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ABSTRACT

1.

Considerable efforts have been made by interface designers to ensure that icons used in
displays are as easy to use as possible. An assumption implicit in their design is that

Research has shown that individuals’ knowledge structures change as a result of learning and
experience. This article investigates the possibility that the content of graphical user interfaces
can play a role in determining the nature of the knowledge structures users develop.

Users employed either concrete, abstract, or arbitrary icon sets in a computer-based prob-
lem-solving task. The effects of these icons were assessed using standard measures of perfor-
mance. On the basis of the assumption that users’ mental models should be better if appropriate
icons were presented on the interface, Pathfinder analysis was used to elicit users’ knowledge
structures as they gained experience with the interface. The efficacy of this measure was then
compared with performance measures.

Our findings show that users’ knowledge structures do depend on the nature of the graphical
information presented at the interface but do not rely as much on the use of the visual metaphor
as previously thought. Although most measures were sensitive to initial differences between
icon sets, only some measures were sensitive to the long-term differences that remained after us-
ers had gained experience with the icon set. The implications of these findings for interface de-
sign are discussed.
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better visual information on the interface helps the user to develop a better mental model,
or knowledge structure, of the system being used. This assumption was tested directly in
this study by investigating whether users’ knowledge structures differed as a result of the
type of visual information presented to them on the interface. This was done by providing
groups of users with different sets of icons that could be used to solve a set of com-
puter-based problems. Differences in the knowledge structures created as a result of ex-
perience with each type of icon were then compared using standard measures of
performance and Pathfinder analysis.

The effects of icon characteristics on users’ understanding and performance were also
explored. Of particular interest was the degree of icon concreteness (i.e., the extent to which
icons depict objects or people from the real world) and the closeness of the relation between
an icon and its function (referred to as semantic distance). To examine the effects of these
icon characteristics, the icon sets that participants were asked to use were systematically
varied.

1.1. Knowledge Representation and Learning

It is well known that individuals’ knowledge structures change with learning and experi-
ence. As people become more expert in a particular domain, their knowledge representa-
tion changes in systematic ways to provide better support for their activities. Such
changes have been demonstrated in areas as diverse as chess (Chase & Simon, 1973; de
Groot, 1965; Saarilouma, 1994); computer programming (Adelson, 1981; McKeithen,
Reitman, Rueter, & Hirtle, 1981); and the understanding of physics and mathematics
(Chi, Feltovich, & Glaser, 1981; Schonfield & Herrmann, 1982). Research has also
shown that knowledge structures converge and approximate better to those of an expert
as experience increases (Barsalou, 1989; Goldsmith & Johnson, 1990; Rowe, Cooke, Hall
& Halgren, 1996; Ye, 1997).

The extent to which knowledge structures converge on a given standard may depend
on the perspective that individuals bring to bear on learning. Gomez, Schvaneveldt, and
Staudenmayer (in press) compared doctors’ and patients’ understanding of multiple al-
lergy sensitivity (a condition that is often difficult to attribute to a single physical cause).
Patients believed their condition was the result of sensitivity to a wide range of chemicals
in their environment, whereas doctors perceived the symptoms to be strongly linked to
emotional causes. Systematic differences in knowledge structures were also observed in a
study where participants were given different roles in a team involved in a simulated res-
cue-and-relief helicopter mission Stout, Rivera, & Salas, 1998). It seems likely
therefore that, if individuals experience the same problem-solving task via different vi-
sual interfaces (i.e., from different visual perspectives), the knowledge structures that
they develop may differ systematically as a result because the perspective they are given
of the interface is different. This possibility was investigated in this experiment.

1.2. Eliciting Knowledge Structures

Before any claims can be made about changes in users’ knowledge structures, appropriate
measures of these changes need to be obtained. The difficulty with standard measures of
problem-solving performance such as accuracy or response times is that they are only indi-
rect measures of users’ knowledge structures. Although they provide an index of how well

2 Cooke.
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individuals’ knowledge structures support the task domain, they give little information about
how that knowledge is organized.

Another way of eliciting users’ mental models is by using interview or “think aloud” pro-
tocols (e.g., Ericsson & Simon, 1984; Gray, Waite, & Draper, 1990). However, as Staggers
and Norcio (1993) pointed out, the limitations inherent in these techniques are that novices
have difficulty articulating their knowledge whereas expert users may no longer be con-
sciously aware of their conception of the system. Furthermore, the data sets that result are
typically large and unwieldy and difficult to interpret.

Cognitive task analysis methods have also been used to model cognitive aspects of sys-
tem use (e.g., Card, Moran, & Newell, 1983; Goh & Coury, 1994; Kieras, 1978; Morphew,
Thordsen, & Klein, 1998). These methods lead to the production of lists of goals and details
of their associated activities. Although the process of cognitive task analysis has proved
useful in detailing the information users require and the behavioral sequences they need to
follow, there may be a considerable disparity between these idealized models and those that
the individual user employs in practice.

Another method that has been widely used to elicit information about users’ knowledge
structures is the Pathfinder technique developed by Schvaneveldt (1990). This involves
gathering data about users’ perceptions of the interrelations between key concepts in a given
domain. Subjective ratings are used to assess the strength of the relations between pairs of
concepts. These pairwise proximity ratings are then submitted to a multivariate analysis
from which a mathematically derived “cognitive map” of users’ domain knowledge can be
generated. This map takes the form of a network in which concepts are represented as nodes
that are connected by links to other concepts that the user considers to be related.

Although Pathfinder networks are related to semantic networks (Collins & Loftus, 1975;
Meyer & Schvaneveldt, 1976; Quillian, 1969), they are distinguished by being derived di-
rectly from empirical data rather than being primarily theoretical in nature. They have, for
example, been used to compare the knowledge structures of novices and experts (Gomez,
Hadfield, & Housner, in press; Schvaneveldt, Durso, Goldsmith, Breen, & Cooke, 1985;
Wilson, 1994) and differences between human factors experts and software development
specialists (Gillan, Breedin, & Cooke, 1992), as well as to improve navigation of Internet
and database systems (Chen, 1998).

Pairwise proximity judgment data has also been analyzed using multidimensional scal-
ing. This enables each concept to be located in an N-dimensional space where the distance
between points reflects the psychological proximity of the corresponding concepts. The di-
mensions defining the space represent the main properties along which the concepts within
the domain are organized (i.e., categorical information). For example, a series of concepts
such as ruby, iron, sparrow, trout, and daisy might yield dimensions such as living or non-
living (sparrow, trout, daisy vs. ruby, iron) and plants or animals (daisy vs. sparrow, trout;
see Schvaneveldt et al., 1985). Research has shown that multidimensional scaling can cap-
ture changes that occur in knowledge structures as a function of learning (Adelson, 1981;
Gonzalvo, Canas, & Bajo, 1994) and can be used to measure differences in the cognitive
representations of novices and experts (Goldsmith, Johnson, & Acton, 1991; Schvaneveldt
et al., 1985).

Although multidimensional scaling and Pathfinder analyses both reduce large amounts
of pairwise proximity data to an interpretable form, they achieve this using mechanisms that
highlight different aspects of the underlying cognitive structures. The main strength of mul-
tidimensional scaling appears to lie in its ability to capture the global categorical dimen-
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sions of a knowledge domain, whereas Pathfinder is better at capturing the local relations
between concepts (Gonzalvo et al., 1994; Schvaneveldt et al., 1985). Because we were in-
terested in the extent to which users were able to use icons to solve specific problems, Path-
finder analyses were considered more appropriate. Despite its widespread use, we are not
aware of any study carried out to date that has used Pathfinder to explore how users’ knowl-
edge structures might be affected by the way visual information is presented or how these
knowledge structures change as users learn how to use the interface.

1.3. Icon Usability

The effects on user performance of a wide range of icon characteristics have been investi-
gated. These have included color (e.g., Christ, 1975; Christ & Corso, 1982; Tullis, 1981);
shape (Arend, Muthig, & Wandmacher, 1987); visual complexity (Byrne, 1993; Tullis,
1983); meaningfulness (McDougall, Curry, & de Bruijn, 1999; Rogers, 1989); and the ex-
tent to which icons are concrete or abstract (McDougall, de Bruijn, & Curry, 2000; Rogers,
1989; Stammers & Hoffman, 1991).

Difficulties in interpreting these findings often arise because the icon sets chosen by re-
searchers are not always representative examples of the characteristics they purport to in-
vestigate. This is particularly true of research examining the effects of icon concreteness.
For example, researchers often chose concrete icons that were more visually complex, as
well as more concrete, than their abstract counterparts (Arend et al., 1987; Green &
Barnard, 1990; Rogers, 1986; Stammers, George, & Carey, 1989). As a result, the de facto
assumption arose that to depict items in the real world a concrete icon had to contain more
detail and would therefore be more visually complex. However, more recent research,
where the concreteness and complexity of icons have been properly controlled, has shown
that icon concreteness and complexity act in very different ways to determine usability
(McDougall et al., 2000).

The assumption with regard to concrete icons that we wished to investigate in this
study is associated with the notion of the visual metaphor that lies at the heart of modern
graphical user interfaces. Concrete icons are thought to be effective in graphical user in-
terfaces because they allow users to draw on correspondences between the real-world ob-
jects they depict and the representations of those objects embedded in the computer
interface (Smith, Irby, Kimball, & Verplank, 1982). In contrast, the meanings of abstract
icons are thought to be less apparent because they typically do not depict objects and, as a
result, associations with the real world cannot be used to facilitate understanding of the
interface. Assumptions about the benefits of employing concrete icons therefore combine
the depiction of items from the real world (i.e., icon concreteness) with the strength of the
relation between the icon and function by assuming that the two will always go together.
However, interface designers often use abstract icons because it is simply not possible to
“pictorialize” a function on an interface in a way that is likely to be meaningful to the
user, that is, stronger icon-referent relations can be produced by using less pictorial repre-
sentations. Thus, in practice, there often seems to be a dissociation between concreteness
and the strength of the icon-referent relation.

In this study, the effects of concreteness and the strength of the icon—referent relation
(henceforth referred to as semantic distance) on usability were considered (see
Blankenberger & Hahn, 1991; Blattner, Sumikawa, & Greenberg, 1989; Familant &
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Detweiler, 1993; McDougall et al., 1999, for further discussion of semantic distance).
One of three sets of icons was presented to participants: concrete, abstract, or arbitrary.
Concrete icons used depictions of real-world items to represent icon functions. Abstract
and arbitrary icons were created so that they were equally nonconcrete but differed in the
semantic distance between icon and referent. Abstract icons had systematic icon-referent
relations (i.e., the semantic distance was less), whereas the visual representations for arbi-
trary icons were randomly chosen (i.e., the semantic distance was greater; see Appendix
A for examples of the icons used). The hope was that, in dissociating the effects of con-
creteness from semantic distance, we would be able to see which icon characteristic was
the primary determinant of usability. If users’ understanding of the interface was better
when using concrete icons, and abstract and arbitrary icons are equally ineffective, then
this would suggest that it is concreteness that is the primary determinant of icon usability.
If, however, abstract icons were more effective than arbitrary icons, then this would sug-
gest that it is differences in semantic distance that are more important in determining icon
usability.

To summarize, this study investigated whether the type of visual information presented
at the interface affected users’ mental models. This was assessed by asking users to carry
out a problem-solving task using either concrete, abstract, or arbitrary icons. Pathfinder
analysis was used to examine how users’ knowledge structures changed as a result of their
experience with the interface. Several measures of performance were also obtained to ob-
serve the relation between users’ knowledge structures and their performance.

2. METHOD
2.1. Participants

Participants were undergraduates from the University of Wales, Swansea, who were given
course credits or paid £10 for their participation in this study. A total of 113 individuals took
part in this study. Fifty-three participants provided subjective ratings of the characteristics of
icons in each of the three icon sets employed in the study so that icon characteristics could be
properly controlled. Sixty participants took part in the experiment. Twenty participants each
used concrete, abstract, or arbitrary icon sets in a series of problem-solving tasks.

2.2. Materials and Apparatus

The experiment was conducted using personal computers equipped with an Intel Pentium
166MHz processor and color monitor. Participants responded to the problem-solving task
using a Microsoft mouse with its track speed set midway between slow and fast. Reaction
time was measured using the system’s multimedia timer, which allows measurement to
within 1 msec. Using a mouse as an input device adds an estimated uncertainty of up to 30
msec to timings obtained (Microsoft Corporation, 1997).

Three sets of 16 icons were used to represent possible solutions to the problems pre-
sented. The majority of the icons in the concrete and abstract sets were newly created for
this study. Abstract icons were derived from the concrete sets but did not include con-
crete, or pictorial, components. The arbitrary icons were selected from the set of 239
icons rated by McDougall et al. (1999), but the original function labels assigned to these
labels bore no relation to the functions employed in the study (hence the arbitrary nature
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of the icon—function relations). The icons in each set and their functions are shown in Ap-
pendix A. Subjective ratings were employed to control icon characteristics between icon
sets. Ratings of the visual complexity, concreteness, and semantic distance of icons were
obtained using the same procedures as those reported by McDougall et al. Ratings for
each of these characteristics were obtained from separate groups of participants: 18 pro-
vided ratings of the visual complexity of the icons, 19 provided concreteness ratings, and
17 provided ratings of semantic distance. Ratings for each icon characteristic were ob-
tained as follows:

1. Concreteness. Participants were told that icons should be regarded as concrete if they
represented “‘real objects, materials, or people” (see Gilhooly & Logie, 1980; Paivio, Yuille,
& Madigan, 1968). Those that did not should be regarded as abstract. A 5-point rating scale
was employed; arating of 5 indicated that the icon was definitely concrete, whereas a rating
of 1 indicated that the icon was definitely abstract.

2. Semantic distance. This measured the closeness of the relation between the icon and
the function it represented. The strength of icon—function relations can vary along a contin-
uum from very close to very distant (see McDougall et al., 1999). Where the icon—function
relation is very weak, users must rely on learning what the icon means to understand and use
it (e.g., a circle with a cross to indicate female).

Participants were shown the icon function next to one of the three possible icons (a full
list of icon functions and matching icons is shown in Appendix A) and asked to rate the se-
mantic distance between icon and function. Participants were asked to use arating of 1 toin-
dicate that icon and function were not closely related and 5 to indicate that they were
strongly related.

3. Complexity. Participants were told that the visual complexity of an icon was deter-
mined by the amount of “detail or intricacy” it contained (see Snodgrass & Vanderwart,
1980). A rating of 5 indicated that the icon was very complex, whereas arating of 1 indicated
that icon was very simple. Because this characteristic was not systematically varied across
sets, care was taken to ensure that icon sets were uniformly complex.

Subjective ratings of icon meaningfulness and familiarity were not obtained because
these characteristics are known to be closely related to icon concreteness (see McDougall
et al., 1999).

The mean ratings and standard deviations for each characteristic of the three icon sets
are shown in Table 1. Three one-way analyses of variance were carried out to examine
differences in ratings of each characteristic among icon sets. Differences were apparent
among icon sets in ratings of concreteness and semantic distance. Newman—Keuls com-
parisons confirmed that concreteness ratings were higher for the concrete icon set (p <
.03) but were similar for the abstract and arbitrary sets (p > .05). Comparisons of seman-
tic distance ratings showed that icon—function relations were significantly closer for con-
crete than for abstract icons and that abstract icon—function relations were significantly
closer than for arbitrary icons. As can be seen from Appendix A, abstract icons related
systematically to their functions whereas arbitrary icons did not. Thus whereas abstract
and arbitrary icons were equally concrete, the abstract icons were better related to the
functions they represented. No differences in visual complexity ratings among icon sets
were evident.
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TABLE 1
Mean Ratings and Standard Deviations of Icon Characteristics for Each Icon Set

Icon Sets
Concrete Abstract Arbitrary
ANOVA & Newman—Keuls
Ratings M SD M SD M SD Analysis
Concreteness 4.08 0.50 2.09 0.38 1.93 022  F(2,45)=109.32, p < .001;

conc > abs =arb
Semantic distance 3.65 0.58 2.53 057 - 117 0.13 F(2,45) = 153.79, p < .001;
conc > abs > arb
Visual complexity 2.64 0.69 248 0.62 2.66 080 F<l;conc=abs=arb

Note. ANOVA = analysis of variance; conc = concrete icons; abs = abstract icons; arb = arbitrary icons.

2.3. Procedure
2.3.1. Problem-Solving Task

Participants were presented with a set of problems that resembled real-world situations. The
task differed from the simpler matching or recognition tasks that are more commonly used to
assess icon usability but was more likely to be analogous to the problem-solving interactions
users have when using a new interface.

Participants were told that their job was to get from A to B as quickly as possible using a
multipurpose vehicle. To do this, however, they would have to deal with a number of obsta-
cles they would encounter along the way and would need to use the icon functions to move
on. For example, participants might encounter a pile of sand in the middle of the road (see
Figure 1a). To continue, participants could use one of three solutions. The sand could be ei-
ther pushed, shoveled, or blown off the road using appropriate icons (see Appendix B for a
full list of obstacles and their icon “function” solutions). To emulate real-world situations,
the number of possible solutions to each problem varied (there were one, two, or three pos-
sible solutions). When participants employed the correct icon to deal with a problem, the
obstacle would disappear from the display (see Figure 1b) and a statement would appear on
the display telling them that the obstacles had been cleared (e.g., ““You have cleared the sand
from the road.”). A new obstacle would then appear on the display.

Participants were encouraged to try to find solutions as quickly as possible to the prob-
lems that they encountered but also to explore alternatives (e.g., chopping or burning a
fallen tree lying across the road). Points were awarded depending on how quickly partici-
pants solved the problems they encountered and the number of different solutions they were
able to discover for each problem.

Problem-solving trials were presented in blocks of 16 because there were 16 types of
obstacles that could be encountered (see Appendix B). A block of trials therefore pro-
vided participants with one chance to solve each problem. There were a total of 22 blocks
of 16 trials. Participants were presented with problem-solving trials over three 1-hr ses-
sions. In the first session, participants were introduced to the task and presented with the
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(a) Sand obstacle in road (b) Sand dispersed after
appropriate icon use

FIGURE 1 Example of problems presented on the Multipurpose Vehicle Interface used in the
experiment.

first block of trials. After a short break, participants then completed trial blocks 2 through
8. In the second session they completed blocks 9 through 15 and in the third session com-
pleted blocks 16 through 22.

The first block of trials differed from subsequent trials because it was the first time ob-
stacles were encountered and participants had to guess which icons might be appropriate.
In addition, because there were only 16 trials, it was only possible to provide one solution
for each problem in this first block. After the first block of trials was completed, partici-
pants were told about the points scoring system because they were now able to explore
alternative solutions to the problems presented. One score was given for the speed with
which participants were able to solve the problem. For each problem solved, participants
gained a total of 25 points, with points being deducted for each second taken. A bonus
score was awarded on the basis of the number of extra solutions discovered for each
problem. Bonus points were scored across a whole experimental session (i.e., trial blocks
2 through 8, 9 through 15, and 16 through 22) because only one solution could be given
in each block of trials.

2.3.2. Performance Measures

Measures of performance obtained from the problem-solving task were as follows:

1. The number of correct solutions to problems at the first attempt. During the first
block of learning trials this was a measure of how easy it was to guess the function of
an icon when it was first encountered. In later blocks of trials, it provided an index of
the extent to which participants had learned icon-function relations in previous
blocks.

2. The number of attempts required for successful problem solving. The number of at-
tempts required reflected the amount of effort required to solve problems.
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3. The time taken to solve problems successfully. This measure also reflects the extent
to which icon—function relations had been learned and how quickly users were able
to deal with the problems they encountered as a result.

The scores participants obtained as a result of the speed at which they solved problems
were not used as a measure of performance, because this was simply another measure of
the time taken to solve problems successfully (i.e., measure 3). Similarly, the bonus
points awarded when users correctly used alternative icon solutions to problems are not
discussed further within the context of this article.

2.3.3. Knowledge Structure Measures

2.3.3.1. Relatedness ratings. As noted previously, participants were able to
gain experience with their icon set over the course of the problem-solving trials. As
they did so, data was obtained about the way in which they perceived the relations be-
tween the problems they encountered and the icons they were given to use to solve
those problems. This was done by asking participants to provide ratings of the related-
ness of all possible pairwise combinations of problems and icon solutions (e.g.,
sand—shovel, sand—blow, sand-accelerate, sheep—go round, sheep—illuminate, and so
on; see Appendix B). A 7-point rating scale was employed to measure the perceived
closeness of icon—function relations. Ratings of 7 indicated a very close icon—function
relation whereas ratings of 1 indicated a very distant relation.

These ratings were obtained at four time points: at Time 1 after users had solved
each problem once, and at Time 2 (after eight problem-solving trials), Time 3 (after 15
trials), and Time 4 (after 22 trials). If participants had an ideal understanding of the
icons to use when they encountered a problem, they would produce high relatedness
ratings for correct icon—function solutions and low relatedness ratings for incorrect
icon—function pairings.

2.3.3.2. Evaluation of knowledge structures using pathfinder.

Pathfinder analysis was used to examine changes in users’ conceptual structures as they
gained experience with the icon set. The analysis was carried out to derive the simplest con-
ceptual structure from the relatedness ratings (g = 31, r = infinity; see Schvaneveldt, 1990).
These conceptual structures were compared with an ideal standard based on the correct pos-
sible solutions given in Appendix B.

Once Pathfinder networks had been obtained, they were compared to the ideal net-
work using the C statistic, a measure of shared links for matching nodes across two dif-
ferent networks (Goldsmith & Davenport, 1990). This provides a measure (ranging
from O to 1) of the degree of association between the two networks. The expectation
was that as participants gained experience with the interface, the relation between the
ideal network and participants’ networks would increase and that this would be medi-
ated by the nature of the interface (i.e., whether participants were using concrete, ab-
stract, or arbitrary icons for problem solving).




162 MCDOUGALL, CURRY, BRUIJN

3. RESULTS
3.1. Performance Measures
3.1.1.  Number of Correct Solutions at the First Attempt

This provided a measure of initial icon “guessability” (in the first block of trials) and of
icon—function learning (in later blocks of trials). As Figure 2 shows, the number of correct
solutions increased steadily as participants became familiar with the interface and gained an
understanding of the functions that icons represented. It should be noted that the pattern of
participants’ performance was influenced by the encouragement they were given to explore
alternative solutions to problems. This produced a cyclical pattern of performance. Correct
solutions were produced most frequently in the first block of trials in a session (i.e., blocks 2,
8, and 15) when participants are providing the first set of solutions to problems. This is fol-
lowed by adip in performance while participants explored other solutions (which were often
incorrect) and a gradual rise toward the end of the session as participants successfully ap-
plied the new solutions they had discovered.

A mixed two-way analysis of variance (ANOVA) was carried out to examine this data
further where the effects of icon set (concrete, abstract, or arbitrary) and user experience
(trial blocks 1 through 22) were considered. The effect of experience was significant reflect-
ing participants’ increasing accuracy over blocks of trials, F(21, 1113) = 21.79, p < .001.
There was also a small, but statistically reliable, difference in accuracy depending on the
type of icon set participants used, F(2, 53) = 3.52, p < .05. Accuracy was higher when partic-
ipants used concrete icons (M = 9.79, SD = 1.26), less when abstract icons were used (M =
8.56, SD = 1.57), and least when arbitrary icons were used (M = 8.49, SD =2.24).

14
12 4

10 4

—&— Concrete
-- @& - - Abstract
~——&— Arbitrary

No. of correct solutions

1 3 5 7 9 11 13 15 17 19 21
No. of blocks of trials

FIGURE 2 The number of correct solutions to problems at the first attempt as users gain experience with
icon sets.
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The interaction between experience and type of icon used was also significant, F(42,
1113)=2.23, p < .001. This was the result of variation in the type of icon that provided the
most accurate performance across blocks of trials. This interaction was examined further
using analysis of simple main effects followed by Newman—Keuls comparisons. The results
are summarized in Table 2. Only those blocks on which significant differences between
icon conditions were found are listed. Although these show the same trend as the main ef-
fect of icon type, some exceptions to this trend were apparent, producing the interaction be-
tween experience and icon type.

3.1.2. Number of Attempts Required to Successfully Solve
Problems

Figure 3 shows that the amount of effort required to find a solution reduced as participants
gained experience with the interface. The number of attempts required, particularly in early
trials, appeared to be determined by the type of icon set participants were asked to use. Those
required to use arbitrary icons needed approximately twice as many attempts to solve prob-
lems successfully as those using concrete icons on the first block of trials. Those using ab-
stracticons also required more attempts on the first block of trials in comparison to those us-
ing concrete icons.

A two-way ANOVA was also carried out on this data to examine the effects of experi-
ence and the type of icon set used on the number of attempts required to solve problems.
Accuracy improved with experience, F(21, 1197) = 22.18, p < .001, and there were dif-
ferences between icon sets, F(2, 57) = 7.32, p < .001. Those using concrete icons took
least attempts to arrive at a correct solution (M = 2.35, SD = 0.07); those using abstract
icons took slightly more (M = 2.65, SD = 0.50); and those using arbitrary icons took most
attempts (M = 3.25, SD = 0.97). A significant interaction was also observed between ex-
perience and the type of icon set used, F(42, 1197) = 4.65, p < .001. The interaction was
examined more closely using analysis of simple main effects followed by
Newman-Keuls comparisons (see Table 3). The interaction appears to result from the
fact that differences between icons sets are greatest during initial learning trials (see
blocks 1, 2, and 3) and are attenuated in later trials.

TABLE 2
Correct Solutions to Problems: Summary of Simple Main Effects Analyses

Newman—Keuls

Number of Block Simple Main Effect Comparisons
i F(2,53)=13.73,p<.001 conc > abs > arb
2 F(2,53)=2248,p < .001 conc = abs > arb

16 F(2,53)=3.59,p<.05 conc > arb

17 F(2,53)=5.50,p< .01 conc > abs = arb

20 F(2,53)=384,p< .05 conc > abs

22 F(2,53)=3.64,p< .05 conc > arb

Note. conc = concrete icons; abs = abstract icons; arb = arbitrary icons.
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FIGURE 3 Number of attempts required to solve problems as users gain experience with icon sets.

3.1.3. Time Taken to Solve Problems

Figure 4 shows that the time taken to find solutions to problems decreased dramatically as
users gained experience with icon sets. It also shows that performance again fluctuated over
each experimental session. Faster times are recorded at the beginning of each session (see
blocks 9 and 16) followed by a slight rise in response times as participants attempted to find
other solutions to problems. Differences between icon sets were less apparent than when ac-
curacy was considered. This may be due to the fact that, irrespective of the type of icon used,
participants adopted a strategy where they quickly selected a variety of alternative solutions
to discover one that was correct.

An ANOVA examining the effects of icon set and experience on response times found
no significant main effect of icon set, F(2, 57) = 0.94. The effects of experience, F(21, 1197)
=81.92, p<.001, and the interaction between icon type and experience, F(21, 1197)=2.04,
p < .001, were, however, significant. Simple main effects analyses followed by
Newman—Keuls comparisons showed that differences between icon types were apparent at
block 2, F(2,57) = 21.00, p < .001, arbitrary > concrete = abstract; and block 14, F(2,57) =
4.36, p < .05, arbitrary > concrete = abstract.

3.1.4. Analyses of Covariance

To compare the effects of concreteness and semantic distance, identical analyses of variance
were carried out on each of the performance measures in which either icon concreteness or
semantic distance was entered as a covariate. When semantic distance was entered as a
covariate, the main effect of condition (i.e., differences between icon sets) was no longer sig-
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TABLE 3
Number of Attempts of Solve Problems: Summary of Simple Main Effects Analyses

Newman-Keuls

Number of Block Simple Main Effect Comparisons
1 F(2,57)=3023, p <.001 arb > abs > conc
2 F(2,57)=3532,p<.001 arb > abs = conc
3 F(2,57)=10.44, p <.001 arb > abs = conc
4 F(2,57)=6.74,p < .01 arb > abs = conc
6 F(2,57)=3.47,p<.05 arb > conc
9 F(2,57)=722,p< .05 arb > abs = conc
14 FQ2,57y=3.17,p= .05 conc > arb
17 F(2,57y=6.30,p< .01 arb > abs = conc
20 F(2,57)=4.17,p < .05 abs > conc
22 F(2,57)=437,p< .05 arb = abs > conc

Note. conc = concrete icon , abs = abstract icons, arb = arbitrary icons.

nificant for either measure of accuracy—number correct at first attempt: F(2,53)=1.56,p>
.05; number of attempts required: F(2, 57) = 0.28, p > .05. No effect of icon set had initially
been observed for the time taken to solve problems, but an interaction between experience
and icon set had been observed. This was no longer apparent when semantic distance was en-
tered as a covariate, F(42, 1197) = 1.00, p > .05.

‘When icon concreteness was entered as a covariate, the main effect of icon set remained
significant for both accuracy measures—number correct at first attempt: F(2, 53)=2.76,p <
.001; number of attempts required: F(2, 57) =4.92, p < .001—as did the interaction between
experience and icon set for the time taken to solve problems, F(42, 1197)=2.17, p > .01.

Taken together, these findings suggest that semantic distance exerts a greater influence
on performance than icon concreteness.

3.2. Knowledge Structure Measures
3.2.1. Relatedness Ratings

Icon usability can be measured by standard measures of performance but can also be evalu-
ated by assessing users’ knowledge of the interface. This was achieved by asking partici-
pants to rate the relatedness of icons and problems (e.g., sand in road—shovel, sand in
road-accelerate). The assumption was that if participants were asked to employ a usable icon
set, they would be more likely to achieve a good understanding of which icons were appro-
priate for a given problem, and ratings between correct icon—function pairings would there-
fore be higher (i.e., approaching 7). Those employing a better icon set should also be more
likely to perceive incorrect icon—function pairings as more distantly related (i.e., approach-
ing 1) than those employing less usable sets. These relatedness ratings formed the basis for
the Pathfinder analysis (see Section 3.2.2.). Ratings to correct and incorrect icon—function
pairings were compared across each of the three experimental icon conditions.

3.2.1.1. Correct icon—function pairings. Relatedness ratings to icon—func-
tion pairings were obtained at four time points: after the first block of experimental trials and,
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FIGURE 4 Time taken to solve problems.

subsequently, at the end of each 1-hr experimental session (i.e., after 8, 15, and 22 blocks of
trials). Figure 5 shows the relatedness ratings obtained for each icon set. The relatedness rat-
ings for correct icon—function pairs appear to be consistently higher for those using concrete
and abstract icons in comparison to those using arbitrary icons.

An ANOVA was carried out to examine the effect of icon set (concrete, abstract, or arbi-
trary) and experience (after blocks 1, 8, 15, and 22) on relatedness ratings. This revealed
significant effects of icon set, F(2, 56) = 27.52, p < .001, experience, F(3, 84) =92.29, p <
.001, and a significant interaction, F(6, 168) = 3.37, p < .01, between the two effects. Simple
main effects followed by Newman—Keuls comparisons revealed that relatedness ratings for
those using the concrete and abstract icons were higher at all time points than for those using
the arbitrary icons (all ps < .05). No differences were found in ratings between those using
concrete and abstract icons (all ps > .05).

3.2.1.2. Incorrect icon—function pairings. Data for the relatedness ratings of
incorrect icon—function pairings were also obtained as a matter of course at the same four
time points. It was assumed that if users had a good understanding of the interface, ratings to
incorrect icon—function pairs would be lower.

An identical ANOVA was used to examine incorrect pairings as was used for correct
icon pairings. Significant effects of icon type, F(2, 452) = 25.75, p < .001, and experience,
F(3, 678) = 231.02, p < .001, were observed. There was also a significant interaction be-
tween these two effects, F(6, 1356) = 21.78, p < .001. Simple main effects followed by
Newman—Keuls comparisons revealed a slightly more complicated pattern of findings than
for correct icon—function pairings (see Figure 5b). After block 1, those using the concrete
and abstract icon sets provided significantly lower ratings than those using the arbitrary icon
set (ps < .05). After blocks 8 and 15, those using concrete icons provided lower ratings than
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those using either abstract or arbitrary sets. After block 22, those using the concrete icons
provided the lowest ratings, those using abstract icons provide significantly higher ratings,
and those using the arbitrary set provided ratings that were significantly higher than both
other groups. The general trend that can be observed in these findings is that those using
concrete icons provide the lowest ratings.

‘When the pattern of findings for correct and incorrect icon—function pairings are consid-
ered together, they suggest that, although those using concrete and abstract icons are just as
likely to perceive correct icon—function solutions, those using abstract icons appear to have
aless clear conception of icon problem interrelationships because they are able to differenti-
ate less clearly between correct and incorrect icon solutions (cf. Figures 5a and 5b).

3.2.2. Evaluation of Knowledge Structures Using Pathfinder

Pathfinder analysis was used to explore differences in users’ conceptual structure as a result
of the icon set they used. The Pathfinder algorithm is a structural and procedural modeling
technique that extracts underlying patterns in proximity data and represents them spatially in
a Pathfinder network. The relatedness ratings, which provided an estimate of the perceived
proximity of an icon and a function, formed the basis of this analysis. The analysis was car-
ried out to derive the simplest proximity structure from the relatedness ratings (g=31, r=1in-
finity; see Schvaneveldt, 1990). Pathfinder solutions for users’ initial conceptualizations of
the relations between problems and solutions are shown in Figure 6 (after the first experi-
mental trial) and their final understanding is shown in Figure 7 (after Trial 22). These solu-
tions represent the understanding on average for users in each icon group.

Obstacles presented in the road (i.e., problems) are shown in the gray-filled conceptual
nodes whereas possible solutions to problems (represented as icons on the interface) are
shown in italics. Full details of problems and their correct solutions are shown in Appendix
B. Links between problems and solutions are shown as filled lines if the link is correct (i.e.,
a correct problem—solution pairing) and as dashed lines if the link is incorrect.

Differences in the initial understanding between those using arbitrary icons in compari-
son to concrete or abstract icons are most apparent. At this stage, arbitrary icon users appear
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to have a minimal understanding of icon functions and, as a result, problem-solution pair-
ings are mostly incorrect.

3.2.2.1. Csiatistic. The degree of association between these networks and the
ideal standard of all possible correct icons solutions to problems (see Appendix B) was cal-
culated using the C statistic in accordance with the following equation:

_ |Av E’gévl B
C(AB)=y% IAv?\fvl /\'\

This defines the similarity, C, between two Pathfinder networks, A and B, where there is
a finite set V of n nodes. The similarity of a neighborhood of a given node in A is compared
with the neighborhood of the same node in B. A neighborhood is defined as the set of items
linked directly to a given node (e.g., the neighborhood of “repair” for concrete icons at Time
118 3—"“bridge,” “tunnel collapse,” and “hole™). The index of similarity for acommon node
in two graphs is the intersection of the node neighborhoods divided by the union of the
neighborhoods. Overall graph similarity is the mean of these n values (for further details see
Goldsmith & Davenport, 1990).

Even at Time 1, there was a considerable degree of commonality between the ideal stan-
dard and networks for concrete and abstract icons users (C = 0.60 and 0.59, respectively).
However, there was little association between arbitrary icons and the ideal network (C =
0.15). At Time 4 there were high levels of association between all icon networks and the
ideal, C(concrete) = 0.79; C(abstract) = 0.82, and C(arbitrary) = 0.77.

<D




A Pt Gder soluhans houiug LSH qroups finad

Conep Fual Z2hous £ the }w;.af—,\g&‘

illuminate

aceelerate

2o left

| go z
] round

{ blow up

FIGURE 7b  Abstract icons Time 4.

170




ASSESSING ICON USABILITY 171

Hluminate

burn

e
;Eg!'zr:g _
Bl @

chop |

| pay

FIGURE 7¢  Arbitrary icons Time 4.

A two-way ANOVA was carried out to examine these differences further. The main ef-
fect of Time (1 vs. 4) was significant, F(1, 32) = 56.49, p < .011, as was the effect of icon
type, F(1,31)=29.24, p < .001. Most important, the Time X icon type interaction was also
significant, F(1, 32) = 18.36, p < .001. This interaction is the result of arbitrary icon users’
poor understanding of the interface at Time 1.

3.2.2.2. Qualitative analysis. Figures 6 and 7 show that, despite having little ex-
perience of the interface, users of concrete and abstracticons gained a very rapid understand-
ing of icon—function relations. Where erroneous links are made, they are plausible in some
cases but not in others. In both concrete and abstract Pathfinder solutions, a plausible link
was made between a hole in the road (“hole”) and “repair” as a solution. When abstracticons
were used, “accelerate” was given as a solution to seven problems, which included accelerat-
ing through a wall, a sheep, and a toll booth. This suggests that users will make what they feel
are plausible links between icons and solutions wherever possible and will sometimes
overgeneralize the use of icons they have found successful to many problems even when
these are not plausible.

By Time 4, the arbitrary icon user group had arrived at a much better understanding of
the interface. However, some misunderstandings remained for all three user groups. All
groups maintained the erroneous assumption that “repair” is appropriate solution to a hole
in the road. This suggests that considerable corrective feedback would be required for users
to change their assumptions about this plausible icon—function relation. In addition, some
solutions still appear to be overgeneralized and used to solve more problems than they were
designed to (e.g., “go round” in the concrete icon set and “blow away” in the arbitrary icon
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set). This is most apparent for problems with multiple solutions (see Appendix B), which
sometimes appear to elicit far too many solutions (e.g., “tree in the road” in the concrete and
arbitrary icon sets and “hole in the road” in the abstract icon set).

These figures illustrate the way in which Pathfinder solutions can help designers to iden-
tify users’ misconceptions about the interface. Because these solutions represent the aver-
aged view across a user group, individual viewpoints are much less likely to influence the
design process.

4, DISCUSSION
4.1. Knowledge Structure Measures

Our findings lend support to the view that the underlying mental structures users develop as
they interact with a system are significantly affected by the way in which information is pre-
sented to them. If different visual information is used to represent the same functions, then
different mental structures are produced.

Pathfinder networks provide a rich source of information for the designer who wishes to
identify precisely where users are failing to learn correct icon—~function links. In both the
initial and later stages of learning, the particular difficulties with each icon set could be eas-
ily seen in the networks. Pathfinder networks are particularly useful for such qualitative
analyses because they are based on the average responses of a group of users and are there-
fore less likely to be biased by individual idiosyncratic responses. They also highlight users’
search for any plausible links between icons and functions. For example, users consistently
made a link between a hole in the road and “repair” as a plausible solution. Although this
was not regarded as “correct” in the interface we presented to participants, designers would
be able to capitalize on their awareness of any unexpected links users were making between
icon and function when creating the next iteration of an interface. By the same token, when
users fail to link an icon with an appropriate function, this could also act as a prompt for fur-
ther design work.

Before using Pathfinder analysis for interface evaluation, however, it is important to as-
sess the costs involved. The amount of effort in obtaining relatedness ratings, or other prox-
imity data, for Pathfinder analysis is considerable. Obtaining ratings even for the simple
interface used in this study involved participants rating hundreds of possible icon—function
pairs at each time point where data was gathered. If one wishes, as we did, to examine users’
knowledge structures after they had gained experience with the interface, then there is also
the time commitment involved in allowing users to gain experience. With existing inter-
faces, however, groups of novices and experts may be compared (see Schvaneveldt et al.,
1985; Wilson, 1994).

Other, more “economical” alternatives might be considered. These include asking users
to name icons (i.e., produce function labels) or to match icons to functions (Nolan, 1989).
For a more fine-grained analysis, users can be asked rate the comprehensibility of an icon
(Rogers, 1986). Although these methods provide an measure of users’ understanding of in-
dividual icon—function relations, they do not provide an overview of their understanding of
the interface as a whole in the way that Pathfinder networks do so effectively. Other meth-
ods such as card sorting or categorization tasks, where users are asked to sort cards with
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icons or function labels on them into similarity clusters, can go some way to providing de-
signers with some of the information available from Pathfinder analysis (Neilsen, 1994).
The disadvantage of these tasks is that they do not provide the “at-a-glance” overview of in-
terface understanding provided via Pathfinder networks. In addition, if the designer feels
that users verbal reports are unlikely to be helpful (e.g., because as novices they do not un-
derstand the interface or as experts they no longer have enough insight into their use of the
system; see Staggers & Norcio, 1993), then use of Pathfinder networks will provide much
needed information about how the interface is being used.

The relatedness ratings that form the basis for the Pathfinder algorithm can be useful in
their own right. Consideration of incorrect icon—function relatedness ratings revealed that
those using abstract icons appear to have a “fuzzier” conception of icon—function relations
when compared to those using concrete icons. This was not apparent in the Pathfinder net-
works. Interestingly, evidence from memory research suggests that conceptualization of ab-
stract words may also be less clear. It has been argued that concrete words, referring to
objects and people (e.g., flower, computer) are more likely to be recalled than abstract
words (e.g., theory, justice). This is thought to be because concrete words are more defini-
tive in their conceptualization than abstract words such as theory and justice, which are less
easy to define (Marschark, Richman, Yuille, & Hunt, 1987). It may be that similar princi-
ples apply to concrete and abstract icons.

4.2. Performance Measures

Consistent differences in users’ performance emerged as a result of the icon set they were
asked to use and the experience they had gained with the interface. Users’ accuracy, the ef-
fort required to solve problems, and the time that they took to do so all improved to asymp-
tote after approximately seven blocks of trials (see Figures 2, 3, and 4). In general, perfor-
mance was best for concrete icons and worst for arbitrary icons. Performance of participants
using abstract icons tended to follow those using concrete icons more closely than those us-
ing arbitrary icons. However, differences in performance between icon sets tended to be
short-lived, and once users had gained alittle experience with the interface, performance dif-
ferences between concrete and abstract icon users, and eventually even between concrete
and arbitrary icon users, disappeared.

These findings suggest that concrete icons are most likely to be useful where users re-
quire an instant understanding of icons such as in public information signs or where icons
are used infrequently (e.g., warnings). The efficacy of concrete icons in these contexts ap-
pears to stem from the close relations between icon and function (i.e., low semantic dis-
tance) at least as much as from the pictorial information they may contain.

4.3. Implications for the Use of the Visual Metaphor

The design of the modern graphical user interface often rests on the implicit assumption that
the use of the visual metaphor carries considerable advantages. The visual metaphor pre-
sumes that depicting icons from the real world increases the strength of the relation between
an icon and its function. As a result, icon concreteness is thought to be closely related to the
semantic distance between an icon and its function. In our study we attempted to dissociate
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these two properties because it is evident that, in practice, abstract icons are often able to pro-
vide stronger icon-referent relations than is possible with concrete representations. In this
study, both abstract and arbitrary icons were equally abstract, but abstract icons had closer
icon—referent relations than arbitrary icons (see Appendix A). Because the concreteness of
abstract and arbitrary icons were equally low, one might have expected users to have encoun-
tered difficulties with both of these icon sets if concreteness was the primary determinant of
icon usability. On all measures, however, performance with abstract icons was better than
for arbitrary icons. This suggests that the closeness of the icon—function relation, rather than
the concreteness of the icons, is the most important determinant of icon comprehensibility
and user performance.

The findings for concrete icons are less clear because these icons differed from the other
icon sets on both concreteness and semantic distance (see Table 1). If we assume that mea-
sures of concreteness and semantic distance vary along a continuum (as suggested by
McDougall et al., 1999), then there is every reason to expect that similar pattern of findings
to those observed for abstract icons if comparisons were to be made between a set of arbi-
trary concrete icons and the concrete set included in this study. Further investigation, how-
ever, is required to obtain conclusive evidence.

Distinguishing an image from the image—function relation is not something that has been
previously addressed in the icon literature. Its importance lies in the fact that it carries sig-
nificant implications for the decision-making process involved in identifying icons suitable
for interface design. If semantic distance, rather than concreteness, is the primary determi-
nant of comprehensibility and performance, this challenges the assumption that metaphors
on the interface need to be primarily concrete in nature. Although renditions of real-world
items may help users in their initial encounters with an interface, forming strong systematic
relations between icons and functions is more important, particularly where there are no
pictorial alternatives for a given icon function.
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APPENDIX A

Icons and Functions for Pictorial, Abstract, and Arbitrary icon Sets

Pictorial Abstract Arbitrary

Accelerate 6}
Bow
Blow up &
Bum
Chop °l
Dumpload g
Go around @:
Go left @
Turminate »,
Pay
Push 1 ,i
R B

Shovel X '
SomdHom )7 & ol
Spray % %-

Suction k ‘ R

%)

S

E
j
4
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APPENDIX B

List of Obstacles and “Functional” Solutions

Obstacle

Tree in road
Heap of sand in
road

Hill in road

Wall across road

Hole in road

Broken road bridge

Snow on road

Smog reduces
visibility on road
Sheep on road
Car on road
Damaged road
tunnel

Flood across road

In dark tunnel
Road toll booth
Tiger in front of car
Tiger at the rear of

car

178

Solution 1

'Push’ off road
"Push’ sand off road

'Go round'

'Go round’
Fill in with 'Shovel'

'Repair’ damage
'‘Burn’ to melt snow
'‘Blow' smog away

'Go round'
Sound Horn'

'Repair'

Use 'Suction' to
clear water
'Nluminate'
'Pay’ A

'Go left'

'Accelerate’

~ Solution 2 Solution 3

‘Burn' ‘Chop' up

'Shovel' sand off '‘Blow' sand off

road road

'Blow up' ‘Dump' heavy load
to get up hill more
easily

'Blow up'

Dump' load into
hole

'Accelerate’ to get
across damage
'Blow' snow off
road

'Spray' smog away

Sound 'Horn'
'Go left'




