
ABSTRACT

In this paper a simple recurrent neural network (NN) is used as
a basis for constructing an integrated system capable of finding
the state estimates with corresponding confidence limits for water
distribution systems. In the first phase of calculations a neural
linear equations solver is combined with a Newton-Raphson
iterations to find a solution to an overdetermined set of nonlinear
equations describing water networks.

The mathematical model of the water system is derived using
measurements and pseudomeasurements consisting certain
amount of uncertainty. This uncertainty has an impact on the
accuracy to which the state estimates can be calculated. The
second phase of calculations, using the same NN, is carried out in
order to quantify the effect of measurement uncertainty on
accuracy of the derived state estimates. Rather than a single
deterministic state estimate, the set of all feasible states
corresponding to a given level of measurement uncertainty is
calculated. The set is presented in the form of upper and lower
bounds for the individual variables, and hence provides limits on
the potential error of each variable.

The simulations have been carried out and results are presented
for a realistic 34-node water distribution network.

INTRODUCTION

In the monitoring of water distribution systems, the inaccuracy
of input data contributes greatly to the inaccuracy of system state
estimates calculated from them. It is important, therefore, that the
system operators are given not only the values of flows and
pressures in the network at any instant of time but also that they
have some indication of how reliable these values are. The
quantification of the inaccuracy of calculated state estimates
caused by the input data uncertainty is called confidence limit
analysis (Bargiela and Hainsworth 1988).

Some applications, semi-automated or on-line decision support
for instance, need a confidence limit analysis procedure that can
produce uncertainty bounds in real time. This is, however, the task
requiring much of computational effort.

Artificial Neural Networks (ANNs), considering their known
properties like massively parallel structure, fault tolerance etc., are
seen as a means of overcoming the computational complexity.

In the previous paper (Gabrys and Bargiela 1995) we presented
the neural network based technique for the solution of a water
system state estimation problem. Since the state estimation forms
the basis of the confidence limit analysis, in the next two section
we briefly report the estimation method and its neural network
implementation.

In the following section the confidence limit analysis using the
same neural network is introduced. Next the implementation of

the integrated system for estimation and CLA is described. This is
followed by results of computer simulations for the realistic 34-
node water network. Both the state estimates and associated with
them boundaries resulting from the confidence limit analysis are
presented. Discussion of the results is also given in this section.
And finally conclusions are reported.

WATER SYSTEM MODEL AND ESTIMATION
METHOD

The state estimation process is based on a mathematical
network model of the water distribution system. The physical laws
governing the system can be combined with the hydraulic
relationship of each element of the system to construct a set of
network equations. These nonlinear network equations relate
either, the network’s nodal pressures or the network’s flows to
measurement or pseudumeasurement values and are expressed by
the following equation:

z=g(x)+ω (1)

where z is a measurement vector; g(x) are nonlinear functions
describing system; ω is a vector of measurement inconsistency.

The state estimation can be expressed as a problem of
minimization of discrepancies between the actual measurements
and the values calculated from the mathematical model.

Using the least squares criterion the state estimation problem
can be expressed as:

(2)

where:  is a measurement weight

matrix.
The proposed solution of the state estimation problem (2) is

based on the Newton-Raphson method. Expanding g(x) by an

initial guess of the state vector , using a first-order Taylor

series and defining , we obtain

(3)

(4)

After this linearisation we obtain the following set of equations:

(5)

where:

 - Jacobian matrix evaluated at

k=0,1,... - step of the estimation process
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Equations (2) can be therefore expressed as

(6)

The overdetermined set of linear equations (5) form the basis
for the construction of a neural network which is presented in the
following section.

Since the measurement equations (1) are nonlinear, the solution
to (2) is an iterative process with the consecutive state estimates
calculated by under-relaxation of the linear solution

, k=0,1,... (7)

If all elements of  in k-th iteration are lower or equal to a
predefined convergence accuracy, the iteration procedure stops.
Otherwise, a new correction vector is calculated using equation

(5) with  instead of  and suitable neural network.

NEURAL NETWORK SOLVING SYSTEM OF
LINEAR EQUATIONS

The minimisation problems described by (6) can be generalised
as follows:

(8)

where: E is a general cost (energy) function; ,

;  is the i-th residual;

 represents a suitably chosen convex functions.

 In a special case when  we obtain the standard

least-squares criterion (6). More information on other criterions
(least absolute values or Chebyshev criterions) and their neural
network applications can be found in (Cichocki and Unbehauen
1992a, 1992b; Gabrys and Bargiela 1995; Cichocki and Bargiela
1996).

The minimization of the energy function described by eq. (8) by
a standard gradient descent method leads to the following system
of nonlinear differential equations:

(9)

or in compact matrix form

(10)

where:  is the learning parameter;

is the activation function.

For  we have  - linear

activation function.

The system of differential equations (10) has been implemented
as an artificial neural network (ANN) shown in Figure 2, using the
SIMULINK software.
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CONFIDENCE LIMIT ANALYSIS (CLA)

 Confidence limit analysis is a process of calculating
uncertainty bounds for state estimates which are caused by the
inaccuracies of input data, and in particular, inaccuracies of
pseudomeasurements. The algorithm used here is based on a
linear approximation of the water network model and it has been
first introduced in (Bargiela and Hainsworth 1988).

Let  represent the difference  and

. If  in equation (5) is replaced by the true

state vector, , for the system,  will then represent the
difference between the measured vector and the true values of the
measured variables.

With the symbols introduced above the linear equation (5) takes
form:

(11)

So it is of interest to see how the solution is affected by

perturbation in vector of measurements (effectively in vector

z since  is constant for a fixed state vector).

If we introduce the vector of perturbations  into (11) we have

(12)

Utilizing the fact that the set of equations (12) is linear and
putting (11) into (12) we obtain the following:

(13)

where:  - vector of perturbations;  - vector of changes in

state estimates caused by perturbations .

Vector  in (13) consists of values that are within the range:

 of consumption or  of meter in case of a
measurement. The underlying principle of the CLA is the
consideration of the worst possible case. It means that the
maximum variabilities of consumptions and inaccuracies of
meters are assumed during the calculations.

The proposed method of finding the confidence limits utilizes
the neural network presented in Figure 2.

Making the vector  of the equation

successively , ,...,

 the confidence vector  is found by summing

up the absolute values of  for each source of inaccuracy

, i=1,...,m.

(14)
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THE INTEGRATED SYSTEM FOR ESTIMA-
TION AND CLA

The system depicted in Figure 1 is an implementation of a
Newton-Raphson method for solving systems of nonlinear
equations. The description of this method for water distribution
network has been given in previous sections.

Apart from the state estimation achieved by means of
implementing N-R method the system also incorporates the
necessary logic and other elements (integrators, absolute value
block etc.) to obtain confidence limits for the state estimates.

The functionality of this system can be summarised as follows:

1) For the initial guess  calculate the Jacobian  and

the right hand side of the linearised system of equations

.

2) Using the analog neural network for solving systems of
linear equations (“Neural Estimator”) solve

.

3) If all elements of  (k=0,1,2,... - number of iteration)

are lower or equal to predefined accuracy, go to point 7, otherwise
go to point 4.

4) Adjust the current state estimate values according to formula:

.

5) For  calculate the Jacobian  and the right

hand side of the linearised system of equations .

6) Using neural based state estimator find the solution to the

system of linear equations

and go to point 3.

7) For the Jacobian calculated for the optimal state estimate

vector , calculate the confidence limits making the right hand

side vector  of equation  successively

, ,...,  and

summing , where  is the vector of

confidence limits of  calculated for the vector of disturbances

 and the state vector .

Detailed description of the system and
subsystems

There are two output signals from the “Neural Estimator”
block. First - LEC (Linear Estimation Control) is the control
signal normally set to 0 (zero). It changes from 0 (zero) to 1 (one)
(an impulse is generated) every time when the convergence
criterion (accuracy condition) of the neural estimator is met. Only

then the second signal , which is a vector of current estimates

of the neural estimator, is allowed to be processed.
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Following the signals LEC and  we now go to the block “NR

Control”. The function of this subsystem is to produce control
signals enabling us to distinguish between the state estimation an
the confidence limit analysis stages of computation.

Four control signals C1, C2, C3 and C4 of the “NR Control”

block decide if the signal y=LEC*  is directed to: the “Newton-

Raphson method integrator” block - the state estimation stage or
the “Confidence Limits Integrator” block - the confidence limits
finding stage.

Referring to figure 3 we can see that C1 is equal to LEC when
C2 is 1 (one) and 0 (zero) otherwise. C2 is 1 (one) as long as the
convergence criteria of the Newton-Raphson method is NOT
satisfied, namely when there is even one value of the vector y (at
the state estimation stage) greater than predefined accuracy. C2
changes to zero when the state estimation process is completed
and we go to the confidence limits analysis stage.

C3 is a logical negation of C2. When C3=1 (equivalent of
C2=0) the C4 =LEC. At this stage signal y is directed to the
“Confidence Limits Integrator” block.

STAGE 1

At the stage 1 (C2=1) after every adjusting of the state vector x,
the change of the Jacobian and the right hand side of the linearised
system (RHSLS) of equations, synchronised by C1, is carried out.
These newly calculated values are than set in the “Neural
Estimator” block (Jacobian - Matrix A, Jacobian transposed -
Matrix AT, RHSLS - Vector b) and the new adjustments of the
state vector are computed. It has to be stressed that there must be
enough time available between two subsequent impulses of LEC
for calculating Jacobian, RHSLS and setting these parameters in
the “Neural Estimator” block. If the time of carrying out those
operations is not known or can not be determined the easy solution
could be an introduction of a new control signal. The function of

Figure 1: The system for estimation (based on Newton-
Raphson method) and confidence limit analysis.
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this signal would be to make sure that after generating the first
LEC impulse there would not be generated the next LEC impulse
before the newly calculated Jacobian and RHSLS were not set up
in the “Neural Estimator” subsystem.

STAGE 2

Since the adapted method of the confidence limits finding is
based on sequential solving of a system of linear equations, we can
use the “Neural Estimator” to achieve it. As it has been described

previously the matrix  of the system of equations Ax=b

(at this stage) does not change. It is the Jacobian calculated for the

optimal state estimate vector . Making vector b successively

, ,...,

(synchronised by the signal C4) and summing the influences of
each disturbance on state vector (“Confidence limit integrator”
block), we finally get the confidence limits for given vector of

disturbances ∆b and calculated vector of state estimates .

The simulation terminates when the influence of the last
disturbance on the state vector has been adjusted to the vector of
confidence limits.

SIMULATION RESULTS

The performance of the proposed methods for water-system
state estimation and CLA was tested on a realistic 34-node
network (42 state variables). A complete definition of the network
parameters is contained in (Sterling and Bargiela 1984).
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Figure 2: a) Neural network for solving systems of linear
equations - Subsystem of the system from Figure 1, b) The

”Finished Estimation” subsystem of a) - generating impulse
when the optimal state estimates are found.
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The results are presented in two forms:
a) table containing the state estimates and corresponding

confidence limits for three different cases
b) time diagrams - in order to show the relations between

control signals and iteratively calculated values of state estimates
and confidence limits.

Three different cases are considered below.
First we consider the case of minimal set of measurements

when we have available only one reference head measurement at
node 30. The state estimates and corresponding confidence limits
for this case are shown in columns 3 and 4 of Table 1 respectively.
The purpose of calculating the confidence limits is to obtain an
information about how far from the real state the estimated values
could be in the worst case. The requirement to have the state
estimates as close as possible to the real state is equivalent to the
requirement of having the confidence limits to be as tight as
possible. The means of achieving that is the introduction of
additional accurate measurements into the system.

 In the highlighted row (columns 3 to 6) of Table 1 we can see
the worst (the biggest) confidence limit for the estimated state
vector. In order to improve it, in the second case apart from the
reference head (node 30) we have also measured the head at node
28. With the accuracy of meter equal 2%, the measured value can

vary within the range of .

The state estimates and corresponding confidence limits for the
second case are shown in columns 5 and 6 of Table 1 respectively.
Comparing the confidence limits for the 28-th state variable it can
be seen that the considerable improvement has been achieved.

Repeating the procedure of finding the biggest confidence
limits for the second case two new measurements have been added
to the system in the third case. These were the heads in nodes 33
and 34. The state estimates and corresponding confidence limits
for the third case are shown in columns 7 and 8 of Table 1
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respectively. The two highlighted rows (columns 5 to 8) show the
variables of interest. In this case apart from the improvement
regarding state variables for nodes 33 and 34 we can observe the
big improvement in nodes in their direct vicinity (nodes 1, 26, 29)
as well as in nodes laying a bit further (nodes 13, 14,15,16,17,18,
and 19). The effect wears off with the increasing distance from the
meter.

The simulation time diagram for this case is shown in Figure 4.
In all cases the simulated time of the calculations (the time that

would be required by the actual neural network) was in order of
microseconds. It needs to be pointed out, however, that the
simulation of the neural network was performed on a serial
computer (SparcStation IPC) and the corresponding lapsed time
for the simulation was of order of hundreds of seconds.

It is commonly known that with the bigger number of
measurements the reliability of estimation increases. It is due to
averaging property of systems with high redundancy ratio.
Redundancy ratio is defined as the ratio of the number of
equations to the number of unknowns. In other words the
influence of single measurement or pseudomeasurement or
strictly speaking its inaccuracy is smaller (averaged) for the
system with high redundancy ratio.

On the other hand introducing a new measurement we introduce
a new source of inconsistency which is the finite accuracy of a
meter. The conclusion that can be drawn from these
considerations and results is as follows. Addition of the new
measurement for i-th state variable can have the tightening effect
on the confidence limit of this variable only if the error resulted
from the inaccuracy of the meter is smaller than confidence limit
calculated for existing set of meters.

CONCLUSIONS

Present day state estimation techniques are very efficient but no
state estimator can give accurate results from inaccurate data. Due
to the cost of metering, the water industry is, and will be in the
near future, making use of relatively inaccurate
pseudomeasurements. So state estimates are bound to be subject
to uncertainty. The degree of confidence that can be put in these
results must be calculated and presented with the state estimates
themselves. Only then can safe and reliable operation of the
distribution system be ensured.

Presented algorithm shows that using relatively simple neural
network solving systems of linear equations could significantly
improve the time of obtaining results of state estimation and
confidence limit analysis in such complex and nonlinear systems
as water distribution networks.
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38 -0.0518 -0.0516 0.0018 -0.0517 0.0018 -0.0513 0.0021

39 -0.0391 -0.0396 0.0015 -0.0396 0.0015 -0.0394 0.0016

40  0.0254 0.0251 0.0013 0.0251 0.0013 0.0253 0.0013

41  0.0614 0.0612 0.0020 0.0612 0.0020 0.0611 0.0022

42  0.1063 0.1061 0.0028 0.1061 0.0028 0.1048 0.0038

Table 1: 34-node water network state estimates and
confidence limits

 1-34: nodal heads (m Aq) at nodes 1-34;

35-42: fixed-head nodes in/out flows ( ) at nodes 27-34

All the results have been obtained for the following parameters:

variability of consumptions - %, accuracy of head measure-

ments - %, coefficient  of Newton-Raphson method - 0.6,

integration time constant - 10e-8 [s]
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