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Abstract

The domain of multi level forecast combination 1s a challenging new domain

containing a large potential for forecast improvements. This thesis presents a the-
oretical and experimental analysis of different types of forecast diversification on
forecast error covariances and resulting combined forecast quality. Three types
of diversification are used: (a) diversification concerning the level of learning (b)

diversification of predefined parameter values and (c) the use of different forecast

models.

The diversification is carried out on forecasts of seasonal factor predictions in
Revenue Management for Airlines. After decomposing the data and generating
diversified forecasts a (multi step) combination procedure is applied. We provide
theoretical evidence of why and under which conditions multi step multi level fore-
cast combination can be a powerful approach in order to build a high quality and
adaptive forecast system. We theoretically and experimentally compare models
differing with respect to the used decomposition, diversification as well as the ap-

plied combination models and structures.

After an introduction into the application of forecasting seasonal behaviour in

Revenue Management, a literature review of the theory of forecast combination
is provided. In order to get a clearer idea of under which condition combination
works, we then investigate aspects of forecast diversity and forecast diversification.
The diversity of forecast errors in terms of error covariances can be expressed in
a decomposed manner in relation to different independent error components. This
type of decomposed analysis has the advantage that it allows conclusions concern-
ing the potential of the diversified forecasts for future combination. We carry out
such an analysis of effects of different types of diversification on error components

corresponding to the bias-variance-Bayes decomposition proposed by James and



Hastie [James 96].

Different approaches of how to include information from different levels into
forecasting are also discussed in the thesis. The improvements achieved with multi
level forecast combination prove that theoretical analysis is extremely important in
this relatively new field. The bias-variance-Bayes decomposition is extended to the
multi level case. An analysis of the effects of including forecasts with parameters
learned at different levels on the bias and varniance error components show that
forecast combination is the best choice in comparison to some other discussed
alternatives. The proposed approach represents a completely automatic procedure.
It realises changes in the error components which are not only advantageous at the
low level, but have also a stabilising effect on aggregates of low level forecasts to
the higher level. We also identify cases in which multi level forecast combination

should ideally be connected with the use of different function spaces and/or thick

modelling related to certain parameter values or preprocessing procedures.
In order to avoid problems occurring for large sets of highly correlated fore-
casts when considering covariance information, we investigated the potential of

pooling and trimming for our case. We estimate the expected behaviour of our

diversified forecasts in purely error variance based pooling represented by a com-
mon approach of Aiolfi and Timmermann [Aiolfi 04] and analyse effects of differ-

ent kinds of covariances on the accuracy of the combined forecast. We show that
a significant loss in the expected forecast accuracy may ensue because of typical
inhomogeneities in the covariance matrix for the analysed case.

If covariance information is available in a sufficiently high quality, it is possible
to run a clustering directly based on covariance information. We discuss how to
carry out a clustering in that case. We also consider a case (quite common in
our application) when covariance information may not be available and propose
a novel simplified representation of the covariance matrix which represents the

distance in the forecast generation space and is only based on knowledge about

the forecast generation process. A new pooling approach is proposed that avoids



inhomogeneities in the covartance matrix by considering the information contained
in the simplified covariance representation. One of the main advantages of the
proposed approach is that the covariance matrix does not have to be calculated. We
compared the results of our approach with the approach of Aiolfi and Timmermann
and explained the reasons for significant improvement. Another advantage of our
approach is that it leads to the generation of novel multi step, multi level forecast
generation structures that carry out the combination in different steps of pooling.

Finally, we describe different evolutionary approaches in order to generate
combination structures automatically. We investigate very flexible approaches as
well as approaches that avoid the expected inhomogeneities in the error covariance
matrix based on our theoretical findings.

The theoretical analysis is supported by experimental results. We could achieve
an improvement of forecast quality up to 11 percent for the practical application
of demand forecasting in Revenue Management compared to the current optimised

forecasting system.
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Overview of Original Contributions

Before starting with an introduction to the problem in the following sections,
this section provides a brief summary of the major original findings arising from the
thests. The study has been summarised in a number of peer reviewed publications
[Riedel 03][Riedel 04}[Riedel 05a]{Riedel 05b} [Riedel 07a)( and [Riedel 07b] sub-

mitted) encompassing both theoretical and experimental material realising the project

goals.

Experimental analysis of forecast combination in Revenue Management
seasonal demand forecasting

The first contribution is concerned with an analysis of the potential of known
linear and nonlinear combination models for the application to seasonal forecast-
ing in Revenue Management for Airlines. Different known combination models
described in Chapter 3 are applied to demand forecasts generated for a sample of
20 origin destination itinerary pairs of a major European Carrier. The combination
is carried out on total demand predictions (Section 3.4) as well as on decomposed

predictions in relation to the seasonal demand component (Section 4.6).
Discussion of the effects of diversification of different types of parameters
in relation to the bias- variance- Bayes error decomposition
A novel summary of effects of diversification of different types of parame-
ters is provided in Section 4.3. The analysis 1s based on the error bias- variance-
Bayes decomposition proposed by James and Hastie [James 96]. The analysis of
the effects of diversification of different types of parameters on different error com-

ponents is provided. The results of this analysis allow to make conclusions for the

combination of forecasts diversified by these types of parameters.

Analysis of multi level forecast combination in relation to the bias-
variance- Bayes error decomposition

Multi level forecasting is based on the idea of leaming information at different
levels of data aggregation. Different approaches have been described in the litera-

ture [Fliedner 01] in order to determine the ideal level and to distribute the learned
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information to other levels. We analyse the approaches of using the information
learned at different levels and to use forecast combination approaches for a fu-
sion of the learned behaviour. We carry out an investigation of multi level forecast
combination in relation to the forecast error bias- variance- Bayes decomposition
[James 96] in Chapter 5. We provide the extension of this decomposition for the
multi level case.

Comparison of multi level forecast combination with other approaches us-
ing multi level information

The analysis of the decomposition of forecast errors when combining forecasts
generated at different levels allows a comparison with alternative approaches of in-
cluding information available at different levels. In Chapter 5 we analyse different
cases of typical situations occurring at different levels concerning,e.g., noise at the
low level of data aggregation and special behaviour in comparison to the higher
level. We show that in many cases forecast combination can be used in order to
take advantage of the potential of information provided at the different levels, but
we also identify cases in which the pure multi level approach would not result in
large forecast improvements. In order to solve this problem we identify alternative

types of diversification which are able to handle such cases.

Analysis of effects on error covariances when different types of diversifi-

cation are used at the same time

The results of the analysis of multi level forecast combination motivate a theo-
retical analysis of effects of forecast diversification on error covariances. We have
carried out this analysis for the special case of forecasts that have been diversified
by three different methods: with parameters learned at different levels, by thick
modelling and with the use of different function spaces. In Chapter 6 we provide
a novel view of effects of these methods of diversification on the decomposed er-
ror components. We express the “diversity” of different forecasts in relation to
different error components and propose a measure in order to quantify it.

Analysis of effects of error variance based pooling in case of multi level
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forecast combination

We also analyse what effects different kinds of covariances can have on the
quality of purely error vanance based pooling as proposed by Aiolfi and Timmer-
mann [Aiolfi 04]. We could observe that if only error variance pooling is used for
multi- level forecasts there is a loss in expected forecast accuracy because of typi-
cal inhomogeneities in the covariance matrix which frequently occur. If covariance
information is available in a sufficiently high quality, it is possible to take it into
account during the pooling process.

Proposition of a simplified covariance representation that can be used for
pooling

In Section 6.4 we study the difficult case in which covariance information can-
not be measured properly and propose a novel simplified representation of the co-
variance matrix which is only based on knowledge about the forecast generation
process. We propose a new pooling approach that avoids inhomogeneities in the
covariance matrix by considering the information contained in the simplified co-
variance representation and compare it with the approach of Aiolfi and Timmer-
mann [Aiolfi 04]. In Section 6.5 we lead with a novel discussion of how to use
covariance information if available in a reliable or less reliable quality. Based on

this analysis we propose different options of how to include this information into a

pooling procedure.

Evolution of multi step multi level combination structures

Novel aspects of Chapter 7 concern the generation of multi step multi level
combination structures defined as optimisation problems that can be solved by
evolutionary computation. We propose and analyse different approaches and con-
straints informed by to the theoretical findings provided in the previous chapters,
which allow to explain differences in the results obtained in experiments. We ob-
tain systems which are able to evolve well performing multi level combination

structures automatically.

Additional Benefits



List of Tables 31

In addition to the theoretical and experimental contributions described in this
thesis the knowledge gained about forecast combination could be used in differ-
ent areas and has already influenced the implementation of recent components in
the Revenue Management product ProfitLine.Yield/O&D. So different large and
medium size airlines already profit from forecast improvements achieved with a
sophisticated fusion of time series and passenger name record based noshow fore-

casts. New models to predict market and price sensitive demand for airlines devel-
oped for ProfitLine.Yield/O&D and ProfitLine.Yield/Rembrandt are based on fore-

cast fusion approaches as well.
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Overview of Mostly Used Variables and Indices

Variables

x input data

Y target data

A estimation/prediction

€ random noise

E average value

52 (error) variance (component)

p covariance

0 correlation

¢ parameter

w linear combination weight

€ forecast error

2. covariance matrix

n unit vector

Tk forecast rank

¢ fitness

Functions

f functional relationship between input data and target to be predicted
h a function from function space H used in order to approximate f

F combination function

G subfunction in combination function

Indices

t unspecified time period

td departure date

iy process date

td.r departure date d measured at a certain time 7 prior to the departure
C data component

1 level, subspace of the input space

m index in an ordered set of forecasts (used as input in a forecast combination)
8 position in the forecast generation space

k function space type

Y step in a combination structure

o parameter values used for thick modelling

comb combined forecast

n dimensions of a function space

T dimensions of a parameter vector

e total error

h error bias component

¢ eITor variance component

Y error Bayes component (random noise)

Position of Indices

N forecast for component ¢ at time t and level i generated with method m
Hia function space/method based on type of function and fixed parameter values
hra(z, 3,-) function from Hy, with parameters ¢ estimated on level i

Hat 2 forecast error component by the used function space, the level of learning

and the error component



1. INTRODUCTION

There are clear and obvious advantages in combining forecasts, both

to better understand the generating mechanism of the series and also
to pragmatically achieve better forecasts. (Granger and Ramanathan,

[Granger 84])

1.1 Introduction to Revenue Management

This PhD is a cooperation project with Lufthansa Systems Berlin GbmH and re-
lated to the industrial application of Revenue Management forecasting for airlines.
In order to motivate the theoretical relevance of the line of research followed in the
PhD, we will start with a short introduction into Revenue Management and issues
occurring in Revenue Management demand forecasting.

The product of the airline industry are seats on airplanes offered with differ-
ent booking conditions and for different levels of comfort. To maximise revenue,
priority is given to high revenue booking classes. Capacity must be protected for
high revenue passengers usually arriving shortly before a plane’s departure. Based
on the size of the protected capacity, the capacity of low revenue classes needed to
fill up the aircraft can be determined. Therefore, the central question of revenue
management is: How much of the overall capacity should be made available for
low-yield customers? Or in other words: How much space should be reserved for
the high-yield segment?

To answer this question, the following technical components are used: a) an
inventory to control capacity; b) a forecasting for assessing the demand in advance;

and ¢) an optimisation to maximise the revenue by capacity control.
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While the focus of this thesis is placed on forecasting of the demand, more

detailed information about all revenue management components can be found in

[McGill 99] [Talluri 04][Weatherford 92][Cross 97][Zaki 00][Pak 02].

Eftects of Revenue Management on the revenue of an airline can be illustrated
with the following example. Figures 1 and 2 show the booking process for two

flights, a high demand flight and a low demand flight, with and without Revenue

Management.

Generally, the low yield passengers book earlier than the high yield passengers.
[f they have the choice they book the high demand flight. Without Revenue Man-
agement the high demand flight is already nearly fully booked a long time prior to
departure. There is no capacity remaining for later booking passengers booking in

high yield fareclasses, which means that these bookings must be turned away. The
result is a high demand flight filled with low yield passengers, which is bad, and a

low demand flight flying with a lot of empty seats, which 1s even worse.

low yield passengers book
early on high demand flight

J

elow yield passengers
» high yield passengers
@ empty seats

1ieh yield demand

[ hig

urned away

Monday 07:55, high demand flight

Revenue: $30,000

lJow demand flight empty

llllllllllllllllllllllllllll

Revenue: $ 5000 ( cecevrencccncccnceccnnanncns

Monday 12:15, low demand flight

Fig. 1: An example of two typical flights with booking behaviour without Revenue Man-
agement system.

With Revenue Management system in place the high yield demand is assessed
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in advance (as well as the low yield demand). This allows the blocking of seats
in the high demand flight for the later arriving high yield customers. The early
booking low yield passengers cannot book the high demand flight any more and
partly move to the low demand flight. The result is a high demand flight filled
with mostly high yield passengers and a low demand flight flying with low yield

passengers, which brings an acceptable revenue for both flights.

S - :
SCAls |"'|1 [ L\Utl 1 O] |;|lt.‘ \ 'lﬁwhyldclidpaS%engers
JATTIVIY |!ll';_‘|1 vield PASCIECTS . lg yle passengers
\_ | ' » empty seats

Low yield passengers moved

to low demand flight

ee—e— |
Revenue: $50,000 «

Revenue: $20.000 by St

Monday 12:15, low demand flight

Monday 07:55, high demand flight

Fig. 2: An example of two typical flights with booking behaviour with Revenue Manage-
ment system.

1.2 Demand Forecasting in Revenue Management

1.2.1 Segment versus O&D Forecasting

As traditional airlines (in contrast to some lowcost airlines) allow bookings not
only for single flights, but for whole trips, it is a crucial Revenue Management
system task not only to control the different types of demand concerning yield, but
also to take into account network effects.

As a result, 1t has to be decided, for instance, if a local passenger should be

accepted for a national flight or if it is advantageous to wait for the passenger



1. Lntroduction 36

using this flight as an inbound flight to a high yield intercontinental flight. Such
passengers would only be the best choice if not enough passengers are expected to

take the intercontinental flight, because two local passengers generate in total more

revenue than one connecting passenger.

To handle such effects, larger airlines have started using prediction systems
which do not predict the demand per scheduled flight (segment), but per origin
destination pair (O&D). Figure 3 shows an example for an ODI (origin destina-
tion itinerary) represented by different segments. As the optimisation controls the
demand depending on yield, separate forecasts have to be calculated not only for

different ODIs of the network, but also for different fareclasses (F) and different

point of sales (POS).

AAA-BBB,C,Orig

...........ﬂightXXIOO

..............ﬁightXXfZOO

BBB-CCC,C,Orig

Fig. 3: Segment versus O&D view. The example shows two flights, a national flight AAA-
BBB with flight number XX100 and a second intercontinental flight BBB-CCC
with flight number XX200. The figure shows the demand in fareclass C (typical
business passengers) and point of sale Orig (Country of Origin). Three ODIs are
illustared, the two ODIs representing bookings without connection as well as the

connection ODI for both flights.
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1.2.2  Issues of O&D Forecasting
The Issue of a Large Number of Small Numbers Predictions

Demand at such a fine level of forecasting (i.e. ODI F POS) can be modelled as
a time series, e.g. per departure date. Formally, one can say that we have a time
series (y¢,), ta = 1..t, given denoting historical total demand for departure date
tq. The last date ¢, represents the current process date. The general problem is to
forecast the demand for future departure dates (y; 1), h € N’ > 1. An example

of the demand values and a one step (h = 1) ahead forecast is shown in Figure 4.

15
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%) " ‘h“ | M' u Ll‘llyl -"l'm'"l ' “i 1 'IL' "t Ji'hi“‘“ “‘hl'“ ll"lhlll |'l” f‘.'
F m Q-q
EEREEFEEREEEE

departure date {4

Fig. 4: Example of the demand values per departure date (black line) with one step (h=1)
ahead forecasts (orange/light line).

[ssues resulting from predicting small numbers at a very fine level are also
quite common in other applications [Armstrong Ol][Fliedner O1]. On this level,
the data i1s extremely noisy and exhibits frequently multiple structural breaks. In
our application, these structural breaks in the time series data reflect the changes in
booking behaviour caused by seasonal changes, special events, such as holidays or
fairs, changes 1n the flight schedules of both the airlines for which the predictions
are made and the competitors, or changes of the political or cultural situation of a
country. All these changes have to be handled in the forecasting process.

The reaction to large noise components and in consequence structurally poor
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forecasts at the fine level of forecasting is often the decision to learn structural
information or causal effects at higher levels meaning learing based on aggregates
of the target data. So it is for instance possible to learn seasonal factors on the
O&D level and to apply the learned factors for all fareclasses and point of sales.
This decreases noise but leads to an information loss related to effects which occur
only at the fine level.

The choice of the level of learning often results from a data analysis. How-
ever, even if the data analysis has been performed well, it is likely that the real
relationship between given inputs at different levels and the values to predict is so
complex that it is not possible to identify an optimal level for learning. This prob-
lem becomes even more relevant if the underlying processes and data change over
time.

In this thesis we discuss issues relating to this type of hard, real world fore-
casting problems in relation to the approach of forecast combination. We discuss
effects of forecasting at different Ievels on the forecast error. The bias-variance-
Bayes error decomposition proposed by James and Hastie [James 96] will be used

in order to explain effects of different approaches in order to identify potentials for
error reduction. This includes issues caused by estimation errors in cases of noisy

training data as well as the difficult task of using information available at different

levels.

The Issue of Adaptation

Due to its broad applicability forecasting time series is a very well researched and
discussed topic (good introductions to the topic are provided in [Armstrong 01]
and [Brockwell 87]). Unfortunately, only a few methods could generate well per-
forming forecasts for our application because of the already mentioned issues of
noisy and quickly changing data on the very detailed level of forecasting. The
world is changing so quickly that in general only a small number of historical

data can be reliably used for predictions. Simple and robust models, such as sim-
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ple average, different versions of exponential smoothing [Brown 63] or regression
models [Granger 86], provide significantly better results than more sophisticated
methods [Brockwell 87]. The reason for the better performance of simple models
lays in their ability to make adequate forecasts even on a small number of very
noisy historical data and their ability to adapt more quickly to new situations. We
will present more references to the literature as well as applied approaches for our
application in Section 2.

A typical approach to building a forecasting model consists of a phase of data
analysis, determination of appropriate levels and preprocessing, model creation,
parameter calibration and validation of the forecast model. For future forecasting,
data is interpreted only at the level that has been chosen for learning. The input
information is restricted to noisy data measured only for the most important influ-
encing features. And if the demand changes, the chosen methods and parameter

settings are not optimal any more. All of these aspects lead to a loss of information

for the forecasting process. After some time, forecast quality tends to decrease be-

cause of a lack of adaptation concerning not only the chosen models, but also the

relevance of information available at different levels.

One of the main tasks in order to adapt to new situations is to identify which
parts of the demand depend on which input variables. That is the reason why
decomposition strategies are used to split the demand into different components
which may each depend on different input vanables and therefore need to be pre-
dicted separately. Decomposition allows the prediction of demand changes sepa-
rately, which are commonly overlapping and may be hard to identify. This enables
the application of less complex and therefore more stable forecast models. It also
allows: a) the determination of the efficiency of different inputs and different mod-
els per component; b) the selection of appropriate preprocessing; and c) the deter-
mination of appropnate levels for history representation and forecasting depending
on the different stability of the components.

All of the decisions just mentioned (like the choice of preprocessing, levels of
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learning or parametrisation) can become suboptimal in case of a changing situation.
They also represent a restriction of the forecasting process in terms of a restriction
of used input information and predefined decisions concerning, e.g., the applied
models and therefore an information loss. If, e.g., relevant information changes to
a level that is not considered in the learning process, we will observe a decreasing
forecast accuracy. We therefore investigate options of how to automatically adapt
these type of choices to new situations and how to use information available in
relation to, e.g., different levels or parameter values.

We follow the general idea of a) using different methods, levels and parame-

ter values in order to ensure that all information is theoretically available; and

b) applying an automatic and adaptive fusion process that identifies the relevant

information and generates a final prediction. Forecast combination approaches

represent such a type of processes.

1.3 Combination of Forecasts

1.3.1 Information Fusion

Fusion of distinct information can be carried out on many different levels from
pure data to the decisions of individual experts operating on different parts of the
available information [Hall 92][Bezdek 99][Keller 97][de Menezes 00]. It turned
out that even if applied on the same task using the same data, a joint decision
of combined forecasts is potentially more effective than any one individual. The

different levels of abstraction at which information fusion can be carried out are

closely connected with the flow of a forecasting process: data level fusion, feature

level fusion, and decision fusion [Bezdek 99].

Data fusion

Data fusion is a fusion at the basic level of data sensing [Pedrycz 98]. It has been

used for instance to resolve the occlusion problem in vision systems [Bezdek 99]
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and for improved object detection by overlapping many partially discriminative

projections [Hathaway 96].

Feature fusion

There is little evidence of the feature fustion in the literature. Fusion on this level is
considered more general compared to the data fusion and often resembles forecast
fusion techniques. An example of feature fusion has been shown by Keller and
Gader [Keller 97] where the data features extracted from Geo-Centers GPR system
have been combined by a fuzzy rule incorporating some shape characteristics of the

raw data.

Decision fusion

Decision fusion relates in general to combining information partially or fully pro-
cessed by forecast or classifier models and therefore 1s perceived to be the most
general [Bezdek 99]. The major motivation driving decision fusion is that different
models learn from the data imperfectly, and because they are different, it is likely
that their imperfections result in different forecast errors. Individual errors made

by some forecast models for some input data could be compensated by other mod-

els performing well for that particular data. This thesis 1s related to decision fusion

in terms of forecast combination.

1.3.2 Forecast Combination

Forecast combination approaches are today a scientifically acknowledged proce-
dure [Clemen 89][de Menezes 00][Timmermann 03] to model complex functional
relationships by producing not one optimal forecast %/, but a number of forecasts
{m%} and combining them for the final prediction “™75 € R. The existing
combination approaches differ in the description of the functional relationship
f +: R™ — R which represents the fusion process. An overview of the devel-

opment in this field as well as the most common models and their relation will be
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presented 1in Chapter 3.

There are two common groups of combination models. In linear combination

models the relationship is defined as a simple weighted sum of the individual fore-

casts:
o= wn™F (1.1)
m

with combination weights w,,, € R. Beside the simple average model [Bates 69],
which gives the same weight to all individual forecasts, there are two common
groups of linear combination models, in which individual forecast performance is

taken into account to calculate the weights. While rank based models [Bunn 75]

[Russell 87][Klapper 98b] describe forecast performance based on ranks of past
performance without directly taking into account the statistical properties of fore-

cast errors, variance / covariance based models [Bates 69] and ordinary least
squares regression based models [Granger 84] use error variance and covariance

information for calculation of the weights.

A more complex and flexible group of combination models are nonlinear com-

bination models [Sharkey 96] [Genest 86][Jacobs 95][Xu 92]. In this group, mostly
application specific, approaches differ in the selection of external input information

as well as in the class of methods used. Typical nonlinear approaches include neu-

ral networks [Shi 99] and (fuzzy) expert systems [Fiordaliso 98].

1.4 Influences on Combination Efficiency

As there are different combination models available, we have to answer the ques-
tion of how to choose appropriate sets of input forecasts and which combination
model to apply under which conditions. Different approaches have been developed
to explain the performance of the combined forecasts based on error variances and
covariances of the individual forecasts. It has been shown theoretically and exper-
imentally that the best results can be achieved if different individual forecasts are

diverse in the sense that they are able to provide some kind of "diverse” knowledge
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to a forecasts combination process. This diversity can be achieved by using

e different input information in terms of different available sources of infor-

mation, different preprocessing or history pools;
e different functional or stochastic modelling approaches; or
o different parametrization of the models.

We study these influences for the case of the above mentioned forecasting prob-
lems that have to handle small numbers and very noisy data in a quickly changing
environment. We discuss how we can measure diversity and under which condi-
tions forecast combination provides improved results. We describe the diversity
achieved by different types of forecast diversification in relation to different error
components. In Chapter 4, for instance, we will see that the complexity of the ap-
plied forecast model can influence the error components in a different manner to
the choice of diverse sets of data used for learning. The applied forecast diversifi-
cation affects the covariances of the achieved set of predictions and with that the
potential for forecast combination. The provided analysis of effects of diversifica-
tion on various components of decomposed forecasting error enables an analysis

of how we can actively generate sets of divers forecasts.

1.5 Aspects of Multi Level Forecasting

We consider cases in which each prediction represents the situation in concrete sub-
spaces of the given target space. We illustrate our argumentation using an example
of seasonal demand predictions for airlines. As we have already mentioned, these
have to be generated for different origin destination itinerary pairs (ODI) as well as
different fareclasses (F) and different point of sales (POS). This level of forecast-
ing, which we also call the fine/low level, is very detailed (the seasonal behaviour
for a given ODI F POS combination) and therefore characterised by small numbers

and very noisy data. Therefore analysts also need aggregates of the generated low
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level forecasts for decision making. Modern Graphical User Interfaces support this
need. They offer the functionality of a data and forecast fusion to different higher

levels, which represent in our example, for instance, the ODI level or even higher

levels such as country or market pairs, as shown in Figure 5.

ODI level view W
(high level I)

Yy

Ie0008 __ | ) qs0080m 0 5101520253 'j.‘,‘:’."“ 14550

ODI F POS ODI F POS 3

level view level view yseason 2
(low level i) (low level is: g 1 I
Fareclass =H , L
POS=0ng) ‘ : h‘

0 5 101520253035404550
Cuw

Fig. 5: A view of the low and the high level of measured historical seasonal behaviour.
Seasonal factors y*““*“" are shown per calendar week cw at a low level 1, repre-
senting a special ODI Fareclass Point of Sale combination as well as at the high
level I aggregate representing the whole ODI.

Large noise at the low levels often leads to the decision to learn structural

information or causal effects based on aggregates of the mput data or, in other

words, to carry out an input data fusion with the objective of noise reduction. There
IS no obvious answer to the question about the adequate level for learning. Learning
at different levels is related to different types of risk. If the level is chosen too fine,
relevant structural information often can not be detected properly. If on the other
hand the chosen level is too general, important charactenstics related to special
parts in the input space may be ignored. For our example this means that if we
learn seasonal factors, for instance at the ODI level, we do not take into account

seasonal effects in special fareclasses or point of sales properly. An introduction to

such a type of problems as well as an overview of literature related to learning at
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different levels and effects of forecast aggregation are provided in Chapter 5.

In practice, the problem to find the ideal level of learning is often resolved
with trial and error approaches. The choice is made only on the basis of low level
forecast errors. But if analysts make relevant decisions on the basis of a fusion of
low level forecasts to a higher level, the need for high quality forecasts at higher
levels should also be taken into account for the choice of the level of learning
structural information.

In Chapter 5 we analyse effects of learning at two levels on the resulting fore-
cast errors measured at these two levels. Choices that are purely made on forecast
errors measured at the low level can be unfavourable with regard to the quality of
the aggregated forecasts. We base our argumentations on the error bias, variance
and Bayes decomposition proposed by James and Hastie. We provide this error
decomposition for the multi-level case. This enables us: (a) to analyse effects of

aggregation of forecasts generated with learning at the low level to the error com-

ponents at the high level, and (b) to analyse the effects of using forecasts generated

with learning at the high level to the error components at the low level.

As we will see the learning at both levels works well only in some cases, we
also discuss the option of using forecast combination in order to make an auto-
mated choice or even to profit from knowledge at both levels. The positive effects
of forecast combination in many applications have been explatned in relation to
different aspects and different decompositions of forecast errors and their corre-

lation. We provide the analysis of the error components of combined multi-level
forecasts at the low as well as at the high level. The analysis 1s based on the simpli-
fied version of the well known optimal model [Bates 69], the optimal model with
assumption of independence [Granger 84], which takes into account the problem
of high estimation errors of the inverse covariance matrix [Bunn 85] and 1s purely
based on past error variances. We also discuss different cases of data configura-
tions and the relation between the levels in order to show that forecasts combination

works very well in cases where it represents an automatic choice of the appropriate
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level as well as in cases where knowledge of both levels is relevant for learning.
This includes a detailed discussion about what happens to the error components
in different concrete situations illustrated using an artificial example. We will see
that the approach of forecast combination allows not only an intelligent automatic
choice of the superior level, if it exists, but also the generation of predictions that
are more stable in terms of the quality of aggregates to higher levels and in case
of changing environments. We will also show that a multi level forecast combina-

tion should ideally be connected with the use of different function spaces and/or

diversification related to certain parameter values.

1.6 Generation of Multi Step Multi Level Combination Structures

A side effect of the multi level approach is that the number of forecasts to com-
bine can get very large. It is often not possible to estimate covariances prop-
erly because of noisy training data or changing environments. Various studies

[Russell 87][de Menezes 00] have shown that the resulting errors in the estimated

covariance matrix can lead to large weight estimation errors for the optimal model
especially for a large number of forecasts which in turn lead to unstable and poor
combined forecasts. We therefore apply the approaches of pooling and trimming

[Aiolfi 04] in order to handle that problem.

In experiments, which we have carried out in order to analyse the effects of
different static and dynamic combination structures achieved by applying different
kinds of pooling and trimming for the application of seasonal demand forecasting
for airlines, we were surprised to see that the most promising structures seemed to
have a tendency to cluster the input predictions depending on the type of diversify-
ing procedure used. We could observe a clear tendency to combine first different
forecasts generated at the same level but using different functional approaches and
then to combine the forecasts representing different levels, or visa versa.

In Chapter 6 we provide a theoretical analysis which explains this behaviour.

We start with an analysis of effects on covariances occurring for our special case
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of combining forecasts that have been diversified by three different methods: with
parameters learned at different levels, by fixed parameter value diversification and
by the use of different function spaces. In order to explain differences in covari-
ance values, we provide a novel view of effects of these methods of diversification
on decomposed error components based on the bias- variance- Bayes error decom-
position. We express the “diversity” of different forecasts in relation to different
error components and propose a measure in order to quantify it.

We also analyse what effects different kinds of covariances can have on the
quality of purely error variance based pooling. We refer to the approaches of
Aiolfi and Timmermann [Aiolfi 04] who propose to pool forecasts based on the
total error variances using k-means clustering. The results enable us to estimate
the expected behaviour of our diversified forecasts. We will see that if only error
variance pooling is used there is a loss in expected forecast accuracy because of
typical inhomogeneities in the covariance matrix which frequently occur.

If covariance information is available in a sufficiently high quality, it is pos-
sible to take it into account during the pooling process. This means that we can

run a clustering directly based on covariance information. We study the difficult
case in which covariance information cannot be measured properly or is not cal-
culated in case of applications with strong calculation time restrictions. Based on
the determined effects of diversifying our forecasts in relation to different error
components we propose a novel simplified representation of the covariance matrix
which is only based on knowledge about the forecast generation process.

We propose a new pooling approach that avoids inhomogeneities in the covari-
ance matrix by considering the information contained in the simplified covariance
representation. We compare the results of our approach with the approach of Aiolfi
and Timmermann and explain why it works better. We also mention that apply-
ing our approach again in the combination that combines the pools leads to the
generation of multi step multi level forecast combination structures which carry

out the combination in different steps of pooling and trimming. These multi step
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multi level combination structures correspond to those which have generated sig-
nificantly improved forecasts in our experimental work.

In Chapter 7 we finally describe different evolutionary approaches in order to
evolve multt step multi level combination structures dynamically. We will see that
evolving very flexible dynamic structures may lead to a problem of overfitting. We
therefore discuss different options of how to restrict the search space. We will use
our theoretical findings in order to define restrictions that avoid the generation of
structures suffering from the covariance inhomogeneities mentioned above. Ex-

tensions of such evolutions allow the generation of stable and flexible multi level

multi step combination structures containing good adaptive capabilities.

1.7 Organisation of the Thesis

The thesis is organised as follows:

After the introduction provided in this chapter we start with an introduction
to the used notation as well as used forecasting approaches and methods for the

application of Revenue Management forecasting in Chapter 2.

Then we provide a discussion and literature review concerning the topic of
forecast combination in Chapter 3. Chapter 4 extends this analysis with a closer

look at influences on the efficiency of forecast combination. We discuss the topic
of forecast diversity in relation to: a) its impact on resulting forecast errors; b) the
question of how we can quantify diversity; and c) options of how we can actively

generate diverse forecasts. This chapter also provides discussions of which combi-
nation methods to use under which conditions and of the negative effects resulting

from weight estimation errors.

We then discuss aspects of multi level learning in Chapter 5. After an introduc-
tion into the problem of choosing an appropriate level for learning we discuss the
effects of such choices on different error components. We provide an extension of
the error decomposition of James and Hastie to the multi level case and carry out

an extensive analysis, answering the question of why the combination of predic-
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tions using information learned at different levels constitutes a significantly better
approach in comparison to using only the predictions generated at one of the levels
or other multi level approaches.

Chapter 6 is then related to different questions of pooling. After a motivation
why pooling is useful for our type of problem, we analyse the effects of the appli-
cation of different types of diversification on forecasts error covariances and results
accuracy if pure error variance based pooling is applied. We propose a simplified
version of the covariance matrix and propose a new pooling approach that does not
suffer from these type of problems. Finally, we discuss the dynamic generation of
combination structures in Chapter 7 and finish with a summary, conclusions and
potential for future work in Chapter 8.

Each chapter finishes with its own experimental section where we present the
most relevant experimental results in order to motivate the ideas followed in the
next chapters. Detailed results as well as a description of how to install the software
used for the experiments are available in the appendix. The software is available

on the CD accompanying the thesis.



2. INDIVIDUAL FORECAST GENERATION

2.1 Notation of a Forecasting Problem

2.1.1 Time Series

A large number of techniques for forecasting can be found in the literature

[Armstrong 01][Brockwell 87] [Franses 63][Granger 80][Kennedy 92]

[Masters 95][Elliott 07]. Parametric models assume that a relationship exists be-

tween given historical or currently available data and the data to forecast. The

model describes how the data 1s expected to be composed as well as dependencies

on given input data. We can, for instance, model a correlation over time or a linear

dependency on another data set.

Models are normally built using sets of noisy data. Often it is of interest to see
how series of such data develop over time. Time series define such series of data.

In this thesis we use a common definition of time series similar to the one used by

Brockwell and Davis in [Brockwell 87].

Definition 2.1 (Stochastic Process, Time Series): Lett € (1,--- ,T) =T C N
be a countable index set. A stochastic process is a set (y;),t € T of random
variables y; € R™. A stochastic process (y;),t € T,t = 1...T which is defined

for the index set 7 of equidistant time intervals is called time series.

2.1.2 Causal Models

Causal models represent relationships between time series z; € R™ and y; € R.We
assume that z; can be measured properly, that we have random noise in y; and that

an ideal” functional relationship f exists in order to approximate y; based on x;.
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We can represent the functional relationship between input vector x; € R™ and

y: € R by the function f and a random noise term e:

yt = f(ze) + €yt (2.1)

with f the “true model” and € Gaussian with e, ~ N(0, 62,) an independent
residual component. The vector z may also contain past values or predictions of y
as described in the model in {[Timmermann 035].

A predefined class of functions A : R" x & — R is used in order to ap-
proximate the relationship between x¢ and y;. We first define the function space

comparable to the definition given in [Hansen 00]:

Definition 2.2 (Function Space): Letz; € R™" be atime seriesand h: R" x & —
R be a function with input z; and let it depend on the parameters ¢ € & C R7, then

the function space of h is the linear space H consisting of all possible functions

h(; ¢) obtained by varying ¢ in the domain 9.

In order to increase readability we will remove the parameter ¢ in all following

equations, so we write the true relationship as

y = f(z) + €. (2.2)

We further assume that a best estimation of parameters ¢ exists in order to

approximate f by h(; ¢)

f(z) = h(z, ¢) (2.3)

and that we have a training set (z, y)7; of historical data which we use in order
to estimate the parameter vector ¢ by 5 so that ¥ = h(z, 3) represents our best
estimation for the relationship between z and y. In the following we will always

use the hat” symbol in order to indicate estimations or predictions.
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2.1.3 Decomposition

Data is often influenced by a whole set of factors which are assumed to be in-
dependent of each other. Some of the typical factors found in many forecasting
applications are related to trends and seasonal effects. The approach of data de-
composition is based on the idea of splitting the data y corresponding to these
independent factors. The dependency on input data representing the impact can
then be modelled for each factor separately. This approach is often advantageous
[Armstrong 01] because it allows, for instance, the use of simpler models and pa-
rameter sets which are tuned to the characteristics of a specific component con-
cerning, e.g., its structure, dependencies on input information, stability and noise
level. With decomposed data it 1s also possible to satisfy different needs related to
adaptation.

Corresponding to this approach we can write the target y depending on inde-
pendent components y© plus the noise term. For each component the functional
relationship y¢ =~ f¢(z€) is modelled separately. We can now use different func-
tion spaces h€ in order to approximate the different functions f¢(z€) ~ h¢(z¢, ¢°).

We use a representation of y which assumes the target data to depend on one
stable basic component cg as well as other components representing deviations

from component cg. A motivation for this approach will be given in section 2.2.3.

We assume
y=y*(1+ ) 1) +¢. (2.4)

c£co

We achieve a representation

y ~ h(z®,¢%) [ 1+ ) h%(z%¢%) | . (2.5)

c#£Co
with h%(z, $°) representing a function that describes the behaviour of the sta-
ble component ¢y in absolute values and all other functions h¢(z€, ¢€) estimating

factors, such as seasonal factors or deviations based on special events.
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2.2 Forecasting in Revenue Management

2.2.1 Demand Forecasting

As part of a modern Revenue Management system for airlines one of the critical
tasks is to predict how many people would like to make a booking (if they were
accepted). The target variable y; in this case therefore represents the demand. The
demand is related to different departures, so the time index ¢ = ¢, represents in our
application the departure date.

In Revenue Management applications the task is not to generate a single pre-

diction, but a whole set in relation to the following properties:

o O&D - a pair of the airport of origin and the atrport of destination, separated
by

ROUTING - an ordered set of airports of the itinerary, separated by

ODO - arouting used on flights departing at specified time periods

e F - a fareclass, which represents a fare structure connected with ticket rules

and regulations

e POS - a point of sale of the ticket, in our case separated only by “country of

origin”, ”country of destination” and “others”.

Figure 6 shows an example of demand at different departure dates for one ODO

F POS combination. For exact definitions of these and other terms related to the

airline industry please see Appendix A.

As mentioned before, the level on which the forecasts have to be generated is
very detailed (i.e. demand per ODO F POS t;), but analysts or related computer
systems also use aggregates of the generated forecasts to higher levels (like traffic
between countries). The aggregates are used for decision making or further calcu-
lation in various reports or in using a graphical user interface showing the expected

situation at different levels.
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Fig. 6: Example for the time series of the demand at a given ODO DOW F POS combina-
tion.

2.2.2 Bookings versus Constrained and Unconstrained Demand

The most relevant information for demand prediction is the historical booking data
as well as bookings that have already been made for a future flight for which the
demand has to be predicted. However, there 1s a difficult problem occurring in all
revenue management applications. The measured booking data is used to generate
forecasts for the future demand. These forecasts serve as an input for the optimi-
sation process which decides how many bookings will be accepted in the future in
different fareclasses. As often not all bookings are accepted, the optimisation influ-
ences the number of bookings that will be observed 1n the future, which represent
the input data for later forecasting. Figure 7 shows this spiral of influences.

The problem for the forecasting process is that the observed data does not rep-
resent the values which we would like to predict, i.e. the demand, which is the
number of people who would like to make a booking. The bookings represent only
that part of the demand which has been accepted. That 1s why the bookings are also
called the constrained demand. The complete demand, also called unconstrained
demand, cannot be measured and has to be approximated by an unconstraining

procedure. The consequence is that for the fareclasses closed by the optimisation
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Fig. 7: The spiral of influences between bookings, forecasting and optimisation.

system we do not have any data given against which we can properly evaluate the

generated unconstrained demand forecasts.
Frequently, demand forecasts can only be evaluated against data which is not

real measurements, but approximations based on models which are comparable to

those used to produce the forecasts.

2.2.3 Demand Components

Unfortunately, in practice only a few methods have been found to produce adequate
forecasts for our application because of the structure and quality of the existing

data [Talluri 04]. For the Revenue Management application the world is changing

so quickly that in general only a small number of historical data is available and
frequently a number of relevant values are missing. Multiple Lufthansa Systems
Berlin internal studies on this topic have shown that for our data the simple and
robust time series forecasting models, such as simple average, different versions of
exponential smoothing [Brown 63] or regression models [Granger 86], are signifi-
cantly better than a number of well known more sophisticated methods[Brockwell 87].
The reason for this lies in the simple methods’ ability to make adequate forecasts
even on a small number of historical data and their ability to adapt more quickly to
new situations.

One of the common problems is that of predicting small numbers which result

from the very fine level on which the forecasts have to be performed. On this level,
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the data is extremely noisy and exhibits frequent multiple structural breaks. These
structural breaks in the time series data reflect the changes in booking behaviour
caused by seasonal changes, special events, such as holidays or fairs, changes in
the flight schedules of both the airlines for which the predictions are made and the
competitors, or changes of the political or cultural situation of a country. Figure
8 shows some of the most important influences. All of these changes have to be

handled in the forecasting process and are the focus of adaptation mechanisms used

within the forecasting system.

political instability unstable connection time

iI.llli u .1.l [ “l Al l“ I lJ

departure date

football world cup

new competitor

cancelled flight

Fig. 8: Example of a demand curve together with potential influences.

The demand components related to the changes are based on abstract terms of
attractiveness, attractiveness changes and short term influences. The decomposi-
tion model assumes that the changes requiring adaptation can be categorised into
two major groups: permanent changes, such as market changes or long term sched-
ule changes, and short term changes, such as seasonal behavior, events or schedule

changes, only influencing some departures.

Attractiveness and Short Term Influences

The (unconstrained) demand at a given departure date depends on many factors.

Our model assumes that some of them influence the structure and the amount of

the demand in general and are relevant in a long term sense. The most important

i,
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e

of these influences are demographic and economic conditions of the origin and
destination of the O&D, the DOW, the time slot (departure and arrival time), the
reputation of the airline in the countries of origin and destination and the number
and reputation of competitive airlines. These general influences define the attrac-

tiveness, that represents the stable world behaviour of the demand.

Definition 2.3 (Attractiveness): Let t; € 7 be a given departure date and i C
ODQO x F x POS indicate a subspace of routing, departure times, fareclass and
point of sale. The attractiveness y*"'" is a demand component that represents the
expected unconstrained demand at the subspace ¢ occurring for the departure date
tq if there would be no random noise, no flight specific behaviour and no quickly
changing influences, such as season, events and short term schedule changes in the

data.

Figure 9 shows an example of total demand y together with an estimation of

the attractiveness y®‘'".
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Fig. 9: Example of demand data (orange/light) together with an estimation of the attrac-
tiveness (blue/dark).

There are influences on the demand which have only short term effects. Most of

them are not known. A short term influence is the known influence on the demand
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occurring during a restricted time period and caused, e.g., by seasonal behaviour,

events or short term schedule changes.

Definition 2.4 (Short Term Influence): A short term influence y*"" is a deviation
of the unconstrained demand y from the attractiveness y”*"" at a given departure

t4 caused by a known influence, such as seasonal behaviour, events or short term

schedule changes.

An example for booking values together with an estimation of these values

based on attractiveness and short term influences is given in figure 10.
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Fig. 10: Example of demand data (orange/light) together with an estimation based on at-
tractiveness and short term influences (blue/dark).

As all known influences have an effect on the demand whether in a general
sense or in a short term sense, the total demand differs from the demand modelled
using the attractiveness and the short term influence components only by parts
which cannot be explained and which are summanised in the random noise term «,,.

We can therefore write the demand model similar to (2.5) as

y = yattr(l + Z y.qti) + €. (26)

st
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sti representing an index over all given short term influences. The random noise
term ¢, is also called “flight specific behaviour”, because it can also be interpreted

as an unknown influence occurring on specific flights.

2.2.4 The Process of Demand Forecasting

The model in equation (2.6) can be used to generate predictions. In correspon-
dence to the decomposition model predictions are calculated separately for the
attractiveness and the different short term influences. With given predictions for
the attractiveness and all the short term influences we get the final prediction as:

~  ~atlr
=Y

7 1+ Zi}sti] — hattr(xattr’ éattr) i:]' -+ Z hsti(xsti, ¢sti)] . 2.7

sti sti

A discussion explaining the reasons for the separate calculation and details
related to the decomposition are provided in Chapter 4. We will now discuss how

to predict these different components.

2.2.5 Forecasting the Attractiveness

To predict the attractiveness we have to model long term changes. These changes

are called attractiveness changes.

Definition 2.5 (Attractiveness Change): An attractiveness change y%¢ is a change
of the attractiveness starting at a departure date ¢4 for a given subspace

i C ODO x F x POS caused by a known influence, such as a long term schedule

change, a market change or a price change.

Based on this definition, the attractiveness for a future departure date ¢; can be
predicted with an estimation of the current attractiveness yf."" with ¢, denoting the
process date and all expected attractiveness changes y® expected between ¢, + 1

and t4 by
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Ve =00+ Y0 (2.8)
ac

As the prediction of attractiveness changes is not the focus of this thesis and
because of commercial sensitivity we will not go into detail concerning the predic-
tion of attractiveness changes. Some details can be found in [Riedel 03]. Only test

data without relevant attractiveness changes have been chosen for experiments so

that in the following we will assume

g =T, (2.9)

for all future departure dates ¢,.

The current attractiveness y7" is estimated based on the series of historical
decomposed data that represent previous attractiveness estimations. Let us assume
that we have T historical decomposed demand data yf*" given for a time period

t < t, € T as well as historical attractiveness changes 3%.

For each element of ¢ we can calculate an approximation for y?,f"' by
e = ygttr £y g™ (2.10)
ac

with ac containing all attractiveness changes between ¢ + 1 and ¢,,.

Calculating this approximation for different historical departures ¢ leads to the
generation of a time series (related to the time index t) containing different approx-
imations for @?:‘". This time series enables us not only to generate a prediction for
the attractiveness with reduced approximation error, but also to determine unex-
pected small long term attractiveness changes corresponding to slow and regular
changes of the attractiveness which can, e.g., be represented as a long term trend.

We can use different function spaces h3" (2247, ¢3! in order to model

fotr(zetr), The most successful approaches that have been found are very simple

and stable approaches originating from the theory of time series forecasting like
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the constant function

htiattr (xattr, éattr) — 8ttr, (2.11)

with learning ¢§“" based on the series *J¢. " corresponding to the methodology of

simple exponential smoothing [Brown 63] or with the simple average
1
gttr — _T__ Z tfy?;tr (2.12)

over the given set of T estimations based on historical data. We can also assume a

linear trend

hgttr (xattr, ¢attr) — gttr + ¢cfttr * (td - tp), (2.1 3)

with parameters learned using the Brown method [Brown 63] or linear regression
[Granger 86]. More sophisticated approaches like ARMA models [Brockwell 87]
are possible as well, but have shown worse results because of the high noise in
the data in connection with decomposition errors and short history pools caused by

quickly changing environments.

2.2.6 Learning and Forecasting Short Term Influences

The currently modelled short term influences correspond to the (periodic) seasonal

behaviour, special events (like fairs, conferences and holidays), short term schedule
changes (sometimes caused by events), short term market changes and short term
price changes.

As we have found that seasonal impacts in the demand ar<ns1:XMLFault xmlns:ns1="http://cxf.apache.org/bindings/xformat"><ns1:faultstring xmlns:ns1="http://cxf.apache.org/bindings/xformat">java.lang.OutOfMemoryError: Java heap space</ns1:faultstring></ns1:XMLFault>