi- 
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cal applications. The main reasons for this are a higher computational complexity 

as well as instabilities appearing for the more complex sophisticated models (we 

will come back to this point in Section 4.4). It is also much more difficult to inter- 

pret the results of these more sophisticated models. 

Models taking into account the distributional properties 

Some of the newer approaches are not only based on the pure accuracy perspec- 

tive, but are also taking into account distributional properties like error variance, 

distribution asymmetry and serial correlation. For examples see [de Menezes 00]. 

Models based on Bayesian Probabilities or quasi- Bayes Probabilities 

Bunn proposed different approaches to calculate linear combination weights based 

on Bayesian probabilities or quasi- Bayes probabilities for the first time in 1975 

[Bunn 75], other publications followed in 1985 [Bunn 85] and 1989 [Bunn 89]. 

Some of the models can be interpreted as generalisations of the outperformance 

model. But as these models were usually worse in comparison to the common 

linear combination models, they are not further considered here. 

Multivariate Approaches 

Different authors tried to extend combining approaches to multivariate combining 

techniques (see , e. g., Klapper [Klapper 98b] for rank based models). The idea of 

multivariate approaches is that information about the quality of future forecasts 

may be hidden in the past performance of other variables, so that rank information 

or correlation aspects of other forecasts are taken into account. 

Classification Models 

A wide range of combination models exists which are related to classification prob- 

lems. The most common is weighted majority voting [Littlestone 92]. An overview 
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of methods for the combination of classifiers is provided by Ruta and Gabrys in 

[Ruta 00]. 

Judgemental Forecasting 

A lot of authors discussed questions related to the combination of judgemental 

forecasts (forecasts produced by human experts) with system based forecasts or 

judgemental combinations (combination of system forecasts carried out by human 

experts). For a comparison between judgemental or subjective combinations and 

objective combinations see, e. g., Flores and White's paper of 1989 [Flores 89] in 

which competitive experiments are described. One of the most important questions 

here is under which conditions experts are able to beat pure system based forecasts. 

What kind of feedback do experts need in order to improve their forecasting or 

combination abilities? Approaches of automatic corrections of judgemental fore- 

casts also exist. A good overview to the literature related to this topic until 1999 

can be found in [Fischer 99]. 

3.2.8 Relations between the Linear Combination Models 

All of the linear combination models seem to be quite different at the first view. 

Nevertheless, they have a lot of common characteristics. Moreover, they can be 

interpreted as two groups of models each representing a hierarchical structure in the 

sense of one method being a generalisation of another method. By generalisation 

we mean here that one or more restrictions are relaxed or completely removed. 

In 1984, Granger and Ramanathan [Granger 841 showed that the optimal method 

is equivalent to a least squares regression, in which the constant is suppressed and 

the sum of the weights is restricted to 1. This knowledge allows us to compare 

the variance / covariance models to the regression based models and to interpret 

all of them in an hierarchical structure, beginning with the simple average model 

containing all possible restrictions, to the ols regression as the most flexible one 

containing no restrictions any more. 
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Figure 20 shows the hierarchical structure of the group of variance / covariance- 

based and regression-based models. Each node contains one model, the arrows 

between the models represent a generalisation direction. 

(3) (4,5) 
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Fig. 20: The group of variance / covariance-based and regression-based models shown as 
hierarchical structure. The nodes represent the combining models. The arrows 
represent generalisations achieved by relaxing one or more restrictions. 
1: the error variance is expected to be equal for each individual forecast model, 
2: the covariance is expected to be zero between each pair of individual forecasts, 
3: the combining weights are restricted to the interval [0,1], 4: the weights are 
restricted to sum up to 1,5: the constant term is suppressed 

The hierarchy of the other group of models, the rank-based models, is shown 

in figure 21. 
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Fig. 21: The group of rank-based models shown as an hierarchical structure. The nodes 
represent the combination models. The arrows represent generalisations achieved 
by relaxing one or more restrictions. 
1: the performance is expected to be equal for each individual forecast model, 2: 
only the best rank is taken into account, 3: the parameter j is restricted to j=1 

A discussion about advantages and disadvantages of the models as well as 

questions about the choice of a model in different situations will be provided in 

the next chapter. 
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3.3 Nonlinear Combination Models 

Nonlinear combination models represent the general class of combination model 

without any restrictions on the combination function F. As the general definition 

of a nonlinear combination model is quite flexible, most of the approaches found in 

the literature are specialised to a specific application, to special individual forecast 

methods or to special classes of functions used in the combination. 

The following subsection 3.3.1 gives a short overview of examples of nonlin- 

ear combination models published in the last ten years. Then we present three 

special cases of nonlinear combination approaches. In subsection 3.3.2 we present 

an extension of the linear combination models that has resulted in promising re- 

sults for our application. Instead of having fixed weights we use dynamic weights 

depending on the predicted numbers. Subsection 3.3.3 discusses the option of a 

transformation of a linear fusion process into another space. Subsection 3.3.4 then 

gives an overview of the most often discussed nonlinear combination models which 

combine forecasts produced by general approximators like neural networks. 

3.3.1 Historical Development 

A good review of combination of artificial neural networks is given in Sharkey 

[Sharkey 96]. Genest & Zideck [Genest 86], Jacobs [Jacobs 95] and Xu et al. 

[Xu 92] summarise the combination models mostly used to combine neural net- 

works. 

1965 One of the first papers related to ANN combination is published by Nilsson 
in 1965 [Nilsson 96]. 

1990 11 Schapire [Schapire 901 proposes the boosting algorithm. 

Hansen and Salomon [Hansen 90] run experiments using neural network 

ensembles. 
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1992 

1993 

1994 

1995 

Wolpert proposes a neural network to combine the outcomes of diversified 

neural networks. He introduces the term of "stacked generalisation" which 

is later used by other authors too. 

Geman et al. [Geman 92] discusses the topic of ANN error decomposition 

into bias and variance terms. 

Perrone and Cooper [Perrone 93] discuss the selection of nets for effective 

combination and suggests not to include nets exhibiting a high degree of 

correlation. 

Rogova [Rogova 94] proposes Dempster- Shafer belief- based methods. 

Krogh and Vedesby [Krogh 95] discuss the approach of cross- validation 

and provide an account of bias and variance terms in an ANN ensemble. 

Maclin and Shavlik [Maclin 951 discuss ways of how to generate diverse 

neural network ensembles using different network initialisations. 
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1996 

1998 

1999 

Breiman [Breimann 961 proposes the method of bagging. 

Hashem [Hashem 96] discusses effects of collinearity for combination of 

ANNs. 

Turner and Gosh [Turner 961 propose to create diverse neural networks by 

injecting noise into the data, by using different pruning methods or by using 

different nonlinear transformations. 

A. Sharkey [Sharkey 96] writes a review paper on combining artificial neu- 

ral nets as an introduction to a special issue of the Connection Science jour- 

nal. 

Raviv and Intrator [Raviv 96] summarise and discuss in the same journal 

methods to create diverse neural nets in altering the training data. 

Rosen [Rosen 96] discusses options of how to create decorrelated neural 

networks. 

Liu [Liu 98] extends to theory of [Rosen 961 and proposes negative corre- 

lation learning. 

Opitz and Shavlik [Opitz 99b] present a genetic algorithm to create diverse 

sets of neural networks. 

Another proposition of how to combine forecasts using a neural network is 

given by Shan et al. [Shi 99]. 

Opitz and Maclin [Opitz 99a] carry out an empirical study to compare dif- 

ferent ensemble methods based on bagging and boosting used for neural 

networks and decision trees. 
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2001 

2005 

Zhou et al. [Zhou 01] propose to combine well selected subsets of a set 

of given neural networks. The subset and the corresponding weights are 

initialised and chosen using evolutionary strategies. 

Burgess proposes a population based algorithm to perform joint optimisa- 

tion of a portfolio of models in [Dunis 01]. 

He and Xu [He 05] propose a new nonlinear combination method using 

self- organising algorithms. 

Brown et al. summarise and extend the theoretical background related to 

negative correlation learning [Brown 05a]. They investigate the issue of 

how to explicitly manage the correlations of an ensemble of regression es- 

timators [Brown 05b]. They also provide an experimental comparison with 

other ensemble learning techniques like bagging, boosting mixture of ex- 

perts and Gaussian processes. 

2007 11 Ozun and Cifter [Ozun 07] apply neural networks trained with a genetic 

algorithm in order to combine financial forecasts. 

Guidolin and Timmermann [Guidolin 07] present a flexible forecast com- 

bination approach considering regime switches. 

3.3.2 A Dynamic Representation of Linear Combination Weights 

In this section we focus on a special type of nonlinearity in combination models. In 

a first step towards nonlinear combination we extend the linear combination models 

by modelling adaptive weights depending on the predicted values. Equation (3.1) 

is extended to 

F'dyn({y}) = 
1: Gm({y}) *m yf (3.21) 
m 
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with a given class of functions G,,, : IV' -+ R Vm E M. 

This approach makes sense for applications in which the expected performance 

of different models depends on the predicted numbers. The functions G,,, can for 

instance represent a rule-based system which selects the weights depending on the 

predicted situation. It is also possible to incorporate additional knowledge into the 

functions G,,,. 

This approach of forecast combination is used in the current ProfitLine. O&D 

system for the combination of seasonal predictions (see Section 2.2.6). The model 

h3 (; ) presented in equation (2.18) works very well for high seasons, but produces 

unstable results for low seasons because of the small numbers to be predicted. We 

could therefore achieve highly improved results in comparison to pure linear com- 

binations for our application taking the predicted values as well as other additional 

information into account. The functions G,,, realises a smooth switch between a 

set of weights representing the performance of the different methods for low values 

and a set of weights representing the performance for high values. The switch is 

modelled as an extended sigmoid function. More details related to the functions 

G,,, cannot be provided here because of commercial aspects. 

Another example for a dynamic representation of linear combination weights 

can be found in the paper of Guidolin and Timmermann [Guidolin 07] who use a 

multivariate regime switching process to capture the existence of common, discrete 

factors driving both the stochastic process of the variable of interest and a related 

market variable. 

3.3.3 Linear Combination of Transformed Forecast Values 

Another special type of functional approaches represents the approach of linear 

combination of transformed forecast values. This approach is based on a linear 

combination, but the combination includes a preprocessing and a postprocessing 

of the predicted individual and combined forecasts. 

Function Flintrane is represented as 
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Flintrans({y}) = G(J: win- * G; 
n({y})). 

m 

(3.22) 

The functions G;,,, represent a transformation of the predicted values into an- 

other space, which can also be characterised by a different dimensionality. The 

transformed predictions are then linearly combined. The function G finally trans- 

forms the result back into the original space. 

Merz and Pazzani used this approach very successfully in eliminating two of 

the most relevant risks of linear combination models by the transformation: a) a 

too large number of forecasts and b) the correlation between forecast errors. They 

used principal component analysis in order to generate a smaller number of inde- 

pendent predictions. Details can be found in [Merz 97]. In the case of the principal 

component regression applied by Merz and Pazzani the function G;,, as well as 

function G represent a weighted sum of the inputs, so that their algorithm realises 

a linear combination of the input predictions. 

3.3.4 Using General Approximators 

General approximators like mixtures of Gaussians [Ghahramani 94][Nowlan 91] 

or others can model a nonlinear application-specific behaviour. The functions F 

can represent any function space known as general approximator. The target is to 

model 
FQýý' ({y}) y s: ý (3.23) 

in an optimal manner on the basis of training data measured for a historical time 

period tET. The task of the combination process consists of determining the 

parameters of the function F. For some classes of functions, specific methods are 

known for how to determine the parameters based on given data samples. So we 

can, e. g., use the Expectation- Maximisation algorithm [Dempster 77] as a general 

method of finding the maximum likelihood estimates of the parameters of the un- 

derlying distribution in the case of Gaussian Mixture models. If such a method 
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is not known, evolutionary strategies can be used to determine optimal parameter 

settings [Zhou 01]. 

Neural Network Ensembles 

There have been proved practical advantages in either decomposing a 

task into subtasks or combining several different solutions to the same 

task; the most significant one for the present purpose being that of 

improved performance. (A. J. Sharkey, [Sharkey 96]) 

Neural networks represent well known general approximators. 

Combination models which use neural networks are proposed, e. g., by Shi 

[Shi 99]. Neural network combination models are able to learn real nonlinear 

dependencies of the target on the predicted values. The combination function 

Fneuron of a typical neural network neuron is given by 

F. neuronll /{y}) = G(f wm *m y)+ Im (3.24) 

using a given function G (e. g. the sigmoid function) and learning the parameters 

Wm. 

Most of the literature concerning neural networks and forecast combination is 

related to the question of how to combine predictions which have been generated 

using neural networks. Two general approaches exist to combining artificial neural 

networks (ANNs). The first approach is an ensemble-based approach, in which dif- 

ferent neural nets are trained on what is essentially the same task, and then the out- 

puts are combined [Krogh 95] [Sharkey 96] [Breimann 96] [Schapire 90] [Freund 96][Druckner 94] 
[Turner 96] [Sharkey 95] [Hansen 90] [Maclin 95] [Rogova 94] [Xu 92]. 

Many of these papers show that neural network ensembles can be very effec- 

tive. Neural network combinations used in experiments carried out by Ruta and 

Gabrys [Ruts 07] in 2006, for instance, have been evaluated within the NISIS2006 

competition. They showed the best predictive performance among 12 competitive 
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models for prediction of different univariate and multivariate time series. 

The combination is typically carried out at the decision level, meaning a com- 

bination of the forecasting results. But it is also possible to combine at the model 

level, what has been done by Gabrys [Gabrys 02][Gabrys 03] for combination of 

neuro- fuzzy classifiers. An advantage of combining at the model level is the fact 

that such type of combination offers model transparency in terms of a single result- 

ing classification model. 

The other approach of combining ANNs is a modular approach. Here a prob- 

lem is decomposed into different subtasks by application based decomposition or 

automatic decomposition [Sharkey 96] [Jordan 95][Waibel 89]. As we cover the 

forecast combination here without putting too much emphasis on issues related 

closely to neural networks, we will focus on the ensemble based approach. 

One of the most common approaches had been to generate a population of 

neural nets using different initialisations of the weights and then to chose the best 

one. But a number of studies have proven that often neural network ensembles 

using the results of more than one ANN can outperform the results of the best 

network. There are two main issues related to neural network ensembles: 

" the creation or selection of neural nets to be combined [Breimann 96] 

[Hansen 90] [Freund 96] [Druckner 94] and 

" the methods of combining them (including those presented in the previous 

section, but also others specialised for neural networks [Rogova 94] 

[Genest 86], [Jacobs 95][Xu 92]). 

The principle efforts are related to creating neural networks which are diverse 

in order to provide different information to the combination process. These topics 

are discussed in the next chapter. 

The studies of how to combine neural networks have also been focused on the 

analysis of the effects of the resulting decomposed forecast errors. Theil [Theil 91] 

showed that the errors can be decomposed into bias and variance terms, for neural 

networks the bias meaning the ability to generalise correctly on the given training 
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set and the variance indicating how much the result is sensitive to the given training 

set. These topics are discussed in the next chapter as well. 

One issue related to general neural network combination is the fact that there is 

no understandable representation of the learned structures. Therefore, neuro-fuzzy 

approaches represent a very useful option for combination [Jang 93][Gabrys 03]. 

These approaches have the advantage that the fuzzy component provides an inter- 

pretable representation of the learned weights 

For comparison purposes, we have included in our experiments the neuro- 

fuzzy approach ANFIS proposed by Jang in 1993 (for details see [Jang 93]). The 

acronym ANFIS derives its name from adaptive neuro-fuzzy inference system. Us- 

ing a given input/output data set, ANFIS constructs a fuzzy inference system (FIS) 

whose membership function parameters are tuned (adjusted) using either a back- 

propagation algorithm alone or in combination with a least squares type of method. 

A network-type structure similar to that of a neural network, which maps inputs 

through input membership functions and associated parameters, and then through 

output membership functions and associated parameters to outputs, can be used 

to interpret the input/output mapping. The parameters associated with the mem- 

bership functions change through the learning process. The computation of these 

parameters (or their adjustment) is facilitated by a gradient vector. This gradient 

vector provides a measure of how well the fuzzy inference system is modelling 

the input/output data for a given set of parameters. When the gradient vector is 

obtained, any of several optimisation routines can be applied in order to adjust the 

parameters to reduce some error measure. This error measure is usually defined 

by the sum of the squared difference between actual and desired outputs. AN- 

FIS uses either back propagation or a combination of least squares estimation and 

backpropagation for membership function parameter estimation. 
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3.4 Experiments 

3.4.1 Description of Experiments 

The experiments have been carried out with the objective to apply linear and non- 

linear combination techniques to the different Revenue Management demand fore- 

casts described in Table 3 of Section 2.3.3. 

The experiments have been organized by following these steps: 

" definition of the forecast pool (see Table 3) 

" definition of the history pool (see Section 2.3.1, the years 2001 to 2003 have 

been used as history pool) 

" calculation of the individual forecasts (see Figure 17, an analysis of some 

characteristics of the forecast errors is provided in Figure 18) 

" calculation of combinations using the combination models Fav, Foutp, Fvar, 

Fopt, F018, Fdyn, Fappr(as described in Sections 3.2 and 3.3) 

" analysis of the results (will be provided in Section 3.4.2) 

" analysis of the achieved combining weights (will be provided in Section 

3.4.3) 

The experiments can be reproduced with the software as described in experi- 

ments 3 (see Appendix B. 6.3). The software also allows different modifications of 

the experiments in order to carry out the statistical analysis of dependencies of the 

achieved combination weights presented in Section 3.4.3. 

As the functions Gm (. ) used for approach F'1 (see Section 3.3.2) have been 

chosen in a very similar way to those applied in the current system, details related to 

these functions cannot be provided in this thesis because of commercial sensitivity. 

We can only mention here that different sigmoid functions are used in order to 

model the strength and weaknesses of different models in different seasons. 

The experiments concerning the approach FQPP' have been carried out within 

an integrated C++/ Matlab framework. The Matlab version of ANFIS [Jang 93] 
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has been used in order to train neural nets and to carry out the combination. The 

results provided on the CD represent the best results achieved after experimenting 

with structures of varying complexity. 

3.4.2 Experimental Results 

Table 7 and 8 show the errors of the combined forecasts as relative improvement in 

relation to the best individual forecast °y (see 2.3.3) at the low and the high level. A 

graphical representation of the combined errors calculated at the high level (ODO) 

is shown in Figure 22. 

T1 1 Fav Fou p Fvar Fop Fv s F Yn Fappr 

0 -0.03 0.01 -0.02 -0.32 -18.19 -0.21 -1.56 
1 -0.03 -0.02 -0.02 -0.24 -5.46 -0.13 -0.61 
2 -0.03 -0.02 -0.02 -0.22 -6.36 -0.11 -0.40 
3 -0.03 -0.02 -0.02 -0.22 -6.47 -0.13 -0.26 
4 -0.04 -0.03 -0.03 -0.23 -3.65 -0.14 -0.18 
5 -0.05 -0.03 -0.04 -0.21 -3.24 -0.12 -0.13 
6 -0.06 -0.04 -0.05 -0.22 -2.22 -0.15 -0.13 
7 -0.06 -0.04 -0.05 -0.22 -2.32 -0.25 -0.12 
8 -0.07 -0.05 -0.06 -0.27 -1.96 -0.36 -0.26 
9 -0.08 -0.05 -0.07 -0.25 -1.82 -0.33 -0.34 
10 -0.09 -0.05 -0.07 -0.25 -2.01 -0.44 -0.49 
11 -0.10 -0.05 -0.08 -0.23 -1.79 -0.43 -0.76 
12 -0.11 -0.06 -0.09 -0.22 -1.48 -0.41 -0.84 
13 -0.13 -0.06 -0.09 -0.22 -1.47 -0.42 -0.75 
14 -0.16 -0.06 -0.11 -0.21 -1.38 -0.83 -0.87 
15 -0.18 -0.07 -0.11 -0.20 -1.41 -0.87 -0.91 
16 -0.22 -0.07 -0.12 -0.20 . 1.57 -1.21 -0.97 
17 -0.25 -0.08 -0.12 -0.19 -1.61 -1.10 -0.89 
18 -0.29 -0.09 -0.13 -0.21 -1.67 -0.80 -0.72 
19 -0.35 -0.10 -0.13 -0.23 -1.73 -0.56 -0.52 
20 -0.45 -0.12 -0.14 -0.32 -1.90 -0.95 -0.50 
21 -0.78 -0.19 -0.14 -1.11 -2.32 -4.83 -4.03 
22 0.00 0.00 0.00 0.00 0.00 0.00 0.00 

Tab. 7: Relative improvement using forecast combination in comparison to the best indi- 
vidual forecast °y (out of sample results) calculated at level ODO F POS. 

Depending on the combination model, the combined forecasts are more or less 

worse than the best individual forecast. It was not possible to achieve any im- 

provement by the application of linear combination models to the indicated set of 

individual forecasts at the low level. Only small improvements could be observed 
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T1 1 F. av Fou y Fvar FP' I F"' F yn Faypr 

0 -0.11 -0.08 -0.10 -0.51 -22.03 -0.14 -1.23 
1 0.02 0.02 0.05 -0.07 -7.47 -0.13 -0.81 
2 0.04 0.05 0.07 -0.05 -11.43 -0.13 -0.49 
3 0.04 0.05 0.07 -0.07 -12.76 -0.13 -0.49 
4 0.03 0.03 0.05 -0.15 -5.10 -0.14 -0.48 
5 0.01 0.02 0.03 -0.13 -4.88 -0.15 -0.27 
6 -0.02 -0.01 0.01 -0.15 -2.53 -0.15 -0.17 
7 -0.03 -0.01 0.00 -0.15 -2.94 -0.25 -0.12 
8 -0.03 -0.01 -0.01 -0.30 -2.18 -0.34 -0.20 
9 -0.03 -0.01 -0.01 -0.26 -2.20 -0.27 -0.29 
10 -0.03 0.00 -0.01 -0.28 -2.90 -0.59 -0.34 
11 -0.04 0.00 -0.02 -0.21 -2.33 -0.58 -0.83 
12 -0.05 0.00 -0.03 -0.18 -1.37 -0.54 -0.82 
13 -0.06 -0.01 -0.04 -0.15 -1.41 -0.50 -0.71 
14 -0.10 -0.02 -0.06 -0.15 -1.09 -0.69 -0.69 
15 -0.14 -0.03 -0.08 -0.14 -1.21 -0.86 -1.07 
16 -0.18 -0.04 -0.09 -0.10 -1.34 -1.03 -0.93 
17 -0.21 -0.05 -0.09 -0.08 -1.52 -1.64 -0.81 
18 -0.25 -0.06 -0.09 -0.09 -1.56 -1.83 -0.79 
19 -0.31 -0.07 -0.10 -0.10 -1.56 -0.55 -0.67 
20 -0.37 -0.07 -0.07 -0.13 -1.62 -0.81 -0.54 
21 -0.56 -0.08 0.00 -1.14 -1.91 -3.92 -2.83 
22 0.00 0.00 0.00 0.00 0.00 0.00 0.00 
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Tab. 8: Relative improvement using forecast combination in comparison to the best indi- 
vidual forecast O (out of sample results) calculated at the high level (ODO). 

at the high level. 

3.4.3 Analysis of Forecast Errors and Linear Combination Weights 

Experiment 3 (see Appendix B. 6.3) also provides the necessary outputs for an anal- 

ysis of determined combination weights. In addition to the output of the calculated 

weights, basic statistical properties like average value, standard deviation as well 

as minimum and maximum are determined corresponding to each representation 

of each calculation dimension (like each fareclass, each point of sale, each dcp and 

so on). 

After having calculated and evaluated the combined forecasts, an extensive 

analysis of the combining weights and the forecast errors has been carried out in 

order to explain the results. Table 9 shows the average value and variance of the 

weight given to the best forecast model per linear combination model. It confirms 
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Fig. 22: Errors (mean absolute deviation) achieved using forecast combination in compar- 
ison to the best individual forecast °y at the high level ODO. 

the expected behaviour based on the type of the models. The methods F", F""tp 

and F21JT produce stable weights, which lead to good combined forecasts. The 

methods Fit and F°ry have been completely unstable. This corresponds to the ex- 

periences found in the literature [Bunn 85] (we will discuss that in Section 4.4.1. ). 

The more complex nonlinear models F'IY" and /"'" t't produce unstable results as 

well if applied on the noisy and highly correlated forecasts. 

average 
standard deviation 

0.14 

0 
0.09 
0.07 

0.16 
0.06 

0.52 
2.66 J 

2.54 
44.01 

Tab. 9: Average and variance of the weight given to the best individual forecast method by 
different combination models for the example of ()DO 0. 

Additionally, an analysis of linear combination weights and combined forecast 

errors has been carried out in order to determine dependencies on different influ- 

encing features. This includes: 

" an analysis of the correlation between the weights 
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- in relation to different combination models 

- in relation to different fareclasses, day of weeks or point of sales 

" the dependency of the weights and combined forecast errors on the average 

booking value 

" the dependency of the weights and combined forecast errors on fareclass, 

day of week and point of sale 

" the dependency of the weights and errors on the individual forecast error 

variances and covariances 

" the dependency on variations using different history pools containing 

- different lengths of the learning period 

- different positions of the learning period 

- different approaches of how to move the learning period and to repeat 

learning 

" the dependency on variations concerning the included input forecasts (com- 

bination based on different subsets) 

The most relevant detected effects have been: 

" Small booking values lead to more unstable (changing) weights. 

" High variance in the booking data leads to more unstable (changing) weights. 

" The weights achieved with the methods F°"tp and Fa" are highly corre- 

lated. 

" The weights achieved with the methods Fopt and F018 are highly correlated 

as well. 

" The dependencies on the characteristics of individual forecast errors corre- 

spond to the dependencies described in the literature [de Menezes 00] (de- 

pendencies on error covariances will be discussed in the next chapter in Sec- 

tion 4.1.2). 
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" The quality of the combined forecast depends on systematic forecast errors. 

Significant systematic errors lead to especially bad combined forecasts and 

especially unstable combination weights. 

"A smaller number of individual forecasts may provide slightly better combi- 

nation results for models F°Pt and F013, as long as there is at least one high 

quality individual forecast included. 

3.4.4 Conclusions and Why it Did Not Work 

The behaviour observed in our experiments corresponds to that observed in other 

experiments described in the literature [de Menezes 00][Bunn 85]. Nevertheless, 

it was not possible to clearly outperform the best individual forecast at both levels. 

One of the reasons is that there are two highly correlated individual models which 

outperform all the others. These models have already been frequently tuned and 

optimised. This leads to forecasts which are in total not better than the currently 

applied model. 

Another reason for the small improvement can be found in the high covari- 

ance values between the individual forecasts. High noise terms in the data and 

forecast models which belong to the same group of models produce not very di- 

verse results. We will discuss this in more detail in Section 4.1.2. The process 

of learning the combination weights over-interpretes small differences between the 

forecasts. It compensates small variations in big forecast errors by extreme combi- 

nation weights. This leads to instabilities and, because of the over- interpretation 

of single historical data values, to weights which are not representative for the fu- 

ture. These effects could be observed especially if models have been used which 

use covariance information. This phenomenon will be discussed in more detail in 

Section 4.4.1. 

During the analysis of the errors, after applying different sets of individual 

forecasts, it was observed that the combination works well for forecasts which 

differ either in the forecast of the attractiveness or in the forecast of short term 
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influences. Forecasts which differ in more than one of the parts do not form a 

suitable set for combination in a parallel fashion. The linear combination process 

has difficulties if it is to compensate more than one aspect of "diversity" between 

the individual forecasts. This seems logical since only one weight is associated 

with each individual forecast, and cannot simultaneously support the strength in 

one component of the forecast (e. g. the better forecast of the attractiveness) and 

dump the negative effects of another component (e. g. based on a bad seasonal 

forecast). We will therefore have a closer look at the relation between forecast 

combination and decomposition in Section 4.2.1. 

A completely different aspect is that the quality of different seasonal forecasts 

depends highly on the size of the predicted numbers. Some methods are very good 

to predict high seasons and others are very good to predict low seasons. One reason 

for this effect is that high seasons bookings arrive earlier. As a larger amount of 

bookings can be observed in a high season, it is much easier for models interpret- 

ing current booking values to produce reliable predictions in that case. That is why 

nonlinear models using a dynamic representation of linear combination weights as 

described in Section 3.3.2 perform well for our application. As this type of combi- 

nation exists already in the current system (see Section 2.2.6), it was not possible 

to significantly outperform this approach with alternative combination models as 

described in this chapter. 

Summarising, the observations made by performing the experiments described 

in this chapter have led to the decision to study how "diversity" of individual fore- 

casts can be defined, what kind of diversity is needed to obtain good combination 

results and how we can generate such diverse forecasts. All these questions are 

discussed in Chapter 4. 



4. INFLUENCES ON COMBINATION EFFICIENCY 

4.1 Diversity of Input Forecasts 

One of the crucial issues relating to forecast combination is the task of choosing 

appropriate input forecasts that are to be combined. We will now concentrate on 

abilities of input forecasts to provide additional information to a combination pro- 

cess. If we use, e. g., a single prediction and duplicate this prediction ten times in 

order to generate a set of input forecasts, the combination of this set of identical 

forecasts will not lead to any improvements in comparison to the single forecast 

accuracy. This example shows that including forecasts into a combination process 

is only useful if there is some kind of additional information provided and the input 

predictions are diverse in a certain manner. 

In this section we will therefore discuss the question of how we can determine 

the diversity of predictions. We will start with a brief overview of how diversity is 

defined in other domains in Section 4.1.1 and then discuss different characteristics 

of divers forecasts in Sections 4.1.2 and 4.1.3. The active generation of diverse 

forecasts using diversifying measures is later discussed in Section 4.2. 

4.1.1 Diversity Measurements in other Domains 

Diversity in Life Sciences 

Biologists and ecologists defined their idea of diversity several decades ago. In 

biology diversity is used to measure how many populations of animals differ con- 

cerning a special behaviour. Rao [Rao 82] gives the following definition of diver- 

sity: 
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Let (X, 13) be a measurable space, and let P be a convex set of probability 

measures defined on it. A Function H(. ) mapping P onto the real line is said to be 

a measure of diversity if it satisfies the following conditions: 

" Cl: 7-1(P) > 0, for any PEP and 7-1(P) =0 if P is degenerate. 

. C2: 1-l is a convex function of P. 

Even if the task in biology seems to be quite different from that of evaluating 

the diversity of forecasts in order to get high quality combinations, there is a rela- 

tion to our problem. It is interesting to see that a diversity measure for classifiers 

(the measure of disagreement, see [Kuncheva 01]) represents a special version of 

the measure proposed by Rao. For details related to the comparison between the 

measures see [Kuncheva 03]. 

Diversity of Classifiers 

The most common measures of diversity for classifiers have been summarised and 

compared by L. I. Kuncheva and C. J. Whitaker [Kuncheva 01 ]. The authors have 

defined and compared a whole set of diversity measures related to the problem of 

classification. In [Kuncheva 01] Kuncheva and Whitaker summarise ten measures 

of diversity proposed in the literature, four pairwise and six non-pairwise measures. 

The analysis has been extended by Ruta and Gabrys [Ruta 00][Ruta 02]. 

4.1.2 Correlation as Diversity Indicator 

Forecast Correlation is an indicator that can be used in order to describe the di- 

versity of forecasts. If forecasts are highly correlated, it means that there is a lot 

of information that they have in common. If we duplicate a given forecast and 

include it into a forecast combination process many times, we cannot expect a 

large improvement over such individual forecast. In this case the forecasts are 

highly positively correlated. If on the other hand forecasts are independent or even 
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negatively correlated this means that errors can compensate each other during the 

combination. 

Generalising equation (3.15) to a larger number of predictions without system- 

atic error leads to a general error representation of 

combat 
-z Wmlwm2(m19m2P) (4.1) 

M1 9M2 

with m1, m2 E Jul indicating all pairs of input forecasts. The diagonal line of 

the covariance matrix contains the error variances of the input forecasts. In case of 

completely independent input forecasts, this means that the resulting error variance 

is only determined by the error variance of the input forecasts 

com6Ö2 => w2n *m 62. (4.2) 
M 

If we look at (4.1) including the resulting elements representing each covari- 

ance between a pair of forecasts, we get 

com6 22 m2 [ý ml, mz P) ý wm *b+ jý ºUm 1 wmz ý" 

m ml#mZ 

(4.3) 

This representation shows clearly that the total error strongly depends on the 

error covariances represented in the second summand. Ifm1imsp contains positive 

values indicating a positive correlation between the input predictions, the resulting 

error is increased. If 111'm2p contains negative values, we can achieve even a better 

result than we would achieve with independent forecasts. Additional information 

about the impact of error variances and covariances can be found in [Bunn 85]. 

4.1.3 Diversity in Relation to Error Decomposition 

The Impact of Error Components on a Forecast Combination 

We have just seen that the correlation between forecasts is essential in order to 

describe the potential of forecast combination in relation to a given set of input 
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forecasts. This can help in order to qualify such a set, but what to do if we find that 

a given set of forecasts does only contain highly correlated forecasts? 

The most promising approach in this case is to evaluate options to chose other 

input forecasts. This can be achieved by using other methods of forecasting, other 

parameter values or other training data. But what to change and would such a set 

perform better? 

In (2.1) we have modelled our data affected by random noise ey which is in- 

terpreted as not predictable. This noise term exists therefore in each prediction 

irrespective of the model we use. It can be the case that this term is so large in 

comparison to the predictable part that chosen input forecasts are already perfect 

and nevertheless highly correlated because of this error component. In this case no 

modification of the set of input forecasts will help to decrease the forecast error. 

This example shows that an analysis of the composition of forecast errors can 

help to decide if and what to change in order to generate a divers set of input 

predictions. If we can decompose forecast errors into independent components, 

we can analyse the correlation in relation to each of the components. This can help 

to identify promising modifications of the forecast generation process. 

The Bias- Variance- Bayes Error Decomposition 

Let e represent the error which will be generated in predicting y based on h(x, ¢) 

(out of sample predictions): 

e=y-y= y- h(x, 0) =f (x) - h(x, 0) -}' ey (4.4) 

Let us assume that we have found an estimator h(x, ý) which generates pre- 

dictions without a systematic error so that (e) can be represented as Gaussian with 

e, N(O, J, 2). 

Then the total error variance term Se can be decomposed into different com- 

ponents. While different error decompositions can be found in [Geman 92] and 
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[Hansen 00], we will refer here to the decomposition of James and Hastie [James 96]: 

be = 8h -}- 620 -t- jy. (4.5) 

The first error component Eh with variance S is called the bias. This error 

component is based on the fact that the class of functions h(x; ) may not include 

the function f (x). As we have assumed that an ideal parameter set 0 exists in 

order to estimate f (x) based on h(x; 0), the bias term of the error is defined by 

eh =f (x) - h(x, 0). 

The second term c of the error with variance J2 is the error variance com- 

ponent. This term is based on the fact that the parameters ¢ cannot be estimated 

perfectly because of noise in the training data, limited number of training samples, 

etc. The variance term of the error is defined by co = h(x, 0) - h(x, 0). 

The third term ey with variance a2 represents the irreducible Bayes error com- 

ponent in y which can be reduced only if more information becomes available in 

X. 

While the third part of the error cannot be reduced without including additional 

information (as it represents a random deviation which is not covered by f) the 

bias and variance term can be substantially influenced by the complexity of the 

function h(x; ). So for instance, in case of artificial neural networks (ANNs) used 

as our function h(x; ) it depends on the choice of the architecture of an ANN or the 

algorithm on how to determine the parameter vector 0 based on the training data. 

If the function space of h(x; ) is very complex, we can assume that it is able 

to cover f (x) very well so that we have a small bias term. But it is also difficult 

to estimate a complex parameter set, we have a high risk of overfitting and a large 

variance term. If on the other hand we use a simple class of functions h(x; ) with 

a low dimensionality of the parameter vector 0, we will be able to estimate the 

parameters well based on the training data and so have a low variance term, but we 

will have difficulty to cover the complexity of f (x) by h(x; ) so that we have an 

increased bias term. For additional references and a detailed discussion of these 
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topics see [Geman 92], [Hansen 00] or [James 96]. 

The problem to find a good trade-off between error bias and variance is called 

the bias-variance dilemma. Different alternatives [Geman 92] have been proposed 

in order to determine a good trade-off between bias and variance while learning the 

parameters in h(; 0) or choosing function classes h(; ) with an appropriate quality. 

4.2 Diversifying Methods 

In the previous section we discussed how diversity can be represented and how we 

can obtain indicators if a given set of input forecasts is sufficiently diverse. But 

what should one do if it is not? In this section we provide an overview of how the 

generation of input forecasts can be influenced in order to achieve a set of divers 

forecasts. 

The topic of generating diverse forecasts has mostly been oriented towards the 

creation of diverse neural networks or decision trees, even if some of the proposed 

diversifying techniques do not depend on these approaches. In this thesis the focus 

is not put on input forecasts generated with ANNs or decision trees, that is why 

we will not discuss issues directly related to these type of input forecasts here. A 

good overview in relation to ANN specific diversification methods can be found 

in [Raviv 96]. The following basic ideas of general diversifying techniques are 

discussed in the literature: 

" decompose data and/or predictions 

" diversify the function space 1-l 

" diversify the training data 

In the following subsections some details are provided about the different di- 

versification approaches. 
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4.2.1 Decomposition of Data and Predictions 

Issues Resulting from not Working on Decomposed Data 

High covariance between input prediction errors is sometimes caused by the fact 

that the input predictions represent data composed from components and all of 

the input predictions predict some of the components in a similar manner. The 

resulting forecast errors relating to these components are then highly correlated. 

This can be demonstrated with the following example: Let us assume a time 

series y= yl + y2 to be predicted with yl and y2 independent components. Let us 

also assume that we have two predictions given: ty = y1-}-1 y and 2y = yt +2 y2. 

Both predictions predict the first component in the same manner, while for the 

second component different approaches are used. Let us also assume error vari- 

ances b21 = 2,82 2=0.1 and aý 2=0.3 with ö2 2 and J2 2 not correlated. The 
Yjvvv 

covariance between the two forecasts is p= j21 =2 because the error made in 

component 1 exists in both forecasts, the errors of component 2 are not correlated 

and therefore do not effect the covariance. This means that we have highly corre- 

lated forecasts because of a similar prediction of component 1. 

If covariance information is not considered, the effect of including such com- 

ponents into a combination is a shifting of the resulting weights in the direction of 

equal weights. 

We will illustrate that using the same example: As long as the weights sum up 

to 1, the first component is not taken into account by the combination, and the ideal 

= weights depend therefore only on the second component. We achieve ideal 

0.75 and w at=0.25. The same results are provided by the optimal model. If 

we use only the variance based model, we achieve wa' 0.52 and 

w2ar 0.48. It can be clearly seen that these weights are much more similar so szý 

that the advantages of the first model are not sufficiently considered. 

If on the other hand we use covariance information for the combination of 

highly correlated forecasts, we potentially achieve high weight estimation errors 
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and instabilities based on small deviations in the estimated covariance values. This 

topic will be discussed in Section 4.4. 

The issues that have just been described can be avoided by forecasting differ- 

ent components separately and combining different predictions in relation to each 

component. The input predictions relating to components where the forecasts re- 

ally differ are then much more diverse. For components where the input predictions 

do not differ there is no need for forecast combination. 

In our example, this approach would have the following effect: We would pre- 

dict the two components in a decomposed manner. For the first component there 

is only one approach given so that there is no need for forecast combination. The 

prediction of the second component would be a combination of 152 and 292. We 

would achieve weights wia' = 
o- 

0- 1 0.75 and w.. = 0.25 which correspond 

in this example to the optimal weights. 

Automatic Approaches 

Some automatic approaches to decompose data into independent components are 

proposed in the literature. The idea of using these automatic decomposition meth- 

ods for combination to reduce collinearity is discussed and followed consequently 

by Merz and Pazzani [Merz 97], who propose the approach of splitting the individ- 

ual forecasts (not the data! ) using principal component analysis as a part of their 

combination model. A linear combination is carried out on the transformed input 

forecast set as described in Section 3.3.3. 

Approach followed for our Application 

Based on measured high covariances of forecast errors if predicting the total de- 

mand directly, we have followed the strategy of decomposing demand into the 

different components as described in Section 2.2.3. The data is decomposed corre- 

sponding to estimations of the different components and their confidence. For each 

of the components forecasts are generated and combined separately. Finally the 
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combined predictions are aggregated to the final prediction. Figure 23 illustrates 

this approach. 

forecasts I/lý ri ý i'(1111 t) 

comb týu ttr iýIllýý ýýirlýrii! 

" 11. SHT? 

Fig. 23: General decomposition approach fiolleowed for the RcNenuc Management applica- 
tion. 

4.2.2 Diversification of the Function Space 

A different option in order to diversify forecasts is the use of different function 

spaces. The potential for diversification based on the generation of structures with 

varying complexity can be observed by analysing the effects on the different error 

components. Changing the complexity means a potential shift from the error bias 

components to the error variance component or visa versa. In Section 4.1.3 we 

have already argued that this can have an impact on the combination. 

One option using forecast combination is based on the idea of combining differ- 

ent individual forecasts with strongly restricted function spaces HA. Let us assume 

that we have a set of functions hk : R" x (4 -R available. These forecasts gen- 
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erate errors with large bias terms and reduced variance terms compared to more 

complex function spaces. The idea is then to increase the complexity and therefore 

reduce the bias term during the fusion process. This can be achieved if the used 

function spaces Rk generate bias error terms which are not highly correlated. So in 

such a case combination can be viewed as an option to model complex functional 

relationships on the basis of different less complex approaches. 

Another option is the use of function spaces with different complexities. Fore- 

cast combination can be seen as an option in order to find a good trade-off between 

error bias and error variance term by finding the best combination between ap- 

proaches of different complexity. This avoids problems of using function spaces 

which are generally too complex or not complex enough. For a discussion related 

to these topics see [Geman 92] and [Hansen 00]. 

Function spaces with different complexities can be achieved for instance by 

varying the structure of a neural network or varying the algorithm employed in 

case of time series predictions. 

On the other hand similar effects in terms of diversity inducement could be 

achieved by varying models parameter values like in the case of thick modelling. 

"Thick modelling" has been first proposed by Granger and Jeon in 2003 [Granger 04]. 

The general idea is to use different values for a given parameter instead of trying 

to determine the "optimal" value for that parameter and then to combine the gen- 

erated predictions. Granger and Jeon describe "thick modelling" as: " modelling 

[that] consists of using many alternative specifications of similar quality, using 

each to produce the output to require for the purpose of the modelling exercise,..., 

and then to combine or synthesise the results. " 

They motivate the approach of thick modelling by stating: " Asymptotically, 

there will be a basic model, using some criterion, and it will be the true model if 

it is in the set considered. In this case, and only then, is the strategy of using the 

best model necessarily the superior strategy rather than using a thick modelling 

approach. As we are rarely in an asymptotic situation in macroeconomics, for 
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instance, the more pragmatic approach seems to be superior. An advantage of thick 

modelling is that one no longer needs to worry about difficult decisions between 

close alternatives or between deciding the outcome of a test that is not decisive. " 

Aiolfi and Favero [Aiolfi 05] state: "If the process is sufficiently complex, then 

the reduction strategy can lead to a model which is more weakly correlated with 

the true model than the combination of different models. " 

The advantage of fixing certain parameters is the generation of a less complex 

vector of remaining parameters which have to be determined during the learning 

process and so the reduction of the error variance term. Thick modelling can have a 

variance stabilising effect which is paid for with an increased error bias component. 

The advantage is that it can be expected that this increased bias can be eliminated 

by forecast combination because this part of the bias is not due to a model which 

is too poor but due to diverse restrictions on the function space H. 

The general idea of thick modelling consists not only of generating predictions 

based on different parameter settings but of all kinds of model generation choices 

including the use of different function spaces. In this thesis we will refer to the 

term especially in relation to the choice of different parameter values. 

4.2.3 Diversification of the Training Data 

It is also possible to diversify not the function space, but the data used for training. 

The following types of diversification of training data have been discussed in the 

literature. 

Using Different Preprocessing 

The possibilities of how to change data using different preprocessing are immense. 

The most common approaches are the extraction of different feature sets from the 

raw data or the data is differently distorted, e. g., by noise injection (see e. g. Ra- 

viv and Intrator [Raviv 96]) or by using nonlinear transformations (see Sharkey 

[Sharkey 95]). 
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Using Different Data Sources 

Another option to diversify input information is to use data coming from different 

data sources. It depends on the application if there is the possibility to get such 

different kinds of data. 

Generation of Disjoint Training Sets 

Sampling data is a technique to generate different subsets of training data. Differ- 

ent resampling techniques have been developed in order to generate new subsets. 

The most common is bootstrapping [Schapire 90]. Other authors like A. Sharkey 

[Sharkey 96] propose methods of generating disjoint or mutually exclusive data 

sets. 

In random sampling with replacement the training data set is randomly selected 

[Schapire 90][Breimann 96]. The subsets do not need to be disjunct, which means 

that we create a number of different, but overlapping data sets. They may also 

contain repeats. This resampling technique is used in a popular ensemble creation 

technique called bagging [Schapire 90]. Bagging has been proposed by Breiman 

[Breimann 96] and is based on the idea of bootstrapping [Schapire 90]. It uses a 

weighted majority vote to combine different individual forecast or classification 

results. In bagging the training set is randomly perturbed by sampling with re- 

placement. The perturbed data may contain repeats, bagging creates a number of 

different, but overlapping data sets. 

In biased sampling with replacement the data subsets used for training are in- 

fluenced by results of previous training. Training data is adaptively resampled. So 

we can for instance learn problematic cases with an higher impact. This resam- 

pling technique is used in another very popular ensemble creation algorithm called 

Adaboost proposed by Freund and Shapire in 1996 [Freund 96]. 

Versions handling unbalanced data sets exist [Provost 00] [Chawla 04] 

[Weiss 04] [Batista 04][Kotsiantis 06] as well. For classification, a common prob- 

lem is that classes may occur with unequal frequency. This causes biased estima- 
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tion [Kotsiantis 03] and suboptimal classification performance [Chawla 04]. One 

approach to handle that problem is the idea of applying over-sampling for rarely 

occuring classes and under-sampling for often occuring classes in order to generate 

balanced training data sets. 

4.2.4 Summary 

Summarising one can say that there is a strong relation of combination performance 

to the structure and correlation of individual forecast errors. Independent forecast 

errors can be achieved using 'divers' individual forecasts, which can be generated 

using 

" different available sources of information, 

" different preprocessing, 

" different history pools, 

" different functional or stochastic approaches or 

" different parametrisation. 

Very often these diversification procedures are applied in very random manner 

without a clear understanding of their effect on the combination error. In order 

to address these issues, an analysis of the different types of diversification in rela- 

tion to the forecast error components corresponding to the decomposition of James 

and Hastie [James 96] will be performed in the next section. The purpose of this 

was to find a way of generating a well performing set of diversified forecasts in a 

controlled manner. 

4.3 Effects of Diversification on the Error Components 

In Subsection 4.2.2 we have argued that the complexity of the function space 

strongly effects the error components. An increase of complexity allows a reduc- 

tion of the error bias component but also increases the risk of a high error variance 

component. 
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Unfortunately, in cases of small number predictions of very noisy data there is 

the risk that even with a strongly restricted function space we achieve high error 

variance terms because of the level of noise. For function spaces with limited 

complexity we can observe a shifting from the error bias to to the error variance 

term with increasing complexity. Nevertheless, it is possible that the total error 

does not change much until a certain complexity is reached for which the learning 

process gets more and more unstable. In this case diversification can help to reduce 

one or both of the error components. So we can, e. g., choose different function 

spaces with low error variance terms and expect a reduction of the resulting high 

error bias terms by the combination. 

As an alternative to the choice of completely different functional approaches 

representing different complexity for combination in an uncontrolled manner, di- 

versity can be reached by the choice of a common function space diversified by 

different fixed parameter values. We have already mentioned the approach of thick 

modelling as an option to reduce the complexity of a function space. The advantage 

of this approach is that we can control which error components will be affected and 

we can estimate the resulting effects on the generated covariances. 

If we want to decide which type of parameters to choose for thick modelling, 

it is useful to get an impression of the covariances of the diversified predictions. 

We will therefore take a closer look at the effects of different types of parameter 

values on the error components. We will see that depending on the chosen type 

of parameter value the error components are affected in a different manner. This 

knowledge can be used in order to generate diversified sets of forecasts in relation 

to error components containing a potential for error reduction. We will also use this 

knowledge in later sections in order to discuss certain aspects of forecast pooling 

in Chapter 6. 

Setting certain parameters as fixed values instead of learning them automati- 

cally represents a) a reduction of the function space if the parameter concerns the 

functional relationship or b) a diversification in relation to the training data if the 
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parameter effects learning or preprocessing. 

We will now take a look at three different types of parameters with each of 

them representing a different type of diversification. 

4.3.1 Parameters Affecting the Data Selected for Learning 

Let us first discuss parameters that control the use of data for learning. Such 

parameters could, e. g., represent a historical period used for learning or a crite- 

rion allowing a random input data sub-selection like the one applied in bagging 

[Breimann 96]. This case represents the typical approach of thick modelling. 

The function space is not affected by such types of parameters. The concrete 

parameter values ¢a just affect the error variance component ß°J2. This type of 

diversification is ideally used in connection with rather complex function spaces 

containing a low error bias term ö. As the learning is based on different data we 

can expect a low correlation among the different error variance terms. 

In case of a random selection of sufficiently large subsets we cannot expect any 

selection working significantly better than any other selection. We can therefore 

approximate the error variance terms by a single value X, J2 J0 Va. We can 

also expect similar covariances fi°1, fa2 pO p4' dal, a2. The resulting covariance 

matrix can then be approximated with 
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öZ 
e 

(4.6) 

with öe = öh + b02 + öy the total error and covariances pe = bh + pq + öy2. 

Starting from (4.3) and taking into account the fact that we achieve equal weights 
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because of equal error variances and covariances we get a combined error of 
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(4.9) 

which decreases with a larger number of forecasts M. This shows that with 

respect to the correlation po we can achieve improvement which is dependant on 

the number of forecasts to combine. We can also state that each of the forecasts 

contains the same amount of independent information and therefore none of them 

should be removed from the combination. 

4.3.2 Parameters Affecting the Function Space without Influencing the 

Complexity 

A similar effect that we have just observed for the error variance component can be 

observed for the error bias components if we diversify the function space without 

changing its complexity. This idea corresponds to the original idea of forecast com- 

bination: to use different simple forecast approaches and to generate the complex 

relationship between the given inputs and the target values by the fusion of these 

simple approaches. In the ideal case all of the predictions are characterised by low 

error variance terms. Depending on the correlation of the error bias terms of the 

predictions it is then possible to generate a more or less significant error reduction 

of the error bias term. 

A typical behaviour if this type of diversification is generated by the choice 

of function parameters is shown in Figure 24. It can be seen that different chosen 

parameter values generate estimations of similar quality concerning the bias term, 

but for extreme values of the parameters the bias error component increases. 

In the example shown in Figure 25 we assume that we have to approximate 
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Fig. 24: Typical behaviour of error components in case of a parameter value affecting the 

error bias component. Extreme values cause an increasing error bias component. 
The error variance component is only slightly affected. 

the polynomial y= x2 +2*r and we use a quadratic polynomial h(r. d) = 

(r * .. 
2 + r, )o *. r + 01 as function space with n diversified by thick modelling. Then 

we will observe an error increase for very low or very high predefined values of a. 

The error bias component is shown in Figure 26. 

As the resulting functions are very similar we can generally expect high cor- 

relation between the different error variance terms. As the other error components 

are highly correlated as well it makes sense to exclude the extreme values from 

the combination process as they do not contain sufficiently unique information in 

order to justify an inclusion even with the higher total error. 

4.3.3 Parameters Affecting the Complexity of the Function Space 

A parameter that affects the adaptation capabilities often affects hoth, the error bias 

as well as the error variance component. Examples for such type of parameters 

in relation to the revenue management application and learning as described in 

Section 2.2.6 are 

" the smoothing factor used for exponential smoothing 

" restrictions related to learned seasonal factors or 
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Fig. 25: Example of function y= x2 +2*x with optimal predictions generated using 
function space h(x, 0) =a* x2 + ¢o *x+ 41. The parameter a is diversified, we 
use values 0,0.2,0.4 ... to 2. The optimal parameters 45o and 01 are determined 
for each prediction in a manner that the quadratic deviation from y is minimised. 

" the strength of smoothing of seasonal curves over neighboured weeks ¢j. 

A typical behaviour looks like that illustrated in Figure 27. 

This can be interpreted as follows: Stronger adaptation means higher belief in 

the data. This means an increase of the estimation error caused by noise represented 

by the error variance component. At the same time the increase in flexibility causes 

a decrease of the error bias component. 

The figure indicates that extreme values of the parameter lead to higher total 

forecast errors. We can expect a level of low complexity represented by a parameter 

value 6, and error 'H°ä2 =R° öh +x" )-2 + 6-y below which the error variance 

cannot decrease any more. A further reduction to a parameter value cj, only leads 

to an increase of the error bias component. As we only increase an already existing 

error with further reduction of complexity, this increased bias component is highly 

correlated with '° dh. The error variance cannot be reduced any more and is also 

highly correlated with x° 62. The resulting error for a parameter ßj, can therefore 
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Fig. 26: Bias of the prediction for the example described in Figure 25. It can be seen that 
the error bias term is lower for parameter values near the "true" value 1. 
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Fig. 27: Typical behaviour of error components in case of a parameter value effecting the 
complexity of the function space. With increasing complexity we can observe an 
increase error variance component and a decreasing error bias component. 

be approximated by 
xa 

ýl, %v A 
*Hi. ,l 

+R,. lir,; T liýl 

with a factor A>1 and covariance 

H, H�H. ÄPh ýh 

(4.10) 

(4.11) 

This behaviour also allows assumptions about the covariances, the content of 

unique information and the potential for combination. Figure 28 illustrates typical 

covariances of the forecast errors. It can he seen very well that, when both error 
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components are concerned, the correlation is higher between forecasts "cncratcd 

with similar parameter values. 

low ( low 

Fig. 28: Typical behaviour of covariances of forecasts diversified by parameter values ef- 
fecting the complexity of the function space. The index in represents the index 

of the input forecasts diversified by it parameter oo, the z-axis contains the error 
covariance values. 

The fact that the forecasts generated with extreme parameter values are not 

highly correlated with forecasts representing the other extreme does not mean that 

these predictions contain any unique information. This cannot be seen by simply 

looking at the covariances, higher order statistics would he needed in order to de- 

termine the level of such information. But if we believe approximations (4.10) and 

(4.11 ), we can conclude that the extreme values do not contain any additional in- 

formation compared to the more stable neighboured values. This means that it is 

worth removing these values from a fusion process. For this type of diversification 

this can be done purely on the basis of the total error variances in excluding the 

worst predictions from the combination. We will come back to the topic of trim- 

ming in Chapter 6 and Chapter 7 and see that this does not always hold for other 

types of diversification. 
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4.4 The Issue of Weight Estimation Errors 

If we generate a set of more or less divers forecasts, we have to answer the question 

of which combination model to use. As we have seen in the previous chapter, some 

linear combination models can be seen as generalisations of other models, so why 

not just take the most general one? 

It was a surprising result not only for Bates and Granger who introduced the 

optimal model [Bates 69], but also in a lot of following studies [Granger 84] 

[Makridakis 82], that the optimal model, which has been proven to be optimal in 

theory for unbiased forecasts, seems not to be optimal in practice in terms of com- 

bined forecast errors. Even worse, sometimes it performs quite badly. In contrast to 

these results, the simple average model, which seems to be a poor model in theory, 

performs very well for a lot of applications. These two phenomena are discussed 

in the two following subsections. 

4.4.1 Why does Optimal Model sometimes perform so badly? 

Even if the optimal model is producing weights which are optimal in theory, in 

practical experiments it is often beaten by most of the other models (see, e. g., 

[Bates 69], [Granger 84] and [Makridakis 82] to cite just the most popular exper- 

iments). The reason is extensively discussed in the literature. One of the most 

believable explanation is given by Bunn [Bunn 85]. His study covers theoretical as 

well as practical aspects. A theoretical reason lies in the behaviour of the optimal 

method for highly correlated forecasts. Bunn showed theoretically for the case of 

two forecasts to be combined that the generated combinations are no longer con- 

vex, with the consequence that the generated weights still sum up to one, but are 

of opposite sign. Large positive and negative weights can occur which can lead to 

numerical instabilities in practical applications. The fact that the inverse of the co- 

variance matrix is quite sensitive to small changes in the covariance matrix and that 

it is generally known only as an approximation may lead to instabilities as well. 

These instabilities are especially relevant if the covariance matrix differs only 
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slightly from a singular matrix. This happens, e. g., in the case of many predictions 

with about the same error variances and high covariances. In this case the optimal 

solution strongly depends on errors in the weight estimation. If for instance two 

similar forecasts are combined, it does not matter if we apply the weights wt = 
0.5 and w2 = 0.5 or wl = -1000 and w2 = 1001, but slight deviations in the 

estimated covariances could suggest that the second solution is the better one. 

Bunn showed these effects in practical applications by introducing outliers to 

artificially generated data. He found out that the combinations based on the data 

disturbed by outliers were much worse than the combination produced by the opti- 

mal model on the original data. 

4.4.2 Why does Simple Average perform so well? 

In an extensive study of the accuracy of forecasting methods, Makridakis et al 

([Makridakis 82]) found that a simple average of forecasts from six methods out- 

performed virtually all individual methods as well as a weighted average of fore- 

casts with weights calculated by the optimal model. Further experiments using the 

same data set and more models to calculate the weighted average did not confirm 

the superiority of the simple average (see [Winkler 83]). 

Bunn [Bunn 85] proved theoretically and by experiments that if the quality 

of the individual forecasts is similar in terms of error variance, the ideal weights 

depend much more on the error variances than on the correlation. That is one of 

the reasons why the simple average is performing so well in a lot of applications. 

Timmermann [Timmermann 05] has derived the loss in the quality of the com- 

bined predictions between the optimal model and the optimal model with assump- 

tion of independence using an example of two forecasts. Let us assume that we 

have two forecasts 1g and 2y generating total error variances 182 and 282 and an 

error covariance p. Then the relative error increase in using the variance based 
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model compared to the optimal model is 
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(4.12) 

A graphical representation of (4 12 ) ,, n he seen in Figure 29. 

3 

i 
i 

`ývýRrýýi, 
iiiºirii 

` üüi 

T ,,..., 
00 

Fig. 29: Graphical representation of equation 4.12. We assume 1,2, i2 is shown on 
the x-axis. the correlation on the v-axis and ttie resulting error increase I 

compared to a comhination taking p, into account on the / axis. 

Figure 29 illustrates on the example of two forecasts that it is risky to combine 

forecasts for which the errors differ significantly without taking into account co- 

variance information. The biggest losses occur for small values of variance ratio 

(meaning big differences in the forecast errors) in connection with high correlation 

values. If on the other hand there are no hig differences het"een the error vari- 

ances, the covariance is not really relevant for the determination of the weights. 

In this case, the simple average method will therefore perform well, it is a stable 

method that does not suffer from instabilities described in the previous subsection 

and that does not cause big losses because of not using covariance values. 

Unfortunately, the fact that covariances do not matter in cases of similar error 

variances holds only for the case of two forecasts. We will discuss the more general 

case of more than two forecasts in Chapter 6. 
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4.5 Guidelines for the Use of Linear Combination Models 

The choice of the number of forecasts to combine and the history pool to choose 

for learning are other issues which are investigated in the literature [Russell 87] 

[Winkler 83]. We will now discuss how to choose the combination model based on 
different statistical properties of the individual forecast errors. 

4.5.1 The Choice of the Number of Forecasts to Combine 

Different opinions can be found in the literature about the question how many 

forecasts to combine and how to choose the appropriate models to combine. 

The preferences about the number of forecasts to combine differ from "not 

more than 3" (see e. g. [Newboldt 74]) to "as many as possible" (see e. g. 

[Granger 98]). 

As ones of the first, Russell and Adam [Russell 87] discussed the question of 

how many forecasts to combine. They proposed to determine a relatively small 

number of forecasts to combine (they used 5) and then to choose the models to 

combine selectively depending on the ranks of the individual models. The advan- 

tage of this approach is that it is able to adapt to changes of the performance of the 

individual models. 

In 1983 Makridakis and Winkler [Winkler 83] found that the accuracy of com- 

bined forecasts was little influenced by the specific methods included in the com- 

bination. Furthermore, it was shown that accuracy increased with increases in the 

number of methods being combined, although a degree of saturation was reached 

after about four or five methods. Finally they observed that the variability of accu- 

racy among different combinations decreased as the number of methods included 

in the combination increased. 

In 1989, Armstrong [Armstrong 89] proposed to combine only "sensible mod- 

els" which predict reasonable results. It can easily happen that models are too com- 

plex and generate implausible predictions which lay outside of the expected range 

of the target variable. Armstrong and others argue that the inclusion of forecasts 
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that add only marginal information should be dropped in order to avoid increased 

parameter estimation errors. Instead of combining all forecasts, it is therefore of- 

ten advantageous to discard the models with the worst performance (trimming). 

These results have been confirmed in newer studies for instance of Granger and 

Jeon [Granger 04] in 2004 or in the context of multiple classifier systems by Ruta 

and Gabrys [Ruta 05] in 2005. 

4.5.2 The Choice of the History Pool 

The discussion about the appropriate history pool (the historical data which is used 

to determine the combining weights) goes back to the seminal paper of Bates and 

Granger [Bates 69]. They studied various variations of combination models han- 

dling the fact that the performance of the individual forecasts may change over 

time. 

Including also the results of other studies [Makridakis 82][Makridakis 93] we 

can say that the performance of real application forecasts changes over time indeed 

and that approaches which are able to take this into account generally perform bet- 

ter. A common approach to enable the combining process to adapt to new situations 

is to restrict the history pool and not to take into account very old data. Approaches 

which have been proven to be even better experimentally use older data, too, but 

give more weight to recent forecast errors than to those of the past which allows the 

weights to adapt quickly to new situations without ignoring the older information. 

Bates and Granger stated that the methods of weighting or choosing historical 

data should be designed in a manner that if the individual forecast performance is 

stationary, the weights should quickly approach the optimum value and vary only 

a little from this value. They proposed to use exponentially smoothed variance 

values measured each on a restricted past period and got very good results with 

this approach. They surprisingly achieved bad results by approximating the error 

variance using always only the newest historical error value and then smoothing 

these values over time. 
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4.5.3 The Choice of the Combination Method based on Other Statistical 

Properties 

Under stable conditions with 'good' data a lot of studies have shown that the rela- 

tive performance of combined predictions depends mostly on the following factors: 

the variance of the forecast errors, the correlation between the forecast errors and 

the set of data which has been chosen for training. 

Under the criterion of minimisation of the variance of the forecast errors and 

based on experiments carried out by Schmittlein et al. [Schmittlein 90] with the 

objective to use automatic switches between combination models, Menezes et al. 

[de Menezes 00] propose the following practical guidelines for the combination of 

predictions: 

" For small data samples use the outperformance model, because it is a simple 

and stable model which can profit from the differences in the variances of 

the forecast errors. 

" For medium data samples with low correlation the optimal model with as- 

sumption of independence should be used. 

" For large data samples an optimal model or a restricted regression model will 

perform very well. 

Generally, Menezes et al. indicate that if the forecast error variances are similar 

and no or only a small positive correlation exists, the simple average should be 

used. 

Bunn [Bunn 85] even suggests that the optimal model should not only be used 

if a large history pool of data is available, but also if the pattern of forecast errors 

is unbiased, normally distributed and stationary over time. 

Similar results have been reported by Klapper [Klapper 98a]. The author proved 

experimentally that the performance of the different combination models depends 

highly on the variance-covariance structure of the individual forecast errors and 

that the rank based and variance based models beat the covariance based mod- 
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els for forecasts having a low correlation. He suggests only to use the optimal 

models if the forecasts are highly correlated. He confirms the idea of Granger 

and Ramanathan [Granger 84] that the optimal model is often unstable because the 

weights are not restricted to be larger than 0 and the covariance matrix may not 
be estimated accurately enough. Therefore it sometimes produces extreme positive 

and negative weights that come up with nonsense combined values (see also Bunn 

in the previous subsection). 

Beside the variance of the forecast errors, the distribution of the errors of the 

individual forecasts should be considered when a combination model is chosen. 

Different distributions imply different risks. Menezes et al. [de Menezes 00] point 

out two facts which are especially interesting from the practical point of view: 

" If different combination models lead to different distributions of the forecast 

error, then the position with regard to the risk of each individual forecast is 

an additional factor when choosing the combination method. 

" If the combination of different individual forecasts leads to different distri- 

butions of the forecast error, then the choice of the predictions to combine is 

especially important. 

In the context of asymmetrically distributed forecast errors the criterion of the 

skewness of the distributions lead to the following guidelines: 

" For small data samples use the outperformance model. 

" For medium and large data samples use the optimal model with assumption 

of independence if there is only a small positive correlation, else the optimal 

method with restricted weights is suggested. 

The authors also give the following advice: 

" If individual forecasts are chosen for combination, different distributions of 

the forecast errors should be considered. 
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" As many predictions as possible should be included for combination. The 

use of a larger number of predictions may not give additional information in 

terms of error variance, but it can improve the distribution of the error of the 

combined forecast, thus reducing the risk. 

" For the analysis of the results not only the mean forecast errors should be 

analysed, statistical measurements which indicate asymmetric behaviour in 

the forecast errors, such as the median, should be used as well. 

" If a simple average is chosen for combination, it should be clear that a skew- 

ness in the predictions will also remain in the combined forecast. 

Even if these guidelines propose a development from less, complex (outper- 

formance model) to more complex (optimal model) models, they differ from the 

guidelines proposed on the basis of error variance terms. The differences exist not 

only in the propositions concerning the use of the simple average, but also in the 

number of predictions which should be used. 

Only a small number of authors studied the autocorrelation of the forecast er- 

rors of the combined forecast. The summarising studies of Menezes et al. 

[de Menezes 00] show 

" that autocorrelation in the individual forecasts can only partly be reduced, 

sometimes it is even enforced and 

" that different combination methods produce different autocorrelation behaviour 

in the combined forecast. 

Based on the results of the study, the following guidelines are given: 

. For small data samples use the simple average. 

. For medium or large data samples use the optimal method, for which inde- 

pendence is expected if the cross correlation is small. In the other case, the 

weights should be restricted or a regression-based approach with restricted 

weights should be used. 
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" If an autocorrelation can be determined in the combined forecast errors, the 

complete forecasting approach should be revised. 

4.6 Experiments 

4.6.1 Description of Experiments 

We have carried out experiments in relation to decomposed data and diversifica- 

tion procedures. A data analysis of decomposed forecast errors indicated that the 

predictors of the seasonal behaviour are much more diverse than the predictors 

of the attractiveness. That is the reason why the experimental analysis is focused 

on diversification of the seasonal predictions. For prediction of the attractiveness, 

component we have always used the best performing model which is the model 
lh(x, 0) (simple exponential smoothing). 

Two types of diversification have been applied. The function space has been 

diversified with the models h8 '80' (x, ¢) and h,, eaeon(x, 0). Diversified parameters, 

applied for the calculation of seasonal factors: Flo,,, and c5high (lower and upper 

limit of expected seasonal behaviour). In order to generate sets of range limits 

which are not completely unbalanced, the initial parameters chosen for ¢to,,, _ 

-0.3, and q5high =2 have been dumped with different factors between 0 and 1. 

The application of factor 0 in model h3ea80 (x, 0) leads to model h2eae°"(x, c). 

This can be seen if we compare (2.17) with (2.18) using Rio,,, =0 and q5highh = 0. 

That is the reason why model hreaeon(x, 0) has not been included directly into the 

diversification process. 

The results can be reproduced with experiments 4 (see Appendix B. 6.4). 

4.6.2 Experimental Results 

Table 10 shows the errors of the forecasts containing combined seasonal predic- 

tions as relative improvement in relation to the best individual forecast O measured 

at the low level (ODO F POS). In order to consider all effects contained in the data, 
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the improvement has been measured for the generated total forecasts containing the 

attractiveness component, not only for the seasonal component. A graphical rep- 

resentation of the absolute total errors at the high level (ODO) is shown in Figure 

30. 

T1 1 Fav Fou p Fvar Fopt Fo a F yn Fappr 

0 -0.02 0.00 -0.01 -0.01 0.01 0.01 -0.05 
1 -0.01 0.00 0.00 -0.04 -0.13 0.02 -0.03 
2 0.00 0.01 0.00 -0.02 -0.32 0.05 0.04 
3 0.00 0.01 0.00 -0.02 -0.20 0.05 0.04 
4 0.00 0.01 0.00 -0.02 -0.27 0.04 0.03 
5 0.00 0.01 0.00 -0.02 -0.18 0.04 0.03 
6 0.00 0.01 0.00 -0.02 -0.22 0.03 0.02 
7 0.00 0.01 0.00 -0.02 -0.26 0.03 0.02 
8 0.00 0.01 0.00 -0.01 -0.22 0.03 0.02 
9 0.00 0.01 0.00 -0.01 -0.17 0.01 0.02 
10 0.00 0.01 0.00 -0.01 -0.19 0.01 0.01 
11 0.00 0.01 0.01 -0.01 -0.19 0.01 0.01 
12 0.00 0.01 0.01 -0.01 -0.23 0.01 0.01 
13 0.01 0.01 0.01 -0.01 -0.21 0.01 0.01 
14 0.01 0.02 0.02 0.00 -0.19 0.03 0.02 
15 0.01 0.02 0.02 0.00 -0.21 0.03 0.02 
16 0.02 0.03 0.03 0.01 -0.22 0.04 0.02 
17 0.02 0.03 0.03 0.01 -0.23 0.04 0.02 
18 0.03 0.03 0.04 0.02 -0.26 0.06 0.02 
19 0.03 0.04 0.05 0.04 -0.23 0.06 0.02 
20 0.04 0.05 0.06 0.01 -0.30 0.06 0.02 
21 0.09 0.10 0.11 -0.64 -0.38 0.07 0.05 
22 0.00 0.00 0.00 0.00 0.00 0.00 0.00 

Tab. 10: Relative improvement using forecast combination of diversified seasonal predic- 
tions in comparison to the best individual forecast °y. The columns represent the 
results achieved with different combination models. Positive numbers mean than 
an improvement compared to the best individual forecast could be achieved (for 
instance 0.01 means an error reduction of 1%), negative values indicate that the 
best individual forecast could not be improved. 

We can see that now we are able to slightly improve on the best individual 

forecast. An improvement of up to 3 to 5% could be achieved in early dcps at the 

high level. Combination models Foutp, Fdyn and Fappr beat the best individual 

forecast. The nonlinear models perform well too, the best results in early dcps 

have been achieved with the nonlinear models. These results could still be slightly 

improved by applying these combination models on selected subsets of the input 

forecasts. 
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Fig. 30: Errors (mean absolute deviation measured at the ODO level) achieved using fore- 

cast combination of diversified seasonal predictions in comparison to the best in- 
dividual forecast °y (see 2.3.3). 

The fact that we achieve an improvement of only 3 to 5% can again be ex- 

plained by the covariances of the diversified forecasts. Figure 31 shows an ex- 

ample for error covariances of diversified seasonal factors. It can be seen that the 

correlation between the predictions is still high. The example also shows that we 

can see relevant differences in the structure corresponding to the different types of 

diversification. 

4.6.3 Analysis of Decomposed Forecast Errors 

An analysis of the decomposed errors in relation to the error decomposition proves 

that the high covariance values are mostly based on high error variance and error 

Bayes terms. Noise in the data lead to the wrong estimations of historical or current 

seasonal factors. And as models /z ""' (. r. (r) and (x. (r operate on the 

same input data, the resulting error variance components are additionally highly 

correlated. 

Large error variance terms occur even for parameter values generating very 
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Fig. 31: Example of typical behaviour of covariances of forecasts diversified by more than 

one type of diversification. The index in represents the index of the input tiare- 

casts diversified by parameter and ctii,,,, " and by the use of function spaces 
It,, . vnn /, 1.. Cý) and The z-axis contains the error covariance values. 
The fou\\r parts representing the different combination of function spaces can he 
distinguished very well. 

restricted function spaces. That is the reason why the applied parameter diversi- 

fication could not sufficiently reduce the covariances between the predictions. In 

contrast to the error variance terms, the error bias terms are lower and more diverse. 

These error terms could theoretically eliminate each other during the combination, 

but the high error variance and error Bayes terms lead to high weight estimation 

errors as described in Section 4.4. 

4.6.4 Conclusions 

The experiments show that data decomposition and diversification is beneficial for 

forecast combination. We could achieve better results with combination of not 

decomposed and diversified data. Especially the nonlinear combination models 
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perform much better. 

Nevertheless, it was only possible to slightly outperform the best individual 

prediction. An analysis of error covariances of the seasonal predictions shows that 

even if we have improved the situation with the decomposition and the diversifi- 

cation, we still have highly correlated forecasts containing highly correlated error 

variance components even for the more robust models and parameter settings. 

Therefore, we have to search for alternatives of how to generate predictions 

which are diverse in relation to the error variance component. We have seen that 

this objective could be achieved by using different types of data for learning. We 

will therefore enter into a discussion about learning at different levels in the next 

chapter. 



5. COMBINATION OF FORECASTS GENERATED WITH MULTI 

LEVEL LEARNING 

In this chapter we will discuss issues related to real world hard forecasting prob- 

lems like our application which are characterised by large noise terms in the train- 

ing data, frequently occurring structural breaks and quickly changing environ- 

ments. We will address real world applications in which not a single prediction 

has to be generated, but a lot of predictions representing the situation in concrete 

subspaces of a given input spaces. If we have to generate predictions for seasonal 

effects of airline demand, we need to do this for different origin destination pairs 

as well as different fareclasses. The level on which the predictions have to be 

generated is often very detailed (like the seasonal behaviour for a given origin- 

destination airport pair and a given fareclass), but analysts or related computer 

systems also use aggregates of the generated forecasts to higher levels (like the 

seasonal behaviour related to the trafic between countries). The aggregates are 

used for decision making or further calculation, e. g., in terms of reports or in using 

a graphical user interface showing the expected situation at different levels. 

The reaction to large noise components and in consequence structurally poor 

forecasts at the fine level of forecasting is often the decision to learn structural 

information or causal effects at higher levels meaning learning based on aggregates 

of the target data. This decreases noise but leads to an information loss related to 

effects which occur only at the fine level. 

The question of which level to choose for learning is not obvious. The topic 

is discussed in the literature as "hierarchical forecasting". Common strategies of 

defining hierarchies or families of levels and working with aggregates or splits of 
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forecasts have been summarised by Flieder [Fliedner 01] in 2001. 

We will discuss this topic on the example of two levels and see that choices 

which are purely based on the total error variance at the fine level of forecasting 

do not need necessarily be the optimal choice with regard to aggregates to higher 

levels. We will also address the question of information loss if only a single level 

is chosen for learning and discuss different options of how to incorporate multi 

level information. We will motivate why we think that forecast combination is a 

very promising approach in order to deal with this problem and discuss special 

questions of combining forecasts generated at different levels. 

While typically forecasts are combined in a flat manner as denoted by equation 

(3.1), in this chapter we will lead an error component based discussion for the case 

of multi level forecasting. We discuss the topic of what happens if 0 is learned 

at different levels and what alternatives exist in order to incorporate multi level 

information. This includes a discussion of the effects of forecast combination on 

the error bias and error variance component for different cases at the low and the 

high level. 

5.1 Multi Level Forecasting 

5.1.1 The Problem of Determining Appropriate Levels 

In real world forecasting problems we often do not have to predict future values 

of only a single time series but the situation in an application defined input space. 

This is realised by splitting the input space into subspaces and generating time 

series predictions related to each subspace. In addition, the generated predictions 

are often visualised and used not only on the subspace level (which we will also call 

the fine/low level) but as an aggregate representing the expected future situation at 

the level of the total input space (the high level) as shown in Figure 32. 

Let us take our application of seasonal booking behaviour predictions as an 

example. As the number of potential ODIFPOS combinations to analyse is very 
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big, graphical user interfaces offer the possibility to analysts to look at the data 

not only at the ODIFPOS level, but at aggregates of the booking data representing 

the ODI level including sums of bookings over all fareclasses and point of sales 

or even at higher levels in order to keep the overview and get an impression of the 

overall seasonal behaviour. Figure 32 shows an example taken at the ODI and the 

ODIFPOS level. It can be seen that this higher level is characterised by a much 

lower noise because of larger booking values. 

ODI level view s( ,, NM( 1 
(high level I) Yi Uýýý\/ý°' 

1 
ýýc . scason = U. Zýseas°n 

- 
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Fig. 32: Seasonal factors measured at the ODI and the ODIFPOS level. 

While we assume the fine level of forecasting to be defined by the application, 

a crucial problem is to determine appropriate levels/subspaces on which the models 

are calibrated or structural characteristics are learned. So we would have to decide 

for our example if we learn seasonal factors at the aggregated ODI level or the fine 

ODIFPOS level. 

The choice of the different levels for learning is related to different types of 

risk. If a level is chosen too fine, there is a high risk of undesirable large noise 

terms in the training data. 

In Figure 1l shown in Section 2.2.6 we presented two learned representations 

of the seasonal behaviour. As we have seen in that section, both learned curves 
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have problems to model the seasonal factors properly. With learning method 1 we 

achieve unstable forecasts because of the high noise in the training data. Learn- 

ing approach 2 has limited complexity and is too poor to model the true seasonal 

behaviour. Because of the large noise relevant structural information could not 

be detected any more. This means that we have a high error bias term as well as 

relevant parts in the error variance component. 

If on the other hand the chosen level is too general, important characteristics 

related to special parts in the input space may be ignored. For our example this 

means that if we learn seasonal factors at the ODI level we do not take into account 

seasonal effects in special fareclasses or point of sales properly. 

In practice, the problem of finding the ideal level of learning is often resolved 

with trial and error approaches. The level of calculation is determined based on 

static test data. The choice is often made related to the achieved total out of sample 

errors based on a given error criterion. The choice is rarely revised. This may 

become a problem when the error differences are not very big or the behaviour 

changes over time. 

Figure 33 shows the learned seasonal behaviour at the level ODO F POS and 

the level ODO COMP POS together with the achieved seasonal factors in the fol- 

lowing year. It can be seen that the low level seasonal curve shows different char- 

acteristics in comparison to the high level curve. While the low level curve matches 

much better in weeks 40-52, the high level curve fits slightly better in the middle 

of the year, so that it cannot be said that the low level curve is the better one in 

general. This can be seen more clearly in Figure 34, which shows the error which 

would have been made using the different curves to predict the following year at the 

fine level. It can also be seen that we have errors which are not strongly correlated 

which indicates a potential for forecast combination. 

Another issue in choosing the level for learning based on out of sample errors 

achieved at the forecast level is that this choice could be unfavourable with regard, 

to the aggregated forecasts representing the situation at the higher level. If relevant 
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Fig. 33: Out of sample seasonal behaviour together with seasonal factors learned at the dif- 
ferent levels. The example represents data generated for OD0=19, Fareclass=l6. 
The seasonal factors season and have been learned based on the data of 
departure weeks 0 to 52. Level i represents learning per ODO F POS, level I 
learning per ODO COMP POS (with data aggregated over fareclasses per com- 
partment). The learned factors are compared with low level data measured in the 
following year in departure weeks 53 to 105. 
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Fig. 34: Errors generated with the predictions shown in Figure 33. It can he seen that the 
errors are not strongly correlated. 

decisions are made by analysts based on aggregates of the low level forecasts to 

the higher level, this fact should be taken into account for the choice of the level of 

learning structural information. 

We will analyse the different impacts of different error components on the qual- 

ity and stability of the forecasts at the different levels. We will start by discussing 
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different alternative options of how to use the information available at different 

levels in the next section. The discussion of their advantages and disadvantages re- 
lated to the different error components will finally enable us to propose a procedure 

satisfying the multi level qualitative needs. 

In preparation we introduce a notation representing the situation at different 

levels and lead a short discussion about optimal errors in relation to different levels. 

5.2 Problem Description and Notation 

5.2.1 Notation of Multi-Level Time Series 

As in the previous chapters we discuss causal models representing relationships 

between time series xt E Rn and yt E R, with t representing a time index. We 

further assume that xt can be measured properly, that we have random noise in yt 

and that an "ideal" functional relationship f exists in order to approximate yt based 

on xt. We can represent the functional relationship between input vector xt E R" 

and yt ER by the function f and a random noise term e: 

i5.1) yt = f(xt) + Eytt 

with f the "true model" and a Gaussian with Ey ti N(0, a 
y) an independent 

residual component. The vector x may also contain past values or predictions of 

y as described in the model in [Timmermann 05]. In order to increase readability, 

we will remove the parameter tin all following equations. 

Let us now assume that we do not have to predict a single time series but a 

whole set representing different subspaces of an input space. We will use the index 

i in order to indicate any given subspace (the fine/low level) for which we have to 

generate predictions: 

ys = ft(x) + eyf. (5.2) 

Let further index I indicate values or measurements concerning a high level view. 
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5.2.2 The Relation Between ya and yj 

It is assumed that a linear unification operator U over the subspaces i is defined 

in order to represent the aggregation from the low level subspaces i to the higher 

level I. The fusion operator carries out a weighted sum 

zl = 
Uzi IZi 

EiAi*zi 
= Ei Ai (5.3) 

over any data z= measured at the different low levels (which could, e. g., be 

f~(x) or y1). The parameters )% E 7Z are indicators for the relevance or size of 

subspace i as part of I. 

Let us assume we have given impact parameters Ai. Then we get a high level 

representation of y following (5.3) with yr =U yj (high level targets are aggregates 

of the low level targets). As the noise component at the low level is white noise, 

this component is also aggregated to noise at the high level as EVI =U Evi which 

leads to a predictable relationship fl (x) =U fi(x) fulfilling the high level relation 

similar to (2.1) 

yl = . 
fI (x) +- eyI =U yi =U . 

fi (x) +U eyi. (5.4) 

Let us now analyse the differences between fi(x) and fi(x) as these are very 

relevant if high level information is to be used for low level forecasting. We can 

expect that big differences between fi and fi would lead to big errors at the low 

level if we replace estimates of fi by estimates of fi. We define efi as 

Efi = fi(x) - fi(x)" 

Combining (5.3), (5.4) and (5.5) it follows from 

yI =U fi(x) +U Eyi =U (fl (x) - Efi) +U Eyi 

= fl (x) -U Efi + EyI 

(5.5) 

(5.6) 
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that e1; has the nice characteristics of reducing to 0 if aggregated at the high 

level: 
UEf{= 

5.2.3 Predicting yj 

(5.7) 

A predefined set of functions hk : JZ" x 4D -º R is used in order to approximate 

the relationship between x and yi. We assume function spaces ? {k given as de- 

fined in Section 2.1.2. The index k represents different function spaces defined for' 

diversification purposes as described in Section 4.2.2. 

We also assume that a best estimation of parameters Oi exists at each of the 

levels in order to approximate fi by hk(; 00 

fi(x) ý hk(x, O: ) (5.8) 

and that the underlying distance norm is linear in a manner that for any two func- 

tions fi(x) : R" --º R and f2(x) : R" -º R with h(; y51) representing the best 

approximation for fi(x) and h(; 02) the best approximation for f2(x), the best ap- 

proximation for Al * fi(x) + A2 * f2(x) is given by Al * h(x, 01) + A2 * h(x, 02) 

for any A1, A2 E R. 

Let us now assume that we estimate qi with yhi with i representing here the 

level on which we have determined Let 'klei represent the out of sample error' 

measured at level i which will be generated by predicting yi based on the function 

space and level of learning as indicated in the left upper index. In the given example 

we have estimated y1 with hk (x, ¢I) meaning that we have used function space ilk 

and determined at the high level I: 

Uklei = yi -lykI yi = yi - hk(Xt 01) = fi(z) - hk(X, 01) -I" Eyi (5.9) 

In order to increase readability in the following, we will write the left upper 

index only if the correponding information is relevant. This means that we will 
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indicate the level of learning only if it differs from the level of measurement, so 

we mean tkei =Wki ei and iikej =xkr ej. Low level aggregates to the high level 

are indicated with U, so WkUel means the error measured at the high level I (level 

of measurement always indicated as the right lower index) and achieved by use of 

function space lk and aggregating low level forecasts to the high level. 

Corresponding to 4.5 the total error variance term Sei can be decomposed into 

? ikI82 
-Uk tShi -f-ýkl aýi + Ö. (5.10) 

The right lower index again represents the error component as well as the level 

of error determination. The left upper index again provides the information about 

the forecast generation including the function space as well as the level of learning. 

As the bias component does not depend on the level of learning, this information 

is not provided for 8hi. The Bayes component 5j does not depend on the forecast 

generation at all as long as the input information does not change, so we do not have 

to provide information about the function space as well as the level of learning for 

this component. 

5.2.4 Properties of the Error Components in Relation to Forecast Aggregation 

Of course the main objective is to achieve good predictions at the level of fore- 

casting, i. e. the low level, which means a minimisation of bet. However, as in a 

lot of applications the generated forecasts are (also) used on an aggregated level, 

it is also worth to analyse the error U521. If we can find a good trade-off between 

the errors at different subspaces which generate more stable predictions meaning 

lower errors at the high level, this is certainly advantageous. 

Different components of the error are related to different stability if they are 

aggregated. The stability depends on the correlation of an error component be- 

tween different subspaces. If an error component is positively correlated between 

subspaces, we have to expect an error accumulation effect. If on the other hand 
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we have no or even a negative error correlation, these errors will compensate each 

other well. 

The error variance component is a critical component for aggregation. The 

values y= are often very noisy and the noise is often highly correlated between 

the different subspaces. Similar deviations in the target values of the training set 

contain the risk of generating highly correlated residuals E;. It is therefore possible 

that the correlated residuals in the training set lead also to unstable (large) and 

highly positively correlated terms b2; and therefore to very big terms U621. 

The situation is different for the bias term. Because of the linearity that we 

have assumed for the distance norm we also know that 

U h(x, Oi) = h(x, 01) (5.11) 

is true. It follows that 
U chi = Eh! (5.12) 

because of f1(x) =U fi(x), U h(x, ¢i) = h(x, 01) and the definition of the bias 

term at both levels: fi(x) = h(x, Oi)+Ehi and f1(x) = h(x, 01)+Eh1. This means 

that all kinds of low level problems in case of more complex functions fi(x) at the 

low level compared to f1(x) compensate each other during the aggregation. If on 

the other hand f1(x) is more complex in comparison to the different subspaces 

fi(x), this means that we have correlations between the subspaces fi(x) which are 

not extremely big. In this case, we have only a few compensation effects of the 

error bias component during the aggregation, but probably lower bias values 8$i 

because of the lower complexity of fi(x). 

5.2.5 An Artificial Example 

In O&D Revenue Management Systems [McGill 99] [Talluri 04][Weatherford 92] 

[Cross 97][Zaki 00][Pak 02][Neuling 04] seasonal predictions have to be carried 

out at a very fine level where the behaviour changes very quickly so that it is not 
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level I Ai I fi(x) a üi 

il 0.6 sin((x - 12)/(9)) 0.8 
i2 0.2 -sin((x - 12)/(9)) 2 
i3 0.2 sin((x - 12)/(9)) 2 
I-0.6 * sin((x - 12)/(9)) 0.64 

Tab. 11: Characteristics of the example data 

possible to take a large number of historical data into account. As we have men- 

tioned in Chapter 2, predictions have to be generated not only for different flights 

or origin-destination-itinerary pairs (the so called ODIs), but also separately for 

different fareclasses (F) representing different prices and booking restrictions as 

well as different point of sales (POS). 

Let us assume we have to model a seasonal dependency of the booking be- 

haviour on the calendar week in terms of seasonal factors y O7 at the low level i 

representing an ODD, DOW, F, POS combination as presented in Section 2.2.6. 

As the "true relationship" y, eason = f(cw) + eyi is not known, we introduce 

artificial ones in order to be able to illustrate certain behaviour of different error 

components. We use three subspaces it to i3 and assume seasonal dependencies 

fil(x) to fi3(x) with x representing the calendar week as well as noise as described 

in Table 11. Figure 35 shows the assumed functions fi(x) at the different levels 

together with the noisy training target values assumed for two years of training 

data. 

Two different methods of determining/learning the parameters are defined com- 

parable to equation (2.14). They are both based on a function h(x, ¢) 

1 01 
h(x, ¢) = E(min(max(2., 

+11: 
[ycw+jli Olow)i high)) (5.13) 

j_-O, 

as defined in (2.14) provided in Section 2.2.6. Because of restrictions to the possi- 

bly learned parameter sets they describe function spaces of varying complexity at 

the ODIFPOS level. 
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Fig. 35: Artificial Data generated for suhspaces ii tu i; and aggregated tu the high level I. 

The first learning approach generating hi(. r. ý, ») represents a very complex func- 

tion space 7--11. Each seasonal factor is only restricted to the low limit of -1 which 

is determined by the application (a seasonal reduction of demand of more than 

100`% is not possible). We use parameters I. OhI'll) I and O/=U. The 

seasonal factors are learned based on historical data by the best in `ample estima- 

tion corresponding to a MSE error minimisation criterion which leads to a simple 

average of the data related to the corresponding calendar week 

=F, (mirr(ýun. r(y,.,,,. -1). 1)). (5.14) 

The second learning approach reduces the function space by two kinds of restric- 

tions - limits to the generated seasonal factors as well as possible differences be- 

tween neighboured seasonal factors obtained by smoothing the data. For the detec- 

tion of each seasonal factor neighhoured values are taken into account. Addition- 

ally, a lower and an upper limit of and (). G for the expected seasonal deviation 

are used for stabilisation purposes in order to avoid, for instance, it zero season 
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level IhI I6 
,2I I J, 20i I¢I6, 

mi 
I combýi I I82, IIIb 

ei 
I combg 

ei 
I I wt 

il 1 0.00 0.45 0.33 0.33 1.25 1.13 1.13 0.42 
i2 1 0.00 0.88 1.59 0.72 2.88 3.59 2.72 0.64 
i3 1 0.00 1.13 0.33 0.33 3.13 2.33 2.33 0.23 
I 1 0.00 0.28 0.28 0.28 0.92 0.92 0.92 - 
i1 2 0.06 0.04 0.05 0.04 0.90 0.91 0.90 0.54 
i2 2 0.06 0.05 1.09 0.09 2.11 3.15 2.15 0.91 
i3 2 0.06 0.07 0.05 0.05 2.13 2.11 2.11 0.46 
I 2 0.02 0.02 0.01 0.01 0.68 0.66 0.66 - 

Tab. 12: Error components of the forecast results 

assumption in case of no historical bookings measured at the ODIFPOS level for a 

given calendar week. 

2 
h2(x, ý) = E(min(max(5 1: [y,,,, +j], -0-5), 0.6)). (5.15) 

9=-2 

The artificial example allows us to have a separate look at the different error 

components. Table 12 shows the results of different error components generated 

with learning method 1 and 2 as described in equations (5.14) and (5.15). The 

high level I contains the corresponding errors of the aggregated predictions. The 

bias, variance and total error of the pure low level predictions (and corresponding 

aggregates to the higher level) can be seen for the different subspaces and the two 

learning methods in columns 3,4 and 7. It can be clearly seen that learning method 
2 generates better results, even if it contains a bias component larger than zero. 
Learning method I is less stable and contains much larger parts in the variance 

component. We will discuss the other columns in later sections. 

The bias component generated with learning method 2 can be seen in Figure 

36 using the example of subspace it together with the function ftl(x) and the 

prediction (with deviation from f because of bias plus variance error terms). The 

bias contains restrictions in the case of very strong seasonal effects because of the 

used limits of [-0.5,0.6] as well as minimal deviations because of the smoothing. 
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Fig. 36: Function f,, (x) together with the optimal and the generated prediction h(x, 2 ýtii ). 

5.3 Alternative Options in Order to Incorporate Multi Level Information 

5.3.1 Building one "Super Model" 

The idea of this approach is to build one model which includes all available in- 

formation, the "super model" (. sin). We increase the search space and generate 

functions h, 5,,, (; 
) at the low level learned based on all information including higher 

level training data: 

ýyh = hsl, t 0'"('). 5,,, ) (5.16) 

with parameter vector 0s,,,, to estimate on the basis of training data at both levels. 

Using the bias- variance decomposition (4.5) we get for this model 

%{sm62 
=%{sm 

ý2 +! {srn 62 + 62 
ei hi ýi yt " (5.17) 

This approach shows the clear advantage that all available information can be 

used in one model, which enables us to find the real relationships between the 

inputs. If our training data is stable enough to determine well for appropriate 

functions h(; )srn, this is the ideal choice. If we have increased the function space in 

Rs, n compared to a function space 7-L considering only a single level, we can expect 
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a lower error bias component ris i bhi <R 5. But with noisy training data we also 

risk a much higher error variance component Ham J2 >W5 with a more complex 0i 0i 

model. This depends on how complex the different targets are connected in h(; )sm 

during the training process. If we have complex relations between the targets at the 

different levels in order to estimate a high dimensional parameter vector 0sm, we 

risk high variance terms. If hsm is less complex, e. g. a linear combination of less 

complex functions each depending only on yz or yI, we can achieve stable results, 

but results which also could have been achieved with a decomposed causal model 

followed by forecast combination. 

Including higher level input information and using a higher dimensional vector 

cbsm compared to O? j means a shift from the error bias component to the error 

variance component which is only beneficial if the noise at the low level is not so 

high that the parameters of the complex function can be estimated well enough so 

that we have 
? {S2 i{am b2 >! 

{am a2 -7{ S2 
hi - hi ¢i ¢i" (5.18) 

As instabilities in the estimation of &s,,,, can lead to very large variance terms 

Elam 5 ", following the argumentation in Section 5.2.4 we cannot even exclude that 

WsmUJ2 >%I SeI. This means that the low level error instabilities show a negative 

effect also at the high level and we achieve high level predictions which are worse 

compared to the predictions generated directly in I. 

A similar argumentation can be used with a "super model" which includes the 

information of one or more neighboured subspaces. 

5.3.2 Extending the History Pool 

If the error term 6ý'1 is large, one available option is to increase the history pool 

for determining parameters 0 also based on elements (xi, yj)T of the training set 

related to other parts of the input space j; i. As we have a bigger history pool, 

probably the estimated parameters would be more stable, so we have a reduced 

error variance component. But again we buy this improvement by a decrease of 
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adaptation to the special behaviour in i. As the function h is learned not only on 

training data of i, special features of fi(x) are contained only in parts of the data 

and will only be poorly modelled in h. In addition, special features contained in 

the relationship fi(x) in other subspaces are misleadingly modelled by h. 

Nevertheless, for cases with only small differences between fi(x) and fl(x) 

or at least one or more other subspaces fj (x), small training sets (xi, yi)T and 

resulting big error variance components dp, the extension of the history pool might 

be beneficial. 

5.3.3 Combining Forecasts Generated at Different Levels 

In Chapter 3 and 4 it was already mentioned that combining techniques can be 

used in order to build complex functional approaches based on less complex ones 

in realising a reduction of the error bias component. It can also be used in order 

to decrease the error variance component by following a thick modelling approach 

related to the setting of certain parameter values or to preprocessing. A similar sit- 

uation compared to these tasks can be expected related to the choice of the forecast 

level. Each forecast level contains information based on which functional relation- 

ships, ideal parameter settings, etc. can be determined, but it is likely that none of 

the models is optimal since it does not take into account all the available informa- 

tion. Low level forecasts potentially miss general structure information. High level 

forecasts do not take into account the special characteristics related to the concrete 

part of the input space, or the representation of these characteristics is contained 

in the forecast model in a completely different manner than having built the model 

directly on the finer level. That is why it makes sense to study the approach of fore- 

cast combination as an option in order to incorporate the knowledge at the different 

levels and to anaylse the effects on different error components at different levels. 
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5.4 Effects of Learning at Different Levels on the Error Components 

We will now analyse effects of learning at the different levels on the error compo- 

nents. The analysis is not only focused on the low level results, we are also inter- 

ested in generating high quality forecasts at the high level. This can be achieved 

by learning directly at the high level or by aggregating low level predictions. 

5.4.1 Learning h at the Low Level 

Corresponding to (4.5) the error achieved if we learn at the low level can be de- 

composed into 
2222 Sei = Shi + S¢i + Syi 

Let us now consider the aggregated pure low level predictions 

'yt =U yz =U h(x, ýj). 

The aggregation leads to errors at the high level of 

yt -U yl yl-Uh(x, 
ýj) 

yl - U(yi - Chi - C¢i - Eyi) 

yl-(UyiU(Ehi+ E0i)-UCyi) 

Eh j-}- 
U 

Eoi + Eyl. 

(5.19) 

(5.20) 

(5.21) 

As the bias-variance-bayes decomposition holds for the high level and we have 

already identified eh1 as elements of the error bias component and Eyi as the Bayes 

we know that the elements U e0z represent the error variance component and are 

so independent of the other parts of the error. We get total error variances 

U62 
- 

ahl +U j201 + 5ý1. (5.22) 
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5.4.2 Learning h at the High Level 

162 

The alternative is to learn at the high level and to use the learned parameters for 

low level forecasts: 1y= = h(x, 01). 

We will now analyse the composition of the resulting low level error. Combin-. 

ing (5.2), (5.5) and (4.5) we get 

I 
e= = yi-I yi 

= fi(x)+EN: -h(x, 01) 

= fI 

/x) 

-E fi + Eyi - 

/lx(x, 

OI ) 

- . 
fllx) - Efi + Eyi - lflýx) - Eh1 - EýI) 

= -Efi+EhI+EOI+Eyi. (5.23) 

We know that eh1 and eO j are independent and that ey; is pure random noise. In 

this case we can represent the error as 

oI bei =[bfi +2* Cov(Eht, E fi) +2* Cov(Eol r Eji)] + bh j-}- býl + býi. (5.24) 

Let us now relate the above to the bias- variance- Bayes decomposition. 

The series a fi can again be decomposed in relation to the best approximation 

h(x; Oefi) E %l: 

Ef i= h(xi OEf i) + Eh fi (5.25) 

and it follows that 

I ei = -h(xi Oe f i) - Eh fi+ EhI + COI + Eyi. (5.26) 

The elements eh fi and ehl belong to the bias term. Because of the linearity 

assumption of the approximation we know that 

J. (5.27) Shi = Shji +62 
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We can therefore also represent the error as 

oI +Sh fi -}- 2* COv(eoI, h(xi Oefi)] + Syi (5.28) ISei 
- 

Shi + [S2 

where S belongs to the bias component, I S2i = býI+bh11+2*Cov(cO j, h(x; ¢E f=) 

to the variance component and yti to the residuals. 

We see that learning at the high level outperforms learning at the low level if 

S2 0, + Shfi +2* COv(EoI, h(x; Oefi) < a0i" (5.29) 

It strongly depends on the variance of a fi if this relation is true, we will discuss 

that in more detail for different cases in the next section. While in some cases clear 

tendencies can be detected, the question is what level to choose for learning if the 

error variances are about the same: 

jýr + Sh fi +2* Cov(eo7i h(x; Oefi) ti aýi" (5.30) 

As this decision has no relevant impact on the measured low level forecast 

quality, the decision should be made in relation to the high level quality as well as 

stability assumptions in case of changing environments. 

Because of 
U' =U h(x, 0I) = h(x, 01) (5.31) 

we know that U IF, = yl 
" We profit from equation (5.7) with 

U(-h(x, 0Efi) - ehfi) = 0. (5.32) 

This indicates that in contrast to pure low level predictions we have an effect of 

error elimination of a part of the error variance component if the errors are aggre- 

gated to the high level. This can also have a stabilising effect in case of a changing 

environment when the situation does, not change at the high level, i. e. shifts be- 
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tween the different subspaces. That is why we should always choose the higher 

level in these cases. 

5.4.3 Using Forecast Combination 

As we have already mentioned, the objective is to make choices concerning the 

level(s) for learning which manipulate the resulting errors concerning their corre- 

lation in a controlled manner. We have already seen that the choice of both levels 

for learning works well for some cases and not so well for others. The decision 

for one of the two approaches is difficult because the decision criterion should not 

depend on the pure error values at the low level. These do not take into account 

error variance correlations and stability effects in case of a changing environment. 

If we can manipulate the correlations of error variances in a manner that this is 

advantageous for the aggregation, this should be taken into account for the choice 

of the level. On the other hand, we want predictions at the fine level which do not 

only have a small error, but which also sufficiently and clearly show special charac- 

teristics (features) of a given subspace if this is possible. If the data is additionally 

very noisy, the errors can not be detected properly and, as the true function is not 

known, a decomposition of the error is not possible. 

That is why an automated process is needed in order to make a qualified choice. 

Additionally it is advantageous to take not only one level into account, but to use 

the information present at both levels in order to generate good predictions. We 

need a flexible decision strategy in order to generate errors at the low level which 

are better or at least not much worse compared to the best choice of learning at 

the low or the high level, and at the same time to profit from similarities between 

the subspaces and levels in order to generate lower high level error variance terms. 

The decision process should be an automatic process which does not need to know 

details related to error decompositions. 
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5.4.4 Impacts of Forecast Combination on Low Level Forecasts 

Using linear forecast combination on forecasts generated at the low and at the high 

level generates combined forecasts 

and errors 

cornhei = wi * h(x, ýj) + (1 - wi) * h(x, ýI )- yi 

= wi * (h(x, Oi) - yi) + (1 - wi) * (h(x, 01) - yi) 

= wi *(Chi 'I' COi) + (1 -wi) * (--h(x, OEfi) - Chfi + ChI +C0I) '+' Cyi 

= Chi + [wi * eOi + (1 - wi) * (-h(x, OEfi) + CoI)l + Eyi. (5.34) 

Under the assumption of independence this leads to 

combS2 
ei 

yi. = wi * h(x, Oi) + (1 - wi) * h(x, 01) (5.33) 

ýý 

Shi + wi * Sýi -I- (1 - wi)2 * (5.35) 

(S02I + Shfi +2* COv(Eo1i h(xi 0efi)) + Syi" 

More realistically, we have to expect covariances between the different error 

variance components. The difference between pure low level and pure high level 

forecasts is determined by the error variance component which can be approxi- 

mated by 

coynbaýi , ý, wi * aýi + (1- wi)2 * 

(Sýr + 8h fi +2* Cov(Eoi, h(x; oE fi)). (5.36) 

We will discuss what this means for different cases in Section 5.5. We will 

see that the weights are determined in a manner that for cases where the results 

generated at one level clearly outperform the other, the combination represents 

an automated choice of that level. For cases where both levels contain relevant 
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information, the fusion process can even outperform the quality achieved at both 

levels. 

This can be seen for our artificial example by comparing columns 3,4 and 5 in 

Table 12. For subspaces it and i3 the error variance of the combined forecast is 

very close to the best single level results. For subspace i3 we can even outperform 

the results achieved at the low and the high level. 

5.4.5 Impacts of Forecast Combination to Aggregated Low Level Forecasts 

Forecast combination can be beneficial in order to increase the forecast quality at 

the low level. But the potential is still bigger if the forecasts are aggregated to the 

higher level as we show now in comparing combined aggregates with pure low 

level aggregates. 

If we look at the aggregate of the combined predictions we get 

yl -comU - yI yI -U(wi *h(x, Oi)+(1 -wi) *h(x�OI)) 

yI - 
U(Ehi + [wi 

* Emi + (1 - wi) * (-h(x�0f f i) + EoI)] + Eyiý 

EhI -}- 
U[wi 

* Eoi + (1 - wi) * (-h(x, Of j) + EoI)] + EyI 

EhI-i'U[wi*E-Oi]+UI(1-wi)*E-0I] 

- U[(1- wi) * h(x, OEfi)] + EyI. (5.37) 

We know that eh1 represents with ahr the bias component, eyj is the Bayes, so 

it is clear that 

combEOU = 
U[wi 

* Co, ] + U«1- wi) * Emll - U<(1 - wi) * h(x, OEfi)] (5.38) 

represents the variance error component (with variance C buSO2! ). 

We can now write the error as 

combU52 = ahl --com6U 52 (5.39) 
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Comparing the resulting error with the aggregated pure low level errors given 

in equation (5.22) and the high level learning error at the high level we have to 

again compare only the error variance terms °0 ö 1, ßa0, and 801. 

Let us now have a look what happens to the different parts of equation (5.38) 

during the aggregation. Compensation effects depend on the correlation of the 

elements at the different subspaces. 

The first part is an aggregate of the weighted low level variance term e0i. As 

the low level parameter learning instabilities tend to be positively correlated, the 

component ub2l can get very big and generate instabilities at the high level. This 

can only happen in the aggregation of the weighted elements if we have cases 

of large weights together with high terms e0j. Compared to the pure low level 

forecast the forecast combination represents a reduction of this component which 

is especially important and positive if we have big terms e0j. 

The second part of equation (5.38) is an aggregate of weighted elements U[(1- 
wi) * e0j]. Because of 

U[(1-wi)*coil -Eoj*U(1-w=) (5.40) 

this part is stable and small in case of large weights (the interesting case containing 

potential stability problems) and small values of c in comparison to e01 . In case 

of using only small weights, this means that we generate predictions which are 

similar to the pure high level predictions. 

The third part -U [(1-w=)*h(x, cE fj)] is determined by the function h(x, ¢Efi). 

Because U h(x, ¢q1) =0 we can expect that the different elements of h(x, ¢E f=) 

tend to be negatively correlated. It also follows 

- 
ULrl 

- wi/ * h(x, OEfiJJ = 
Ulwt 

* h(x, OEfi)J (5.41) 

which means that we only achieve big values in cases where h(x, `YE fi) is relevant 

and wi is large. 
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Comparing columns 3,4 and 5 in Table 12 for the high level aggregate I show 

these positive effects of the negative correlations for our artificial example. We can 

see that using forecast combination leads not only to better low level predictions, 

the aggregated combined predictions outperform the aggregated pure low level pre- 
dictions and have the same quality as the forecasts generated directly at the high 

level. 

We will now compare the effects of the different approaches in more detail 

for different cases in order to be able to make more specific statements about the 

expected forecast accuracy. 

5.5 Discussion of Different Cases 

5.5.1 Casel (his too complex to be learned properly even at the high level I) 

In this case we will have a big variance term J2 The situation will probably be 

even worse at the low level. In any case the generated predictions will have a bad 

quality, but all of the other options discussed before will also have problems to 

reduce the error variance term. This case does not correspond to the general idea 

of including higher level information where the situation is more stable, we should 

use less complex functions h or include information generated at a higher level 

where the situation is more stable. 

5.5.2 Case2 (h is not complex enough) 

Geman et at [Geman 92] argue that if we have relevant bias problems, meaning 

high terms ö and 6 in our predictions, it is not possible to solve these problems hi U 

properly without including other functions in order to approximate f. Neverthe- 

less, it can be that even with a very simple function h we get variance problems 
bpi if the training set in i is limited in sample size and characterised by high noise 

terms. If we get this problem, we can reduce at least this part of the forecast error 

with the forecast combination approach. 
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But if we also want to reduce the bias term we have no other choice than to 

increase the complexity in h, which is dangerous because of the potential variance 

problems or to include other functions h which add additional information. If we 

also include predictions generated with h into the combination process, we have 

a chance to generate more complex functions during the fusion process and so to 

reduce the bias term (see Section 4.2.2). 

5.5.3 Case3 (i is representative for I) 

This case means that the subspace i has a large impact )4 in I. It follows that 

Shi pt; L. Ski a2I and Sfi small in comparison to the other error components. 

The errors between the low and the high level forecasts are highly correlated and 

have a similar size so that we will probably achieve weights near 0.5. 

In this situation the best approach would be to determine the model at the low 

level, but choosing the high level does not make a big difference. We will not 

achieve any improvements using forecast combination compared to pure low level 

or pure high level predictions, but we also do not have negative effects which we 

would have in following the approaches discussed in Sections 5.3.1 and 5.3.2. 

This case is represented in our example at subspace il. Figure 37 shows clearly 

that the predictions generated by learning at the low and the high level are strongly 

correlated. We have achieved combination weights of 0.42 for learning method 1 

and 0.54 for learning method 2. The error of the combined prediction is in both 

cases very close to the best choice. 

5.5.4 Case4 (stable situation in i, but clear special characteristics in i) 

In this case we can assume small components 5 , 
62 with 5 f; significant. Fol- Oi 0I 

lowing the strategy of forecast combination we will get a large weight w; because 

of the high error component ö in the high level predictions (see (5.24)). This 

means that the fact, that the low level predictions should be used, can be repre- 

sented by the weights very well. Also in this case it is not necessary to include 
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Fig. 37: Predictions for subspace iI generated with h(r, ' b, t ). 

higher level knowledge, but taking into account the higher level predictions with a 

small weight can nevertheless have a stabilizing effect at the higher level. As S2: 

and 60'i are small and the error variance term as described in (5.36) is therefore 

strongly influenced by 62 I, Jt we will have no problems during the aggregation (as 

argued in 5.4.5). 

An example for this case exists in subspace 'z of our example if learned with 

method 2. The low level forecast has been chosen with combination weight 0.91. 

5.5.5 Cases (h is too complex to he learned properly in i with ý1' small) 

In this case we have a very noisy training set with only few training data available 

in i. Learning only in i will lead us to overtitting and big variance terms 602,. At 

the high level we have small values in all components oaf the error terns assuming 

that d ti is small. 

In this case the high level predictions will proside good predictions. This can 

also be well represented by forecast combination weights. We will achieve a small 

weight wi and therefore no instabilities during aggregation. Forecast combination 
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Fig. 38: Predictions for subspace i2 generated with h(. r, 2 Z2)" 

will not lead to improvements compared to the optimal choice of using only the 

high level predictions, but it can make this choice for us automatically. As the 

pure low level learning is unstable, building a super model as discussed in Section 

5.3.1 would lead to unstable variance components as well. The extension of the 

history pool as described in 5.3.2 could be a solution, but would not have additional 

positive effects compared to pure high level predictions or the forecast combination 

approach. 

This case is present in our example at subspace i3. At this subspace the func- 

tion fi3(:. ) is very close to f j(. r). Figure 39 shows that the high level predictions 

outperform the low level predictions. This is reflected in the combination weights 

of 0.22 and 0.45. The combined results even outperform slightly the high level 

predictions. 

The higher weight in the case of the second learning method is due to a large 

bias error term in comparison to the error variance term. This can be seen very well 

in Figure 40. 
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Fig. 40: Predictions for subspace is generated with h(. r, l 

5.5.6 Case6 (h is too complex to he learned properly in i with 6 j, relevant) 

This case represents the practically most relevant and also most interesting case. 

It means that 6-2 is big and we have also a big error term i? Both predictions, 
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pure low level and pure high level predictions will not be very good, but there is a 

chance that the errors are not strongly correlated. Forecast combination finds for us 

the best trade-off between these two problems. We get an improvement at the low 

level if the expectation of a low correlation between Ski and Jh fi is true. But even 

if at the low level the improvement is not very big compared to the use of pure low 

or high level predictions, the use of forecast combination can be advantageous. Let 

us assume we would only choose the predictions generated at only one level. 

If we would choose the pure low level predictions, we would generate error 

variance components Ski which could cause problems during the aggregation. We 

would also risk instabilities in case of changing environments. In exchanging parts 

of 6.0i by Sh fi with forecast combination we would have an increased aggregation 

stability (which we discussed in Section 5.4.5) as well as a higher stability if the 

situation changes. 

If on the other hand we would choose the high level predictions, we would 

generate predictions which do not represent the special characteristics in the sub- 

space i at all which is not good for analysts or other systems which work with the 

generated predictions. 

The situation in subspace i2 learned with method 1 in our example represents 

that case. The differences in the error variance term of the low and the high level 

learning can be clearly seen in Figure 41. While the function learned at the low 

level has very high random deviations from the true function based on the noisy 

target data, the function learned at the high level is much smoother but has a com- 

pletely different trend. It can also be seen that the combined forecast represents 

a good trade-off between the two which on one hand has reduced noise and on 

the other hand approximates better the low level function fi2(x) than the function 

learned at the high level. 
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Fig. 41: Predictions for subspace i2 generated with h(r, t (12). 

5.6 Summary 

As it could be seen from the previous subsections using the approach of generat- 

ing multi level forecasts and combining them seems advantageous in comparison 

to using pure low or high level forecasts or by following the strategy of the "su- 

per model" or extending the history pool. In most cases we will achieve an im- 

proved result at the low level. In cases where the low level forecast quality can 

only be slightly improved as compared to the best chosen individual low or high 

level forecast evaluated at the low level, the forecast combination process repre- 

sents an automatic decision which level to choose. Additionally, in many cases we 

can also reach a modification in the correlation between error variance terms in a 

manner that the aggregate of low level forecasts gets a higher quality, which is es- 

pecially important in systems where forecasts are generally aggregated in order to 

support decision making processes. It can be seen by analysing the different parts 

in equation (5.38). 

We have already argued that the first component is an unstable component with 
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elements which tend to be positively correlated. We have also mentioned that in 

the aggregation of the weighted elements instabilities can only happen if we have 

cases of large weights together with high terms e$i. The discussion of the different 

cases showed that this situation does not occur. In all cases where the elements e0i 

are big in comparison to eg5l we do not get large combination weights wi. We have 

shown that the only cases where we do not get a small weight are the cases 3 and 6 

with weights around 0.5. 

While the second part is stable in any case, the third part can again contain big 

values in cases where h(x, cEfi) is relevant and wi is large. Again we have only 

the cases 3 and 6 where this can happen. 

We have seen that in case 3 it simply does not matter which level to choose 

because the low and high level are comparable and highly correlated. In case 6 we 

have high elements c0i as well as big terms h(x, cE fi). The replacement of parts of 

the pure low level forecast error variance terms 52U into U[wi *h(x, Of i)] is advan- 

tageous because of the negative correlation of the elements in U[wi * h(x, OEfi)]. 

Summarising we can say that in all cases where h(; ) is appropriate at the low 

or the high level (cases 3 to 6) forecast combination will generate very good re- 

sults at the low as well as at the high level in comparison to pure low or high level 

predictions. In cases 4 and 5 forecast combination represents an automated choice 

of the right level. In case 6 we can even expect that the combined forecast out- 

performs the pure low or high level forecasts assuming the objective of generating 

good predictions for both levels. 

The most problematic cases are the cases 1 and 2 where h(; ) is structurally too 

poor or too complex for both of the levels. We propose to follow the approach of 

"thick modelling" and the approach of using different function spaces as described 

in chapter 4 in addition to multi level combination, because these approaches offer 

additional benefits and enable us to find stable solutions in these problematic cases. 
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5.7 Experiments 

5.7.1 Description of Experiments 

Experiments have been carried out in order to analyse the effects of multi level 

learning on the prediction of the seasonal component of our application. 

Table 13 shows an example for data diversified concerning three types of di- 

versification: the level of learning, the used function space and thick modelling 

concerning the parameter of smoothing seasonal factors. 

m function space 7{(see section 2.2.6) level of learning parameters low, ! ¢high, ¢j 
y hieaeon (x, 0) (historical model 2.15) ODO DOW F POS olow = 0, Ohigh =0 

y hie°DOn(x, 0) (historical model 2.15) ODO DOW F POS 01ow = -0.33, high =1 
y hieaeon(x, 0) (historical model 2.15) ODO DOW F POS cblow = -0.66, 

ýhi h=2 
y hieaeon (x, 0) (historical model 2.15) ODO DOW F POS Glow = -1,0high =3 
y h2eaeon (x, 0) (additive model 2.17) ODO DOW F POS low = 0, high =O 
y hieße°n(x, 4) (multiplicative model 2.18) ODO DOW F POS Glow = -0.33, phi h=1 

hiEason (x, 0) (multiplicative model 2.18) ODO DOW F POS 01ow = -0.66 , high =2 
h80'(, ') (multiplicative model 2.18) ODO DOW F POS Olow = -1, high =3 

n(x, ý) (historical model 2.15) hie6 ODO DOW COMP POS Glow = 0, high =0 
so hiean (x, 0) (historical model 2.15) ODO DOW COMP POS Glow 

= -0.33, 
Qlhigh 

y hieaeon(x, ¢) (historical model 2.15) ODO DOW COMP POS Oiow = -0.66, high =-2 
hieaeon(x, q5) (historical model 2.15) ODO DOW COMP POS 46low = -1, high =3 

h2e6son(x, ¢) (additive model 2.17) ODO DOW COMP POS ¢low = 0, Ohigh =O 

h3C' °'n (x, ¢) (multiplicative model 2.18) ODO DOW COMP POS caiow = -0.33,0hi h =-i- 
14g h3eaeon(x, 0) (multiplicative model 2.18) ODO DOW COMP POS OZ.,, = -0.66, (thigh =2 

h3eaeon(x, O) (multiplicative model 2.18) ODO DOW COMP POS 0low = -1, high =3 

hieaeon(x, 0) (historical model 2.15) ODO F POS Olow = 0, high 
: 
-:: 

75 

17 y hieaeon (x, O) (historical model 2.15) I ODO F POS Olow 
= -0.33, ,/ Y+high =1 

-189 hiea8On(x, , 0) (historical model 2.15) ODO F POS *low = -0.66 r high =2 
119g hieaeon(x, 0) (historical model 2.15) ODO F POS low = -1, high =3 

y h2eaeon(x, 0) (additive model 2.17) ODO F POS OZ.. = 0, Thigh 
=0 

y hieaeon (x, 0) (multiplicative model 2.18) ODO F POS Glow = -0.33, high =1 

y h3e°80' (x, 0) (multiplicative model 2.18) ODO F POS Olow = -0.66,0hi h=2 
y hieaeon (x, 0) (multiplicative model 2.18) ODO F POS 01ow = -1, thigh =3 
y hieaeon(x, 0) (historical model 2.15) ODO COMP POS Olow = 0, high =0 
y 

- - 
hieb°°n(x, 46) (historical model 2.15) ODO COMP POS (blow = -0.33,0high 

76g h ieaeon x, (historical model 2.15) ODO COMP POS low = -0.66, high 
y hieaeon (x, ') (historical model 2.15) ODO COMP POS Olow = -1, cbhigh =3 

hseason(x, qS) (additive model 2.17) ODO COMP POS 01ow = 0, high = 0---- 

"g hreaeon(x, o) (multiplicative model 2.18) ODO COMP POS Glow = -0.33 i high =1' 
y h3eaeon(x, 0) (multiplicative model 2.18) ODO COMP POS 010w = -0.66, phi h=2 
y h3eaaon(x, 0) (multiplicative model 2.18) ODO COMP POS law = -1, ßhigh 

Tab. 13: Set of forecasts diversified concerning the function space, level of learning and 
parameters used for thick modelling. 
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The diversification of the function space and parameter values has been ap- 

plied as described for experiment 4 (see Section 4.6.1). This means that we have 

used diversified function spaces hleason(x, 0) and hseason(x, 0) as well as diversi- 

fied parameter values 01o,,, and c5hi9h applied for the calculation of seasonal factors. 

The initial parameters ¢ta,,, = -1, and c5high =3 have been dumped with the same 

factors between 0 and 1 as carried out in experiment 4. The application of factor 0 

in model hseason(x, ¢) again leads to model h2ea9On(x, 0) so that this model is also 

included into the fusion process. Additionally, the calculation of seasonal factors 

has been diversified concerning the level of learning. The determination of histor- 

ical seasonal factors y,,,, (2.14) has been diversified as well as the calculation of 

current seasonal behaviour ytd,,. (2.18). The level diversification is reached with a 

data decomposition carried out at the different levels mentioned in Table 13. The 

decomposed data is then applied in the learning and forecasting process using the 

diversified methods and parameter values. Note that in order to always generate 

forecasts adapted to the current booking behaviour it is not possible to diversify 

and ytdttr used in models hseason(x, 5) (2.15) and the values of ytdT, ytat', par 

h3eason(x, 0)(2 18). The different levels of learning are only related to the applied 

seasonal factors, not to the values and forecasts of the current behaviour and the 

expected future attractiveness. The calculations have been carried out for one well 

performing linear model (F"a'') as well as for one nonlinear model (FaP"'). We 

have compared: a) the results achieved with a restricted set generated with trim- 

ming to the best performing 10 input forecasts with b) the results achieved with a 

restricted set generated with trimming to the best performing 5 input forecasts in 

each combination. 

Details related to the experimental setup can be found in the appendix describ- 

ing experiment 5 (B. 6.5). 
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5.7.2 Experimental Results 

178 

Table 14 shows the errors of the forecasts containing combined seasonal predic- 

tions as relative improvement in relation to the best individual forecast °y at the 

low level of forecasting (ODO F POS) and the high level (ODO). A graphical rep- 

resentation of the absolute total errors at the high level is shown in Figure 42. 

F"°' (best 10) 
F"PPr (best 10) 
F""' (best5) 
F"PPr (best5) 
07ý 
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Fig. 42: Absolute errors (mad) achieved using forecast combination of diversified sea- 
sonal predictions in comparison to the best individual forecast °iI at the high level 
(ODO). 

The results show that the application of multi level forecast combination is 

a promising approach. We could achieve an improvement up to TX at the low 

level and even up to 8% at the high level. The results achieved at the high level 

support the theoretical findings indicating that we generate an effect of elimination 

of lowly correlated errors if aggregating the combined predictions to the high level. 

Unfortunately, a more detailed analysis of the results has shown that the nonlinear 

models, with which we achieve the largest improvements at the high level, can also 

show unstable behaviour in single cases. This means that they do not represent a 

very secure alternative. The models are very sensible and insecure if applied on a 

larger number of forecasts. They also need significantly increased calculation time. 

Figure 43 shows an example of error covariances generated for multi level 
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forecasts. It can be seen that now we find pails of the covariance matrix indicating 

a low correlation between the forecasts. 

I 

n). nr/) 
r 

0 

Fig. 43: Example of covariances achieved with multi level diversification. 

Unfortunately, the combination process cannot optimally profit from these parts 

of the covariance matrix because of the unstable behaviour of the more sophisti- 

cated models. The results also clearly indicate that the combination performs better 

on a subset of input predictions. Especially the more complex nonlinear model gets 

unstable for a larger set of input predictions. The best results are achieved with the 

simple model which does not consider covariance information and which therefore 

does not profit from the unique information contained in some of the input fore- 

casts in an optimal manner. The instabilities of the other models are caused by the 

large number of input forecasts generated with multi level diversification. 

The results motivate a closer look at the effects of combining a large number 

of forecasts in the context of multi level diversification. We have seen that a large 

number of forecasts to be combined seems to he not optimal for the more sophis- 
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ticated combination models. On the other hand, we know that we loose relevant 

information by not using the forecasts with significantly different covariance values 

in a more explicit manner. 

Figure 43 also shows that we can easily identify parts of the covariance matrix 

belonging to the different types of diversification that we have applied. We can very 

well distinguish parts affected by the different chosen parameter values as well as 

breaks representing the application of forecasts generated with different models 

and learned at different levels. This behaviour is very typical if different types of 

diversifications are used in order to generate input predictions for a combination 

process. In the next chapter we will therefore lead a discussion of how we can 

handle the problem of a large number of input forecasts and how we can profit 

from the special structure of the error covariance matrix. 
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r Fi ar(besil0) Fapp (bes[10) F" ar(best5) F" p(bes15) 
0 0.03 -0.22 0.04 0.02 
1 0.03 -0.15 0.03 0.02 
2 0.03 -0.12 0.03 0.03 
3 0.03 -0.10 0.03 0.03 
4 0.03 -0.08 0.03 0.04 
5 0.03 -0.01 0.03 0.03 
6 0.03 0.00 0.03 0.02 
7 0.02 -0.02 0.02 0.02 
8 0.02 -0.02 0.02 0.02 
9 0.02 -0.02 0.02 0.02 
10 0.02 -0.03 0.01 0.02 
11 0.02 -0.03 0.01 0.03 
12 0.02 -0.03 0.01 0.03 
13 0.02 -0.03 0.02 0.02 
14 0.03 -0.03 0.03 0.03 
15 0.03 -0.02 0.03 0.02 
16 0.04 -0.02 0.04 0.04 
17 0.04 -0.03 0.05 0.05 
18 0.05 -0.03 0.05 0.05 
19 0.06 -0.09 0.06 0.07 
20 0.07 -0.06 0.07 0.11 
21 0.12 -0.05 0.12 0.20 
22 0.00 0.00 0.00 0.00 

T1 1 Fj ar(bestl0) FI PP(bestl0) Fj °r(best5) F°Ppr(best5) 

0 0.05 -0.17 0.06 -0.01 
1 0.08 -0.08 0.07 0.07 
2 0.08 -0.07 0.07 0.08 
3 0.08 -0.05 0.06 0.08 
4 0.07 -0.04 0.05 0.07 
5 0.06 -0.04 0.03 0.07 
6 0.04 -0.04 0.01 0.06 
7 0.03 -0.04 0.00 0.05 
8 0.03 -0.03 -0.01 0.02 
9 0.03 -0.02 0.00 0.02 
10 0.03 -0.02 -0.01 0.02 
11 0.04 -0.02 0.00 0.02 
12 0.05 -0.02 0.02 0.04 
13 0.05 -0.03 0.03 0.04 
14 0.06 -0.04 0.05 0.04 
15 0.06 -0.04 0.05 0.03 
16 0.07 -0.08 0.07 0.03 
17 0.07 -0.08 0.07 0.03 
18 0.08 -0.08 0.08 0.04 
19 0.09 -0.05 0.10 0.04 
20 0.11 -0.06 0.12 0.05 
21 0.20 -0.03 0.20 0.02 
22 0.00 0.00 0.00 0.00 

Tab. 14: Relative improvement using forecast combination of diversified multi level pre- 
dictions in comparison to the best individual forecast O g. 
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6.1 Reasons for Pooling 

The advantages and disadvantages of different linear combination models have 

been extensively discussed in Chapter 3 and 4. The fact that the optimal model 

often performs worse than the simple average in practical applications has initi- 

ated a long discussion (see Section 4.4). Bunn [Bunn 85] explained the effects by 

high estimation errors of the weights based on the fact that the covariance matrix 

of the forecast errors is not exactly known. He showed that the estimation error 

increases in cases of short time series, time-varying forecast errors or other insta- 

bilities. Other aspects influencing the expected error reduction by forecast com- 

bination are the number of combined forecasts, the general level of different error 

components as well as the level and distribution of error variances and the correla- 

tion among different input forecasts. Too short time series, time-varying forecast 

errors or other instabilities can result in inaccurate estimations and changes in er- 

ror variances and especially in error covariances. On the other hand, using the 

purely error variance based models or even the simple average result in suboptimal 

weights because they do not take the correlations between the forecast errors into 

account. 

We are looking for an approach that generates similar results to the ideal model 

but does not need to calculate covariance information. The approach of pooling 

represents an interesting option in order to achieve that goal. In order to motivate' 

this, we will shortly repeat and summarise three aspects of influences on combina- 

tion efficiency that are relevant for pooling. 
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6.1.1 Combination influenced by the number of forecasts to combine 

An increased number of forecasts to combine can lead to increased weight estima- 

tion errors. 

This topic has been discussed in Section 4.5.1. We have seen that it can easily 

happen that models are too complex and generate implausible predictions which 

lay outside of the expected range of the target variable. The inclusion of forecasts 

that add only marginal information should be dropped in order to avoid increased 

parameter estimation errors. Instead of combining all forecasts, it is therefore often 

advantageous to discard the models with the worst performance (trimming). 

6.1.2 Combination influenced by the level of total error variances 

If forecast error terms are smaller, the optimal weights can be estimated more 

accurately. 

A proper determination of the weights can be difficult for big values ö espe- 

cially if the error variance component 6 is big compared to the error bias compo- 

nent. Random impacts in the training data will influence the determination of the 

weights more than differences in the bias component. High impact of the chosen 

training set on the determined weights means unstable combination weights. De- 

tails related to this topic have been discussed in Section 4.4 and different Sections 

of Chapter 5. 

6.1.3 Combination influenced by homogeneity of error variances and error 

correlation 

Not only the general level of errors but the relation of error variance components 

and correlation among different forecast models is also very relevant in two impor- 

tant aspects. 

Homogeneous covariances can lead to high estimation errors if the optimal 

model is used. 
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The first aspect is that small differences in covariances increase the risk of 

high estimation errors. Errors in the expected covariance matrix can have a bigger 

impact on the matrix inversion. This has been shown by Bunn in [Bunn 85] and it 

has already been discussed in Section 4.4.1. 

The expected loss in combined forecast quality when using a more stable com- 

bination model (i. e. simple average) in comparison to the optimal model strongly 

depends on the homogeneity in the distribution and correlation of the error com- 

ponents 

The second aspect is related to the fact that depending on the range of error 

variances and correlations among all forecasts the use of simpler and more stable 

combination models and avoiding the estimation of the whole covariance matrix 

can lead to different levels of loss in the combined forecast. Similar values in error 

variances and correlation among all forecasts lead to low losses if a simpler model 

is used. A motivation and discussion of these dependencies can be found in Section 

4.4.2. 

6.1.4 Why pooling ? 

Based on the three previous subsections it can be said that in an effective combina- 

tion one should use 

1. a limited number of combined forecasts containing diverse information, but 

also containing 

2. low total error variance terms and 

3. homogenous error variance and correlation values in order to be able to avoid 

high weight estimation errors by using a simpler linear combination model 

without a high expected loss compared to the optimal model. 

Unfortunately, in our case of combining multi level forecasts none of these cri- 

teria would normally be fulfilled. If we use more than one diversification criterion 

the number of generated forecasts is large. Large noise terms and small numbers 
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lead to high total error variance terms. And we will show in the next sections 

that if we use different diversification approaches we cannot expect homogeneous 

covariances. 

The Idea of Pooling 

The approach of combination by pooling realises a combination task related to a 

given set of input forecasts F: ({y}) _ comb y by splitting it into different subtasks 

9F : (cg = {y}g C {y}) --º9 y followed by a combination F: ({9y}) --ºCO? nb y 

that carries out the final combination. The sets cg of input forecasts of the subtasks 

are called forecast pools or forecast clusters. 

The Advantage 

Ideally the subtasks 9F each contain some of the advantageous characteristics men- 

tioned above. For example let us assume that we have a clustering mechanism that 

groups the forecasts in relation to criterion 3 into clusters of a limited number of 

forecasts. The lower number of forecasts to be combined in each subtask leads to 

a potential decrease of the weight estimation errors in each combination because 

of criterion 1. In the first step we have the additional advantage of criterion 3 

and can therefore use a more stable combination model (like Fa" or Fvar) for the 

combination. In the second combination we profit from criterion 2, as a first com- 

bination step has already been carried out. In many cases we can also expect lower 

differences in error variances and covariances after the first combination. 

It is possible that the final combination F is again a combination using the 

approach of pooling. Following this idea we can generate complex multi step com- 

bination structures. Similar structures have been the subject of studies of Ruta and 

Gabrys [Ruta 05] in the context of classifier combination approaches. 
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6.2 Error variance based pooling 

The difficulty of pooling is related to the question of how to generate the pools. As 

we have difficulties to properly estimate covariance information, the clustering can 

not be performed directly on the covariance matrix without taking these difficulties 

into account. 

6.2.1 The pooling approaches of Aiolfi and Timmermann 

Aiolfi and Timmermann [Aiolfi 04] studied different approaches of clustering con- 

nected with different combination models and trimming. They used quantiles and 

k-means clustering based on past forecast performance in order to find the optimal 

number of clusters and the optimal separation points between the forecast sets. 

We refer here to the algorithm which they called CEW in [Aiolfi 04]. It gen- 

erates a combined forecast comb- based on a set of input forecasts {y} with an 

algorithm that can be summarised as follows: 

Algorithm 1: Fcew({y}) -ºcomb y 

1. order {y} -º {y,. } depending on the ranks of forecast performance meaning 

the total error variances rj2 

2. determine G clusters c9, g E [0 
... G -1] by k-means clustering based on 15,2 

3. remove the last cluster containing the worst forecasts (trimming) 

4. for each cluster c9, g=0... G-2 run a linear combination Fa" in order to 

achieve gy = Fav(cg) 

5. combine the results of the clusters to achieve the combined forecast Eby = 
Fvar({9y}) or COrnby = F°pt({9y}) after having potentially applied an ad-' 

ditional trimming of ({9y}) 

All approaches analysed by Aiolfi and Timmermann run a clustering which is 

purely based on information about error variance terms. Correlation information is 

interpreted as inaccurate and not taken into account at all. 
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nbr I level ah 2I dm ý bý 1 1 6,2 
00 i 0.0 0.25 0.85 0.3 1.4 
01 i 0.025 0.25 0.81 0.3 1.36 
02 i 0.05 0.25 0.74 0.3 1.29 
03 i 0.075 0.24 0.67 0.3 1.21 
04 i 0.1 0.22 0.66 0.3 1.18 
05 i 0.125 0.23 0.73 0.3 1.26 
06 i 0.15 0.25 0.74 0.3 1.29 
07 i 0.175 0.25 0.76 0.3 1.31 
08 i 0.2 0.25 0.83 0.3 1.38 
09 I 0.0 0.23 0.67 0.3 1.20 
10 I 0.025 0.22 0.67 0.3 1.19 
11 I 0.05 0.20 0.68 0.3 1.18 
12 I 0.075 0.20 0.54 0.3 1.04 
13 I 0.1 0.20 0.54 0.3 1.04 
14 I 0.125 0.20 0.58 0.3 1.08 
15 I 0.15 0.20 0.68 0.3 1.18 
16 I 0.175 0.20 0.69 0.3 1.19 
17 1 0.2 0.24 0.66 0.3 1.20 
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Tab. 15: Example for a set of multi level forecasts generated over two levels i and I and with 
different values related to the parameter ¢a. The example gives in the first column 
a number, in the second and third column the level and parameter information. 
The following three columns represent the error bias component, error variance 
component, error Bayes component and the total error variance. 

6.2.2 Example 

For the illustration purposes, in this example we consider thick modelling related to 

one parameter and two levels of learning for the other parameters. The parameter 

q« which is handled using thick modelling is related to the error bias component as 

described in Section 4.3.2. If we learn the parameters ¢, certain values of parameter 

, 0« generate forecasts with a higher error compared to other values (because of 

instabilities in the error variance term). Table 15 and Figure 44 show the error 

components and the total error depending on c5a and the level of learning. The 

best results are achieved by learning at the high level for parameter values between 

0.075 and 0.125. 

The covariances are shown in Table 16. The different level in the numbers 

related to the separated parts can be clearly seen. The example shows the typi- 

cal behaviour of our studied cases: we have a large set of input forecasts which 
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Fig. 44: Graphical representation of the errors given in the example shown in Table 15. 

I 2 3 4 5 6 7 8 
1.4 1 

.11.09 
1.1)9 1.08 1.07 1.1)9 1.1 1.1 

1.1 1-36 1.1)6 1.05 1.03 1.03 1.05 1.1)7 1.09 
1.1)9 1.06 1.29 1.09 1.06 1.45 1.05 1.09 1.08 
1.119 1.05 109 1.21 1.1)3 1.03 1.112 I 0.99 
LOX 1.03 1.1)6 1.113 1.18 1.06 1.06 1.116 1.13 
1.1)7 1.03 1.115 1.02 1.06 1.26 1.14 1. OX 1.1 
1.119 1.115 1.05 1 1.06 1.14 1.29 0.15 1.16 

1.1 1.117 1.09 0.99 1.06 1.119 0.15 1-31 1.3 
1.1 1.09 1.1)9 1.01 1.13 1.1 1.16 1.3 1-38 

0.72 0.58 0.54 0.54 0.57 0.53 0.52 0.53 0.5 
0.56 0.7 0.57 0.55 0.56 0.55 0.53 0.53 0.52 
11.54 0.6 0.68 0.55 0.53 0.55 11.53 0.54 ((. 52 
0.53 0.58 0.57 0.66 0.55 ((. 56 0.53 0.54 0.54 
0.53 0.56 0.56 0.55 0.71 0.5% 0.55 0.56 0.55 

0.55 0.55 0.55 0.55 0.55 0.72 0.57 0.5K 0.55 
0.56 0.56 0.55 0.53 0.52 0.57 0.69 0.6 0.5% 

0.56 0.57 0.55 0.55 0.54 0.54 0.55 0.69 0.6 
O. 56 0.57 0.54 0.57 0.55 0.54 0.53 0.56 0.67 

II 

--I 
0.200 

12 13 

Ri d2 
e 

RI62 
e 

14 15 16 
0.72 0.56 0.54 11.53 11.53 0.55 0.56 
0.58 11.7 (1.6 0.59 0.56 0.55 0.56 
0.54 0.57 0.69 0.57 0.56 0.55 0.55 
(1.54 0.55 0.55 0.66 11.55 0.55 0.53 
0.57 (1.56 0.53 0.55 0.71 0.55 0.52 
0.53 0.55 0.55 0.56 0.58 0.72 0.57 
0.52 0.53 0.53 0.53 0.55 0.57 0.69 
0.53 0.53 0.54 0.54 0.56 0.58 0.6 

0.5 0.52 0.52 0.54 0.55 0.55 0.58 
1.2 1 

. 
09 1.09 0. N9 0.87 0.86 1.07 

1.09 1.19 1.0B 11.9 0.91 0.88 1.08 
1.09 1.1 KK 1.18 0.91 0.92 0.9 1.09 
11.89 0.9 11.91 1.04 0.92 0.95 0.92 
11.87 11.91 0.92 0.92 1.04 0.94 0.93 
11.86 11.88 0.9 0.95 0.94 1.118 11.93 
197 1.118 1.09 (1.92 0.93 0.93 1.18 
1.07 1.07 1.08 11.9 0.9 0.91 1.08 
1.07 1.1)7 1.117 0.9 0.9 0.9 1.1)7 

Tab. 16: Covariance matrix of our example 
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1.117 
I. 07 
L013 
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0.91 
1.08 
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1. ux 

are characterised by diverse total error variances and inhomogeneous covariances 

depending on how the forecasts have been generated. 

We will now see why using a flat combination on such a set of input forecasts is 

risky and discuss the approach of pooling as a promising alternative. The example 

will later be used again in order to illustrate advantages and weaknesses of different 

pooling methods in relation to our forecasting problems. 

The ranks and clusters for each prediction of our example related to algorithm I 

are shown in columns "r" and "g" of Table 45. We achieve a first cluster containing 

all high level predictions with most stable settings of the parameter 0, A second 

cluster contains other high level forecasts as well as two low level forecasts. The 

worst predictions are removed by trimming. Figure 46 shows the final combination 

17 
0.56 
0.57 
0_54 
0.57 
0.55 
0.54 
0.53 
0_56 

0.67 
lÄ7 
1.07 
1.07 
(1,9 
0.9 
0.9 

1.07 
l. ()8 
1.2 
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structure. 

nbr I level 1 ßa 1 1 ae 1 1r Ig 
00 i 0.0 1.4 17 - 
01 i 0.025 1.36 15 - 
02 i 0.05 1.29 12 - 
03 i 0.075 1.21 10 1 
04 i 0.1 1.18 3 1 
05 i 0.125 1.26 11 - 
06 i 0.15 1.29 13 - 
07 i 0.175 1.31 14 - 
08 i 0.2 1.38 16 - 
09 1 0.0 1.20 9 1 
10 I 0.025 1.19 6 1 
11 I 0.05 1.18 4 1 
12 I 0.075 1.04 0 0 
13 I 0.1 1.04 1 0 
14 I 0.125 1.08 2 0 
15 I 0.15 1.18 5 1 
16 I 0.175 1.19 7 1 
17 1 0.2 1.20 8 1 
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Fig. 46: Resulting combination structure 
Fig. 45: Ranks and clusters for the exam- for the example based on algo- 

ple. rithm 1 proposed in [Aiolfi 04]. 
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We will now analyse what effects the use of simpler combination models has 

on error variance when it is based on pools of forecasts in comparison to the op- 

timal linear weights. We will analyse different cases of variance and covariance 

distribution in order to be able to evaluate the consequences for the combination of 

multi level forecasts. 
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6.2.3 Combining two forecasts 

As we have already mentioned in Section 4.4.2 Timmermann [Timmermann 05] 

has derived the loss in the quality of the combined predictions between the optimal 

model and the optimal model with assumption of independence using an example 

of two forecasts. 

Figure 29 illustrates on the example of two forecasts that it is risky to combine 

forecasts for which the errors differ significantly without taking into account co- 

variance information. The biggest losses occur for small values of variance ratio 

(meaning big differences in the forecast errors) in connection with high correlation 

values. If we have, e. g., error variance 252 = 0.5 * 152, and error correlation 0.7, we 

already loose 10% of forecast accuracy according to equation (4.12) when using 

Fva r instead of F°? 't. 

Therefore, we can state that forecasts with significantly different quality of er- 

rors should not be combined without taking into account the covariances. 

For forecasts with about the same level of errors the combination of two fore- 

casts is much more stable. As it can be seen in Figure 29, if the ratio of the 

variances of the two forecasts is near 1, the graph reaches a plateau where the 

covariance between the forecasts does not matter. 

The approach of Aiolfi and Timmermann to combine only forecasts with sim- 

ilar error variances is therefore a good idea seen from the perspective of only two 

forecasts to be combined per pool. We will now analyse if this behaviour can be 

generalised. 

6.2.4 The general case: combining more than two forecasts 

Let us consider a more general case of a combination of more than two forecasts. 

Unfortunately, in this case it is not possible to state that for the combination of 

more than two forecasts the covariance does not matter if we combine forecasts 

with the same level of error variances. It is the homogeneity of covariance values 

that determines the potential loss of forecast quality. We will show using three 
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examples that criterion 3 of Section 6.1.4 is critical for the quality of the combined 

forecasts using the pooling approaches of Aiolfi and Timmermann. 

Two examples of extreme cases concerning homogeneity 

Let us assume that we have M forecasts and want to combine these given a covari- 

ance matrix E. The optimisation problem to solve is the determination of a vector 

of linear weights w fulfilling min(w'Ew) under the condition w'i =1 where 

77 = ({1})M represents the [M * 1] unit vector. Generating the Lagrangian and 

solving the first order condition lead to the well known formula (3.11) provided in 

[Bates 69] 

w= 
(1 

L% 
ý 

ý77 

J" 
(6.1) 

If we have optimal homogeneity meaning the same error variance a2 and corre- 

lation e=, for all forecasts to be combined, the inverse of the covariance matrix 

is given by 

E-1 _ (6.2) ý- 
a2(1 -1 o) 

*(1- 
e 

1+ (Al - J)-7177'). Lo 

Inserting this into (3.11) leads directly to w= (-1) rl. Details related to the 

proof of this fact can be found in [Timmermann 05]. 

If we have forecasts which all have about the same error variance and covari- 

ance level, then the resulting optimal weights are equal weights. 

It follows that for totally homogenous covariances we have no loss in using the 

error variance based model or the simple average model compared to the optimal 

model. 

Let us now assume that among the M forecasts we have M-1 identical ones 

(meaning o= 1) and one forecast which is uncorrelated to all of the others. The 

relative error increase in using the simple average model can be described by 

l=2*M-I-(M-2)*(M-1). 
M2 (6.3) 
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Fig. 47: Graphical representation of equation 6.3. 

A graphical representation is shown in Figure 47. It means that if reliable infor- 

mation about correlation was available, the single uncorrelated forecast could be 

much more effectively used especially when there are many other correlated fore- 

casts combined at the same time. 

Assumption of two homogenous groups of forecasts 

We assume again equal error variances and analyse covariance effects in order to 

see what can happen during the combination of one cluster related to the approach 

of Aiolfi and Timmermann. We will now analyse a special case concerning the 

structure of the coveriance matrix which, as we will see later, plays an important 

role in the case of multi level forecasting. We expect two sub-matrices with perfect 

homogeneity concerning covariances. 

We assume 

E= 

with 

1F I3E 
3E TI2r, 

/ a2 lP 
... 

lP 
I 

lE E RMl"Ml = 

"" 
1P 

1P a2 

( lp... l p bZ ) 

(6.4) 

(6.5) 
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2EEIZM2xllt2= 

both with optimal homogeneity, and 

3E E ýM1xM2 = 

t a2 lP 
""1'\ 

lP a2 
(6.6) 

" 
1P 

lp 
.. 

1p dZ J 

2p 3p 
...... 

3p 

32 pp. 

3p 
, .. 

3p 2p 3p 
.,, 

3p 

3p 
............... ... 

3p 

3p 
............... ... 

3p J 

containing the value 2p in M3 "diagonal" elementsl and the value 

3p=1 p+2p-a2>0 

(6.7) 

(6.8) 

otherwise. The matrices 1E and 2E represent each a group of forecasts with equal 

variances and homogeneous covariances. They differ only in the size of the ma- 

trices. The matrix 3E defines the relation between the two groups of forecasts in 

terms of covariances which is again expected to be homogeneous except the rela- 

tion between special pairs of forecasts for which the relation is represented in the 

"diagonal" elements. 

If we run the combination using the simple average model and achieve weights 

w= 
(V1: 1FA12) rl. We can estimate the total error variance of the combined fore- 

cast by (4.1) 

camba2 = 
E 

wmwn(m'nP) (6.9) 

m=1... 2M, n=1... 2M 

1 With "diagonal" we mean here that there is never more than one of these values per row and per 
column. 
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and achieve for the equal weights 

cotnba2 1 
* (M1 + M2)2 

[(Mi + M2 - 2M1M2 + 2M3)j2 

+((Mi + M2)2 - Ml - M2 - 2M3) (1 p) 

+2M1M2(2p))] (6.10) 

Let us now assume we do not group all of the forecasts as it would be done 

by Aiolfi and Timmermann, but split them corresponding to the two groups of 

forecasts with homogeneous covariance values related to 1E and 2E. For each of 

the group we have perfect homogeneity with respect to their covariance values, 

we can therefore use weights w1 =[l and w2 = 
[-L] 

12 without having 
Ml A12 

to expect any loss compared to the use of the optimal model. We achieve 152 = 
M152+ M (1p) and 252 = X52+ M (1p). That leads using FvIr to the total 

linear combination weights (including the two combinations) w= lw1Jm1 
[W2]M2 

2 e2 ,1 e2 

with wl = Ml *] b'2, w2 = M2 * 6i-- and together with (6.9) to 

com6, T2 
= (Mi * wi + M2 * w2) * 82 

+ (wi *M1*(M1-1)+w2*M2*(M2-1))1P 

+ 2M3wiw2(2p) 

+ (2M1M2 - 2M3)w1w2(iP +2 p- a2) 

The relative error increase 
comb52 

(6.11) l= 
corn b52 

depending on 1P, 2p (restricted to values fulfilling (6.8)) and assuming 62 = 1, 

All = 2, M2 =6 and M3 =0 is visualised in Figure 48. We will later see that this 

corresponds to the case of our example from Section 6.2.2 (except for the scaling of 

the whole covariance matrix with the error variance). Figure 48 shows that relevant 

[w2]a12 
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Fig. 48: Graphical representation of equation 6.11 assuming 
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prediction accuracy loss (in the visualised example up to 25`( ) can ensue by using 

the approach of Aiolfi and Timmermann instead of using an additional splitting 

because of the inhomogeneities in the covariance matrix. 

6.3 Issues of error variance based pooling for multi level tonecasts 

Let us assume we use the approach of Aiolfi and Timmermann for our previously 

defined set of individual forecasts (Figure 45) generated using different levels of 

learning as well as thick modelling concerning a set of parameters (I)" and different 

function spaces HA.. We achieve a large number of forecasts, so criterion 1 of 

Section 6.1.4 is not fulfilled. In [Riedel 05a] we have seen that forecasts generated 

with learning at the low level could be unstable (high error variance term because of 

extremely noisy training data), learning at the high level can lead to insufficiently 

adapted forecasts (high error variance term because of missing adaptation to special 
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features that can be observed at the low level). Both effects can lead to high total 

error variances for some of the generated forecasts. Suboptimal parameter values 

used for thick modelling or inadequate functions at one of the levels can have 

similar effects. Therefore, we have to expect that criterion 2 is also not fulfilled. 

Both problems can be solved with the approach of Aiolfi and Timmermann. 

Let us now consider the third criterion, the homogeneity of the covariances. 

We have seen that for good results of the approach of Aiolfi and Timmermann this 

criterion is the critical one. We can get a better idea about expected covariances by 

analysing the effects of different kinds of forecast diversification (using different 

levels of learning, thick modelling and using different functions hk(; )) on different 

independent components of the achieved forecast errors. 

As we will see in Section 6.4 the analysis carried out in Section 6.3.1 leading 

to a better understanding of the effects of some forecast diversifying procedures 

on various error components will also enable us to take advantage of information 

contained in the covariance matrix without the need to calculate the covariance 

values themselves. 

6.3.1 Impact of forecast diversification on the covariance matrix 

Let us assume that we learn an optimal parameter set in i with a given function' 

space in order to achieve h(x, ý) = hk, cba (x, i ¢) described by the general type 

of function indicated by index k and the set of parameters 0a used as constants 

in h(; ). We have seen in Section 4.1.3 that the total error variance 9li5e can be 

decomposed into the independent components 

Rij2 
_ ah +Ni dý -I- 8ý (6.12) 

We have shown in [Riedel 05a] that learning at the high level I leads to a decom- 

position 
I{I 

be - sh +ý-lI aý + aý (6.13) 



6. Pooling for Combination of Multi Level Forecasts 197 

meaning that we have differences only in the error variance component. 

We will now describe impacts of different kinds of forecast diversification on 

the covariance matrix by using the example of forecasts diversified by thick mod- 

elling together with forecasts with 0 learned at different levels in one cluster. 

The impact of diversification by using different levels of learning 

Let us first assume two forecasts ly = hk, Oai (x, i 0) and 2y = hk, 4,, (x, ' ) where 

we have differences only in the level of learning using the same function space that 

we will call fi. As we want to analyse covariances of forecasts relating to the 

same pool corresponding to the pooling approach of Aiolfi and Timmermann, we 

also assume identical total error variances 

7-c, ia2 
_9-(lI a2 

e-e (6.14) 

It can easily be seen that (5.19) and (6.13) represent decompositions for U1'öe and 
711 lse and that these differ only in the error variance component. We have therefore 

? {lia2 
-? 

{il a2 
m- 0* (6.15) 

The covariance 7ili,? illpe between 1F, and 2y; can be achieved by comparing 

again equations (5.19) and (6.13). Because of identical bias component and Bayes 

component (they both do not depend on the level of learning) we have 

? {ii, hllPe 
= Öh -ýý-ll`'1ýlil Pý -I- tS2 i y. (6.16) 

The covariance 7i", 7i"po of the error variance component is determined by the 

similarities between yz and yj (influenced among others by the aggregation param- 

eter )i). If we assume significant differences between the levels we can also expect 

clearly distinctive values <7(1t J2 01 
Equation (6.16) shows that differences between the forecasts ly and 2y can 
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only be found in the error variance component. We can express the level of "diver- 

sity" E) (1Y-92 y) as the uncorrelated part of the total error variance in relation to the 

total error variance. Using (5.19) and (6.16) we get 

12.. 
ý[li, r{ilPe 9-(izbý 

-7-11:, 
l{lI Pý 

ý(yý y) =1- rcli62 = xlib2 
ee 

(6.17) 

This representation has the advantage that it clearly shows that only the error 

variance component is responsible for any differences between the forecasts. If 

the levels are very different, we have a low covariance in the error variance com- 

ponent and with that very diverse predictions, which means a high improvement 

in forecast accuracy when the two forecasts are combined. The relation to the to- 

tal error variance also indicates that large improvements in forecast accuracy can 

only be achieved if the error variance component is big in relation to the two other 

components. 

The impact of diversification by using thick modelling 

Let us now assume a third forecast 3y = hk, ýý2 (x, i 0) using another function space 

H2 and level i of learning. Let the parameter values be diversified as described in 

Section 4.3.2, this means that the parameter does not influence the complexity of 

the function space. As the differences between 1-( and ß-l2 are only caused by 

changes in predefined parameter values, we can assume similar complexity for 

learning meaning 
9-llia2 

_912i b2 0- 0' (6.18) 

We want to study the effects when 3Y -belongs to the same cluster as 1g and 2y, 

we therefore assume identical total error variances 

7"i1ij2 
_712i a2 ee (6.19) 

As the Bayes component does not depend on H, it follows from (5.19), (6.18) and 
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(6.19) that we have also identical bias 8h1 = h. 

Let us now analyse the covariance 7-lii, 7{2ipe. As we have used different func- 

tion spaces we can have relevant differences in the error bias component. On the 

other hand we have parameter settings learned at the same level using the same set 

of noisy input data so that we can have quite highly correlated error variance terms. 

We get 
W1='Wz iPe 

= Ph,, hz +iil't,? iyi 
Po + S2 

V. (6.20) 

The differences in the error bias as well as in the error variance component 

are influenced by the differences between Hl and H2. If we assume that relevant 

differences between the function spaces exist, we can also expect clearly distinctive 

values Phl, h2 < ahi for the error bias component. On the other hand, because 

of (6.18) and taking into account the fact that we learn using the same training 

data we have to expect a correlation factor near 1 in the error variance term. This 

corresponds to Granger and Jeon [Granger 04] who state that using the approach 

of thick modelling we often have the relevant differences in the error bias term in 

connection with an only slightly changing error variance term. We can therefore 

approximate 7iii, 7i2=pe by 

9[1i, 7{ziPe ý Ph1, h2 +rlii 8ý .} ay. (6.21) 

We see that using the different function spaces W1 and R2 leads to uncorrelated 

parts in the error bias component in opposition to the use of different levels for 

learning, where we have uncorrelated parts only in the error variance component. 

We get the "diversity" of 

3 
hli'%2iPe ahi 

0(1- 
- Phl, h2 

l y) = 1- 
7i ^' , lia2e 'ý ? ilia2e (6.22) 

We can clearly see that large improvements of the forecast accuracy in com- 

bining the forecasts can only be achieved if the bias error component is relevant 
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compared to the other two components and if the parameter change leads to rele- 

vant changes in the bias. 

The resulting impact of diversification by thick modelling and different levels of 

learning 

Let us now analyse the relation between forecast 2y and forecast 3y. We already 

know that the forecasts belong to the same pool, because of (6.14) and (6.19) it 

follows that 
7-[1IJ2 

_912i a2 e e" (6.23) 

The error bias component is determined by the used functions, while the error 

variance component by both, the functions as well as the level of learning. We get 

7-111,7-12tPe 
= Phl, h2 -ýý{11,7-Lzi Po + ab" (6.24) 

If we assume again that the difference between R, and 1-12 does not have a big 

impact on the error variance component we can approximate 

Hil, r{2iPe ý Phl, h2 -i-7{11,7-1it Po + 8y. (6.25) 

We see that now we have uncorrelated parts in the bias as well as in the error 

variance component. We can therefore expect a significantly lower total covari- 

ance. The relation to covariances 7-lii, l(1I pe and fhi, f2ipe can be expressed by 

again using the diversity measure. We have 

23) 
xlI'ý2i Pe ý( y, y=1- ? -liia2 e 

2 li 2 
-? 

{1I, 7ýtli Iýh, - Phi, h2l + 8ý Pol 
x, ib2 e 

(6.26) 
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which leads with (6.17) and (6.22) to 

O(2y, 3 y) ,: tj O(1y, 2 y) + o(ly) 3 y). 

and 

ti 
HiI, xziPe .., hii, ýil Pe i-ýl: 'ýZy Pe 'W1t ae 

" 

(6.27) 

(6.28) 

The achieved diversity shows that we risk to have strong inhomogeneities in 

the covariance matrix if we use more than one diversification criteria per pool. 

Equations (6.16) and (6.21) show that even the application of a single but chang- 

ing diversification criterion like between forecast pairs (1 y, 2 y) and (1y, 3 y) can 

lead to different impacts in relation to the error components and therefore gener- 

ate significantly different covariance values. Even in the lucky case when the use 

of two diversification criteria leads to comparable covariances meaning that, e. g., 

fii,? iilPe NNli, 7i2i Pe and with that 

O(1y, 2 y) ^ ©(1y, 3 y), (6.29) 

we get the problem that automatically such pool contains at least one pair of fore- 

casts generated using both diversification criteria which can lead to a significantly 

different covariance value. This can be seen on the example of N1I %2' pe and equa- 

tion (6.27) leading to 

o(2y)3 y) ^2* O(1yº2 (6.30) 

under assumption (6.29). 

Let us assume we have a larger set of forecasts {y} with similar total error vari- 

ance given and that this set represents the two diversification criteria as discussed 

in 6.3.1. Then we can write {y} as {y} = {'y} U {I y} representing different lev- 

els of learning with each pair of forecasts in 1{y} or 2{y} differing only by thick 

modelling. The covariance between each pair of forecasts in jig} or in {1y} can 

be described similarly to equation (6.21) which means that we can expect homoge- 
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neous covariances in {=y} as well as in {Iy}. The covariance of any pair of fore- 

casts representing different levels of learning can be estimated similarly to (6.28). 

This leads to a covariance structure similar to the covariance matrix analysed in 

Section 6.2.4. We have shown that combining pools of forecasts characterised by 

this type of covariance matrices can lead to big losses compared to the approach 

of applying an additional splitting corresponding to the clusters that relate only to 

one diversification criterion. 

The problem of inhomogeneous covariance matrices is not only related to thick 

modelling and multi level learning. Similar inhomogeneous covariance matrices 

can occur if we combine, e. g., forecasts generated using different function spaces 

fk in order to represent the option to use a more risky model together with learn- 

ing at different levels. Summarising, we can state that if we pool the multi level 

forecasts using the method of Aiolfi and Timmermann, we risk large forecast ac- 

curacy losses in comparison to a forecast combination combining always forecasts 

that used only one diversification method. 

Example 

The relation of different forecasts to the level of learning and the value of 0a are 

visualised in Figure 49. 

Let us consider cluster 1 (the grey one) generated with FCEW. The covariance 

matrix related to this cluster (containing the forecasts ordered by its number) is 
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Fig. 49: Graphical representation of the errors given in the example shown in Table 15. 
Different line styles represent different clusters generated with F"'`° 

. 
The up- 

per lines are the errors learned at the low level i. the lower lines represent errors 
learned at the high level. 

given by 

11: 
= 

1.21 1.03 10.54 0.55 0.55 0.53 0.55 057 

1.03 1.18 10.57 0.56 0.53 0.52 0.54 0.55 

0.54 0.57 1 1.2 1.09 1.09 1.07 1.07 1.07 

0.55 0.56 11.09 1.19 1.08 1.08 1.07 1.07 

0.55 0.53 11.09 1.08 1.18 1.09 1.08 1.07 

0.53 0.52 11.07 1.08 1.09 1.18 1.08 1.07 

0.55 0.54 11.07 1.07 1.08 1.08 1.19 1.08 

0.57 0.55 11.07 1.07 1.07 1.07 1.08 1.2 

1.2 1.07 10.55 0.55 0.55 0.55 0.55 0.55 

1.07 1.2 10.55 0.55 0.55 0.55 0.55 0.55 

(6.31) 

/ 

lzt 

0.55 0.55 11.2 1.07 1.07 1.07 1.07 1.07 

0.55 0.55 11.07 1.2 1.07 1.07 1.07 1.07 

0.55 0.55 11.07 1.07 1.2 1.07 1.07 1.07 

0.55 0.55 11.07 1.07 1.07 1.2 1.07 1.07 

0.55 0.55 11.07 1.07 1.07 1.07 1.2 1.07 

0.55 0.55 11.07 1.07 1.07 1.07 1.07 1.27 
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It can be seen that the level of covariances differ in different parts of the matrix 

separating different levels of learning. The approximation corresponds to a matrix 

of a structure as discussed in the Section 6.2.4 with All = 2, A12 = 6, M3 = 0, 

62 = 1.2 and 1p = 1.07. The upper left part and the lower right part representing 

substructures 1E and 2E contain forecasts differing only by the choice of qa. It can 

be seen that these substructures are highly correlated, but in a very homogeneous 

manner. The remaining parts represent 3E and 3ET indicating differences in the 

level of learning. In this example there are forecasts where the parameter c5a is 

identical meaning that all forecasts differing in the level differ also concerning the 

parameter value. That is why the "diagonal" elements containing a clearly higher 

covariance values compared to the other elements disappear in that substructure for 

our example. 

Following (6.11) with this data leads to l ^ý 1.07 which means that we loose 

about 7 percent of forecast accuracy if we combine the cluster without an additional 

splitting of the covariance matrix because of inhomogeneities based on the different 

error decomposition relating to the different diversification criteria. 

6.4 Pooling based on the Distance in the Forecast Generation Space 

We propose here an alternative pooling approach especially for multi level forecasts 

that takes into account some of the information that we have about the generation 

of the forecasts. If high quality covariance information is available, we can use it 

directly in order to generate clusters. We consider here the risk because of quickly 

changing environments, very noisy training data or frequently occurring structural 

breaks covariances may not be measured properly. An additional very relevant 

reason of not using covariance values directly is the increased calculation time that 

is needed in order to calculate the matrix and to carry out the clustering. Instead of 

using covariance values directly, we use the information which we have about the 

forecast generation process as an additional indicator in order to generate clusters 

which are characterisised by more homogeneous covariances. 
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6.4.1 Definition of the Forecast Generation Space 

Definition (Forecast Generation Space) 

Let yl E Rn be a time series to be predicted given a set of K function spaces 

(Ilk) and a set 4C R"L" of parameters represented by thick modelling. 

Let further ICN be the set containing indices for the used levels of learning 

{i, I}, let 1C = {1... K} CN be the set of indices of all used function spaces Ilk 

and M'11 C N"`° be an index for each used value of the parameters q E'°. 

Then the forecast generation space S=IX 1C X . M° C N'O. +2 is a unique 

description of a forecast generation process for y= concerning the used function 

space, predefined parameter values and the used level of learning. 

In the following we will represent each forecast for y; as syt, sES in order to 

indicate details related to its generation. 

For our example we have I= [0,1] (index 0 representing i and index 1 

representing I), K= [0] (in this example we use only one function space) and 

Ma = [0, 
... , 4] representing the index of the five used parameter values for ¢a. 

Table 45 contains in column "s" the description of each of the forecasts in space S. 

Let us now analyse the expected covariances between the errors of a pair of 

forecasts (s1yi, s2 yt). We have seen in the previous example that each difference in 

each dimension can have different effects on the correlation between different error 

components. If sl and s2 differ only in the setting of one parameter, we expect a 

different correlation compared to differences in more than one dimension in S. 

That is why we introduce a distance measure for elements in S in order to 

describe expected similarity in the error decomposition. 

Definition (Distance in the Forecast Generation Space) 

Let sl, s2 E S. Let further in the following D indicate an unspecified dimen- 

sion in S and SD the value of dimension D in any element sES. 



6. Pooling for Combination of Multi Level Forecasts 206 

1 1 00 1 01 1 02 1 03 1 04 1 05 1 06 1 07 1 08 1 091 101 11 1 121 131 141 15 1 16 17 
00 0 1 1 1 1 1 1 1 1 1 2 2 2 2 2 2 2 2 
01 1 0 1 1 1 1 1 1 1 2 1 2 2 2 2 2 2 2 
02 1 1 0 1 1 1 1 1 1 2 2 1 2 2 2 2 2 2 
03 1 1 1 0 1 1 1 1 1 2 2 2 1 2 2 2 2 2 
04 1 1 1 1 0 1 1 1 1 2 2 2 2 1 2 2 2 2 
05 1 1 1 1 1 0 1 1 1 2 2 2 2 2 1 2 2 2 
06 1 1 1 1 1 1 0 1 1 2 2 2 2 2 2 1 2 2 
07 1 1 1 1 1 1 1 0 1 2 2 2 2 2 2 2 1 2 
08 1 1 1 1 1 1 1 1 0 2 2 2 2 2 2 2 2 ý1. 
09 1 2 2 2 2 2 2 2 2 0 1 1 1 1 1 1 1 1 
10 2 1 2 2 2 2 2 2 2 1 0 1 1 1 1 1 1 1 
11 2 2 1 2 2 2 2 2 2 1 1 0 1 1 1 1 1 1 
12 2 2 2 1 2 2 2 2 2 1 1 1 0 1 1 1 1 .1 13 2 2 2 2 1 2 2 2 2 1 1 1 1 0 1 1 1 1 
14 2 2 2 2 2 1 2 2 2 1 1 1 1 1 0 1 1 1 
15 2 2 2 2 2 2 1 2 2 1 1 1 1 1 1 0 1 1 
16 2 2 2 2 2 2 2 1 2 1 1 1 1 1 1 1 0 1 
17 2 2 2 2 2 2 2 2 1 1 1 1 1 1 1 1 1 0 

Tab. 17: Distance matrix related to the example shown in Table 15 depending on the posi- 
tion in S. 

Then the distance 0: SxS -º N is defined as 

0(sl, s2) _ 
1: 0: s1D = s2D 

DE[o,..., ma+2] 1: otherwise 
(6.32) 

The distance expresses the number of dimensions of the forecast generation 

space in which the forecast generation differs. The matrix of pairwise distances 

represents a kind of simplified version of the covariance matrix which we can use 

for pooling. Table 17 shows the distance matrix related to our example given in 

Table 15. 

6.4.2 The Clustering Algorithm 

Seen from the covariance aspect, we should only cluster predictions with a pairwise 

distance of 1. Choosing elements including a distance larger than 1 would mean 

that we risk the inhomogeneities in the covariance matrix as we have described it 

in the preceding sections. 

In contrast, pairwise distance of 1 for all elements per cluster means that the 
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elements differ only in exactly one dimension D which promises a more homo- 

geneous covariance matrix. If the dimension D has only a range of 2, we do not 

risk any problems because of the covariance if the variance ratio is close to I (see 

Section 6.2.3). For larger ranges we can expect homogenous correlation between 

different error components at least in the case of thick modelling. As this again 

means that all elements s b, 
b; D of all other dimensions are constant per clus- 

ter, each cluster can be described by an element of the space S/D meaning space 

S reduced by dimension D. 

The proposed clustering can therefore be interpreted as an aggregation of one 

dimension in the forecast generation space. 

In order to avoid too many variations in the error variances in such sets of 

forecasts, we follow a trimming strategy and eliminate all those forecasts with 

relatively bad quality related to that dimension (e. g. we discard the obviously bad 

parameter values for a given model at a given level or predictions at completely 

unstable levels for a given model with given parameter settings, etc. ). 

The algorithm realising a multi level fusion F"P of a set of forecasts {8yt} 

related to a given forecast generation space S into a set of forecasts { yi} repre- 

senting the clusters can be summarised as follows. 

Algorithm 2: FmlP({sy1}, S) -º ({sy1}, S) 

1. select a dimension D of S that should be aggregated 

2. set S= S/D as the forecast generation space of the cluster results 

3. for each 9ES: cluster cs = {sy; : s/sD = s1 

4. remove the worst forecasts using a trimming procedure per cluster c9 

5. for each cluster cs run a linear combination F in order to achieve the forecast 

ey=_Fý CI) 
Depending on the strength of the used trimming strategy the simple average 

model or the optimal model with assumption of independence can be chosen as 
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combination model F. For our application we have used a strong trimming. We 

have not accepted more than the best three forecasts per cluster. All forecasts of 

which the total error variance differed more than 5% of that of the best forecast of 

the cluster have been removed as well. 

Example 

Let us carry out the clustering related to our example shown in Table 15. We start 

with S=IxKx Ma = [0,1] x [0] x [0,... 
, 8] as described above. 

Step 1: We select D=2 meaning that the aggregated dimension is M. 

Step 2: The resulting forecast generation space is S/{eta} =Ix 
K={(0,0), (1,0)}. 

Step 3: We generate the cluster : 

" C(o, o) = 
{8yi 

: s/sD = (0,0)} 

_ {(0'0'0)yi'(0'0'1) §7,9(0,0,2) y: ý ... , 
(0,0,8) yz} 

" c(1, o) = {8yi : sIsD = (190)1 

_ 
(1, Q0) ^. (1,0,1) ^ (1,0,2) ^ (1 0,8) yi} 

Step 4: We trim the clusters by choosing the best predictions per cluster. Only 

up to three forecast are selected per cluster. All forecasts for which the total error 

variance differs by more than 5% in comparison to that of the best forecast of the 

cluster, are removed as well. 

" C(o, o) = {(p'p'3)yi, (p'p'4) yi} 

" C(lip) = {(1'p'3)2Ji(1,0,4) yi'(1,0,5) yi} 

Step 5: We run the combination for each cluster 

" C(0,0) _ 1(0'0'3)2Jie(0'0'4) g} --, 
(0,0) gi 

" c(lip) _ {(1,0,3)g,, (1,0,4) g'(1,0,5) yi} -'(1, 
p) yi 
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The combination of the results can be carried out in a second step. 

Based on (6.9) we achieve with this structure a total forecast error of 0.816 in 

comparison to a value of 0.877 achieved with the structure of Aiolfi and Timmer- 

mann shown in Figure 46. This means a reduction of 6.9% of the total forecast 

error. 

(03)-(0,0,3) yi (03)-(0,0,3) yi 

(0'0)gJi 

(04)-(0,0,4) yi (04)-(0,0,4) yi 

(12)-(1,0,3), 
�i 

r 

I (10)-(1'0'lýyi 

(11)-(1,0, 
F-º 

(15)-(1,0,6)yz 

(16)-(1+0+7) yt 

(17)-(1'°'8) yi 

(12)-(1,0,3) yi 

�i-i 
(13)-(1,0,4)g, 

(14)-(1,0,5)yz 

-W Icom6yz 

(1O); 

I com6yi 

(13)-(1,0,4)yi 1yi 

(14)-(1,0,5)& 

Fig. 50: Comparison of the achieved combination structures. The left structure is the com- 
bination structure achieved with the approach of Aiolfi and Timmermann for our 
example with the error variances given in Table 15 and covariances given in Table 
16. The right structure is the structure achieved using the information about the 
forecast generation space. The input forecasts are described first by the number of 
the forecast in Table 16, then the position in the forecast generation space is pro- 
vided as additional inormation (for instance (12)-(1,0,3)yi means forecast number 
12 with position (1,0,3) in the forecats generation space). 

Figure 50 shows the achieved combination structure in comparison to the struc- 

ture achieved with the algorithm of Aiolfi and Timmermann that we have already 
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shown in Figure 46. In order to be able to compare the structures we have labelled 

and ordered the forecasts per cluster depending on their position in the forecast 

generation space. It can be seen that the second cluster is identical. In the first 

cluster the two first forecasts are also contained in both versions of pooling, but 

the remaining forecasts have been removed by our method. We can see that this is 

beneficial by looking at the position in the forecast generation space of these fore- 

casts. All of the removed forecasts have been generated at the high level. As they 

do not represent the best forecasts at this level and we have clearly better forecasts 

generated at this level included in the second pool, these forecasts do not contain 

relevant diverse information. Including them has the effect that the other two fore- 

casts of the same pool get a lower total combination weight. As these two forecasts 

do contain diverse information because they have been generated at level i, these 

forecasts have not high enough influence in the structure of Aiolfi and Timmer- 

mann. So summarising once more, the information about the diversity cannot be 

achieved by considering only the total error variances. Considering the informa- 

tion about the forecast generation, on the other hand, enables us to make certain 

assumptions about potential diversity which as illustrated has led to the increased 

forecast accuracy. 

6.4.3 Generation of multi step combination structures 

As we have mentioned, the proposed pooling represents an aggregation of one 

dimension in the forecast generation space. The result of a pooling related to a 

dimension D is again a set of forecasts the generation of which can be defined by 

the forecast generation space S/D. If S/D contains only one element (meaning all 

exsting dimensions have already been aggregated or have the range 1), the pooling 

has generated a final result which can be used as the final combined forecasts. 

Otherwise, we can combine the remaining forecasts using a flat combination. But 

as the number of resulting forecasts can still be big, there is the other option to 

repeat the pooling approach based on S/D, a chosen dimension D 54 D, etc. 
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This idea leads to an approach of the successive generation of pools and so the 

generation of multi step combination structures. Each step leads to the reduction 

of one dimension of S so that the total number of steps is defined by the dimen- 

sionality of S. The procedure of the generation of the structures can be described 

as follows. 

Algorithm 3: Fmlps({syz}, S) -ºcomb yz 

1. set S° = S, q=0 (the step), Y° = {8} 

2. while q< ma +2 and ISgj > 1: 

(Sq+1, Yq+1) = F11P(Sq, Yq), q=q+1 

3. set combyz = yq 

Figure 51 shows an extract of the resulting structure for an example containing 

more than one function space (K = 3), two parameters controlled by thick mod- 

elling (ma = 2) and S= [0,1] x [0,... 
, 3] x [0,... 

, 10] x [0,... 
, 8]. In this 

example we have again used the trimming approach of selecting always the best 

three forecasts per pool. 

6.5 Determining Pools based on the Estimated Covariance Matrix 

We have seen that in each step algorithm F'1 needs the information which dimen- 

sion D is used for the next step of pooling. In the example shown in Figure 51 we 

first combine dimension D3, then dimension D4 and so on. 

The question of which dimension to choose next is a crucial task. If we assume 

covariance information as not reliable we do not have the needed information in 

order to make this decision on a theoretical basis. The best order can then only be 

determined on the basis of the resulting forecasts. One option is to carry out an 

experimental study during a phase of data analysis. We: will discuss automatic and 

adaptive alternatives in the next chapter. 

But what to do if good covariance estimates are available? In this section we 
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Fig. 51: Extract of a more complex combination structure with S= [0,1] x [0, 

... , 3] x, 
[0'..., 10] x [0,.. 

., 8]. Below the line it is indicated which dimension D has been 
chosen in each step. 

will discuss different options of additionally using more or less reliable covariance 

information. 

If reliable covariance information is available, it is possible to apply the optimal 

model directly. But also in this case we have to consider the risk of instabilities 

based on small deviations in the covariance matrix in case of a large number of 

forecasts containing sets of similarly correlated forecasts. As we have described 

in Section 4.4.1 such groups can lead to a covariance matrix that is similar to a 

singular matrix with a much lower rank. The resulting weights strongly depend on 

the small deviations in the covariance estimates and are often characterised by very 

large numbers of opposite sign. 
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It is therefore useful to apply pooling or trimming approaches even if only 

slightly disturbed covariance information is available. We will now discuss differ- 

ent options of how to do this. 

6.5.1 Trimming: Selecting a Representative Set of Input Forecasts 

The first option realises a flat combination after having carried out an intensive 

trimming. The idea here is to remove forecasts in a controlled manner in order to 

avoid inconsistencies in the covariance matrix and then carry out a flat combination 

on a much smaller set of representative and diverse input forecasts. We will dis- 

cuss different options of how to select these forecasts in Section 7.1.3 of the next 

chapter. 

6.5.2 Using Covariance Information for Pooling 

If covariance information is reliable, we can use this information in order to gen= 

erate pools based on this information instead or in addition to the information 

about the diversification process. Unfortunately, the covariance information allows 

a proper determination of the appropriate dimension for pooling on the basis of 

covariance homogeneity or resulting forecast performance only for one next step 

of pooling. We would need to have higher order statistics information in order 

to calculate the correlation of forecasts representing the results of the first step of 

pooling. This means that even with reliable covariance values there is the need for 

a) a very time expensive recalculation of covariances after each step of pooling or 

b) an estimation of covariances between the results of the first step of pooling. 

6.5.3 Generating Pools based on Covariance Homogeneity 

The definition of pools can be carried out in a manner that we generate pools which 

are as homogeneous as possible. This can be motivated as follows. 

We have already argued that inhomogeneities in the covariance matrix lead to 

errors in the estimation of the weights if we apply a less complex linear combina- 
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tion model, such as Fav (the simple average model) or Fvar (the optimal model 

with assumption of independence). In Section 6.2.4 we have shown that we can 

expect a significant loss in accuracy if we combine different groups of homoge- 

neous forecasts without considering the differences in the covariances between the 

groups. We have also shown that combining first the homogeneous pools and then 

combining the results can help to decrease that loss. It is therefore advantageous 

to identify such pools of homogeneous forecasts. We can then combine the homo- 

geneous pools with Fa" in a first step without a significant loss in comparison to 

the optimal model. This reduces the complexity of the resulting covariance matrix, 

which then allows the use of a more complex model in order to combine the results. 

The question is now how to determine and evaluate the homogeneity of pools. 

Using Common Distance based Clustering Algorithms 

A first option is to apply known clustering algorithms working directly on the co- 

variance matrix or on the matrix containing the pairwise diversity as defined in 

Section 6.3.1. 

The objective would be to identify pools containing sets of forecasts that are 

highly correlated (not very diverse) among each other and diverse with other pools 

of forecasts. 

The distance m1, m2A of any two input forecasts m1 y and m2g needed in order 

to apply common distance based clustering algorithms [Witten 05] can be defined 

as the not correlated part of the errors 

m1, +n2Q =1 _'ºn1, 
'm'2 Qe" 

Determining the Choice of a Dimension for Algorithm F" 

(6.33) 

Another option is to include also information about the diversification process in 

applying algorithm Fml and using the covariance information only in order to de-, 

termine a dimension used for the first or next step of pooling. This means that 



6. Pooling for Combination of Multi Level Forecasts 215 

we have already different alternatives for pools available (those defined by pooling 

corresponding to each not yet combined dimension D of the forecast generation 

space). The task is then to compare these alternatives corresponding to the homo- 

geneity of the pools. We can use the same optimality criteria as used for clustering 

in order to evaluate the different alternatives. 

6.5.4 Generating Pools based on Expected Forecast Performance 

An alternative approach is to evaluate the pools directly on the expected forecast 

performance or on the expected loss if not applying the optimal model. 

Let us assume we have again different alternatives for potential pools given 

and have to decide which one to choose. Then we can estimate the homogeneity 

of the covariances of the pools by comparing the expected result corresponding 

to the optimal model and the simple average model. This helps to evaluate the 

loss achieved by not using homogeneous covariances. We have seen that if the 

covariances of a pool are completely homogeneous, the optimal model and the 

simple average model generate the same weights and with that a similar quality of 

the resulting combined forecasts. Comparing the expected error variances of the 

resulting forecasts helps in order to estimate the differences without considering 

the instabilities. The expected combined forecast error variance can be estimated 

corresponding to equation (4.1). For a given pool of forecasts cy containing Al, 

forecasts we can estimate the loss 11 based on this equation by 

CI 

1 Em1, 
m2EMc 

(ml, m2P) 
- 

ý_ 

opt opt(m1, m2 
(6.34) Ldm1im2EMc Wm1wm2 P) 

with weights w°pt determined based on the covariance matrix corresponding to 

pool c with the optimal model. 

The total loss D1 corresponding to a chosen dimension D for pooling can then 

be described as the sum of the loss corresponding to each pool with 
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IC ( 1, m2P) 
Dl = 

Mc MI, M2E 

mMc 
(6.35) -r 

m1, m2EMc wl w°P2 (m1 m2p) 
" 

c 

The dimension D with the lowest loss is chosen as next dimension for pooling. 

6.5.5 How to Estimate Covariances between Results of a First Step of Pooling 

The algorithm of selecting a next dimension D for pooling is optimal only in rela- 

tion to one single pooling step. The loss Dl can be used in order to minimise the 

lost quality in relation to a first combination. But it is not sure that this decision is 

still optimal if we consider the following combination(s) of the resulting forecasts. 

If we want to take further steps into account, it is necessary to estimate the 

resulting covariance matrix. The quality of the forecasts resulting from a first pool- 

ing and combination with a simple average model can be approximated following 

equation (4.1) by 
Cbi =1ý(` 'ºnl, 'ºº12P1 

M2 J 
C 'ºº11, %a2 EA1c 

(6.36) 

It is more difficult to estimate the covariances C1,12 p between the resulting 

pools. Higher order statistics would be necessary in order to enable an exact 

estimation of resulting covariances. We can demonstrate this with the following 

example: 

Example 

Let us assume we have 6 forecasts m1y to ri6y given with covariance matrix 

E= 

2 0.6 0.6 10.2 0.2 0.2 

0.6 2 0.6 10.2 0.2 0.2 

0.6 0.6 2 10.2 0.2 0.2 

0.2 0.2 0.212 0.6 0.6 

0.2 0.2 0.2 10.6 2 0.6 

0.2 0.2 0.2 10.6 0.6 2 

(6.37) 
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and we generate pools c1 = Fav /m1y, m2 y1m3 and c2y = Fav(m4y1m5 ß, m6 g. 

Equation (6.36) leads to c152 =c2 8211= 1.06666. We will now show two different 
I 

error decompositions of m162 to m652 leading both to the indicated covariance ma- 

trix, but to different covariances between c19 and c2 9. A graphical representation 

of the two error decompositions can be seen in Figure 52. 

In order to increase readability of the error components, the components are 

described corresponding to the forecasts in which they occur, e. g. component 45682 

means an error component occurring in forecasts m4y, m5y and m6y. In the first 

error decomposition we assume independent error components 

m132 = 
12345632 +123 32 +1 32 

m232 = 
12345632 +123 32 +2 32 

m332 = 
12345632 +123 32 +3 32 

m432 = 
12345632 +456 32 +4 32 

m532 = 
12345632 +456 32 +5 32 

m632 = 
12345632 +456 32 +6 32 

(6.38) 

With 12345652 = 0.2 representing a common part existing in each forecast (like the 

error Bayes component), 12362 =456 62 = 0.4 representing common parts per pool 

and 162 = ... =6 62 = 1.4 representing unique components in relation to each 

forecast. The combination leads to 

cls2 

c2j2 

1234562 +123 52 +9* (152 +2 52 +3 52) (6.39) 

12345652 +456 52 +9* /452 +5 52 +6 52) (6.40) 

Because of the independence of the components we achieve a covariance 

c1, c2P = 
123456a2 

= 0.2. (6.41) 
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The second error decomposition assumes a more irregular distribution of the 

error components in relation to the pools. Now we assume an error decomposition 

of 

mlS2 = 
12452 

, +, 125 52 +126 52 , +, 13 52 +, 1 52 

m252 = 
12452 +125 52 +126 52 -F23 52 +2 52 

m352 = 
1352 +23 52 +34 52 +35 52 +36 52 +3 52 

m452 = 
12452 +456 52 +34 52 +4 52 

m552 = 
12552 +456 52 +35 52 +5 52 

m652 = 
12652 +456 52 +36 52 +6 52 

(6.42) 

with 4562 
=13 52 _23 52 = 0.6,152 =2 52 = 0.8,452 =5 52 =6 62 =1 and all 

other components *52 = 0.2. Corresponding to this decomposition we achieve 

c1aa 

c2a2 

4(12452 

+5 
'(3452 

+35 52 +36 52 '+' 
1 52 '+'2 52 +362)) 

45652 +1 (12452 +125 52 +126 52 
9 

+3452+3552+3652+452+552+652)1. 

(6.43) 

and covariance 

c1, c2p =1 /12452 +125 52 +126 52 +34 52 , +, 35 52 '+'36 521 
91 

=6*0.2 �e 0.13. 

Estimation of the Covariances 

(6.44) 

(6.45) 

The example shows that it is not sufficient to have the covariances of the original 

input forecasts in order to estimate the covariances between the pools. But if we 

make certain assumptions about the relation between the error components we can 
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error decomposition 1 

ml m2 m3 m4 m5 m6 

ml 

m2 

m3 

m4 

m5 

m6 

error decomposition 2 

ml m2 m3 m4 m5 m6 
ý ml 
ý m2 

QF7 1-1 F-1 Fl m3 

I 

EI 
EI 
71 

m4 

m5 

m6 

Fig. 52: Graphical representation of the two error decompositions. The frames indicate 
common error parts. Error components 152 to sae which indicate unique parts of 
each of the forecasts in both decompositions are not contained in this visualisation. 

produce an adequate estimation. 

If we assume that we have generated the forecasts by at least two different types 

of diversification and different error components are concerned, we can assume that 

" we have a large common part representing the error Bayes component ö2 

" in addition to the error Bayes component we have a common part per pool 

representing the error component that has not been diversified by this diver- 

sification c52 

All other error covariance parts can be interpreted as pairwise covariances. This 

means that all forecast errors can be decomposed into 

mbe2 = 62 (6.46) 

The first component is a component that all forecasts have in common including 

the error Bayes component. It can be estimated with 

y= min(E) (6.47) 

The second component is a common component of the pool c. It can be estimated 
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with 

3,2 = min(`E) - min(E) (6.48) 

with CE representing the covariance matrix corresponding to pool c. The remain- 

ing components 32M are error components representing a unique behaviour of each 

single forecasts. They are calculated with 

j2 
m _m 6z e ýý-öý. (6.49) 

The correlation of two forecasts of the same pool can be expressed by 

ml, m2 2_ 62 + a2 + Pe -yc Pml, m2 (6.50) 

with Pml, m2 expressing the unique (not accounted for elsewhere) common parts 

between ri15 and m2bm. Forecasts of different pools are correlated with 

ml, m2 2- a2 Pe -y+ Pml, m2" (6.51) 

All elements Pml, m2 are assumed to be independent of each other. 

Corresponding to this decomposition, for two pools cl, c2 with size A11, A12 

we achieve error covariances of 

c1, c2Pe = b2 +1 Pml, m2 (6.52) 
v ný. n. ý a ri l ara-:, 

m1Ec1rmzEc2 
1 

= min(E) +1r fml, m2P - min(E)] Ml M2 Lý L 
ml Ec1, mzEc2 

=1 
ý'` rml, m2P1 

M1M2 
m1EclL, mzEc2 

`I (6.53) 

Equation (6.53) shows that the size of the assumed Bayes component does 

not occur in the final representation of the estimated covariances, which means 

that it does not matter if we interpret that part of the demand as common Bayes 
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component or as pairwise covariance parts. The estimation simply represents the 

average value of the covariances between the elements of different pools, it is a 

simple estimation that can easily be carried out on a given covariance matrix. 

This approximation allows the calculation of complete resulting covariances of 

a step of pooling. Using again equation (6.36) on the resulting covariance matrix 

allows the estimation of the quality of the combined pools or even more than one 

further step of pooling. The choice of the dimension used in the next step of pooling 

can then be made directly on the basis of the estimated total error variance of the 

final combined forecast. 

6.6 Trimming Versus Pooling 

Trimming and Pooling are both approaches which can be used in order to generate 

a smaller set of predictions for a next step of forecast fusion. A question which 

one of the approaches to use is not easy to answer. Instead of averaging a set 

of forecasts representing a pool we can choose a single representative forecast in 

order to represent the pool. The proposed algorithms Fcew and F"`lp include steps 

of trimming, the relevance of these steps depends on the decision of how much to 

trim. Theoretically, it is possible to use trimming in algorithms Fcew and Fii1p in 

such an excessive manner that only one best forecast is remaining per pool. 

In this section we compare the two approaches and discuss them in relation to 

the different types of diversification. We start with a short summary of advantages 

and risks of the two approaches and analyse then different diversification proce- 

dures in the bias- variance- Bayes error decomposition framework. 

6.6.1 Advantages and Risks of Pooling and Trimming 

The comparison of choosing the "best" forecast per pool versus a simple average or 

forecast error variance based combination is comparable with a discussion of under 

which conditions forecast combination can beat a best forecast [Timmermann 05]. 

Trimming contains the risk that we do not use potentially unique information 
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provided in the non selected forecasts. On the other hand, it is a stable procedure 

and we do not run the risk of weight estimation errors. 

Pooling often leads to results which outperform the best forecast, but high 

weight estimation errors can also lead to unstable combined predictions. If we use 

the simple average combination, there is additionally the risk of over interpretation 

of forecasts with bad quality. Let us assume we have included M forecasts with 

different total error variance terms into a pool. Equation (4.1) can be represented 

as 

camb52 c( 
ý)2)2 

(comb, M-152) + 
(ýr)2 

(m152 +2* 
[ý (m, m1P)) (6.54) 

1 

. ýý..,, m#m1 

in order to show the impact of any single input forecast ml with comb, M-152 the re- 

sulting forecast error achieved if not including ml. We achieve corib52 <comb, M-1 

52 if 

(2M - 1)(comb, M-152) >ml 52 +2*E (m, m1P) (6.55) 

mml 

This representation shows that if a forecast with a larger forecast error contains 

unique information represented by low error covariance terms, it can be beneficial 

to keep this forecast in the pool. In case of no unique information we should trim 

this forecast. 

6.6.2 Trimming versus Pooling in Connection with Thick Modelling , 

Let us now consider the case that we have diversified a parameter corresponding 

to the idea of thick modelling. In Section 4.3 we have already analysed effects of 

different types of parameters on the error components and achieved covariances. 

We will now use this information in order to analyse how to behave with regard to 

trimming for the different cases. 
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Parameters Affecting the Data Selected for Learning 

In Section 4.3.1 we have argued that in the case of parameters effecting the data 

selected for learning the concrete parameter values just effect the error variance 

component H d21ti. We can expect a set of forecasts with about the same quality each 

containing unique information. In this case, we should not apply any trimming. 

Parameters Affecting the Function Space without Changing the Complexity 

Section 4.3.2 contains the discussion in relation to parameters affecting the func- 

tion space. We have illustrated in Figure 24 that in this case we potentially also 

have choices of function spaces included which are suboptimal compared to others 

and do not contain relevant unique information. These extreme values should he 

trimmed. Figure 53 shows the proposed approach. 

v 

c)0 , 
. 

-ýý 

/ 62 

.. 
ýý 

()(1 

Fig. 53: Typical behaviour of error components in case of a parameter value affecting the 
error bias component. Extreme values cause an increasing error bias component. 
The error variance component is only slightly effected. As the extreme values 
cause forecasts which do not contain much unique information and are charac- 
terised by a high total forecast error, these forecasts should he trimmed in advance. 

Parameters Affecting the Complexity of the Function Space 

In Section 4.3.3 we have analysed parameters effecting the complexity of the func- 

tion space and argued that both, error bias and error variance term are concerned. 
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Also in this case extreme parameter values lead to higher total forecast errors and 

we have concluded that the extreme values do not contain any additional informa- 

tion compared to the more stable neighboured values. Extreme values can therefore 

be trimmed directly based on total error variance information. It depends on the 

amount of decrease of the error bias component in comparison to the increase of 

the error variance component as illustrated in Figure 27 if this approach leads to 

trimming of only a small number of extreme values or if a large amount of param- 

eter values can be trimmed. Figure 54 shows two examples of behaviour resulting 

in different total error curves and with that a different number of forecasts to be 

trimmed. 

ö, 

low complexity G, ir high complexity 

Fig. 54: Typical behaviour of error components in case of a parameter value effecting the 
complexity of the function space. With increasing complexity we can observe an 
increase error variance component and a decreasing error bias component. 

Summary 

Summarising it can be said that even if different types ofparameters suggest differ- 

ent kinds of trimming, all kinds of proposed trimming can be covered by carrying 

out a total error variance based trimming. 
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6.6.3 Trimming versus Pooling in Connection with Multi Level Learning 

The analysis provided in Section 5.5 for the different cases of behaviour at the 

different levels allows conclusions about the usefulness of trimming. While the 

situation in cases 3,4 and 5 is clear and trimming would not be beneficial but would 

also not have any negative effect we would achieve negative effects with trimming 

in cases 1,2 and 6. Especially case 6, which is the most interesting and common 

case, is critical for trimming. In this case the forecasts calculated at the different 

levels contain relevant diverse knowledge and should be included in a combination 

procedure even if they differ slightly concerning the total error variance term. 

It can therefore be suggested for this type of diversification not to carry out any 

trimming or to apply only a very moderate trimming. 

6.6.4 Trimming versus Pooling in Connection with Different Function Spaces 

The most difficult decision about trimming is related to a diversification of func- 

tion spaces. In this case, the benefit of trimming can only be evaluated if more 

knowledge about the diversity of the used function spaces is available. If the func- 

tion spaces really generate diverse forecast error terms in relation to the error bias 

as well as the error variance term, the use of this diverse information is poten- 

tially beneficial and we will achieve better combined forecasts without trimming. 

If on the other hand the function spaces have common subspaces or even contain 

each other (e. g. using polynomials with different degrees), we can have cases with 

highly correlated forecast errors in which trimming is beneficial. 

A theoretically funded decision about trimming in the case of using different 

function spaces can only be made on the basis of reliable covariance information. 

An algorithm describing how to carry out trimming in this case will be provided 

in Section 7.1.3 of the next chapter. 
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6.7 Experiments 

6.7.1 Description of Experiments 

The experiments have been carried out in order to compare the different approaches 

of pooling. We compare the approach of Aiolfi and Timmermann as described in 

Section 6.2.1 with pooling based on the distance in the forecast generation space 

in connection with different types of trimming. 

The applied set of input forecasts corresponds to the one used in Chapter 5 and 

described in Table 14. The forecast generation space is therefore composed of the 

following diversification dimensions: 

9 D1: parameter diversification of ¢ýa,,, and chjgh 

" D2: diversification of models hrdsO"(x, 0) (historical model 2.15) and h3eason (x, ¢) 

(multiplicative model 2.18) 

" D3: level diversification from fareclass to compartment 

" D4: level diversification, aggregation over all days of the week 

Table 18 summarises different experimentally compared pooling approaches. 

Only the best performing multi level pooling structures are contained in the table. 

approach 1 1 description see ... 
FLAT flat combination with only a weak trimming (10 best) 5.7.1 
FLATS flat combination using always the best 5 forecasts 5.7.1 
CEW pooling approach of Aiolfi and Timmermann 6.2.1 
MLP1 multi level pooling with order D1, D2, D3, D4 6.4 
MLP2 multi level pooling with order D2, D1, D3, D4 6.4 
MLP3 multi level pooling with order D3, D4, D1, D2 6.4 
MLP4 multi level pooling with order D3, D4, D2, D1 6.4 
MLP5 multi level pooling with order DI, D3, D4, D2 6.4 
MLP6 multi level pooling with order D2, D3, D4, D1 6.4 

Tab. 18: Set of forecasts diversified concerning the function space, level of learning and 
parameters used for thick modelling. 
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Details related to the experimental setup can be found in the Appendix describ- 

ing experiment 6 (B. 6.6). Details related to the experimental setup concerning the 

approach of Aiolfi and Timmermann are contained in the Appendix describing ex- 

periment 7 (B. 6.7). 

6.7.2 Experimental Results 

Tables 19 and 20 show the errors of the forecasts containing combined seasonal 

predictions as relative improvement in relation to the best individual forecast Oy at 

the low level of forecasting (ODO F POS) and at the high level (ODO). A graphical 

representation of the absolute total errors achieved with different structures at the 

high level is shown in Figure 55. 

r1 1 FLAT FLATS CEW MLP1 MLP2 MLP3 MLP4 MLPS MLP6 
0 0.03 0.04 0.04 0.01 0.01 0.01 0.01 0.01 0.01 
1 0.03 0.03 0.03 0.02 0.02 0.02 0.02 0.02 0.03 
2 0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.03 
3 0.03 0.03 0.03 0.02 0.03 0.03 0.03 0.02 0.03 
4 0.03 0.03 0.03 0.02 0.03 0.03 0.03 0.02 0.03 
5 0.03 0.02 0.03 0.02 0.03 0.02 0.03 0.02 0.03 
6 0.03 0.02 0.03 0.02 0.03 0.02 0.02 0.02 0.03 
7 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 
8 0.02 0.01 0.02 0.01 0.02 0.02 0.02 0.01 0.02 
9 0.02 0.02 0.02 0.01 0.01 0.01 0.01 0.01 0.01 
10 0.01 0.00 0.02 0.01 0.01 0.01 0.01 0.01 0.01 
11 0.02 0.01 0.02 0.01 0.01 0.01 0.01 0.01 0.01 
12 0.02 0.01 0.02 0.01 0.01 0.01 0.01 0.01 0.01 
13 0.02 0.01 0.02 0.01 0.01 0.01 0.01 0.01 0.01 
14 0.03 0.03 0.03 0.02 0.02 0.02 0.02 0.02 0.02 
15 0.03 0.03 0.03 0.02 0.02 0.02 0.02 0.02 0.02 
16 0.04 0.04 0.04 0.03 0.03 0.03 0.03 0.03 0.03 
17 0.05 0.05 0.04 0.04 0.04 0.04 0.04 0.04 0.04 
18 0.05 0.05 0.05 0.04 0.04 0.04 0.04 0.04 0.04 
19 0.06 0.06 0.06 0.05 0.06 0.05 0.05 0.05 0.05 
20 0.07 0.08 0.06 0.07 0.07 0.07 0.07 0.07 0.07 
21 0.12 0.12 0.10 0.12 0.12 0.12 0.12 0.12 0.12 
22 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 

Tab. 19: Relative improvement using forecast combination of diversified multi level pre- 
dictions in comparison to the best individual forecast °y measured at the low level 
(ODO F POS). 

All pooling approaches clearly beat the simple flat combination with different 
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r 11 FLAT FLATS CEW MLP1 MLP2 MLP3 MLP4 MLP5 MLP6 
0 0.06 0.06 0.06 0.01 0.01 0.01 0.01 0.01 0.01 
1 0.06 0.07 0.06 0.09 0.09 0.09 0.09 0.09 0.09 
2 0.07 0.07 0.06 0.10 0.11 0.11 0.11 0.10 0.11 
3 0.07 0.06 0.07 0.10 0.11 0.10 0.11 0.10 0.11 
4 0.05 0.05 0.04 0.09 0.10 0.09 0.10 0.09 0.10 
5 0.04 0.03 0.03 0.08 0.08 0.08 0.08 0.08 0.08 
6 0.02 0.01 0.00 0.06 0.07 0.07 0.07 0.06 0.07 
7 0.01 0.00 -0.02 0.05 0.05 0.05 0.05 0.05 0.05 
8 0.01 -0.01 -0.03 0.04 0.04 0.04 0.04 0.04 0.04 
9 0.01 0.00 -0.02 0.04 0.04 0.04 0.04 0.04 0.04 
10 0.01 -0.01 -0.01 0.04 0.03 0.03 0.03 0.04 0.03 
11 0.02 0.00 -0.01 0.04 0.03 0.03 0.03 0.04 0.03 
12 0.03 0.02 0.00 0.04 0.04 0.04 0.04 0.04 0.04 
13 0.03 0.03 0.01 0.05 0.05 0.05 0.05 0.05 0.05 
14 0.05 0.05 0.03 0.05 0.05 0.05 0.05 0.05 0.05 
15 0.05 0.05 0.04 0.05 0.05 0.05 0.05 0.05 0.05 
16 0.06 0.07 0.06 0.06 0.06 0.06 0.06 0.06 0.06 
17 0.07 0.07 0.05 0.07 0.07 0.07 0.07 0.07 0.07 
18 0.07 0.08 0.07 0.07 0.07 0.07 0.07 0.07 0.07 
19 0.09 0.10 0.09 0.09 0.09 0.09 0.09 0.09 0.09 
20 0.11 0.12 0.08 0.11 0.11 0.11 0.11 0.11 0.11 
21 0.20 0.20 0.17 0.20 0.20 0.20 0.20 0.20 0.20 
22 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 

Tab. 20: Relative improvement using forecast combination of diversified multi level pre- 
dictions in comparison to the best individual forecast y measured at the high level 
(ODO). 

strengths of trimming at the high level. While at the low level an improvement of 

up to 3% percent could be achieved in the early dcps, a significant improvement of 

up to 11 % could be measured at the high level with the multi level structures. The 

approach of Aiolfi and Timmermann could generate improvements of up to 7%. 

The larger improvement at the higher level can be explained with the extremely 

large error Bayes component at the low level. The noise in the data is so large at 

the low level that any improvement in forecasting will always have stronger effects 

at higher levels. 

The very best results have been achieved with structure MLP6. Correspond- 

ing to this structure forecasts generated by different function spaces are combined 

first. The different function spaces contain the most relevant differences in error 

variances so that the decrease of the total error variance achieved in the first step 
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Fig. 55: Error variances achieved using forecast combination of diversified seasonal pre- 
dictions in comparison to the best individual forecast °i/ measured at the high level 
(ODO). 

is useful for the combination in later steps. However, it can be seen that the results 

achieved with the different structures of the "best 6" list are quite similar so that 

it is difficult to decide which one to chose. But it should also be mentioned that 

other multi level structures using a different order of the diversified dimensions 

than shown in this list generated less good results. 



7. DYNAMIC POOLING FOR THE COMBINATION OF FORECASTS 

GENERATED USING MULTI LEVEL LEARNING 

7.1 Evolving Multi Step Multi Level Combination Structures 

As we have just seen, the results obtained using the proposed multi level multi 

step combination structures have been quite promising. Nevertheless, some of the 

structures produced better results than others. Even if the good results show that 

the use of multi step multi level structures may be a way to overcome the problems 

described in Section 6.1, the approach of using predefined structures needs a lot 

of expert knowledge in order to identify the most promising ones. This task is 

getting even harder by the fact that a lot of decisions, like the choice of parameter 

values used for trimming, have to be made in advance. Potential structures, once 

identified, have to be verified by experiments using trial and error principles. And 

as the fixed structures contain only limited adaptive capabilities, they would have 

to be rebuilt on a regular basis. 

The best structures do not necessarily need to be the intuitive ones. Addition- 

ally, we prefer the generation of structures that work well in a changing environ- 

ment. 

All these reasons motivate the search for dynamic approaches generating and 

adapting structures automatically. Evolutionary computation offers common algo- 

rithms to solve such kind of problems. It simulates evolution in applying optimisa- 

tion algorithms which iteratively improve the quality of solutions until an optimal, 

or at least high quality solution is found. As evolution continues over time the it- 

erative process generates solutions which have proven to be flexible in a changing 

environment by having survived different generations. ', 
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In this Chapter we therefore discuss different approaches of how to build com- 

bination structures dynamically using evolutionary computation approaches. We 

will see that it is possible for our application to evolve structures that are not only 

able to generate predictions representing well balanced and stable fusions of meth- 

ods and levels, they are also characterised by high adaptive capabilities. The focus 

on different levels or methods of forecasting may change as well as the complexity 

of the combination structure depending on changes in parts of the data seen from 

the perspective of different data aggregation levels. 

As evolutionary computation realises the solution of optimisation problems, we 

first have to describe our problem as an optimisation problem. In this section we 

start with a description of our search space as a set of valid combination structures, 

then discuss different criteria to be optimised which are based on forecast quality 

of the resulting combined predictions and finally provide a discussion of how to 

generate a restricted set of input forecasts. 

7.1.1 Description of the Search Space 

As we want to learn combination structures, we first have to define what we under- 

stand by a combination structure in order to describe our search space. 

Definition 7.1 (Combination Structure): A combination structure is a combination 

function F: 7ZAI -º1Z as defined in Section 3.1 that carries out a forecast combi- 

nation comby = F({y}) of a set of input predictions {y} by a successive application 

of basic known linear or nonlinear combination functions using each subsets of {y} 

and intermediate combination results as a set of input forecasts. 

Each application of a basic combination function is related to a step in the 

fusion process. In each step ry the set of input forecasts is a subset of {y} U {1y} U 

... U the generated fusion results represent set {7y}. 

Figure 56 shows an example of a combination structure. 
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Fig. 56: An example of a combination structure. It combines multi level forecasts gener- 
ated using three functional spaces lkl to lk3 at two levels i and I. The different 
functions Fl to F3 represent three different combination methods. It can be seen 
that forecast 743'y is used as input in two basic combination functions. 

Differences in Comparison with Pooling 

At the end of the last Chapter we already spoke about multi step combination struc- 

tures in the context of pooling. It can be seen that the structure shown in Figure 56 

cannot be generated with pooling, that is why we will shortly discuss the limits of 

structures generated by pooling in comparison to the general definition here. 

Structures achieved by single step or multi step pooling correspond to the gen- 

eral definition, but contain two kinds of limitations. Pooling means grouping the 

input forecasts into clusters, which leads to disjunct sets of input forecasts. This 

means that in each step the resulting structures contain each input forecast only in 

one of the basic combinations. Additionally, the set of input forecasts in each step 

ry is restricted to {7-1y} in comparison to set {y} U {1 y} U... U fly- ly} used in the 

definition above, which means that in each step we combine only the results of the 

preceding step without considering other predictions that are available in earlier 

steps. 

Alternatives of Restrictions of the Search Space 

Our search space corresponds to the space of combination structures that are lim- 

ited by different input configurations and restrictions. Variations of search spaces 
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are based on different sets of input forecasts and different sets of basic combina- 

tion functions. So it is possible to use only one given linear combination model, 

the most common approaches would be the use of FaV, Fvar or FOUtp which we 

have introduced in Section 3.2.2. 

Additionally, it may be useful to restrict the search space in order to avoid too 

complex structures leading to overfitting. Those restrictions can be: 

"a limitation of the (maximal) number of steps ry 

" limitations to the number of input forecasts (total and/or in each basic com- 

bination) 

"a limitation to disjunct sets of input forecasts (as carried out for pooling) 

"a limitation to the set of input forecasts to {1' 1} in each step y (as carried 

out for pooling) 

" limitations concerning the maximal variance ratio of the input forecasts (total 

and/or in each basic combination) correponding to the idea of trimming 

The most restricted version starts with a fixed maximal number of disjunct in- 

put forecasts Mmax EN for each combination at step 1. It is assumed that the 

number of steps is limited to rymo =2 and that the second step consists of a com- 

bination combining all results of the first step. The set of applied basic combination 

models is restricted to one predefined model F. 

7.1.2 Definition of the Optimum Cnterium and Fitness 

The most simple and intuitive criterion to optimise is defined by the accuracy of the 

resulting forecasts. We want to learn combination structures which generate high 

quality combined predictions measured on unseen data. The fitness is calculated 

as a mean absolute deviation value on the level of forecasting and is given as 

( mad = E(icom6el) (7.1) 
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or as the error variance 
car =comb a2 

e 
(7.2) 

measured over a given evaluation period. 

Level of Error Measurement 

As discussed in the previous Chapter, the main objective is to achieve good predic- 

tions at the low level of forecasting, which means a minimisation of Combs 5,2i and 

learn a separate structure for each subspace i, in our example each ODO-DOW-F- 

POS combination. But as the generated forecasts are also used on an aggregated 

level, it is also worth analysing the error comb tJöel. 

In Section 5.4.5 we have seen that combining multi level predictions with 

weights purely based on errors measured at the low level can also have positive 

effects on the errors of the high level aggregates measured at the high level. 

If on the other hand we would learn a combination structure for a low level 

subspace i and want to measure the fitness at a higher level I. which forecasts of 

the other subspaces should be used for aggregation? We have only the options (a) 

to use the same learned structure for all elements of lower level subspaces i of I or 

(b) to learn different structures as an integrated process. 

Penalty Terms 

Additional needs or constraints with regard to the resulting combination structures' 

can be modelled as penalty terms of the fitness function. So it is, e. g., possible 

to generate unbiased results by adding a penalty term in relation to the systematic 

error. A fitness function avoiding systematic errors can be represented as 

var, syst =comb a2 +w* E(CO"`be) (7.3) 

where w represents a predefined weight that describes the relation between total 

error and systematic error relevance. 
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As we are interested in small and stable structures, penalty terms corresponding 

to the complexity of the structure, the independence of the included combination 

procedures or the number of multiple applications of input forecasts are possible 

as well. An unfavourable characteristic of unnecessarily complex structures is that 

different basic combinations use similar inputs. This can be avoided by including 

penalty terms representing measurements of diversity of the set of input forecasts 

of two combinations. 

A first option is to use measures similar to the measures for the diversity of 

classifiers which have been described in Section 4.1.1. These measures do not take 

into account the correlation between forecasts. 

We can use 

ývar, div 
=comb j2 

e9+W*ý , 1, m * '\72, m 

. 91,. 72 m 

(7.4) 

with j is an index over the basic combinations and Aj, m =1 if input forecast 

my E {7-1y} is included in the basic combination j at step ry and Aj, n, =0 

otherwise. 

We can also include the correlation between each pair of input forecasts, 

ýv¢r, carr _comb a2 
C+W 

i171, 
m1 *'\j2, m2 * emi, m2 

(7.5) 

31,32 ml, m2 

with Qmi, 71 the correlation coefficient between forecast errors mle and Mee. 

Alternatives to Forecast Error Based Fitness 

We have just modelled the fitness function in a manner that it represents the qual- 

ity of the resulting forecasts in terms of a mean absolute forecast deviation value 

and potentially including other information and/or penalty terms. This definition 

makes the evaluation of the fitness function expensive in terms of performance, 

because it may contain a new calculation of the weights or parameters of all com- 
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binations included in a combination structure as well as a determination of error 

and correlation terms on the testbed. In Section 6.5.5 we have described how the 

covariance between results of pooling can be estimated. A fitness function evaluat- 

ing the forecast error resulting from a given combination structure can be replaced 

by an approximation of this error based on equation (4.1) in connection with the 

algorithm for covariance estimation presented in Section 6.5.5. This approach gen- 

erates less reliable fitness values (estimations in comparison to real measurements). 

But as the combined forecasts do not have to be calculated, the evolution can be 

carried out with dramatically reduced calculation time. 

Another issue related to pure total error based fitness is that aspects related to 

different levels in relation to the error components as discussed in Chapter 5 are 

not sufficiently taken into account. So it is possible that a structure in which we 

have removed all high level predictions produces good results over a certain period 

of time. But if suddenly demand is shifted between subspaces i, the structure is not 

optimal any more. As all high level predictions have been removed, an adaptation 

of combination weights enforcing the high level predictions is not possible. Alter- 

native definitions of the fitness can be directly based on the variance or covariance 

matrix of the input predictions. Simplified versions similar to the one described in 

Chapter 6 or different approaches of variance/covariance estimation in a changing 

environment can increase the stability of the estimations. 

7.1.3 Input forecast selection 

We have already mentioned that the number of potential input forecasts can get 

very large, especially if generated by different types of diversification. That is 

why it is sometimes not useful to include all of them into a combination process. 

If we apply, e. g., the approach of thick modelling there is the question of how 

many different parameter values to start with. This decision is not only relevant for 

the generation of the structures, but determines also the performance of the input 

forecast generation process. 



7. Dynamic Pooling l or the Combination of Forecasts generated using Multi Level Learning 2.37 

If information about forecast generation is not used, the input forecast selection 

can be interpreted as a mapping from the multidimensional forecasts generation 

space S into a series of selected inputs in = (1.... 11I) C" the index set 

representing the selected predictions. The approach is illustrated in Figure 57. 

Fig. 57: Selection of the 6th input forecast. The multidimensional individual forecasts gen- 
eration space S is, in this example, characterised by one dimension representing 
the function space Ha., one dimension representing the level and one dimension 

representing parameter values used for thick modelling. 

There are different options of how to handle this problem. 

Random or Expert Selection 

The first option is to choose a representative set randomly or by expert selection. 

This is the easiest option but carries the risk that relevant forecasts are not selected. 

Selection Considering the Diversification Process 

In this option we choose some predictions for each type/ combination of diversi- 

fication. So we select, e. g., a few representative values of parameters applied for 

thick modelling. The set should by chosen small in a manner that it covers the 

complete forecast generation space well. It can be expected that one does not loose 

too much relevant information by including only those forecasts into the evolution, 

because forecasts differing in only one dimension, e. g. only by small parameter 

changes, are often highly correlated so that the information loss is not critical. 

A selection can be performed by selecting the values separately for each di- 

mension. Each value representing a subset of a dimension of D is selected a certain 
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number of times so that in total K values are selected. Then a series of the selected 

values is generated using a random ordering. This series describes then the value 

of the input forecasts to select concerning this dimension. 

Selection Considering Error Variance / Covariance Information 

This idea follows the idea of trimming. The worst predictions are removed in 

advance. We assume here that reliable covariance information is available. The 

problem with this approach is that it is first necessary to calculate the concerned 

predictions before being able to evaluate the forecast errors and to remove them. 

That is why this approach should be ideally connected with a pre-selection of cal- 

culated prediction during the diversification process. 

As forecasts with a high total error can contain relevant and unique information, 

it is risky to apply trimming purely based on error variances. We have discussed 

this topic in relation to the different types of diversification in Section 6.6. A good 

and easy alternative is the application of trimming as proposed by Timmermann as 

part of a pooling procedure. First we carry out a trimming in relation to the whole 

set of input forecasts (corresponding to the algorithm of Timmenmann we remove 

the worst pool). Later additional trimmings are carried out in relation to each pool. 

The selection considering error covariances can be carried out as a process 

of successive insertion of forecasts or a process of starting with a complete set 

followed by covariance based trimming. 

The first option is to start with a single forecast containing the best total error 

variance. We then successively add forecasts in a manner that as much as possible 

new information is provided in each step. Let us assume we have already selected' 

a set of M forecasts {my} and want to add a forecast m1y. Following equation 

(4.1) we want to minimise 

comb52 = (M + 1)2 
(ý m, m1ý) _, min (7.6) 
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representing the average of all elements of the new (extended) covariance matrix 

m, m1E This can be expressed with help of the previous covariance matrix "`E by 

combat =1 (ý mE * ", ml 
7nT -1112 +ml 32 +2 p)) -- min 
`.. i IiJ 

m 
(7.7) 

As the covariances between already included forecasts are given and not influ- 

enced by the insertion of m1y, this is equivalent to a minimisation of 

m162, +, 2* L 
ýml, mpýmin. (7.8) 
m. 

ý 

Similarly we can describe a process of successive deletion of forecasts. In this 

case, we start with the complete set of forecasts and successively remove forecasts 

m2 maximising 

m262 +2* J-, " m2, mP --º max. 

m 

Evolving the Set of Input Forecasts 

(7.9) 

A completely different option is to start with a subset of input forecasts, but to 

extend or change this set during the evolution process. If it is learned that certain 

forecasts are especially relevant, it may be useful to include other forecasts which 

have similar characteristics. This approach has not yet been followed during the 

PhD and represents a promising extension of the current work. 

7.2 Using Genetic Programming 

We started with the most common and simple approaches which are genetic algo- 

rithms. But it became clear quite quickly that a fixed length bit-representation of 

the objects to evolve are not ideal in order to represent dynamic combination struc- 

tures. Even if the number of input forecasts to the combination process is restricted, 

we could not avoid getting chromosomes with a complex structure of genes if the 
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size of potential steps is larger than two and more than one combination model may 

be used. 

A more flexible representation which is perfectly fitting to the tree-like multi 

step combination structures is offered by the approach of genetic programming 

(see, e. g., [Koza 92] or [Negnevitsky 05]). A genetic program (GP) can be inter- 

preted as a tree with ordered branches, in which each node represents the applica- 

tion of a primitive function on arguments passed to the node by the branches from 

the next lower level. The leaves represent basic arguments called terminals. The 

root node represents the application of the function generating the final result. 

The process of the development to evolve combination structures using GPs 

includes the following steps (see [Negnevitsky 05]): 

1. determine the set of terminals and select the set of primitive functions. 

2. define a fitness function. 

3. define an initial population. 

4. define crossover and mutation operators. 

The next subsections follow these steps. 

7.2.1 Terminals and Primitive Functions 

The terminals correspond to our chosen subset of the set of potential input forecasts 

{y}. 

The set of primitive functions corresponds to the set {F} of basic combination 

functions included into the evolution process. If we want to use only one prede- 

fined combination model, we have only one primitive function describing a basic 

combination. 

Figure 58 shows an example for a genetic program which represents a com= 

bination structure containing more than 2 steps and more than one combination 

model. 
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Fig. 58: Example of a genetic program with three different combination models F' to 
F`; and selected input forecasts 'y to sy. The combination model is part of the 
description of the primitive functions. The terminals are shown in blue/dark, the 
primitive functions in orange/light. 

7.2.2 Generation of an Initial Population 

The population size is limited because of computational power and performance. 

As each member of the population represents a combination structure consisting 

of different combination procedures for which the combination weights (or other 

parameters if we have a nonlinear combination model) have to be learned for fit- 

ness evaluation, the population size should be as small as possible in order to be 

able to run the evolution quickly. On the other hand we have to assert that the 

space of potential solutions is well covered, at least in the domain where we can 

expect the optimal solution. That is the reason why it can be worth focusing on the 

determination of good initial populations. 

We have followed two strategies which were both based on input forecast se- 

lections as described in 7.1.3. 

In the first strategy we generated initial combination structures randomly only 

based on a few parameters, e. g. mean value and standard deviation given for the 

number of input forecasts for each combination procedure, the number of steps or 

the number of combination procedures to include per step. 
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In the second strategy we used our knowledge about the forecast generation 

process as described in Chapter 6. We used different pooling structures, each pool 

including forecasts differing only concerning one type of diversification as initial 

populations for the evolution of the dynamic structures. The initial fitness follow- 

ing this second approach was slightly better than the one we achieved on average 

following the first approach, but we could not achieve significantly better results 

after the evolution. 

7.2.3 Crossover and Mutation 

Here we can use the standard operators described e. g. in [Negnevitsky 05]. The 

crossover operator randomly exchanges subtrees of the two parents. For our combi- 

nation structures this means that we exchange substructures or single combination 

procedures. For our problem the crossover operator has to be restricted in the sense 

that limitations of the maximal number of steps are not violated. Very stable ver- 

sions of crossover allow only exchanges of subtrees representing the same'step of 

combination. The process is shown in Figure 59 using a simple example. 

The mutation operator randomly exchanges a terminal or a primitive func- 

tion. Concerning the combination structures, mutation means that the combination 

methods are changed in the combination procedures or that input forecasts are ran- 

domly exchanged in the combination procedures of step 1 (including the possibility 

to add or to remove an input forecast). For an example see Figure 60. 

7.2.4 Experiments 

We have carried out a number of experiments in order to compare combinations 

based on dynamic structures of varying complexity. Table 21 summarises these 

structures. They differ concerning the restrictions of the search space (7.1.1) as 

well as concerning the definition of the fitness function (7.1.2) and the selection of 

input forecasts (7.1.3). 

All experiments with random input forecast selection started with initial struc- 
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Fig. 59: Example of crossover. 
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tures containing two steps, a first step contained 5 combination procedures, the 

second step combines the results of the first step. We have used a mutation proba- 

bility of 20gc and a maximum number of crossover of 40. 

Details related to the experimental setup can be found in the Appendix describ- 

ing experiments 7 (B. 6.7). 

Table 22 shows the errors of the forecasts containing combined seasonal pre- 

dictions as relative improvement in relation to the best individual forecast °i/ at the 

low level of forecasting (ODI F POS). 
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Fig. 60: Example of mutation. 

approach 1 1 restrictions fitness selection of input forecasts 

EVI 4 steps, all models (", multi level structures 
EV2 4 steps, F""r ""r multi level structures 
EV3 4 steps, F''"r random 
EV4 2 steps, F' '"r ("nr multi level structures 
EV5 2 steps, F""r (""r random 

Tab. 21: Structures used for evolution. 

7.2.5 Conclusions 

The dynamic structures did not outperform the structures generated with the idea 

of pooling presented in the last Chapter. A detailed analysis has shown that the dy- 

namic structures generate very diverse quality corresponding to the concrete con- 

stellation in different fareclasses and point of sales. Structures evolved using the 

whole set of combination models were surprisingly good in some cases, but oth- 

ers clearly showed problems caused by overfitting. This effect has been verified 

by a very simple analysis of the achieved improvements compared to the number 

of steps or the number of combination procedures. It clearly showed that the big- 

ger structures achieved poor results because of missing generalisation capabilities. 

These structures were often learned in situations were the number of bookings was 

ý; 
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low level ODO F POS high level O DO 

r1 1 EV1 EV2 EV3 EV4 EV5 r1 1 EV1 EV2 EV3 EV4 EV5 
0 0.03 0.03 0.01 0.02 -0.02 0 0.06 0.04 0.03 0.04 -0.10 
1 0.02 0.03 0.02 0.03 0.04 1 0.07 0.08 0.07 0.08 0.06 
2 0.02 0.03 0.02 0.02 0.03 2 0.09 0.08 0.08 0.09 0.07 
3 0.02 0.02 0.02 0.02 0.03 3 0.09 0.08 0.08 0.08 0.07 
4 0.02 0.02 0.02 0.02 0.02 4 0.07 0.07 0.06 0.07 0.06 
5 0.02 0.02 0.01 0.02 0.02 5 0.06 0.05 0.04 0.05 0.02 
6 0.02 0.02 0.01 0.02 0.02 6 0.03 0.03 0.02 0.03 0.02 
7 0.02 0.02 0.01 0.02 0.01 7 0.02 0.02 0.02 0.03 0.01 
8 0.02 0.02 0.01 0.02 0.02 8 0.01 0.01 0.01 0.02 0.00 
9 0.01 0.02 0.01 0.02 0.01 9 0.00 0.01 0.00 0.01 -0.01 
10 0.02 0.02 0.01 0.02 0.02 10 0.01 0.01 0.01 0.01 0.01 
11 0.01 0.02 0.01 0.02 0.01 11 0.00 0.01 0.01 0.01 0.00 
12 0.01 0.02 0.01 0.02 0.01 12 0.01 0.02 0.02 0.03 0.01 
13 0.02 0.02 0.02 0.02 0.02 13 0.03 0.03 0.02 0.03 0.03 
14 0.02 0.03 0.02 0.03 0.02 14 0.04 0.04 0.04 0.04 0.04 
15 0.03 0.03 0.03 0.03 0.03 15 0.05 0.05 0.05 0.05 0.05 
16 0.04 0.04 0.04 0.04 0.03 16 0.06 0.07 0.07 0.07 0.06 
17 0.05 0.05 0.05 0.05 0.03 17 0.07 0.07 0.07 0.07 0.05 
18 0.05 0.05 0.05 0.05 0.04 18 0.08 0.08 0.08 0.08 0.06 
19 0.07 0.07 0.06 0.07 0.05 19 0.10 0.10 0.10 0.10 0.08 
20 0.08 0.08 0.07 0.08 0.07 20 0.12 0.11 0.11 0.11 0.10 
21 0.12 0.13 0.12 0.13 0.09 21 0.20 0.20 0.20 0.20 0.16 
22 0.00 0.00 0.00 0.00 0.00 22 0.00 0.00 0.00 0.00 0.00 

Tab. 22: Relative improvement using evolved forecast combination structures in compari- 
son to the best individual forecast °y. 

very low or unstable. 

It was also very interesting to see that the structures which have not been ef- 

fected by overfitting showed the tendency to generate basic combinations which 

cluster the input predictions corresponding to their type of diversification. So we 

could observe a clear tendency to combine first different forecasts generated at 

the same level but using different functional approaches and then to combine the 

forecasts representing different levels or vice versa. 

Exceptions could often be found in cases where forecasts differed significantly 

in error variance, but the good ones contained highly correlated errors. In these 

cases total improvement of the combination is low compared to the simple choice 

of one of the best single predictions. 

Other exceptions could be found if function spaces of different complexity have 
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been used. Especially in cases of very small numbers we could often achieve struc- 

tures clustering more stable forecasts of lower levels with more flexible forecasts 

from higher levels. Similar effects have been achieved if parameters that affect 

the complexity are controlled by thick modelling. This effect can be explained 

by analysing equation (6.11) for the case 1111 = M2 meaning that we have two 

groups of homogeneous forecasts with the same size. In this case, a direct combi- 

nation as well as combination per pool defined by the diversification generate equal 

weights for all concerned forecasts. The negative aspects of the inhomogeneities 

of the covariance matrix do not affect the generation of the weights in that case. It 

is therefore possible to combine all of the forecasts in one step, but an additional 

pooling corresponding to the two groups would not effect the resulting forecast 

accuracy. 

In total, the achieved results strongly support our findings that forecasts dif- 

fering concerning more than one diversification criterion should not be combined. 

In cases where such structures are evolved it is not a disadvantage if the fusion is 

separated corresponding to the types of diversification. 

We will therefore search now for approaches that evolve structures that contain 

the additional restriction that only forecasts are combined which differ concerning 

not more that one type of diversification. As this restriction represents a clear 

limitation of the search space there is the potential to decrease the risk of overfitting 

by following this idea. 

7.3 Considering the Covariance Homogeneity 

In the previous Chapter we have provided a theoretical analysis of the behaviour 

of forecasts that have been diversified by three different methods: with parameters 

learned at different data aggregation levels, by thick modelling and by the use of 

different function spaces. We have also mentioned that a side effect of the applica- 

tion of different types of diversification is that the number of forecasts to combine 

can get very large and that the resulting errors in the estimated covariance matrix 
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can lead to high weight estimation errors. We have therefore analysed the approach 

of error variance based pooling as proposed by Aiolfi and Timmermann [Aiolfi 04] 

in order to handle that problem. We could show theoretically that we risk a sig- 

nificant loss in the expected forecast accuracy because of typical inhomogeneities 

in the covariance matrix for the analysed case. We have proposed a new pooling 

approach that avoids the covariance inhomogeneities in considering only informa- 

tion that is contained in a simplified covariance representation based on knowledge 

about the forecast generation process. 

In this section we describe evolutionary approaches used in order to evolve 

the order of pooling of the dimensions. Algorithm F1Z needs in each step the 

information which dimension D is used for the next step of pooling. We will now 

describe different options of how we can define such a kind of evolution. 

After a short motivation we propose alternatives of how to determine the or- 

der of diversification dimensions used for pooling in our algorithm. Determining 

that order based on error covariances contains the already discussed risk based on 

estimation errors. Evolving that order avoids the time and cost consuming deter- 

mination of the best structures based on static test data and additionally allows the 

adaptation to changed situations. The main advantages compared to the completely 

dynamic structures discussed in the last section is calculation time and stability of 

the resulting structures. 

7.3.1 Genes and Chromosomes 

Let us assume we have a forecast generation space given by S= Dl x ... X DK 

with K the number of diversified dimensions as already described above. The 

generation of combination structures following algorithm F'", is determined by a 

vector that indicates the order of the dimensions D to be used for pooling. 

We define genes as gEN. They each represent an index k of a dimension 

of the forecast generation space. Chromosomes are defined as vectors of disjunct 

genes cr E NK. The order of the genes in a chromosome describes the order 
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of dimensions used for pooling. The example for a chromosome cr E N4 corre- 

sponding to the pooling described in Figure 51 is provided in Figure 62 as parent 

1. 

7.3.2 Crossover and Mutation 

We have carried out experiments using two types of child generation. 

The first type generates a child based on two parent elements. The crossover 

considers the position of the dimensions in the chromosomes of the two parents. 

The child is calculated using the following algorithm : 

" initialise the child crchild without any genes 

" loopk=ltoK 

- select randomly one of the parents crp1 

- if gene c1 is not yet contained in the child -º add gene c1 to the 

child 

- if gene c2 of the other parent is not yet contained in the child --+ add 

gene c2 to the child 

An example of two parents with a generated child is shown in Figure 61. 

parent 1: 

231 

Fig. 61: Example of the first type of crossover. 

The second crossover uses only one parent element. The child is generated'- 

by an exchange of any randomly selected gene with a neighboured gene. If we 

accept the child only if it performs better than its parent similar to Tabu Search, 

this type of evolution can be carried out with a very small population or even a 

single chromosome. Figure 62 provides an example of this type of crossover. 
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parent: 
12 

child: 
A 

--W 
Fig. 62: Example of the second type of crossover. 

The mutation has been used in order to adapt the trimming percentage. We have 

carried out a mutation in each fifth crossover. During the mutation the trimming 

percentage A has been randomly modified up to 10 percent of the previous value. 

We have experimented with two types of representation of A: a global representa- 

tion with the same value used for all steps of pooling and a separate representation 

per combined pool. 

7.3.3 Experiments 

We have experimentally compared the described approaches of evolving the order 

of dimensions used for pooling. The experimental setup has been identical with the 

experiments described in Section 6.7.1 with the only difference that we have not 

calculated results for different predefined structures separately, but have evolved 

the order of pooling of the dimensions as well as the trimming percentage. Table 

23 summarises the compared evolutions, Table 24 shows the relative improvement 

compared to the best individual forecast. Details for these experiments can be 

found in the Appendix in Section B. 6.7. 

approach 1 1 crossover evolved trimming percentage 
EV6 1 global 
EV7 1 per combination 
EV8 2 global 
EV9 2 per combination 

Tab. 23: Structures used for evolution. 

7.3.4 Conclusions 

It can be seen that evolving the order of dimensions allows the generation of struc- 

tures which have about the same quality compared to the structures representing 
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low level ODO F POS high level ODO 
T1 1 EV9 EVIO EV 11 EV 12 T1 1 EV6 EV7 EV8 EV9 
0 0.00 0.00 0.00 0.00 0 -0.01 -0.01 -0.01 -0.01 
1 0.02 0.02 0.02 0.02 1 0.09 0.09 0.09 0.09 
2 0.02 0.02 0.02 0.02 2 0.11 0.11 0.11 0.11 
3 0.02 0.02 0.02 0.02 3 0.10 0.10 0.10 0.10 
4 0.02 0.02 0.02 0.02 4 0.09 0.09 0.09 0.09 
5 0.02 0.02 0.02 0.02 5 0.08 0.08 0.08 0.08 
6 0.02 0.02 0.02 0.02 6 0.06 0.06 0.06 0.06 
7 0.02 0.02 0.02 0.02 7 0.05 0.05 0.05 0.05 
8 0.01 0.01 0.01 0.01 8 0.03 0.03 0.03 0.03 
9 0.01 0.01 0.01 0.01 9 0.03 0.03 0.03 0.03 
10 0.01 0.01 0.01 0.01 10 0.03 0.03 0.03 0.03 
11 0.01 0.01 0.01 0.01 11 0.03 0.03 0.03 0.03 
12 0.01 0.01 0.01 0.01 12 0.04 0.04 0.04 0.04 
13 0.01 0.01 0.01 0.01 13 0.05 0.05 0.05 0.05 
14 0.02 0.02 0.02 0.02 14 0.05 0.05 0.05 0.05 
15 0.02 0.02 0.02 0.02 15 0.05 0.05 0.05 0.05 
16 0.03 0.03 0.03 0.03 16 0.06 0.06 0.06 0.06 
17 0.03 0.03 0.03 0.03 17 0.07 0.07 0.07 0.07 
18 0.04 0.04 0.04 0.04 18 0.07 0.07 0.07 0.07 
19 0.05 0.05 0.05 0.05 19 0.09 0.09 0.09 0.09 
20 0.06 0.06 0.06 0.06 20 0.11 0.11 0.11 0.11 
21 0.11 0.11 0.11 0.11 21 0.20 0.20 0.20 0.20 
22 11 0.00 0.00 0.00 0.00 22 0.00 0.00 0.00 0.00 

Tab. 24: Relative improvement using evolved forecast combination structures in compari- 
son to the best individual forecast O g. 

the best known order of dimensions. The evolutionary approach can therefore be 

evaluated as useful in order to determine the order of dimensions automatically. 

The experiments also prove that approaches which allow only the combination of 

forecasts that have been diversified only by one type of diversification perform 

better than approaches that do not contain this restriction. 

Both types of crossover perform well. In many cases the solutions found by the 

four types of evolution represent the same order of pooling and differ only slightly 

concerning the trimming percentage. 



8. SUMMARY AND POTENTIAL FOR FUTURE WORK 

8.1 Justification for the Line of Research 

The domain of multi level forecast combination is a challenging new domain con- 

taining a large potential for forecast improvements. This thesis presented a the- 

oretical and experimental analysis of different types of forecast diversification on 

forecast error covariances and resulting combined forecast quality. We have seen 

that forecast diversification concerning the level of learning in connection with 

thick modelling and the use of different function spaces followed by a (multi step) 

combination procedure can be a powerful approach in order to build a high quality 

and adaptive forecast system. We have compared models differing concerning de- 

composition, diversification as well as concerning the applied combination models 

and structures. 

After an introduction into the application as well as into the theory of fore- 

cast combination in the Chapters 2 and 3 we investigated aspects of diversity and 

diversification procedures in Chapter 4. This chapter also contains an analysis of 

effects of diversification in relation to different types of parameter values on error 

components corresponding to the bias-variance-Bayes decomposition. 

Different approaches of how to include information from different levels into 

forecasting have been discussed in Chapter 5. The improvements achieved with 

multi level forecast combination prove that it is worth carrying out theoretical 

analysis in this relatively new field. We have provided the extension of the bias- 

variance-Bayes decomposition to the multi level case. An analysis of the effects 

of including forecasts with parameters learned at different levels on the bias and 

variance error components has shown that forecast combination is the best choice 
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in comparison to the other alternatives. The proposed approach represents a com- 

pletely automatic procedure. It realises changes in the error components which are 

not only advantageous at the low level, but have also a stabilising effect on aggre- 

gates of low level forecasts to the higher level. We have also identified cases in 

which multi level forecast combination should ideally be connected with the use of 

different function spaces and/or thick modelling related to certain parameter values 

or preprocessing procedures. 

We have provided an analysis of effects of such large sets of forecasts on co- 

variance values in Chapter 6. We have seen within the bias-variance-Bayes de- 

composition framework that different kinds of diversification can have impacts on 

different error components. The "diversity" of a pair of forecasts has been quanti- 

fied as the uncorrelated part of the total error variance in relation to the total error 

variance. 

In order to avoid problems occurring for large sets of highly correlated fore- 

casts if considering covariance information, we investigated the potential of pool- 

ing and trimming for our case. We estimated the expected behaviour of our diversi- 

fied forecasts in purely error variance based pooling represented by a common ap- 

proach of Aiolfi and Timmermann and analysed effects of different kinds of covan- 

ances on the accuracy of the combined forecast. We showed that a significant loss 

in the expected forecast accuracy may ensue because of typical inhomogeneities in 

the covariance matrix for the analysed case. 

If covariance information is available in a sufficiently high quality, it is possi- 

ble to run a clustering directly based on covariance information. We have discussed 

how to carry out a clustering in that case. We have also considered a case (quite 

common in our application) when covariance information may not be available and 

proposed a novel simplified representation of the covariance matrix which repre- 

sents the distance in the forecast generation space and is only based on knowledge 

about the forecast generation process. A new pooling approach has been proposed, 

that avoids inhomogeneities in the covariance matrix by considering the informa-' 
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tion contained in the simplified covariance representation. One of the main advan- 

tages of the proposed approach is that the covariance matrix does not have to be 

calculated. We compared the results of our approach with the approach of Aiolfi 

and Timmermann and explained the reasons for significant improvement. Another 

advantage of our approach is that it leads to the generation of novel multi step multi 

level forecast generation structures that carry out the combination in different steps 

of pooling. 

Finally, we described different evolutionary approaches in order to generate 

combination structures automatically in Chapter 7. We investigated completely 

flexible approaches as well as approaches that avoid the expected inhomogeneities 

in the error covariance matrix based on our theoretical findings. We also proposed a 

solution to the problem of determining the order of the dimensions used for pooling 

in our pooling algorithm using the simplified covariance representation. 

The theoretical analysis is supported by our experimental results. We could 

achieve an improvement of forecast quality up to 11 percent for the practical ap- 

plication of demand forecasting in Revenue Management compared to the current 

optimised forecasting system. 

8.2 Future Work 

While forecast combination in general has been well studied [Timmermann 05], 

the research in relation to multi level forecast combination is in its beginnings. We 

still do not have clear understanding under which conditions to generate forecasts 

at which level. Further mathematical and experimental investigations will help 

to better understand the underlying mechanisms and to improve control of use at 

different levels. 

Another new field that is worth further investigation is the domain of generating 

stable and powerful multi step combination structures. The recent work of Gabrys 

and Ruta show a potential of combining a large number of forecasts also in relation 

to fusion of classifiers [Ruta 05]. Their surprisingly good results in the NISIS 
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competition 2006 [Ruta 07], achieved with the application of a two step pooling of 

diversified neural networks for time series prediction with the pools also defined 

by the type of diversification in combination with trimming, show the potential of 

research in this domain for other applications. 

Personally, I am very happy that a new PhD project in cooperation with Lufthansa 

Systems Berlin GmbH started in October 2006 with the objective to continue re- 

search in the domain of multi level forecast fusion. The existence of this project 

proves the practical relevance of the research carried out in this PhD as well as the 

stability of the existing cooperation between Bournemouth University and Lufthansa 

Systems Berlin. 

The main two components in our application which decide about the quality of 

the final forecast are the accurate predictions of the demand based on the current 

and historical booking information combined with accurate predictions of cancel- 

lation rates. The main focus of the current analysis has been on the booking based 

forecasting and use of novel adaptable multi level forecast combination techniques 

for improving of the forecast quality. However, the prediction of cancellation rates 

which relates to the understanding and intelligent modelling of the customer be- 

haviour has not been used extensively until now. In the new project substantial 

level of information stored in the airline Passenger Name Records (PNRs) will be 

exploited through the use of data mining approaches and new adaptable classifi- 

cation methods for modelling and understanding of various groups of customer 

behaviours and improvement of the cancellation forecasts. 

Two general data sources determining potential types of models can be used for 

cancellation predictions: models based on PNR attribute information and models 

based only on information related to time and the expected number of bookings. 

Both types of models allow and are likely to benefit from multi level approaches. 

The purely time based models depend on historical and current booking and 

cancellation numbers related to different times prior to the departure. Tradition- 

ally these are statistical time series approaches or causal models predicting the 
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absolute number of expected cancellations, the cancellation rate or probabilities of 

cancellation per booking. The issue here is the choice of the level (or following 

the already mentioned multi level approaches) of the determination of historical 

cancellation rates or probabilities, the adaptation to the special booking behaviour 

of the current departure to predict and the adaptation to different types of changes 

like seasonal effects, schedule changes and others. In addition there is the hard 

issue of pre-processing very small booking and cancellation numbers which leads 

to anomalous extreme cancellation rate predictions if they are not stabilised at the 

fine level. 

The second class of models is based on exploitation of the PNR attribute infor- 

mation within a data mining frameworks which through various exploratory data 

analysis approaches would then result in generation of clustering, classification 

and predictive models used for identification and description of different customer 

behaviours and groupings with different propensities for cancellation in different 

circumstances. 

One of the main aims and challenges of the new project is a development of an 

adaptable framework within which the times series based forecasts of the cancella- 

tion rates will be combined with cancellation forecasts based on the modelling of 

customer specific behaviour. 



APPENDIX 



A. DEFINITIONS RELATED TO AIRLINE REVENUE 

MANAGEMENT 

A. 1 Region 

In this subsection we define locations like airports, cities and routings. 

Definition A. 1 (airport): The set AP C 1Z x 1Z is the set of airports. The airports 

ap E AP are described as a pair of their longitude and latitude. The ID of an 

airport ID(ap) is a unique three letter string, e. g. ID(ap)=FRA means the airport of 

Frankfurt/Main. The set of airports can be ordered by the longitude/latitude or by 

the ID. 

Definition A. 2 (city): A city (in the airline meaning) ci E CI is a set of airports 

ci = (ap) C AP. Every airport belongs to one and only one city. Cities have 

unique three letter IDs, too. Cities (in the airline meaning) handle the fact, that big 

cities (in the general meaning) can contain more than one airport. 

Definition A. 3 (country, global traffic area): Similar to the definitions of cities, coun- 

tries cou E COU, cou = (ci) C CI are defined as sets of cities and global traffic 

areas gta E GTA, gta = (cou) C COU as sets of countries. Single difference: 

the IDs of countries and global traffic areas are unique two character IDs. 

Definition A. 4 (leg): A leg E LEG C AP x AP is an ordered pair of airports. If 

leg = (apl, ap2), apl, ap2 E AP, then apl is called the origin O(leg)=apt, ap2 is 

called the destination D(leg) =ap2. 
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Legs are written by the IDs of the airports, too, i. e. leg(apl, ap2)= leg (ID(apl) 

ID(ap2)) or leg = ID(apl) ID(ap2). The leg from Frankfurt Main to Berlin Tegel 

could, e. g., be written as leg( FRA TXL) or leg=FRA TXL. 

Definition A. 5 (routing): A routing rou E ROU is an ordered set of legs rou = 
(legi) E LEG, i=1.. n E N, which satisfies the conditions 

" o(legi) = d(legi_1) Vi = 2.. n and 

" there do not exist cycles, i. e. for any airport ap E AP with ap E legi and 

apElegj with i<j-ºj=i+1. 

The origin of a routing O(rou) is defined by the origin of its first leg and the des- 

tination D(rou) of a routing is defined by the destination of the last leg, i. e. it is 

O(rou) = O(legl) and D(rou) = D(leg,, ). 

There exist different notations for routings, like rou(legl, leg2,, leg,, ) or 

rou = leg,, leg2i, leg,,. As legs are unique pairs of airports, routings can be 

described directly by the list of airports, too, i. e. rou(leg,, le92i , leg,, ) can be 

_ written with the notation rou(O(leg, ), D(legi), D(leg2),, D(leg,, )) or rou 
O(leg, )D(leg, )D(leg2)D(leg,, ) given the fact that 

O(leg2) = D(leg, ),, O(legn) = D(leg,, _, 
). 

In a lot of applications it is not relevant on which way to come from an airport to 

another airport, that is why routings with the same origin and the same destination 

are clustered to ODs. 

Definition A. 6 (OD): Given the set of existing airports AP, the set of existing rout- 
ings ROU and two airports apl, ap2 E AP, an od(apl, ap2) E OD is defined as 

the set of routings (rout) C ROU, i=1.. n E N, where O(rou2) = apl and 
D(roui) = ap2 Vi = l.. n. The origin and destination of the routings is also called 

the origin and destination of the od, O(od) and D(od). 
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A. 2 Time 

Now some definitions concerning date and time are given. As everybody knows 

what is a day of week, some of the definitions may seem to be unnecessary, never- 

theless they are given in order to clarify the notation used in other sections. 

The sets D and TIME are used to define process-, departure- and arrival dates 

and times. 

Definition A. 7 (Date / Time): The set of dates DCNxNxN is the set of valid 

calendar dates. A date is defined as the triple date := (day, month, year) E D. 

It is day E (1,.., 31) E N, month E (1,.., 12) EN and year E N. The set 

of times TIME ENxN is the set of valid minutes of a day given in hours 

and minutes, i. e. time = (hour, minute) E TIME, hour E (0,.., 23) E N, 

minute E (0, 
.., 59) E N. 

The notation of the dates is not standardised, all international formats to de- 

scribe a date are possible. In this thesis the notation day. month. year is used. The 

notation of the time is not standardised either, in this thesis we use the notation 

hours: minutes. If dates and times are connected with locations, it must be defined 

whether the hour and minute information refers to the UTC (European Standard 

Time) or the LT (Local Time). 

Definition A. 8 (Day of Week): The set DOW = (1, 
..., 7) EN is the set of the 

existing days of week. In this notation dow=l means "Monday", dow=2 means 

"Tuesday" etc. The day of week can be obtained as a function of a date dow(date), 

date E D. 

Definition A. 9 (Calendar Week): The set of calendar weeks CWV = (1,.., 53) E 

N is the set of ISO calendar weeks. A calendar week cw E CIV can be obtained 

as a function of a date cw(date), date E D. 
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Given a calendar year year E H, a date can be obtained as a combination 

of the calendar week and a day of week date(cw, dow) E D, cw E CW and 

dow E DOW. 

Another definition to handle relative dates to another date (in the next case it is 

the departure date) is the definition of snapshots and the snapshot grid. 

Definition A. 10 (Snapshot Grip/Snapshot/ DCP): A snapshot grid is a function 

SG : DCP CN i--. DAYSTODEP CN with DCP = (1,.., DCP) and 

DAYSTODEP E [0,362]. The function is strictly decreasing, i. e. SG(dcp) > 

SG(dcp + 1), dcp = 1.. DCP -1 and it is SG(DCP) = 0. The elements dcp E 

DCP are called Data Collection Points. The elements (dcp - 1) = (0,..., DCP - 
1) are called snapshots, too. 

The meaning of the snapshot grid is to indicate days (relative to a given de- 

parture date) on which some actions (like producing forecasts for that departure) 

have to be done, e. g. SG(1) = 350, SG(2) = 182, etc. means that the first action 

concerning a departure has to be done 350 days before the departure, the second 

action 182 days before the departure, etc. 

There are three points which are often discussed using snapshot grids: 

" Should more than one snapshot grid be used or is it sufficient to have only 

one? 

" How many snapshots should be used? 

9 How should the snapshots be selected? 

The answers to the questions are correlated. There exist studies that recom- 

mend that in general it is sufficient to have no more than 17 snapshots, and the 

snapshots should be selected such that the mean value of bookings between two 

snapshots is constant. In reality snapshot grids depend more on the controlling 

process than on these suggestions. 



A. Definitions related to Airline Revenue Management 261 

A. 3 Flight Schedules 

In the last two subsections the basic definitions related to locations and points of 

time have been given. This allows now to describe flights, segments and ODIs. 

Definition A. 11 (Flight / Flight Schedule): A (planned/ realised) flight is (in the 

sense of this paper) an element of the set FL = LEG xDx TIME, i. e. a flight 

fl E FL is determined by a leg, a departure date and a departure time. A flight 

schedule fsE FS C FL is the set of currently planned flights given a special 

process date, i. e. f s(pd) = (f 1) C FL with pd E D. 

We use the notation fl(leg, date, time), the components can be retrieved by the 

functions leg(f l), d(fl) and t(f l). The origin and destination of a flight fl are 

described by its leg, i. e. O(f 1) = O(leg(f 1)) and D(f 1) = D(leg(f 1)). The 

routing of a flight rou(f 1) E ROU, flE FL describes the routing of the leg of 

the flight, i. e. rou(fl)=rou(leg(fl)). 

In the airline world, flights have lots of other characteristics, such as aircraft 

type and different kinds of states. 

Definition A. 12 (Segment): A segment seg E SEG is an ordered set of flights 

seg = (f li) C FL, i= (1.. n) E N, a passenger can book under a special ID, the 

flight number. 

The origin and destination of a segment are defined by the origin of the first 

flight and the destination of the last flight, i. e. O(seg) = O(fll) and D(seg) _ 

D(f l,, ). Segments are built by the airlines with the following restrictions: 

9 Every flight of the current flight schedule builds a segment. 

" The set of the ordered legs of the flights of a segment is a routing, i. e. it is 

rou(seg) = (legi) = (leg(f li)) E ROU. 

9 The departures of the flights f li differ not more than 24 hours, i. e. 

d(f l=) = d(f li_1) (A. l) 
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and 

time(fl) > time( f li_1) 

or 

d(. fli) = d(fli-1) +1 

and 

(A. 2) 

(A. 3) 

time( f li) < time( f li_1) (A. 4) 

holds for every i= (2.. n) EN 

Lots of calculations and reports in the airline industry are based on the segment 

level. In general, segments consist of only one flight. In very few cases there exist 

segments containing more than one flight (so called multi leg segments). Segments 

are constructed to simplify the booking process in the airline industry. Multi leg 

segments are also constructed to follow the philosophy/policy of "one face to the 

customer". Passengers can book segments under one flight number, they buy one 

product, even if they have to change the plane during their trip. 

If we want to have a look at bookings concerning network effects, we have 

to take into account that many passengers want to book more than one segment. 

People living near small airports often fly to a bigger airport first (inbound flight) 

before they take for instance a transatlantic flight (main segment). Often there is 

also a flight bringing them finally to the airport of destination (outbound flight). 

Other passengers are using hubs like Frankfurt to connect two longer flights, be- 

cause the distance is too long to do it in one segment. A typical example are people 

travelling from India via Frankfurt to New York. People who want to fly more than 

one segment have to be accepted on all segments or none. As there is a price dif- 

ference between a booking for two or more segments and the sum of prices which 

local passengers would have to pay for each segment, it is important for the opti- 

misation process to know the network flows. That is why we define ODIs, which 

are representing sets of segments. 
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Definition A. 13 (ODI): An odi E ODI is an ordered set of segments odi = 
(segi) E SEG (with segi = (f lij) E FL, j=I.. n(i)) with the following proper- 

ties: 

" The set of the ordered legs of the segments is a routing, i. e. it is 

rou(odi) = (legzj) = (leg(fl; j)) E ROU (A. 5) 

with legzj ordered by i, j. 

" The dates of the flights f lzj differ no more than 24 hours, i. e. it is 

d(. fli, i) = d(fls-i, n(ý-i)) (A. 6) 

and 

time(f li, l) > time(f li-l, n(j_i)) (A. 7) 

or 

d(. fli, 1) = d(. flt-1, n(j-1)) -I-1 (A. 8) 

and 

time(fl=, 1) < time(fl=_l, n(j_1)) (A. 9) 

for every i=2.. n EN 

" ODIs are built on the maximal segments, i. e. for any segment seg E SEG, 

seg ý odi with rou(seg) C rou(odi), there exists a segment seg E ODI 

with flE seg Vf1E seg. 

An odi can be interpreted as the complete description of the locations and time 

of a simple trip (without return). So a passenger can, e. g., fly from 

" Delhi on 10 of October 2001 at 23: 10 to Frankfurt/ Main and from 

" Frankfurt/ Main on 11 October 2001 at 8: 40 to Berlin Tegel 
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ODI is the abbreviation of Origin Destination Itinerary. 

The definition for a trip is nearly the same as for an odi, the only difference is 

that the segments must not build routings, i. e. airports can be repeated more than 

once. Trips can be used to model complex trips, e. g with return. 

Definition A. 14 (TRIP): A trip E TRIP is an ordered set of segments, it is 

trip = (segi) E SEG (with segi = (f lij) E FL, j=1.. n(i)) with the fol- 

lowing behaviour: 

" O(segi)=D(segi-1), i=(2... n)EAr 

" The dates of the flights f lid differ no more than 24 hours (see (A. 6) to (A. 9)). 

" Trips are built on the maximum segments. 

To be able to learn information related to odis, we have to cluster similar odis 

over different departure dates. 

Definition A. 15 (ODO): An odo E ODO is a cluster of odis containing all the 

same routing and comparable departure times. Each odo contains maximal one odi 

at any given departure date dED. Each odi belongs to one and only one odo. 

Odos (abbreviation for origin destination opportunity) represent stable history 

pools for odis. Note that they are not effected by flight number changes and small 

departure time changes. 

A. 4 Booking Conditions 

Most of the (traditional) airlines offer different comfort levels, which are described 

with the term of compartments. 

Definition A. 16 (compartment): A compartment is an element of the countable set 

COMP = (1.. n) EN describing the comfort level during a flight. 
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The size of the set of compartments COMP is defined per airline. Compart- 

ments describe the comfort on board, such as the quality and distance of the seats, 

the food, the quality of entertainment, number of stewardesses, etc. Compart- 

ments are in general described by a name and a unique one letter ID, for instance, 

name(O)= FIRST, ID(O)=F, name(1)= BUSINESS, ID(1)=C and name(2)=ECONOMY, 

ID(2)=M. 

However, not only the level of comfort determines the price. Bookings can also 

be made on different conditions concerning 

" the possibilities of free cancellation and booking changes, 

" the platform, place and time of the booking (e. g. bookings on internet), 

" special booking conditions (e. g. for members of several companies), 

" several passenger states like the senator state or "miles and more" passengers 

and lots more. 

The price of a booking depends on all of the conditions on which the booking 

has been made, i. e. on a plane a passenger can sit directly next to another passenger 

with exactly the same comfort but having paid only half or less of the price. The 

different conditions and prices are clustered in fareclasses. 

Definition A. 17 (fareclass): A fareclass fEF= (1.. n) EN is a cluster of sets 

of booking conditions. 

If passengers make a booking in a booking class, it does not mean, that they 

have to pay the same price. In some cases, the clustering into booking classes is 

made regarding the price, but that is not a general rule. Fareclasses can be seen as a 

description of the "value" of a passenger for an airline, which can be determined by 

the price the passenger is paying, but can also be an attention to customers who fly 

a lot with that airline or who belong to several companies. Fareclasses are defined 

per airline and the clustering rules can be very different. The only rule for the 
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clustering is that all passengers booking in a fareclass book the same compartment, 

i. e. a function comp(f) E COMP can be defined for every fEF. Fareclasses 

are described by a one letter ID. 

It is also relevant where a booking is made. That is why we define point of 

sales. 

Definition A. 18 (pos): A pos E POS = (Country of Origin, Country of 

Desinaton, Other) is an indicator in which country a booking on a given od has 

been made. 



B. DESCRIPTION OF EXPERIMENTS AND THE APPENDED 

SOFTWARE 

B. 1 Introduction to the "Avanti" Software 

The software Avanti has been developed in order to carry out experiments related to 

this thesis. It has been implemented in Visual C++ and uses MFC for the graphical 

user interface. It enables the reproduction of the presented experimental results as 

well as modifications concerning for instance parameter values. It also contains a 

data visualisation component and with that the opportunity to visualise and analyse 

all intermediate results on any requested level of detail. 

Avanti is strongly based on the forecasting kernel developed by Lufthansa Sys- 

tems Berlin. It uses forecasting methods implemented in the forecasting kernel as 

well as objects for data representation and manipulation. The forecasting kernel as 

well as the Avanti software are implemented as application independent tools. This 

means that they offer functionality in a manner that the methods could also be used 

for a completely different application. 

In order to use the functionality, application specific information has to be pro- 

vided. This information contains 

" information about the input space (in terms of dimensions/levels) ( see B. 3.3) 

"a description of the existing data (see B. 3.4) 

"a specification of the methods to be applied (see B. 3.5) including 

- the order of processing 

- parameter settings 
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-a specification on which data calculation should be carried out. 

Within Avanti, any calculation on data is carried out by software components 

which we will call calculation components. Each calculation component provides 

a certain functionality, such as loading data from files or application of a certain 

method of forecasting or history building. Calculation components can be parame- 

terised and need a specification of data on which they should be carried out. Details 

will be provided in Subsection B. 3.5. 

Data is stored within Avanti in multi dimensional data cubes. Data cubes need 

a specification concerning their names and their dimensionality. This will be ex- 

plained in detail in Subsection B. 3.4. 

B. 2 How to Install Avanti 

Start setup. exe in order to carry out the installation of Avanti. 

The installation provides the executables avanti. exe for calculation with a graph- 

ical user interface and avantiBatch. bat for batch processing of different data direc- 

tories (see B. 3.11). A parameter file is provided as well. 

Additionally, two subdirectories are created during the installation within the 

main directory into which Avanti is installed. The first one is the data directory 

containing all used experimental data. The data directory contains different subdi- 

rectories representing the different ODs and ODOs. The same files can be found in 

each subdirectory. The second directory is the directory containing the data group 

and dimension descriptions as well as the experimental descriptions (component 

lists and diversification lists) per experiment. 

B. 3 How to Run Experiments 

B. 3.1 Overview of the Graphical User Interface 

The Graphical User Interface of Avanti is composed of four different views as 

shown in Figure 63. 
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The lower left view is the data view. This view contains information about 

the used data. The data is provided in a list grouped by data groups. A data 

group contains similar types of data. So we have, e. g., defined a data group learn- 

ing_attr_group containing all data related to information about the attractiveness 

learned by different models. The data view also visualises the state of a data cube 

(like created, loaded or updated). Details about the data view are provided in Sub- 

section B. 3.2. The data view allows the selection of data cubes for visualisation or 

in order to request additional information concerning the dimensions of this data 

cube (see Subsection B. 3.3). 

The upper left view is the component view. The component view shows the 

specification of calculations to be carried out in terms of a list of calculation com- 

ponents which represent the setup of an experiment. Components represent a cer- 

tain type of calculation to be carried out (like loading data, application of a certain 

Data 

-mQfSa9aS- 

-rvrrgFlLE_INTERFACE Raaly 
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forecast method or others). They need a specification concerning the data on which 

the calculations should be carried out as well as parameter values. The component 

list also provides the information if a component has already been processed or 

not. Details in relation to the creation and manipulation of calculation components 

are provided in Section B. 3.5. The modification of parameter values is described 

in Subsection B. 3.6. The visualisation and modification of the specification of data 

on which the calculations have to be carried out is described in Subsection B. 3.7. 

Component lists can also be saved and loaded. This allows for instance to repeat 

experiments or to incorporate minor changes in an experimental setup. 

The upper right view is the visualisation view. It allows a flexible visualisation 

of data. The visualisation is dynamic with respect to the data cubes to be visualised 

as well as concerning the view in relation to the different dimensions. So it is, 

for instance, possible to visualise booking values and the unconstrained offset for 

a single fareclass F, with the data collection point r as x-axis averaged over all 

departure weeks and each day of week represented as a separate line in one figure 

or in a separate figure. Details about how to visualise data together with examples 

are given in Subsection B. 3.8. 

The lower right view is the message view. It provides information about the 

current state of a calculation. The message view is described in Subsection B. 3.10. 

B. 3.2 Handling and Visualisation of Data 

Data cubes are characterised by dimensions in relation to the data that exists in 

a given context. So we have for instance booking data given for different fare- 

classes (F), point of sales (POS), departure weeks (DW), day of weeks (DOW) and 

data collection points (DCP). A data cube can only be created by specifying these 

dimensions. 

The following information is needed in order to create a data cube: 

" each dimension needs to be specified concerning the extent of the dimen- 

sion indicating how many elements the dimension contains (for instance: 
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the number of existing days of week is 7) 

" the data cube needs to be contained in a data group which clusters similar 

types of data 

" the data cube needs to be related to a data cube extent specification indicating 

which dimensions the data cube contains 

All calculations within Avanti are able to handle missing data values. In the 

data cubes a missing or unspecified value is characterisied as -1000. This value 

is also called default value in the following descriptions of the calculation compo- 

nents. 

B. 3.3 Information about Data Cube Dimensions 

Existing dimensions have to be described in a file dimensions. dat which is expected 

in the component list directory specified by the global parameter pComponentList- 

Directorv (for details about the meaning of this parameter and how to modify the 

parameter value see B. 3.6). 

Each line in the dimensions file represents a pair of a name of a dimension 

and its extent. An example is shown in Figure 64. The dimensions used for our 

application will be described in Section B. 5.1. 

Y 

4 dimensions. dat - ... 
Qatei @earbeiten Format 6nsidt Z 
F 20 
POS 3 
ODO 1 
DCP 23 
DOW 7 
CW 129 
DCPFC 23 
FCNR 7 

i 

lrJlJ® 
-1 

Fig. 64: Example for a specification of existing data dimensions in file dimensions. dar. 
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B. 3.4 How to Specify Data Groups 

Data groups contain lists of data cubes as well as information about their dimen- 

sions. They are specified in files called 

<data_group_name>. avdg expected in the component list directory specified by 

the global parameter pCornponentListDirectorv (see B. 3.6). Figure 65 shows an 

example. 

The first line of a data group description file always contains the keyword 

DATAGROUPNAME and then the name of the specified data group. Then follow 

descriptions of one or more data cube extent specifications. Each extent specifica- 

tion is described in two lines. The first line contains the keyword EXTENTfollowed 

by the name of the extent specification. The second line contains a description of 

the used dimensions. It starts with the number of dimensions and then indicates 

the names of the dimensions. It is followed by a description of the data cubes. 

Each data cube is described by its name and its extent. The lines contain first the 

keyword CUBEEXTENT, then the name of the data cube and then the name of the 

extent specification, describing the structure of the data cube. We will describe the 

data groups defined in our experiments in Section B. 5.2. A detailed description of 

the used data cubes will be provided per experiment in Section B. 6. 

4 input_gioup avdg - Editor 

Qatei @earbeiten Format gnsiKht Z 

DATAGROUPNAME input-group 
EXTENT DEFAULT 

6 POS F DOW ODO CW DCP 
EXTENT SHIFT 

1 DCPFC 
CUBEEXTENT avail DEFAULT 
CUBEEXTENT bkg DEFAULT 
CUBEEXTENT ucekg DEFAULT 
CUBEEXTENT ucoftset DEFAULT 
CUBEEXTENT blockElemShift SHIFT 

Fig. 65: Example for a data group input-group. avdg. It contains two cube extent specifica- 
tions called DEFAULT and SHIFT. Then four data cubes called bkg, avail, ucBkg 
and blockElemShift are specified. 

After having been loaded (see B. 3.10), each existing data group is represented 
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as a directory in the data view (see Figure 63). The elements in the directories 

represent the data cubes. The symbol next to the name of the data cube shows if a 

data cube has already been loaded or updated. The symbol containing a question 

mark indicates a data cube which has not yet been used. 

The dimensions of a data cube can be visualised in Avanti as well. Ater havimg 

selected a data cube in the data view select Data/ ShowCuheDimensions in the 

menu. A dialogue appears that shows all dimensions of the data cube together with 

their extents as shown in Figure 66. 

Cube Dimensions 

cube : bkg 

Dimension Extent 

POS 
F 
DOW 
ODO 
Ow 
DCP 

3 
20 
7 
1 
129 
23 

. 
ö. K........ 

Fig. 66: Example for dimensions of a data cube in Avanti. 

B. 3.5 Calculation Components 

Calculation components represent application independent calculation units. In 

order to carry out an experiment, it has to be defined which calculation components 

to use in which order. This can be done by selecting Component/Add Component 

in the menu. The dialogue for calculation component selection is shown in Figure 

67. At the right hand side all existing calculation components are listed grouped 

by component types. The left list shows the selected components. The dialogue 

allows the selection of new components as well as changes concerning the order of 

calculation. 

Component lists can also be loaded and saved over the menu (use File/ Load- 

Component List). This allows the re-use of experimental descriptions. At the mo- 
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Components 

Add --> <--R emove Up Remove All 

- Interface 
FILE INTERFACE 
MERGE_FILES 

- History Building 
HB_EXP 
HB-BROWN 
HB_REGR 

- Preprocessiig 
UNCONSTRAINING 
DATA-DECOMPOSITION 
DATA-SMOOTHING 

+ Forecast 

+ Validation 

+ Forecast Combiwtion 

- Interface 
FILE-INTERFACE 

- History Building 
HB_EXP 

- Preprocessig 
UNCONSTRAINING 

OK 

Fig. 67: Example for calculation component selection in Avanti. 

ment when a component list is created or loaded, Avanti also automatically loads 

the data group specifications and shows the data visualisation view. 

A special type of component list selection is carried out in case of global param- 

eter setting pAutomaticCalculation= "on ". In this case, the loading of the compo- 

nent list file component_list. avcl is carried out automatically when Avanti is started. 

An overview of used calculation components will be given in Section B. 4. The 

component lists applied for the different experiments are presented in detail in 

Section B. 6. 

B. 3.6 Handling and Visualisation of Calculation Parameters 

Two kinds of parameters are defined within Avanti: global parameters and param- 

eters relating to special calculation components. Three types of parameters flag 

(boot), value(int orfloat)and string are supported for both kinds. 
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Global parameters are fixed for all calculations. They can be visualised and 

modified using the menu by selecting Data/ SetGloabalParameter. The following 

table shows the global parameters that are currently used. 

parameter type description example 

pComponentListDirectory string directory of the compo- C: /Avanti/Experiment 

nent list 

pDataDirectory string directory from which the C: /Avanti/Data/ 

data is loaded 

pResultDirectory string directory into which the C: /Avanti/Results/ 

results are written 

pBatchCalculation bool allows the successive cal- off 

culation in relation to dif- 

ferent subdirectories of 

the data directory 

pBatch string if batch calculation, this "ODI-ODO1" or 
parameter specifies the "batchlog" 

current batch element 

to be processed. If 

"batchlog", the current 

element is loaded from 

the batchlog. dat file. 

pExperiment string a subdirectory specifying Experiments 

an experiment is used for 

loading of the component 
list and saving of the re- 

sults 

pAutomaticMode bool a component list as well on 

as the data groups are 
loaded and the calcula- 

tion is started automati- 

cally if the software runs 
in this mode 
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Component parameters are specified in relation to a specific calculation com- 

ponent. They can be visualised and modified after having selected a component 

in the component view via the menu with Component/ SetComponentParameter. 

Then a component-specific parameter dialogue appears which allows parameter 

values to be shown and overwritten. An example is shown in Figure 68. The 

meaning of the different parameters of the components applied in our experiments 

will be described in Section B. 4. 

Parameter 

eamponent: DATA_DECDMPOSITION 

Parameter Flaps : 

pRestiictR el) eviation 

Paiamelet Values : 

pR eD eviationLowerLirnit 
pR eD evietionU pperLimit 
p8 aseLowerLirnit 
pBaseUpperLimit 
pR eD evrationLmtD unpirg 

Parameter Strops : 

Flag 

off 

Vdue :I 

Stmt': 

3.00 

OK 

Fig. 68: Modification of parameter values in Avanti. 
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B. 3.7 Specification of Data to be Used for a Calculation 

Figure 69 shows an example for the dialogue that enables the specification and 

modification of data cubes to be used for a calculation. The dialogue can he reached 

after having selected a component in the component view via the menu with Com- 

ponent/ Set Input/Result Cubes. 

In this dialogue the list on the left hand side contains the application indepen- 

dent internal names of the data corresponding the its general role for the calcula- 

tion. The dialogue also provides the information if this data is input data, result 

data or both. The list at the right hand side contains the currently selected data 

cubes. An error will occur during the calculation if an external name remains 

"UNDEFINED" or if the indicated external name does not correspond to the name 

of a valid data cube. The external name can be modified by writing the new data 

cube name in the edit element at the bottom of the dialogue. Select the internal 

name with which this data cube should be used and press the button Change Ex- 

tern Name. 

Component Input/Result Cubes 

component 

Input C. es 

act 
ref Basa 
ref Deviation 
base 
deviation 

Extern Name 

._.. ___ _... _. _. ____., ....,,, ý.. _ .. ® 
_ý 

ixBkp 
phi0_hl ExpSm 
phi0_hl Hiss 
attrPrepared 
seasonSmoothed 

V islnput 

F IsOutput 

Charge Extern Name OK 

Fig. 69: Specification of data cubes to he used for a calculation. 
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A way of handling different data dimensions has to be defined as well. Often 

calculations need to be carried out for each element of a dimension in a separate 

manner, in other cases data corresponding to different elements of a dimension 

need to be available for a calculation. 

Three types of interpretation of dimensions are possible within Avanti: 

" Loop dimensions are dimensions which are not relevant for a calculation. 

The calculation is carried out for each element of this dimension separately. 

" An applied dimension is a dimension for which the values related to differ- 

ent elements need to be available for a calculation at the same time. If, for 

instance, you want to calculate an average value over calendar weeks (and 

do this for all fareclasses, point of sales and so on), the dimension represent- 

ing the calendar week would be an applied dimension, all other dimensions 

would be loop dimensions. 

" Aggregated dimensions are subspaces which should not be considered. This 

means that all values related to these dimensions are added before the calcu- 

lation. The results are duplicated and identical values are written into each 

element of a result cube related to such dimension (if it exists). 

In addition to specifying of how to handle a dimension, it can also be speci- 

fied which range of elements should be used. This allows, for instance, a history 

building only on a subset of the existing departure weeks. 

The dialogue in which the handling of dimensions for a calculation can be 

specified can be called after having selected a component in the component view 

in the menu with Componend Set Applied/Aggregated Dimensions. The upper list 

shows all dimensions for which a specification is provided. Dimensions of data 

cubes that do not occur in that list are automatically interpreted as loop dimensions 

over all elements. 

The specified range of elements of a dimension to be used can be modified by 

first selecting this dimension in the list. Then it is possible to modify the first ele- 
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ment and the last element which should be considered for the selected dimension. 

The fact whether the selected dimension should be a loop dimension or not can 

also be modified. Dimensions which should be aggregated occur in the list at the 

bottom. 

If you want to add a specification for a dimension that does not occur yet in the 

list, this can be performed by entering the name of the new dimension in the upper 

edit element and pressing the button AddDimension. The use of button Aggregate- 

Dimension allows the inclusion of a dimension specified in the upper edit element 

into the list of aggregated dimensions. 

Applied / Aggiegated Dimensions 

component 

Dimension: 

Dinensions 
IsLoopDim 1- DCP 

F 
DOW 

Aggregated Dirbnsions 

F 
DOW 

first 1" 
F7 - 

step 

extent 

last 

AddDinension 

AddAggiegated Dimension 

Remove Dmension 

OK 

Fig. 70: Specification of handling of dimensions for a calculation. 
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B. 3.8 Data Visualisation 

The data visualisation view can be used in order to generate dynamic 2D-figures of 

any data included in a data cube in Avanti. In order to visualise data, the following 

has to be specified: (a) which data cubes to visualise, (b) which dimensions to 

use as x- axis and (c) to indicate restrictions to specific elements in relation to the 

existing dimensions. 

The list box at the left hand side of the visualisation view contains a list of data 

cubes that should be visualised. Select a data cube in the data view and press the 

button Add in the visualisation view in order to add a data cube to this list. The 

buttons Remove and Remove All can be used in order to delete data cubes from the 

list. 

At the right hand side of the visualisation view it can be specified how to handle 

different dimensions and which elements of the dimensions to include into the 

visualisation. Select a dimension in the dimension list. The following options can 
be chosen for the selected dimension: 

" loop: a separate figure is shown for each included element of this dimension 

" x-axis: the dimension represents the x-axis 

" average: all included elements of this dimension are averaged 

" separate: each element of this dimension represents a separate line in the 

figure 

The default setting for all dimensions is set to average, so that the user only 

needs to indicate dimensions which should be handled differently. 

For each dimension it is possible to decide whether to include all elements or 

a single element. The choice and the selection of the element to be visualised can 

be made in the value section of the data visualisation view. 

After having included all data cubes that should be visualised and having spec- 

ified the handling of the dimensions, the button Show can be pressed in order to 
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generate the visualisation. Figure 71 shows an example of the generated display. 

Pressing the button Save allows the saving of the visualised data values into an 

Excel compatible file. 

Signals: season. fc_hlHist_O. fc_hlHist_1. fc_hlHist_2. fc_hlHist_3. L-7 u 

08736 
0.7500 

G5000 

0.2500 

Cusa is at 1139,. 0 54131 

'ýP.. j: iN1 

Ic h1His1 0 

L- h1Hrc1 1 

. 1- 

fc h1His1 3 

50 75 100 128 

Fig. 71: The figure shows an example of visualisation of seasonal factors together with 
diversified predictions. In the example the departure week (DW) has been chosen 
as an x-axis dimension. The data collection point (dimension DCP) has been set to 
value 22 in order to show the demand at the time of the departure. The dimension 
DCPFC has been set to 5, which means that only predictions generated 70 days 

prior to departure are shown. Only fareclass (F) 16 has been selected in order to get 
an impression of a high demand economy class. Diversification dimension DIV I 
has been handled as separate, so that a separate line is drawn for each prediction 
related to this type of diversification. All other dimensions (like Fareclass. Point 

of Sale, Day of week, other diversifications) are averaged. 

B. 3.9 Specification of a Diversification 

A diversification of a parameter value or a level of data aggregation can be specified 

in the menu with Control/Diversify Calculation. A dialogue appears which enables 

the selection of the concerned components and setting the range of the diversified 

parameter value or choosing the diversified level. 
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Diversification specifications can also be loaded from files. Choose File/Open 

Diversification List in order to load a predefined diversification. For the experi- 

ments described in this thesis all the required diversification files are provided with 

the experiments. 

B. 3.10 Running an Experiment 

In order to run an experiment, the following steps have to be carried out: 

" Create dimension and data group description files (see B. 3.3 and B. 3.4). For 

the described experiments these files are provided with the experimental de- 

scriptions. 

" Create or choose a parameter file containing the global parameters. For the 

described experiments this file is provided as well. It should be checked that 

all directories are correctly indicated. Alternatively, the global parameters 

can be set or modified with the GUI (if not in an automatic mode). In the ex- 

perimental mode the correct experiment should be indicated in the parameter 

file before starting Avanti. 

" Create or load a component list (B. 3.5). If all global parameters are set 

correctly, the correct file will be suggerred automatically for the experiments 

and the correct data group descriptions will be loaded. 

" Diversify the calculation, if necessary (B. 3.9). For the repetition of a de- 

scribed experiment, load the diversification description, the correct diversifi- 

cation file is suggerred automatically. 

" Run the calculation. You can run the whole experiment by selecting Com- 

ponentlRunAll in the menu. It is also possible to run only parts of the cal- 

culation. Select a component in the component view and choose Compo- 

nendRunSelected (only calculates this single component) or ComponentlRunToSelected 

(calculates all to the selected component). 
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" It is then possible to visualise the results using the visualisation view or to 

save a selected data cubes calling file! SaveData Cube in the menu. 

B. 3.11 Processing Different Data Directories in an Automatic Mode 

It is also possible to run an experiment in an automatic batch mode. In order 

to do that set global parameter pAutomaticMode ="on", pBachCalculation="on" 

and pBatchElement="batchlog" in the parameter. txt file and start the dos batch file 

avantiBatch. bat. In this mode no user interaction is requested. The executable 

avanti. exe is called various times. Each call determines the current batch element 

(starting from 0) and generates an entry in the file batchlog. txt so that the cal- 

culation specified in the used component list can be carried out successively for 

different data directories. For such a type of calculation it is requested that the data 

directories related to the different batch elements are indicated in the parameter 

file. The requested format is 

BATCH < number >_ "< directoryname >" 

(for instance BATCH I="OD1-ODOO"). For the experiments related to this 

thesis the correct batch element specifications are provided with the parameter txt 

file. Note that avantiBatch. bat represents a very simple add-on to Avanti consid- 

ering only the needs for the experiments related to this thesis. If, for instance, the 

number of batch element changes, avantiBatch. bat has to be adapted to the new 

number of batch elements. 

B. 4 Description of Applied Calculation Components 

B. 4. I Component FILEJNTERFACE 

Brief 

I 
name of the component FILEJNTERFACE 

type of the component Interface 

short description loading and saving of data cubes 
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parameter type description 

pCubesToLoad string comma separated names of the data cubes to 

be loaded, example: "bkg, avail" 

pCubesToSave string comma separated names of the data cubes to 

be saved 

pApplDiminFile string name of a dimension for which the elements 

should be represented in separate columns, 

can also be "UNDEFINED" 

Detailed Description 

The component loads and saves all data cubes indicated by the parameters 

pCubesToLoad and pCubesToSave. The structure of the data files should be as 

described in Table 2. In this example dimension "DCP" is the dimension indicated 

by parameter pApplDim/nFile. Concrete examples for input data files can be found 

in the experimental data provided with the thesis. 

B. 4.2 Component UNCONSTRAINING 

Brief 

name of the component UNCONSTRAINING 

type of the component Preprocessing 

short description calculates unconstrained data based on given con- 

strained data, a historical estimation (reference) of 

the unconstrained behaviour and constraining in- 

formation 
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Data Signals and Parameters 

signal input/ 

output 

description 

act islnput constrained data 

ref islnput historical estimation of unconstrained be- 

haviour 

avail isInput constraining information, 0= "open", I= 

"closed" 

ucAct isResult unconstrained data 

ucOffset isResult offset generated by the unconstraining 

All data signals are expected to represent the situation at different data collec- 

tion points T. 

Detailed Description 

The general problem and idea of unconstraining has been described in Section 

2.2.2. The objective of this calculation component is to approximate the demand 

lost in case of closed fareclasses. The lost parts are approximated based on an 

historical approximation of unconstrained behaviour. 

Availability information is interpreted as punctual measurements. This means 

that if in a data collection point r1 an "closed" indicator has been measured and 

in the following data collection point 72 an "open" indicator has been measured. 

it is not clear at which moment the fareclass has been closed. It has therefore to 

be expected that also parts of the data in 72 have been lost. The unconstraining 

procedure handles this effects in interpreting all data collection points as contain- 

ing incomplete data for which the availability of the current or the previous data 

collection point is "closed". Another effect of punctually measured availability in- 

formation is that even for data collection points indicated as "closed" the fareclass 

could have been open for a certain period of time. It is then possible that nonzero 
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data is measured even in a "closed" fareclass. The unconstraining procedure has 

therefore to consider the data measured during closed periods. 

The unconstraining algorithm consists of the following steps: 

1. Determine an incomplete flag signal isln. c: 

T=0: isInCT = availT 

'r > 0: isIncr = m, ax(avail-, availT_i) 

2. Approximate the lost data parts for all rr: 

isln. c, = 0: ucOffset, =0 

islnc- = 1: ucO ff setT = 7n, ax(re fT - act,, 0) 

3. Calculate ucActT = act, + ucO ff set,. 

B. 4.3 Component DATA DECOMPOSITION 

Brief 

name of the component DATA-DECOMPOSITION 

type of the component Preprocessing 

short description splits data into an absolute base component and a 

deviation component based on historical estimations 

for these components 
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Data Signals and Parameters 

signal input/ 

output 

description 

act islnput total data to be decomposed 

refBase islnput estimation of the base component based on 

historical data 

refDeviation islnput estimation of the deviation component based 

on historical data 

base isOutpu splitted data base component 

deviation isOutpu splitted data deviation component (factor, no 

deviation represented as 0) 

parameter type description 

pRestrictRelDeviation bool indicates is the resulting deviation should be 

restricted 

pRelDeviation- 

LowerLimit 

float lower limit for resulting deviation 

pRelDeviation- 

UpperLimit 

float upper limit for resulting deviation 

pBaseLowerLimit float lower limit for resulting base value 

pBaseUpperLimit float upper limit for resulting base value 

pRelDeviation- 

LimitDumping 

float symmetric dumping of limits 

Detailed Description 

First the data decomposition generates an estimation for the base component based 

on two types of estimates: (a) the current data (act) with impact of expected devi- 

ations (refDeviation) eliminated; and (b) the expected behaviour learned from the 

history (refBase). As the base component is generally more stable than the devia- 



B. Description of Experiments and the Appended Software 288 

tion component, the two estimates are combined with 30% impact given to (a) and 

70% given to (b). In a second step an estimation for the deviation component is 

generated based on the data and the estimation for the base component. 

The algorithm works as follows: 

1. generate estimate 'base = ref Base 

2. generate estimate 2base: 

act = UNDEFINED: 2base = UNDEFINED 

ref Deviation = UNDEFINED: 2base = UNDEFINED 

ref Deviation <= -0.95: 2base = UNDEFINED 

ref Deviation > -0.95: 2base = act 
ref 

tiol+1 

3. generate estimate base: 

re f Deviation = UNDEFINED: base =1 base 

2base = UNDEFINED: base = UNDEFINED 

else base = 0.7'base + 0.32 base 

4. assert range[pBaseLowerLimit, pBaseUpperLimit] of base, if value outside 

range, set to limit 

5. generate estimate deviation: 

act = UNDEFINED: deviation = UNDEFINED 

base = UNDEFINED: deviation =0 

base < 0.05: deviation =0 

else deviation= äse 
-1 

6. restrict deviation to range 

[pRelDeviationLowerLimit*pRelDeviationLimitDumping, 

pRelDeviationUpperLimit*pRelDeviationLimitDumping] 
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B. 4.4 Component DATA-SMOOTHING 

Brief 

name of the component DATA-SMOOTHING 

type of the component Preprocessing 

short description smoothing of data via weighted moving average 

Data Signals and Parameters 

signal input/ 

output 

description 

act isBoth data used for smoothing 

parameter type description 

pSizeNeighbourhood float number of neighboured values to be used for 

smoothing 

pOwnImpact float impact (weight) of the value to be smmothed 

Detailed Description 

The calculation component realises a smoothing of data via weighted moving av- 

erage. The result is calculated by 

pSi-- en'eiyhbourhood 
result CLCfi = il)j * llCfi+j 

j= pSi. zeNeiyh6ourhood 

with wo = p02u1tI172. pCLCi ändUJj = 
1-pOwnlmpact 

2*pSizeNeighbourhood 
di :ý 0' 
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B. 4.5 Component HB_EXP 

Brief 

name of the component 

type of the component 

short description 

HB-EXP 

History Building 

realises history building via simple exponential 

smoothing 

Data Signals and Parameters 

signal input/ 

output 

description 

act isInput data used for smoothing 

ref isBoth smoothed result 

The data is expected to contain values in relation to one dimension of equidis- 

tant time intervals (for our application the departure week). 

parameter type description 

pSmoothingFactor float smoothing factor indicating the impact of new 

data 

pCycleSize float size of a cycle 

pHistCycles float number of cycles used for initialisation 

pRefMin float lower limit for the smoothed value 

pRefMax float upper limit for the smoothed value 

Detailed Description 

Calculation component HBEXP realises a simple exponential smoothing [Brown 63] 

of data given in input signal act. The result signal ref contains the smoothed result 

of the data learned until the moment when the data occurs. The smoothing factor 
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is provided by parameter pSmoothingFactor. It is possible to indicate cycles. This 

enables the learning of periodic behaviour and can be used, for instance, to learn 

separate smoothed values per calendar week (pCycleSize=53, smoothing values 

0.53.106, ..., values 1.54,107.... and so on). It is also possible to indicate an 

initialisation period. It is assumed that for this period all data is known from the 

beginning. The learned values for this period contain the information of the whole 

initialisation period. The number of cycles to be used as the initialisation period is 

indicated by parameter pHistCycles. A lower and an upper limit for the resulting 

smoothed values are given by parameters pRefMin and pRefMax. If the learned 

values are outside of the range indicated by these two parameters, the values are 

set to the indicated limit. 

B. 4.6 Component HB-BROWN 

Brief 

name of the component HB BROWN 

type of the component History Building 

short description realises history building via brown model 

Data Signals and Parameters 

signal input/ 

output 

description 

act islnput data used for smoothing 

ref isBoth smoothed result 

trend isBoth smoothed trend 

The data is expected to contain values in relation to one dimension of equidis- 

tant time intervals (for our application the departure week). 
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parameter type description 

pSmoothingFactor float smoothing factor indicating the impact of new 

data 

pCycleSize float size of a cycle 

pHistCycles float number of cycles used for initialisation 

pRefMin float lower limit for the smoothed base value 

pRefMax float upper limit for the smoothed base value 

pTrendMin float lower limit for the smoothed trend value 

pTrendMax float upper limit for the smoothed value 

Detailed Description 

The component carries out a history building using the Brown method [Brown 63] 

without any seasonal components. The interpretation of data and cycles is similar 

to the one described for component HBEXP. Additionally to component HBEXP, 

smoothed trend values are learned. Limits for these values can he defined by pa- 

rameters pTrendMin and pTrendMax. 

B. 4.7 Component HB_REGR 

Brief 

name of the component HB REGR 

type of the component History Building 

short description realises history building via linear regression 
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Data Signals and Parameters 

signal input/ 

output 

description 

act islnput data used for smoothing 

ref isBoth smoothed result 

trend isBoth smoothed trend 

The data is expected to contain values in relation to one dimension of equidis- 

tant time intervals (for our application the departure week). 

parameter type description 

pCycleSize float size of a cycle 

pHistCycles float number of cycles used for initialisation 

pRefMin float lower limit for the smoothed base value 

pRefMax float upper limit for the smoothed base value 

pTrendMin float lower limit for the smoothed trend value 

pTrendMax float upper limit for the smoothed value 

Detailed Description 

Component HB REGR carries out history building via linear regression. The 

interpretation of data and cycles is similar to the one described for component 

HB-BROWN. 

B. 4.8 Component FC ATTR 

Brief 

name of the component FCATTR 

type of the component Forecast 

short description forecast of the attractiveness 
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signal 

Data Signals and Parameters 

input/ description 

output 

act isInput current data y 

ref isInput learned attractiveness base value 001"I 

trend 

fc 

isInput I learned attractiveness trend value , 111 

isOutpuý generated forecast 

blockElemShift isInput number of time series intervals between a 

block element and the last block element 

parameter type description 

pUseTrend bool indicates if trend information is available 

pDumpingTrend bool indicates if a dumping of the trend should by 

carried out 

pAdaptation bool indicates if an adaptation to act should be car- 

ried out 

pNbrBlockElems float number of block elements 

Detailed Description 

The component realises predictions for the attractiveness as described in (2.11) 

and (2.13). The base value yhýýrr' is expected to be contained in signal ref, the 

trend Oa ttr is expected in signal trend. The basic prediction is provided by an 

estimation learned from historical data. This prediction can be represented as a 

single (constant) learned value comparable to model (2.11) (pUseTrend=false) or 

as a linear relationship comparable to model (2.13) (pUseTrend=true). A dumping 

of the trend is also possible. If parameter pDumpingTrend is true, instead of using 

jlýttr/ý, attr oattrý _ oaýttr + oýttr * (td 
- tp), (B. 2) 
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corresponding to (2.13), version 

h2ttr(xattr, oattrl = oottr + oittr * (l09(td 
- tp) + 1) (B. 3) 

reduces the effect of the trend for large values td - tp. 

The component generates predictions for different time series values to be pre- 

dicted (in our case different departure weeks) going out from different process 

dates (dcps). The learned values (signals ref and trend) are expected in a manner 

that the values given at a departure week represent the value that has been learned 

until that departure week. The prediction considers only values which have been 

learned until the time of forecast generation. In order to be able to do this, the 

information has to be provided which data is known at a dcp or, in other words, 

how many time series intervals correspond to the distance between the dcp and the 

departure. This information is provided in signal blockElemShift. For instance, if 

the value of blockElemShift of dcp 1 is 26, this means that between dcp 1 and dcp 

23 there is a time difference of 26 weeks. Therefore, if the prediction is generated 

at dcp 1, the values learned for the attractiveness at the final dcp are not allowed to 

use information of the previous 26 departure weeks. 

After calculation of the basic prediction, an adaptation based on current book- 

ings (act) is possible. If parameter pAdaptation is true, a simple additive adaptation 

is carried out. The forecast is corrected in a manner that for the historical deps the 

part of the predicted attractiveness, which is expected to be already existing at this 

dcp, is replaced by the real values. 
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B. 4.9 Component FC1. SB 

Brief 

name of the component FC_ SB 

type of the component Forecast 

short description realises forecasts of the total demand correspond- 

ing to the method of the current system Profit- 

Line. Yield/O&D 

Data Signals and Parameters 

signal input/ 

output 

description 

act isinput current data y 

ref isInput learned attractiveness base value ý5ttr 

trend islnput learned attractiveness trend value Oittr 

relDeviation islnput learned seasonal factor Osc`ýs°7L cw 

avail islnput availability information 

fc isOutpu generated forecast 

blockElemShift islnput number of time series intervals between a 

block element and the last block element 
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parameter type description 

pAdaptToSeason boo] indicates if seasonal information should be 

used 

pUseTrend boot indicates if trend information is available 

pDumpingTrend bool indicates if a dumping of the trend should by 

carried out 

pAdaptationKind float type of adaptation to current data, 0: additive 

adaptation, 

1: linear adaptation, 2: no adaptation 

pNbrBlockElems float number of block elements 

Detailed Description 

The component calculates forecasts of the total demand corresponding to the method 

of the current system ProfitLine. Yield/O&D. The method is described in Section 

2.2. The structure of the input and result signals corresponds to the one described 

for component FC-ATTR. 

First, the component realises an adaptation to the expected seasonal behaviour 

(see Section 2.2.6). Then an adaptation to the current booking values is carried out 

similar to component FC. ATTR. 

B. 4.10 Component FC_SEASON 

Brief 

name of the component FC-SEASON 

type of the component Forecast 

short description forecasting of the seasonal component 
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Data Signals and Parameters 

signal input/ 

output 

description 

realRelDeviation isInput current seasonal deviation (low level) y deacon 
smoothedRelDeviation isInput smoothed seasonal deviation (potentially 

higher level) sý"S°" Jtd, 
r 

histRelDeviation isInput learned seasonal factors 

ref isInput current estimation of the attractiveness yt ttr 
d, r 

fc isOutpu generated forecast Irs" O" 
ýy) 

All data is expected to be given for all data collection points. 

parameter type description 

pRestrictRelDeviation bool indicates if the used seasonal factors should 

be restricted 

pMethod float method I to 3 (2.15)(2.17)(2.18) 

pRelDeviation- float parameter pif12� 

LowerLimit 

pRelDeviation- float parameter 

UpperLimit 

pRelDevLimit- float symmetric dumping of parameters low and 

Dumping citigh 

Detailed Description 

The component calculates predictions corresponding to h. I'" (x 0) (2.15), 

h2eas°'l (x. 0) (2.17) and h'1SO1(r, ti) (2.18). The unconstrained demand informa- 

tion ytdýr used in equations (2.15), (2.17) and (2.18) is calculated based on the given 
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estimation of the attractiveness 't tr and the current seasonal deviation 'ýý ý. "'" by 

Inc _ vlttr season ytd. 
r - ýtd. 

r * (1 +: t/t. d"r 
)" (B. 4) 

Parameters pRelDeviationLowerLimit and pRelDeviationUpperLimit are sym- 

metrically dumped by parameter pRelDevi ationLim1tDumping. This means that it 

is 

olo,,, = pRelDeviaiionn. Lou'erLv. mit * pRelDe, viationLi1nitDuunrlriny (B. 5) 

and 

Ohigh =pRelDev ation. Uppe1LiTflit*pRelDCVViationLihnitDun1ping. (B. 6) 

This application of such a dumping parameter enables a diversification of both 

limits by diversification of a single parameter. 

B. 4. II Component COMBINING-ADD-PARTS 

Brief 

name of the component COMB INING-ADD-PARTS 

type of the component Forecast Combination 

short description fusion of decomposed forecasts 

Data Signals and Parameters 

signal input/ 

output 

description 

fcBasis isInput forecast for the basis component 

fcRelDev isInput forecast for the deviation component 

fcResult isOutpu combined result 
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Detailed Description 

The component realises a fusion of forecasts related to two types of components : 

(a) a basis component represented in absolute values; and (b) a deviation compo- 

nent represented as factors (with 0 meaning no deviation). 

The component calculates 

f cResult =f cBasis * (1 +f cRelDev) (B. 7) 

for each element of the input signals. 

B. 4.12 Component HB-LINEAR-COMBINATION 

Brief 

name of the component HB-LINEAR -COMBINATION 
type of the component Forecast Combination 

short description learning of linear combination weights 

Data Signals and Parameters 

signal input/ 

output 

description 

err isInput forecast errors c 

act isInput target values y 

weight isBoth learned combination weights 

offset isBoth learned offset (only method F"') 
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parameter type description 

pMethod float linear combination model 

pTrimmingMaxNbrFc float trimming: maximal number of input forecasts 

pTrimmingMax- 

VarRatio 

float trimming: maximal error variance ratio 

Detailed Description 

This component offers the functionality to learn linear combination weights with 

different linear combination models. The model to be used can be specified with 

parameter pMethod. Accepted Values for parameter pMethod: 

" O: F°w (see Section 3.2.3), 

" l: F0utP (see Section 3.2.4), 

" 2: F"IT (see Section 3.2.5), 

" 3: F°Pt (see Section 3.2.5) and 

" 4: F°" (see Section 3.2.6). 

The input signal err contains the prediction errors "'et. It is expected that this 

signal contains first the errors related to method m0ý for all predictions generated 

for different time indices t, then related to method rn 1 and so on. The number of 

methods Al is derived from the size of the signal weights. Signal act contains the 

values Yt. 

The calculation results are returned in a filled weight signal. If all forecasts 

related to a method rn are default, the resulting weights are default as well. Signal 

offset is filled with nonzero values only in case of pMethod=F°! `. In this case, it 

contains the absolute offset learned by this model. 

The input forecasts are trimmed depending on parameters pTrimmingMaxN- 

brFc and pTrimmingMaxVarRatio. They are ordered corresponding to their error 
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variance. If parameter pTrimmingMaxNbrFc is set to a value greater than zero, 

only the best pTrimmingMaxNbrFc forecasts are included into the combination 

procedure (the resulting weights of the other forecasts are default. If parameter 

pTrimmingMaxVarRatio is larger than 1, all forecasts with an error variance larger 

than pTrimmingMaxVarRatio times the error variance of the best forecast are ex- 

cluded from the combination as well. 

A special fallback solution has been implemented for model F°is In case 

of an insufficient number of input forecasts per forecast method m (number of 

valid rows > 2* M) the model automatically switches to model F". One reason 

for insufficient numbers of input forecasts can be an incomplete flight schedule 

(cancelled flights). 

B. 4.13 Component HB-LINEAR-COMBINATION-STRUCTURE 

Brief 

name of the component HB-LINEAR-COMBINATION-STRUCTURE 

type of the component Forecast Combination 

short description determination of linear combination weights using 

predefined or evolved multi step combination struc- 

tures 
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signal 

Data Signals and Parameters 

input/ description 

err 

act 

weight 

offset 

output 

isInput 

islnput 

isBoth 

forecast errors e 

target values y 

learned combination weights 

isBoth I learned offset (only method F"l") 

parameter type description 

pCrossover float type of crossover 

pMutation float type of crossover 

pFitness float fitness measure 

plnitMode float initialisation mode 

pMaxStep float maximal number of combination steps 

pMethod float linear combination model 

pTrimmingMaxNbrFc float trimming: maximal number of input forecasts 

pTrimmingMax- 

VarRatio 

float trimming: maximal error variance ratio 

pDimensions string dimensions representing the forecast genera- 

tion space 

pOrder string order of the dimensions used for pooling 

Detailed Description 

This component realises the generation and evolution of different types of combi- 

nation structures in order to determine linear combination weights. The structures 

which can be generated or evolved correspond to those described in Chapters 6 and 

7. 

The structures differ concerning structure, initialisation, crossover and muta- 

tion as well as concerning the applied combination functions and trimming restric- 
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tions. 

If parameters pDimensions and pOrder are both given, one single combination 

structure is generated and applied. In the other cases, a population of structures 

is generated and an evolution is carried out. The resulting weights correspond to 

those generated by the best performing structure. 

Details in relation to the evolution 

The evolution is carried out on a population of eight chromosomes. The only 

exception is related to the crossover described in Section 7.3.2 which operates only 

on a population with a single chromosome. The number of crossovers is restricted 

to hundred, the evolution is also stopped if the fitness did not improve (with tol- 

erance 10-6) over more than fifty'generations. In each step of the evolution the 

parents for crossover are selected first. The element with the worst fitness dies. 

Then the crossover is carried out, and mutation follows. 

Crossover 

Three types of crossover are supported. The type to use is indicated by pa- 

rameter pCrossover. Type 0 (pCrossover=0) and 1 carry out the two types of child 

generation as described in Section 7.3.2. Type 2 represents the dimension indepen- 

dent crossover described in Section 7.2.3. 

Mutation 

Two different types of mutation are used. The first type of mutation corre- 

sponds to the one described in Section 7.3.2. It is used in order to calibrate the 

trimming percentage. If parameter pMutation=0 is set the adaptation is carried out 

per combination procedure. If parameter pMutation=1 the parameter is mutated in 

a global manner (the same value for all combination procedures). The second type 

of mutation (pMutation=2) is used in order to manipulate the input forecasts and 

the combination model (if not predefined in parameter pMethod) as described in 

Section 7.2.3. 

Fitness Calculation 

Depending on parameter pFitness, the fitness is calculated corresponding to 
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equations (7.2), (7.3) or (7.4). It is calculated based on out of sample predictions. 

The first half of the elements are used in order to determine the linear combination 

weights, the remaining elements are used for fitness evaluation. 

Generation of an Initial Population 

Three types of structure initialisation are used. Parameter pInitMode specifies 

which type to use. 

Type 0 uses the information about the extents of the dimensions of the fore- 

cast generation space (pDimensions). The generated structures correspond to the 

ones described in Section 7.3.1. The order of the dimensions is determined ran- 

domly. If the maximum number of steps of the structures is restricted by parameter 

pMaxStep, different dimensions are clustered in order to fulfil that restriction. If 

there are, for instance, 4 dimensions given and pMaxStep is two, dimension 1 and 

2 and dimension 3 and 4 are clustered. 

Type 1 carries out a random initialisation as described in Section 7.2.2. The 

generated structures contain up to pMaxStep steps each containing between two 

and five combination procedures. The input forecasts for the combination proce- 

dures at step 0 are selected randomly as well. 

Type 2 corresponds to structures generated by the pooling approach of Aiolfi 

and Timmermann. The algorithm is based on k-means clustering, it is described 

in Section 6.2.1. In the implementation in this Thesis the number of determined 

clusters is predefined to 4 clusters. 

For all types of structure initialisation the parameters for the generated com- 

bination procedures are provided by parameters pMethod, pTrimmingMaxNbrFc 

and pTrimmingMaxVarRatio. If parameter pMethod of this component is set to -1, 

this indicates that the method to be used is not restricted and should be evolved. In 

this case, the initial setting in the combination procedures is 2( corresponding to 

Fvar ), the parameter can then be modified between 0 (Fav), 1 (F°utp), 2 (FVar) 

and 3 (F°pt) by mutation. 

Results of the component 
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The component calculates the linear combination weights and returns the weight 

to be used per input prediction. This means that in order to carry out the combina- 

tion on out of sample data in order to generate predictions, it is not necessary any 

more to know the learned combination structure. 

In case of an evolution, the component also generates two files (written into 

the result directory). The first file is called element. dat. It contains the elements 

of the best performing evolved combination structure. The second file perfor- 

mance_graph. dat contains the fitness of the evolved elements and shows the devel- 

opment of the fitness. It first contains the (ordered) fitness of the initial population. 

Then in each crossover step the performance of the generated child is added. As a 

last element the fitness of the structure which is considered as the best performing 

one at the end of the evolution is added. 

B. 4.14 Component LINEAR-COMBINATION 

Brief 

name of the component LINEAR_COMBINATION 

type of the component Forecast Combination 

short description carries out a linear combination of forecasts 

Data Signals and Parameters 

signal input/ 

output 

description 

fcInput islnput input forecasts ` 

fcCombined isOutpu combined forecast comb 

weight isInput combination weights w,,, 

offset islnput combination offset wMM+i 
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Detailed Description 

The component carries out a linear combination of forecasts corresponding to equa- 

tion 3.1. Input signal fcInput is expected to contain the different input forecasts "' /, 

the weights u'11, are expected to be contained in input signal weight. If input signal 

offset does not contain the "UNDEFINED" indicator (represented as float value 

-1000) the extended version of linear combination including an offset (see 3.20) is 

carried out. 

B. 4.15 Component VALID-FC-REF 

Brief 

name of the component VALID-FC-REF 

type of the component Validation 

short description calculates the (absolute) forecast error 

Data Signals and Parameters 

signal input/ 

output 

description 

act islnput predicted target y 

fc islnput forecast 

err isOutpu forecast error e 

parameter type description 

pAbsError bool indicates if the error should be represented as 

an absolute error 

Detailed Description 

If parameter pAbsErrorThe = false the component calculates 

err =fc- act. (B. 8) 
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In case of parameter pAbsErrorThe = true it calculates 

err= lfc-actj. 

B. 4.16 Component ERROR_COVAR 

Brief 

(B. 9) 

name of the component ERROR_COVAR 

type of the component Validation 

short description calculates error (co)variances 

Data Signals and Parameters 

signal input/ 

output 

description 

err isInput forecast error 

covar isBoth (co)variance of the forecast error 

parameter type description 

pCalcMad bool the mean absolute deviation should be calcu- 

lated 

pNbrElemsToAggr float number of values to be added before calculat- 

ing the absolute error value 

Detailed Description 

The component calculates the mean absolute deviation as well as error covariances 

of input forecasts. The input signal err contains the error e related to each single 

predicted element. The result is the error covariance matrix (pCalcMad =false) or 

a mean absolute deviation vector (pCalcMad = true). 

The number of input forecasts Al is indicated by the size of signal covar. If pa- 

rameter pCalcMad is true, Al corresponds to the size of signal covar. If parameter 
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pCalcMad is false, M corresponds to the square root of the size of signal covar. 

Signal err is expected to contain first all the errors le generated by forecast ly, 

then the errors 2e generated by forecast 2y and so on. The number of predicted 

elements is determined by the size of signal err using the information about the 

number of input forecasts Al. Before carrying out the error calculation, the values 

of each block of pNbrElemsToAggr elements are added. Then the number of input 

forecasts is determined in dividing the total number of elements by the determined 

number of input forecasts. Values larger than 1 for parameter pNbrElemsToAggr 

can be used if the data is available at a finer level than the error has to be calculated. 

If there are for instance forecast values concerning each point of sale available, but 

the error should be calculated in relation to the total demand of all point of sales, 

the input signal err can contain data containing the errors of each point of sale sep- 

arately and parameter pNbrElemsToAggr contains the number of point of sales. In 

this case the data is first aggregated to the total demand level, then the error values 

are calculated. 

Before determining the error covariances an outlier detection is carried out in 

order to remove extreme errors. All errors which differ from the average value 

by more than 1.5 times the standard deviation are set to the corresponding range 

limits. Additionally, all errors greater than 10 or smaller than -10 are set to the 

limits. 

If parameter pCalcMad is true, the result signal contains the absolute error of 

each (aggregated) forecast m5e. If parameter pCalcMad is false, the result sig- 

nal contains error covariances ', 'Pe, 1,2 Pef . 11, 
A! Pe, 2,1Pe, 2,2 2, A1 

M, 1 Pe, M, 2 Pe,... eM, 
M Pe- 
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B. 5 Description of Dimensions and Data Cubes 

B. 5.1 Dimensions 

The following dimensions have been defined (for details see Appendix A): 

dimension extent description 

F 20 fareclass 

POS 3 point of sale 

ODO I odo (extent I as calculation is carried out per 

ODO) 

DCP 23 data collection point 

DOW 7 day of week 

DW 129 departure week 

DCPFC 23 dcp of forecast generation 

FCNR 7 number generated forecast (experiment 3) 

FCNR2 7 number generated forecast (experiment 3) 

COMB 5 linear combination model 

DIV 1 4 diversification of parameter pRelDeviation- 

LimitDumping 

DIV2 2 diversification of model for seasonal predic- 

tion 

(0=11 . 1, ,, 0', (X, 6)1 I =h , (,. s,,,, (i:, )) ) 

DIV3 2 diversification of learning level Fareclass ver- 

sus Compartment 

DIV4 2 diversification of learning level per DOW or 

over alI DOW 

STR 8 multi level combination structure (experiment 

6) 
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B. 5.2 Used Data Groups 

The following table summarises the defined data groups. 

data group description 

input group given input data like bookings and availability infor- 

mation 

input_decomposed_group decomposed input data 

learning_attr_group learned parameters for the attractiveness component 

learning-season-group learned parameters for the seasonal component 

learning_lin_comb_group learned linear combination weights 

forecast_attr_group forecasts of the attractiveness component 

forecast_season_group forecasts of the seasonal component 

forecast-group total demand forecasts 

validation_group validation related data cubes 

B. 5.3 Used Data Cubes 

In the following the most relevant data cubes are described per data group. The 

indicated dimensions represent only examples, the specification can vary between 

different experiments. 
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input-group dimensions description 

bkg POS F DOW ODO booking values 

CW DCP 

avail POS F DOW ODO availability information 

CW DCP 

blockElemShift DCPFC number of weeks contained in a 

data collection point T 

ucBkg POS F DOW ODO unconstrained booking value 

CW DCP 

ucOffset POS F DOW ODO unconstraining offset 

CW DCP 

input_decomposed 
_gr* 

season 

seasonPrepared 

seasonSmoothed 

dimensions 

POS F DOW ODO 

description 

seasonal factors at the low level 

CW DCP 

POS F DOW ODO 

CW DCP 

POS F DOW ODO 

CW DCP 

restricted seasonal factors used 

for predictions 

restricted and smoothed sea- 

sonal factors used for learning 

attr I POS F DOW ODO I attractiveness 

CW DCP 
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lea rning_attr_group dimensions description 

phi0_hIExpSm POS F DOW ODO learned attractiveness via simple 

CW DCP exponential smoothing, parame- 

ter rho of (2.11) 

phi0_h2Brown POS F DOW ODO learned attractiveness via 

CW DCP brown model, parameter c>ii of 

h2ttr(x" 6) (2.13) 

phi l _h2Brown 
POS F DOW ODO learned attractiveness via 

CW DCP brown model, parameter c1 of 

h2itr (. r. 6) (2.13) 

phi0_h2Regr POS F DOW ODO learned attractiveness via lin- 

CW DCP ear regression, parameter &o of 

h2tt (x. 4) (2.13) 

phi l _h2Regr 
POS F DOW ODO learned attractiveness via lin- 

CW DCP ear regression, parameter y of 
hattr(1. o) (2.13) 

learning-season-group 

phi0_h I Hist 

forecast_attr_group 

fc_h 1 ExpSm 

fc_h2Brown 

dimensions 

POS F DOW ODO 

CW DCP 

dimensions 

POS F DOW CW 

ODO DCPFC 

POS F DOW CW 

ODO DCPFC 

description 

learned seasonal factors, param- 

eters b of Ir' Iwaso 1(x. 6) (2.15) 

description 

forecast W ,"" (r. b) (exponential 

smoothing model 2.11) 

forecast h2 (x ;) (Brown 

model 2.13) 

fc_h2Regr POS F DOW CW I forecast h2ttr(X, ý) (linear rear. L, 

ODO DCPFC 2.13) 
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forecast_season_group dimensions description 

fc_hIHist POS F DOW CW forecast hi°SO7(x (hist. 

ODO DCPFC model 2.15) 

fc_h2Add POS F DOW CW forecast h2e°S°"(x, ý) (add. 

ODO DCPFC model 2.17) 

fc_h3Mult POS F DOW CW forecast (mull. 

ODO DCPFC model 2.18) 

fc_comb POS F DOW CW combined seasonal forecast 

ODO DCPFC 

forecast-group dimensions description 

fe_input POS F DOW CW individual forecasts "'y used as 

ODO DCPFC inputs for the combination 

FCNR 

fc_compare POS F DOW CW best individual forecasts O 

ODO DCPFC 

fe_combined POS F DOW CW combined forecast `. °"' by 

ODO DCPFC 

learning_lin_comb_gro pdimensions description 

lin_comb_weight POS F DOW ODO linear combination weights iv, 

DCPFC FCNR 

COMB 

lin_comb_offset POS F DOW ODO offset linear combination (dif- 

DCPFC COMB fers from zero only in case of 

combination model F"s) 
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validation -group 
dimensions description 

err_h l Hist POS F DOW CW deviation "' iý -q 
ODO DCPFC 

FCNR 

err-combined-bias POS F DOW CW deviation ('°.... - ýý 

ODO DCPFC 

COMB 

var_low POS F DOW ODO error variance of the input fore- 

DCPFC FCNR casts at the low level 

var_high DOW ODO error variance of the input fore- 

DCPFC FCNR casts at the high level 

var_combined_low POS F DOW ODO error variance of the combined 

DCPFC COMB forecast at the low level 

var_combined_high DOW ODO error variance of the combined 

DCPFC COMB forecast at the high level 

B. 6 Experiments 

B. 6.1 Experiment l: Determination of Basic Statistical Properties of the Data 

Brief 

name of the experiment 

short description 

experiment l 

visualisation and statistics of input data 

The objective of this experiment is the visualisation of input data. All available 

input data is loaded. It contains bookings (data cube bkg) and availability infor- 

mation (data cube avail). The input cube blockElemShift provides the information 

of how many calendar weeks correspond to a dcp. This information is used, for 

instance, in component FC_4TTR (see B. 4.8) in order to avoid information being 

used for prediction which is not yet known at a given point of time. 
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Inputs and Results 

input description 

bkg booking values 

avail availability information 

blockElemShift number of weeks contained in a data collection point 

7 

Summary of the Calculation 

The calculation contains only data loading functionality. The data can then be 

visualised in the visualisation view (see B. 3.8). It is also possible to write basic 

statistical properties of the data into a file. In order to do this, select a data cube 

and then chose File/Save Data Statistics in the menu. 

Figure 72 shows an example for a resulting statistics file. It contains basic 

statistical properties like average value or the number of default values in relation 

to each value of each dimension of the data cube (like for each fareclass, each point 

of sale, each dcp and so on). 

Detailed Description of Applied Components 

FILE-INTERFACE 

load booking and availability information 

cubes 

parameter string: bkg, avail, UNDEFINED, DCP 

applied dimensions 
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Mk ,., oft Excel - statistics_bkg. dat 

Iij Qatei @earbeiten Ansicht Einfügen Format 

A2 1" POS 
B 

11 SUM MEAN STD 
2 
3 I4 

5 
6 
7 I8 

9 

POS 
201532 0.725833 3.22013 
157991 0.569017 2.02749 
157677 0.567886 2.4468 

POS 

10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
Ic 

14 4 

F 

Extras Daten Fenster 7 

DEFGH 
MIN MAX NBR_NONZERO. NBR_ZERO NBR_DFT 

0 77 40233 237423 137724 
0 76 51492 226164 137724 
0 142 48307 229349 137724 

0000000 62307 
0000000 62307 
0000000 62307 

27011 0.53995 1.71488 0 44 11280 38745 12282 
7346 0.146847 0.597634 0 10 4366 45659 12282 
2592 00518141 0.37879 0 10 1479 48546 12282 
2013 0.0402399 0.282418 05 1268 48757 12282 

656 0.0131134 0.229263 0 10 343 49682 12282 
21004 0.41987 1.26031 0 25 9797 40228 12282 
25004 0.49983 1.61243 0 41 9876 40149 12282 
26267 0.525077 2.23702 0 56 8819 41206 12282 
45811 0915762 2.39236 0 51 14223 35802 12282 
10284 0206577 0.656614 08 6359 43666 12282 
46105 0.921639 2.76413 0 76 14450 35575 12282 
2551 0.0509945 0.539252 0 21 1185 48840 12282 

42210 0843778 2.59995 0 49 13044 36981 12282 

.; 
I 

407JCn 0 71791 7 CC1717 n. A^1 'lAcIC A on . 

º Nstatistics_bkq/ 1-1 ýºý (- 

Bereit NF 

Fig. 72: Example for a data statistics file generated by Avanti. 

FILE_INTERFACE 

[-load 
block element shift 

cubes 

parameter string: blockElemShift, UNDEFINED, UNDE- 

FINED 

applied dimensions 
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B. 6.2 Experiment2 : Individual Forecast Calculation and Error Evaluation 

Brief 

name of the experiment 

short description 

experiment2 

generation of 7 forecasts (see table 3) differing con- 

cerning the prediction of the attractiveness as well as 

concerning the season 

The objective of the experiment is to experimentally compare the performance 

of 7 individual forecasts. The input forecasts differ concerning the attractiveness 

component (Section 2.2.5) as well as concerning the prediction of the seasonal be- 

haviour (Section 2.2.6). For prediction of the attractiveness 3 methods are applied: 

a) a simple exponential smoothing approach h. 0'r (. r, ¢) (2.11), b) the brown model 

h. 2"r (x, (5) (see 2.13) and c) a linear regression model hzrrr (r, 6) as described in 

(2.13). For prediction of the season 4 methods are applied: a) model h", F'"son(x 

based on historically learned seasonal behaviour (2.15), b) and additive adapta- 

tion to the current behaviour (j% 6) (2.17), c) a multiplicative adaptation 

to the current behaviour hie"s°"(x, 0) (2.18) and finally d) a combined approach 

h`e"sor, (. r, (p) in which we have already carried out a linear combination of a), b) 

and c) as described in (2.19). The experiment provides the individual forecasts as 

well as error variance and covariance information at the low level of forecasting 

and aggregated over Fareclasses and Point of Sales. 

Inputs and Results 

input description 

bkg booking values 

avail availability information 

blockElemShift number of weeks contained in a data collection point 

T 
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result description 

fc_Input individual forecast used as input for the combination 

in later experiments 

mad-low error variance of the input forecasts at the low level 

mad-high error variance of the input forecasts at the high level 

Summary of the Calculation 

The calculation can be summarised in the following steps: 

1. load the data 

2. carry out unconstraining 

3. decompose the input data 

4. learn the attrativness 

5. learn the historical seasonal behaviour over history weeks 0 to 52 

6. learn the historical attractiveness over history weeks 0 to 52 

7. generate the predictions for the attractiveness (all weeks) 

8. generate the predictions for the seasonal behaviour (all weeks) 

9. calculate the total demand forecasts (all weeks) 

10. determine the individual forecast performance (all weeks) 

11. save the results 
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Detailed Description of Applied Components 

FILE-INTERFACE 

load booking and availability information 

cubes 

parameter string: bkg, avail, UNDEFINED, DCP 

applied dimensions 

FILE-INTERFACE 

load block element shift 

cubes 

parameter 

applied dimensions 

string: blockElemShift, UNDEFINED, UNDE- 

FINED 

HB-EXP 

calculate first estimate for the attractiveness without consideration of uncon- 

straining and seasonal effects 

cubes bkg, phi0_h I ExpSm 

parameter float: 0.05,23,53,0,1000 

applied dimensions CW[appl, 0,1281, DCP[appl, 0,22] 

UNCONSTRAINING 

unconstrain the booking data 

cubes 

parameter 

bkg, phi0_h l ExpSm, avail, ucBkg, ucOffset 

applied dimensions 11 DCP[appl, 0,22] 
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HB_EXP 

calculate second estimate for the attractiveness without consideration of sea- 

sonal effects 

cubes 

parameter 

applied dimensions 

ucBkg, phi0_h I ExpSm 

float: 0.05,23,53,0,1000 

CW[appl, O, l 28], DCP[appl, 0,221 

321 

DATA DECOMPOSITION 

calculate seasonal factors used for forecasting First/Business compartment 

cubes ucBkg, phi0_h l ExpSm, phi0_h 1 Hist, attrPrepared, 

season Prepared 

parameter bool: 1, float: -0.5,6,0,1000,1 

applied dimensions DCP[appl, 0,22], F[aggr, 0,7], DOW[aggr, 0,6] 

DATA-DECOMPOSITION 

calculate seasonal factors used for forecasting Economy compartment 

cubes 

parameter 

applied dimensions 

ucBkg, phi0_h 1 ExpSm, phi0_h 1 Hist, attrPrepared, 

seasonPrepared 

boot: 1, float: -0.5,6,0,1000,1 

DCP[appl, 0,22], F[aggr, 8,19], DOW [aggr, 0,6] 

DATA-DECOMPOSITION 

calculate first estimate seasonal factors First/Business compartment 

cubes 

parameter 

ucBkg, phi0_h 1 ExpSm, phi0_h 1 Hist, attrPrepared, 

seasonSmoothed 

bool: 1, float: -0.5,3,0,1000,1 

applied dimensions DCP[appl, 0,22], F[aggr, 0,7], DOW[aggr, 0,6] 
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DATA-DECOMPOSITION 

calculate first estimate seasonal factors Economy compartment 

cubes ucBkg, phi0_h 1 ExpSm, phi0_h 1 Hist, attrPrepared, 

seasonSmoothed 

parameter boot: 1, float: -0.5,3,0,1000,1 

applied dimensions DCP[appl, 0,22], F[aggr, 8,19], DOW[aggr, 0,6] 

DATA-SMOOTHING 

smooth the determined seasonal factors 

cubes seasonSmoothed 

parameter float: 5,0.1 

applied dimensions CW[appl, 0,128] 

HB-EXP 

learn seasonal behaviour 

cubes 

parameter 

applied dimensions 

seasonSmoothed, phi0_h I Hist 

float: 0.6,53,1, -1,1000 

CW[appl, 0,128] 

DATA-DECOMPOSITION 

data decomposition under consideration of historical behaviour attractive- 

ness and season 

cubes 

parameter 

ucBkg, phi0_h l ExpSm, phi0_h 1 Hist, attr, season 

bool: 0, float: -0.5,3,0,1000,1 

applied dimensions 11 DCP[appl, 0,22] 
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HB-EXP 

learn attractiveness simple exponential smoothing 

cubes 

parameter 

applied dimensions 

HB-BROWN 

attr, phi0_h I ExpSrn 

float: 0.1,23,53,0,1000 

CW[appl, 0,128], DCP[appl, 0,22] 

learn attractiveness brown model 

cubes 

parameter 

applied dimensions 

attr, phiO_h2Brown, phi I _h2Brown 
float: 0.04,23,53,0,1000, -0.05,0.05 

CW[appl, O, I28], DCP[appl, 0,22] 

.3 
23 

HB REGR 

learn attractiveness linear regression model 

cubes attr, phi0_h2Regr, phi I _h2Regr 
parameter float: 23,53,0,1000, -0.1,0.1 

applied dimensions CW[appl, 0,128], DCP[appl, 0,22] 

FC-ITTR 

predict attractiveness simple exponential smoothing model 

cubes 

parameter 

attr, phi0_h l ExpSm, phi l_h2Brown, phi0_h 1 Hist, 

avail, fc_h 1 ExpSm, blockElemShift 

bool: 0,0,0, float: 0,23 

applied dimensions 11 CW[appl, 0,128], DCP[appl, 0,22], DCPFC[appl, 0,22] 
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FC-ATTR 

predict attractiveness brown model 

cubes 

parameter 

applied dimensions 
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attr, phi0_h2Brown, phi 1 
_h2Brown, phi0_h 1 Hist, 

avail, fc_h2Brown, blockElemShift 

boot: 0,1,1, float: 0,23 

CW[app1,0,128], DCP[appl, 0,22], DCPFC[appl, 0,22] 

FCATTR 

predict attractiveness linear regression model 

cubes attr, phiO_h2Regr, phi 1 
_h2Regr, phiO_h l Hist, avail, 

fcii2Regr, blockElemShift 

parameter bool: 0,1,0, float: 0,23 

applied dimensions CW[appl, 0,128], DCP[appl, 0,22], DCPFC[appl, 0,22] 

FC-SEASON 

predict seasonal factors historical model 

cubes 

parameter 

applied dimensions 

season, seasonPrepared, phi0_h I Hist, attr, 

fc_h 1 ExpSm, fc_h 1 Hist 

boot: 1, float: 1, -1,3,1 

DCP[appl, 0,22], DCPFC[appl, 0,22] 

FC-SEASON 

predict seasonal factors additive adaptation 

cubes season, seasonPrepared, phi0_h I Hist, attr, 

fcli 1 ExpSm, fc_h2Add 

parameter bool: 1, float: 2, -0.5,2,1 

applied dimensions DCP[appl, 0,22], DCPFC[appl, 0,22] 

1 
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FC-SEASON 

predict seasonal factors multiplicative adaptation 

cubes 

parameter 

applied dimensions 

3? 5 

season, seasonPrepared, phi0_h I Hist, attr, 

phi0_h I ExpSm, fc_h3Mult 

bool: 1, float: 3, -0.5,2,1 

DCP[appl, 0,22], DCPFC[appl, 0,22] 

rFLSB 

predict total demand with the model used in the current system 

cubes ucBkg, phi0_h I ExpSm, phi I _h2Brown, 
phi0_h l Hist, avail, fc_input, blockElemShift 

parameter bool: 1,0,0, float: 0,23 

applied dimensions CW [appl, 0,128], DCP[appl, 0,22], DCPFC[appl, 0,22], 

FCNR[appl, 0,0] 

COMBINING-A DD-PARTS 

combine components of result forecast 1 

cubes 

parameter 

applied dimensions 

fc_h 1 ExpSm, fc_h3Mult, fc_input 

FCNR[appl, l, l] 

COMBINING-ADD-PARTS 

combine components of result forecast 2 

cubes 

parameter 

fCJ12BCOWn, fc_h3Mult, fc_input 

applied dimensions 11 FCNR[appl, 2,2] 
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COMBINING-ADD-PARTS 

combine components of result forecast 3 

cubes 

parameter 

applied dimensions 

fc_hlExpSm, fc_h2Add, fc_input 

FCNR[app1,3,3] 

COMBINING-ADD-PARTS 

combine components of result forecast 4 

cubes 

parameter 

applied dimensions 

fc-h2Regr, fc-h3Mult, fc_input 

FCNR[appl, 4,4] 

COMBINING-ADD-PARTS 

combine components of result forecast 5 

cubes 

parameter 

applied dimensions 

fc_h2Regr, fc_hlHist, fc_input 

FCNR[appl, 5,5] 

COMBINING-ADD-PARTS 

combine components of result forecast 6 

cubes 

parameter 

applied dimensions 

fc-h2Regr, fc_h2Add, fc_input 

FCNR[appl, 6,6] 
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VALID-FC-REF 

calculate toal forecast errors 

cubes ucBkg, fc_input, err-input-bias 

parameter bool: 0 

applied dimensions DCP[appl, 22,22], DCPFC[appl, 0,22] 

1 
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ERROR_COVAR 

calculate mean absolute deviation low level 

cubes 

parameter 

applied dimensions 

err-input-bias, mad-low 

bool: 1, float: I 

CW [appl, 93,128] 
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ERROR_COVAR 

calculate mean absolute deviation high level 

cubes err-input-bias, mad-high 

parameter bool: 1, float: 60 

applied dimensions CW [appl, 93,128], F[appl, 0,19], POS[appl, 0,2] 

FILE-INTERFACE 

write results 

cubes 

parameter 

applied dimensions 

string: UNDEFINED, mad-low, mad high, DCPFC 

B. 6.3 Experiment3 : Combination of Forecasts calculated by Experiment 2 

Brief 

name of the experiment 

short description 

experiment3 

combination of 7 forecasts (see table 3) differing 

concerning the prediction of the attractiveness as 

well as concerning the season by combination mod- 

els F°v, Foutp F '° Fopt and F"t" 

The objective of the experiment is to experimentally compare the performance 

of the 6 individual forecasts already described in the previous experiment with 

different combined versions. Five combination methods have been used for com- 
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bination of the six forecasts 1 Fa" F0utP Fear FP'Fogs (see Section 3.2). The 

experiment provides the individual and combined forecasts as well as error vari- 

ance and covariance information at the low level of forecasting and aggregated over 

Fareclasses and Point of Sales. 

Inputs and Results 

input 

bkg 

avail 

blockElemShift 

description 

booking values 

availability information 

number of weeks contained in a data collection point 

7 

result description 

fc_input individual forecast used as input for the combination 

fc_combined combined forecast 

fin-comb-weight linear combination weight 

lin_comb_offset offset linear combination 

mad-low error variance of the input forecasts at the low level 

mad-high error variance of the input forecasts at the high level 

mad-combined-low error variance of the combined forecast at the low 

level 

mad-combined-high error variance of the combined forecast at the high 

level 

Summary of the Calculation 

The calculation can be summarised in the following steps: 

1. load the data 

1 Experiments of nonlinear methods F"" and F"'T (3.3) have been carried out as well but are 
not described in this experimental setup. 
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2. carry out unconstraining 

3. decompose the input data 

4. learn the attractiveness 

5. learn the historical seasonal behaviour over history weeks 0 to 52 

6. learn the historical attractiveness over history weeks 0 to 52 

7. generate the predictions for the attractiveness (all weeks) 

8. generate the predictions for the seasonal behaviour (all weeks) 

9. calculate the total demand forecasts (all weeks) 

10. determine the individual forecast performance (all weeks) 

11. learn the combination weights based on weeks 53 to 92 

12. combine the individual forecasts 

13. determine the combined forecast performance for weeks 93 to 128 

14. save the results 
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Detailed Description of Applied Components 

FILE-INTERFACE 

load booking and availability information 

cubes 

parameter 

applied dimensions 

string: bkg, avail, UNDEFINED, DCP 

FILE-INTERFACE 

load block element shift 

cubes 

parameter string: blockElemShift, UNDEFINED, UNDE- 

FINED 

applied dimensions 

HB-EXP 

calculate first estimate for the attractiveness without consideration of uncon- 

straining and seasonal effects 

cubes 

parameter 

applied dimensions 

UNCONSTRAINING 

bkg, phi0_h 1 ExpSm 

float: 0.05,23,53,0,1000 

CW[appl, O, 128], DCP[appl, 0,22] 

unconstrain the booking data 

cubes 

parameter 

bkg, phi0_h l ExpSm, avail, ucBkg, ucOffset 

applied dimensions 11 DCP[appl, 0,22] 
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HB-EXP 

calculate second estimate for the attractiveness without consideration of sea- 

sonal effects 

cubes 

parameter 

applied dimensions 

ucBkg, phi0_h 1 ExpSm 

float: 0.05,23,53,0,1000 

CW[appl, O, 128], DCP[appl, 0,22] 

;. i1 

DATA-DECOMPOSITION 

calculate seasonal factors used for forecasting First/Business compartment 

cubes 

parameter 

applied dimensions 

ucBkg, phi0_h 1 ExpSm, phi0_h 1 Hist, attrPrepared, 

seasonPrepared 

bool: 1, float: -0.5,3,0,1000,1 
DCP[appl, 0,22], F[aggr, 0,7], DOW [aggr, 0,6] 

DATA-DECOMPOSITION 

calculate seasonal factors used for forecasting Economy compartment 

cubes ucBkg, phi0_h 1 ExpSm, phi0_h 1 Hist, attrPrepared, 

seasonPrepared 

parameter boot: 1, float: -0.5,3,0,1000,1 

applied dimensions DCP[appl, 0,22], F[aggr, 8,19], DOW[aggr, 0,6] 

DATA-DECOMPOSITION 

calculate first estimate seasonal factors First/Business compartment 

cubes 

parameter 

ucBkg, phi0_h 1 ExpSm, phi0_h 1 Hist, attrPrepared, 

seasonSmoothed 

bool: 1, float: -0.5,3,0,1000,1 

applied dimensions DCP[appl, 0,22], F[aggr, 0,7], DOW[aggr, 0,6] 
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DATA-DECOMPOSITION 

calculate first estimate seasonal factors Economy compartment 

cubes ucBkg, phi0_h 1 ExpSm, phi0_h 1 Hist, attrPrepared, 

seasonSmoothed 

parameter boot: 1, float: -0.5,3,0,1000,1 

applied dimensions DCP[appl, 0,22], F[aggr, 8,19], DOW [aggr, 0,6] 

DATA-SMOOTHING 

smooth the determined seasonal factors 

cubes 

parameter 

applied dimensions 

HB-EXP 

learn seasonal behaviour 

cubes 

parameter 

applied dimensions 

seasonSmoothed 

float: 5,0.1 

CW[appl, 0,128] 

seasonSmoothed, phi0_h I Hist 

float: 0.6,53,1, -1,1000 

CW[app1,0,128] 

DATA-DECOMPOSITION 

data decomposition under consideration of historical behaviour attractive- 

ness and season 

cubes ucBkg, phi0_h I ExpSm, phi0_h I Hist, attr, season 

parameter boot: 0, float: -0.5,3,0,1000,1 

applied dimensions DCP[appl, 0,22] 
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HB_EXP 

learn attractiveness simple exponential smoothing 

cubes 

parameter 

applied dimensions 

HB-BROWN 

attr, phi0_h I ExpSm 

float: 0.1,23,53,0,1000 

CW[appl, O, l 28], DCP[appl, 0,221 

learn attractiveness brown model 

cubes 

parameter 

applied dimensions 

attr, phi0_h2Brown, phi I _h2Brown 
float: 0.04,23,53,0,1000, -0.05,0.05 
CW [appl, 0,128], DCP[appl, 0,22] 

fý 

HB-REGR 

learn attractiveness linear regression model 

cubes attr, phi0_h2Regr, phi 1 
_h2Regr 

parameter float: 23,53,0,1000, -0.1,0.1 

applied dimensions CW[appl, 0, I28], DCP[appl, 0,22] 

t 

FC 
-ATTR 

predict attractiveness simple exponential smoothing model 

cubes 

parameter 

attr, phiO_h 1 ExpSm, phi 1 
_h2Brown, phi0_h 1 Hist, 

avail, fc. hl ExpSm, blockElemShift 

bool: 0,0,0, float: 0,23 

applied dimensions 11 CW[appl, 0,128], DCP[appl, 0,22], DCPFC[appl, 0,22] 
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FC ATTR 

predict attractiveness brown model 

cubes attr, phi0_h2Brown, phi l _h2Brown, phi0_h l Hist, 

avail, fc_h2Brown, blockElemShift 

parameter bool: 0,1,1, float: 0,23 

applied dimensions CW[appl, 0,128], DCP[appl, 0,22], DCPFC[appl, 0,22] 

FCýTTR 

predict attractiveness linear regression model 

cubes attr, phi0_h2Regr, phi l _h2Regr, phi0_h l Hist, avail, 

fc_h2Regr, blockElemShift 

parameter boot: 0,1,0, float: 0,23 

applied dimensions CW[appl, 0,128], DCP[appl, 0,22], DCPFC[appl, 0,22] 

FC-SEASON 

predict seasonal factors historical model 

cubes season, seasonPrepared, phi0_h I Hist, attr, 

fc_h 1 ExpSm, fc_h 1 Hist 

parameter bool: 1, float: 1, -1,3,1 

applied dimensions DCP[appl, 0,22], DCPFC[appl, 0,22] 

FC-SEASON 

predict seasonal factors additive adaptation 

cubes season, seasonPrepared, phi0_h I Hist, attr, 

fc_h I ExpSm, fc_h2Add 

parameter bool: 1, float: 2, -0.5,2,1 

applied dimensions DCP[appl, 0,22], DCPFC[appl, 0,22] 
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FC-SEASON 

predict seasonal factors multiplicative adaptation 

cubes season, seasonPrepared, phi0_h IH ist, attr, 

fc_h l ExpSm, fc_h3Mult 

parameter bool: 1, float: 3, -0.5,2,1 

applied dimensions DCP[appl, 0,22], DCPFC[appl, 0,22] 

FC_LSB 

predict total demand with the model used in the current system 

cubes 

parameter 

applied dimensions 

ucBkg, phi0_h I ExpSm, phi I _h2Brown, 
phiO_hIHist, avail, fc_input, blockElerShift 

bool: 1,0,0, float: 0,23 

CW[appl, O, 128], DCP[appl, 0,22], DCPFC[appl, 0,22], 

FCNR[appl, 0,0] 

COMBINING-ADD-PARTS 

combine components of result forecast I 

cubes 

parameter 

applied dimensions 

fc_h1ExpSm, fc-h3Mult, fc_input 

FCNR[appl, 1,1] 

COMBINING-ADD-PARTS 

combine components of result forecast 2 

cubes 

parameter 

fc_h2Brown, fc_h3Mult, fc_input 

applied dimensions 11 FCNR[appl, 2,2] 
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COMBINING-ADD-PARTS 

combine components of result forecast 3 

cubes fc_h l ExpSm, fc_h2Add, fc_input 

parameter 

applied dimensions FCNR[appl, 3,3] 

COMB INING-ADD-PARTS 

combine components of result forecast 4 

cubes fc_h2Regr, fc_h3Mult, fc_input 

parameter 

applied dimensions FCNR[appl, 4,4] 

COMB INING-ADD-PARTS 

combine components of result forecast 5 

cubes fc_h2Regr, fc_h 1 Hist, fc_input 

parameter 

applied dimensions FCNR[appl, 5,5] 

COMBINING ADD PARTS 

combine components of result forecast 6 

cubes fc_h2Regr, fc_h2Add, fc_input 

parameter 

applied dimensions FCNR[appl, 6,6] 

VALID-FC-REF 

calculate toal forecast errors 

cubes ucBkg, fc_input, err-input-bias 

parameter bool: 0 

applied dimensions DCP[appl, 22,22], DCPFC[appl, 0,22] 
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ERROR_COVAR 

calculate mean absolute deviation low level 

cubes 

parameter 

applied dimensions 

err-input-bias, mad-low 

bool: 1, float: I 

CW [appl, 9 3,128] 
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ERROR_COVAR 

calculate mean absolute deviation NO level 

cubes 
-------------------------------------- 

err-input-bias, mad-high 

parameter bool: 1, float: 60 

applied dimensions CW[appl, 93,128], F[appl, 0,19], POS[appl, 0,2] 

HB-LINEAR-COMBINATION 

determine linear combination weights model F°' 

cubes err-input-bias, ucBkg, fin-comb-weight, 

parameter 

applied dimensions 

lin_comb_offset 

float: O, -1, -1 

FCNR [appl, 0,6], C W [appl, 53,92], COM B [appl, 0,0], 

DCP[appl, 22,22] 

HB-LINEAR-COMBINATION 

determine linear combination weights model F0"tP 

cubes err-input-bias, ucBkg, Iin_comb_weight, 

parameter 

lin_comb_offset 

float: 

applied dimensions FCNR[appl, 0,6], CW[appl, 53,92], COMB[appl, 1,1], 

DCP[appl, 22,22] 
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HB-LINEAR-COMBINATION 

determine linear combination weights model F"1 

cubes err-input-bias, ucBkg, 
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Iin_comb_weight, 

parameter 

applied dimensions 

lin_comb_offset 

float: 2, -1, -1 

DCP[app1,22,22] 

FCNR[appl, 0,6], CW[app1,53,92], COMB[app1,2,2], 

HB-LINEAR-COMBINATION 

determine linear combination weights model F°''' 

cubes err-input-bias, ucBkg, lin_comb_weight, 

lin_comb_offset 

parameter float: 3, -1, -1 

applied dimensions FCNR[appl, 0,6], CW[appl, 53,92], COMB[appl, 3,3], 

DCP[appl, 22,22] 

HB-LINEAR-COMBINATION 

determine linear combination weights model F0 

cubes err-input-bias, ucBkg, Ii n_comb_weight, 

parameter 

applied dimensions 

lin_comb_offset 

float: 4, -1, -1 

DCP[appl, 22,22] 

FCNR[appl, 0,6], CW[appl, 53,92], COMB[app1,4,4], 

LINEAR-COMBINATION 

combine forecasts 

cubes fc_input, fc_combined, lin_comb_weight, 

lin_comb_offset 

parameter 

applied dimensions FCNR[appl, 0,6], CW[appl, 0,128] 
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VALID-FC-REF 

calculate forecast errors 

cubes 

parameter 

applied dimensions 

ucBkg, fc_combined, err-combined-bias 

boo]: 0 

DCP[appl, 22,22], DCPFC[appl, 0,22] 
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ERROR_COVAR 

calculate mean absolute deviation low level 

cubes err-combined-bias, mad-combined-low 

parameter bool: 1, float: I 

applied dimensions CW[appl, 93,128] 

ERROR_COVAR 

calculate mean absolute deviation high level 

cubes 

parameter 

applied dimensions 

err_combined_bias, mad-combined-high 

bool: 1, float: 60 

CW [appl, 93,128], F[appl, 0, I 9], POS [appl, 0,2] 

FILE-INTERFACE 

save results combination weights 

cubes 

parameter string: UNDEFINED, lin_comb_weight, 

lin_comb_offset, DCPFC 

applied dimensions 
1 
ý 
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FILE-INTERFACE 

save results combined forecasts 

cubes 

parameter string: UNDEFINED, 

mad_combined_low, mad_combined_high, mad_low, 

mad_high, DCPFC 

applied dimensions 

B. 6.4 Experiment4 : Combination of Predictions for the Seasonal Demand 

Component 

Brief 

name of the experiment 

short description 

experiment4 

combination of diversified seasonal forecasts by 

combination models F"', F"'tP, F""', FP' and 

F"l, s 

In this experiment the predictions of the seasonal component are diversified, the 

attractiveness component is predicted with a simple exponential smoothing model 

with additive adaptation to the current booking values. The function space has been 

diversified with the models hi°°90'(x, 0) and h. 3e°3O7L(i:, 6). Diversified parameters 

applied for the calculation of seasonal factors: and Offigh (lower and upper 

limit of expected seasonal behaviour). In order to generate sets of range limits 

which are not completely unbalanced the initial parameters chosen for 010u, = 

-0.5, and Ohigh =3 have been dumped with different factors between 0 and 

1. The generated predictions for the seasonal factors are combined by different 

linear combination models F°v, F"), Fv°T, FP t and F°" (see Section 3.2). The 

experiment provides the error variance information at the low level of forecasting 

and aggregated over Fareclasses and Point of Sales. 
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input 

bkg 

avai I 

blockElemShift 

Inputs and Results 

description 

booking values 

availability information 

number of weeks contained in a data collection point 

T 

result description 

mad-combined-low error variance of the combined forecast at the low 

level 

mad-combined-high error variance of the combined forecast at the high 

level 

mad-compare-low error variance of the compare forecast at the low 

level 

mad-compare-high error variance of the compare forecast at the high 

level 

lin_comb_weight linear combination weights 

offset offset linear combination 

Summary of the Calculation 

The calculation can be summarised in the following steps: 

1. load the data 

2. carry out unconstraining 

3. decompose the input data 

4. learn the attractiveness 

5. learn the historical seasonal behaviour over history weeks 0 to 52 

6. learn the historical attractiveness over history weeks 0 to 52 
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7. generate the prediction for the attractiveness (all weeks) 

8. generate the diversified predictions for the seasonal behaviour (2 types of 

diversification, all weeks) 

9. determine the seasonal forecast performance (all weeks) 

10. learn the combination weights based on weeks 53 to 92 

11. combine the seasonal forecasts 

12. calculate the total demand forecasts (all weeks) 

13. determine the combined forecast performance for weeks 93 to 128 

14. save the results of the combined forecasts 

15. calculate the forecast of the current system (compare forecasts) 

16. determine the compare forecast performance for weeks 93 to 128 

17. save the results of the compare forecasts 

Detailed Description of Applied Components 

FILE-INTERFACE 

load booking and availability information 

cubes 

parameter 

applied dimensions 

string: bkg, avail, UNDEFINED, DCP 

FILEINTERFACE 

load block element shift 

cubes 

parameter string: blockElemShift, UNDEFINED, UNDE- 

FINED 

applied dimensions 
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HB_EXP 

calculate first estimate for the attractiveness without consideration of uncon- 

straining and seasonal effects 

cubes bkg, phi0_h I ExpSm 

parameter float: 0.05,23,53,0,1000 

applied dimensions CW[appl, 0,128], DCP[appl, 0,22] 

UNCONSTRAINING 

unconstrain the booking data 

cubes 

parameter 

applied dimensions 

bkg, phi0_h l ExpSm, avail, ucBkg, 

ucOffset 

DCP[appl, 0,22] 

HB_EXP 

calculate second estimate for the attractiveness without consideration of sea- 

sonal effects 

cubes ucBkg, phi0_h 1 ExpSm 

parameter float: 0.05,23,53,0,1000 

applied dimensions CW[appl, 0,128], DCP[appl, 0,22] 

DATA-DECOMPOSITION 

calculate first estimate of seasonal factors First/Business compartment 

cubes 

parameter 

ucBkg, phi0_h I ExpSm, phi0_h I Hist, attrPrepared, 

seasonSmoothed 

boot: 1, float: -0.5,3,0,1000,1 

applied dimensions 11 DCP[appl, 0,22], F[aggr, 0,7], DOW[aggr, 0,6] 
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DATA-DECOMPOSITION 

calculate first estimate of seasonal factors Economy compartment 

cubes 

parameter 

applied dimensions 

DATA-SMOOTHING 
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ucBkg, phi0_h I ExpSm, phi0_h I Hist, attrPrepared, 

seasonSmoothed 

boot: 1, float: -0.5,3,0,1000,1 

DCP[app1,0,22], F[aggr, 8,19], DOW [aggr, 0,6] 

smooth the determined seasonal factors 

cubes 

parameter 

applied dimensions 

seasonSmoothed 

float: 5,0.1 

CW[app1,0,128] 

HB-EXP 

learn seasonal behaviour (first estimate) 

cubes seasonSmoothed, phi0_h I Hist 

parameter fl oat: 0.6,53,1, -1,1000 

applied dimensions CW[appl, 0,128] 

DATA-DECOMPOSITION 

data decomposition under consideration of historical behaviour of attractive- 

ness and season 

cubes 

parameter 

ucBkg, phi0_h I ExpSm, phi0_h l Hist, attr, 

season 

bool: 0, float: -1,3,0,1000,1 

applied dimensions 11 DCP[appl, 0,22] 
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ý1 
HB_EXP 

learn seasonal behaviour (improved estimate) 

cubes attr, phi0_h l ExpSm 

parameter float: 0.1,23,53,0,1000 

applied dimensions CW[appl, 0, I 28], DCP[appl, 0,22] 

DATA 
-DECOM 

POSITION 

[final 
data decomposition real data (low level) 

cubes ucBkg, phi0_h I ExpSm, phi0_h I Hist, attr, 

season 

parameter bool: 1, float: -1,3,0,1000,1 

applied dimensions DCP[appl, 0,22] 

DATA-DECOMPOSITION 

data decomposition used for forecasting (diversified level First/Business) 

cubes ucBkg, phi0_h I ExpSm, phi0_h I Hist, attrPrepared, 

seasonPrepared 

parameter bool: 1, float: -1,3,0,1000,1 

applied dimensions DCP[appl, 0,22] 

FC I. SB 

calculation of the total compare forecast 

cubes ucBkg, phi0_h I ExpSm, phi I _h 
I ExpSm, 

phi0_h I Hist, 

avail, fc_compare, blockElemShift 

parameter bool: 1,0,0, float: 0,23 

applied dimensions CW[appl, 0, I28], DCP[appl, 0,22], DCPFC[appl, 0,22], 

FCNR[appl, 0,0] 
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VALID-FC-REF 

calculation of compare forecast error 

cubes ucBkg, fc_compare, err-compare-bias 

parameter 

1 

boot: 0 

applied dimensions 1 
DCP[appl, 22,22], DCPFC[appl, 0,22] 

ERROR_COVAR 

calculation mean absolute deviation low level compare forecast 

cubes 

parameter 

applied dimensions 

err-compare-bias, mad-compare-low 

bool: 1, float: I 

CW[appl, 93,128] 

ERROR_COVAR 

calculation mean absolute deviation high level compare forecast 

cubes err-compare-bias, mad-compare-high 

parameter bool: 1, float: 60 

applied dimensions CW[appl, 93,128], F[appl, 0,19], POS[appl, 0,2] 

FC 
-ATTR 

forecast of the attractiveness component 

cubes 

parameter 

attr, phi0_h I ExpSm, phi l _h 
1 ExpSm, phi0_h I Hist, 

avail, fc_h l ExpSm, blockElemShift 

bool: 0,0,0, float: 0,23 

applied dimensions 11 CW[appl, 0,128], DCP[appl, 0,22], DCPFC[appl, 0,22] 
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FC-SEASON 

forecast diversified seasonal factors 

cubes 

parameter 

applied dimensions 

VALID-FC-REF 
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season, seasonPrepared, phi0_h I Hist, attr, 

fc_h 1 ExpSm, 

fc_hlHist 

bool: 1, float: 1, -1,3,1 
DCP[appl, 0,22], DCPFC[appl, 0,22] 

calculate forecast errors diversified seasonal factors 

cubes 

parameter 

applied dimensions 

season, fc_h 1 Hist, err-input-bias 

bool: 0 

DCP[app1,22,22], DCPFC[appl, 0,22] 

HB-LINEAR-COMBINATION 

learn linear combination weights Fa" 

cubes 

parameter 

applied dimensions 

err-input-bias, season, 

fin-comb-offset 

float: 0, -1, -1 

Iin_comb_weight, 

CW [appl, 53,92], COMB [appl, 0,0], DCP[appl, 22,22] 

DIV I [appl, 0,31, DIV2[app1,0, I ], 

HB-LINEAR-COMBINATION 

learn linear combination weights Foutp 

cubes err-input-bias, season, lin_comb_weight, 

lin_comb_offset 

parameter float: 1, -1, -1 

applied dimensions DIV I [appl, 0,3], DIV2[appl, 0, I ], 

CW[appl, 53,92], COMB[appl, 1,1 ], DCP[appl, 22,22] 
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HB-LINEAR-COMBINATION 

learn linear combination weights FVýT 

cubes 

parameter 

applied dimensions 

err-input-bias, season, 

lin_comb_offset 

float: 2, -1, -1 
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lin_comb_weight, 

CW [app1,53,92], COMB [appl, 2,2], DCP[appl, 22,22] 

DIV I [appl, 0,3], DIV2[appl, 0, l ], 

HB-LINEAR-COMBINATION 

learn linear combination weights F'Pt 

cubes err-input-bias, season, lin_comb_weight, 

fin-comb-offset 

parameter float: 3, -1, -1 

applied dimensions DIV I [appl, 0,3], DIV2[appl, 0, I 

CW[appl, 53,92], COMB[appl, 3,3], DCP[appl, 22,22] 

HB-LINEAR-COMBINATION 

learn linear combination weights F°I"" 

cubes 

parameter 

applied dimensions 

err-input-bias, season, 

lin_comb_offset 

float: 4, -], -] 

fin-comb-weight, 

DIV 1 [appl, 0,31, DIV2[appl, 0, I ], 

CW[appl, 53,92], COMB[appl, 4,4], DCP[appl, 22,22] 

LINEAR-COMBINATION 

combine forecasts 

cubes fcii 1 Hist, fc_comb, Iin_comb_weight, 

lin_comb_offset 

parameter 

applied dimensions DIV I [appl, 0,31, DIV2[appl, 0, I 1, CW[appl, 0,128] 
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COMBINING-ADD-PARTS 

generate total forecast 

cubes 

parameter 

applied dimensions 

fch l ExpSm, fc_comb, fc_combined 
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VALID-FC-REF 

calculate error combined total forecast 

cubes ucBkg, fc_combined, err-combined-bias 

parameter bool: 0 

applied dimensions DCP[appl, 22,22], DCPFC[appl, 0,22] 

ERROR_COVAR 

calculate mean absolute deviation low level 

cubes 

parameter 

applied dimensions 

err-combined-bias, mad-combined-low 

boot: 1, float: I 

CW[app1,93,128] 

ERROR_COVAR 

calculate mean absolute deviation high level 

cubes err-combined-bias, mad-combined-high 

parameter bool: 1, float: 60 

applied dimensions CW[appl, 93,128], F[appl, 0,19], POS[appl, 0,2] 
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FILE-INTERFACE 

save errors 

cubes 

parameter 

applied dimensions 

string: 
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UNDEFINED, 

mad_combined_low, mad_combined_high, mad_compai 

mad_compare_high, DCPFC 

FILE-INTERFACE 

save learned combination weights 

cubes 

parameter string: UNDEFINED, 

lin_comb_weight, Iin_comb_offset, DCPFC 

applied dimensions 
1 1 

B. 6.5 Experiments : Multi Level Combination of Predictions for the Seasonal 

Demand Component 

Brief 

name of the experiment 

short description 

experiment5 

combination of multi level seasonal forecasts by 

combination models F", F"""P V"r F"1't and 

F"' 

In this experiment, in addition to the previous experiment, the level of calcula- 

tion of seasonal factors is diversified in history building as well as in forecasting. 

The set of input forecasts can be seen in Table 13. 

tie _low, 
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Inputs and Results 

input description 

bkg booking values 

avail availability information 

blockElemShift number of weeks contained in a data collection point 

T 

result 

mad-combined-low 

mad-combined-high 

description 

error variance of the combined forecast at the low 

level 

error variance of the combined forecast at the high 

level 

Summary of the Calculation 

The calculation can be summarised in the following steps: 

1. load the data 

2. carry out unconstraining 

3. decompose the input data 

4. learn the attractiveness 

5. learn the historical seasonal behaviour over history weeks 0 to 52 

6. learn the historical attractiveness over history weeks 0 to 52 

7. generate the prediction for the attractiveness (all weeks) 

8. generate the diversified predictions for the seasonal behaviour (multi level 

diversification, all weeks) 

9. determine the seasonal forecast performance (all weeks) 
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10. learn the combination weights based on weeks 53 to 92 

11. combine the seasonal forecasts 

12. calculate the total demand forecasts (all weeks) 

13. determine the combined forecast performance for weeks 93 to 128 

14. save the results of the combined forecasts 

15. calculate the forecast of the current system (compare forecasts) 

16. determine the compare forecast performance for weeks 93 to 128 

17. save the results of the compare forecasts 

Detailed Description of Applied Components 
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FILE-INTERFACE 

load booking and availability information 

cubes 

parameter string: bkg, avail, UNDEFINED, DCP 

applied dimensions 

FILE_INTERFACE 

load block element shift 

cubes 

parameter string: blockElemShift, UNDEFINED, UNDE- 

FINED 

applied dimensions 



B. Description of Experiments and the Appended Software 

HB_EXP 

calculate first estimate for the attractiveness without consideration of uncon- 

straining and seasonal effects 

cubes 

parameter 

applied dimensions 

UNCONSTRAINING 

bkg, phi0_h 1 ExpSm 

float: 0.05,23,53,0,1000 

CW[appl, O, l 28], DCP[appl, 0,221 

unconstrain the booking data 

cubes 

parameter 

applied dimensions 

bkg, phi0_h1ExpSm, avail, ucBkg, 

ucOffset 

DCP[app1,0,22] 

i5i 

HB_EXP 

calculate second estimate for the attractiveness without consideration of sea- 

sonal effects 

cubes ucBkg, phi0_h I ExpSm 

parameter float: 0.05,23,53,0,1000 

applied dimensions CW[appl, 0,128], DCP[appl, 0,22] 

DATA-DECOMPOSITION 

calculate first estimate of seasonal factors FirstBusiness compartment 

cubes 

parameter 

ucBkg, phi0_h I ExpSm, phi0_h I Hist, attrPrepared, 

seasonSmoothed 

boot: 1, float: -0.5,3,0,1000,1 

applied dimensions DCP[appl, 0,22], F[aggr, 0,7], DOW[aggr, 0,6] 
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DATA-DECOMPOSITION 

calculate first estimate of seasonal factors Economy compartment 

cubes 

parameter 

applied dimensions 
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ucBkg, phi0_h 1 ExpSm, phi0_h 1 Hist, attrPrepared, 

seasonSmoothed 

bool: 1, float: -0.5,3,0,1000,1 

DCP[app1,0,22], F[aggr, 8,19], DOW [aggr, 0,6] 

DATA-SMOOTHING 

smooth the determined seasonal factors 

cubes seasonSmoothed 

parameter float: 5,0.1 

applied dimensions CW[appl, 0,128] 

HB-EXP 

learn seasonal behaviour (first estimate) 

cubes 

parameter 

applied dimensions 

seasonSmoothed, phi0_h I Hist 

float: 0.6,53,1, -1,1000 

CW[appl, 0,128] 

DATA DECOMPOSITION 

data decomposition under consideration of historical behaviour of attractive- 

ness and season 

cubes ucBkg, phi0_h 1 ExpSm, phi0_h 1 Hist, attr, 

season 

parameter boot: 1, float: -1,3,0,1000,1 

applied dimensions DCP[appl, 0,22] 
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HB_EXP 

learn seasonal behaviour (improved estimate) 

cubes 

parameter 

applied dimensions 

attr, phi0_h I ExpSrn 

float: 0.1,23,53,0,1000 

CW[appl, 0, I28], DCP[appl, 0,22) 
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DATA DECOMPOSITION 

final data decomposition real data (low level) 

cubes ucBkg, phi0_h I ExpSm, phi0_h I Hist, attr, 

season 

parameter bool: 1, float: -1,3,0,1000,1 

applied dimensions DCP[appl, 0,22] 

DATA-DECOMPOSITION 

data decomposition used for learning (diversified level First/Business) 

cubes 

parameter 

applied dimensions 

ucBkg, phi0_h I ExpSm, phi0_h I Hist, attrPrepared, 

seasonSmoothed2 

boot: 1, float: -1,3,0,1000,1 

DCP[appl, 0,22], 

DOW [diversified, 0,6] 

Z F[diversified, 0,7], 

COMPOSITION 

data decomposition used for learning (diversified level Economy) 

cubes ucBkg, phi0_h I ExpSm, phi0_h I Hist, attrPrepared, 

seasonSmoothed2 

parameter bool: 1, float: -1,3,0,1000,1 

applied dimensions 

1 

DCP[appl, 0,22], F[diversified, 0,7], 

DOW [diversified, 0,6] 
1 
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DATA-SMOOTHING 

smoothing of the diversified decomposed data 

cubes seasonSmoothed2 

parameter float: 2,0.2 

applied dimensions CW[appl, 0,128] 

HBEXP 

learning of the diversified history 

cubes seasonSmoothed2, phiO_h2Hist 

parameter float: 0.6,53,1, -1,1000 

applied dimensions CW[appl, 0,128] 

DATA-DECOMPOSITION 

data decomposition used for forecasting (diversified level First/Business) 

cubes 

parameter 

applied dimensions 

ucBkg, phi0_h I ExpSm, phi0_h I Hist, attrPrepared, 

seasonPrepared 

bool: 1, float: -1,3,0,1000,1 

DOW[diversified, 0,6] 

DCP[appl, 0,22], F[diversified, 0,7], 

DATA-DECOMPOSITION 

data decomposition used for forecasting (diversified level Economy) 

cubes ucBkg, phi0_h I ExpSm, phi0_h I Hist, attrPrepared, 

seasonPrepared 

parameter bool: ], float: -1,3,0,1000,1 

applied dimensions DCP[appl, 0,22], F[diversified, 8,19], 

DOW[diversified, 0,6] 
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FC 
-ATTR 

forecast of the attractiveness component 

cubes 

parameter 

applied dimensions 

FC-SEASON 
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attr, phi0_h l ExpSm, phil _h 
1 ExpSm, fr_h 1 ExpSm, 

blockElemShift 

boot: 0,0,1, float: 23 

CW[app1,0,128], DCP[appl, 0,22], DCPFC[appl, 0,22], 

DIV I [appl, 0,0], DIV2[appl, 0,0], DIV3[appl, 0,0], 

DIV4[appl, 0,0] 

forecast diversified seasonal factors 

cubes 

parameter 

applied dimensions 

season, seasonPrepared, 

phi0_h I ExpSm, fc_h I Hist 

boot: 1, float: 1, -1,3,1 

DCP[appl, 0,22], DCPFC [appl, 0,22] 

phi0_h2Hist, 

VALIDFCREF 

calculate forecast errors diversified seasonal factors 

cubes season, fc_h I Hist, err_h I Hist 

parameter boot: 0 

applied dimensions DCP[appl, 22,22], DCPFC[appl, 0,22] 

HB-LINEAR-COMBINATION 

learn linear combination weights 

cubes 

parameter 

applied dimensions 

err_h I Hist, 

lin_comb_offset 

float: 2,5, -1 

season, Iin_comb_weight, 

DIV I [appl, 0,3], DIV2[app1,0,1 ], DIV3[app1,0,1 ], 

DIV4[appl, O, I ], CW [appl, 53,92], DOW [appl, 0,6], 

DCP[app1,22,22] 



B. Description of Experiments and the Appended Software 

LINEAR-COMBINATION 

combine forecasts 

cubes fc_h 1 Hist, 

lin_comb_offset 

fc_comb, 
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lin_comb_weight, 

parameter 

applied dimensions DIV I [appl, 0,3], DIV2[appl, 0,1 ], DIV3 [appl, 0,1 ], 

DIV4[app1,0,1 ], CW[app], 0,128] 

COMBINING-ADD-PARTS 

generate total forecast 

cubes 

parameter 

applied dimensions 

fc-h l ExpSm, fc_comb, fc_combined 

VALID-FC-REF 

calculate error combined total forecast 

cubes ucBkg, fc_combined, err-combined-bias 

parameter bool: 0 

applied dimensions DCP[appl, 22,22], DCPFC[appl, 0,22] 

ERROR_COVAR 

calculate mean absolute deviation low level 

cubes 

parameter 

err-combined-bias, mad-combined-low 

bool: 1, float: I 

applied dimensions 11 CW[appl, 93,128] 
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ERROR_COVAR 

calculate mean absolute deviation high level 

cubes err-combined-bias, mad-combined-high 

parameter boot: 1, float: 60 

applied dimensions CW[appl, 93,128], F[appl, 0, I9], POS[appl, 0,2] 

FILE-INTERFACE 

save errors combined forecast 

cubes 

parameter 

applied dimensions 

string: UNDEFINED, 

mad_combined_low, mad-combined _high, 
DCPFC 

Variations of the Experiment 

The experiment can be varied by using different trimming strategies. This can he 

reached by modification of the trimming parameters of component 

HB-LIN_COMBINATION. 

B. 6.6 Experiment6 : Comparison of Different Pooling Approaches 

Brief 

name of the experiment experiment6 

short description 

1 

combination of multi level seasonal forecasts by dif- 

1 predefined linear combination structures 

In this experiment 4 diversifications are used: 

" diversification of the function space (Irwas°" (: r ß) and hscas°" (x q)) 

" diversification of parameters 610tß� and ßftigh 

" diversification of the level Fareclass aggregated to Compartment 
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" diversification of the level Day of Week (calculation per day of week or over 

all day of weeks) 

The six combination structures MLPI to MLP6 are described in Table 18. They are 

all based on the dimensions of the forecast generation space. The only difference 

between the structures is in the order of dimensions used in order to determine the 

pools of the next combination step. 

Inputs and Results 

input 

bkg 

avail 

blockElemShift 

description 

booking values 

availability information 

number of weeks contained in a data collection point 

T 

result description 

varCombinedLow error variance of the combined forecast at the low 

level 

varCombinedHigh error variance of the combined forecast at the high 

level 

Summary of the Calculation 

The calculation can be summarised in the following steps: 

1. load the data 

2. carry out unconstraining 

3. decompose the input data 

4. learn the attractiveness 

5. learn the historical seasonal behaviour over history weeks 0 to 52 
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6. learn the historical attractiveness over history weeks 0 to 52 

7. generate the prediction for the attractiveness (all weeks) 

8. generate the diversified predictions for the seasonal behaviour (multi level 

diversification, all weeks) 

9. determine the seasonal forecast performance (all weeks) 

10. for six different predefined combination structures 

- determine combination weights based on weeks 53 to 92 with 

- combine the seasonal forecasts 

- calculate the total demand forecasts (all weeks) 

- determine the combined forecast performance for weeks 93 to 128 

11. save the results of the combined forecasts 

12. calculate the forecast of the current system (compare forecasts) 

13. determine the compare forecast performance for weeks 93 to 128 

14. save the results of the compare forecasts 
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Detailed Description of Applied Components 

FILE-INTERFACE 

load booking and availability information 

cubes 

parameter string: bkg, avail, UNDEFINED, DCP 

applied dimensions 

FILE-INTERFACE 

load block element shift 

cubes 

parameter string: blockElemShift, UNDEFINED, UNDE- 

FINED 

applied dimensions 

HB_EXP 

calculate first estimate for the attractiveness without consideration of uncon- 

straining and seasonal effects 

cubes bkg, phi0_hIExpSm 

parameter float: 0.05,23,53,0,1000 

applied dimensions CW [appl, 0,128], DCP[appl, 0,22] 

UNCONSTRAINING 

unconstrain the booking data 

cubes bkg, phi0_h l ExpSm, avail, ucBkg, 

ucOffset 

parameter 

applied dimensions DCP[appl, 0,22] 
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HB_EXP 

calculate second estimate for the attractiveness without consideration of sea- 

sonal effects 

cubes 

parameter 

applied dimensions 

ucBkg, phi0_h 1 ExpSm 

float: 0.05,23,53,0,1000 

CW[appl, O, 128], DCP[appl, 0,22] 
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DATA-DECOMPOSITION 

calculate first estimate of seasonal factors First/Business compartment 

cubes ucBkg, phi0_h I ExpSm, phi0_h I Hist, attrPrepared, 

seasonSmoothed 

parameter bool: 1, float: -0.5,3,0,1000,1 

applied dimensions DCP[appl, 0,22], F[aggr, 0,7], DOW[aggr, 0,6] 

DATA-DECOMPOSITION 

calculate first estimate of seasonal factors Economy compartment 

cubes 

parameter 

applied dimensions 

DATA-SMOOTHING 

ucBkg, phi0_h 1 ExpSm, phi0_h 1 Hist, attrPrepared, 

seasonSmoothed 

bool: 1, float: -0.5,3,0,1000,1 

DCP[app1,0,22], F[aggr, 8,19], DOW [aggr, 0,6] 

smooth the determined seasonal factors 

cubes 

parameter 

seasonSmoothed 

float: 5,0.1 

applied dimensions 11 CW[appl, 0,128] 
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HBEXP 

learn seasonal behaviour (first estimate) 

cubes seasonSmoothed, phiO_h 1 Hist 

parameter float: 0.6,53,1, -1,1000 

applied dimensions CW[appl, 0,128] 

DATA 
_DECOMPOSITION 

data decomposition under consideration of historical behaviour of attractive- 

ness and season 

cubes 

parameter 

applied dimensions 

HB-EXP 

ucBkg, phi0_h I ExpSm, phi0_h I Hist, attr, 

season 

bool: 0, float: -1,3,0,1000,1 

DCP[appl, 0,22] 

learn seasonal behaviour (improved estimate) 

cubes 

parameter 

applied dimensions 

attr, phi0_h 1 ExpS m 

float: 0.1,23,53,0,1000 

CW[app], 0,128], DCP[appl, 0,22] 

DATA-DECOMPOSITION 

final data decomposition real data (low level) 

cubes ucBkg, phi0_h 1 ExpSm, phi0_h l Hist, attr, 

season 

parameter boot: 1, float: -1,3,0,1000,1 

applied dimensions DCP[appl, 0,22] 
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DATA-DECOMPOSITION 

data decomposition used for learning (diversified level First/Business) 

cubes 

parameter 

applied dimensions 
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ucBkg, phi0_h I ExpSm, phi0_h I Hist, attrPrepared, 

seasonSmoothed2 

bool: 1, float: -1,3,0,1000,1 

DCP[appl, 0,22], 

DOW [diversified, 0,6] 

F[diversified, 8,191, 

DATA-DECOMPOSITION 

data decomposition used for learning (diversified level Economy) 

cubes 

parameter 

applied dimensions 

ucBkg, phi0_h I ExpSm, phi0_h I Hist, attrPrepared, 

seasonSmoothed2 

boot: 1, float: -1,3,0,1000,1 

DOW [diversified, 0,6] 

DCP[appl, 0,22], F[divenified, 0,7], 

DATA-SMOOTHING 

smoothing of the diversified decomposed data 

cubes seasonSmoothed2 

parameter float: 2,0.2 

applied dimensions CW[appl, 0,128] 

HB-EXP 

learning of the diversified history 

cubes 

parameter 

seasonSmoothed2, phi0_h2Hist 

float: 0.6,53,1, -1,1000 

applied dimensions 11 CW[appl, 0,128] 
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DATA-DECOMPOSITION 

data decomposition used for forecasting (diversified level First/Business) 

cubes 

parameter 

applied dimensions 
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ucBkg, phi0_h 1 ExpSm, phi0_h 1 Hist, attrPrepared, 

seasonPrepared 

boot: 1, float: -1,3,0,1000,1 

DCP[appl, 0,22], F[diversified, 0,7], 

DOW [divers ified, 0,6] 

DATA-DECOMPOSITION 

data decomposition used for forecasting (diversified level Economy) 

cubes ucBkg, phi0_h 1 ExpSm, phi0_h 1 Hist, attrPrepared, 

seasonPrepared 

parameter bool: ], float: -1,3,0,1000,1 

applied dimensions DCP[appl, 0,22], F[diversified, 8,19], 

DOW[diversified, 0,6] 

FC-ITTR 

forecast of the attractiveness component 

cubes 

parameter 

applied dimensions 

attr, phi0_h 1 ExpSm, phil _h 
1 ExpSm, fc_h 1 ExpSm, 

blockElemShift 

bool: 0,0,1, float: 23 

CW [app], 0,128], DCP[appl, 0,22], DCPFC [app1,0,22], 

DIV I [appl, 0,0], DIV2[appl, 0,0], DIV3[appl, 0,0], 

DIV4[app1,0,0] 
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FC-SEASON 

forecast diversified seasonal factors 

cubes season, seasonPrepared, phi0_h2Hist, attr, 

fc_h I ExpSm, fc_h I Hist 

parameter boo]: ], float: 1, -1,3,1 

applied dimensions DCP[appl, 0,22], DCPFC[appl, 0,22] 

C 
-REF 

calculate forecast errors diversified seasonal factors 

cubes season, fc_h I Hist, err_h I Hist 

parameter bool: 0 

applied dimensions DCP[appl, 22,22], DCPFC[appl, 0,22] 

HB-LINEAR-COMBINATION-STRUCTURE 

learn combination weights structure MLPI 

cubes err_h I Hist, season, Iin_comb_weight, 

lin_comb_offset 

parameter float: 0,0,0,0,4,2,10,3, string: 

DIVI, DIV2, DIV3, DIV4,0123 

applied dimensions DIV 1 [appl, 0,3], DIV2[appl, 0, I ], DIV3[appl, 0,1 ], 

DIV4[appl, 0,1 ], CW[appl, 53,92], DOW[appl, 0,6], 

DCP[appl, 22,22] 



B. Description of Experiments and the Appended Software 368 

HB-LINEAR-COMBINATION-STRUCTURE 

learn combination weights structure MLP2 

cubes err -h 
I Hist, season, lin_comb_weight, 

fin-comb-offset 

parameter float: 0,0,0,0,4,2,10,3, string: 

DIV I, DIV2, DIV3, DIV4,1023 

applied dimensions DIV 1 [appl, 0,3], DIV2[app], 0, I ], DIV3[appl, 0,1 ], 

DIV4[appl, 0, I 1, CW[appl, 53,92], DOW[appl, 0,6] 

HB 
-LINEAR-COMB 

INATION 
-STRUCTURE 

learn combination weights structure MLP3 

cubes 

parameter 

applied dimensions 

err1h I Hist, 

lin_comb_offset 

season, lin_comb_weight, 

float: 0,0,0,0,4,2,10,3, string: 

DIVI, DIV2, DIV3, DIV4,2301 

DIV I [appl, 0,3], DIV2[appl, 0,1 ], DIV3[app1,0, I ], 

DIV4[appl, O, I ], CW[appl, 53,92], DOW [app1,0,6] 

HB-LINEAR-COMBINATION-STRUCTURE 

learn combination weights structure MLP4 

cubes err_h 1 Hist, season, lin_comb_weight, 

lin_comb_offset 

parameter float: 0,0,0,0,4,2,10,3, string: 

DIV I, DIV2, DIV3, DIV4,2310 

applied dimensions DIV I [appl, 0,3], DIV2[appl, 0, I ], DIV3[appl, 0, I ], 

DIV4[appl, 0, I ], CW[appl, 53,92], DOW[appl, 0,6] 
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HB-LINEAR-COMBINATION-STRUCTURE 

learn combination weights structure MLP5 

cubes err_h I Hist, season, 

. 
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Iin_comb_wright, 

parameter 

applied dimensions 

lin_comb_offset 

float: 0,0,0,0,4,2,10,3, string: 

DIV 1, DIV2, DIV3, DIV4,0231 

DIV4[appl, O, l ], CW[appl, 53,92], DOW[appl, 0,6] 

DIV I [appl, 0,3], DIV2[appl, 0, I ], DIV3[app1,0,1 j. 

HB_LINEAR_COMBINATION 
-STRUCTURE 

learn combination weights structure MLP6 

cubes err_h 1 Hist, season, lin_comb_weight, 

lin_comb_offset 

parameter float: 0,0,0,0,4,2,10,3, string: 

DIV I, DIV2, DIV3, DIV4,1230 

applied dimensions DIV I [appl, 0,3], DIV2[appl, 0, I ], DIV3[appl, 0, I ], 

DIV4[appl, 0, I ], CW[appl, 53,92], DOW [appl, 0,6] 

LINEAR-COMBINATION 

combine forecasts 

cubes fc-h 1 Hist, 

fin-comb-offset 

fc_comb, fin-comb-weight, 

parameter 

applied dimensions DIV ] [appl, 0,3], DIV2[appl, 0, I ], DIV3[appl, 0, l ], 

DIV4[appl, O, I ], CW [appl, 0,128] 
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COMBINING-ADD-PARTS 

calculate total forecast 

cubes 

parameter 

applied dimensions 

VALID-FC-REF 

fc-hl ExpSm, fc_comb, fc_combined 

calculate combined forecast error 

cubes 

parameter 

applied dimensions 

ucBkg, fc_combined, err-combined-bias 

bool: 0 

DCP[app1,22,22], DCPFC[app1,0,22] 
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ERROR_COVAR 

calculate mean absolute deviation low level 

cubes err-combined-bias, mad-combined-low 

parameter bool: 1, float: I 

applied dimensions CW[appl, 93,128] 

ERROR_COVAR 

calculate mean absolute deviation high level 

cubes 

parameter 

applied dimensions 

err-combined-bias, mad-combined-high 

bool: 1, float: 60 

CW[appl, 93,128], F[appl, 0,19], POS[app1,0,2] 

FILE-INTERFACE 

save results combined forecast errors 

cubes 

parameter string: UNDEFINED, 

mad_combined_low, mad_combined_high, DCPFC 

applied dimensions 
1 1 
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Variations of the Experiment 

Alternative structures can be generated by modification of the last parameter of 

component 

HB1. IN_COMBINATION-STRUCTURE. 

B. 6.7 Experiment? : Comparison of Different Pooling Approaches 

Brief 

name of the experiment experiment7 

short description generation and evolution of linear combination 

structures 

This experiment uses the same diversified input forecasts for the seasonal com- 

ponent as in the previous experiment. Only one combination is carried out. The 

used combination structure is generated by component 

HB_LIN_COMBINATION-STRUCTURE. This component enables the generation 

of dynamic combination structures, for instance using the approach of Aiolfi and 

Timmermann ( see 6.2.1) as well as different evolutionary approaches as described 

in Chapter 7. 

Inputs and Results 

input description 

bkg booking values 

avail availability information 

blockElemShift number of weeks contained in a data collection point 

T 
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result description 

mad-combined-low error variance of the combined forecast at the low 

level 

mad-combined-high error variance of the combined forecast at the high 

level 

elements file containing elements of the resulting combination 

structures 

performance-graph file containing fitness information 

Summary of the Calculation 

The calculation can be summarised in the following steps: 

1. load the data 

2. carry out unconstraining 

3. decompose the input data 

4. learn the attractiveness 

5. learn the historical seasonal behaviour over history weeks 0 to 52 

6. learn the historical attractiveness over history weeks 0 to 52 

7. generate the prediction for the attractiveness (all weeks) 

8. generate the diversified predictions for the seasonal behaviour (multi level 

diversification, all weeks) 

9. determine the seasonal forecast performance (all weeks) 

10. generate/evolve combination structures (weeks 53 to 92) 

11. combine the seasonal forecasts 

12. calculate the total demand forecasts (all weeks) 



B. Description of Experiments and the Appended Soliware 

13. determine the combined forecast performance for weeks 93 to 128 

14. save the results of the combined forecasts 

15. calculate the forecast of the current system (compare forecasts) 

16. determine the compare forecast performance for weeks 93 to 128 

17. save the results of the compare forecasts 

Detailed Description of Applied Components 

. 
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FILE-INTERFACE 

load booking and availability information 

cubes 

parameter string: bkg, avail, UNDEFINED, DCP 

applied dimensions 
1 11 

FILE-INTERFACE 

load block element shift 

cubes 

parameter 

applied dimensions 

HB-EXP 

string: blockElemShift, UNDEFINED, UNDE- 

FINED 

calculate first estimate for the attractiveness without consideration of uncon- 

straining and seasonal effects 

cubes 

parameter 

bkg, phi0_h 1 ExpSm 

float: 0.05,23,53,0,1000 

applied dimensions 11 CW[appl, 0,128], DCP[appl, 0,22] 
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UNCONSTRAINING 

unconstrain the booking data 

cubes 

parameter 

applied dimensions 

bkg, phi0_h I ExpSm, avail, ucBkg, 

ucOffset 

DCP[appl, 0,22] 
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HBEXP 

calculate second estimate for the attractiveness without consideration of sea- 

sonal effects 

cubes ucBkg, phiO_h I ExpSm 

parameter float: 0.05,23,53,0,1000 

applied dimensions CW[appl, 0,128], DCP[appl, 0,22] 

DATA-DECOMPOSITION 

calculate first estimate of seasonal factors FirstBusiness compartment 

cubes 

parameter 

applied dimensions 

ucBkg, phi0_h I ExpSm, phi0_h I Hist, attrPrepared, 

seasonSmoothed 

boot: 1, float: -0.5,3,0,1000,1 

DCP[app1,0,22], F[aggr, 0,7], DOW[ aggr, 0,6] 

DATA-DECOMPOSITION 

calculate first estimate of seasonal factors Economy compartment 

cubes ucBkg, phi0_h 1 ExpSm, phi0_h l Hist, attrPrepared, 

seasonSmoothed 

parameter bool: 1, float: -0.5,3,0,1000,1 

applied dimensions DCP[appl, 0,22], F[aggr, 8,19], DOW[aggr, 0,6] 
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DATA-SMOOTHING 

smooth the determined seasonal factors 

cubes seasonSmoothed 

parameter float: 5,0.1 

applied dimensions CW[appl, 0,128] 

HB_EXP 

learn seasonal behaviour (first estimate) 

cubes 

parameter 

applied dimensions 

seasonSmoothed, phi0_h I Hist 

float: 0.6,53,1, -1,1000 
CW [aPPl, 0,128] 

DATA-DECOMPOSITION 

data decomposition under consideration of historical behaviour of attractive- 

ness and season 

cubes 

parameter 

applied dimensions 

HB_EXP 

ucBkg, phi0_h 1 ExpSm, phi0_h 1 Hist, attr, 

season 

bool: 0, float: -1,3,0,1000,1 

DCP[appl, 0,22] 

learn seasonal behaviour (improved estimate) 

cubes 

parameter 

attr, phi0_h I ExpSm 

float: 0.1,23,53,0,1000 

applied dimensions 11 CW[appl, 0,128], DCP[appl, 0,22] 



B. Description of Experiments and the Appended Software 376 

DATA-DECOMPOSITION 

final data decomposition real data (low level) 

cubes ucBkg, phiO-h 1 ExpSm, phiO-h 1 Hist, attr, 

season 

parameter bool: 1, float: -1,3,0,1000,1 

applied dimensions DCP[appl, 0,22] 

DATA-DECOMPOSITION 

data decomposition used for learning (diversified level First/Business) 

cubes ucBkg, phiO-h I ExpSm, phiO-h 1 Hist, attrPrepared, 

seasonSmoothed2 

parameter bool: 1, float: -1,3,0,1000,1 

applied dimensions DCP[appl, 0,22], F[diversified, 0,7], 

DOW[diversified, 0,6] 

DATA-DECOMPOSITION 

data decomposition used for learning (diversified level Economy) 

cubes ucBkg, phiO-h 1 ExpSm, phiO-h l Hist, attrPrepared, 

seasonSmoothed2 

parameter bool: 1, float: -1,3,0,1000,1 

applied dimensions DCP[appl, 0,22], F[diversified, 0,7], 

DOW [diversified, 0,6] 

DATA-SMOOTHING 

smoothing of the diversified decomposed data 

cubes seasonSmoothed2 

parameter float: 2,0.2 

applied dimensions CW[appl, 0,128] 
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HB_EXP 

learning of the diversified history 

cubes seasonSmoothed2, phi0_h2Hist 

parameter float: 0.6,53,1, -1,1000 

applied dimensions CW[appl, 0,128] 

DATA_DECOMPOSITION 

data decomposition used for forecasting (diversified level First/Business) 

cubes ucBkg, phi0_h I ExpSm, phi0_h 1 Hist, attrPreparcd. 

seasonPrepared 

parameter bool: 1, float: -1,3,0,1000,1 

applied dimensions DCP[appl, 0,22], F[diversified, 0,7], 

DOW[diversified, 0,6] 

DATA DECOMPOSITION 

data decomposition used for forecasting (diversified level Economy) 

cubes ucBkg, phi0_h 1 ExpSm, phi0_h l Hist, attrPrepared, 

seasonPrepared 

parameter bool: 1, float: -1,3,0,1000,1 

applied dimensions DCP[appl, 0,22], F[diversified, 8,19], 

DOW[diversified, 0,6] 

FC-ITTR 

forecast of the attractiveness component 

cubes attr, phi0_h 1 ExpSm, phil _h 
1 ExpSm, fcii I ExpSm, 

blockElemShift 

parameter boo]: 0,0,1, float: 23 

applied dimensions CW [appl, 0,128], DCP[appl, 0,22], DCPFC[appl, 0,22], 

DIV 1 [appl, 0,0], DIV2[appl, 0,0], DIV3[appl. 0,0], 

DIV4[appl, 0,0] 
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FC-SEASON 

forecast diversified seasonal factors 

cubes season, seasonPrepared, phi0_h2Hist, attr, 

fcii l ExpSm, fc_h 1 Hist 

parameter bool: 1, float: 1, -1,3,1 

applied dimensions DCP[appl, 0,22], DCPFC[appl, 0,22] 

VALID-FC-REF 

calculate forecast errors diversified seasonal factors 

cubes season, fc_h 1 Hist, err_h 1 Hist 

parameter boo]: 0 

applied dimensions DCP[appl, 22,22], DCPFC[appl, 0,22] 

HB-LINEAR-COMBINATION-STRUCTURE 

generation/evolution of a combination structure and calculation of linear 

combination weights 

cubes err_hIHist, season, lin_comb_weight, 

lin_comb_offset 

parameter float: 1,1,0,0,4,2,10, -I, string: 

DIVI, DIV2, DIV3, DIV4, UNDEFINED 

applied dimensions DIV I [appl, 0,3], DIV2[appl, 0, I ], DIV3[appl, 0,1 ], 

DIV4[appl, 0, I ], CW[appl, 53,92], DOW[appl, 0,6], 

DCP[appl, 22,22] 
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LINEAR-COMBINATION 

combination of the diversified seasonal predictions 

cubes fc_h I Hist, fc_comh, lin_comh_wcight, 

lin_comb_offset 

parameter 

applied dimensions DIV I [appl, 0,31, D]V2[appl, 0, I I, DIV3[appl, 0, I j, 

DIV4[appl, O, I ], CW[appl, 0,128] 

COMBINING-ADD_PARTS 

calculation of the total forecast 

cubes 

parameter 

applied dimensions 

VALID-FC-REF 

fc-h l ExpSm, fc_comb, fc_combined 

calculation of combined total forecast errors 

cubes 

parameter 

applied dimensions 

ERROR_COVAR 

ucBkg, fc_combined, err-combined-bias 

boot: 0 

DCP[appl, 22,22], DCPFC[appl, 0? 2] 

calculate mean absolute deviation low level 

cubes 

parameter 

err-combined-bias, mad-combined-low 

bool: 1, float: I 

applied dimensions 11 CW[appl, 93,128] 
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ERROR_COVAR 

calculate mean absolute deviation high level 

cubes 

parameter 

applied dimensions 

err-combined-bias, mad-combined-high 

bool: 1, float: 60 

CW[appl, 93,128], F[app1,0,19], POS[app1,0,2] 
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FILEINTERFACE 

write result cubes combined forecast error variance low and high level 

cubes 

parameter string: UNDEFINED, 

mad_combined_low, mad_combined_high, 

lin_comb_weight, lin_comb_offset, DCPFC 

applied dimensions 1 1 

Variations of the Experiment 

The shown results are generated by variation of parameters of component 

H&LINEAR-COMB INATIONSTRUCTURE. 

The following parameter settings have been used in order to represent the dif- 

ferent structures mentioned in Chapters 6 and 7: 
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structure parameter 

CEW float: 0,0,0,2,2,0,5,1.4, string: 

DIV 1, DIV2, DIV3, DIV4, UNDEFINED 

EV1 float: 2,2,0,1,4, -1,10,1.4, string: 

DIV 1, DIV2, DIV3, DIV4, UNDEFINED 

EV2 float: 2,2,0,0,4,2,10,1.4, string: 

DIV 1, DIV2, DIV3, DIV4, UNDEFINED 

EV3 float: 2,2,2,0,4,2,10,1.4, string: 

DIV 1, DIV2, DIV3, DIV4, UNDEFINED 

EV4 float: 2,2,0,0,2,2,10,1.4, string: 

DIV I, DIV2, DIV3, DIV4, UNDEFINED 

EV5 float: 2,2,0,1,2, -1,10,1.4, string: 

DIV 1, DIV2, DIV3, DIV4, UNDEFINED 

EV6 float: 0,0,0,0,4,2,10, -1, string: 

DIV 1, DIV2, DIV3, DIV4, UNDEFINED 

EV7 float: 0,1,0,0,4,2,10, -1, string: 

DIV 1, DIV2, DIV3, DIV4, UNDEFINED 

EV8 float: 1,0,0,0,4,2,10, -1, string: 

DIV 1, DIV2, DIV3, DIV4, UNDEFINED 

EV9 float: 1,1,0,0,4,2,10, -1, string: 

DIV 1, DIV2, DIV3, DIV4, UNDEFINED 
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