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Abstract—Nonnegative matrix factorization (NMF), which
aims at finding parts-based representations of nonnegative data,
has been widely applied to a wide range of applications such as
data clustering, pattern recognition and computer vision. Real-
world data are often sparse and noisy which may reduce the
accuracy of representations. And a small part of data may
have prior label information, which, if utilized, may improve
the discriminability of representations. In this paper, we pro-
pose a robust semi-supervised nonnegative matrix factorization
(RSSNMF) approach which takes all factors into consideration.
RSSNMF incorporates the label information as an additional
constraint to guarantee that the data with the same label have
the same representation. It addresses the sparsity of data and
accommodates noises and outliers consistently via L2,1-norm.
An iterative updating optimization scheme is derived to solve
RSSNMF’s objective function. We have proven the convergence
of this optimization scheme by utilizing auxiliary function method
and the correctness based on the Karush-Kohn-Tucker condition
of optimization theory. Experiments carried on well-known data
sets demonstrate the effectiveness of RSSNMF in comparison to
other existing state-of-the-art approaches in terms of accuracy
and normalized mutual information.

I. INTRODUCTION

Finding an optimal data representation is a fundamental
problem in many data analysis tasks. A good data representa-
tion [1], [2], [3], [4], [5] can typically reveal the latent structure
of data and facilitate further data processing. Especially, matrix
factorization techniques [6], [7], have been demonstrated to
produce superior data representation. Central to the matrix
factorization is to find two or more matrix factors whose
product is a good approximation to the original matrix. Among
these methods, nonnegative matrix factorization (NMF) [8],
with the nonnegative constraint, is widely investigated and
applied to analyze real-world data, such as images and texts,
because it possesses parts-of-whole interpretations and better
practical performance.

However, data often contain noises and outliers. The s-
tandard NMF uses the least square error function which is
unstable with respect to noises and outliers [9], because a
few noisy features or outliers with large errors will dominate
objective function. Thus, a more robust NMF is needed to
tackle the issue of noises or outliers [10]. Also, the sparsity is
one of important characters of data, which can be considered
as lack of useful labels or sufficient high quality data in
the data set. That is, not all the features or data show the
positive effect on the final results and only a few provide
meaningful and useful information. Usually, adding sparsity
regularization to select the most useful features can improve

the generalization of a method, and thus avoiding the over-
fitting problem [11]. Meanwhile, sparsity regularization can
discover the most relevant features [12]. Therefore, it is also
important to consider the sparsity of data. Moreover, some
literatures have shown that utilizing a small amount of la-
beled data can produce considerable improvements in learning
accuracy [13], [14]. The cost associated with the labeling
process may render a fully labeled training set infeasible,
whereas acquisition of a small set of labeled data is relatively
inexpensive. In such situations, semi-supervised NMFs [15],
[16] are proposed with great practical value and great benefits
compared with unsupervised NMF.

To our best knowledge, there is no such a NMF which
takes all the factors mentioned above into consideration. In
this paper, we propose a robust semi-supervised nonnegative
matrix factorization (RSSNMF), which can not only employ
the label information with a constraint matrix, but also address
the noisy and sparse data simultaneously. Specifically, we
first utilize a constraint matrix, which guarantees that data
with the same label have the same representation, as a hard
constraint to integrate the label information. Thus, the learned
new representation has a better discriminative power. Then, we
adopt the L2,1-norm as our loss function, so that RSSNMF
can accommodate the outliers and noises in a better way
than the standard NMF which uses F -norm as loss function.
Besides, a sparse regularization term is added to RSSNMF
to avoid the over-fitting problem and select the most relevant
features. Furthermore, we derive an efficient and elegant iter-
ative updating rule with convergence and correctness analysis.
Our experimental results demonstrate the superiority of our
proposed RSSNMF.

The rest of this paper is organized as follows. The Section 2
discusses the previous related work and put forward motivation
of our approach. In Section 3, we present our RSSNMF
framework and the corresponding solutions. The experimental
results on image data sets are discussed in Section 4. Finally,
we draw a conclusion and discuss future work.

II. RELATED WORK

Nonnegative Matrix Factorization (NMF) has gained great
success in many applications such as image processing, face
recognition [17], [18], document clustering [19], [20]. How-
ever, as an unsupervised learning method, NMF does not use
any prior knowledge of data to guide the learning process.
Nevertheless, there is certain amount of prior knowledge in
the real world applications, and it is natural to use accessorial



information such as class labels to improve the performance.
Therefore, it would be beneficial to extend the usage of NMF
to a semi-supervised manner. Cai et al. [21] proposed a graph
regularized nonnegative matrix factorization (GNMF) model to
preserve geometrical information by constructing the nearest
neighbor graph. When label information is available, it can
be naturally incorporated into the graph structure. Liu et al.
[15] proposed constrained nonnegative matrix factorization
(CNMF), which uses label information as additional hard
constraints. CNMF forces samples with identical class label to
have consistent coordinates in the reduced dimensional space,
and thus the samples show more discriminative. Semi-NMF
[22] as another variation of CNMF, not only utilizes the local
structure of the data characterized by the graph Laplacian, but
also incorporates the label information as the fitting constraints
to learn. These semi-supervised NMF models incorporate prior
information only, but do not take sparsity into consideration
and are not robust to noises.

To alleviate the issue caused by noises and outliers, some
robust methods are proposed. For example, Kong et al. [10]
proposed a robust formulation of NMF (RNMF) using L2,1-
norm loss function, with which the error for each data point
is not squared, and thus the large errors due to outliers do not
dominate the objective function. Zhang et al. [23] proposed
a robust non-negative matrix factorization algorithm (Robust
NMF), which decomposed the data matrix as the summation of
one sparse error matrix and the two nonnegative matrices, and
the L1-norm regularization term is added to the error matrix
to get a sparse solution. These robust NMF models can tackle
the issue of noises or outliers effectively but fail to make full
use of available label information.

Recently, the sparse regularization technique is also investi-
gated due to some important practical benefits. Usually, the
sparse regularization term can avoid over-fitting problems,
and discover the most relevant samples or features [11]. For
example, [24] proposed a sparse NMF method with L1-
norm regularization. [25] proposed a strategy to compute an
approximate NMF by using L0-norm as sparse constraints.
However, they are both unsupervised methods and cannot
integrate the label information, and also they do not take the
accommodation of outliers and noises into consideration.

In this paper, we take all above factors into consideration.
Our proposed RSSNMF model not only integrates the data
label information as an additional constraint to improve learn-
ing accuracy, but also can address the sparse and noisy data
simultaneously.

III. ROBUST SEMI-SUPERVISED NONNEGATIVE MATRIX
FACTORIZATION (RSSNMF)

A. RSSNMF model

Suppose we have N data points {vi}Ni=1, each data point
vi ∈ RM is M -dimensional and is represented by a vector. The
vectors are placed in the columns and the whole data set is
represented by a matrix V = [v1, v2, ..., vN ] ∈ RM×N . NMF
aims to find two nonnegative matrix factors W ∈ RM×K and
H ∈ RK×N where the product of the two factors can well

approximate the original matrix, represented as V ≈WH. In
particular, the H can be considered as the new representations
of data in terms of the basis W, where the ith column, hi,
is the new representation of the ith data. The approximation
is quantified by a cost function which can be constructed
by distance measures [15]. The standard NMF measures
dissimilarity between V and WH by using the least squares
error divergence. The error function of the standard NMF is

∥V −WH∥2F =
N∑
i=1

∥vi −Whi∥2, (1)

so the objective function is defined as

min
W≥0,H≥0

∥V −WH∥2F . (2)

In many real world applications, a small amount of labeled
data could be used to aid and bias the learning of unlabeled
data. Motivated by CNMF [15], we suppose the first l data
points are labeled with c classes. We first build an indicator
matrix C, where ci,j = 1 if vi is labeled with jth class; ci,j =
0 otherwise. Then, with the indicator matrix C, we build the
label constraint matrix A as follows,

A =

(
Cl×c 0
0 IN−l

)
, (3)

where IN−l is a (N − l)×(N − l) identity matrix. Recall that
NMF maps each data point vi to hi from M -dimensional space
to K-dimensional space. To incorporate label information, we
introduce an auxiliary matrix Z, and we have H = ZAT .
Thus, with the constraint matrix A, we can see that if vi and
vj have the same label, then the ith row and jth row of A must
be the same, and so hi=hj , which guarantees that data sharing
the same label have the same new representation. Therefore,
(2) could be rewritten as follows,

min
W≥0,Z≥0

∥V −WZAT ∥2F . (4)

However, using F -norm is unstable and sensitive to outliers,
because errors are squared so can easily dominate the objective
function. To overcome this limitation, we employ L2,1-norm
loss function to weaken the impact of noises and outliers
effectively. L2,1-norm was first proposed in [26], and defined
as

∥G∥2,1 =
N∑
i=1

√√√√ M∑
j=1

G2
ji =

N∑
i=1

∥gi∥, (5)

where gi is the ith column of G. Thus, the robust formulation
of the error function can be written as

∥V −WH∥2,1 =
N∑
i=1

√√√√ M∑
j=1

(V −WH)
2
ji =

N∑
i=1

∥vi−Whi∥.

(6)
In this robust formulation that compared with (1), we can

see that the error for each data point is ∥vi−Whi∥, which
is not squared, and thus the large errors due to outliers do



not dominate the objective function. Therefore, our objective
function can be reformulated as

min
W≥0,Z≥0

∥V −WZAT ∥2,1. (7)

Besides, the real data may be sparse, i.e., not all the features
are important to learning procedure. With regard to this, the
L2,1-norm regularization term is designed to generate column
sparsity of representation of data to select correlated samples
or features. Usually, we can get the group sparsity of the
representation matrix HT as follows,

min
H≥0
∥HT ∥2,1. (8)

As we let H = ZAT , here it is equal to minimize the
matrix AZT . Because the matrix A is known, we just need
to facilitate the unknown matrix ZT .

To incorporate the label information as a hard constraint,
and deal with noisy and sparse data effectively, we propose
the final formulation as follows,

min
W≥0,Z≥0

∥V −WZAT ∥2,1 + α∥ZT ∥2,1, (9)

where V ∈ RM×N , W ∈ RM×K , Z ∈ RK×(N−l+c) and
A ∈ RN×(N−l+c). Besides, the coefficient of sparse item α
is the only parameter in this function, which is a nonnegative
real value used to adjust the weight of sparse regularization.

B. Algorithm of RSSNMF model

The solution for RSSNMF model via iterative updating
algorithm is presented as follows,

Zki ← Zki
(WTVD1A)ki

(WTWZATD1A+ αD2Z)ki
, (10)

Wjk ←Wjk
(VD1AZT )jk

(WZATD1AZT )jk
, (11)

where D1 and D2 are diagonal matrices with the diagonal
elements given by

(D1)ii =
1

∥Vi −W(ZAT )i∥
, i = 1, 2..., N. (12)

(D2)ii =
1

∥(ZT )i∥
, i = 1, 2...,K. (13)

C. Convergence of RSSNMF model

In this section, we prove the convergence of the algorithm
described in the following Theorem 1 and Theorem 2.

Theorem 1. Updating Z using the rule of (10) while fixing
W, the objective function of (9) decreases monotonically, that
is,

∥V −WZt+1AT ∥2,1 + α∥(Zt+1)T ∥2,1
−∥V −WZtAT ∥2,1 − α∥(Zt)T ∥2,1 ≤ 0,

(14)

where t is the number of iteration times.
Theorem 2. Updating W using the rule of (11) while fixing

Z, the objective function of (9) decreases monotonically, that
is,

∥V −Wt+1ZAT ∥2,1 − ∥V −WtZAT ∥2,1 ≤ 0, (15)

where t is the number of iteration times.
To prove the Theorem 1, we first have the following Lemma

1.
Lemma 1. Under the updating rule of (10), the following

inequation holds

Tr((V −WZt+1AT )D1(V −WZt+1AT )T )

+ αTr((Zt+1)TD2Z
t+1)

≤ Tr((V −WZtAT )D1(V −WZtAT )T )

+ αTr((Zt)TD2Z
t).

(16)

Proof. We prove Lemma 1 by using the auxiliary function
approach [27]. First of all, we define

J(Z) = Tr((V −WZAT )D1(V −WZAT )T )

+ αTr(ZTD2Z).
(17)

Then we can reformulate (16) as

J(Zt+1) ≤ J(Zt). (18)

According to (17), we can get

J(Z) = Tr(VD1V
T − 2VD1AZTWT )

+ Tr(WZATD1AZTWT ) + αtr(ZTD2Z)

≤ Tr(VD1V
T − 2VD1AZTWT )

+
K∑

k=1

(N−l+c)∑
i=1

(S1H
′B1)ki(H

2)ki
H′

ki

+

K∑
k=1

(N−l+c)∑
i=1

(S2H
′B2)ki(H

2)ki
H′

ki
(by Lemma 2)

= Tr(VD1V
T − 2VD1AZTWT )

+

K∑
k=1

(N−l+c)∑
i=1

(WTWZ′ATD1A+ αD2Z
′)ki(Z

2)ki
Z′

ki

= F (Z,Z′),
(19)

where S1 = WTW, B1 = ATD1A, H = Z,H′ = Z′,
S2 = αD2, and B2 = I. The equality holds when Z = Z′.
So F (Z,Z′) is an auxiliary function of J(Z).

Let
Zt+1 = argmin

Z
F (Z,Zt), (20)

and we can get

J(Zt+1) = F (Zt+1,Zt+1) ≤ F (Zt+1,Zt) ≤ J(Zt), (21)

this proves that J(Zt) decreases monotonically.
Then we let f(Z) = F (Z,Z′), the gradient of f(Z) is

∂f(Z)

∂Zki
= −2(WTVD1A)ki

+ 2
(WTWZ′ATD1A+ αD2Z

′)ki(Z)ki
Z′

ki
.

(22)

The second-order derivatives (Hessian matrix) is

∂2f(Z)

(∂Zki)(∂Zlj)
= 2

(WTWZ′ATD1A+ αD2Z
′)ki

Z′
ki

δijδkl.

(23)



Because the Hessian matrix is semi-positive definite, so
f(Z) is a convex function and there is an unique global
minima for f(Z). By forcing (22) to zero, we can get the
solution of Z as follows,

Zki = Z′
ki

(WTVD1A)ki
(WTWZ′ATD1A+ αD2Z′)ki

. (24)

When we set Zt+1 ← Z, Zt ← Z′, (24) can derive updating
rule of (10). Under this updating rule, objective function of
(17) decreases monotonically.

Until now, we have completed the proof of Lemma 1.
Lemma 2. To prove, we apply the matrix inequality [28]. If

matrices S, B, H are nonnegative matrices with appropriate
sizes and S = ST , B = BT , then we have the following
matrix inequality

Tr(HTSHB) ≤
∑
ik

(SH′B)
H2

ik

H′
ik
. (25)

Lemma 3. Under the updating rule of (10), the following
inequation holds

∥V −WZt+1AT ∥2,1 + α∥(Zt+1)T ∥2,1
− ∥V −WZtAT ∥2,1 − α∥(Zt)T ∥2,1

≤ 1

2
[Tr((V −WZt+1AT )D1(V −WZt+1AT )T )

+ αTr((Zt+1)TD2Z
t+1)

− Tr((V −WZtAT )D1(V −WZtAT )T )

− αTr((Zt)TD2Z
t)].

(26)

Proof. We borrow the idea of [10] to prove Lemma 3. Then,
(26) can be reformulated as follows.

According to the definition of D1 and D2, we can get

Tr((V −WZt+1AT )D1(V −WZt+1AT )T )

+ αTr((Zt+1)TD2Z
t+1)

=
N∑
i=1

∥Vi −W(Zt+1AT )i∥2(D1)ii

+ α

K∑
i=1

∥(Zt+1
i )T ∥2(D2)ii,

(27)

Tr((V −WZtAT )D1(V −WZtAT )T )

+ αTr((Zt)TD2Z
t)

=
N∑
i=1

∥Vi −W(ZtAT )i∥2(D1)ii

+ α
K∑
i=1

∥(Zt)Ti ∥2(D2)ii.

(28)

Then the right-hand side (RHS) of (26) is

RHS =
1

2

N∑
i=1

(∥Vi −W(Zt+1AT )i∥2(D1)ii

− ∥Vi −W(ZtAT )i∥2(D1)ii)

+
1

2

K∑
i=1

(∥(Zt+1)Ti ∥2(D2)ii − ∥(Zt)Ti ∥2(D2)ii).

(29)
According to the (12) and (13), we can get

RHS =
1

2

N∑
i=1

(∥Vi −W(Zt+1AT )i∥2(D1)ii −
1

(D1)ii
)

+
1

2
α

K∑
i=1

(∥(Zt+1)Ti ∥2(D2)ii −
1

(D2) ii
).

(30)
The left-hand side (LHS) of (26) is

LHS = ∥V −WZt+1AT ∥2,1 + α∥(Zt+1)T ∥2,1
− ∥V −WZtAT ∥2,1 − α∥(Zt)T ∥2,1

=
N∑
i=1

(∥Vi −W(Zt+1AT )i∥ −
1

(D1)ii
)

+ α

K∑
i=1

(∥(Zt+1)Ti ∥ −
1

(D2)ii
).

(31)

Finally, we get

LHS −RHS

=

N∑
i=1

−(D1)ii
2

(∥Vi −W(Zt+1AT )i∥ −
1

(D1)ii
)2

+
K∑
i=1

−(D2)ii
2

(∥(Zt+1)Ti ∥ −
1

(D2)ii
)2 ≤ 0.

(32)

Until now, we have completed the proof of Lemma 3.
By using Lemma 1, lemma 2 and Lemma 3, we can easily

prove Theorem 1. That is to say, the objective function of (9)
decreases monotonically under the updating rules of (10).

The proof of Theorem 2 is similar to Theorem 1, so the
details will not be mentioned here.

D. Correctness of RSSNMF analysis

Here we prove correctness of our updating rules that the
converged solution is the correct optimal solution, i.e., the
converged solution satisfies the Karush-Kohn-Tucker(KKT)
condition of the constrained optimization theory.

Theorem 3. At convergence, the converged solution Z of
the updating rule of (10) satisfies the KKT condition of the
optimization theory.

Proof. The KKT condition for Z with the constrains (Z)ki ≥
0, k = 1, 2, ...,K; i = 1, 2, ..., (N − l + c), is

∂J(Z)

∂(Z)ki
(Z)ki = 0, ∀k, i. (33)



TABLE I: Description of dataset

Datasets Size Dimention Class

Yale 165 1024 15
ORL 400 1024 40
COIL20 1440 1024 20

The derivative is
∂J(Z)

∂(Z)ki
= (WT (V −WZAT )D1A)ki + α(D2Z)ki. (34)

Then, the KKT condition for Z is

[−(WTVD1A)ki + (WTWZATD1A)ki

+ α(D2Z)ki](Z)ki

= 0, ∀k, i.
(35)

If the Z converges according to the updating rule of (10),
the converged solution Z∗ satisfied

Z∗
ki ← Z∗

ki

(WTVD1A)ki
(WTWZ∗ATD1A+ αD2Z∗)ki

, (36)

which can be reformulated as

[−(WTVD1A)ki + (WTWZ∗ATD1A)ki

+ α(D2Z
∗)ki](Z

∗)ki

= 0, ∀k, i.
(37)

We can see that (37) is identical to (35). Then the converged
solution Z∗ satisfies the KKT condition. Until now, we have
completed the proof of Theorem 3.

Theorem 4. At convergence, the converged solution W of
the updating rule of (11) satisfies the KKT condition of the
optimization theory.

The proof of Theorem 4 is similar to Theorem 3, so we
omit the details here.

IV. EXPERIMENT RESULTS

A. Database description

In this paper, we select three data sets to evaluate the
effectiveness of our proposed RSSNMF method for data
clustering. The details of three data sets are summarized in
the Table I.
Yale Database1. The Yale database contains 11 facial

images for each of 15 distinct subjects, thus 165 images
in total. For each subject, the images are in great varieties
such as different facial expressions or configurations. In the
preprocessing step, we normalize the original images (in scale
and direction) to keep the two eyes are aligned at the same
position. Then, the facial areas are cropped into the final
images for clustering. Each image is resized into 32×32 pixels
with 256 gray levels per pixel.
ORL Database2. The ORL database consists of 400

facial images belonging to 40 different subjects. For each

1http://cvc.yale.edu/projects/yalefaces/yalefaces.html.
2http://www.cl.cam.ac.uk/research/dtg/attarchive/facedatabase.html

subject, the images are in great varieties because of different
taking time with changing lighting variance, facial details and
facial expressions. All the pictures are taken against dark
homogeneous background with the subjects in an upright,
frontal position. We do the same preprocessing for this data
set as for the Yale data set.

COIL20 Database3. The COIL20 image library consists
of 20 objects with 1440 images as a whole. The objects are
placed on a motorized turntable against a black background.
The turntable is rotated through 360deg and a fixed camera
took images at a pose intervals of 5deg for each object. Thus,
each object has 72 images in total. The size of each image is
the same as Yale and ORL image, which is also represented
by a 1024-dimensional feature vector in image space.

B. Evaluation metrics

Two metrics, the accuracy (AC) and the normalized mutual
information metric (NMI) are used to measure the clustering
performance [29], [2]. These measurements are widely used
by comparing the obtained label of each sample with that
provided by the data set in different clustering approaches.

Clustering accuracy (AC) is used to measure the per-
centage of correct labels obtained. Given a data set containing
n images, let li and ri be the the obtained cluster label and
label provided from each sample image, respectively. The AC
is defined as follows,

AC =

∑n
i=1 δ(ri,map(li))

n
(38)

where δ(x, y) is the delta function that equals one if x = y
and equals zero otherwise, and map(li) is the permutation
mapping function that maps each cluster label li to the
equivalent label from the data set. The best mapping can be
found by using the Kuhn-Munkres algorithm [30].

Normalized mutual information (NMI) is used to
measure the similarity between the cluster assignments and
the pre-existing input labeling of the classes. Let C and C ′

denote the set of clusters obtained from the ground truth
and obtained from our algorithm, respectively, their mutual
information metric MI(C,C ′) is defined as follows,

MI(C,C ′) =
∑

ci∈C,cj ′∈C′

p(ci, cj
′) · log p(ci, cj

′)

p(ci) · p(cj ′)
, (39)

where p(ci), p(cj
′) are the probabilities that an image ran-

domly selected from the data set belongs to the clusters ci
and cj , respectively, and p(ci, cj

′) denotes the joint probability
that this randomly selected image belongs to the cluster ci as
well as cj at the same time. In our experiment, we used the
normalized metric NMI(C,C ′) as follows,

NMI(C,C ′) =
MI(C,C ′)

max(H(C),H(C ′))
, (40)

where H(C) and H(C ′) are the entropies of C and C ′,
respectively. It is easy to check that NMI(C,C ′) ranges from

3http://www.cs.columbia.edu/CAVE/software/softlib/coil-20.php



TABLE II: Clustering Results Comparison on the Yale Database

K AC (%) NMI (%)
NMF RNMF CNMF RSSNMF NMF RNMF CNMF RSSNMF

2 78.64 77.73 81.64 87.27 40.76 35.89 48.99 62.23
3 66.36 66.97 68.48 73.03 37.69 40.32 42.90 45.83
4 63.18 68.18 64.25 71.14 43.50 50.58 47.80 52.91
5 58.91 68.00 65.82 73.09 42.39 52.89 53.99 61.53
6 49.09 62.88 60.12 63.64 36.07 50.44 50.63 51.53
7 50.52 60.78 59.25 62.34 44.25 52.07 53.03 53.40
8 45.45 54.66 54.40 57.39 40.59 47.29 50.83 50.80
9 46.87 52.83 54.85 56.16 43.34 49.44 53.05 53.79

10 48.36 51.91 52.68 53.73 46.22 48.73 52.84 51.37
Avg. 56.38 62.66 62.39 66.42 41.64 47.52 50.45 53.71

TABLE III: Clustering Results Comparison on the ORL Database

K AC (%) NMI (%)
NMF RNMF CNMF RSSNMF NMF RNMF CNMF RSSNMF

2 89.00 96.00 93.90 89.55 67.00 88.25 78.24 62.45
3 78.67 84.33 84.33 89.33 67.54 73.05 76.61 82.01
4 81.75 83.57 84.05 89.00 75.13 73.81 78.69 84.92
5 78.40 87.25 78.38 89.60 74.73 79.34 76.69 85.95
6 71.17 86.60 76.73 91.00 68.75 82.98 76.52 85.11
7 78.29 88.67 79.04 86.29 79.82 86.30 82.45 85.65
8 75.25 83.87 77.03 86.50 77.02 84.54 80.57 87.34
9 80.11 82.44 82.23 86.89 83.79 84.66 86.03 87.81

10 74.00 81.40 76.88 86.20 78.96 83.36 81.77 87.36
Avg. 78.51 86.06 81.40 88.26 74.75 81.81 79.73 83.18

0 to 1. NMI = 1 when the two sets of image clusters
are identical, and it becomes zero when the two sets are
completely independent.

C. Clustering results

We present our clustering performance by making compar-
isons with other related NMF methods on three data sets. The
algorithms that we choose to compare are listed below,

1. Standard Nonnegative Matrix Factorization algorithm
(NMF) minimizing F -norm cost as suggested in [17].

2. Robust Nonnegative Matrix Factorization algorithm by
using L2,1-norm (RNMF) [10] is implemented in our experi-
ment to compare the results.

3. Constrained Nonnegative Matrix Factorization algorithm
(CNMF) minimizing the F -norm cost that was introduced in
[15].

4. Our proposed robust semi-supervised NMF (RSSNMF)
model.

For each data set, the evaluations are conducted with dif-
ferent numbers of clusters K varying from 2 to 10 categories.
We randomly choose K categories from the data set, and
mix the images of these K categories as the collection V
for clustering. For the semi-supervised algorithms (RSSNMF,
CNMF), we randomly pick up 10 percent of images from each
category in V and use their category numbers as the available
label information. However, there are only 10 images for each
category in Yale and ORL, so 10 percent gives one image only.
One label is meaningless for RSSNMF since this algorithm
maps the images with the same label onto the same point.
Thus, for Yale and ORL, we randomly choose two images
from each category to provide the label information.

Then, we apply different matrix factorization algorithms
as listed above to obtain new data representations. Because
our method converges to a local optimum, we initialize Z
and W randomly 10 times between 0 and 1. When the
algorithm converges, there are 10 values of the loss function,
respectively. We can then find the minimum value from these
values, and consider the corresponding matrix Z and W as
the final solution that will be not too far from the global
optimum. Thereafter, K-means is applied to the new data
representation for images clustering, which is repeated 10
times with different initial points and the average result in
terms of the cost function of K-means is recorded.

Finally, we compare the obtained clusters with the original
image category to compute the AC and NMI.

We run this experiment for t repetition until it converges.
The convergence criterion we used is

|Jt+1 − Jt
Jt

| < 10−6 (41)

where Jt is the objective function value in the t-th iteration
of each algorithm.

The detailed clustering results of Yale are shown in Table
II. The last row shows the average AC and NMI over K.
As we can see, RSSNMF outperforms others in all cases in
terms of AC and achieves 7 best results in terms of NMI. And
comparing to second best results, i.e., average results of RNMF
in AC and average results of CNMF in NMI, our algorithm
RSSNMF achieves 6 percent improvement and 6.46 percent
improvement respectively.

The clustering results of ORL are summarized in Table III.
RSSNMF outperforms all other algorithms with 8 best results
in AC and 7 best results in NMI. Moreover, for the average



TABLE IV: Clustering Results Comparison on the COIL20 Database

K AC (%) NMI (%)
NMF RNMF CNMF RSSNMF NMF RNMF CNMF RSSNMF

2 89.86 89.58 94.72 95.42 76.89 75.79 78.55 83.06
3 87.22 90.83 91.48 94.63 75.53 80.02 84.07 86.91
4 82.64 83.82 83.96 84.44 74.32 75.39 71.40 79.31
5 94.94 93.22 74.83 87.72 91.02 89.68 66.74 80.40
6 80.69 79.07 77.50 81.30 78.31 78.83 76.37 77.49
7 81.83 80.79 78.53 82.18 81.45 80.86 77.82 82.43
8 76.77 74.58 72.36 80.49 77.18 75.86 72.63 79.92
9 73.95 72.01 82.72 81.08 74.46 72.93 83.62 80.36

10 76.14 75.17 73.44 79.78 79.36 77.40 76.02 81.61
Avg. 82.67 82.19 81.06 85.23 78.72 78.53 76.36 81.28
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Fig. 1: The parameter sensitivity of RSSNMF

performances, RSSNMF achieves 2.56 percent improvement
in AC and 1.67 percent improvement in NMI, compared to
the second best algorithm, i.e., RNMF.

Table IV shows the detailed results of COIL20. We can see
that NMF and RNMF have similar results, while RSSNMF
still shows the best performance. RSSNMF gains 7 and 6
highest values in AC and NMI respectively. Besides, compar-
ing to the best algorithm other than our proposed RSSNMF
algorithms, i.e., NMF, RSSNMF achieves 3.10 percent and
3.52 percent improvement in average results with respective
to AC and NMI.

D. Parameter analysis

In this section, we analyze the sensitivity of the parameter
α of our proposed approach. In RSSNMF model, the second
term is sparse regularization via L2,1-norm minimization. The
value of α affects the effectiveness of clustering. Taken the
Yale data set as an example, Fig.1(a) and Fig.1(b) show that
AC and NMI vary slightly with α. We can find that nearly for
all values of α (from 1 to 90) with K varying from 2 to 10, the
performance of RSSNMF is superior to the performances of
other approaches shown in Table II. To clearly display this, in
particular, we plot the performances of RSSNMF and second
best methods when K=3 and K=4, respectively, shown in



Fig.1(c) and Fig.1(d). We can see that, when K=3 , the blue
line that refers to the results of RSSNMF is above the green
line that represents the results of CNMF. Similarly, the black
line is above the red line when K=4. In our experiments, for
the results given in Table II, Table III and Table IV, the values
of α are 60, 65 and 50 respectively.

V. CONCLUSION

In this paper, we have presented a novel nonnegative matrix
factorization method, called robust semi-supervised nonneg-
ative matrix factorization (RSSNMF). Firstly, our proposed
RSSNMF model imposes label information with a constraint
matrix, so that RSSNMF guarantees that data with the same
label have the same new representation. Thus, the new rep-
resentations learned by RSSNMF have more discriminative
power. Secondly, by utilizing L2,1-norm, RSSNMF is more
robust to the noises and outliers. Thirdly, incoporating the
sparse regularization term, RSSNMF can address the sparsity
of data more effectively compared to existing approaches.
Efficient iterative update algorithms with rigorous convergence
and correctness analysis are also given. Experiments on three
well known data sets have demonstrated that our approach is
superior to other algorithms nearly in all cases.

There are some potential improvements to our approach.
Theoretical or mathematical analysis may be given on the
influence of the parameter α to the RSSNMF’s performance.
Another route to further improve and extend RSSNMF is
multi-view NMF. Often, data can be represented by different
types of features, and different types of features may be
complementary to each other. Instead of using only one type
of feature, the new representation of data could be learnt
by combining different types of features, so better clustering
performance can be expected.
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