
Analysis of the ecological principles underpinning forest landscape restoration: 
A case study of Wood cricket (Nemobius sylvestris) on the Isle of Wight (UK) 

Niels Christiaan Brouwers 

A thesis submitted in partial fulfilment of the requirements of Bournemouth University for the 

degree of Doctor of Philosophy 

April 2008 

Bournemouth University in collaboration with the Forestry Commission and Scottish Forestry 
Trust 



/ 

-d-- 
"-' 

- 

Wood cricket female (top) & male. Scale: 2: 1 

Drawings from Marshall and Haes (1988), with kind permission from Denys W. Ovenden 0 



Analysis of the ecological principles underpinning forest landscape restoration: 
A case study of Wood cricket (Nemobius sylvestris) on the Isle of Wight (UK) 

Niels Christiaan Brouwers 

Abstract 

Current woodland restoration programs are increasingly focussing on the creation of 
habitat networks in order to increase woodland cover and connectivity. However, the 

basic assumptions underpinning such strategies are largely untested for species 

associated with woodland habitat. For many woodland invertebrate species, local scale 

processes are potentially more important than processes operating at the landscape 

scale in terms of species persistence, especially for those species that show high 

dependence on woodland habitat conditions and have limited dispersal ability. The 

applicability of landscape-scale approaches to woodland restoration therefore needed 
to be evaluated in relation to the ecological characteristics of invertebrates. This thesis 

examines these issues and provides a quantitative analysis of the factors influencing 

presence of wood cricket (Nemobius sylvestris) at multiple scales within the landscape. 

The investigation was conducted in woodland habitats on the Isle of Wight in the south 

of the United Kingdom. A landscape-scale survey indicated that wood cricket was 
found predominantly in large woodland fragments situated in close proximity to each 

other, with ancient woodland characteristics and with a high amount of edge habitat. 

The current pattern of distribution of wood cricket suggested that most woodland 
fragments in the agricultural matrix are effectively isolated from each other, indicating 

the importance of maintaining a high level of connectivity between habitats for this 

invertebrate species. 

An investigation within woodlands indicated that locations with permanent low cover of 

ground vegetation, low canopy closure and high availability of leaf litter were the 

preferred habitat conditions for wood cricket. Ride and track edges, woodland 

peripheries and open areas created and maintained by management activities were 

found to be the main habitat locations for wood cricket. It was further found that wood 

cricket was mainly present at permanent edges or in close proximity to these locations, 

indicating the importance of maintaining these habitat features for this species. 
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The mean dispersal rate for dispersing wood cricket obtained from a series of field 

experiments was found to be similar to that of other ground-dwelling invertebrate 

species that were strongly associated with woodland. This level of habitat specialism 

was consistent with the habitat preferences found for wood cricket, and therefore wood 

cricket can be seen as representative of this particular group of wood land-associated 

invertebrates. Comparable to wood cricket, the dispersal ability for species of this 

group was found to be limited. Few individuals of nymph (i. e. juvenile) and adult wood 

cricket populations were found to disperse. Wood cricket was found able to disperse up 
to 55 m into non-woodland habitat and mature habitat corridors were found to be used 
by wood cricket, but not new immature woodland plantings. 

The results of this investigation indicate that the overall success of woodland 

conservation for woodland invertebrates lies in adopting a multi-scale and multi- 

management strategic approach. The current initiatives focussing on restoration and 

re-instatement of traditional management activities within existing woodlands were 
found to be highly beneficial for wood cricket. Corridors were found to facilitate 

movement if suitable woodland habitat conditions were provided. Creation of woodland 
habitat networks might therefore be beneficial for wood cricket if given enough time to 

develop. 

Keywords: woodland, forest, fragmentation, landscape, habitat network, connectivity, 

corridor, scale, dispersal, movement, invertebrates, wood cricket, Nemobius sylvestris, 
Isle of Wight 
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1 Thesis introduction 

1.1 Background 

1.1.1 Scale 

The importance of scale in natural sciences is a recurring point of interest especially in 

ecology (Levin, 1992; Scott et al., 2002). Working across scales is one of the most 
challenging subjects in ecology, such that scale issues could become a primary field of 
research in itself (Wiens, 1989). Choosing the right scale is a key issue in every 

ecological study (Wiens, 1989; Levin, 1992). The scale of a study is primarily 
determined by its research aims (Turner et al., 2001; Morrison, 2002). However, if a 

specific species is the point of interest, then choosing the right scale should primarily 
be informed by understanding the habitat requirement of the study species used. 
Species interactions with and perception of the environment (Levin, 1992; Hanski & 

Gilpin, 1997) as well as relationships between species and environmental factors often 

change across scales (e. g. Wiens, 1989; Morrison, 2002; Bossenbroek et al., 2005). 

However, most studies are conducted at only one often-small spatial scale. Translating 

results obtained at one scale across a range of scales in most cases has proven to be 

unrealistic (Wiens, 1989; Levin, 1992). Addressing this problem should be a focus in 

empirical and modelling studies (Wiens, 2002b), especially in the context of generating 

appropriate tools for conservation management. Ultimately, every study needs to 

carefully define the appropriate scale that will fit the issues or problems the study is 

meaning to address. 

Theory 

In natural sciences, theories are considered the cornerstones for research. Influential 

theories specifically incorporating or based on scale are increasingly the focus of 

attention in ecological applications (Turner et al., 2001). For instance, fractal dimension 

theory (Mandelbrot, 1977) and hierarchy theory (Urban et al., 1987) are being used to 

analyse patterns in landscapes across scales. Another theory increasingly applied in 

ecology is percolation theory (With et al., 1997; McIntyre & Wiens, 1999). Percolation 

theory focuses on how spatial structure of, for example, habitat patches influences the 

level of connectivity within a heterogeneous landscape. This theory can be used to 

extract parameter estimates such as thresholds (With, 2002), for process-specific 
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connectivity over a range of spatial scales (Gardner et al., 1989). Furthermore, in 
conservation management specific key species are often used to inform decisions. Two 
important theories explicitly incorporating a spatial element in relation to species are 
the island biogeography theory (MacArthur & Wilson, 1963; 1967) and metapopulation 
theory (Hanski & Gilpin, 1997; Hanski, 1998). Key features of both theories are based 

on the spatial arrangement of habitat patches related to species diversity, 

presence/absence and persistence. 

1.1.2.1 Island biogeography theory 

Island biogeography theory was developed by MacArthur and Wilson (1963; 1967), and 
is based on the study of species assemblages on islands. The key principles are based 

on the influence of island size and distance from the mainland on species diversity. 

Generally, this theory assumes that large islands sustain more species than smaller 

ones and islands far away from the mainland have fewer species than islands that are 

near. A positive linear relationship exists between species richness and area and a 

negative exponential relationship with distance in this respect. These factors act on the 

rate of immigration and extinction and ultimately determine how many species are 

present in time and space for every individual location (MacArthur & Wilson, 1963; 

1967). These basic principles of the theory were applied and tailored to terrestrial 

environments and have been widely used to inform and direct conservation efforts (e. g. 
Diamond et al., 1976; Bennett, 1999,2003; Freemark et al., 2002). 

1.1.2.2 Metapopulation theory 

Metapopulation theory has increasingly replaced the position of classic island 

biogeography theory in informing conservation efforts (Hanski & Simberloff, 1997; 

Turner et al., 2001; Breininger et al., 2002). However, the basic principles of island 

biogeography form the basis of metapopulation theory (Hanski & Gilpin, 1997; Turner 

et al., 2001). The principal idea of a metapopulation is that landscapes can be 

considered as a matrix of unfavourable habitat surrounding distinct habitat patches that 

sustain local species populations. However, a 'classic' metapopulation structure only 

exists when species dynamics between the habitat patches is such that frequent 

extinction and recolonisation events occur at the level of individual patches (Hanski & 

Gilpin, 1997; Hanski, 1998). The main differences with island biogeography are that 

within a terrestrial landscape metapopulation theory specifically addresses (1) 

interactions between multiple patches instead of one island relative to a primary 
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mainland source, and (2) focuses on the dynamics/persistence of individual species 
rather than overall species diversity (Hanski & Simberloff, 1997). 

1.1.3 Landscape ecology 

Principles derived from a variety of research fields have informed the developing field 

of landscape ecology. Landscape ecology differentiated itself as a distinct sub- 
discipline of ecology when the importance of adopting a cross-scale landscape 

approach in addressing environmental management issues became apparent. 
Landscape ecology specifically addresses the interactions between spatial patterns 

and ecological processes within heterogeneous landscapes, across a range of often 
large spatial scales (Urban et al., 1987; Turner et al., 2001). Although widely applied 

and accepted, landscape ecology still lacks a strong theoretical basis (Wiens, 1992; 

Hanski, 1998; Turner, 2005). Theory development aims at simplifying processes in 

order to identify generalisations relevant to many different situations. When considering 

a landscape, increasing spatial and temporal scales largely increases the number and 

complexity of the processes and patterns involved. This might indicate why the field of 
landscape ecology struggles to produce its own body of theory (Wiens, 2002a). To date 

landscape ecology is restricted to using relevant theory drawn from other intellectual 

fields (Turner, 2005) and this can be considered as one of its main weaknesses, 

potentially undermining its general acceptance in conservation management 
(Gutzwiller, 2002b). Therefore, many authors repeatedly stress the importance of 

producing relevant theory within the field of landscape ecology (e. g. Gutzwiller, 2002a; 

Turner, 2005) to strengthen its position as a subdiscipline of ecological science. 

1.1.3.1 Theory integration 

Landscape ecologists deal with realistic complex landscapes, and focus on 

understanding/analysing landscape structure and the interactions between individual 

landscape features, whereas metapopulation theory focuses on the dynamics of 

individual populations (Hanski, 1998). It is increasingly recognised that considerable 

overlap exists in the basic principles used within the fields of landscape ecology and 

metapopulation biology (Pickett & Cadenasso, 1995; Hanski & Gilpin, 1997; Turner, 

2005). However, landscape ecology and metapopulation biology largely evolved 

independently from each other (Hanski & Simberloff, 1997). Whereas some point out 

the reluctance of landscape ecologists to incorporate basic metapopulation principles in 

their research (Hanski & Simberloff, 1997), others point out the fundamental difference 
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between the two fields in regarding the landscape (Forman, 1995; Wiens, 1997), as the 
main reason for this. Metapopulation ecology essentially views the landscape as 
holding distinct habitat patches embedded within a homogeneous 'hostile' landscape 
matrix, where landscape ecologists try to value all landscape features individually. 
Metapopulation biology clearly is stronger in terms of underpinning theory (Hanski, 
1998). However, landscape ecology seems to have established itself firmly within the 
field of ecology, increasingly by integrating relevant principles and theory from other 
fields (Pickett & Cadenasso, 1995; Turner, 2005). Combining principles developed in 
both metapopulation biology and landscape ecology as well as with theories from other 
scientific fields, shows potential (e. g. in modelling; see With et al., 1997) and should 
become more accepted (Wiens, 1997), especially in terms of better informing 

conservation management strategies (Breininger et al., 2002). 

1.1.3.2 Landscape simplification 

Realistically simplifying the structure of a real landscape is one of the major challenges 
in landscape ecology. The pattern in the landscape is primarily driven by geological 

processes, natural disturbances and most of all, anthropogenic influences (Forman & 

Godron, 1986; Forman, 1995; Pickett & Cadenasso, 1995). Human impacts have, in 

many areas around the world, resulted in increasingly fragmented landscapes (Forman, 

1995). Technological advances in geographic information systems (GIS) and readily 

available satellite imagery have made it possible to easily quantify this landscape 

pattern (Turner et al., 2001). The simplest way to quantify landscape pattern is to divide 

landscapes into distinct patches (e. g. woodland stands) lying within a dominant 

contrasting matrix (e. g. agricultural land). This oversimplification of landscape pattern is 

directly rooted in the island biogeography approach and is the basis of metapopulation 

theory (Hanski & Gilpin, 1997). Another approach often used is to identify additional 

corridor features in the landscape and is referred to as the patch - corridor - matrix 

model (Forman, 1995). In this model, patches are regarded as distinct non-linear areas 

differing from their surroundings (e. g. small woodland patches in an agricultural matrix), 

corridors are linear features in the landscape distinctly differing from their surroundings 

(e. g. hedges or roads), and the matrix is the dominating landscape feature in which the 

patches and corridors are embedded (e. g. agricultural land). This basic simplification of 

the landscape is often used in modelling efforts and as a basis for analysing how 

underlying ecological processes relate to landscape pattern (e. g. Hanski & Gilpin, 1997; 

Scott et al., 2002). However, from a species perspective, differences between matrix, 

patches and corridors as separate landscape features are often not as distinct. 
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Landscapes are more likely to act as a mosaic of different habitats interacting with 
each other (Dale et al., 2000), where each feature has a certain level of suitability for 
each species to exploit and/or move through (Hobbs, 2002). 

1.1.4 Connectivity 

Connectivity can be considered in two different ways. It can be looked at from a purely 
structural/physical or from a functional point of view (Crooks & Sanjayan, 2006). 
Structural connectivity only considers the pattern and the amount of particular 
landscape elements, and therefore focuses on the physical level of connectivity. 
Functional connectivity indicates the level of connectivity based on processes and 
movement of organisms, influenced by the structural configuration of the landscape 

elements. In a fragmented landscape, the amount and the spatial configuration of 
habitat patches determines how they will interact with each other and their 

surroundings. The key element in this respect is the degree of connectivity between 
habitat patches (Forman & Godron, 1981; Bennett, 1999,2003; Crooks & Sanjayan, 
2006). This degree of connectivity determines how well nutrients, materials or energy 
can flow through a system (Forman & Godron, 1986). For functional connectivity, as a 
rule of thumb, if a particular habitat patch is situated close to another similar patch, it is 

likely to be more connected in terms of ecological interactions than if it is situated 
further away. However, the spatial arrangement of habitat patches can be such that 

distances between patches might be large, but small similar habitat fragments situated 
in between act as 'stepping stones' facilitating flows and subsequently increasing the 

degree of connectivity (Forman, 1995). Furthermore, linear features connecting 

patches might also increase connectivity by acting as a conduit/corridor between them 

(Bennett, 1999,2003; Crooks & Sanjayan, 2006). Finally, every landscape feature lying 

between habitat patches will influence the level of connectivity, based on the resistance 
it poses to the process under study (i. e. its permeability) (Hobbs, 2002). This level of 

p ermeability determines to what extent the feature functions as a conduit or poses a 

barrier to the flows in the system. Altogether, this means that hypothetically a habitat 

patch can functionally be more connected to a distant neighbour than to one situated 

closer by. 

29 



1.1.4.1 Species perspective 

In conservation, from a species point of view, one aspect determining the level of 
functional connectivity between habitat patches is how these patches are structurally or 
spatially arranged within the landscape (Bennett, 1999,2003; Crooks & Sanjayan, 
2006). The main goal of conservation is essentially to provide enough habitat for 

species to sustain viable and temporal stable populations. So in a fragmented 
landscape the key questions to be answered are: (i) is there enough habitat available, 
(ii) at what spatial scale can it be exploited, and (iii) can it be accessed by the species 
in such a way that it can sustain a viable population? How species experience different 
landscape features is another issue that has to be determined (Freemark et al., 2002). 
Every feature between habitat patches will influence the level of functional connectivity 
in this respect. A key question in this context is whether the species is willing and/or 
able to exploit and/or move through a particular feature (i. e. how permeable the feature 

is for the species). A component to be incorporated in determining this level of 

permeability of landscape features is the movement strategy of individual species. 
Issues such as how a species moves and how fast it can move through landscape 

components are critical to determine how permeable a habitat feature is for the species 

and if it can be used for dispersal (Turchin, 1998). Incorporating the level of 

permeability in spatially realistic models might highlight the features that need to be 

targeted and improved in this respect. Overall, increasing the level of functional 

connectivity by making the intersecting habitat features more accessible or permeable 
for a species is one aspect that might prove to be an essential focus point for 

conservation efforts (Bennett, 1999,2003; Dale et al., 2000). 

1.1.5 Habitat networks 

Internationally the recent trend in conservation science and practice highlights the 

importance of reversing habitat loss by preserving, expanding and re-connecting 

habitat fragments at a landscape scale in order to halt the continuous decline in 

species diversity. Traditionally, individual habitat patches and/or reserves have been 

managed regardless of the surrounding landscape. However, research has highlighted 

the importance of surrounding landscape features acting upon the processes within 

and between individual reserves (Turner et al., 2001), and the extent of different 

features functioning as conduits or barriers (Hobbs, 2002). Furthermore, insights 

developed in the field of landscape ecology have indicated the potential benefits of the 

development of links or corridors to increase connectivity, reducing the effects of 
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fragmentation (Bennett, 1999,2003; Crooks & Sanjayan, 2006). Therefore, a trend in 
conservation policy and practice has developed focusing on the creation of habitat 
networks (Bennett, 1999,2003; Hobbs, 2002; Bennett, 2004a; Crooks & Sanjayan, 
2006). The principles behind this concept are rooted in the model of distinct habitat 
patches lying within a more-or-less hostile matrix within the landscape. The primary 
aim of this concept is to connect individual patches to such an extent that they can 
interact with each other and form a functional 'network'for species and processes. The 
concept of developing habitat networks is further supported by insights in ecology that 
emphasise the positive role of size and negative role of isolation of habitat patches in 
the wider landscape in terms of species diversity, persistence and occurrence 
(MacArthur & Wilson, 1967; Forman & Godron, 1986; Hanski & Gilpin, 1997; Turner et 
al., 2001). Furthermore, connectivity of habitat patches and the permeability of the 
landscape matrix are considered to be key factors influencing the population dynamics 

of species within fragmented landscapes (Forman & Godron, 1986; Hanski & Gilpin, 
1997; Turner et al., 2001). These insights have resulted in conservation management 
plans increasingly incorporating the 'network' concept across a range of spatial scales. 

Projects following the habitat network approach have been initiated worldwide. Local, 

regional, nation and continent wide plans have been designed and launched (Bennett, 

1999,2003; Vos et al., 2002; Jongman et al., 2004; Crooks & Sanjayan, 2006). An 

excellent review on the background of these initiatives is given by Bennett (1999,2003), 

including a set of current examples (Vos et al., 2002; also see Hobbs, 2002; Bennett, 

2004a; Bennett, 2004b) such as the development of a National Ecological Network in 

the Netherlands (Jongman, 1995). Designing and implementing network projects often 
becomes more difficult with an increasing scale (Hobbs, 2002), mainly because of the 

increasing number of stakeholders involved. Nonetheless, in Europe, a growing 

number of countries including the United Kingdom, have committed themselves to a 

landscape-scale approach to conservation of natural resources under the European 

Landscape Convention (Council of Europe, 2007). Similar commitments have been 

made focusing on sustainable management of forests (MCPFE, 2003). To date, 

several continent-wide habitat network schemes have been initiated under the 

Convention, including the Pan-European Ecological Network and the Emerald Network 

(Council of Europe, 2007; Jones-Walters, 2007) and forests are incorporated as an 

integral part of these networks. 
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1.2 Woodland conservation in the United Kingdom 

In the United Kingdom, woodland conservation is currently focusing on efforts to 
reduce and reverse current fragmentation and habitat loss (Peterken, 2002). This has 
resulted in the development of several policy initiatives focusing on the concept of 
creating Forest Habitat Networks (FHN) (Humphrey et al., 2005). These initiatives 
support the development of new woodland designed to link existing woodland patches 
or fragments together (Peterken, 2002; Humphrey et al., 2005). This is based on the 
belief that creating new native woodland on strategic locations reduces the negative 
effects of habitat fragmentation on woodland biodiversity by providing links and 
9 stepping stones' between isolated populations of woodland species (Spellerberg & 
Gaywood, 1993; Kirby & Rush, 1994; Peterken, 1995; Kirby, 1995). 

One of the main conservation initiatives in the UK is the Biodiversity Action Plan (UK 
BAP) (Bendall et al., 1994; UK BAP, 2008). This initiative identifies several ancient 
woodland types as priority habitat for conservation. Over 30% of all individual species 
mentioned in the UK BAP are related to woodlands and are indicated as target species 
for conservation (Forestry Commission, 2005). The England Forestry Strategy (EFS) 

(Forestry Commission, 1998) and the revised UK Forestry Standard (Forestry 

Commission, 2004) point out that many of the UK's native ancient and semi-natural 

woodlands are fragments of historically more extensive woods. Restoring and 
increasing the total amount of woodland area is therefore one of the main conservation 
targets in the UK (Forestry Commission, 2004). As a result, one of the objectives 
identified in these policy initiatives is to target grants through the England Woodland 

Grant Scheme (EWGS) (Forestry Commission, 2006a) and the Environmental 

Stewardship (Rural Development Service, 2005) to reverse the negative effects of 
habitat loss and fragmentation by promoting the creation of new woodland, expanding 

existing ancient and native woodlands (Defra, 2005). Careful planning and targeting 

suitable areas for restoration is a key element of achieving these policy goals (Petit et 

al., 2004; Lee & Thompson, 2005). 

The targeted approach in the development of habitat networks was adopted by the 

Forestry Commission and resulted in the 'JIGSAW' Challenge (Joining and Increasing 

Grand Scheme for Ancient Woodlands) (Forestry Commission, 2005), which was an 

initiative developed under the Woodland Grand Scheme (WGS) (Forestry Commission, 

2003). To contribute to sustainable forest management, this initiative implemented 

landscape ecological principles by funding the expansion and linkage of semi-naturai 
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woodland in key areas of special conservation concern (Forestry Commission, 2005). 
This initiative together with the WGS is now included in the EWGS. A further aim is to 
restore planted ancient woodland sites (PAWS) by removing non native tree species in 
order to preserve their remaining ancient characteristics and biodiversity (Defra, 2005). 
The Forestry Commission has included similar targets in their long-term Forest Design 
Plans (Forestry Commission, 2007), aiming at restoring Forestry Commission 
woodlands on historical ancient woodland sites. The Woodland Trust has adopted 
similar approaches in their strategic conservation policy, which refers to increasingly 
incorporating a landscape-scale approach in their conservation efforts (Woodland Trust, 
2003). To support this initiative, in 2004 the Woodland Trust organised an international 
conference in collaboration with the International Association for Landscape Ecology 
(IALE (UK)), which focused on the landscape ecology of woodlands (Smithers, 2004). 
Throughout the UK, landscape-scale strategies are being adopted in numerous local 
initiatives (Humphrey et al., 2003) and are presently the main mechanism for reversing 
the negative impacts of woodland habitat fragmentation. 

Although the value of restoring, expanding and linking woodland fragments has a 
strong theoretical basis, little empirical evidence is available to support the application 
of these principles in practice (Bennett, 1999,2003; Dolman & Fuller, 2003; Bailey, 
2007). This raises the question whether current policy and related strategic plans and 
initiatives are going to deliver their intended results, and highlights the need for more 
empirical studies on species and communities particularly across a range of spatio- 
temporal scales (Wiens, 2002b). Furthermore, research is lacking on the factors 

influencing movement of woodland species at the landscape scale (Dolman & Fuller, 

2003). The basic aim behind reversing the effects of fragmentation and creating habitat 

networks is to increase connectivity, which is assumed to be beneficial for species 

persistence by enhancing migration between populations (Bailey, 2007). However, 

Bailey (2007) also stresses the need to further strengthen the empirical evidence base 

for the development of habitat networks in order to decide what management strategy 
is likely to provide the highest conservation return. How woodland species move 
through the landscape is a key question that needs to be addressed in this respect. 
However, the understanding of and factors acting on the dispersal ability of many 

woodland taxa are still poorly understood (Dolman & Fuller, 2003). This lack of 
knowledge stresses the need to test the assumptions on which current conservation 

management and policy is based. 
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1.3 Project outline 

1.3.1 Project objectives 

1. To review the empirical evidence regarding the dispersal ability of different 
species and functional groups of organisms, in relation to their ecological traits 

and the characteristics of wooded landscapes. 
2. To analyse the key factors influencing species colonisation of woodlands, with 

particular reference to processes operating at the landscape scale, through a 
programme of field-based research. 

3. To examine the potential impacts of current approaches to development and 
management of wooded landscapes on species composition. 

1.3.2 Context 

Species greatly differ in their habitat needs. Relatively small animal species often use 
habitats at small spatial scales, only needing a few different resources during their, 

often short, life-cycle. Large animals generally live longer and operate at large spatial 

scales, utilising a wider array of resources compared to smaller species. Conservation 

efforts therefore require information on the amount and distribution of habitat that is 

necessary for a particular species at a variety of different spatio-temporal scales. 
Furthermore, our understanding of the dispersal abilities of many taxa is severely 
limited (e. g. Bowne & Bowers, 2004) and the mechanisms that contribute to low 

dispersal are often poorly understood Jurchin, 1998; Dolman & Fuller, 2003). Studies 

on large mammals and birds account for the majority of previous investigations (Scott 

et al., 2002; Bowne & Bowers, 2004); however these species are relatively mobile and 

are therefore capable of readily crossing unsuitable areas (matrix) to reach their 

preferred habitat patches. To address these issues for woodland species, Dolman and 

Fuller (2003) suggest that more studies are necessary on a variety of woodland taxa to 

provide a firmer basis for current management strategies. Specifically studies on 

woodland invertebrate species are underrepresented in the scientific literature 

(Mazerolle & Villard, 1999; Bowne & Bowers, 2004). 

Previous research has indicated that woodland invertebrate specialist species show a 

decline in species diversity with an increase in habitat loss and subsequent 

fragmentation (Niemel6 et al., 1988; 1-6vei & Cartellieri, 2000; Magura et al., 2001; 

Barbaro et al., 2005). Whereas generalist species generally use both habitat inside and 
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outside woodlands (Magura et al., 2001), woodland specialist species often 
demonstrate very specific habitat requirements and therefore occupy only very specific 
habitat niches within the interior of woodlands (Ranius, 2002). This makes them 

vulnerable to changes in their environment specifically because of their often low 
dispersal ability (Magura et al., 2001; Ranius & Kindvall, 2006). Species intermediate in 
their degree of habitat specialism but limited in their dispersal ability have largely been 
ignored as study species in previous research, but might benefit most from current 
conservation efforts (Bailey, 2007). Developing habitat networks by linking woodland 
fragments with corridors is unlikely to facilitate dispersal of species that are dependent 

on woodland interiors, at least in the short term (Dolman & Fuller, 2003). However, it 

might potentially benefit species that are not able to cross a hostile matrix (e. g. arable 
land) but can traverse through relatively new woodland and/or semi-natural habitat 
(Bailey, 2007). How the intermediate group of relatively immobile woodland species 
utilise the landscape remains a gap in knowledge that needs to be addressed. 

1.3.3 Choice of experimental species 

To address this gap in knowledge, a suitable study candidate needed to be identified. 

An initial meeting with local stakeholders and specialists held on the Isle of Wight on 
the 4 th of April 2005 resulted in a shortlist of candidate species. In this meeting, it was 

recognised that woodland invertebrates were a good candidate group for study. These 

species are a dominant and important group within woodland ecosystems, for example 
by serving as a food source for many other woodland organisms (Warren & Key, 1991). 

A further meeting with a local entomologist (Adam Wright; Ventnor, Isle of Wight) 

resulted in a shortlist of candidates extracted from the BAP species list for the Isle of 
Wight (Isle of Wight Biodiversity Action Plan Steering Group, 2000). The candidate 
invertebrates were selected following a set of criteria based on the species 

characteristics and known distribution on the island. The following selection criteria 

were used in order of decreasing importance: the species had to (1) be affiliated with 

deciduous woodland for most of their life-cycle, (2) have restricted dispersal ability, (3) 

be of national and/or local conservation concern, and (4) be present in sufficient 

numbers in order to permit experimental analyses. Additionally, to increase the time for 

conducting experiments, species with a relatively long lifespan were preferred over 

species with a short activity window. The final selection of the candidate species was 

based on a literature review to verify if all criteria would be met. 
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The species that was selected meeting all these criteria was the woodland invertebrate 
species, the wood cricket (Nemobius sylvestris). Wood cricket are bound by their life- 
cycle requirements to woodland habitat, because it needs a well-developed leaf litter 
layer to reproduce (Brown, 1978). Wood cricket have restricted dispersal ability, being 

small and flightless (Richards, 1952). These characteristics suggest that it is a species 
that might be expected to benefit from the existence of a wooded habitat corridor in 

order to move between habitat patches. In the UK the species is classified as nationally 
scarce and is both nationally and locally designated as a Species of Conservation 
Concern (Isle of Wight Biodiversity Action Plan Steering Group, 2000; NBN Gateway, 
2007). Furthermore, when present at an area where habitat conditions are suitable, 
population densities are often high (Gabbutt, 1959). This is especially beneficial in 
terms of being able to locate, catch and use individual specimens for more detailed 

study without having a significant impact on their overall population persistence. In 

addition, the constant stridulation of the males in the summer makes it easy to quickly 

establish their presence at a woodland site (Proess & Baden, 2000). 

1.3.4 Wood cricket (Nemobius sylvestris) biology 

Wood cricket can be considered as intermediate between woodland generalist and 

specialist species. It is not a woodland specialist per se, in that it is not restricted to a 

small habitat niche in the interior of woodlands but is predominantly found on wooded 

edges (Richards, 1952). During their entire life-cycle, wood cricket can be found in 

wooded areas within a matrix of open and closed canopy habitat. Wood cricket lives on 

the ground and is strongly linked with, but not restricted to, deciduous and often oak- 
(Quercus spp. ) dominated woodland. Wood cricket prefers a well-developed leaf litter 

layer that is used for shelter and serves as food source, although the species is 

omnivorous (Richards, 1952; Gabbutt, 1959; Proess & Baden, 2000; Koehler & 

Samietz, 2006). Viable wood cricket populations are restricted to locations with a well- 

developed leaf litter layer, which is used as a breeding ground and as a nursery (Brown, 

1978) (see Appendix III). 

Both Gabbutt (1959) and Brown (1978) studied the life-cycle of wood cricket in the UK. 

In Britain, wood cricket has a two-year (semi-voltine) life-cycle involving two 

overwintering stages. The life-cycle includes eight nymphal (i. e. instar) stages. In the 

first year from August to November, adult wood cricket lay their eggs in the soil 

beneath the litter layer after which the eggs go into diapause and overwinter. The next 

year in late June, the eggs hatch and the juveniles (i. e. nymphs) develop throughout 
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the summer and autumn by means of moulting up to the 5/6 th instar stage. Moulting 
ceases completely in September where the nymphs will overwinter finding shelter in 
the litter layer. The second year of its development starts in spring, where the nymphs 
continue to develop from April onwards. After the last instar stage (8 th), the first adults 
appear in July/August and are reproductively active through to September/October. 
Occasionally adults overwinter, however are unable to reproduce and soon die-off in 
the following spring. This semi-voltine life-cycle results in the coexistence of nymphs of 
the 1 st - 5/6 th instar and adult wood cricket during the second half of each summer. The 
adult wood cricket grows up to approximately 0.9 - 1.1 cm in body size, males being 
always slightly smaller than females (Richards, 1952) (see Appendix 111). They are 
unable to fly and move by way of walking or hopping (Richards, 1952). The male adult 
wood crickets produce a soft chirping sound (stridulation) by rubbing their wing remains 
together. This stridulation is associated with territorial and competitive behaviour 

amongst the males and is also thought to have an attracting effect on female wood 
crickets (Richards, 1952). The produced sound is very characteristic and is easily 
distinguishable from grasshoppers and other crickets (Proess & Baden, 2000). 
Furthermore, this stridulation is readily audible from 15 OC and above and is produced 
both during the day and during the night (Richards, 1952). 

1.3.4.1 European distribution 

Wood cricket is found both on mainland Europe and Britain (including the Isle of Wight) 

indicating that it was probably already present on the UK mainland before separation of 
the landmasses, which took place more than 7000 years ago (Scaife, 2003). In Europe 

the species is widespread from the Mediterranean to northern Europe, reaching its 

Northern limit in the United Kingdom, Holland, Germany and Poland (Chinery, 1977; 

Brown, 1978; Marshall & Haes, 1988; Wallaschek, 1997). In the UK wood cricket was 
first recorded in the New Forest (Richards, 1952; Marshall & Haes, 1988). The species 

is found in three main areas in the South of Britain (Marshall & Haes, 1988). The 

largest continuous area where wood cricket is found is in the New Forest (Hampshire), 

the other locations being South Devon and the Isle of Wight (Marshall & Haes, 1988; 

NBN Gateway, 2007). 
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1.3.5 Study area 
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Figure 1: The woodland fragments on the Isle of Wight. Derived from digital maps based on the 

National Inventory of Woodland and Trees (NIWT) (Smith & Gilbert, 2003). 

The research was undertaken on the Isle of Wight situated between 500 39' N, 10 35W 

and 500 40' N, 1' 04'W in the South of the United Kingdom (Figure 1). Selection of this 

study area was based on the following criteria. The study area needed to provide a 

landscape characterised by the impacts of fragmentation, with a range of different 

native woodland fragments varying in size and degree of isolation (Figure 1). 

Furthermore, the area needed to be a targeted site of active woodland restoration and 

reforestation. For wood cricket, only three candidate areas were available, and of these, 

only the Isle of Wight met all of the criteria. The fragmented structure of the landscape 

on Isle of Wight made it ideal for a landscape-scale research approach (Figure 1). It 

was further selected because the area was one out of eight key areas receiving special 

conservation efforts regarding woodland creation targeted under the 'JIGSAW' scheme 

(Forestry Commission, 2005) and has since been the focus of ongoing conservation 

management involving woodland habitat restoration and expansion (Forestry 

Commission, 2006a). A number of woodland areas scattered over the island were 

specifically targeted in order to increase connectivity between woodland fragments 

(Quine & Watts, 2007), making these sites ideal for more detailed study on the 

dispersal abilities of wood cricket. Additionally, the majority of woodland sites on the 
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Isle of Wight supporting wood cricket populations have some form of national 
protection status (NBN Gateway, 2007). Further benefits of working on an island using 
a flightless species were the exclusion of the effects of immigration from external 
population sources. For this species, the island can be considered as a closed system 
where populations are only affected by processes working at the scale of this island. 
Overall, this situation provided an excellent opportunity for research focusing on scale 
issues and testing the potential effectiveness of current conservation efforts. 

The total surface area of the Isle of Wight is 388 kM2 (estimated in ArcGIS 9.1; ESRI, 
Redlands, California, USA). The area is characterised by a temperate climate with a 
distinct oceanic influence. Mean maximum temperatures in the warmest month lie 
around 20 'C and mean yearly minimum temperatures around 7.5 OC (Simmons, 2003). 
The Island boasts high averages of sunshine of around 5 hours daily (Simmons, 2003), 

making it a 'hot-spot'for Orthoptera (Marshall & Haes, 1988). Mean rainfall levels lie 
between 700 and 900 mm per annum, dependant on the topographical location on the 
island (Simmons, 2003). The underlying geology of the northern half of the island is 
dominated by Tertiary clays and the southern part by Lower Greensands (insole, 2003). 
A central Chalk ridge divides the northern and southern part of the island. The soils in 
the southern half are light sandy and well-drained, whereas the northern soils are 
mainly poor draining heavy clays and silts (Insole, 2003). These characteristics make 
cultivation difficult, hence most native woodlands are situated/survived on the northern 
half of the island (Insole, 2003). 

The landscape matrix is dominated by urban and agricultural land with a scatter of 

woodland patchily distributed across the island (Figure 1). The total woodland area 
including recent new planted sites currently covers 51.2 kM2 (5120 ha) or 13% of the 

island surface. Following the classification of the 'Ancient Woodland Inventory' (English 

Nature, 1998 - 2006; Smith & Gilbert, 2003), based on continuous woodland cover 

since 1600 AD, of the total woodland area, 68% of the woodlands on the island are of 

secondary origin. The remaining 32% still retain ancient woodland characteristics, of 

which 17% is classified as ancient semi-natural woodland (ASNW) and 15% as planted 

ancient woodland sites (PAWS) (i. e. planted with non-native, mainly coniferous, tree 

species) (all percentages estimated in ArcGIS 9.1, ESRI, Redlands, California, USA). 

Historically, the vegetation on the northern half of the island was dominated by 

deciduous woodland and flower-rich meadows, and the southern half by extensive 

heathland and acidic wetland vegetation (Pope, 2003). At present only small fragments 

of semi-natural habitat remain in the predominant agricultural matrix. The presence of 

39 



open woodland species such as Narrow-leaved Lungwort (Pulmonaria longifolia) and 
Wood Anemone (Anemone nemorosa) indicate that the majority of woodlands on the 
island historically were coppiced, however this practice has been mostly abandoned 
(Pope, 2003). The current deciduous woodlands in the northern half are dominated by 
Pedunculate oak (Quercus robur) and Ash (Fraxinus excelsior), with frequent 

occurrence of Field maple (Acer campestre). In the southern half Pedunculate oak 
(Quercus robur) with Birch (Betula spp. ) and bracken undergrowth are dominant, and 
Willow (Salix spp. ) and Alder (Alnus glutinosa) are frequent in the woodlands situated 
on the more humid soils around the river valleys (Pope, 2003). 

1.3.6 Single species approach 

The decision to investigate a single species rather than multiple species was based on 
a number of factors. This choice was informed by following a reverse planning strategy, 
which is a useful approach for planning ecological field studies (Sutherland, 2006). This 

strategy involves a process of systematically assessing what is necessary to reach the 

objectives of the study and most importantly, what is possible in terms of the time that 

is available (Sutherland, 2006). The key topics that had to be addressed in this project 

were landscape-scale processes acting on species colonisation and related ecological 
traits, such as dispersal, that influence colonisation in wooded landscapes (see 1.3.1 

Project objectives). First and foremost, landscape-scale surveys and dispersal studies 

are known to be highly time consuming Jurchin, 1998). Therefore, these time 

restrictions had to be considered in order to design appropriate and realistic census 

strategies to address the key topics of this project. Many species particularly restricted 

to woodland habitat are often so specialised that they only inhabit a small niche and 

occur in small numbers, making individuals difficult to locate and posing particular 

challenges for detailed study (Ranius, 2006). When assessing multiple woodland 

species, rapid surveys are therefore impossible and this poses restrictions on the scale 

of the study, in terms of the area that can be included. The possibility of including more 

species simultaneously within a study could potentially be achieved when examining 

highly specialised species inhabiting one specific habitat substrate (e. g. Rukke, 2000; 

Ranius, 2002). However, because dispersal traits are generally highly species-specific, 

detailed studies on dispersal still need to be carried out on individual species Jurchin, 

1998; Ranius, 2002). Assessment of the dispersal ability of a species needs in depth 

knowledge of their biology Jurchin, 1998). Therefore, dispersal studies are recognised 

to be very time consuming and often difficult to perform Jurchin, 1998). 
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Furthermore, using a single species has the great benefit of being able to examine both 
patterns and processes in greater depth (e. g. Ranius, 2000b; Berggren, 2001). Single 
species can be used to investigate species traits and factors affecting species dispersal 
ability and colonisation across a range of scales (Ranius, 2000b; Berggren, 2001). 
Multi-species studies lack this possibility of in-depth exploration of movement traits, 
especially across different scales. Performing research across a range of scales makes 
it possible to identify at what scale a particular process operates and permits an 
evaluation of its importance in terms of conservation efforts. However, it is recognised 
that a single species study should not be the sole basis of informing management 
actions (James & McCulloch, 2002). The particular limitation of single-species studies 
is that the results obtained may have limited wider applicability. However, by comparing 
findings of similar studies, generalisations can be made by identifying groups of 
species with matching habitat preferences that operate at similar scales and in similar 
ways. In the current investigation, this was achieved by undertaking a systematic 
review, focussing on identifying groups of woodland invertebrates living in temperate 
forest ecosystems that were similar to wood cricket in terms of habitat preferences and 
dispersal ability. 

1.4 Thesis structure 

1.4.1 Work sequence 

Studies on wood cricket examining the factors influencing its distribution across a 

range of scales and its dispersal ability through different habitats outside and within 

woodlands have never been conducted previously. In fact, such an integrated 

assessment of factors affecting movement has rarely been undertaken with any 

woodland invertebrate species. 

At the outset of the investigation, the available information of wood cricket presence on 
the Isle of Wight was scattered and largely outdated (NBN Gateway, 2007). Therefore, 

a survey was carried out in the summer of 2005 to determine the landscape-scale 

distribution of wood cricket focusing on the woodland fragments present on the Isle of 

Wight. After establishing their presence and absence at the landscape scale, a study 

was conducted in 2006 focusing on three separate woodland fragments aimed at 

analysing the factors influencing their distribution at fine scales within woodlands. To 

provide a wider context for this study, in 2006/2007, a systematic review of the 

literature was conducted with the aim to identify similarities between wood cricket and 
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other wood I and-associated species focussing on their habitat specialism and related 
dispersal ability. Finally, informed by the findings of the systematic review, in 2007, a 
series of experiments were undertaken to examine the dispersal ability and role of 
specific factors influencing movement and dispersal of wood cricket within features 

represented by a wooded 'network' landscape. The overall rationale behind the 

research strategy/sequence described here was to examine processes and factors 
influencing dispersal ability of wood cricket across a range of different spatial and 
temporal scales, informed by observations made in the field. The ultimate aim of this 

strategy was to understand the processes influencing wood cricket distribution and to 
inform conservation efforts, specifically the design of woodland habitat networks. 

1.4.2 Chapter outline and aims 

Chapters 2-6 are structured as individual papers that will be submitted for publication 
in scientific journals (see Appendix 1). The original project objectives of this study (1.3.1 

Project objectives) are addressed as follows. Each chapter presented in this thesis 

addresses one or a specific part of the original project objectives. For each chapter, 
these objectives were translated into specific aims matching the context of the 

individual investigations and species used. Objective 1 is addressed in Chapter 4; 

Objective 2 is addressed in Chapters 2,3,5 & 6; and Objective 3 is addressed in 

Chapter 7. The individual aims addressed in Chapters 2-7 are listed below. 

Chapter 2 focuses on the landscape scale distribution of wood cricket addressing the 

following aims: 
1. To determine the landscape scale distribution of wood cricket on the Isle of 

Wight. 

2. To test the relationships between wood cricket presence/absence and (a) patch 

area, (b) isolation (i. e. Euclidean distance) (c) measures of habitat availability, 

and (cl) patch age. 

3. To develop a deterministic model for wood cricket presence. 
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Chapter 3 focuses on habitat requirements and the distribution of wood cricket within 
woodlands addressing the following aims: 

1. To test the relationships between wood cricket presence/absence and (a) 
ground habitat (i. e. leaf litter depth and volume), (b) vegetation structure (i. e. 
ground vegetation cover, vegetation height, canopy closure), and (c) isolation 

measures (i. e. Euclidean distance). 
2. To develop a deterministic habitat suitability model. 

Chapter 4 presents a systematic literature review of empirical evidence on movement 
rates of woodland invertebrates addressing the following aims: 

1. To systematically identify studies within the published scientific literature 

providing direct measures of movement for woodland invertebrate species. 
2. To examine whether ground-dwelling woodland invertebrates can be grouped 

based on movement rate (m day-) (i. e. dispersal ability) and habitat specialism. 
3. To examine the relationships between movement rate, body size and habitat 

specialism. 

Chapter 5 focuses on the movement strategy of wood cricket nymphs and adults 
through different ground surface habitats addressing the following aims: 

1. To explore the movement strategy of wood cricket nymphs and adults under 
different ground cover conditions. 

2. To determine the rate of movement for both nymphs and adults under different 

ground cover conditions. 
3. To determine the preferred ground cover/habitat of both adults and nymphs 

when presented with a choice. 

Chapter 6 focuses on factors influencing dispersal of wood cricket addressing the 

following aims: 
1. To model empirically the dispersal of wood cricket nymphs and adults (males 

and females). 

2. To determine to what extent wood cricket nymphs and adults (males and 

females) move along corridors and through sub-optimal habitat. 

3. To determine what factors influence their choice of habitat. 

4. To determine whether wood cricket nymphs and adults (males and females) 

can cross a water barrier. 

5. To what extent adult wood cricket are able to orientate themselves in the 

landscape. 
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Chapter 7 integrates and discusses the results of chapters 2-6 and focuses on 

assessing whether current woodland management initiatives and policy are appropriate 
for the conservation of wood cricket and similar woodland invertebrate species. The 

aims addressed here are: 
1. To determine the appropriate scale for conservation directed at wood cricket 

and associated invertebrate species. 
2. To evaluate the potential gain of creating forest habitat networks for wood 

cricket and associated species. 
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2 The influence of habitat and landscape structure on the 
distribution of wood cricket (Nemobius sylvestris) on the Isle of 
Wight, UK 

2.1 Introduction 

In recent years, many habitats and species have been subjected to increasing 

anthropogenic pressure. Activities such as agricultural intensification and exploitation of 
natural resources have resulted in substantial habitat loss and fragmentation of natural 
habitats (Forman & Godron, 1986; Andr6n, 1994; Forman, 1995; Pickett & Cadenasso, 
1995), which are both increasingly being recognised as principal drivers of worldwide 
biodiversity loss (Hanski, 1998; Fahrig, 2003). These effects are typically evident at the 

landscape scale, with many landscapes now being characterised by a mosaic of 
different agricultural land use types, often with fragments of native habitat embedded 

within them. Examples of historic and ongoing fragmentation acting on natural habitats 

include the tropical rainforest landscapes in Amazonian Brazil (Michalski & Peres, 

2005), south temperate and tropical montane forests (Newton, 2007), the Rocky 

Mountains (Reed et al., 1996) and the fragmented woodlands in the British countryside 
(Peterken, 2000; Smith & Gilbert, 2003). 

In a fragmented landscape, the biodiversity supported in remnants of natural habitat is 

commonly influenced by the quality and amount of habitat available within individual 

habitat fragments, and the spatial configuration of the fragments within the landscape 

(Andr6n, 1994; Fahrig, 2003). In terrestrial environments the most common 

relationships explored for predicting species diversity at the landscape scale are based 

on fragment or patch area and measures of connectivity, and a substantial body of 

literature is now available highlighting such relationships (Andr6n, 1994; Mazerolle & 

Villard, 1999; Bennett, 1999,2003; Ewers & Didham, 2006; Bailey, 2007). Many 

studies have recorded a positive relationship between species diversity and fragment 

area and a negative relationship between diversity and the level of isolation. Both of 

these relationships are consistent with island biogeography theory (MacArthur & Wilson, 

1963; 1967). However, these relationships vary in their precise response and degree of 

significance among and within different taxonomic groups, primarily because of 

variation in habitat specialism and the level of permeability of the matrix for different 

groups of organisms (MacArthur & Wilson, 1967; Andr6n, 1994; Mazerolle & Villard, 

1999; Bennett, 1999,2003; 1-6vei et al., 2006). For instance, in a study conducted in 
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the Carpathians (Hungary/Ukraine) on the effects of forest fragmentation, Magura et al. 
(2001) found that the total number of generalist carabid beetle species decreased with 
the size of the forest fragments, whereas for specialist carabid diversity this relationship 
was positive. They further found that the number of generalist species increased with 
isolation, whereas the number of specialist species decreased. 

While the majority of previous investigations have focused on relatively mobile large- 
bodied species (e. g. vertebrates and birds; (Andr6n, 1994)), a substantial body of 
literature has also developed examining the diversity and abundance of relatively small 
ground-dwelling woodland invertebrates in fragmented landscapes (e. g. NiemeI6 et al., 
1988; Usher et al., 1993; Margules et al., 1994; Didham, 1997; Mazerolle & Villard, 
1999; L6vei & Cartellieri, 2000; Jukes et al., 2001; Magura et al., 2001; Barbaro et al., 
2005; Debuse et al., 2007; Bailey, 2007), mainly focussing on woodland carabid 

assemblages. From these studies, a number of patch characteristics in addition to 

patch area have been found to influence species diversity, including within-patch 
habitat availability (Mazerolle & Villard, 1999; Jukes et al., 2001; Barbaro et al., 2005), 

amount of edge (Didham, 1997; Barbaro et al., 2005), patch shape (Usher et al., 1993; 

Magura et al., 2001; Barbaro et al., 2005) and patch age (Jukes et al., 2001). In these 

studies, various combinations of patch variables together with patch area and 

measures of isolation explained the variation in beetle diversity within woodland 
fragments. 

Relatively few studies have assessed the factors influencing the presence/absence of 

individual species within fragmented wooded landscapes (Andr6n, 1994; Mazerolle & 

Villard, 1999; Bailey, 2007). In particular, studies on the distribution of invertebrate 

species at the landscape scale are underrepresented in the literature (Mazerolle & 

Villard, 1999; Bailey, 2007). However, the available information again indicates the 

importance of patch area and connectivity as key variables influencing the distribution 

of individual species at the landscape scale as shown in studies on plants (Grashof- 

Bokdam, 1997), mammals (Andr6n, 1994; Mazerolle & Villard, 1999; Bennett, 1999, 

2003) and birds (Andr6n, 1994; Mazerolle & Villard, 1999). Studies on relatively 

immobile woodland specialist beetle species showed differences in area effect and 

generally no isolation effect on their patterns of distribution (i. e. presence/absence) 

(Rukke & Midtgaard, 1998; Ranius, 2000a; Rukke, 2000). However, a study on a 

mobile butterfly species classed as a woodland edge generalist (i. e. common in woody 

edge habitat) showed a significant negative isolation effect and a positive area effect 

between habitat locations (Chardon et al., 2003). Furthermore a study on a ground- 
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dwelling non-flying large mobile woodland carabid beetle classed as a woodland 
generalist (i. e. using both interior and exterior woody habitat) showed a significant 
negative isolation effect (Petit & Burel, 1998), although the effect of area was not tested. 
A further factor that appears to influence the distribution of woodland invertebrate 
species in fragmented landscapes is habitat availability within individual patches. 
Previous studies on tree associated specialist beetle species all found a positive effect 
of within-patch habitat availability on patterns of distribution (Rukke & Midtgaard, 1998; 
Ranius, 2000a; Rukke, 2000). Within-patch habitat availability variables therefore 

appear to have strong predictive power when considering the distribution of 
invertebrate species in fragmented landscapes. Together, this suggests that at the 
landscape scale, woodland species respond differently to fragmentation depending on 
their mobility, degree of habitat specialism and within-fragment habitat availability. 

No previous study has examined the landscape-scale effects of woodland availability 
together with within-patch habitat availability and fragment age, on the 

presence/absence of a non-flying ground-dwelling woodland invertebrate species. This 

investigation therefore examined the effects of patch area, isolation, habitat availability 

and patch age on the incidence of such a species within woodland fragments in an 

agricultural landscape. The study was performed on Wood cricket (Nemobius sylvestris) 

on the Isle of Wight, United Kingdom. Wood cricket is a non-flying cricket species that 

is strongly associated with native broadleaved woodland, typically dominated by oak 
(Quercus spp. ) (Richards, 1952). The species is characteristic of relatively open areas, 
including wooded edges, clearings, tracks and rides (Richards, 1952). The insects live 

on the ground and prefer a well-developed leaf litter layer which provides shelter, and 

acts as a primary food source and breeding ground (Richards, 1952; Gabbutt, 1959; 

Brown, 1978; Proess & Baden, 2000). In Europe the species is widely distributed from 

the Mediterranean countries through central Europe, reaching its Northern limit in the 

United Kingdom (UK), Holland, Germany and Poland (Chinery, 1977; Brown, 1978; 

Marshall & Haes, 1988; Wallaschek, 1997). In the UK populations of the species are 

only found in the South of England at three main locations, the New Forest 

(Hampshire), in South Devon and on the Isle of Wight (Marshall & Haes, 1988; NBN 

Gateway, 2007). In the UK, wood cricket is classified as'Nationally Scarce'and 

designated as a 'Species of Conservation Concern' (NBN Gateway, 2007). 

In the UK, and throughout Europe, landscape-scale approaches are increasingly 

becoming the focus of conservation management efforts involving connecting and 

increasing the extent of natural habitat in order to reverse the negative impacts of 
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habitat loss and fragmentation on biodiversity (e. g. Hobbs, 2002; Humphrey et al., 
2005). In Europe a growing number of countries, including the United Kingdom, have 
committed themselves to a landscape-scale approach to conservation of natural 
resources under the European Landscape Convention (Council of Europe, 2007) and 
similar commitments have been made focussing on sustainable management of forests 
(MCPFE, 2003). This reflects a current trend in conservation focussing on the creation 
of habitat networks aiming at developing physical links (i. e. corridors) between habitat 
fragments to increase connectivity and consequently reduce the negative effects of 
fragmentation (Bennett, 1999,2003; Hobbs, 2002). In the case of woodland habitat on 
the Isle of Wight, this has resulted in several initiatives aiming to increase the total 
woodland cover as well as to increase connectivity between individual fragments 
(Quine & Wafts, 2007). However, the lack of empirical knowledge on the dispersal 

ability of woodland species (Dolman & Fuller, 2003) and on the effects of increasing 

connectivity on such species (Bennett, 1999,2003) raises the question of whether 
these efforts will deliver their expected benefits for biodiversity. 

This study addressed the following aims: (1) to determine the landscape scale 
distribution of wood cricket on the Isle of Wight (UK), which was largely unknown at the 

outset of this investigation (NBN Gateway, 2007); (2) to test the relationships between 

wood cricket presence/absence and (a) patch area, (b) isolation (i. e. Euclidean 

distance) (c) measures of habitat availability and (d) patch age; and (3) to develop a 
deterministic model for wood cricket presence. Based on the general findings of 

previous fragmentation research it was hypothesised that wood cricket would be more 
likely to be present in woodlands that: (1) are large rather than small, (2) are spatially 

aggregated rather than isolated, (3) have a long outside edge rather than short, (4) are 

more complex shaped than simple, (5) provide a high amount of edge habitat, and (6) 

are old (i. e. long-established) rather than young. The results of this study were further 

used to critically evaluate the principles underpinning current management strategies 

and to identify the broader implications for landscape-scale conservation efforts. 
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2.2 Methods 

2.2.1 Study area 

A survey was carried out in the woodlands of the Isle of Wight (UK) situated between 

50' 39' N, 1* 35W and 50' 40' N, 1* 04'W (Figure 2). The total surface area of the 

Isle of Wight is 388 kM2 (estimated in ArcGIS 9.1 (ESRI, Redlands, California, USA)). 

Total woodland area is currently 51.2 kM2 (5120 ha) or 13% of the island (Figure 2). 

The landscape matrix is dominated by urban and agricultural land with woodland 

patches distributed across the island. Of the total woodland area, 32% is classified as 

woodland still retaining ancient woodland characteristics of which 17% is classified as 

ancient semi-natural woodland (ASNW) and the remaining 15% as planted ancient 

woodland sites (PAWS) (i. e. planted with non-native, mainly coniferous, tree species). 

The remaining woodlands are secondary in origin or are plantations (English Nature, 

1998 - 2006; Smith & Gilbert, 2003). 

:, i 

a id! 

Figure 2: The woodland fragments on the Isle of Wight. Derived from digital maps based on the 

National Inventory of Woodland and Trees (NIWT) (Smith & Gilbert, 2003). 
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2.2.2 Survey methods 

The survey was carried out between mid-July and mid-September 2005. Wood cricket 
is known to be associated with deciduous woodlands as its preferred habitat (e. g. 
Richards, 1952; Gabbutt, 1959; Brown, 1978). Therefore, the focus of the survey was 
on the northern part of the Isle of Wight where the majority of deciduous woodland 
fragments are located (Figure 2). All mature deciduous woodlands with at least 50% 
native species cover in the canopy larger than 5 ha were surveyed. When wood cricket 
was found in a particular location, all surrounding areas of woodland were also 
surveyed, regardless of their size and composition. 

The survey was carried out focussing on adult wood crickets. The individuals were 
located by sound recognition of stridulating males, following the survey method of 
Proess and Baden (2000). Male wood cricket produce a very distinctive sound by 

stridulation, which is not readily confused with any other species (Proess & Baden, 
2000). Presence of wood cricket was confirmed by visual observation wherever 

possible. To optimise detection success the surveys were carried out on days with a 

mean daytime temperature of 150C and above. The volume of the stridulation is 

dependant on the prevailing temperature. Below 150C, stridulation volume reduces 

considerably (Richards, 1952). Before each survey, local weather forecasts were used 
to determine if this requirement would be met. Individual woodlands were thoroughly 

surveyed by walking around the woodland periphery and through the woodlands using 
the woodland tracks. Stops were made at likely habitat locations focussing particularly 

on open woodland edges typically present along the periphery, tracks and in clearings. 
At these locations, presence/absence was determined by listening for stridulating 

males for a period of 2-5 minutes. When individuals were encountered, each location 

was recorded using a hand-held GPS device (Garmin III GPS V, Garmin (Europe) Ltd, 

Romsey, UK). 

2.2.3 Habitat variables and GIS analysis 

A digital map based on the National Inventory of Woodland and Trees (NIWT) (Smith & 

Gilbert, 2003) was used within the software package ArcGIS 9.1 to create a base map 

by differentiating between the different woodland habitat types present on the Isle of 

Wight (Figure 2). Based on the tree species composition, the original map was adapted 

by including all NIWT classification categories into one of the three main woodland 

habitat stand type classes, namely "mixed", "broadleaved" and "coniferous" (see Smith 
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& Gilbert, 2003). "Mixed" included stands with a mixture of broadleaved and coniferous 
species with both groups occupying at least 20% of the canopy. "Broadleaved" and 
Is coniferous" stands were defined as each respectively having an overall dominance of 
at least 80% within the canopy (Smith & Gilbert, 2003). 

From the base map two woodland sample maps were constructed, which were used in 
further analyses. The first sample (Sample 1) included all the woodlands that were 
surveyed, which were each classified according to three woodland habitat stand type 
classes. With this classification, a single woodland could therefore be divided in several 
individual woodland 'units', each representing a different stand type. This resulted in a 
sample including 215 separate woodland "units", which were each classified as one of 
three stand type categories namely broadleaved (nb "= 115), coniferous (n, = 44) and 
mixed (n,, = 56). For the second sample map (Sample 2), the separate woodland 
I& units" (Sample 1) were aggregated into one within the boundaries of each single 
woodland fragment. Fragment boundaries were defined either by neighbouring 
agricultural land (grassland or arable) or by distinct anthropogenic/natural landscape 
features (urban fringes, roads, railway lines, rivers and steams (> 1m wide)). This 

resulted in a sample size of 147 individual woodland fragments. 'Sample 1', 

representing the woodland 'units', was used to test for differences in wood cricket 

presence between the different woodland habitat stand types and 'Sample 2', 

representing the whole woodland fragments, was used for all other analyses. The 

separate classifications were checked for accuracy against digitised, orthorectified 

aerial photographs using imagery from The GeoInformation Group (@ 2007) available 
in Google Earth (3.0, Google Inc., Silicon Valley, California, USA) and Getmapping PIc 

(@ 1998, Hartley Wintney, Hampshire, United Kingdom). All further analyses were 

undertaken using these two samples to represent the individual woodland areas. 

The extent of occurrence and the area of occupancy (following IUCN, 2001) were 

measured using the Hawth's Analysis Tools (for ArcGIS, Version 3.24, (Beyer, 2004)). 

To measure the extent of occurrence for this species on the Isle of Wight a smallest 

convex polygon was drawn around the GPS coordinates of the wood cricket locations. 

By projecting a 200x2OO m grid over the extent of occurrence, the area of occupancy 

was determined for the species, by identifying within how many grid cells the species 

was located - 

Wood cricket presence/absence was related to patch variables that were computed by 

analysing the sample maps in ArcGIS. 'Sample 2was used to calculate for each 
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individual woodland fragment the total area (ha), perimeter (m) (i. e. circumference), 
and two shape measures, namely the fractal dimension index (FRAC) and the shape 
index (SHAPE) using FRAGSTATS 3.3 (McGarigal et al., 2002). These shape metrics 
are both computed by using the variables woodland area and perimeter to describe 

woodland shape complexity. FRAC describes the shape of a woodland patch between 
the values 1 and 2, with values approaching 1 for very simple shapes (e. g. circles), and 
approaching 2 for shapes with highly convoluted, area-filling perimeters. An increasing 
FRAC therefore indicates an increase in shape complexity. The shape index can be 
interpreted in the same way, but here the range of outcomes is from one to infinity. 
When SHAPE = 1, the patch is maximally compact (i. e. circular) and as values 
increase patch shape becomes more irregular and convoluted (for more details see 
McGarigal et al., 2002). 

For quantifying the degree of isolation between woodland fragments, an Euclidean 

distance measure (i. e. nearest occupied neighbour distance) was computed. The 

distance from the edge of each surveyed woodland to the edge of its nearest occupied 

neighbour was measured in a straight-line using measurement tools in ArcGIS. This 

measure was performed separately for both the inhabited and uninhabited woodlands. 
For the individual woodlands (Sample 2), woodland age was derived using a digital 

map produced from the inventory of ancient woodland sites for the United Kingdom 

(Ancient Woodland Inventory; see Spencer & Kirby, 1992; English Nature, 1998 - 2006). 

This map was used to differentiate between ancient (i. e. woodland established before 

1600 AD) and secondary woodland (i. e. woodland established afterl 600 AD). All 

woodlands including ancient woodland characteristics within its boundary were 

classified as 'Ancient'. All other woodlands were classified as 'Secondary'. Only 

woodland fragments over two hectares in area were included in the analysis, following 

the original inventory criteria (Spencer & Kirby, 1992). 

Finally, for each woodland fragment a measure of habitat availability was computed. 

This measure was based on the amount of permanent edges present within each 

fragment. This measure was computed by adding the perimeter distance to the total 

distance of permanent edges present within the boundaries of the woodland fragments. 

Permanent edges within woodlands were defined as clearly visible tracks, paths, roads 

and railways within the boundary of the woodland as detected on orthorectified aerial 

photographs derived from the GeoInformation Group (@ 2007) available in Google 

Earth (3.0, Google Inc., Silicon Valley, California, USA). The total distance of these 

features were calculated with measurement tools available in Google Earth and ArcGIS. 
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2.2.4 Statistical data analysis 

The individual habitat variables were tested to identify relationships with wood cricket 
presence using SPSS 12.0.1 for Windows (SPSS Inc., Chicago, Illinois, USA). The 
values for the separate variables were first explored using descriptive statistics within 
SPSS. This included testing for normality (Kolmogorov-Smirnov test) and producing 
boxplots for the individual variables to visualise the range and variation in values of 
measurements made for both 'presence' and 'absence' locations. All variables were 
found to be not normally distributed. To explore the relationships between wood cricket 
presence and woodland area, woodland perimeter, fractal dimension index (FRAC), 

shape index (SHAPE), distance to nearest wood cricket inhabited woodland and 
habitat availability (i. e. permanent edges), Mann-Whitney U tests were performed. 
Additionally, the effect size (r) for each individual variable was calculated (=z/ square 
root n), in this case indicating the strength of association of each variable with wood 
cricket presence/absence (Pallant, 2007). The z test statistic is given by SPSS when 
performing a Mann-Whitney U test and is used to test for a significant difference 
between two groups. For exploring the relationships between wood cricket presence 

and woodland age (using Sample 2) and stand type (using Sample 1), chi-square tests 

of association were performed. In addition, for woodland age, the odds ratio for wood 

cricket presence was calculated to examine the likelihood of wood cricket presence in 

ancient woodland compared to secondary woodland (see Field, 2005 (p. 693-4)). Finally, 

a Spearman rank correlation test was undertaken to examine correlations between the 

measured variables. Assessment of the correlations and effect size (r) was based on 
the guidelines of Cohen (1988) where values between r=0.10 and 0.29 indicate a 

small correlation effect/effect size; r=0.30 to 0.49 a medium effect and values r=0.50 

to 1.00 a large effect. 

Several logistic regression methods were used to examine the relative influence of the 

different habitat variables on distribution of wood cricket and to identify the key 

variables explaining the presence of the species within woodlands at a landscape scale. 

For these analyses the continuous variables Area, Perimeter, Permanent edge, FRAC, 

SHAPE, Distance and Age were included. Three outlying cases were excluded from 

'Sample 2' (n = 147) resulting in a sample size of n= 144, with 113 'absent' and 31 

'present' woodlands. These three woodland fragments were excluded, because they 

were situated in areas where the survey of the surrounding woodlands was not 

completed. Of the excluded woodland fragments, one supported a wood cricket 

population whereas the other two did not. 
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First, all individual variable responses were explored in order to determine their 
individual explanatory power. For this, all variables were used to create individual 
univariate models using the 'Enter'function within SPSS. This function is used to build 
regression models by hand. Only the significant variables (Wald test: P<0.05, see 
below) were used in subsequent analyses. To explore the influence of the individual 

variables, multivariable models were constructed. First a stepwise logistic regression 
(Forward: LR in SPSS) was used. This function lets the program build a regression 
model, step by step including the variables with the highest score statistic and 
significance, until there are no variables left that significantly add to the model. 
Particularly when using a large number of variables, this method is useful to provide an 
indication of the explanatory variables that are most powerful. The outcomes of these 

automatic logistic regressions and the outcomes from the Spearman rank correlation 
test were used to inform further exploration of different variable combinations by using 
the 'Enter' function. This manual method allows correlations between variables and 
other factors influencing models generated from stepwise methods to be taken into 

account (Strauss & Biedermann, 2005). 

The output that is generated by SPSS when analysing the individual models provides 
information on the performance of the total model and information on performance of 
the individual variables used within these models. For total model performance, SPSS 

produces two 'good ness-of-fit' tests, a 'classification table' and information on 'effect 

size'. Goodness-of-fit test are designed to test how well the created models perform 

and fit the data. There is no universally preferred test for this purpose (Tabachnick & 

Fidell , 200 1), so SPSS performs a 'model fit test' and a 'Hosmer & Lemeshow model fit 

test'. However, in this case the 'Hosmer & Lemeshow model fit test' is considered to be 

more powerful than the 'model fit test' (Pallant, 2007). The 'classification table' provides 

information on the percentage of cases (i. e. presence/absence locations) that are 

correctly classified by the model and the 'effect size' provides information on the 

amount of variation that is explained by the model. For the performance of the 

individual variables, SPSS uses the 'Wald test' to test the contribution of the individual 

variables to the predictive ability of the model. SPSS further generates B values (+ 

Standard Error) which are used as constants in the probability function (see Equation 

1). This equation was further used to construct probability curves to display the 

relationships between the individual predictor variables and wood cricket presence. 
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Equation 1: Probability equation for wood cricket presence (from Tabachnick & Fidell, 2001). 'B' 
values are generated by SPSS for the individual variables that are included in the model. 

a+ Y-b 
en 

P(Y) = 

X=l 

a+Ib 
+e n 

P(y) = probability of wood cricket being present 
a=B value for the constant included in the model 
b=B value * variable(s) included in the model 

The B value further indicates the direction of the relationship between the individual 

predictor variables and the dependant variable (i. e. wood cricket presence). The final 

piece of information given is the Exp(B) value (with 95% Confidence Interval) which 
indicates the odds ratio for wood cricket presence per unit increase of the predictor 

variable. Further details on SPSS output interpretation for logistic regression analyses 

are provided by Tabachnick and Fidell (2001), Field (2005) and Pallant (2007). 

The following selection criteria were used to choose the most powerful and realistic 

model: (1) all individual correlations (r values) between the variables included had to be 

less than +/- 0.7 (following Strauss & Biedermann, 2005), (2) all individual tests for 

significance had to be met ('model fit test' (P < 0.05), 'Hosmer & Lemeshow model fit 

test' (P > 0.05) and Wald test' (P < 0.05)), (3) all B values had to indicate the correct 

sign of the relationship (+/-), and (4) the 95% confidence interval for Exp(B) was not 

allowed to include the value of 1, which indicates no effect. The best fitting model was 

then selected based on the highest scores for'effect size' (R 2 N) and 'Hosmer & 

Lemeshow model fit test' scores. 
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2.3 

2.3.1 

Results 

Landscape scale distribution 

* 

I 
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Figure 3: Distribution of wood cricket (Nemobius sylvestris) on the Isle of Wight. The black 

patches represent woodlands where wood cricket was present and the white patches represent 

woodlands where they were absent. In the survey, the two combined areas represent the total 

woodland area that was surveyed, covering 6.0% of the island's surface area. Original map 
derived from digital maps based on the National Inventory of Woodland and Trees (NIWT) 

(Smith & Gilbert, 2003). 

Of the total woodland area (5123 ha) present on the Isle of Wight, 2346 ha (45.8%) 

was surveyed. Of this surveyed woodland area, 1018 ha (43.4%) sustained wood 

cricket populations. A total of 147 different woodland fragments were surveyed ranging 

from 0.13 to 396 ha in surface area with a mean of 15.6 +/- 3.71 ha. Of the 147 

woodland fragments that were surveyed, 32 fragments supported wood cricket 

populations where the remaining 115 fragments did not (Figure 3). The extent of 

occurrence for wood cricket on the Isle of Wight covered 33.9% of the island's surface 

area. However, when using a 200x2OO rn grid covering this extent of occurrence, the 

area of occupancy was only 2.6% (following IUCN, 2001). 
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Results from this survey indicate that wood cricket is patchily distributed on the island. 
Wood cricket shows a wide distribution over the northern part of the island, but the 
species is absent from several major woodland areas, mainly dominated by mixed 
stands. Most notable of these is the complex of woodlands on the western part of the 
island (Figure 3). Most occupied woodland fragments are situated in close proximity to 
each other with two occupied fragments found that are completely isolated within the 
agricultural matrix. There are also a number of unoccupied woodland fragments that 
are situated in close proximity to fragments where wood cricket is present. 

2.3.2 Analysis of the independent variables 

Table 1: Mann-Whitney U test for the relation between wood cricket presence/absence and six 
independent variables analysed through separate tests. Distance = nearest occupied neighbour 
distance; Permanent edge = total amount of edge habitat; SHAPE = Shape index; FRAC = 
Fractal dimension index. n= number of woodland fragments: wood cricket present n, = 32 and 
absent n2 = 115; U= Mann-Whitney test statistic; z= test statistic given by SPSS when 

performing a Mann-Whitney U test and is used to test for a significant difference (P) between 

two groups; P= probability or significance level; r= effect size. 

Mann-Whitney U test n u z p r 
Distance 147 714.0 -5.29 <0.001 0.44 
Permanent edge 147 1061 -3.65 <0.001 0.30 
Perimeter 147 1107 -3.44 0.001 0.28 
Area 147 1199 -3.01 0.003 0.25 
SHAPE 147 1321 -2.44 0.015 0.20 
FRAC 147 1470 -1.74 0.082 0.14 

Analysis performed on 'Sample 1' (n = 215) testing for association between wood 

cricket presence/absence and stand type revealed that there was no significant 
difference between the three stand type categories (chi-square: X2 = 2.283, df = 2, P 

0.319). Therefore, further analyses focused on 'Sample 2'(n = 147). In Table 1, a 

summary of the independent Mann-Whitney U test results are shown. Nearest 

occupied neighbour distance showed the highest rand significance (P) values related 

to wood cricket presence (Table 1), indicating a medium negative effect on wood 

cricket presence with increasing distance between woodland fragments. Furthermore, 

the variable indicating the level of habitat availability (Permanent edge) showed a 

relatively strong relationship with wood cricket presence compared to the other 

variables (Table 1). Finally, fractal dimension index (FRAC) did not show a significant 

relationship with wood cricket presence (Table 1). 
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In Figure 4, a series of individual boxplots are presented. The median distance 
between inhabited woodland fragments (n, = 32) was found to be significantly less than 
the median distance between unoccupied woodland fragments (n2 = 115) and their 
nearest neighbouring woodland inhabited by wood cricket (Figure 4a, Table 1). The 
median distance between occupied woodlands was 50 m (Figure 4a), indicating that 
fragments more distant from each other were likely to be effectively isolated. 
Furthermore, the median value of permanent edge (i. e. habitat availability), woodland 
perimeter, shape index and woodland area was found to be significantly higher for 

woodland fragments in which wood cricket was present than for woodland fragments 

where wood cricket was absent, although this was not the case for the fractal 
dimension index (FRAC) (Figure 4b - f, Table 1). 
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Figure 5: Frequency distribution for Euclidean nearest occupied neighbour distance between 

the individual woodland fragments. The x-axis represents the distance to the nearest occupied 

woodland in meters (m) divided in intervals (i. e. interval 100 represents all woodlands between 

0-100 m from each other, 250 between 100-250 m etc. ). The y-axis indicates the percentage of 

occupied (n = 32) (black bars) and unoccupied (n = 115) (white bars) woodlands in each interval. 

Figure 5 shows the difference between woodlands occupied and unoccupied by wood 

cricket in relation to the distance from the nearest neighbouring wood cricket location. 

This figure shows that woodland fragments that are occupied by wood cricket (black 
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bars) are nearly all (82%, n= 26) within a radius of 250 m of another occupied 
woodland (Figure 5) indicating that occupied fragments tend to be clustered within the 
landscape. Twelve percent (n = 6) of the occupied woodland fragments are situated 
more than 1400 m away from another source population, indicating that some 
populations are isolated. 

2.3.3 Woodland age 

Table 2: Contingency tables for woodland age related to wood cricket presence and 
subsequent Pearson Chi-square tests of association. Odds in the contingency table indicate the 
likelihood for wood cricket being present in secondary (4/36 = 0.1) or ancient woodland. The 

odds ratio presented with the Pearson's Chi-square test indicate the likelihood for wood cricket 
being present in ancient woodland compared to presence in secondary woodland (0.4/0.1 = 4.0). 

Contingency table Wood cricket 
Absent Present Total Odds 

Age Secondary 36 4 40 0.1 
Ancient 52 23 75 0.4 
Total 88 27 115 

Pearson X2 n X2 df p Odds ratio 
Age 115 5.10 1 0.024 4.0 

Including only woodlands larger than 2 ha resulted in a sample size for'Sample 2'of n 

= 115 (40 secondary, 75 ancient) (Table 2). A Chi-square test was performed to 

determine whether there was an association between the age of woodland and 

presence/absence of wood cricket. The test showed that wood cricket was significantly 

more likely to be present in woodland fragments with ancient characteristics than in 

woodlands of secondary origin (Table 2). Furthermore, the odds ratio indicates that 

wood cricket is four times more likely to be present in ancient woodland than in 

secondary woodland (Table 2). 
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2.3.4 Correlation between the independent variables 

Table 3: Spearman rank correlation between the independent variables. n= 147, r= correlation 
coefficient, P= significance or probability value. SHAPE = Shape index; FRAC = Fractal 
dimension index. Correlation coefficients r>0.50 are displayed in bold. 

Spearman correlation Area Perimeter SHAPE FRAC Distance Permanent edqe 
Perimeter r 0.93 

p <0.001 
SHAPE r 0.44 0.71 

p <0.001 <0.001 
FRAC r 0.24 0.54 0.97 

p 0.003 <0.001 <0.001 
Distance r -0.03 -0.08 -0.16 -0.17 

p 0.760 0.311 0.048 0.039 
Permanent edge r 0.94 0.99 0.68 0.51 -0.08 

p <0.001 <0.001 <0.001 <0.001 0.360 
Age r 0.41 0.29 0.01 -0.09 -0.15 0.30 

p <0.001 <0.001 
_0.951 

0.302 0.064 <0.001 

A Spearman rank correlation test was performed to see if there were any associations 
between the variables that were examined. Two groups of correlated variables all 

showing large positive correlations (r > 0.50) with each other were identified. The first 

group included Perimeter, SHAPE, FRAC and Permanent edge (r = 0.51 - 0.99; Table 

3) and the second group included Area, Perimeter and Permanent edge (r = 0.93 - 
0.99; Table 3). Both groups included the variables Perimeter and Permanent edge. The 

main difference between these groups was that Area did not show a large correlation 

effect with either SHAPE or FRAC (r = 0.44 and 0.24, respectively; Table 3). 

Furthermore, neither Distance nor Age showed large correlation effects with the other 

variables, nor with each other (Table 3). Distance only showed small negative 

correlations (r = -0.03 - -0.17; Table 3) and Age both small negative as well as small to 

medium positive correlations (r = -0.09 - 0.41; Table 3) with the other variables. 

2.3.5 Logistic regression analysis 

Several logistic regressions were undertaken to build a predictive model and to identify 

the key variables explaining the variation in presence/absence of wood cricket between 

woodlands. In Table 4, a summary of the most realistic models based on the selection 

criteria as described in the method section are displayed. For these analyses, seven 

variables were initially included in the logistic regression. From these seven variables, 
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five passed the significance test (Wald test: P<0.05; Table 4). After the exploration of 
the SPSS output for the separate models, for'Sample 2' (n = 144) (see Methods), the 

best fitting total model included the variables Distance and Area (Table 4). This model 

met all selection criteria (see Methods) showing that: (1) all individual correlations (r) 

between the variables included were less than +/- 0.7 (Table 3); (2) all individual tests 

for significance were met ('model fit test' (P < 0.05), 'Hosmer & Lemeshow Model fit 

test' (P > 0.05) and Wald test' (P < 0.05)) (Table 4); (3) all B values indicated the 

correct sign of the relationship (+/-) based on the boxplots presented in Figure 4, and 

(4) the 95% confidence interval for Exp(B) did not include the value of 1 (Table 4). 
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For the woodland fragment sample the 'model fit test' showed that the predictor 
variables Distance and Area reliably distinguished between woodlands where wood 
cricket was absent or present (Chi-square: X2= 36.41, df = 2, P<0.001; Table 4). This 

was furthermore confirmed by the Hosmer & Lemeshow model fit test (Hos. Lem.: X2 = 
11.57, df = 8, P=0.171; Table 4) (note that here P>0.05 indicates a good model fit). 
The 'classification table' indicated that the full model correctly classified 81 % of all the 

cases (96% for Absent cases and 26% of the Present cases) (Table 4). The 'effect 

size' of the model indicated that the total variation explaining wood cricket 
presence/absence by the model was 35% (Nagelkerke W=0.35; Table 4). The'Wald 
test' indicated that both Distance and Area contributed significantly to the total model 
(Wald: z=8.506, df = 1, P=0.004 and z=8.449, df = 1, P=0.004 respectively; Table 
4). The negative B value for Distance and the positive B value for Area respectively 
indicated the negative and positive relationship with wood cricket presence. The 

probability of wood cricket being present decreased with an increase in woodland 
distance to nearest occupied woodland (B = -0.002 +/- 0.001) and increased with 

woodland area (B = 0.052 +/- 0.018) (Table 4). Furthermore, the Exp (B) value 
indicated that with an increase in woodland distance from another occupied woodland 
the odds that wood cricket would be present decreased by a factor of 0.998 (C. I. 0.997 

- 1.000). For each ha increase in woodland area, the odds of wood cricket being 

present increased by a factor of 1.053 (C. 1.1.017 - 1.091) (Table 4). Finally, of the 

individual predictor variables, woodland distance to the nearest occupied woodland 

explained most of the total variation (Nagelkerke W=0.20; Table 4). For woodland 

area the explained variation was slightly less (Nagelkerke R2=0.18; Table 4) indicating 

a similar predictive power of both variables in explaining wood cricket presence. 

Including woodland area and occupied nearest neighbour distance in one model 

increased the explained variation by 0.15 to an overall total of 35% explained variation 

(Table 4). 
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Figure 6: Predicted probability graphs for wood cricket presence in woodland fragments related 

to (a) distance to the nearest occupied neighbour, (b) woodland area, and (c) for the total model 

(n = 144). For (a) & (b): 0 indicates sites where wood cricket was present; x indicates sites 

where wood cricket was absent. For (c): points indicate the predicted probability of wood cricket 

presence. For figure 5b two cases (397 and 100 ha) were excluded for clarity. The curves were 

calculated with the following probability equations using the B values from Table 4: 
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-0.450+ (-0.001)(Distance) 

P(y) = 

(b) P(y) = 

P(Y) = 

1+e -0.450. + (-0.001)(Distance) 

-1.984+ (0.054)(Area) 

1+e -1.984+ (0.054)(Area) 

-1.040+ (-0.002)(Distance) + (0.052)(Area) 

1+e -1- 
040+ (-0.002)(Distance) + (0.052)(Area) 

Figure 6a shows the negative exponential probability curve for wood cricket presence 
predicted by woodland distance to the nearest occupied woodland. The curve indicates 

that the maximum probability value for wood cricket presence predicted by distance 

alone does not exceed 40%, indicating that only small spatial distances between 

habitat patches already have a considerable negative effect on wood cricket being 

present. Figure 6b shows the probability curve for wood cricket presence predicted by 

woodland area, indicating the positive almost linear relationship between woodland 

area and wood cricket presence, predicting that woodlands > 60 ha have an 80% 

chance of having wood cricket within them. Figure 6c shows a 3-D representation of 
the total model showing the probability predicted by woodland distance to the nearest 

occupied woodland and woodland area together. For woodlands that are close to 

another inhabited woodland (< 250 m) and are relatively large (60 - 70 ha) the 

predicted probability lies around 90% (Figure 6c). 
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2.4 Discussion 

The results of this study revealed that wood cricket populations on the Isle of Wight are 
patchily distributed, and are mainly found in relatively large woodland fragments 
situated close to each other. Furthermore, the occurrence of wood cricket was related 
to patch area, isolation, habitat availability and age, in support of all of the initial 
hypotheses. In addition, the best-fit logistic regression model included isolation and 
area as the main predictors for wood cricket presence within woodland fragments at 
the landscape scale. None of these relationships have been defined previously for this 
species. 

Positive relationships between patch area and presence/absence of individual species 
have been documented in a number of fragmented landscapes. For example, the study 
by Walker et al. (2003) on a rock-dwelling rodent and that of Kindvall & Ahl6n (1992) on 
a bush cricket revealed positive relationships between habitat fragment size and 
species occurrence. For wood cricket, a similar relationship was found: with an 
increase in woodland fragment area, wood cricket was more likely to be present (Table 
1& Figure 4d). However, the importance of this area relationship differs between 

species. Ranius (2000a) found that for an endangered beetle species associated with 

old hollow trees, the size of a habitat patch, defined as the number of hollow trees 

separated < 250 m from each other, was positively correlated with presence of the 

species. However, in two different studies on beetles living in dead fruiting bodies of 
fungi growing on trees, this relationship was not always found. Rukke & Midtgaard 

(1998) found a significant positive relationship for Bolitophagus reticulatus (Coleoptera, 

Tenebrionidae), but in a later study by Rukke (2000) for species dependent on the 

same fruiting bodies, only three out of five species revealed a positive significant 

relationship with fragment area. However, compared to wood cricket, these species are 

more intimately associated with a specific habitat niche. 

Studies on ground-dwelling woodland invertebrates that have examined the 

relationship between fragment size and species occurrence at the landscape scale do 

not appear to have been undertaken previously. The only study examining the effects 

of fragmentation on the distribution of a ground-dwelling woodland invertebrate at the 

landscape scale was on the flightless carabid beetle Abax parallelepipedus (Petit & 

Burel, 1998), which did not test the relationship between the presence of the species in 

the woodlands that were surveyed (20 occupied, 10 unoccupied) and the size of these 

fragments. However, as the species was also found in very small woodlots and 
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hedgerow intersections, this relationship was thought unlikely to be significant (S. Petit 
(INRA, France), personal communication). 

One explanation for the variation in response to fragment size found for invertebrate 

species could be attributable to the level of habitat specialism (Ewers & Didham, 2006). 
The beetle species studied by Ranius (2000a) was found to be dependent on the 
presence of old oak trees with hollows, therefore showing a high level of specialism in 
terms of habitat requirements. The number of trees representing these conditions was 
highly correlated with fragment size, which consequently was reflected in the positive 
area relationship found. A similar explanation was given for the fungus species that 

showed a positive area effect in the studies of Rukke & Midtgaard (11998) and Rukke 
(2000), where availability of the specific fungus host was strongly related to fragment 

size. The species that did not show the area response in the study of Rukke (2000) 

were arguably more generalist in their habitat requirements (i. e. utilising a wider range 
of fungus host species). This might also be the case for Abax parallelepipedus, which 
is relatively generalist in terms of woodland habitat requirements, utilising both core 

and edge habitat within woodland fragments (Petit & Burel, 1998; Petit, pers com). 
Wood cricket, however, are mainly found on the edges of woodlands (Beugnon, 1980; 

Brouwers, pers obs), indicating a relatively high degree of habitat specialism, which 

may account for the positive relationship with woodland fragment area. Overall, the 

results stress the importance of preserving the larger woodlands as habitat for wood 

cricket in this fragmented landscape. 

The effects of habitat fragmentation on biodiversity have been measured in a variety of 

ways (Pascual-Hortal & Saura, 2006), including impacts on species diversity (e. g. 

Mazerolle & Villard, 1999) and species occurrence (e. g. Vos & Stumpel, 1995; 

FitzGibbon et al., 2007). Isolation measures such as Euclidean distance between one 

habitat fragment and its nearest neighbour have been widely used in this context, 

mainly because these measures require the least amount of information to obtain them 

(Calabrese & Fagan, 2004). However, such measures are often found to be poor 

predictors of species presence (e. g. Ranius, 2000a; Rukke, 2000). For instance in the 

study of Rukke (2000), the Euclidean distance measure 'distance to the nearest forest 

island' measured between fifty-eight individual forest fragments did not significantly 

exp lain presence/absence patterns of five different fungus beetles. However, in the 

current study, another Euclidean distance measure was used, measuring the distance 

between all individual fragments to its nearest occupied, neighbour. Here, a strong 

negative relationship was revealed between wood cricket presence and distance to the 
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nearest inhabited woodland fragment. This measure was used in two similar studies on 
woodland invertebrate species revealing the same significant relationships. Chardon et 
al. (2003) found this relationship for a relatively mobile butterfly species associated with 
woodland edge habitat and Petit & Burel (1998) for a ground-dwelling flightless 

woodland generalist carabid beetle. Although both these studies found that more 
complex isolation measures (thus requiring more specific data (Calabrese & Fagan, 
2004)) performed better, this isolation measure performed better than measuring 
distance to any (i. e. either occupied or unoccupied) nearest habitat location. Such 

results indicate that distance to the nearest occupied neighbour is a useful measure to 
detect effects of fragmentation and isolation acting on woodland invertebrates at the 
landscape scale. Furthermore, because fragments sustaining wood cricket populations 
were mainly found in close proximity to each other, more distant isolated woodlands 
tended to be uninhabited. A likely explanation for this is that greater isolation may 
reduce the interactions between individual populations, making isolated populations 

more prone to extinction (Hanski & Gilpin, 1997). 

Patch area can be seen as a measure of potential habitat available to a species. 
However, it has been shown previously that presence of woodland invertebrates is 

often better predicted by measures of species-specific habitat availability, informed by 

the ecology of the species, that is present within a patch compared to total patch area 
(Rukke & Midtgaard, 1998; Rukke, 2000). In both of these studies, total habitat 

availability (i. e. volume of fungus fruiting bodies available in the fragments) was found 

to be a better predictor of species presence than total fragment area. In the current 
investigation, the amount of edge habitat positively influenced wood cricket presence 
(Permanent edge: see Table 1, Figure 4b). Based on this result, habitat availability was 

also found to be a better predictor for wood cricket presence than fragment area. 

However, both variables were highly correlated (see Table 3), suggesting that both 

variables can be used in terms of habitat availability explaining wood cricket presence. 

Additionally, all measures related to edge habitat availability (Perimeter, SHAPE, FRAC 

and Permanent edge) were highly positively correlated with fragment area (see Table 

3). Patch area is often used as a measure of habitat loss in fragmentation studies 

(Fahrig, 2003). In the case of wood cricket, this is also valid, where a decrease in 

fragment area will also negatively influence edge habitat availability, consequently 

decreasing population persistence and the likelihood of wood cricket being present. 

Therefore, these results indicate that further decreases in habitat/fragment area of the 

individual woodlands will negatively influence the persistence of wood cricket 

populations at the landscape scale. 
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The origin or age of the woodland fragments on the Isle of Wight was also found to be 
associated with wood cricket presence (Table 2). The origin and age of a habitat patch 
is thought to have a positive effect on the species diversity it can support and maintain 
(MacArthur & Wilson, 1967; Forman & Godron, 1981). A number of investigations have 
documented positive relationships between patch age and species diversity for a wide 
range of organisms, including plants (e. g. Mikk & Mander, 1995; Grashof-Bokdam, 
1997; Jacquemyn et al., 2001), birds (Shochat et al., 2001; Barbaro et al., 2005) and 
several spider species (Barbaro et al., 2005). For woodland carabid beetles, Magura et 
al. (2001) highlighted that the historical background of fragments determines current 
species assemblages. Furthermore, Jukes et al. (2001) found that the occurrence of 
forest specialists carabid beetles increased and generalist species decreased with an 
increase in stand age. Both of these studies indicate that older woodlands support 
different species than younger woodlands, which is mainly driven by the successional 
development of a woodland (Jukes et al., 2001) and related changes in habitat 

availability. Some invertebrate species particularly dependent on habitat only occurring 
in woodlands of a certain maturity (e. g. ancient woodland) can therefore be used as an 
indicator for woodland age (Peterken, 1981). Wood cricket did occur more often in 

woodlands with ancient characteristics, but was also found in woodland habitat of 

secondary origin. It therefore would be unjustified to use this species as a primary 

ancient woodland indicator. However, within the full range of ancient woodland 
indicators available (Kirby & Goldberg, 2003), on the Isle of Wight wood cricket 

occurrence could be used as one of the indications of ancient woodland characteristics. 

Simple models using patch characteristics and distance measures have often been 

used to predict species presence within fragmented landscapes (Fahrig & Jonsen, 

1998; Mazerolle & Villard, 1999; Debuse et al., 2007). However, responses often vary 

between and within different taxa (e. g. Fahrig & Jonsen, 1998; Herrando & Brotons, 

2002; Barbaro et al., 2005). For constructing models predicting presence/absence of a 

species, logistic regression is often used (e. g. Ranius, 2000a; Rukke, 2000). For wood 

cricket this method produced a predictive model indicating that distance to the nearest 

occupied neighbouring woodland and woodland area were the most important 

variables explaining wood cricket presence at the landscape scale. Chardon et al. 

(2003) found similar results using similar variables for the occurrence of Speckled 

wood butterfly (Pararge aegeria). However, for this species the habitat area was found 

to be more important than occupied nearest neighbour distance. The difference in 

outcome between their study and the current investigation is possibly due to the higher 
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mobility of the butterfly species compared to wood cricket. For relatively mobile 
invertebrate species, distance between habitat patches is probably less important than 
total habitat area/availability. Additionally, the logistic regression analyses attributed a 
slightly higher predictive power to fragment area compared to permanent edge (see 
Table 4). However, a likely explanation for this is the sensitivity of logistic regression 
analyses to high correlation between variables (Field, 2005) (Table 3), which means 
that these two variables are exchangeable and both can be used in the model (Vos & 
Stumpel, 1995). 

The similar amount of variance explained by both distance (20%) and area (18%) in the 
regression analyses indicates the equal importance of habitat availability and 
fragmentation effects acting on wood cricket presence at the landscape scale. However, 
the relatively low predictive power of the total model (35%) highlights the importance of 
further refining the variables used in this model. Previous research has shown that 

refined methods to measure isolation between habitat fragments can generate a higher 

predictive power than the simple Euclidean distance measure used in this study (Petit 
& Burel, 1998; Chardon et al., 2003). Petit & Burel (1998) used an Euclidean (straight- 
line) nearest occupied neighbour distance measure and a measure of the distance 
between individual habitat patches via inter-connecting hedgerows. The latter measure 
was informed by the known ecology of the study species (Abax parallelepipedus) and 

was found to have a higher predictive ability than the simple Euclidean measure. For 

the Speckled wood butterfly (Pararge aegeria) a similar approach, comparing 
Euclidean nearest occupied neighbour distance with a species informed cost-distance 

measure, showed that the cost-distance measure performed better than the Euclidean 

measure (Chardon et al., 2003). Both these examples indicate that including more 

refined parameters informed by the ecology of the study species can improve model 

performance. For the model presented here, this might also be true; however, no 
information on the dispersal ecology of wood cricket was available to inform these 

more realistic distance measures. Nonetheless, the results show that variable 

combinations related to habitat amount and isolation together are relatively good 

predictors of wood cricket presence at the landscape scale. 

The predicted probability response curves for the individual variables included in the 

model (see Figure 6a, b) are similar to those generally found in fragmentation studies. 

For example, the linear response between the probability of wood cricket being present 

related to fragment area matches the general response between species diversity and 

fragment area as shown in Ewers & Didham (2006). However, the generalized linear 
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response between diversity and isolation (Ewers & Didham, 2006) differs from the 
negative-exponential response curve between the probability of wood cricket being 
present and nearest occupied neighbour distance found in this study. The negative- 
exponential response in this study is however similar to dispersal curves often reported 
for invertebrates (Roslin, 2000; Baguette et al., 2000; Ranius, 2006). For example, 
Roslin (2000) found a negative-exponential response between the number of 
dispersers and distance travelled by a dung beetle. Furthermore, for a beetle species 
living in hollow oaks, Ranius (2006) also found a negative-exponential response 
between the proportion of dispersing individuals and distance travelled. The apparent 
match between the response in this and their studies suggests that wood cricket is 
highly dispersal limited at this scale. This would be a reasonable assumption when 
considering its physical characteristics, being small and flightless. The curve further 

suggests that even small spatial distances between habitat fragments have a large 

effect on the probability of wood cricket being present (median distance between 

occupied woodlands: 50 m, see Figure 4a and Probability > 40% between 0-100 meter, 
see Figure 6a). This further strengthens the suggestion that the dispersal ability of 
wood cricket is highly limited at the landscape scale. 

The current structure of the woodland fragments on the Isle of Wight at both the 

landscape and patch scale has been strongly influenced by past and present human 

activities. At the landscape scale, past influences are clearly indicated by the current 
fragmented structure of the woodlands embedded in the human-created urban and 

agricultural matrix (see Figure 2). However, this pattern is continuously changing, for 

instance as a result of recent reforestation activities (Quine & Wafts, 2007). At the 

patch scale, most of the woodlands show a long history of management activities often 
involving coppice practice that have continuously changed woodland structure over 

time (Pope et al., 2003). New edge habitat at the periphery and within fragments is 

mainly created and maintained by these ongoing management activities. In previous 

studies, such edge habitats have been found to favour various groups of woodland 

invertebrates (e. g. G reatorex- Davies et al., 1994). Based on the strong positive 

relationship for wood cricket with the availability of permanent edges it therefore can be 

concluded that ongoing management practice in woodlands has a positive effect on 

wood cricket population persistence. Re-instatement of traditional coppice rotation and 

extensive woodland restoration efforts (Defra, 2005; Forestry Commission, 2006b) in 

woodlands on the Isle of Wight is therefore likely to favour the species within this area. 

A targeted approach in restoring, connecting and increasing woodland habitat seems 

highly relevant for the conservation of this and similar species. 
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Habitat requirements for the conservation of wood cricket 
(Nemobius sylvestris) on the Isle of Wight, UK 

3.1 Introduction 

Much interest has focused recently on the role of landscape-scale factors in 
maintaining populations of species, particularly as a result of developments in 
metapopulation theory and landscape ecology (Hanski & Gilpin, 1997; Gutzwiller, 
2002a; Crooks & Sanjayan, 2006). However, for the conservation of invertebrate 

species, factors acting at a local scale may often be equally important for the 

persistence of individual populations as habitat availability at the landscape scale. 
Indications for this are found in habitat fragmentation studies that have have been 

undertaken at a range of different spatial scales, revealing the relative importance of 
within-patch habitat compared to spatial measures such as patch size and isolation 
between habitat fragments (e. g. Rukke & Midtgaard, 1998; Ranius, 2000a; Binzenhofer 

et al., 2005). For example, in a study on a burnet moth species in an abandoned 

agricultural landscape in Germany, Binzenhofer et al. (2005) found that presence of the 

species was mainly explained by total nectar plant cover (i. e. habitat availability) within 

patches, whereas no patch size or isolation effect between habitat patches was found. 

Two studies on beetles living in dead fungal fruiting bodies on trees revealed similar 

results, where fragment area and isolation were found to be less important explanatory 

variables for presence than the total amount of habitat (i. e. fungus fruiting bodies) 

available within the individual woodland stands (Rukke & Midtgaard, 1998; Rukke, 

2000). Furthermore, in a study on an endangered longhorn beetle living on dead trees, 

Buse et al. (2007) revealed that variables measured at the tree level were better 

predictors of presence of the species than spatial measurements between trees. These 

examples indicate the overall importance of, within patch (i. e. local scale) habitat 

availability in determining invertebrate presence and population persistence. 

Detailed studies examining habitat factors influencing invertebrate populations are 

required to be able to determine habitat suitability and species-specific requirements 

within individual sites. Presence/absence studies are often used to analyse the 

responses of individual species to habitat variables (e. g. Rukke, 2000; Binzenhofer et 

al., 2005). Variables often measured include habitat factors related to species-specific 

food availability, vegetation structure (e. g. canopy cover), abiotic conditions (e. g. 

sunlight availability) and isolation measures (e. g. nearest neighbour distance). Studies 
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on grassland species have revealed positive relationships with food availability and 
negative relationships with habitat distance, but differing results for vegetation structure 
and related abiotic conditions (Binzenhofer et al., 2005; Strauss & Biedermann, 2005; 
Heller & Gordon, 2006). Studies specifically on woodland species have found similar 
relationships. Most such studies to date have focused on endangered ground or tree 
related beetle species (Rukke & Midtgaard, 1998; Siitonen & Saaristo, 2000; Rukke, 
2000; Sroka & Finch, 2006; Matern et al., 2007; Buse et al., 2007) and butterfly species 
(Thomas et al., 1992; Konvicka et al., 2007). These studies have similarly found 
positive relationships with measures of food availability (Rukke & Midtgaard, 1998; 
Rukke, 2000; Buse et al., 2007) and negative relationships with occupied nearest 
neighbour distance between habitat patches (Thomas et al., 1992; Rukke & Midtgaard, 
1998; Siitonen & Saaristo, 2000; Rukke, 2000; Buse et al., 2007). For canopy cover in 

most cases a negative relationship has been found (Rukke & Midtgaard, 1998; Matern 

et al., 2007; Buse et al., 2007), however the influence of vegetation structure differs 

widely between species (Siitonen & Saaristo, 2000; Sroka & Finch, 2006; Matern et al., 
2007; Konvicka et al., 2007; Buse et al., 2007; Sorvari & Hakkarainen, 2007). 

The research described here focused on wood cricket (Nemobius sylvestris) on the Isle 

of Wight, United Kingdom. Although wood cricket is relatively widespread in Europe 

(Brown, 1978), in the UK it has the national status of a 'Species of Conservation 

Concern' (NBN Gateway, 2007). In the UK wood cricket reaches the northern limit of its 

European distribution. Populations of the species are restricted to the South of England 

at three main locations, the New Forest (Hampshire), South Devon and on the Isle of 
Wight (NBN Gateway, 2007). On the Isle of Wight, populations are largely restricted to 

relatively large woodland fragments occurring in the northern half of the island (Chapter 

2). The specific habitat requirements of the species are poorly understood, and existing 

knowledge is largely based on observational and anecdotal information (e. g. Richards, 

1952). 

Wood cricket is a non-flying cricket species that is strongly associated with native 

broadleaved woodland, often dominated by oak (Quercus spp. ) (Richards, 1952). It is 

typically found in relatively open areas such as woodland clearings and edges of 

woodland tracks, footpaths, railway lines and woodland peripheries (Richards, 1952; 

Morvan & Campan, 1976; Beugnon, 1980). Locally the species can reach high 

population densities (Gabbutt, 1959). The insects live on the ground and prefer a well- 

developed leaf litter layer, which serves as shelter, a food source and as a breeding 

ground (Richards, 1952; Brown, 1978; Proess & Baden, 2000). The species is 
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considered to be an omnivorous with the staple diet mainly being composed of dead 
leaf litter material (Gabbutt, 1959; Koehler & Samietz, 2006). However, to date no 
detailed study has been undertaken of the specific habitat requirements of the species 
in relation to its presence or absence within woodland stands. 

To address this gap in knowledge the distribution of wood cricket was investigated 

within three separate woodlands in relation to a range of habitat characteristics. In 

order to define an appropriate approach to conservation management for this species it 
is critical to know its precise habitat preferences. Statistical modelling approaches are 
often used to determine the habitat variables that can be used to predict 
presence/absence of a species. This method has been implemented in a range of 

studies (Strauss & Biedermann, 2005; Matern et al., 2007; Buse et al., 2007), however 

it has been noted that relatively few habitat modelling studies have been undertaken 

with rare and/or endangered species (Engler et al., 2004). Habitat models have also 
been identified as highly valuable for informing conservation management (Fleishman 

et al., 2002). Therefore, in this investigation, habitat suitability models based on logistic 

regression were developed in order to evaluate the relative importance of different 

habitat variables to provide a tool for assessing habitat suitability for wood cricket. 

This study addressed the following aims: (1) to test the relationships between wood 

cricket presence/absence within woodlands and (a) ground habitat (i. e. leaf litter depth 

and volume), (b) vegetation structure (i. e. ground vegetation cover, vegetation height, 

canopy closure) and (c) isolation measures (i. e. Euclidean distance); and (2) to develop 

a deterministic habitat suitability model. Based on findings of habitat suitability studies 

on similar invertebrate species it was hypothesised that a positive relationship would be 

found between wood cricket presence and ground habitat availability (i. e. leaf litter) and 

a negative relationship would be found between presence and habitat isolation. Further 

hypotheses based on findings of previous research were that wood cricket would be 

more likely to be present when (1) ground vegetation cover was relatively sparse, and 

(2) canopy closure was relatively low. 
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3.2 Methods 

3.2.1 Study area 

A field survey was carried out in 2006 within three different woodlands located on the 
Isle of Wight, United Kingdom. The selected woodlands were Briddlesford copse (50" 
42'40 N, 1' 13'23 W), Borthwood copse (50' 39'21 N, 1* 11'43 W) and Firestone copse 
(50' 43'00 N, 1* 12'54 W) (Figure 7). 

Figure 7: Woodland locations on the Isle of Wight (UK). (a) Briddlesford copse; (b) Firestone 

copse; (c) Borthwood copse. Derived from digital maps based on the National Inventory of 
Woodland and Trees (NIWT) (Smith & Gilbert, 2003). 

Briddlesford copse was surveyed between 20 - 29 July, Borthwood between 1-3 

August and Firestone copse between 4-9 August. These sites were selected for study 
based on the fact that they (i) support relative widespread wood cricket communities 

within them, (ii) are similar in age and origin, (iii) are mainly dominated by broadleaf 

trees species and (iv) are larger than 20 ha in area. 

All three woodlands retain ancient woodland characteristics (i. e. continuous woodland 

cover since 1600 AD) following the Ancient Woodland Inventory (see Spencer & Kirby, 

1992; English Nature, 1998 - 2006). Briddlesford copse and Borthwood copse are 
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predominantly classified as ancient semi-natural woodland sites (English Nature, 1998 
- 2006). Firestone copse is predominantly classified as an ancient replanted woodland 
site (English Nature, 1998 - 2006). This woodland was heavily planted with coniferous 
tree species but retains its ancient woodland features for 66% of the total woodland 
area. The individual surface area of the selected woodlands is 49.9 ha for Briddlesford 
copse, 24.4 ha for Borthwood copse and 99.5 ha for Firestone copse (calculated in 
ArcGIS 9.1, ESRI, Redlands, California, USA). However, for Firestone copse, the focus 
of the survey was on the broad leaf-dom i nated areas that account for 26.2 ha of the 
total woodland area. 

The Forestry Commission (South East England Forest District) manages Firestone 
copse. The main management aims adopted here are to integrate timber production, 
recreation and conservation, by restoring the ancient characteristics of the woodland 
through removal of non-native (coniferous) tree species. Briddlesford copse is 
managed by the People's Trust for Endangered Species (PTES) (London, UK), a non- 
governmental conservation organisation (NGO). Their main management strategy aims 
to maximise biodiversity. The National Trust (Mottistone, Isle of Wight), another 
conservation NGO, manages Borthwood copse. Here, management focuses on 
facilitating public access and creating, and maintaining diversity of habitat within the 

woodland area to maximise visitors' woodland experience. 

3.2.2 Survey methods 

3.2.2.1 Sample design 

The three individual woodlands were each divided into seven different strata. This 

stratification was based on observations on wood cricket habitat preference recorded 
during preliminary surveys completed in 2005 and 2006. The strata were: 'Ride' (being 

woodland tracks and paths), 'Gaps' (being areas without mature trees and/or overhead 

canopy, situated within the boundaries of a woodland), 'Coppice with standards' (being 

open coppiced areas with mature trees within them), 'Open canopy' (being areas that 

were thinned and had an open canopy structure) , Perimeter' (being the edge of the 

woodland), 'Understorey' (being a mature undisturbed woodland stand characterised 

by a closed canopy) and the overlapping strata 'Occupied habitat' (being locations 

where wood cricket was known to be present). These strata were identified using high- 

resolution aerial photographs (Google Earth 3.0, Google Inc., Silicon Valley, California, 

USA), digital OS maps (Ordnance Survey MasterMap, Great Britain) and preliminary 
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field surveys on the ground using a hand-held GPS device (Garmin III GPS V, Garmin 
(Europe) Ltd, Romsey, UK). These data were then used to produce separate data 
layers in ArcGIS 9.1 (ESRI, Redlands, California, USA). 

In order to obtain a similar sample size for both 'presence' and 'absence' locations, the 
following strategy was adopted. The six main woodland strata (where wood cricket was 

absent) were sampled using a stratified random sampling design. Each of the strata 

were randomly sampled by generating random points using the Hawth's Analysis Tools 

(for ArcGIS, Version 3.24; (Beyer, 2004). The following criteria were used to establish 

presence or absence of wood cricket at each measurement site. A five-minute period 

was used to search and listen for wood cricket in a3m radius around the 

measurement location. When a wood cricket was observed or heard (stridulating males) 

within these five minutes the location was recorded as being occupied. 

The 'Occupied habitat' locations where wood cricket was known to be present based 

on a preliminary field survey, were thoroughly surveyed by walking through the area in 

a zigzag pattern. The locations where the individual measurements were taken were 

separated by a minimum distance of 10 m. If wood cricket was observed, a habitat 

measurement was taken at that exact location. If wood cricket was only heard 

(stridulating males), the location of the individual was determined by slowly moving 

towards it to pinpoint its location. This method is thought to be accurate enough to 

capture the overall preferred habitat because of the bimodal daily rhythm of movement 

the species shows during every 24 hour period (see Beugnon, 1980). 

The number of sample points was determined proportional to broadleaf dominated 

woodland area. This resulted in a total sample of nBr 180 with nBrl 90 present and 

nBr2 =90 absent for Briddlesford copse (49.9 ha); nBo 100 with nBol 50 present and 

nBo2= 50 absent for Borthwood copse (24.4 ha) and nF = 122 with nF1 = 61 present and 

nF2= 61 absent for Firestone copse (26.2 ha), resulting in a total sample size of n= 402 

with n, = 201 present and n2= 201 absent for all woodlands together. 

3.2.2.2 Habitat measurements 

The habitat measurements that were obtained were divided into three main groups: 

ground surface measurements (including all non-living habitat elements on the ground, 

such as leaf litter), vegetation measurements (including ground vegetation and canopy 

tree measurement) and isolation measurements (i. e. Euclidean distance measures). 
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A 1x1 m quadrat was used to perform the vegetation measurements. First, within the 
quadrat, the total ground vegetation cover was estimated visually (in %). Cover was 
also estimated for each of the main individual plant species present within the quadrat. 
Secondly the mean ground vegetation height and the height of the main individual plant 
species were measured (in cm) using a meter rule. Thirdly, measurements were taken 
recording leaf litter cover (in %) and leaf litter depth within the quadrat. Leaf litter depth 
(in cm) was measured by taking four separate measurements with a leaf litter probe in 
the middle of each of four 0.5 square meter sections within the quadrat. From the 

centre of the quadrat, canopy closure was measured using a spherical densiometer 
(Forest Densiometers, Bartlesville, US). This involved taking readings in North, East, 
South and Westerly direction. 

Within ArcGIS, a series of Euclidean distance measurements were made between the 
individual quadrat measurement locations and different edge habitat within the 

woodlands. These measurements were made from the individual locations to: the 

nearest occupied permanent edge (being the perimeter of a woodland or an open ride 

edge where wood cricket was present); the woodland edge (being the outer edge of a 

woodland) and any edge (including edges of rides, within clearings and the woodland 

perimeter). 

3.2.3 Statistical data analysis 

The individual habitat variables were tested for their relationship with wood cricket 

presence using SPSS (Version 14.0, SPSS Inc., Chicago, Illinois, USA). The values for 

the separate variables were first explored using descriptive statistics within SPSS. This 

included testing for normality (Kolmogorov-Smirnov test) and computing boxplots for 

the individual variables to visualise the range and variation in values of measurements 

made for both 'presence' and 'absence' locations. All variables were found not to be 

normally distributed. For examining the relationships between wood cricket presence 

and the individual computed habitat variables, Mann-Whitney U tests were performed. 

Additionally, the effect size (r) for each individual variable was calculated (=z/ square 

root n) in this case indicating the strength of association of each variable with wood 

cricket presence/absence (Pallant, 2007). The z test statistic is given by SPSS when 

performing a Mann-Whitney U test and is used to test for a significant difference 

between two groups. A Spearman rank correlation test was undertaken to examine 

correlations between these variables. Assessment of the correlations and effect size (r) 
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was based on the guidelines of Cohen (11988) where values between r=0.10 and 0.29 
indicate a small correlation effect/effect size; r=0.30 to 0.49 a medium effect and 
values r=0.50 to 1.00 a large effect. 

Several logistic regression methods were used to examine the relative influence of the 
different habitat variables for explaining the presence or absence of wood cricket within 
the woodlands. First, all individual variable responses were explored in order to 
determine their individual explanatory power. For this, all variables were used to create 
individual univariate models using the 'Enter'function within SPSS. This function is 

used to build regression models by hand. Only the significant variables (Wald test: P< 
0.05, see below) were used in subsequent analyses. To explore the influence of the 
individual variables, multivariable models were constructed. First a stepwise logistic 

regression (Forward: LR in SPSS) was used. This function lets the program build a 
regression model, step by step including the variables with the highest score statistic 
and significance, until there are no variables left that significantly add to the model. 
Particularly when using a large number of variables, this method is useful to provide an 
indication of the explanatory variables that are most Powerful. The outcomes of these 

automatic logistic regressions and the outcomes from the Spearman rank correlation 
test were used to inform further exploration of different variable combinations by using 
the 'Enter' function. This manual method allows correlations between variables and 

other factors influencing models generated from stepwise methods to be taken into 

account (Strauss & Biedermann, 2005). 

The output that is generated by SPSS when analysing the individual models provides 

information on the performance of the total model and information on performance of 

the individual variables used within these models. For total model performance, SPSS 

produces two 'good n ess-of-fit' tests, a 'classification table' and information on 'effect 

size'. 'Good ness-of-fit' tests are designed to test how well the created models perform 

and fit the data. There is no universally preferred test for this purpose (Tabachnick & 

Fidell, 2001), so SPSS performs a'model fit test'and a'Hosmer & Lemeshow model fit 

test'. However, in this case the 'Hosmer & Lemeshow model fit test' is considered to be 

more powerful than the 'model fit test' (Pallant, 2007). The 'classification table' provides 

information on the percentage of cases (i. e. presence/absence locations) that are 

correctly classified by the model and the 'effect size' provides information on the 

amount of variation that is explained by the model. For the performance of the 

individual variables, SPSS uses the 'Wald test' to test the contribution of the individual 

variables to the predictive ability of the model. SPSS further generates B values (+ 
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Standard Error) which are used as constants in the probability function (see Equation 
2). This equation was further used to construct probability curves to display the 
relationships between the individual predictor variables and wood cricket presence. 

Equation 2: Probability equation for wood cricket presence (from Tabachnick & Fidell, 2001). 'B' 
values are generated by SPSS for the individual variables that are included in the model. 

a 7- b 
n 

P(Y) = 

X=l 

a+ Ib 
+en 

P(y) = probability of wood cricket being present 
aB value for the constant included in the model 
bB value * variable(s) included in the model 

The B value further indicates the direction of the relationship between the individual 

predictor variables and the dependant variable (i. e. wood cricket presence). The final 

piece of information given is the Exp(B) (with 95% Confidence Interval) value which 
indicates the odds ratio for wood cricket presence per unit inqease of the predictor 

variable. Further details on SPSS output interpretation for logistic regression analyses 

are provided by Tabachnick and Fidell (2001), Field (2005) and Pallant (2007). The 

following selection criteria were used to choose the most powerful and realistic model: 
(1) all individual correlations (r values) between the variables included had to be less 

than +/- 0.7 (following Strauss & Biedermann, 2005), (2) all individual tests for 

significance had to be met ('model fit test' (P < 0.05), 'Hosmer & Lemeshow model fit 

test' (P > 0.05) and 'Wald test' (P < 0.05)), (3) all B values had to indicate the correct 

sign of the relationship (+/-), and (4) the 95% confidence interval for Exp(B) was not 

allowed to include the value of 1, which indicates no effect. The best-fitting model was 

then selected based on the highest scores for'effect size' (R 2 N), 'Hosmer & Lemeshow 

model fit test' scores and the total percentage given in the 'classification table'. 
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3.3 Results 

3.3.1 Analysis of the independent variables 

The measurements undertaken in the field were used to compute 26 different variables. 
Mann-Whitney U test were performed to test the relationship between each habitat 
variable and wood cricket presence. Results of these tests indicated that 14 variables 
were found to have a significant influence on wood cricket presence (Table 5 and Table 
6). The variable showing the strongest relationship with and effect on wood cricket 
presence was the distance measure 'Euclidean distance to nearest occupied 
permanent edge', followed by the vegetation variable 'South orientated canopy closure' 
(Table 5), indicating the importance of a nearby source populations and availability of 
sunlight at ground level. 

Overall, results indicated that wood cricket is more likely to be present at sites: (1) 

within a relatively short distance of an occupied permanent edge (Table 5, Figure 8a), 
(2) with relatively low percentages of South-orientated canopy closure (Table 5, Figure 
8b), (3) with relatively low measures of ground vegetation height (Table 5, Figure 8c), 
(4) with relatively low percentages of ground vegetation cover (Table 5, Figure 8d), (5) 

with relatively low percentages of East/South orientated canopy closure (Table 5, 

Figure 8e), and (6) with relatively low values of cumulative ground vegetation cover 
(Table 5, Figure 8f ). Higher values of this latter measure represent a more structured 

ground vegetation indicating multiple layers and therefore denser undergrowth. This 

indicates that the structure of the ground vegetation also influences wood cricket 

presence. Furthermore, wood cricket is more likely to be present at sites (7) with 

relatively low values of total vegetation cover (Table 5, Figure 8g), (8) within a relatively 

short distance of a permanent edge (Table 5, Figure 8h), (9) with a relatively thick leaf 

litter layer (Table 5, Figure 8i), (10) with relatively high volumes of leaf litter (Table 5, 

Figure 8j), (11) with relatively low percentages of total canopy closure (Table 5, Figure 

8k), (12) with relatively low percentages of East orientated canopy closure (Table 5, 

Figure 81), (13) within a relatively short distance of an occupied woodland edge (Table 

5, Figure 8m) and (14) with relatively low percentages of West-orientated canopy 

closure (Table 5, Figure 8n). 
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Table 5: Mann-Whitney U test for the relationship between wood cricket presence/absence and 
fourteen habitat variables analysed through separate tests. n= 402; wood cricket present n, = 
201 and absent n2= 201; U= Mann-Whitney test statistic; z= test statistic given by SPSS when 
performing a Mann-Whitney U test and is used to test for a significant difference (P) between 

two groups; P= probability or significance level; r= effect size. 

Mann-Whitney U test U z P r 
Euclidean distance to nearest occupied permanent edge 6778.5 -11.5 <0.001 0.57 
South orientated canopy closure 12567 -6.56 <0.001 0.33 
Ground vegetation height 12946 -6.24 <0.001 0.31 
Ground vegetation cover 12989 -6.22 <0.001 0.31 
East/South orientated canopy closure 13920 -5.39 <0.001 0.27 
Cumulative ground vegetation cover 14042 -5.29 <0.001 0.26 
Total vegetation cover 14774 -4.66 <0.001 0.23 
Euclidean distance to nearest permanent edge 14840 -4.60 <0.001 0.23 
Leaf lifter depth 14883 -4.57 <0.001 0.23 
Leaf lifter volume 15030 -4.44 <0.001 0.22 
Canopy closure 15835 -3.75 <0.001 0.19 
East orientated canopy closure 16430 -3.24 0.001 0.16 
Euclidean distance to nearest occupied woodland edge 16650 -3.05 0.002 0.15 
West orientated canopy closure 17846 -2.02 0.043 0.10 
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A Spearman rank correlation test was performed to see if there were any associations 
between the variables that were examined. Four distinct correlated groups could be 
recognised based on a large effect size (r > 0.50) between all of the individual variables 
included. The first group included the 'Ground vegetation height, 'Cumulative ground 
vegetation cover, 'Ground vegetation coverand 'Total vegetation cover'showing a 
high positive correlation with each other (range r=0.64 - 0.94; Table 7). An exception 
in this group was the medium correlation between 'Total vegetation cover' and 'Ground 
vegetation height' (r = 0.37; Table 7). The second group included 'East-, South-, West-, 
East/South orientated canopy closure' and 'Canopy closure'. These five variables all 
showed a high positive correlation with each other (r = 0.54 - 0.94; Table 7). The third 
group included 'Leaf litter depth' and 'Leaf litter volume' that showed a very high 

positive correlation with each other (r = 0.94; Table 7). Finally the fourth group included 
'Euclidean distance to nearest occupied permanent edge' and 'Euclidean distance to 

nearest permanent edge', which also showed a high positive correlation with each 
other (r = 0.53; Table 7). Euclidean distance to nearest occupied woodland edge was 
the only variable not correlated with any of the other variables. 

Between these groups all canopy closure variables showed a medium negative 
correlation with 'Ground vegetation height', 'Cumulative ground vegetation cover' and 
'Ground vegetation cover' (r =-0.30 - -0.48; Table 7). This indicated the negative 
influence of canopy closure on ground vegetation development. The leaf litter variables 
both showed a moderate negative correlation with 'Ground vegetation cover' and 
'Cumulative ground vegetation cover' (r = -0.36 --0.41; Table 7) and a moderate 

positive correlation with 'Canopy closure' (r = 0.32 - 0.34; Table 7). This indicated the 

positive influence of canopy closure on leaf litter presence. 
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3.3.2 Logistic regression analysis 

Several logistic regressions analyses were undertaken to build a predictive habitat 

model and identify the key variables explaining presence/absence of wood cricket 
within woodlands. For these analyses, twenty-six variables were initially included in the 
logistic regression. From these twenty-six variables, ten passed the significance test 

(Wald test: P<0.05; Table 8) excluding one variable based on a false negative 

response (see Strauss & Biedermann, 2005). After the exploration of the SPSS output 
for the separate models, the best fitting (full) model explaining the highest amount of 

variation within the data included the variables 'Euclidean distance to nearest occupied 

permanent edge', 'Ground vegetation height', 'South orientated canopy closure' and 
'Cumulative ground vegetation cover' (Table 8). This model met all selection criteria 
(see Methods) showing that: (1) all individual correlations (r) between the variables 
included were less than +/- 0.7 (Table 7); (2) all individual tests for significance were 

met ('model fit test' (P < 0.05), 'Hosmer & Lemeshow Model fit test' (P > 0.05) and 

'Wald test' (P < 0.05)) (Table 8); (3) all B values indicated the right sign of the 

relationship (+/-) based on the boxplots presented in (Figure 8) and (4) the 95% 

confidence interval for Exp(B) did not include the value of 1 (Table 8). The best-fitting 

alternative model included the variables 'Euclidean distance to nearest occupied 

permanent edge', 'Ground vegetation height', 'South orientated canopy closure', which 

also met all initial selection criteria (Table 8). The univariate analyses revealed that the 

only single variable model meeting all of the selection criteria included 'Leaf litter depth', 

however only explaining a very small amount of the variation in the in the data 

(Nagelkerke R2: see Table 8). 

The model fit test showed that the predictor variable combination in the full four- 

variable model reliably distinguished between habitat locations where wood cricket was 

present or absent (chi-square: X2= 225.3, df = 4, P<0.001; Table 8). This was 

furthermore confirmed by the Hosmer & Lemeshow model fit test (Hos. Lem.: X2 

6.608, df = 8, P=0.579; Table 8) (note that P>0.05 indicates a good model fit). The 

classification table indicated that the full model correctly classified 82% of all of the 

cases (80% for Absent cases and 85% of the Present cases) (Table 8). The effect size 

of the model indicated that the total variation explaining wood cricket 

presence/absence by the full model was 57% (Nagelkerke W=0.57) and 54% for the 

alternative model (Table 8). 
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The Wald test indicated that all of the individual variables contributed significantly to the 
model (Euclidean distance to nearest occupied permanent edge, Wald: z= 64.21, df 
11P<0.001; Ground vegetation height, Wald: z= 35.82, df = 1, P<0.001; South 

orientated canopy closure, Wald: z= 46.94, df = 1, P<0.001; Cumulative ground 
vegetation cover, Wald: z= 15.14, df = 1, P<0.001; Table 8). The negative B values 
indicated that all of the variables within the model had a negative relationship with 
wood cricket presence. The probability of wood cricket being present decreased with 
an increase in 'Euclidean distance to nearest occupied permanent edge' (B = -0.032 
0.004); increase in 'Ground vegetation height' (B = -0.048 +/- 0.008); increase in 'South 

orientated canopy closure' (B = -0.053 +/- 0.008) and increase in 'Cumulative ground 

vegetation cover' (B = -0.014 +/- 0.004) (Table 8). Furthermore, the Exp (B) value 
indicated a similar relationship. This indicated that with an increase in distance from an 

occupied permanent edge the odds that wood cricket would be present decreased by a 
factor of 0.968 (C. I. 0.961 - 0.976). Moreover, for each centimetre increase in 

vegetation height the odds dropped by a factor of 0.954 (C. I. 0.939 - 0.969) and with 

one percent increase in canopy closure and vegetation cover the odds also dropped by 

a factor of 0.949 (C. I. 0.934 - 0.963) and 0.986 (C. I. 0.979 - 0.993) respectively (Table 

8). Finally, of the individual predictor variables, 'Euclidean distance to nearest occupied 

permanent edge' explained most of the total variation (Nagelkerke R2= 0.30; Table 8). 

Adding 'Ground vegetation height' to the model increased this value by 0.12 to an 

overall percentage of 42% (Table 8), however the model including only these two 

variables did not significantly fit the data (Hos. & Lem.: P<0.05; Table 8). A further 

12% was added by including 'South orientated canopy closure. Including 'Cumulative 

ground vegetation cover' only added a further 3% making the total model explain 57% 

of the variation within the data (Table 8, Nagelkerke R2). It should be noted here that 

'Ground vegetation height' and 'Cumulative ground vegetation cover$ were highly 

correlated with each other (r = 0.64; Table 7), which could have influenced the 

outcomes in this analysis. 
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Figure 9: Predicted probability of wood cricket being present related to the main explanatory 

variables. 0 indicates sites where wood cricket was present; x indicates sites where wood 

cricket was absent. Two outliers (167 cm for vegetation height and 273 m for distance) were 

omitted from Figure a&b. The curves were calculated with the following probability equations 

using the B values from Table 8: 

1.085 + (-0.029)(Distance) 

P(y) = 

(b) P(y) = 

1+e1.085 + (-0.029)(Distance) 

1.177 + (-0.032)(Ground vegetation height) 

1+e1.177 + (-0.032)(Ground vegetation height) 

0.977 + (-0.013)(South orientated canopy closure) 

P(Y) = 

1+e0,977 + (-0.013)(South orientated canopy closure) 

1.025 + (-0.013)(Cum. ground vegetation cover) 

(d) P(y) = 
1+e1.025 + (-0.013)( Cum. ground vegetation cover) 
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Figure 9 shows the individual predictive probability response curves for the four 

variables included in the full model. All responses showed a negative relationship with 

an increase in variable value. The strongest response, similar to a negative-exponential 

response curve, was shown for'Euclidean distance to nearest occupied permanent 

edge' (Figure 9a), followed by more linear responses for'Ground vegetation height' 

(Figure 9b), 'Cumulative ground vegetation cover' (Figure 9d) and 'South orientated 

canopy cover (Figure 9c). Figure 10 shows bivariate response curves for the full model. 

With increasing values of 'South orientated canopy closure' and 'Cumulative (i. e. 

structured) ground vegetation cover', the probability of wood cricket presence 

decreased with increasing distance to the nearest occupied location and ground 

vegetation height (Figure 10). 
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Figure 10: Predictive probability of the full model represented in 3-D. In each figure probability 

of wood cricket presence (y-axis) is plotted against occupied nearest neighbour distance (x-axis) 

and ground vegetation height (z-axis). Columns represent different levels of South orientated 

canopy cover and rows represent different values of cumulative ground vegetation cover. 

e 8.009 + (-0.032)(Distance) + (-0.048)(Gr vegetation height) + (-0.053)(S orientated canopy closure) + (-0.014)(Cum ground vegetation cover) 

P(Y) 

1+e8.009 + (-0.032)(Distance) + (-0.048)(Gr vegetation height) + (-0.053)(S orientated canopy closure) + (-0.014)(Cum ground vegetation cover) 
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3.4 Discussion 

The results of this study confirmed earlier observations indicating the preference of 
wood cricket for open wooded edges. Factors positively influencing wood cricket 
presence within woodland included the presence of a well-developed leaf litter layer, 
relatively low ground vegetation cover and height and relatively short distances 
between individual populations, supporting all of the initial hypotheses. Furthermore, 
the logistic regression model identified the distance from inhabited habitat patches and 
variables describing habitat structure as the main predictors for wood cricket presence 
within woodland fragments. None of these relationships have been defined previously 
for this species. 

For invertebrates, habitat factors linked with different stages of development in their 
life-cycle have often been found to be positively related with species presence (e. g. 
Rukke & Midtgaard, 1998; Binzenhofer et al., 2005; Strauss & Biedermann, 2005). For 

example, Rukke & Midtgaard (1998) found a strong positive relationship across three 
different spatial scales for presence of a fungus beetle and its specific breeding habitat. 
Wood cricket is known to pass most of its life-cycle in leaf litter, which is related to its 
breeding requirements (Brown, 1978). Furthermore, although omnivorous, the staple 
diet of wood cricket was found to be components of dead leaf litter material (Gabbutt, 

1959; Koehler & Samietz, 2006). Information available at the onset of this study 
indicated that leaf litter could therefore be assumed as one of the primary factors 

determining wood cricket presence. Results of the current analyses revealed positive 

relationships between wood cricket presence and both leaf litter depth and volume. 
However, both variables only showed a small effect size in terms of predicting wood 

cricket presence (see Table 5). This might be due to the fact that wood cricket is 

omnivorous (Gabbutt, 1959), which indicates that it is not entirely dependant on the 

presence of leaf litter as a food source over the course of its life-cycle. Furthermore, 

although the univariate model including 'Leaf litter depth' as its predictor variable 

performed relatively well compared to the other univariate models, it only explained a 

very small proportion of the variation within the data (Nagelkerke R2, see Table 8). 

Therefore, leaf litter as a sole variable was found to be a poor predictor of wood cricket 

presence. 

In general, sunlight availability has been shown to have a positive influence on diversity 

of a number of invertebrate groups (G reatorex- Davies et al., 1994; Rieske & Buss, 

2001). Ground-dwelling invertebrates generally favour sunlit conditions because of their 
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thermophilic nature (e. g. Rieske & Buss, 2001; Buse et al., 2007). The main vegetation 
variables influencing wood cricket presence were 'South orientated canopy closure', 
'Ground vegetation height' and 'Ground vegetation cover'. These factors are often 
linked with sunlight availability, which has a strong effect on microclimatic conditions 
(e. g. Matern et al., 2007). Canopy closure and vegetation cover influence sunlight 
availability at ground level, and therefore air temperature and humidity. Ground 

vegetation height appeared to be another successful predictor of wood cricket 
presence. Where ground vegetation was relatively high, wood cricket was less likely to 
be present. Relatively high measures of vegetation height were associated with an 
increase in the number of vegetation layers, which again would negatively influence 

sunlight availability at ground level, resulting in relatively low air temperatures. For 

wood cricket, these results indicate their preference for relatively open habitat 

conditions, also confirming the thermophilic nature of the species (Proess & Baden, 
2000). 

The factor most strongly influencing wood cricket presence within woodlands was 
distance to the nearest occupied permanent edge. Locations where wood cricket was 
found tended to be relatively close to a source population, which indicated that more 
isolated habitat locations were more likely to be uninhabited. Similar results were found 

for three related beetle species (Rukke & Midtgaard, 1998; Rukke, 2000; Buse et al., 

2007). Buse et al. (2007) found that host trees supporting a longhorn beetle community 

were more likely to be situated in close proximity of each other and isolated host trees 

were more likely to be uninhabited. Furthermore, in a study on a beetle species 

(Bolitophagus reticulates) living in dead fungus fruiting bodies foundon old/dying trees, 

again isolation had a negative influence on presence of the species in distinct habitat 

locations within woodlands (Rukke & Midtgaard, 1998). On the basis of this relationship, 

Rukke & Midtgaard (1998) argued that this species demonstrates a habitat-tracking 

metapopulation structure (Harrison & Taylor, 1997). Because of the successional 

dynamics of the habitat locations (host trees within a continuous woodland stand) for B. 

reficulates, extinction was assumed more likely to be a consequence of the 

environment becoming permanently unsuitable than stochastic population fluctuations 

within a permanent stable habitat location (see Thomas, 1994). The same was 

observed for wood cricket habitat locations within the woodlands surveyed in this study. 

Habitat locations where wood cricket was found were observed to change from year to 

year, making a successional shift from open to overgrown conditions, because of 

growth of the forest understorey (Brouwers, pers obs). Results of this study (e. g. the 

negative responses for the vegetation variables in Table 5& Figure 8) suggest that 
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wood cricket presence varied in parallel with these changes, being continuously 
present only in permanently open edge habitat (Brouwers, pers obs). For wood cricket, 
therefore the same metapopulation structure might apply, where the rate of habitat 
turnover determines the dynamics of the populations within woodland. 

The most powerful habitat suitability model identified here included an isolation 

measure and vegetation structure variables as the main predictors for wood cricket 
presence within woodland fragments. The best-fitting model included four variables: 
'Euclidean distance to nearest occupied permanent edge', 'Ground vegetation height', 
'South orientated canopy closure' and 'Cumulative ground vegetation cover'. Because 

of the low explanatory power revealed by the univariate analyses, 'South orientated 
canopy cover' could have been excluded from the multivariate analyses, following 
Strauss & Biedermann (2005). However, in this case 'South orientated canopy closure' 
did prove to be a strong and important indicator for wood cricket presence, contributing 

a significant proportion to the explained variation of the model. Furthermore, the model 

could arguably be reduced to include three explanatory variables by excluding 
'Cumulative ground vegetation cover. Including this variable only added a minimal 

amount to the explanatory power of the model, mainly because of the high correlation 

with 'Ground vegetation height'. Additionally, the logistic regression model for a 
longhorn beetle living on oak trees developed by Buse et al. (2007) included similar 

variables as were found for wood cricket. This model also included nearest occupied 

neighbour distance and variables related to sunlight availability, indicating the potential 

importance of these factors for woodland invertebrates more generally. In the case of 

longhorn beetle (Buse et al., 2007), however, specific habitat factors related to life- 

cycle requirements were also influential, whereas for wood cricket these variables (i. e. 

leaf litter availability) did not add to the overall performance of the model. 

Overall, both models for predicting wood cricket presence performed relatively well, 

explaining 54 - 57% of the variation in the data (Pallant, 2007). These results are 

comparable with model performance values found for invertebrates living in grasslands 

and brown fields (Strauss & Biedermann, 2005). Furthermore, the logistic regression 

model for a longhorn beetle living on oak trees (Buse et al., 2007) performed slightly 

less well than the models presented here. For a semi-aquatic woodland carabid beetle, 

a substantially better model performance was found (Matern et al., 2007). However, 

compared to the current study, these authors were less rigorous in excluding non- 

significant response variables from the total model. Still, the best-fit model for wood 

cricket revealed a substantial proportion of unaccounted variation when using the set of 
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predictor variables described in this study. Including more precise measures of, for 
example, humidity, light availability at ground level and wind exposure might improve 
the model performance. The fit could also potentially be improved by adopting a 
different sampling method. Measurements were taken over a relatively small spatial 
area (1 M2 ) at one moment in time. However, it has been shown that wood cricket 
displays a daily rhythm of movement between more open and closed vegetation at 
different times of the day (Beugnon, 1980). The sampling method therefore might have 
resulted in over- and/or underestimations of presence locations, that negatively 
influenced the discriminative power of the individual variables used within the model. 

Results suggested that the dispersal ability of the species is limited. Regression 
analyses indicated that the measurement locations where wood cricket was present 
were aggregated around occupied permanent edges that were recognised as source 
locations. The locations where wood cricket was not found were more isolated (i. e. 
further away) from these source populations. In such locations, either wood cricket was 
not present because of the lack of suitable habitat or because of their limited dispersal 

ability, or possibly because of the presence of internal barriers to dispersal within the 

woodlands. Another indication of the limited dispersal ability of the species was 
absence of the species at apparently suitable locations at certain moments in time 
(Proess & Baden, 2000; Brouwers, pers obs). In some locations, wood cricket was 
observed to colonise areas of suitable habitat such as new clearings or coppice coups 
over a period of 1-3 years, presumably from adjacent source populations (Brouwers, 

pers obs). This suggests that because of their dispersal limitations, the species 
demonstrated a time lag in occupying suitable habitat. This might have accounted for 

part of the unexplained variation in the regression models. Altogether, the dispersal 

ability of this species is therefore a factor that needs to be considered in order to 

predict their presence with more accuracy than based on habitat suitability alone. This 

further highlights the need to obtain species-specific parameters relating to dispersal 

ability in order to improve and inform future modelling approaches. 

To ensure that the model is generally applicable to the study area, the data used to 

construct the model were collected at three individual isolated woodland sites that are 

representative of the majority of inhabited woodland fragments found on the Isle of 

Wight (Brouwers, pers obs). However, for more widespread application, for example in 

conservation management, it would be desirable to test the robustness and 

transferability of the model both with data sets from other inhabited woodlands on the 

island as well as data sets collected from populated areas on the mainland (Strauss & 
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Biedermann, 2005). Binzenhofer et al. (2005) showed that their model developed for a 
burnet moth was transferable in space when testing it with a data set from another 
topographic region. However, in the case of a nymphalid butterfly species the model 
developed was not found to be transferable between different locations (Binzenhofer et 
al., 2005). This indicates the importance of performing these tests of model robustness, 
which were not carried out in this current study. For other invertebrates, however, 
transfer of habitat models that were based on data collected from just one topographic 
location have been found to be successful (e. g. Binzenhofer et al., 2005; Matern et al., 
2007; Buse et al., 2007). For instance, both Matern et al. (2007) (for a rare ground 
beetle) and Buse et al. (2007) (for an endangered longhorn beetle) found that models 
constructed with data collected from only one topographic region performed well when 
transferred to another region. Therefore, because the model for wood cricket was 
constructed with data collected from three different topographic locations, it is possible 
that this predictive habitat model can also be used for other areas in the UK, and 
possibly for mainland Europe. 

Presence of permanent edge habitat within fragments was found to be a strong 
indicator for wood cricket presence. Locally very high population abundances have 
been recorded at permanent edges along railway lines and wide rides (Gabbutt, 1959; 

Brouwers, pers obs), indicating the importance of this particular habitat for wood cricket. 
Maintenance of these permanent 'source' locations therefore might be critical to secure 

a viable wood cricket population within individual fragments. However, these conditions 

are often only present in woodlands or woodland areas that are under some sort of 

management regime. Re-instatement of traditional coppice rotation in woodlands on 

the Isle of Wight is likely to favour persistence of the species within these areas. 

Furthermore, the Isle of Wight has been the focus of extensive woodland restoration 

efforts including the restoration of planted ancient woodland sites by removing non- 

native tree species (Defra, 2005; Forestry Commission, 2006b). These activities, which 

involve opening up the canopy, could potentially have a positive effect on wood cricket 

populations by increasing habitat availability in these woodlands. Furthermore, when 

clearings are created, these should preferably be adjacent to inhabited locations (e. g. 

permanent ride edges) in order to increase the potential of dispersal of the species into 

these newly created habitat areas. Ride edges and open areas (e. g. coppice coups) 

have been found to be generally important for woodland invertebrate diversity (Warren 

& Key, 1991; Greatorex- Davies et al., 1994), and particularly for butterfly species 

dependant on host and nectar plants only found in woodland habitat. Management 

activities promoting the continuity of these habitats will promote and maintain viable 
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wood cricket populations as well as other woodland species (Bratton & Andrews, 1991). 

Therefore, a wider adoption of traditional management practices such as coppice 

rotation and yearly mowing of ride and track edges will be favourable for this and 

similar species. 
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4 Movement rates of woodland invertebrates: a systematic review 
of empirical evidence 

4.1 Introduction 

The lack of knowledge regarding the dispersal ability of species living in fragmented 
landscapes has repeatedly been emphasised in the scientific literature (e. g. Tscharntke 

et al., 2002; Dolman & Fuller, 2003; Bowne & Bowers, 2004). Woodlands are one of 
many natural habitats that have in many areas become increasingly fragmented as a 
result of human activities, such as expansion of agricultural land and over-harvesting 
(e. g. Andr6n, 1994; Fahrig, 2003; Newton, 2007). The negative effects of habitat loss 

and fragmentation on the persistence of species have been widely documented (e. g. 
Freemark et al., 2002; Fahrig, 2003). Research has suggested that those species that 

are of a relatively small size, with limited dispersal abilities, are particularly vulnerable 
to fragmentation impacts (Niemela, 2001; Tscharntke et al., 2002; Bailey, 2007). An 

understanding of the dispersal abilities of individual species is important in order to 

predict the impacts of habitat fragmentation on species persistence (Tscharntke et al., 
2002; Ranius, 2006), metapopulation viability (Hanski & Gilpin, 1997; Hanski, 1998) 

and extinction thresholds (Fahrig, 2001). 

Within the group of woodland invertebrates, habitat-specialist species have been found 

to be more vulnerable to habitat loss (Tscharntke et al., 2002) and fragmentation 

effects (Niemela, 2001) than more generalist species. This might indicate that habitat 

specialist species are more prone to extinction because of a lower dispersal ability 

compared to generalist species. However, even within these groups, the effects of 

fragmentation and habitat loss on dispersal ability will be highly species dependent 

(Niemela, 1997). Variation in dispersal ability is likely to be reflected in the movement 

rate observed at different scales. Measurements of movement rate and range are often 

difficult to obtain (Bullock et al., 2002), and consequently very little information is 

available for woodland invertebrates (Niemela, 1997), especially for relatively rare and 

endangered habitat-specialist species (Ranius, 2006). For invertebrates in general, but 

mainly for relatively mobile non-woodland butterfly or fly species, Bowne & Bowers 

(2004) found that the estimated movement rate per generation (mean: 45%, range 0.16 

- 100%) between distinct habitat patches was relatively high compared to other 

species groups (mean: amphibians (2%), birds (1%), mammals (6%) and reptiles 

(12%)). Yet, for two non-flying wood land-associated ground beetle species (Abax ater 
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and Pterostichus niger), movement rates were found to be much lower (mean: 0.16% 
and 0.92% respectively) (Bowne & Bowers, 2004). This occurrence of limited dispersal 
ability in woodland invertebrates is supported by other research. For example, for a 
woodland specialist beetle species living on trees, the dispersal rate between trees 
within a forest stand was estimated to be 15% per generation (Ranius & Hedin, 2001). 
Furthermore, because of its limited dispersal ability and level of habitat specialism, 
dispersal between woodland stands was assumed to be very rare for this species 
(Ranius, 2006). This suggests that wood land-specialist invertebrates might be 
particularly vulnerable to habitat fragmentation effects (Ranius & Hedin, 2001). 

The review presented here was designed to summarize the current state of knowledge 
regarding the movement rates of woodland invertebrates. A particular focus was given 
to ground-dwelling woodland species, which are considered to be a group likely to be 
affected by habitat loss and fragmentation (Niemela, 1997), because of their limited 
dispersal ability. The aim was to identify direct measures of movement made in the 
field in order to quantify dispersal rates, which is not possible with studies based on 
spatial occupancy or patterns of genetic variation (Ranius, 2006). The most commonly 
used methods to obtain rates of this kind include a wide range of capture-recapture 
techniques and experiments (e. g. Vermeulen, 1994; Barton & Bach, 2005; Ranius, 
2006), and direct observation (e. g. Haddad, 1999; Ross et al., 2005). However, recent 
developments of methods such as telemetry (Ranius, 2006) and harmonic radar (e. g. 
O'Neal et al., 2004) are helping to provide improved measurements of invertebrate 

movement (Ranius, 2006). 

Measurements of movement rate provide a valuable indication of how rapidly a species 

can potentially move within a given area of habitat and across a landscape, enabling 

predictions to be made regarding the colonisation of habitat patches within habitat 

networks and the potential functioning of habitat corridors (Bailey, 2007). Furthermore, 

species-specific movement rates are important parameters of models used to explore 

the impacts of environmental change, including land cover and climate change, on the 

pattern of distribution of individual species (e. g. Fahrig, 2001; Vos et al., 2001; Wafts et 

al., 2005; del Barrio et al., 2006; Walters et al., 2006). The current review was also 

designed to examine the factors influencing movement rate, with the aim of developing 

generalisations regarding the dispersal behaviour of different groups of woodland 

invertebrates. Previous research has suggested that factors influencing dispersal ability 

(including movement rates) of invertebrates include the habitat type with which a 

species is generally associated (den Boer, 1990b) and physical traits such as flight 
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capacity (den Boer, 1990a; b; Thomas, 2000) and body size (Drach & Cancela da 
Fonseca, 1990; den Boer, 1990b). However, for woodland invertebrates, these 
relationships have not been thoroughly explored previously. 

To conduct this study, a systematic review approach was adopted following the 

guidelines developed by Pullin & Stewart (2006). The need for systematic reviews 
originates from the field of medicine where, as in conservation, a framework for firm 

evidence-based decision making processes has been lacking (Pullin & Knight, 2001). 
The advantage of conducting a systematic review over a conventional literature review 
lies in the fact that it is largely unbiased and repeatable, by pre-defining search 

strategies and criteria at the onset of each study. This allows any other party to add 

new results over time by applying the same search strategy. A number of systematic 

reviews of conservation evidence have recently been undertaken including studies on 
the effectiveness of hedgerow corridor functioning between woodland fragments 

(Davies & Pullin, 2007) and the effectiveness of current management approaches for 

saproxylic invertebrates (Davies et al., 2008) (for more examples and further details 

see: www. cebc. banqor. ac. uk). 

The specific aims of the current review were: (1) to systematically identify studies within 

the published scientific literature providing direct measures of movement for woodland 

invertebrate species; and (2) to examine whether ground-dwelling woodland 

invertebrates could be grouped based on movement rate (m day-) (i. e. dispersal ability) 

and habitat specialism, and (3) to examine the relationships between movement rate, 

body size and habitat specialism. From the reported lack of studies on species-specific 

dispersal ability, it was hypothesised that relatively few studies would be identified 

reporting a direct measure of movement for woodland invertebrates. Furthermore, it 

was hypothesised that woodland specialist species would be less mobile than 

generalist species, and a positive relationship would exist between body size and 

movement rate. 
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4.2 Methods 

4.2.1 Phase 1: Database search 

For identifying relevant studies, the following electronic databases were searched: 
EBSCO Research databases (including Academic Search Premier; EJS E-Journals 
and Library, Information Science & Technology Abstracts), JSTOR (including Arts & 
Sciences 1; Arts & Sciences 11; Arts & Sciences III; Biological Sciences), AGRICOLA 
(1970-2006), AGRIS (1975-2006), Biological abstracts (1969-2006), CAB abstracts 
(1910-2006), Current Content (1996-2007/2/22), Scopus (1960-2006), ISI Web of 
Science (including Science Citation Index Expanded (SCI-EXPANDED) (1945-2006); 
Social Sciences Citation Index (SSCI) (1956-2006); Arts & Humanities Citation Index 
(A&HCI) (1975-2006)). 

The search term combinations used to search the individual databases were 
combinations of relevant words related to invertebrates (invertebrat*, arthropod*, 
insect*, beetle* and butterfl*) and words related to dispersal (dispers*, migrat*, colon*, 
spread* and scat*) resulting in (5 x 5) 25 search term combinations. Using '*'within a 
search engine increases the number of matching references; the character" is 

referred to as a "wildcard", and in this case stands for any number of characters. Within 

the databases, these 25 combinations were used to identify articles that included these 

word combinations either within the title or within the abstract. All references that 

matched any one of these combinations were exported into a baseline library (1) using 
the reference database program EndNote 9 (Thomson ResearchSoft, San Francisco, 

USA). 

Further selections were applied using the "references" options available in the EndNote 

program. First, duplicate references within the baseline library 1 were deleted based on 

an exact match of author, title and year (using "find duplicates" option in Endnote). 

Then the following selection procedure was used to filter out the most relevant articles 

within the baseline library 1, using the "search references" option. Selection criteria 

were used to identify all studies referring to woodland habitat and measures of 

movement. References were selected when including a combination of one of each of 

the following three word groups in the abstract: *ability* or *capacity*; *wood* or 

*forest*; *move* or *pattern* or *measure*, resulting in (2 x2x 3) 12 selection 

combinations. Furthermore, articles were selected when including a combination of: 

*wood* or *forest*; *measure* or *determin* or *assess* or *quantif* or *estimat*; 
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*move* or *distribut* in the abstract, resulting in an additional (2 x5x 2) 20 selection 
combinations. Finally, two separate selection words were used to find references with 
either *corridor* or *hedge* in the title or in the keywords. All matching references were 
combined in a separate (EndNote) library (2). 

Within library 2, duplicates were deleted using the "find duplicates" option and sorting 
the references on title only. To include studies only undertaken on animals in 
temperate regions, references including *tropica* or *rain forest* or *seed* in either the 
journal title, title, keywords or abstract, were deleted after checking the title of the 
selected references. From this point, all remaining references were examined 
individually. First, the titles of all remaining references were scanned visually, enabling 
references that did not refer to an invertebrate-related study to be excluded. The 

second examination involved scanning the abstracts of the remaining references to 

select those studies referring to direct measures of movement. Finally, all remaining 
studies were entered into the full text review stage. This stage involved reading the 

complete article and selecting those that included a direct measure of movement. 

4.2.2 Phase 2: Additional search 

Additionally, relevant references cited in the articles that were entered in the full text 

review stage of 'Phase 1'were visually examined, and when found relevant, were 
included in the review process. 

4.2.3 Data extraction and analyses 

For each study the following information was recorded: (1) the source location of the 

reference, (2) the search phase in which the study was found, which for'Phase 2' 

references included whether or not it was present in library 1 (determined by cross- 

referencing), (3) the country the study was conducted in, (4) species name and 

taxonomic group, (5) whether or not the species was associated with woodland habitat, 

(6) method used to estimate the reported rate, (7) the number of observations used to 

estimate the rate, and (8) details of the reported rate including the habitat where the 

rate was measured. 

The habitat associations of the species encountered during the review process were 

determined by consulting the publications identified during the search. Further 

verification was undertaken by searching relevant literature using the internet search 
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engine'Google'(www. google. com) and the Bugs Coleopteran Ecology Package 
(BugsCEP) (Buckland & Buckland, 2006). The BugsCEP database integrates compiled 
historic and current scientific data on the Coleopteran fauna found in Europe, making it 
a valuable reference source (for more details see Buckland (2007)). The same sources 
were used to extract additional ecological information (e. g. on flight capability and body 
size of the individual species), where available. The methods used in the individual 
studies to estimate the rates were: 'Capture-Recapture'; 'Enclosure experiment'; 
'Radioactive marker/Enclosure experiment'; 'Observing/following'; 'Telemetry'; 
'Harmonic radar'; and 'Monitor invasion front'. 'Capture-Recapture' included capture- 
recapture methods with multiple recapture performed under field conditions; 'Enclosure 
experiment' included capture-recapture methods with multiple recapture performed 
within an enclosure; 'Radioactive marker/Enclosure experiment' included capture- 
recapture methods with multiple recapture performed within an enclosure with 
specimens that were marked with radioactive isotopes; 'Observi ng/fol lowing' included 

methods where the species was caught no more than once and/or actively observed 
over time under field conditions; 'Telemetry' included methods where the species was 
caught no more than -once and followed over time under field conditions using 
transmitter equipment; 'Harmonic radar' included methods where the species was 
caught no more than once and followed over time under field conditions using 
harmonic radar equipment; and 'Monitor invasion front' included methods estimating 

range expansion of the study species under field conditions using annual monitoring 
data (for more details on the individual methods see Sutherland (2006)). 

Studies providing straight-line movement rates for species moving over the ground that 

could be standardised in m day-' were selected and used for further analyses. Each 

species in this selection was assigned to a habitat group based on the'Bugs ecology 

codes' as presented in the BugsCEP database (Buckland & Buckland, 2006). These 

codes are based on referenced data available in BugsCEP and existing published 

classifications (Buckland, 2007), and indicate in which habitat type a species can 

typically be found. The following habitat codes were used: 'Wood and trees' (WT), 

indicating species associated with either forest, woodland, or individual trees; 

'Heathland & moorland' (HM), indicating species found in heathland and moorland, but 

also in the under-story of Boreal forests; 'Meadowland' (M), indicating species found in 

open landscapes such as natural grassland or near equivalents; and 'Sandy/dry 

disturbed/arable' (SID), indicating species typically found on open/disturbed ground on 

poor sandy soils such as ploughed fields in beach, dune and Aeolian landscapes (see 

Buckland, 2007). These habitat codes were further used to group the species in terms 
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of habitat specialism (Group 1- 3). 'Group 1' included species that were present in WT 
or WT/M habitat and were considered to be the most specialised associates of 
woodland habitat; 'Group 2' included species present in either HM or HM/SD habitat; 
and 'Group 3' included species present in WT, HM and M habitat and were considered 
to be generalist in terms of dependency on woodland habitat. Species associated with 
'Group Zwere not directly associated with woodland environments (i. e. did not include 
habitat code WT), and were considered to be primarily heathland specialist species. 

4.2.4 Quality assessment 

A tentative quality assessment was performed for the studies that reported straight-line 
movement rates made over the ground, using the following method. Studies were 

weighted based on the accuracy of the rate estimate, which was evaluated by 

assessing the robustness of method used, combined with the number of observations 
(N) made. First, the methods that were used to make the rate estimations were 

categorised into three classes. Weights were awarded based on the level of accuracy 
that could be obtained with the method used for the estimated straight-line distance 

travelled over time. Rates obtained by using the methods 'Telemetry' and 'Harmonic 

radar'were awarded the highest weight (3), because these methods can obtain the 

most accurate distance measures in a given time interval, followed in descending order 

by'Enclosure studies' (weight 2) and 'Capture-Recapture' methods (weight 1). 

Furthermore, rate estimates based on a high number of observations were considered 

more accurate than estimates based on relatively few observations. Therefore, within 

each method group the rate estimates were ordered from high to low by the number of 

observations used and the rates within each group weighted accordingly (value 1 for 

the rate with the lowest number of observations, 2 for the second lowest etc. ). 
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4.2.5 Statistical analysis 

Statistical tests were performed to investigate whether movement rate (with and 
without the individual weights) differed between the habitat specialism groups (Kruskal- 

Wallis and Mann-Whitney U tests), if body size differed between the specialism groups 
(Kruskal-Wallis and Mann-Whitney U tests) and if there was a relationship between 

body size and movement rate (Spearman rank correlation). Non-parametric tests were 

used because the variables were not normally distributed (Shapiro-Wilk tests). 

Analyses were performed using SPSS (Version 14.0, SPSS Inc., Chicago, Illinois, 

USA). The individual weights as described in the quality assessment (see above) were 

included in the analyses by using the 'Weight Cases' option available in SPSS. The 

'Weight Cases' option assigns weights to cases through simulated replication. In this 

case the weights assigned to the rates corresponded to the number of times the rate 

was used in the statistical analysis. 
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4.3 Results 

4.3.1 Search statistics 

Applying the 25 search term combinations to the individual databases resulted in a 
baseline library- 1 including a total of 70682 references (after deleting duplicates). After 
the first selection procedure, library 2 contained a total of 1241 references (after 
deleting duplicates). After the final selection procedure a total of 48 articles were 
entered into the full text review stage. Of the 48 full text references, one could not be 
obtained. From the 47 full text articles that were reviewed an additional 45 relevant 
references were extracted from the bibliographies. Of these 45 additional references, 8 
could not be obtained, leaving an additional 36 full text articles that were reviewed. 

After reviewing the total of 83 full text articles, all articles providing a rate of movement 
(i. e. distance moved measured over time) were included in the final analyses. This 
resulted in a total of 25 relevant studies of which 10 were identified using the 

systematic search method as described in 'Phase 1' and 15 using the additional search 
as described in 'Phase 2' (see Methods and Table 9). Cross-referencing of the 

additional 15 studies in library 1 revealed that nine of these studies were present in this 
library, indicating that these studies were excluded by following the selection procedure 
used in 'Phase 1'. From the studies that met the selection criteria, two summary tables 

were created. The first table summarises all of the studies that were found that 

provided rates for invertebrate species associated with woodland habitat (Table 9). The 

second table presents standardised straight-line movement rates for woodland 
invertebrate species that moved over the ground (Table 10). The studies that were 
found were conducted in the period 1964 - 2005, and mainly undertaken in Europe 

(16), including four studies from the UK, with an additional seven studies from North 

America and two from Asia (Table 9). The majority of the 25 studies involved ground 

beetle studies (115), with another two studies on bark beetle, two on ant species, five on 

butterflies and one on a moth species (Table 9). Within the 25 studies, rates were 

reported for 34 separate invertebrate species of which 30 were associated with 

woodland habitat (Table 9). Of these 30 'woodland' species, seventeen ground beetles 

and eight butterfly species were investigated relating to their natural occurrence and 

conservation (i. e. non-pest species); and two bark beetle, two ant, and one moth 

species were investigated relating to their negative impacts on the woodland 

environment (i. e. they were considered as forestry pests). 
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4.3.2 Factors influencing rate 

All studies included in Table 9 mentioned some factor influencing the rate of movement 
found for the species involved. The most common factors that were referred to were 
habitat, weather and physiological traits. Additionally a majority (16) of the 25 

Iwoodland' studies referred to different movement strategies/patterns observed for the 

individual species (e. g. random vs. directed walk/flight or diffusion/distribution). 

Furthermore, six studies tested linear features in the landscape (e. g. hedges) for their 

role as a potential corridor and a further four studies referred to a possible corridor 

effect regarding habitat features in the study area. 
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4.3.3 Stanclardised rate analyses 
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Figure 11: Frequency distribution for the mean movement rates of ground-dwelling woodland 
invertebrate species as presented in Table 10. The different shading of the bars indicates to 

what habitat specialism group the species belongs. Group: indicates the group for each species 
based on habitat specialism; 'Group 1' includes species found in WT or WT/M habitat, (2) in HM 

or HM/SD and (3) includes species found in WT/HM/M habitat. (WT) Wood and trees, (HM) 

Heathland & moorland, (M) Meadowland, (SID) Sandy/dry disturbed/arable (see further 

Methods). 

Thirteen studies presenting twenty rates for thirteen ground-dwelling woodland 
invertebrate species were found that provided estimates of straight-line movement 

rates in m day-' (Table 9). All rates that were found were for ground beetles. The 

majority of the rates were obtained using 'Capture-recapture' methods (10) with 

another seven using 'Enclosure experiments', two using 'Harmonic radar' and one 

using 'Telemetry' (Table 10). Rates found for the woodland species varied between 0.6 

and 18.4 m day-' (Table 10, Figure 11). Based on habitat preference, 'Group 1' 

included nine rates for four species (body size: range 12.0 - 36.0 mm, mean = 22.6, 

SID = 8.8) with rates varying between 0.6 and 8.5 m day-' (Table 10, Figure 11) with a 

mean rate of 3.0 (SID = 2.6) m day-'. 'Group 2' included seven rates for six species 

(body size: range 7.5 - 12.0 mm, mean = 9.5, SID 1.6) ranging from 1.0 to 2.6 m day-' 

(Table 10, Figure 11) with a mean rate of 2.0 (SID 0.6) m day-'. 'Group 3' included 

four rates for three species (body size: all three species 24.0 mm) ranging from 5.0 to 

18.4 m day-' (Table 10, Figure 11) with a mean rate of 11.4 (SID = 6.5) m day-'. 
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4.3.4 Quality assessment 

Three method groups were identified. The first group included rates obtained by the 
methods 'Harmonic radar' (2) and 'Telemetry' (1) and were awarded weight 3. The 
second group included all rates obtained by 'Enclosure experiment' (7) (weight 2) and 
the third group all 'Capture-recapture' (10) rates (weight 1) (Table 10). Within these 
groups a wide range of observations (N) were used to calculate the rate estimates. The 
observations used for group one ranged between 14 - 189, for group two between 116 
- 598 and for group three between 8- 420 (Table 10). 
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Figure 12: Boxplot illustrating the ranges and median (black line) for all rates found for the 

individual ground-dwelling woodland invertebrates groups. Group: indicates the group for each 

species based on habitat specialism; 'Group 1' includes species found in WT or WT/M habitat, 

(2) in HM or HM/SD and (3) includes species found in WT/HM/M habitat. (WT) Wood and trees, 

(HM) Heathland & moorland, (M) Meadowland, (SID) Sandy/dry disturbed/arable (see further 

Methods). 'Group V: median 2.1 m day-' (inter-quartile: 2.9), 'Group 2': median 2.2 m day' 

(inter-quartile: 0.6) 'Group K median 11.0 m day-' (inter-quartile: 12.2). Identical letters indicate 

a non-significant difference (a - a), different letters indicate a significant difference (a - b) (P < 

0.05, Mann-Whitney U test) between the individual habitat specialism groups. The stars and 

circles indicate extreme values and outliers respectively. The boxes in the plots include 50% of 

all the cases of the individual groups. The whiskers protruding from the box extend to the 
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smallest and largest values excluding the outliers and extreme values. SPSS defines points as 
outliers if they extend more than 1.5 times the box-length from the edge of the box. Extreme 
values extend more than three box-lengths from the edge (information on boxplots from Pallant, 
2007). 

A significant difference was found for median rate between the individual habitat 
specialism groups (Kruskal-Wallis: X2= 7.54, df = 2, P=0.023). 'Group 1& 2' both 

revealed lower median movement rates compared to'Group 3'(Mann-Whitney: nj = 9, 

n3= 4, z= -2.31, P=0.021 and n2= 7, n3= 4, z= -2.65, P=0.008, respectively; Figure 
12). Adding the individual weights to the rates did not change this outcome. Further 
differences between the individual groups were found for median body size (mm) 
(Kruskal-Wallis: X2= 12.96, df = 2, P=0.002). The median body size for'Group Vwas 
20.0 mm (inter-quartile: 10.5); 'Group 2', 10.0 mm (inter-quartile: 4.0); and 'Group 3', 

24.0 mm (inter-quartile: 0.0). 'Group 1& 3' both were associated with higher median 
body size compared to 'Group 2' (Mann-Whitney: nj = 9, n2= 7, z= -3.09, P=0.002 

and n3= 4, n2= 7, z= -2.71, P=0.007, respectively), but no difference was found 

between 'Group 1& 3'. Together this indicates that the difference found between 

'Group 1& 3' in terms of rate (see Figure 12) was not associated with a body size 
difference between these groups. However, a strong positive correlation was revealed 
between body size and movement rate of all individual beetles together (Spearman: r 

0.606, n= 20, P=0.005), indicating an increase in movement rate with an increase in 

body size. Additionally, as expected, median ground movement rates were lower than 

movement rates recorded for flying species (Ground beetle rates Table 10: nGb= 20, 

median = 2.32 (inter-quartile: 4.1) vs. Woodland butterfly species with straight-line 

movement rates in m day-' Table 9: nBf= 4, median = 52.2 (inter-quartile: 19.3); Mann- 

Whitney: z= -3.10, P=0.002). 
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4.4 Discussion 

The systematic review revealed only a limited number of studies that provided a direct 
measurement of movement for woodland invertebrates. The majority of the studies 
found (18) were conducted between 1985 and 2000, mainly focussing on carabid 
beetles. Interestingly, for the last seven years only four studies were identified. This 
highlights the general lack of information on movement for woodland invertebrates. 
Relatively few of the studies used advanced techniques such as telemetry (1) and 
harmonic radar (4). In the last decade, technological advances have been rapid in 
these techniques and substantial improvements have been made, for instance in 

reducing the weight of the tags used (ONeal et al., 2004). However, after initial 

popularity especially in the field of harmonic radar (Riley et al., 1996; O'Neal et al., 
2004), relatively few studies have used such methods to obtain movement rates for 

woodland species. Despite ongoing technological development (O'Neal et al., 2004; 

Szyszko et al., 2004), the relatively high costs and limited availability of these 

techniques are such that more traditional approaches like mark-recapture are still 

generally preferred. 

This review revealed a bias in the literature toward studies of woodland species living 

on the forest floor, as most studies focused on ground beetle species (i. e. carabids). 

Furthermore, the non-pest species that were studied included only carabid and butterfly 

species, and considering this particular group, the majority were studies on carabid 

beetles (15 out of 20). This bias is due to the fact that carabid species are relatively 

easy to study compared to more mobile flying species. This can further be related to 

the relative ease and availability of techniques to study movement rates for such 

species. Carabid beetle species mainly disperse by walking (L6vei & Sunderland, 

1996), making their movement distances relatively short and therefore the spatial scale 

at which they move on a daily basis relatively limited. This favours the use of 

technically undemanding methods such as pitfall traps to measure movement rates 

(Sutherland, 2006). The more mobile species such as butterflies are harder to study, as 

they move more rapidly and over larger distances within a given time period. 

Furthermore, butterflies move through a three dimensional space making them more 

elusive and harder to catch and/or track over time, especially within a woodland 

environment. Absolute distances travelled over time for woodland species are therefore 

easier to obtain for ground-dwelling species. 
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In this study the absolute distance travelled per day within habitat (i. e. intra-patch) was 
found to be twenty-two times higher for woodland butterflies (median: 52.2 m day-) 
than for woodland carabid beetles (median: 2.32 m day'). The review study by Bowne 
& Bowers (2004) found similar differences between movement rates of butterfly and 
carabid species moving between habitat patches (i. e. inter-patch). Their aim was to 
provide basic statistics on movement of species between habitat patches. They 
calculated rates of inter-patch movement as the proportion (%) of the population 
moving per generation. However, unlike the study presented here, Bowne & Bowers 
(2004) considered relatively large spatial and temporal scale movement rates of 
invertebrates. For all carabid and butterfly species that were included in their review, 
the percentage of the population moving between habitat patches was two times higher 
for butterflies than for carabid beetles. However, when only considering woodland 
species, the percentage of the butterfly population moving was twenty-four times higher 
than that of woodland carabid beetles (butterfly: n=2, mean: 12.9%; carabid: n=2, 
mean = 0.54%, calculated from data provided by Bowne & Bowers (2004)). The 

similarity in results for these two woodland invertebrate species groups between this 

study and that of Bowne & Bowers (2004) might indicate that differences in rates of 

movement within patches are similar to movement rates between patches. This could 
have potential implications in terms of 'scaling up' results obtained at a local spatial 

scale to a larger spatial scale. 

In the current review, measures of movement for woodland species were mainly 

obtained for carabid beetles. The majority of this group of beetles have limited flight 

capability and mainly move through the environment by walking (L6vei & Sunderland, 

1996). Therefore, for this group, the straight-line movement rate (m day-) made over 

the ground was analysed further. Specifically, these species were used to explore 

potential relationships between straight-line ground-movement rates and habitat 

specialism and with physical attributes such as body size. Body size is often assumed 

to be positively related with dispersal ability. For instance, home/foraging range for 

different groups of insects was found to be positively correlated with body size 

(Tscharntke et al., 2002). A similar relationship was found for heathland carabid beetles 

(den Boer, 1990b) as well as for woodland carabids (Drach & Cancela da Fonseca, 

1990). The study of Drach & Cancela da Fonseca (1990), however, only included data 

for three beetle species differing in body size. In the current review, a significant 

relationship between body size and rate of movement was recorded for thirteen carabid 

species, supporting previous results (Drach & Cancela da Fonseca, 1990). The fact 

that larger carabid species were found to cover more ground on a daily basis than 
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smaller species can be explained by their higher daily food requirement, which is linked 
to higher body mass (1-6vei & Sunderland, 1996), or simply to their higher movement 
capability attributable to their larger size. 

Identification of species groups is often performed to identify generalisations about the 
ecological behaviour of invertebrates, or to provide general guidance regarding 
conservation management (e. g. Lambeck, 1997). Standard approaches to grouping 
species include the degree of habitat special ism/occurrence and/or physical traits such 
as dispersal ability. Grouping invertebrates based on their mobility/dispersal ability has 
been undertaken for butterflies (Thomas, 2000) and for carabid beetles associated with 
heathland habitat (den Boer, 1990a; b). Thomas (2000) defined three broad classes of 
mobility based on experimental data describing average distances moved and the 

proportion of the population demonstrating movement. He used this mobility 
classification in relation to temporal declines in the occurrence of these different 

species groups. Responses of these groups were correlated with processes of habitat 

loss and fragmentation. Den Boer (1990a; 1990b) identified two groups based on the 

turnover rate (time between extinctions vs. colonisations) for individual carabid species 
found within a heathland area in The Netherlands. He found that these groups were 
distinct in terms of dispersal ability (den Boer, 1990a) and habitat occurrence (den Boer, 

1990b). These groups could be categorised as species with low dispersal power 
inhabiting stable habitat vs. species with high powers of dispersal inhabiting unstable 

habitat (den Boer, 1990a; b). The species of stable habitat were mainly found in 

woodland and heathland environments (i. e. habitat specialists) (den Boer, 1990b). 

Species of unstable habitat were mainly found in more open sites such as arable land 

and meadows, but also within more wooded habitat such as woodland edges (i. e. 

habitat generalists) (den Boer, 1990b). 

In the current study, ground-dwelling woodland invertebrates (i. e. carabid beetles) were 

grouped according to the degree of habitat specialism based on an existing habitat 

classification system (Buckland, 2007). Here, dispersal ability based on the daily 

straight-line rate of movement of woodland carabid beetles was found to be associated 

with a difference in habitat specialism, with habitat specialists displaying lower 

movement rates than more generalist species. The results therefore support those 

obtained by Den Boer (1990b) for carabid species of heathland environments. This 

suggests that movement rate can be used as an indicator of the degree of habitat 

specialism for ground-dwelling woodland carabid species (i. e. 'Group 1& 31 , this study), 

and vice versa. Additionally, the difference in movement rate between woodland 
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specialist and generalist species was not influenced by the relationship observed 
between rate and body size, as body size was not found to be significantly different 
between the two groups. However, the difference in movement rates between these 
two groups may be attributable to differences in movement strategy (random vs. 
directed) (Baars, 1979; Rijnsdorp, 1980). The lower straight-line movement rates for 
woodland specialist species suggests a more random walk strategy (e. g. Charrier et al., 
1997) and the higher rates found for woodland generalists indicate a more directed 
walk. The generalist species can be found in multiple habitats and are likely to be less 
bound to these environments, for instance in terms of food availability and 
microclimatic factors. These characteristics make them more flexible in their 

requirements, which might be reflected in a more directed movement strategy and 
pattern than more specialised species. This is illustrated by Carabus problematicus, 
which showed a more directed walk when dispersing between different habitats 

compared to more random movement when moving within one habitat type (Rijnsdorp, 
1980). 

Care needs to be taken in developing generalisations when different methods are used 
to estimate the movement rate of a species. The rate estimates that were used in this 

study were obtained using four different methods. When different techniques were 

used to estimate movement rate for the same species, differences in results were 

shown (see Table 10). The most striking example is the considerable difference in 

movement rates for Carabus nemoralis obtained using two different techniques 

(Capture-Recapture vs. Harmonic radar) with equal sample sizes (Kennedy, 1994) 

(see Table 10). However, in the study of Williams et al. (2004) on a bark beetle, rates 

obtained using harmonic radar were generally similar to those obtained using mark- 

recapture techniques. A great advantage of harmonic radar and telemetry techniques 

over standard capture-recapture techniques is that during the period of study, marked 

specimens can move continuously through the environment and be traced at any 

moment in time (e. g. with fixed time lags) without interruption (Charrier et al., 1997). 

Therefore, exact distances over time can be measured between locations, allowing 

more accurate rate estimates to be obtained, compared with rates calculated from 

specimens that are caught randomly without precise time lags. On the other hand, 

compared to standard capture-recapture techniques, these techniques generally 

involve application of relatively large and often heavy external tags (Riecken & Raths, 

1996; Turchin, 1998; Williams et al., 2004). This might influence the behaviour and 

dispersal ability of the individuals used, consequently reducing the accuracy of the rate 

estimates (Riecken & Raths, 1996). Sample size was another consideration when 
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evaluating the results reviewed here. However, studies employing the same species 
and methodology, but differing in the number of observations used, did not 
demonstrate major variation in the mean rates obtained (e. g. Abax ater and Nebria 
brevicollis, Table 10). However, the relationships found here for wood land-associated 
carabid beetles were based on only a limited number of species, highlighting the need 
for more research on movement rates in order to strengthen the findings of this study. 

The systematic review approach was designed to synthesize published and 
unpublished data (Pullin & Stewart, 2006). However, in this study only information from 
published data was collected. Although using conventional review techniques, for a 
wide range of animal species, Bowne & Bowers (2004) similarly used a two-stage 
search strategy, one using fixed search terms and a range of ad hoc search strategies. 
Similarly to this study, they found an equal number of relevant studies in both stages 
indicating the importance of including intuitive and less stringent search strategies 
when conducting a literature review. In the study presented here, the additional 
inclusion of cited references (Phase 2, see Methods) added another fifteen relevant 
studies to the original ten found in the'Phase 1'search, underlining the importance of 
including ad hoc search strategies when reviewing the literature. Furthermore, nine of 
these studies were listed within the library 1 assembled during the initial stages of the 

systematic review ('Phase V). This highlights the limitation of using only fixed search 
term combinations, which resulted in some relevant studies being deleted during the 

selection process. This emphasises the care that should be taken in formulating and 
translating the selection criteria into objective search terms when undertaking a 

systematic review, in order to detect all relevant studies that need to be included (Pullin 

& Stewart, 2006). 

To date, systematic reviews in ecology have generally been applied to evaluate the 

impacts of different conservation management interventions (e. g. Davies & Pullin, 2007; 

Davies et al., 2008). Here, we demonstrate that the approach can also be applied to 

measurements of species behaviour (e. g. to find movement parameters). Such 

measurements could potentially be used to inform and validate the parameter 

estimations used in spatial modelling approaches that focus on responses of species to 

land cover and climate change. Parameterisation of dispersal ability in such models is 

often based on estimations and/or expert opinion (e. g. Fahrig, 2001; Wafts et al., 2005) 

rather than values found using a systematic review of the direct measurements that 

have been made. For instance the metapopulation model developed by Vos et al. 

(2001) used arbitrary generalised values as species-specific dispersal parameters. 
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Refining these parameters with measurements of movement rate might prove 
beneficial in terms of validating the model outcomes. Furthermore, in terms of making 
useful generalisations for conservation purposes, the average movement rate for the 
individual groups identified in this study could potentially be used as 'model values' to 

represent the wider group of species with similar habitat preferences and dispersal 

characteristics. 

In terms of species dynamics in a fragmented landscape (e. g. metapopulation 
functioning (Hanski & Gilpin, 1997)), and woodland habitat network functioning, Bailey 
(2007) suggests that different groups of woodland species require different degrees of 
habitat connectivity based on their relative dispersal ability. For woodland invertebrates 

in this study, because of the lack of measurements for other woodland species groups, 

only carabid beetles and butterflies could be compared in this respect. As noted in this 

study, butterfly species typically demonstrate relatively high dispersal ability, and 

because they mostly disperse through the air, they tend to be less influenced by 

obstacles at ground level (Tscharntke et al., 2002). Physical links of suitable habitat (i. e. 

corridors) are thought to be more important for species that are more specialised in 

their habitat requirements, and that demonstrate lower dispersal ability (Bailey, 2007). 

Woodland carabid beetles are possibly one such species group, because they mainly 

move over the ground and may require woodland habitat conditions to be able to do so. 

The group of species identified in this investigation, which were particularly specialised 

in terms of habitat requirements, might therefore be expected to benefit most from 

increased habitat connectivity. For example Abax ater (i. e. Abax parallelepipedus) 

('Group V, this study) is known to prefer dispersing through hedgerows rather than 

over agricultural land (Petit, 1994; Petit & Burel, 1998; Pichancourt et al., 2006; Petit, 

pers. comm. ), indicating the importance of wooded corridor features for this species. 

However, a much wider range of woodland invertebrate groups needs to be studied to 

broaden our understanding of such requirements. The lack of field measurements of 

movement rate for all but a tiny minority of invertebrate groups indicates a substantial 

knowledge gap that should be addressed by future research. 
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5 Movement strategy of wood cricket (Nemobius sylvestris) through 
different ground surface habitats 

5.1 Introduction 

The movement strategies of organisms are of fundamental importance for 
understanding the dispersal ability and distribution of species within landscapes (Levin, 
1992; Turchin, 1998; Morales & Ellner, 2002). Analysis of movement can improve the 
understanding of patterns of species presence at multiple scales (Turchin, 1991; Crist 
et al., 1992; Johnson et al., 1992; Morales & Ellner, 2002; Samu et al., 2003). At 

coarse scales, landscape elements typically display a high level of heterogeneity, 

which can influence the movement ability of species (Johnson et al., 1992; Doak, 2000; 
Hein et al., 2003; Schtickzelle et al., 2007) and therefore their pattern of distribution 

within a landscape. Analysis of the movement strategies displayed at finer scales can 
help explain the patterns observed at coarser scales (Turchin, 1991; Wiens et al., 1993; 
Samu et al., 2003). 

A range of approaches is available for studying the discrete movements of species. A 

particular powerful way to quantify movement is directly observing and following 

individuals when moving through the environment (Turchin, 1998). By recording 

movement paths and behaviour, possible strategies that may account for the 

movement pattern can be quickly analysed and tested (Turchin, 1998). However, it is 

often difficult and highly time consuming to obtain detailed information on continuous 

movements of individuals (Turchin, 1998), especially for highly specialised sedentary 

species. None the less, individual movement paths have been recorded and analysed 

for a variety of species across a range of spatial scales (Benhamou, 1990; Cain, 1990; 

Bergman et al., 2000; Vernes & Haydon, 2001; Lauzon-Guay et al., 2006; Hapca et al., 

2007; Bowlby et al., 2007; Dai et al., 2007; Smith et al., 2007). 

Movement data in such studies are often compared with uncorrelated random walk (i. e. 

simple diffusion) and/or correlated random walk models (Turchin, 1998). Testing the 

applicability of these models to observational data is relatively straightforward, and 

where these models are intuitive in terms of population spread (Crist et al., 1992; 

Turchin, 1998), they prove useful in interpreting ecological relevant processes. For 

invertebrates, these types of analyses have been used for relatively mobile species 

such as butterflies and for species that move by walking, such as carabid beetles. In 
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these studies movement strategies were related to a range of physical and ecological 
characteristics of the individual species, including dispersal ability (Doak, 2000; Samu 
et al., 2003; Conradt & Roper, 2006; Schtickzelle et al., 2007), level of satiation (Wallin 
& Ekbom, 1988; Wallin, 1991; Wallin & Ekbom, 1994), and forage requirements (Root 
& Kareiva, 1984). Furthermore, for individual species, differences in movement 
strategies have been recorded across temporal (Johnson et al., 1992; Morales & Ellner, 
2002) and spatial scales (Johnson et al., 1992; Samu et al., 2003), between life-stages 
(With, 1994; Doak, 2000), and when moving through different habitat environments 
(Baars, 1979; Wallin & Ekbom, 1988; Crist et al., 1992; Fownes, 2002; Hein et al., 
2003). However, previous studies have mainly been undertaken for species associated 

with open habitat such as agricultural fields and meadowland, and only very few 

studies have been undertaken with wood land-associated species (see Chapter 4). 

Understanding the movement of woodland species is of particular importance in highly 

fragmented landscapes (Bailey, 2007), for example to determine the impacts of 
fragmentation on the distribution of individual species, and the functioning of ecological 

corridors or habitat networks (Bennett, 1999,2003; Vos et al., 2002; Crooks & 

Sanjayan, 2006). Information on the movement strategies of invertebrate species 

associated with woodland is severely lacking. 

The research described here focused on the wood land-associated invertebrate wood 

cricket (Nemobius sylvestris). In the UK the species has the national status of a 

'Species of Conservation Concern' (NBN Gateway, 2007). Wood cricket is a small (- 1 

cm) non-flying cricket species that has a semi-voltine (two-year) life-cycle in the UK 

(Gabbutt, 1959; Brown, 1978). After overwintering, eggs hatch in June/July and the 

juveniles (i. e. nymphs) develop throughout the summer and autumn by means of 

moulting (Gabbutt, 1959; Brown, 1978). Moulting ceases completely in September 

when the nymphs prepare to overwinter (Gabbutt, 1959; Brown, 1978). In the second 

year, nymphs continue to develop from April onwards until they reach sexual maturity 

(i. e. become adults) in July/August and are reproductively active through to 

September/October until they die (Gabbutt, 1959; Brown, 1978). The species is 

strongly associated with deciduous woodland and is typically found in relatively open 

woodland areas such as clearings and in edge habitat along woodland tracks, 

footpaths, railway lines and woodland peripheries (Richards, 1952; Morvan & Campan, 

1976; Beugnon, 1980). They live on the ground and prefer a well-developed leaf litter 

layer, which serves as shelter, food and breeding ground (Richards, 1952; Brown, 1978; 

Proess & Baden, 2000). The main habitat requirements identified for this species at the 
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local scale were presence of a thick leaf litter layer, an open canopy and low levels of 
ground vegetation (Chapter 3). 

To date no detailed study has been undertaken of the movement strategy of wood 
cricket through different habitat environments. Therefore, this study addressed the 
following aims: (1) to explore the movement strategy of wood cricket nymphs and 

adults under different ground cover conditions; (2) to determine the rate of movement 
for both nymphs and adults in these different habitat environments; and (3) to 

determine the preferred ground cover/habitat of both adults and nymphs when 

presented with a choice. Based on earlier findings for wood cricket and studies of other 
invertebrate species it was hypothesised that: (a) differences in movement strategy 

would be found between life-stages and under different ground cover conditions; (b) 

nymphs would move more slowly than adults; and (c) leaf litter habitat would be the 

preferred substrate to move through, for both nymphs and adults. 
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5.2 Methods 

5.2.1 Study site 

Between the 5 th 
and 29th of June and the 30th of July and 7 th 

of September 2007 a 
series of experiments were conducted using wood cricket (Nemobius sylvestris) 
nymphs (6-7 th instar) and adult males and females respectively. The experiments were 
carried out in the Briddlesford area (500 42'41 

. 00" N, 10 13' 30.50" W) situated on the 
Isle of Wight which is owned by 'The People's Trust for Endangered Species' (PTES), 

a non-governmental conservation organisation (Figure 13). The majority of woodlands 
in this area are classified as 'ancient woodland' (Spencer & Kirby, 1992) and are 
dominated by native deciduous tree species, particularly oak (Quercus spp. ). Since 

2005 extensive new plantings of native tree species have taken place in this area 
funded by the 'JIGSAW' scheme (Forestry Commission, 2005) in order to increase 

connectivity between the individual woodland fragments. 
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Figure 13: All the woodland fragments on the Isle of Wight (grey). Briddlesford area is 

highlighted. Derived from digital maps based on the National Inventory of Woodland and Trees 

(NIWT) (Smith & Gilbert, 2003). 
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5.2.2 Individual movement experiments 

Three separate experiments were undertaken (Experiment 1- 3). These focused on 
recording individual movement paths for the two life-stages in order to analyse 
movement strategies under different ground cover conditions, and to test for preference 
among different ground cover conditions upon release. 

0 

(d) 

J ______ 

(c) 
(a) 

_____________________ (b) 

(e) 

Figure 14: Experimental designs for grid releases. Experiment 1 (a & b), Experiment 2 (d & e), 
Experiment 3 (c). Black points indicate the point of release. Thick black lines indicate the 

woodland edge (a & b) and tall grass edge (c). White areas indicate bare soil, light grey areas 
indicate short grass vegetation and the dark grey areas indicate leaf litter cover (see also 
Appendix 11). All figures have the same scale. As a reference, figure (e) is 4x4 meters (for more 

details see text). 

For the experiments, both the nymphs and adults were caught over the course of three 

days at three different locations within a large wooded area that was thinned in the year 

2003/2004. To catch the wood crickets, a 55 x 55 x 30 cm square wooden enclosure 

(to confine them) and a custom designed pooter were used. For the duration of the 

experiments, the nymphs and adults were kept in a square plastic container (35 x 25 x 

19 cm) with ample supplies of food (bread, various fungi and oak leaf litter) available. 

To increase the detection probability, before the experiments the wood crickets were 

marked by dusting them with non-toxic fluorescent pigment (UV Gear, Mark SG 

Enterprises, Surrey, United Kingdom, www. uvgear. co. uk) (following Cronin, 2003). 

Marking was achieved by placing the wood cricket nymphs and adults in a circular 

plastic container (21 cm wide and 10.5 cm deep) with a small amount of pigment, and 
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shaking the container gently until all specimens were marked sufficiently. Fitness trials 
conducted in 2006 did not reveal any significant increase in mortality and/or change in 
behaviour when adopting this marking method. 

All experiments were conducted on sites where wood cricket was initially not present 
(i. e. released wood cricket were strangers to the site). At all experimental site locations, 
vegetation measurements were carried out using a 50 x 50 cm quadrat. First, ground 
vegetation cover up to 1m in height was estimated visually (in %) and mean dominant 
ground vegetation height was measured using a meter rule (cm). Second, total leaf 
litter cover was estimated visually and litter depth (cm) measured by taking four 
separate measurements with a leaf litter probe in the middle of each of four 25 square 
centimetre sections within the quadrat. Finally, from the centre of the quadrat, canopy 
closure was measured using a convex spherical densiometer (Forest Densiometers, 
Bartlesville, US). This involved taking separate readings for the four main compass 
directions (N, E, S, W), which were averaged for each location. During all experiments 
mean average daytime temperature at the ground surface did not go below 15 "C, as 
indicated by meteorological records. 

5.2.2.1 Experiment 1 

For wood cricket nymphs, habitat choice and individual movement paths were recorded 

within a5x3m grid developed within a grassland/hay field adjacent to a mature East 

facing woodland edge dominated by oak (Quercus spp. ) (Figure 14a). The grid was 

constructed using bamboo pegs and garden twine with each grid cell measuring 20 x 

20 cm. The surface area within the grid was modified to provide a distinct contrast in 

ground cover. This was achieved by dividing the grid into two 5x1.5 m wide strips 

running parallel to the woodland edge. The first strip directly bordering the woodland 

edge was prepared by removing all grass and herbaceous vegetation. Then, to leave a 

surface entirely covered by leaf litter, a2 cm thick leaf litter layer was added to this strip. 

The second strip was covered by grasses and forbs and was located 1.5 m from the 

woodland edge (Figure 14a). The herbaceous grass strip was prepared by cutting it to 

an even height using a scythe, producing a mean ground vegetation cover of 97%, a 

mean sward height of 10 cm and an average litter cover of 3%, 0.5 cm deep. The 

canopy closure decreased considerably from the woodland edge (65%) toward the field 

(35% at 3m from the woodland edge). 
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On the 13 th 14 th and 15 th of June single wood cricket nymphs marked with orange dust 
were released at the centre of the grid just inside the grass strip (Figure 14a). The 
releases were established by gently evicting an individual by inverting a circular 
transparent plastic container (9 cm wide, 10 cm deep) at the release site. The released 
specimens were observed from a position outside the grid (1.5 meters away from the 
point of release) avoiding the creation of a silhouette against the horizon, as wood 
cricket are known to orientate towards contrasting dark objects (Campan & Gautier, 
1975). To avoid further directional bias, specimens were released in alternating 
directions. For each individual, habitat choice was recorded and the individual 

movement paths drawn on gridded paper by recording their exact (step) positions 
within the grid at two-minute intervals. Individual wood cricket nymphs (and adults) 
were released until a clear pattern of habitat choice could be revealed with a chi-square 
'goodness of fit' test. However, no less than fifteen and no more than thirty-five different 
individuals were used for each experiment. Observations were terminated either after 
individuals were observed exiting the grid or remained stationary for more than 5 

minutes. This time limit was based on the difficulty of analysing and interpreting the 
data when individuals demonstrate prolonged stationary periods during their walks (see 

5.2.3.1). All individual releases either took place under overcast weather conditions or 

whilst the release location was in the shade with mean daytime temperatures of 18 `C 

at ground level. 

For the adult releases, several adaptations to this approach were made. In this case, a 

4x2m grid was created at the same location (Figure 14b). The interior ground cover 

was modified by creating two contrasting blocks within a4x1.5 m wide strip both 

directly bordering the woodland edge. One block (2 x 1.5m) represented herbaceous 

grass cover, and the other provided leaf litter cover. The remaining 4x0.5 m wide strip 

running parallel (1.5 meters from the woodland edge), represented also herbaceous 

grass cover (Figure 14b). For this set-up, the same vegetation modifications were 

applied as for the nymphs. On the 1't and 2 nd of August, single wood cricket adult 

males and females were released (1 : 1) at the junction of the contrasting habitats (1.5 

rn from the woodland edge). Marked individuals were released by using a transparent 

plastic circular container (3.5 cm wide, 7 cm deep). The individual wood crickets were 

released by inverting the container and removing it after 5 s. This was done to avoid a 

directional bias after release. For each individual, habitat choice was recorded and the 

individual movement paths drawn on gridded paper by recording their exact (step) 

positions within the grid at one-minute intervals. Observations were terminated either 

after individuals were observed exiting the grid or remained stationary for more than six 
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minutes. All individual releases took place either under overcast weather conditions or 
whilst the release location was in the shade with a mean daytime ground temperature 

of 19 'C. 

5.2.2.2 Experiment 2 

For nymphs (1 9th and 20th of June) and adults (4 th 
and 5 th 

of August), a similar 
experiment was performed within an oak dominated woodland stand. In this case a4x 
4 rn grid was created on an open woodland track with a mean overhead canopy 
closure of 92%. Initially, all leaf litter and ground vegetation was removed, resulting in a 
bare soil cover (Figure 14d). Individual wood crickets were released at the centre of the 

grid following the methods described above (see 5.2.2.1). However, in this case exact 
locations within the grid were recorded at 1 min intervals for both nymphs and adults. 
Furthermore, to avoid directional bias of the released specimens, the position of the 

observer outside the grid was changed regularly and releases were equally distributed 

among four alternating directions. Secondly, to create a contrast in ground cover, a1x 
4 rn strip of leaf litter was developed within the grid (Figure 14e). The leaf litter cover for 

this strip was 100% with a mean depth of 1 cm. Wood crickets were released at the 

centre of the grid at the edge of the two contrasting habitats (bare vs. leaf litter) 

following the same method and recording the same data as described above. All 

releases took place with a mean temperature at ground level of 18 OC. 

5.2.2.3 Experiment 3 

To test for habitat choice and record movement paths in grass vegetation, a third grid 

was created on the edge of a recent planting bordering a grazed field (Figure 14c). The 

vegetation within the new planting was a mixture of dense thistle and grass, 50 - 60 cm 

in height. The grazed field consisted of a short grass sward 10 cm in height. The height 

of the short grass habitat was further homogenised by clipping to develop a sharp 

contrast between the two habitats. In the short grass habitat, a 1.5 x4m grid was 

created bordering the tall grass habitat. On the 4 th of August at 8 pm after sunset and 

on the 24 th of August at noon, single adult wood cricket were released on a circular 

wooden platform (12 cm in diameter), which was placed in the short grass habitat and 

situated 1 rn away from the tall grass edge. Single wood crickets were released in the 

middle of the platform using a circular 3.5 x7 cm transparent plastic container. The 

individual wood crickets were released by inverting the container on the centre of the 

platform. After 5 seconds the container was removed and the movements of the wood 
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cricket were recorded from a position 2m away, maintaining a low profile. Male and 
female wood cricket were released one at a time. For each released cricket, individual 
movement paths were drawn on gridded paper by recording the location within the grid 
at intervals of 1 minute. Releases on the 4 th August were made under relative cool 
conditions with a mean temperature at ground level of 13 T. On the 24 th the weather 
was overcast with a mean temperature of 18 OC. 

5.2.3 Analyses 

All individual paths were digitised using PowerPoint (Microsoft Office XP, Microsoft 
Corporation 1983-2001, USA). Coordinates were assigned for each step location within 
the grid. In this case steps represented the straight-line distances between each 
location as recorded over a one (or two) minute interval. These coordinates combined 
with standard rules for right-angled triangles and trigonometry (cosine rule) were then 

used to calculate step distances, the mean speed (cm min-) and turning angles 
between moves with functions available in Excel (Microsoft Office XP). 

Initially, the individual paths were tested for the existence of a release effect. This was 
done by comparing the speed displayed in the first step of each individual path with the 

speed of subsequent steps. After initial exploration of the speed data and testing for 

normality (Kolmogorov-Smirnov test), Mann-Whitney and t- tests (for independent 

samples) were used for the analyses. Furthermore, chi-square 'goodness of fit' tests 

were performed to test for habitat preferences for each life-stage and Fisher's exact 

probability tests (appropriate when using small samples) were used to test for 

difference in habitat preference between the sexes. Finally, Mann-Whitney tests were 

used to test for speed and path time differences between different habitats, sexes and 

life-stages. All of the statistical analyses were performed using SPSS (Version 14.0, 

SPSS Inc., Chicago, Illinois, USA). 

5.2.3.1 Walk analyses 

The individual paths were further used to analyse the movement strategy of wood 

cricket under different habitat conditions following Turchin (1998). Before these 

analyses, all paths were individually evaluated and omitted from further analyses when 

the displayed movements were influenced by non-experimental external factors (e. g. 

position of the observer). Furthermore, for these analyses data for adults was pooled, 

regardless of sex. It was not possible to collect enough data on movement paths 
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through grass habitat to perform this analysis, because the majority of individuals did 
not show any movement after release. The movement paths over bare soil and through 
leaf litter were analysed for deviances with a simple uncorrelated random walk (URW) 
Jurchin, 1998) and a correlated random walk (CWR) model (Kareiva & Shigesada, 
1983). Uncorrelated random walk (URW) models assume that organisms move through 
the environment without any correlation between moves (i. e. no directional persistence 
or any other kind of correlation between successive displacements) and therefore do 
not include a parameter that accounts for a directional persistence within the equation. 
CRW models assume that there is a certain level of directional persistence in the 
movement of organisms and therefore include parameters that account for this 
persistence based on absolute turning angles between moves. Therefore, under the 
CRW formulation individuals are predicted to spread quicker compared to URW models. 

Both models assume that move duration, speed and turning angles within each path 
are not serially correlated. Furthermore, indications for the applicability of a CRW 

model is when turning angles show an overall positive correlation (i. e. a symmetric 
distribution around 0' (range -1800/1800)). These criteria were tested as follows. To 

check the primary assumption to apply the CRW model, first the distribution of the 

absolute turning angle (range -180'/1800) was explored. From here onwards, for 

nymphs, paths recorded in 'Experiment Vwere excluded in order to standardise the 

temporal scale between each recorded step to one minute. 

Second, serial correlations for the individual paths were examined. For nymphs the 

paths used ranged from 6- 12 consecutive steps and for adults from 6-8 steps. For 

nymphs and adults, paths longer than twelve respectively eight steps were split to 

create an even distribution for all path lengths based on the number of steps taken. 

Move duration for these paths was standardised to one minute (being the recorded 

steps) and therefore were not tested for serial correlations. Speed (cm min-) and turn 

angles were tested for presence of serial correlations between subsequent steps by 

using autocorrelation analyses. Autocorrelation is a method specifically designed to 

examine correlations within time series data. It correlates each value within a 

continuous series with the value lagged by one (first order) or more (higher order) 

previous cases (here each steps within the individual movement paths). Individual 

paths were analysed for presence of first order and second order autocorrelations in 

step speed using the autocorrelation function available in SPSS (Version 14.0, SPSS 

Inc., Chicago, Illinois, USA). For these analyses, individual paths with a minimum of 

five subsequent (1 -minute) steps were used. Autocorrelation analyses for the turn 
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angles were performed for all paths with three or more recorded steps. In this case, 
turn angles were analysed by defining them as right (R) or left (L) turns relative to the 
previous step direction. To test for a first order autocorrelation, subsequent turns for 
each individual path were paired relative to each previous turn and defined as RR, RL, 
LR and LL. Deviations from a random sequence were tested by applying a Chi-square 
test of association for these turn pairs. Furthermore, Chi-square 'goodness of fit' tests 
were performed to test for turn direction preference (even (LL, RR) vs. alternating (LR, 
RQ). Finally, Spearman's correlations between step speed and absolute (positive) turn 
angles (0 - 180 degrees) between steps were performed for all registered paths. 

To further test the applicability of the URW or CRW formulation for the species moving 
through different habitats, net squared displacements (R2, ) were calculated (Equation 
3). Under the URW formulation net squared displacements (R 2 

n) typically increases 
linearly with time. Therefore, R2n (Equation 3a) was plotted against time (n) and linear 

regression analyses was used to assess the overall fit. For testing the CRW model, 

comparisons were made between (theoretical) predicted and (actual) observed 
displacements. For these analyses all paths with more than two recorded consecutive 

steps were examined. Predicted and observed displacements were calculated as net 

squared displacements (R20 using the formula provided by Kareiva and Shigesada 

(1983) (Equation 3b), employing mean observed values for step length and turn angle. 

These values were plotted against the number of consecutive steps observed for each 

recorded path made by the individually released specimens. To asses the 

appropriateness of this particular CRW formulation for wood cricket movement, the 

95% confidence interval for the predicted net squared displacements were included for 

comparison with the observed values. 

Equation 3: Net squared displacement (R2, ) formulation for (a) URW and (b) CRW under the 

assumption of symmetric distribution of turning angles as shown in (Kareiva & Shigesada, 1983). 

R2 n= nL 
2 (a) 

R2n =nL 
2+ (2Lc /1- c) * (n - (I _ Cn /1 _ c)) (b) 

L= mean step length (cm) 

L2= mean squared step length (CM2) 

n= number of consecutive steps 
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mean cosine of the turning angle 

Additionally for URW, as a measure of population spread, the diffusion rate (D) (D =L2 
/ 4; see Turchin (1998)) was calculated in CM2 min-' as well as the estimated absolute 
diffusion rate (VD) (cm min-'). Furthermore, within the CRW equation (Equation 3b), 

directional persistence affects the rate of spread through the ratio 'c /1- c', with small 
turning angles (i. e. large c) producing the largest ratio's and therefore the largest 

displacements. If the predicted net squared displacement (R2, ) matches the observed 
than the predicted formulation can be used as a tool to indicate the population spread 

under the experimental conditions in which it was derived. However, net displacement 

(Rn) as a measure for distance travelled over time (or as a measure of population 

spread) is more intuitive than a squared distance On) travelled over time (i. e. cm min-' 

vs. cm 2 min-', respectively). Therefore, by using the method developed by Byers (2001), 

estimations for net displacement (Rn)were calculated using the appropriate correction 

factor (z) (R z \fR2n: with mean absolute turning angle > 300, z=0.89; see Byers 

(2001)) 
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5.3 Results 

5.3.1 Observations 

Both nymphs and adult wood cricket moved primarily by walking. Jumping was only 
observed when in distress and in order to escape. Over bare soil (Exp. 2), wood cricket 
performed several fast straight-line movements within the fixed one-minute time step. 
Stops were used to orientate themselves. Between movements, the insects remained 
motionless for no more than a few seconds at a time. A few movements of their 
antennae initiated walking movements. On bare soil, the wood crickets displayed long 
straight-line movements, seemingly trying to find cover (such as leaf litter) as quickly as 
possible. The majority of insects moved in a more or less straight line to the edge of the 
experimental grid (Exp. 2), however some individuals displayed a very haphazard 
pattern of movement, seemingly being disorientated within the grid. On a surface of 
leaf litter (Exp. 1& 2), both wood cricket adults and nymphs exhibited much more 
'exploratory' behaviour, displaying haphazard movement through the habitat and often 
returning to the same location several times. Within leaf litter, they used their antennae 
to explore the surroundings. After entering the cover of leaf litter, they showed 
themselves only sporadically in the open, predominantly remaining under dead leaves. 
Before making another movement, they often remained in one location for several 

minutes. They repeatedly scanned the surrounding area, their heads emerging from 

the litter for a few moments often only to withdraw again. If moving, they moved quickly 
between areas of cover in a straight line. When encountering the edge of contrasting 
habitat (leaf litter vs. bare soil; see Methods Exp. 2), wood crickets were readily 

crossing the bare soil habitat, however always after a period of 'scanning' at the edge 
before making a quick crossing to surrounding leaf litter habitat on the opposite side 

outside the experimental grid. Through dense herbaceous vegetation or grass habitats 

(Exp. 3), both nymphs and adults showed only few movements. They appeared 'lost' or 

disorientated within the dense maze of vegetation predominantly remaining dormant for 

a prolonged period close to the release site. 

5.3.2 Release effect 

For nymphs, both in leaf litter habitat and on bare soil, no significant difference was 

found between the speed displayed in the first step and subsequent steps after release 

(Mann-Whitney test: n= 299, z= -0.580, P=0.562; independent samples t-test: t 153= 

1.018, P=0.310, respectively). For adults, speed during the first step on leaf litter did 
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not significantly differ from that during subsequent steps (Mann-Whitney test: n= 142, z 
= -1.125, P=0.260). However, over bare soil, the speed displayed during the first step 
was significantly higher than during the following steps (independent samples t-test: t 

,, I= 3.150, P=0.002), indicating an initial release effect. The first step of each path 
made on bare soil by adults (both male and female) was therefore omitted from further 

analyses. 

5.3.3 Speed through different habitat 
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Figure 15: Frequency distribution of speed (cm min -1) generated on leaf litter by nymphs (a), all 
adults together (b), adult males (c) and females (d) and on bare soil habitat for the same groups 
(e, f, g, h respectively). For figure b&c and f&h one outlier was excluded from the graph for 
clarity (100.1 cm min -1 for fig. b&c and 185.1 cm min -1 for fig. f& h). Interval range = 20 (cm 

min -1). n=n., see Table 11. 

For both life-stages, the frequency distribution of speed (cm min -1) through leaf litter 

habitat showed a high amount of variation, but was generally skewed towards relatively 
low values (Figure 15a - d). Speed over bare soil was similarly highly variable (Figure 

15e - h), but was more evenly distributed around the mean value (Table 11), showing 

a normal distribution. For grass habitat, not enough observations were made to provide 

a clear frequency distribution. 
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Table 11: Mean speed (cm min-) recorded for nymphs and adults generated within different 
habitat. np = number of paths (or individuals). n, = number of steps taken by all individuals (for 
all paths) used to calculate the mean speed. Speed = mean step speed (cm min-'). 95% C. I. 
95% confidence interval around the mean speed. 

Life-stage Habitat n,, n,, Speed 95% C. I. 
Nymphs Bare soil 25 155 62.6 - 58.0 67.3 

Leaf litter 54 299 16.0 14.7 17.2 
Grass 5 9 4.68 2.81 6.54 

Adults Bare soil 25 86 79.3 73.9 84.7 
Leaf litter 27 142 27.8 25.2 30.4 
Grass 17 41 16.8 12.9 20.6 

Males Bare soil 13 36 78.4 70.9 85.9 
Leaf litter 14 84 27.1 23.5 30.6 
Grass 8 18 15.3 8.89 21.7 

Females Bare soil 12 50 80.0 72.2 87.8 
Leaf litter 13 58 29.0 25.1 32.8 
Grass 9 23 17.9 12.9 23.0 

Speed of nymphs on bare soil was higher than their speed through leaf litter (Mann- 

Whitney test: n= 454, z= -15.31, P<0.001). No tests were performed for nymphs 

moving through grass habitat, because of the small number of observations made (n., 

9; Table 11). Speed of adults was higher on bare soil than in leaf litter and grass 

habitat (Mann-Whitney test: n= 228, z= -11.57, P<0.001; n= 127, z= -8.840, P< 

0.001, respectively; Table 11). Furthermore, speed within leaf litter was higher than 

within grass habitat (Mann-Whitney test: n= 183, z= -4.260, P<0.001; Table 11). No 

differences were found between adult males and females with respect to speed over 

bare soil, through leaf litter and through grass habitat (independent samples t-test: t84= 

-0.287, P=0.775; Mann-Whitney test: n= 142, z= -1.163, P=0.245 and n= 41, z 

0.911, P=0.363, respectively; Table 11). Between adults and nymphs, adults were 

significantly faster than nymphs when moving over bare soil and through leaf litter 

habitat (independent samples t-test: t 239=-4.472, P<0.001; Mann-Whitney test: n 

441, z= -8.462Y P<0.001, respectively; Table 11). 
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5.3.4 Time spend in different habitat 

Table 12: Paths registered for individuals using only leaf litter habitat or bare soil habitat before 
exiting the experimental grid (Exp. 2). n= number of paths (or individuals) used. Path time 
mean time spent (min) within the habitat before exiting the grid. 95% C. I. = 95% confidence 
interval around the mean path time. 

Life-stage n Path time 95% C. I. 
Nymphs Leaf litter 7 7.9 4.26 11.5 

Bare soil 7 4.4 3.70 5.16 
Adults Leaf litter 5 8.8 4.12 13.5 

Bare soil 5 2.8 1.18 4.42 

For both nymphs and adults released within the 4x4 grid (Exp. 2; Figure 14e) 

observed exiting the grid, the total time spend within leaf litter habitat was significantly 
higher than time spent on bare soil habitat (Mann-Whitney test: n= 14, z= -2.030, P= 

0.042; n= 10, z= -2.341, P=0.019, respectively; see Table 12). Comparing time spent 

on bare soil habitat between nymphs and adults, a significantly longer path time was 

observed for nymphs (Mann-Whitney test: n= 12, z= -2.040, P=0.041; Table 12), 

whereas no such difference was recorded in time spend within leaf litter habitat (Mann- 

Whitney test: n= 12, z= -0.326, P=0.744; Table 12). No comparison between adult 

males and females could be made as a result of the small sample size. Finally, the 

straight-line distance travelled from the release point to the end of each observed path 

used ranged between 2 and 2.8 m. The results indicated that nymphs and adults 

covered straight-line distances quicker over bare soil than through leaf litter habitat and 

over bare soil adults moved faster than nymphs. 
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5.3.5 Habitat preference 

Table 13: Habitat preference (or choice) of wood cricket nymphs and adults (chi-square 
'goodness of fit' tests) and Fisher's exact tests for differences in preference between the sexes. 
Leaf litter/Bare soil or Leaf litter/Grass = number of individuals choosing either habitat. 

Life-stage Leaf litter Bare soil X2 df P 
Nymphs 23 8 7.258 1 0.007 
Adults 14 5 4.263 1 0.039 

Males 7 3 
Fisher's test 1.000 

Females 7 2 
Leaf litter Grass 

Nymphs 31 2 25.48 1 <0.001 
Adults 13 2 8.067 1 0.005 

Males 7 2 
Fisher's test 0.486 

Females 6 0 

Both nymphs and adults preferred moving through leaf litter when offered a choice 

between leaf litter and bare soil or grass habitat (chi-square test: P<0.001 - 0.039; 

Table 13) and no difference was observed in habitat preference between adult males 

and females (Fisher's exact probability test: P=0.486 - 1.000; Table 13). 
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5.3.6 Walk analyses 

5.3-6.1 Turning angle analyses 
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Figure 16: Frequency distribution of turning angles made when moving through leaf litter and 

over bare soil habitat for nymphs (a, c) and adults (b, d). Values on the x-axis represent the mid- 

point of the turning angle interval. Interval range = 30'. 

The overall frequency distribution for turning angles both for leaf litter habitat and over 

bare soil show an even distribution around 0' (Figure 16), indicating directional 

persistence displayed by the species. This violates the primary assumption (i. e. no 

correlations) made under the URW formulation, however meets the assumption made 
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under the CRW formulation. Therefore, further walk analyses focused on using the 
CRW formulation. 

5.3.6.2 Autocorrelation analyses 

Under the URW and CRW formulation, movement duration, speed and turning angles 
should not be serially correlated, so individual paths and movements should not show 

an autocorrelation (Turchin, 1998). Where movements were registered within a fixed 

time interval, movement duration was equal for each registered step, and therefore 

perfectly autocorrelated. This violates the assumption made under both formulations, 

however the one-minute time interval was observed to accurately represent individual 

moves for this species and therefore this violation was considered not to influence 

further analyses. Out of seven paths, with five or more consecutive steps (see 

Methods), that were analysed for nymphs, five revealed no significant first or second 

order autocorrelations for speed (Autocorrelation: n=5,1st order: df = 1, P=0.143 - 
0.589; 2 nd order: df = 2, P=0.202 - 0.845). For the two remaining paths, speed was 

found to be autocorrelated for the first order and partially for the second order 

(Autocorrelation: n=2,1st order: df = 1, P=0.025 - 0.043; 2 nd order: df = 2, P=0.032 

- 0.086). For bare soil, six out of seven paths did not reveal any significant 

autocorrelations (Autocorrelation: n=6,1 st order: df = 1, P=0.195 - 0.946; 2 nd order: 

df = 2, P=0.342 - 0.995), whereas one did (Autocorrelation: 1't order: df = 1, P=0. 

018; 2 nd order: df = 2, P=0.037). For adults, analyses of the individual paths did not 

reveal any autocorrelations for speed through leaf litter habitat (Autocorrelation: n=7, 

1 st order: df = 1, P=0.093 - 0.982; 2 nd order: df = 2, P=0.160 - 0.851), or over bare 

soil (Autocorrelation: n=7,1 st order: df = 1, P=0.275 - 0.777; 2 nd order: df = 2, P 

0.099 - 0.553), indicating no violation of the URW or CRW criteria. 
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Table 14: Contingency tables for turning angles of subsequent movements (steps) made by 
nymph and adult wood crickets moving on bare soil and leaf litter with related chi-square tests of 
association. Turn = turn direction relative to the direction of the previous step. For example: Left 
- Left (LL) = 7; is number of times an individual took a left turn in succession. 

Life-stage Habitat Turn Left Right Total 
Nymphs Leaf litter Left 7 21 28 

Right 22 13 35 
Total 29 34 63 

Bare soil Left 
Right 
Total 

32 
9 

41 

14 
11 
25 

46 
20 
66 

Adults Leaf litter Left 12 20 32 
Right 15 17 32 
Total 27 37 64 

Bare soil Left 20 8 28 
Right 7 19 26 
Total 27 27 54 

Life-stage Habitat n X2 df P 
Nymphs Leaf litter 63 8.974 1 0.003 

Bare soil 66 3.575 1 0.059 
Adults Leaf litter 64 0.577 1 0.448 

Bare soil 54 10.68 1 0.001 

Table 15: Results of chi-square 'goodness of fit' tests for displayed movement strategy of 

nymphs and adults on -bare soil and leaf litter based on turning angles grouped in even turns 

Left/Left + Right/Right (LL + RR) and alternating turns Left/Right + Right/Left (LR + RL) also see 

Table 14. 

Life-stage Habitat LL + RR LR + RL )? df P 

Nymphs Leaf litter 20 43 8.397 1 0.004 
Bare soil 43 23 6.061 1 0.014 

Adults Leaf litter 29 35 0.563 1 0.453 

Bare soil 39 15 10.67 1 0.001 

Table 16: Spearman's rank correlation between speed and turn angle of all individual paths 

made by nymphs and adults on bare soil and leaf litter. 

Life-stage Habitat n r P 

Nymph Leaf litter 96 0.006 r, r. 0.9%. #V 
Bare soil 91 -0.011 0.920 

Adult Leaf litter 98 0.109 0.287 

Bare soil 76 0.026 0.824 
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Nymphs moving through leaf litter habitat revealed a first order autocorrelations in their 
turning angle between consecutive moves (Table 14). Furthermore, alternating 
direction was favoured over even turns (Table 15, indicating a linear persistence in 
their movement (i. e. directed movement strategy). Nymphs showed (weak) 

uncorrelated movement over bare soil habitat (Table 14); however, grouping even and 
alternating turning pairs together revealed that even turns were favoured over 

alternating turns (Table 15). Furthermore, even pairs turning left were favoured over 

even pairs turning right (chi-square test: X21 = 10.26, nLL = 32, nRR = 11 
YP= 

0-001)1 

indicating a circling movement strategy for nymphs on this substrate. For adults moving 
through leaf litter, turn pairs were evenly distributed (Table 14 & Table 15), indicating 

no autocorrelation between consecutive moves. However, over bare soil movements 

were autocorrelated (Table 14), where (like the nymphs) even turns were favoured over 

alternating turns (Table 15). Both for nymphs and adults, no significant correlations 

were recorded between speed and turn angle for movement paths made in leaf litter 

and over bare soil (Table 16). Together, these results indicated that only adult wood 

crickets moving on leaf litter met all of the criteria of the CRW formulation. 

5.3.6.3 Net squared displacement (R2,, ) 

Table 17: Number of paths used for nymphs and adults moving on bare soil and leaf litter, 

grouped by the number of registered consecutive movement steps (n in minutes). Net squared 

displacement (R2, ) for both URW and CRW models were calculated using these paths only. 

Life-stage Habitat \n 2 34 567 8 12 Total 

Nvmphs Leaf litter 3 4 4 4 3 18 

Bare soil 2 5 6 5 4 3 25 

Adults Leaf litter 1 5 6 7 4 3 26 

Bare soil 87254 26 
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Figure 17: Relationship between the net squared displacement (R2n) (CM2) for CRW, and the 

number of consecutive movement steps made within leaf litter habitat (a, b) and over bare soil 
(c, d) for wood cricket nymphs (a, c) and adults (b, d), respectively. -0- = predicted square 
displacement; -A- = observed square displacement; ------ indicates 95% confidence interval of 

the predicted square displacement. In this case net squared displacement (R2n)was calculated 

for each individual path group (see Table 17). 

When using the URW model (Equation 3a), linear regression analyses revealed a 

significantly positive relationship between net squared displacement (R 2 
n) and time for 

adult wood cricket moving through leaf litter and over bare soil (Regression: R2= 0.93; 

F= 40.7, df = 41 P=0.008; R2= 0.86; F= 19.1, df = 4, P=0.022, respectively), 

indicating an uncorrelated random walk strategy. The estimated diffusion rate was D 
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46.9 CM2 min-' (or 6.85 cm min-) for adults moving through leaf litter and D= 428 CM2 
min-' (or 20.7 cm min-) for adults moving over bare soil. For nymphs no linear 
relationship was found for both leaf litter and bare soil habitat (Regression: R2= 0.52; F 
= 3.25, df = 4, P=0.169; R2= 0.49; F=3.79, df = 5, P=0.123, respectively). 

Under the CRW model, when observed values exceed the predicted values, more 
directed movement by the species is suggested, and where the observed values are 
below the predicted values, more random movement is suggested. Within leaf litter 
habitat, three out of five observed net squared displacement (R2, ) values for nymphs 
did not correspond with the predicted values (Figure 17a; predicted displacement Rn 
5.05 cm min-'). Two values were below the predicted R2nand one above. Overall, the 

observed R2nshowed a rapid exponential increase, levelling off after four consecutive 
movement steps (i. e. minutes), reaching an asymptote, indicating that nymphs stayed 
within a limited area. For adults, however, predicted and observed net squared 
displacements through leaf litter habitat displayed a good overall fit, with the exception 

of observed displacements made by individuals making two and four consecutive 

movement steps, which deviated slightly from the predicted displacement (Figure 17b; 

predicted Rn ": 9.94 cm min-'). Over bare soil predicted and observed R2nfor nymphs 

revealed a similar pattern. However, the observed deviations for individuals making two 

and six consecutive steps were much higher and lower, respectively, than predicted 

under the CRW model (Figure 17c; predicted Rn= 21.6 cm min-'). Adults moving over 

bare soil revealed a closer fit between predicted and observed displacements, where 

only two values deviated slightly from the predicted displacement (Figure 17d; 

predicted Rn= 26.2 cm min-'). Overall, these results indicate that adult wood cricket 

moving on/through leaf litter habitat can be modelled using the CRW formulation. 
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5.4 Discussion 

Wood cricket has a two-year life-cycle of which two-thirds is spent as a nymph and 
one-third as an adult (Gabbutt, 1959; Brown, 1978). To fully understand the dispersal 
ability of the species it is therefore important to consider both life-stages (Diekofter et 
al., 2005). This is demonstrated by the results of this study. At the scale of this 
investigation, the walk strategies found for wood cricket when moving through their 
preferred natural habitat (i. e. leaf litter) differed considerably between life-stages. When 

using a fine temporal scale (12 minutes, see Figure 17a), nymphs displayed a 
movement strategy that changed from a more directed walk to random movements 
within a fixed area. This indicated that over time nymphs tended to settle down within a 
certain home range. The behaviour demonstrated by adult wood cricket was strikingly 
different. For adults moving through leaf litter, the CRW model described the observed 

movements relatively well, indicating a gradual spread of adults over time. Compared 

to nymphs, adults therefore showed a higher tendency to disperse. Doak (2000) found 

similar differences in movement strategy between life-stages for a moth species. 
Caterpillars of this species were found to move randomly, compared to a more directed 

movement recorded for the flightless female adult, also indicating a higher tendency of 

the adult life-stage to disperse (Doak, 2000). 

The relationship between net squared displacement (R2n) and time that was recorded 

in this study was found to be close to linear for adult wood cricket moving through leaf 

litter habitat. In contrast, the relationship was non-linear for nymphs. Furthermore, the 

estimated diffusion rate (Rn) as calculated from the predicted R2nwas found to be 

considerably lower for nymphs than for adults (5.05 and 9.94 cm min-', for nymphs and 

adults respectively). This was also reflected in the differences in speed recorded 

through leaf litter, where nymphs were found to move more slowly than adults. Similar 

differences were also found between life-stages of a moth (Doak, 2000) and a 

grasshopper (With, 1994) species, where juveniles showed a lower diffusion rate 

through their natural habitat than adults. Such differences could be the consequence of 

the difference in movement strategy, and/or the result of physical constraints (e. g. body 

size). Together, these results indicate that the largest absolute distance travelled over 

time is accomplished by the adult stage of wood cricket, and at relatively fine spatio- 

temporal scales, the adults can be considered more powerful dispersers than nymphs. 

Wood cricket adults and nymphs consistently preferred to move through leaf litter 

habitat rather than bare soil and grass habitats. This is consistent with the previously 
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documented association of the species with a well-developed leaf litter layer (Richards, 
1952; Brown, 1978; Chapter 3). Furthermore, the higher speed recorded and the 
shorter time spent on bare ground compared to leaf litter habitat (see Table 11 & Table 
12) indicated a tendency to locate cover within leaf litter as quickly as possible when 
moving over bare soil. These differences were also reflected in the movement strategy 
and estimated diffusion rate for both environments (i. e. leaf litter vs. bare soil). When 
considering adult movements only, the movement strategy through leaf litter was 
accurately described as a CRW (i. e. no (auto)correlations; see Figure 17b). This result 
is similar to that recorded for two wood land-associated carabids, Pterostichus 
melanarius and Carabus nemoralis, moving through their preferred woodland habitat 
environment (Wallin & Ekbom, 1988). However, the movement strategy of adult wood 
cricket moving over bare soil could not accurately be described as a CRW. Similar 

results were also observed for Pterostichus melanarius and another woodland beetle, 
Pterostichus niger, moving through less favourable habitat (i. e. a cereal field) (Wallin & 
Ekbom, 1988). Furthermore, these and other carabid species were found to move 
considerably more rapidly through 'unfavourable' environment than their preferred 
habitat (Baars, 1979; Wallin & Ekbom, 1988). This difference in the rate of movement 
was also observed for wood cricket, where the estimated value over bare soil was 2.6 - 
4.3 times greater than that recorded through leaf litter habitat. These similar results 

suggest that woodland invertebrate species tend to use a different movement strategy 

and move with less velocity within their preferred habitat than when moving through 

unfavourable environments. 

Bare soil can be considered as a ground surface habitat that does not contain the 

resources that wood cricket need to maintain their fitness (Richards, 1952; Brown, 

1978). The pattern of movement revealed by the autocorrelation analyses showed that 

wood cricket tends to circle when moving over this particular substrate. This pattern 

was found to be more persistent for nymphs than for adults, possibly related to the 

greater ability of adults to orientate themselves towards external cues like tree trunks or 

the preferred leaf litter habitat that surrounded the experimental grid (Campan & 

Gautier, 1975). A similar circling pattern of movement was observed for Mexican bean 

beetle when released in a field without its preferred resource/host plant (Turchin, 1998; 

p 147-150). This pattern was related to their search strategy to find their host plant. 

This explanation could also be valid for wood cricket when moving over bare soil 

habitat, where it also displays a similar searching strategy for its primary resource 

habitat (i. e. leaf litter). 
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In order to test whether a model describes the movement strategy of a certain species 
accurately, it is important to analyse the observed movement paths in several different 
ways with a variety of tests (Turchin, 1998). The individual tests that can be used can 
be complementary, but do not necessarily confirm each other (Cain, 1990; Turchin, 
1998). The analyses of the movement paths that were recorded in the current study 
clearly showed the validity of this statement. For example, the visual representation of 
the CRW model showed that the observed net squared displacement (R 2 

n) roughly 
matched the predicted displacement for nymph and adult wood cricket moving over 
bare soil (see Figure 17c & d), indicating a CRW movement strategy. However, the 
positive autocorrelation between turning angle indicated that both nymphs and adults 
moved in random circling patterns. This violated the assumptions made under both the 
URW and CRW formulations that were tested (see Turchin, 1998), indicating that in 
these cases neither model describes the movement strategy of wood cricket accurately. 
Furthermore, for all situations the first assumption under the URW formulation was 
violated because of an overall bell shaped distribution in turning angle around 0*, 

indicating the possible CRW strategy. However, overall, the only movement data 

passing all individual tests for applying the CRW model were that obtained for adult 

wood cricket moving through leaf litter habitat. 

Although relatively few individuals of both nymphs and adults were used for the 

analyses, this study provides an important insight in how a specialised woodland 

species moves through its preferred habitat. This is particularly important given the 

limited knowledge of the dispersal ability of many woodland taxa (Dolman & Fuller, 

2003; Bailey, 2007), and the particular lack of information for dispersal of species in 

different developmental stages and for those that move by walking (Diekofter et al., 

2005). Although wood cricket is primarily associated with woodland habitat, analysis of 

their movement strategy through this type of environment is a first step towards the 

understanding of the dispersal ability of this species in the wider landscape. For 

example, connectivity between woodlands for, this species is potentially only 'functional' 

or effective (Crooks & Sanjayan, 2006; Baguette & Van Dyck, 2007) when corridors 

and/or other landscape features provide suitable habitat (Vos et al., 2002; Crooks & 

Sanjayan, 2006). If these habitat requirements are met, models describing the 

movement strategy (e. g. the CRW formulation used in this study) of wood cricket can 

then provide a means of estimating how rapidly this species can potentially spread 

though the landscape. 
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The results of this study indicated the difference in movement strategy through 

relatively homogeneous habitat environments; however, natural environments are 
typically highly heterogeneous and may include barriers inhibiting movement and 
dispersal (e. g. Doak, 2000). Such factors have been found to have a significant impact 

on the movement strategy and consequently the dispersal ability of a number of 

invertebrates studied in their natural environment (Johnson et al., 1992; Firle et al., 

1998; Doak, 2000; Samu et al., 2003). This highlights the need for further 

investigations on the dispersal ability of wood cricket and similar woodland species, 

which should focus on how they move through natural heterogeneous environments at 

a range of spatio-temporal scales. 
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6 Factors influencing dispersal of a woodland invertebrate: a case 
study of wood cricket (Nemobius sylvestris) 

6.1 Introduction 

Dispersal is widely considered to be a key process influencing the survival of species 
within fragmented landscapes (Hanski & Gilpin, 1997; Kindvall, 1999; Turner et al., 
2001; Fahrig, 2003; Diekotter et al., 2005; Ranius, 2006). However, the dispersal ability 
of many groups of species is poorly known (Dolman & Fuller, 2003; Ranius, 2006). 
Deriving reliable estimates of dispersal ability in natural environments represents an 
ongoing challenge, but is highly important in terms of analysing population persistence 
and spread (Turchin, 1998; Trakhtenbrot et al., 2005). Investigations of specific 
movement strategies using experiments undertaken at fine spatio-temporal scales can 
provide valuable initial insights into the dispersal ability of species (Turchin, 1991; 
Turchin, 1998; Samu et al., 2003). However, dispersal typically takes place over larger 

scales (Levin, 1992), and therefore the dispersal capability of a species through natural 
environments needs to be examined at a range of spatio-temporal scales. 

A common approach to quantify dispersal or population spread is to fit a dispersal 

function (i. e. kernel) to observational data obtained in the field (Turchin, 1998). This 

method has been applied to a large range of animal species (e. g. Turchin & Thoeny, 

1993; Rudd & McEvoy, 1996; Smith et al., 2002; Byrom, 2002; Telfer et al., 2003; 

Truve & Lemel, 2003; Burrows & Tarling, 2004; Smith & Green, 2006). Curves 

commonly used to describe the spread of species, such as the fraction of a population 

moving a certain distance, are often based on equations such as the negative- 

exponential and inverse-power functions (Turchin, 1998). The most characteristic 

difference between these two curves is the behaviour of the tail, where the exponential 

function typically predicts a lower frequency of long-distance dispersal events than the 

power function, which is characterised by a fatter tail (Turchin, 1998). Studies on the 

dispersal ability of invertebrates have mainly focused on relatively mobile (i. e. flying) 

species in the context of metapopulation functioning (see Hanski, 1998) within 

fragmented landscapes. For some species, observations made in the field were best 

described by a negative-exponential function (Conrad et al., 1999; Baguette et al., 

2000; Kuras et al., 2003; Baguette, 2003; Ranius, 2006) whereas for others the 

inverse-power function was found to provide a better fit to the data obtained (Hill et al., 

1996; Roslin, 2000; Baguette et al., 2000; St Pierre & Hendrix, 2003). Identification of 
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species-specific dispersal kernels is a useful indicator of the dispersal ability of a 
species. 

Few studies have examined relatively immobile invertebrate species that predominately 
move by walking (Diekotter et al., 2005). Compared to flying invertebrates, such 
species move over finer scales, and can therefore be considered more vulnerable to 
habitat fragmentation (Tscharntke et al., 2002; Diekotter et al., 2005). Some studies 
have investigated dispersal of such species by fitting dispersal curves to field data. For 
example, Chapman et al. (2007) fitted several different dispersal kernels to 
observational data and tested their performance within a broader model describing 
interpatch dispersal for a walking leaf beetle. They found support for using the inverse- 
power function to describe dispersal for this species, where the negative-exponential 
curve did not adequately fit the data (Chapman et al., 2007). However, the majority of 
studies that examined walking species did not fit dispersal curves to data collected in 
the field. These studies predominantly used movement data in other ways, for instance 
to describe population structure (Clark, 1962; Aikman & Hewitt, 1972; Ritz & Kohler, 
2007), or to evaluate the persistence of the species within the wider landscape 
(Kindvall, 1999; Baur et al., 2005; Diekotter et al., 2005), often using some form of 
modelling approach. Most of the invertebrate species for which dispersal curves have 

been obtained were associated with open semi-natural grassland habitats. Studies of 

woodland-associated species that move by walking are generally lacking in the 

literature (Chapter 4). 

In order to halt and reverse the effects of habitat fragmentation, conservation policy 

and practice is increasingly focusing on the creation of habitat networks (Hobbs, 2002). 

Networks are typically created through the development of links or corridors to increase 

connectivity between individual habitat fragments (Bennett, 1999,2003; Crooks & 

Sanjayan, 2006). However, the degree of habitat connectivity within a given landscape 

is highly dependent on the characteristics of the species being considered (Crooks & 

Sanjayan, 2006; Baguette & Van Dyck, 2007). Particular features in the landscape can 

function either as conduits or barriers to different species (Bennett, 1999,2003; Hobbs, 

2002). The role of developing corridors as conduits in terms of facilitating species 

dispersal is still considered to be controversial (Bennett, 1999,2003; Crooks & 

Sanjayan, 2006; Bailey, 2007). For example, a recent review of the functioning of 

hedgerows as possible corridors between woodlands found insufficient empirical 

evidence to establish their role in facilitating species dispersal (Davies & Pullin, 2007). 

Nonetheless, the development of habitat networks utilising corridors has been widely 
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applied in practice (Hobbs, 2002; Bennett, 2004a). In the UK, for example, a large 

number of initiatives have recently been implemented aiming to reconnect woodland 
habitat (Peterken, 2000; Peterken, 2002; Humphrey et al., 2003; Humphrey et al., 
2005), despite the lack of a firm evidence base regarding the effectiveness of this 

approach (Bailey, 2007). 

To address these issues, research was undertaken on a woodland invertebrate, the 

wood cricket (Nemobius SYlvestris) on the Isle of Wight, UK. This island was selected 
because it was one of eight key areas in the UK that have been the focus of special 

conservation efforts regarding woodland creation targeted under the 'JIGSAW' scheme 
(Forestry Commission, 2005), and has since been the focus of ongoing conservation 

management involving woodland habitat restoration and expansion (Forestry 

Commission, 2006a; 2007). A number of woodland areas scattered over the island, 

lying within a predominantly agricultural matrix, were specifically targeted for 

reforestation activities in order to increase connectivity between woodland fragments 

(Quine & Wafts, 2007). This provided an opportunity to examine the potential impacts 

of developing a woodland habitat network on the distribution of an individual species. 

Wood cricket was selected for study as it is a species of national conservation concern 

(NBN Gateway, 2007) that might be expected to benefit from the development of a 

woodland habitat network, given its association with woodland and relatively limited 

dispersal ability (Bailey, 2007). 

Wood cricket is a small (- 1 cm) non-flying cricket species that has a semi-voltine (two- 

year) life-cycle in the UK (Gabbutt, 1959; Brown, 1978). After overwintering, eggs hatch 

in June/July and the juveniles (i. e. nymphs) develop throughout the summer and 

autumn by means of moulting (Gabbuft, 1959; Brown, 1978). Moulting ceases 

completely in September and nymphs will then overwinter (Gabbuft, 1959; Brown, 

1978). The second year, nymphs continue to develop from April onwards until they 

reach sexual maturity (i. e. become adults) in July/August and are reproductively active 

through to September/October until they die (Gabbutt, 1959; Brown, 1978). The 

species is strongly associated with deciduous woodland and is typically found in 

relatively open areas such as clearings and in edge habitat along woodland tracks, 

footpaths, railway lines and woodland peripheries (Richards, 1952; Morvan & Campan, 

1976; Beugnon, 1980). The insects live on the ground and prefer a well-developed leaf 

litter layer, which serves as shelter, food and breeding ground (Richards, 1952; 

Gabbutt, 1959; Brown, 1978; Proess & Baden, 2000). At the landscape scale, the 

species was found to be associated primarily with relatively large woodland patches 
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that were situated in close proximity to each other (Chapter 2). The main habitat 

requirements identified for this species at the local scale were presence of a thick leaf 

litter layer, an open canopy and low cover of ground vegetation (Chapter 3). The 

species was further found to prefer leaf litter over other substrates for performing their 

daily activities and adult wood crickets were found to perform more directed movement 

through this substrate than nymphs (Chapter 5). 

No detailed study has been undertaken previously of the dispersal ability of wood 

cricket in natural environments. Therefore the aims of this study were: (1) to model 

empirically the dispersal of wood cricket nymphs and adults (males and females); and 

to determine (2) to what extent wood cricket nymphs and adults (males and females) 

move along corridors and through sub-optimal habitat; (3) what factors influence their 

choice of habitat; (4) whether wood cricket nymphs and adults (males and females) can 

cross a water barrier; and (5) to what extent adult wood cricket are able to orientate 

themselves in the landscape. From earlier studies on wood cricket and preliminary field 

observations it was further hypothesised that: (a) wood cricket males show higher 

dispersal ability than females; (b) more open habitat would be preferred over more 

closed vegetation; (c) neither nymphs nor adults would be able to cross a water barrier; 

and (d) adult wood cricket would show a positive orientation towards distinct terrestrial 

features. 
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6.2 Methods 

Between the 5 th 
and 29th of June and the 30th of July and 7 th 

of September 2007 a 
series of experiments were conducted using wood cricket (Nemobius sylvestris) 

nymphs (6-7 th instar) and adult males and females respectively. The experiments were 

carried out in the Briddlesford area (500 42'41.00" N, 10 13' 30.50" W) situated on the 

Isle of Wight, which is owned by'The People's Trust for Endangered Species' (PTES), 

a non-governmental conservation organisation (Figure 18). The majority of woodlands 
in this area are classified as 'ancient woodland' (Spencer & Kirby, 1992) and are 
dominated by native deciduous tree species, particularly oak (Quercus spp. ). Since 

2005 extensive new plantings of native tree species have taken place in this area 
funded by the 'JIGSAW' scheme (Forestry Commission, 2005) in order to increase 

connectivity between the individual woodland fragments. 

" ;'. _cr 

Figure 18: All the woodland fragments on the Isle of Wight (grey). Briddlesford area is 

highlighted. Derived from digital maps based on the National Inventory of Woodland and Trees 

(NIWT) (Smith & Gilbert, 2003). 

A series of experiments are presented here examining wood cricket dispersal strategy 

and capacity. Experiment 1 focused on examining dispersal strategy of released wood 

crickets under semi-natural conditions in a semi-controlled environment within 

woodland habitat. Experiment 2&3 focused on dispersal capacity of released wood 
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crickets along linear features under natural uncontrolled conditions outside woodland, 
and several surveys were carried out to monitor their natural spread. Experiment 4 
focused on the ability of wood cricket to cross a watercourse barrier between two 
habitat locations, and Experiment 5-8 examined the ability of wood cricket to orientate 
themselves towards different features within the landscape. 

For the experiments, both the nymphs and adults were caught over the course of three 
days at three different locations within a large wooded area that was thinned in the year 
2003/2004. To catch the wood crickets, a 55 x 55 x 30 cm square wooden enclosure 
(to confine them) and a custom designed pooter were used. For the duration of the 
experiments, the nymphs and adults were kept in a square plastic box (35 x 25 x 19 cm) 
with ample supplies of food (bread, various fungi and oak leaf litter) available. To 
increase the detection probability, before most experiments the wood crickets were 
marked by dusting them with non-toxic fluorescent pigment (UV Gear, Mark SG 
Enterprises, Surrey, United Kingdom, www. uvgear. co. uk) (following Cronin, 2003). 
Marking was achieved by placing the wood cricket nymphs and adults in a circular 
plastic container (21 cm wide and 10.5 cm deep) with a small amount of pigment, and 
shaking the container gently-until all specimens were marked sufficiently. Preliminary 
trials conducted in 2006 did not reveal any significant increase in mortality and/or 
change in behaviour when adopting this marking method. 

All experiments were conducted on sites where wood cricket was initially not present 
(i. e. released wood cricket were strangers to the site). At all experimental site locations, 

vegetation measurements were carried out using a 50 x 50 cm quadrat. First, ground 

vegetation cover up to 1m in height was estimated visually (in %) and mean dominant 

ground vegetation height was measured using a meter rule (cm). Second, total leaf 

litter cover was estimated visually and litter depth (cm) measured by taking four 

separate measurements with a leaf litter probe in the middle of each of four 25 square 

centimetre sections within the quadrat. Finally, from the centre of the quadrat, canopy 

closure was measured using a convex spherical densiometer (Forest Densiometers, 

Bartlesville, US). This involved taking separate readings for the four main compass 

directions (N, E, S, W), which were averaged for each location. During all experiments 

mean average daytime temperature at the ground surface did not decline below 15 "C, 

as indicated by meteorological records. 
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6.2.1 Dispersal experiments 

6.2.2 Experiment 1 

Five circular enclosures were created on a forest track within an oak-dominated stand. 
The enclosures ranged in size from 1 to 5m radius (see Appendix 11). The enclosures 
were constructed from 50 cm high translucent sheet plastic (thickness 0.25 mm). This 
was inserted into the ground to a depth of 5 cm and supported by a framework of 
bamboo canes. The interior habitat of the individual enclosures was homogenised by 
clearing the ground surface of most of its herbaceous vegetation, resulting in a mean 
ground vegetation cover of 10% and a mean vegetation height of 10 cm. Furthermore, 
to create a homogenous leaf litter layer, litter was added resulting in a mean litter cover 
of 99%, 2.5 cm deep. This particular ground habitat was found to be the preferred 
substrate where wood cricket develops and most frequently occurs (Chapter 3& 5). 
The mean overhead canopy closure for all sites was 90%. 

At the centre of each enclosure, 50 wood cricket nymphs were released simultaneously 
at noon on the 1 1th of June (see Appendix 11). Inside the enclosures, circular pitfall traps 
(constructed from translucent plastic drinking cups, 7 cm wide and 7.5 cm deep) were 
placed directly against the periphery of the plastic enclosure boundary, spaced 63 cm 

apart (see Appendix 11). The pitfall traps were filled with an odourless water-detergent 

solution (50 : 1) to prevent wood cricket nymphs from escaping after capture. To 

increase the detection probability, wood crickets were marked by dusting them with 

orange non-toxic fluorescent pigment. After marking, a small amount of leaf litter was 

added to the marking container. The marked specimens were then released 2h after 

marking by gently tipping the entire contents of the container at the centre of the 

individual enclosures. After the initial release, continuous observations of the released 

population within the smallest enclosure (1 m radius) took place for the duration of 1 h. 

Following this period, all the enclosures were surveyed five times for five successive 

hours by examining all of the pitfall traps along the enclosure perimeter, together with 

the surrounding (leaf litter) habitat, for presence of marked wood cricket nymphs. 

During the following four days, all enclosures were surveyed at 24 h intervals. For each 

survey, the number and location of wood cricket nymphs were recorded, either in the 

pitfall traps or against the plastic periphery. During the first 48 h the weather was dry 

with sunny spells with a mean temperature at ground level of 18 *C during the surveys. 

During the second 48 h the weather varied between heavy showers and sunny spells, 

with a mean temperature of 15 OC. 
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A second release experiment was conducted for adult wood cricket at the same 
location. For this experiment, the 2-5m enclosures and an additional enclosure with a 
radius of 7m were used without operating the pitfall traps, because these were 
observed not to work in the first release experiment (see previous paragraph). On the 
31st of July, 20 marked adult males (M) and 20 females (F) were released at noon at 
the centre of each enclosure. After the initial release, wood cricket within the smallest 
enclosure (2 m radius) were continuously observed for 1 h. Subsequently all 
enclosures were surveyed at a1h interval for five successive hours. The following five 
days each enclosure was surveyed daily at regular intervals of 24 h. Within each 
enclosure the number, sex, location and distance from the enclosure periphery was 
recorded for each wood cricket observed. The survey performed after 48 h took place 
on a day (2 nd of August) that was predominantly overcast with short periods of rain. On 
this day the mean temperature at ground level was 14 OC during the survey. For all the 
other days the weather was bright and sunny, with a mean temperature of 19 OC during 
the surveys. 

6.2.3 Analyses 

For the nymphs, to test for habitat preference within the enclosures, chi-square 
I goodness of fit' tests were performed. The first test was used to test for preference in 

canopy closure (CC) between the south-west facing side of the track (CC 91 %) and the 

north-east facing side (CC 94%). The sample included data collected within the 2-5m 

enclosures, dividing the total number of observed wood cricket nymphs into 

observations made on the south-west facing side of the track vs. observations made on 
the north-east facing side. The 1m enclosure was excluded, because there was no 

contrast in habitat within this enclosure. The second test was based on differences in 

litter and soil compaction, where less compacted soils were present outside the 

boundaries of the forest track compared to within. Here the test sample included the 3 

-5 rn enclosures, dividing the total number of nymphs observed into observations 

made within the forest track habitat vs. the forest floor habitat. The 1 and 2m 

enclosures were excluded, because there was no contrast in habitat within the 

enclosures in this respect. To test the hypothesis that wood cricket nymphs would be 

caught in the pitfall traps after reaching the enclosure periphery, a chi-square 

'goodness of fit' test was used. For this test, the number of wood cricket nymphs 

caught in the pitfall traps was compared with the numbers observed against the 

enclosure periphery. Finally, for each enclosure the average proportion of the 

population (50 individuals for each enclosure) found at the periphery (corrected for the 
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number caught in the pitfall traps) was calculated and plotted against distance from the 
point of release (i. e. the enclosure radius). For this data, the inverse-power function 
and the negative-exponential function were fitted as regression curves. The 1m 
enclosure data were excluded from this analysis because the sampling strategy caused 
too much disturbance, leading to an underestimation of the number of observations at 
the circumference. 

For the adult population, to test for habitat preference within the enclosures, chi-square 
S goodness of fit' tests were performed (as for nymphs; see above). The first test sample 
included data collected within the 2-7m enclosures, dividing the total number of adult 
wood cricket observed into observations made on the south-west facing side of the 
track (CC 91 %) vs. observations made on the north-east facing side (CC 94%). The 

second test sample included the 3-7m enclosures, dividing the total number 
observed into observations made within the forest track habitat vs. the forest floor 
habitat. To test for differences in the number of males vs. females arriving at the 

enclosure periphery over time (i. e. to test what sex is the primary disperser), chi-square 
I goodness of fit' tests were performed. For this test the number of males and females 

observed in the 3-7m enclosures were included. Data collected in the 2m enclosure 

were excluded, because both males and females were observed reaching the 

periphery at the same time in similar numbers during the first 5h of continuous 

observations, indicating no difference in dispersal strategy within this habitat home 

range (12.6 M2) . To test for differences between female/male couples vs. individual 

females observed at the enclosure periphery over time, chi-square 'goodness of fit' 

tests were performed. This test was performed to test the hypothesis whether males 

attract females. For this test, data collected within the 2-7m enclosures was used. 

To test for differences between nymphs and adults that were observed at the enclosure 

peripheries, chi-square 'goodness of fit' tests were performed. For these analyses only 

data collected in the enclosures that were used during both experiments were included, 

being the 2-5m enclosures. Differences were tested (1) between the total number of 

nymphs and adults found dispersing over time, and (2) if there were differences 

between the life-stages with respect to the absolute distances they were able cross 

within 96 hours. The sum of all observations per day for all enclosures together and the 

sum of all days together for each individual enclosure was used for these analyses. 

The observational data were corrected for the differences in sample size by first 

calculating the individual proportion for nymphs and adults separately and multiplying 

these by 100 to obtain standardised comparable values for both groups. For example, 
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the total number of nymphs and adults released in the four enclosures used in these 
analyses was 200 and 160 respectively. If 30 observations were made for nymphs and 
25 for the adults, the corrected numbers that were used were 30/200 x 100 and 25/160 
x 100 for nymphs and adults respectively. 

Furthermore, for each enclosure the mean proportion found, at the periphery of the 
male (nm = 20), female (nF= 20) and total (n = 40) wood cricket population was 
calculated and plotted against distance (i. e. the enclosure radius). These proportions 
were calculated for the first 96 hours, the total 120 hours and for the last 96 hours (i. e. 
excluding data collected in the first 24 hours). For these data, the inverse-power 
function and the negative-exponential function were fitted as regression curves. 
Furthermore, for both nymphs and adults, straight-line movement rates (m day -1) were 
calculated for the number of wood cricket that arrived at each of the enclosure 
peripheries over the first and second 24 h after the initial release. For these individuals, 
the straight-line distance travelled over time was equal to the radius of the enclosure it 

was observed in. For calculating these rates, for nymphs the data collected within the 2 

-5m enclosures and for adults data from the 3-7m enclosures were used. Rates 

were calculated with the pooled data from all enclosures together. Finally, differences 

between the regression curves (i. e. inverse-power) for nymphs vs. adults and males vs. 
females were tested with a paired-samples Mest. All statistical analyses were 

performed using SPSS (Version 14.0, SPSS Inc., Chicago, Illinois, USA). 

6.2.4 Experiment 2 

On the 26 th of June, four groups of 50 wood cricket nymphs (marked with pigment) 

were released (for release method see Experiment 1) at four locations (Site 1- 4) (see 

Figure 19) and surveyed for three consecutive days. This three day release experiment 

was performed at four locations, representing a junction of linear (wooded) landscape 

features connected to a main body of woodland. For each individual location, the 

survey time was standardised for all survey days (30 - 40 min). The survey procedure 

involved walking slowly through the different habitat features in a zigzag manner. 

Where a marked specimen was observed, the location was marked using a bamboo 

cane. After the three-day survey period, straight-line distances from the point of release 

to the individual canes were measured with a tape measure. All surveys were 

undertaken under dry weather conditions; however, the weather during this period was 

a mix of heavy rain, which principally occurred in the evenings and mornings, and dry 

weather with frequent sunny spells during the day. For the adults a similar release 
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experiment was performed on the 3rd of August on 'Site 1& 2' and an additional 5 th site 
(Figure 19) using 50 adult wood crickets (25 males and 25 females, marked with 
pigment). These sites were surveyed for three consecutive days around noon and in 
the evening, 24/30,48/54 and 72/78 hours after the initial release. 

6.2.5 Experiment 3 

For the adults a second mass release was initiated at four new sites (6 - 9) (Figure 19) 

representing locations where different linear (wooded) habitat features were running 

out of the main woodland area. On the 5th of August, a preliminary survey was carried 

out in order to establish that no stridulating males were present along the selected 
features. Following the initial survey, 40 adult male and 20 female (non-marked) wood 

crickets were released on the 6 th of August at these selected locations (following the 

release method as described in Experiment 1). Between the 25 th and 26 th of August, 

twenty days after the initial release, these locations were re-surveyed four times. The 

survey was performed by walking a distance of 60 m along the edge of each linear 

feature. Wood crickets presence was established by sound recognition of stridulating 

males, following the survey method of Proess and Baden (2000). Male wood cricket 

produce a very distinctive sound by stridulation, which is not readily confused with any 

other species (Proess & Baden, 2000). After every 5m interval, a5 min pause was 

taken in order to determine presence or absence by listening for stridulation. Locations 

where wood cricket was heard were marked with bamboo canes. For all marked 

locations, straight-line distances from the release point were recorded. Standard 

habitat measurements were made along the linear features and at all marked presence 

locations. The prevailing weather during all survey days was bright and sunny with a 

mean daytime temperature of 23 OC. 

6.2.6 Analyses 

For the nymph releases (Experiment 2) the following analyses were performed. For 

each site, after testing for normality in the data (Shapiro-Wilk test), differences in 

distances recorded between days were analysed using Mann-Whitney tests. ForSite 1 

&21, chi-square 'goodness of fit' tests were used to test for habitat preference based on 

the choice of edge and for 'Site 3& 4' chi-square 'goodness of fit' tests were used to 

test for habitat preference based on the individual habitat measurements made at each 

location (Figure 19). To examine the effect of overhead canopy cover, Mann-Whitney 

tests were used to test for differences in canopy closure of sites where wood cricket 
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was present between survey days. Finally, for'Site 1& 2', Mann-Whitney tests were 
used to test for differences in canopy closure for the locations where wood cricket was 
present and where they were not found. For this analysis, habitat measurements for 
presence locations at each edge were compared with habitat measurements at the 
opposing edge at the same distance from the release site. For adults, no statistical 
analyses could be performed owing to low numbers of relocated insects. All statistical 
analyses were performed using SPSS (Version 14.0, SPSS Inc., Chicago, Illinois, 
USA). 

6.2.7 Surveys 

A survey was conducted to examine the advance of wood cricket over several years 
focussing on an east-facing mature woodland edge located at'Site 1' (Figure 19). This 

site was first surveyed on the 21 st of July 2005 (mean daytime temperature of 25 'C), 

by slowly walking along the woodland edge, and by stopping at regular intervals to 

listen for stridulating males. Locations where wood cricket was present along the 

woodland edge were recorded with a hand-held GPS device (Garmin III GPS V, 

Garmin Europe) Ltd, Romsey, UK). In 2006, this site was re-surveyed on the 28 th of 

July (24 'C) after re-fencing had taken place along the woodland edge in early June of 

that year. Finally, this location was surveyed twice on the 5 th (24 OC) and 25 th (23 *C) in 

August 2007. For each year, wood cricket presence, abundance and advance along 

the edge were recorded. Straight-line distances from the main woodland body to the 

furthest recorded presence site along the woodland edge were measured within 

ArcGIS (version 9.1, ESRI, Redlands, California, USA). 

On the 5 th and 25-26 th of August 2007, fields adjacent to the new plantings (Site 10) 

and 'Site 2& 4' were surveyed for the presence of stridulating wood cricket males 

(Figure 19). Positions where wood cricket was present were marked using bamboo 

canes. For all locations straight-line distances to the nearest woodland edge and to the 

edge of the nearest new planting were measured with a measuring tape. Furthermore, 

compass readings were performed to establish the exact locations on an OS map 

(scale 1: 17). Additionally for'Site 10', straight-line distances to the nearest permanent 

wood cricket location within the main woodland body (identified during a previous field 

survey in 2005) were measured using the locations recorded on the OS map. 
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6.2.8 Release sites 

11. Iä 

.a -« 

Figure 19: Release locations (o) for Site 1-9. Site 10 represents a survey site only. White 

areas are grassland, light grey (dotted) areas are broadleaved woodland and checkered areas 

are new'JIGSAW" plantings dominated by tall semi-natural herbaceous vegetation (see also 

Appendix 11). Square blocks represent 100 x 100 m. Map courtesy of PTES. 
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Table 18: Vegetation characteristics for the habitat edges (mean values) and release sites. VH 
= vegetation height (cm), VC = total vegetation cover (%), LC = total litter cover (%), LID = litter 
depth (cm), CC = canopy closure (%). See also Appendix 11. 

Site Feature VH VC LC LID cc 
1 East facing edge 47 36 64 2 82 

North facing edge 44 23 58 1 88 
Release site 5 10 30 3 89 

2 Woodland edge 22 26 80 2 99 
'JIGSAW'edge 24 65 15 1 23 
Release site 15 18 85 2 99 

3 Woodland edge 29 94 1 0.5 19 
Hedge edge (cut) 13 93 9 1 39 
Release site 10 45 75 3 30 

4 Woodland edge 45 64 4 1 40 
Hedge edge (cut) 12 34 38 1 72 
Release site 15 15 75 2 92 

5 Woodland edge 45 35 60 2 86 
Release site 10 15 80 2 93 

6 Woodland edge 22 97 16 1 78 
Release site 10 80 50 1 94 

7 Hedge edge 24 100 24 1 63 
Release site 15 100 10 1 83 

8 Woodland edge 11 60 10 0.5 65 
'JIGSAW'edge 60 100 0 0 0 
Release site 10 100 0 0 38 

9 Hedge edge 53 100 0 0 9 
Release site 20 95 5 0.5 47 

10 Grassland 20 100 0 0 0 

Site 1 had a north-eastern orientation representing a mature woodland strip (edge 

facing East) located adjacent to a main woodland area with its edge facing North. The 

adjacent field was used as a hay field (with autumn grazing) dominated by nettle 

(Urtica didica) at the periphery (50-80 cm high). Both stand edges had a mixture of 

mature broadleaved trees dominated by oak. 
Site 2 had a southern orientation with one mature woodland edge running in a south- 

western direction and one edge running along a recent new planting in a south-eastern 

direction. The adjacent field was used for grazing cattle and was dominated by short 

grass (110-15 cm high). The woodland edge had a mixture of mature broadleaved trees 

dominated by oak, where the'JIGSAW'edge was dominated by low shrub and tall 

grass (25-50 cm high). 

Site 3 had a southern orientation with a mature woodland edge running in a south- 

western direction and another edge running uphill along a hedge in a south-eastern 

169 



direction. The woodland edge had a mixture of mature broadleaved trees dominated by 
oak with bramble (Rubus spp. ) spreading from the woodland edge. The hedge was 
composed of a mixture of native shrub species such as hawthorn (Crataegus 
monogyna), blackthorn (Prunus spinosa), hazel (Corylus avellana) and bramble. This 
site was located within the boundaries of a new planting, dominated by tall grass/herbs 
and low shrubs (25-50 cm high). To provide contrast in edge vegetation, a 1.5 mx 20 
m long strip of vegetation was cut along the hedge edge. Furthermore, at the release 
site situated within the cut strip, leaf litter was added to a1mx0.5 m wide patch 
bordering the hedge. 

Site 4 displayed a southern orientation with a mature woodland edge running in a 
western direction and an edge running along a hedge with oak standards in an eastern 
direction. The woodland edge was composed of a mixture of mature broadleaved trees 
dominated by oak with bramble spreading from the woodland edge. The hedge was 
composed of a mixture of native shrub species with oak standards and bramble 
spreading from the edge. This site was located within the boundaries of a new planting, 
dominated by tall grass and herbs (25-50 cm high). To provide a contrast in edge 
vegetation, a 1.5 mx 20 m long strip of vegetation was cut along the hedge edge, 
which included the location of the release site. 
Site 5 was situated along a north-facing mature woodland edge similar to Site I. 
Site 6 had a western orientation with a mature woodland edge running in a northern 
direction and a mature hedge edge running in a southern direction. The adjacent field 

was used as a hay field (with autumn grazing) dominated by a grass and herb 

vegetation at the periphery. The woodland edge was composed of a mixture of mature 
broadleaved trees dominated by oak and the hedge was composed of a mixture of 

native hedge species. In the preliminary survey of this site, wood cricket was found to 

be present along the hedge edge, but not along the woodland edge. 
Site 7 had a western orientation with an edge comprised of a hedge with standards 

(oak dominated) running in a northern direction. The hedge was composed of a mixture 

of native shrub species with occasional mature deciduous trees. The adjacent field was 

used as a hay field (with autumn grazing) dominated by a grass and herb vegetation at 

the periphery. 
Site 8 had a southern orientation with a mature woodland edge running in a north- 

eastern direction and another edge running along a recent new planting in a southern 

direction. The adjacent field was used for grazing cattle and was dominated by short 

grass. The woodland edge was composed of a mixture of mature broadleaved trees 

dominated by oak, whereas low shrubs and tall grass species dominated the edge of 
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the new planting. In the preliminary survey of this site, wood cricket was found to be 
present at several locations within the grazed field (10-15 cm sward height). 
Site 9 had a south-western orientation with a mature hedge running in a north-western 
direction. The hedge was composed of a mixture of native shrub species and was also 
situated within a new planting, dominated by tall grass/herbs and low shrubs (50 - 70 
cm height). 

Site 10 was characterised by sites where wood cricket was found to be present 
naturally, prior to the experiments. These sites were located either on the edge of a 
new planting dominated by tall grass/herbs (35-70 cm height) or within a grazed field 
dominated by grass (10-20 cm height) bordering a north-facing mature woodland edge 
dominated by oak. For locations of the sites and further details on the vegetation 
characteristics, see Figure 19, Table 18 and Appendix 11. 

6.2.9 Experiment 4 

To test whether wood cricket nymphs were able to cross a watercourse, an island was 

created in an artificially created pool on a woodland track within an oak dominated 

stand (canopy closure 90%). The island was 75 cm long and 30 cm wide. Around the 

island, a 25 cm wide and 2 cm deep watercourse was created. On the island, a1 cm 

thick mixture of coarse litter mulch was added. On the 21st of June at noon, 15 wood 

cricket nymphs marked with orange dust were released two hours after the initial 

marking. The release was achieved by gently inverting a circular transparent plastic 

container (9 cm wide, 10 cm deep) at the centre of the island and releasing the 

specimens after 15 seconds from within the container. Activities of the nymphs were 

then continuously observed for an hour. Subsequent observations were made three 

and four hours after the initial release on the same day. The number of nymphs 

escaping the island was recorded including observations on direction of the escape 

attempts. During the experiment, the weather was dry with sunny spells with a mean 

daytime temperature of 17 *C at ground level. 

For adult wood crickets, a similar experiment was performed at the same location. In 

this case, the island was 85 cm long and 55 cm wide with a 35 cm wide and 2 cm deep 

watercourse surrounding it (see Appendix 11). On the 2 nd of August, 10 marked adult 

males and 10 females were released at the centre of the island as described above. 

Activities of the adults were continuously observed for the first two hours after release. 

Time of escape attempt, direction and sex were recorded. Two more surveys were 

performed, 24 and 48 hours after release. For these surveys, the number and sex of 
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wood cricket remaining on the island were recorded. During this experiment, the 
weather was predominantly dry and sunny with a mean daytime temperature of 18 OC 
at ground level. For both life-stages, chi-square 'goodness of fit' tests were performed 
to test for crossing capability and a Fisher's exact probability test was performed to test 
for differences in crossing capability between the sexes, both using SPSS (Version 
14.0, SPSS Inc., Chicago, Illinois, USA). 

6.2.10 Orientation experiments 

To test what factors influence the orientation capability of wood cricket, an experiment 
was conducted following the method of Beugnon (1979) and Mieulet (1980). For this 
experiment, a cardboard platform (50 cm in diameter) was used. For all releases, the 
release platform was orientated horizontally by using a convex spirit level. Single wood 
cricket were released using a circular 3.5 x7 cm transparent plastic container. The 
individual wood crickets were released by inverting the container at the centre of the 
platform (see Appendix 11). After 15 seconds, the container was removed and the 
movements of the wood cricket were recorded from a position 1.5 m away, maintaining 
a low profile. At each location a minimum of 12 wood crickets (Male: Female, 1: 1) 
were released, singly. For each released individual: sex, movement paths, exit location 

relative to an edge (i. e. woodland or grassland edge), and the direction of the sun 
relative to the exit location were recorded. Furthermore, the height and the angle from 

each release location towards the nearest edge being either woodland or grass was 
calculated and/or measured using a clinometer (ClinoMaster, Silva Sweden AB). To 

test for directional preferences, chi-square 'goodness of fit' tests were performed using 
SPSS (Version 14.0, SPSS Inc., Chicago, Illinois, USA). 

6.2.11 Experiment 5 

To test whether wood cricket orientates towards and prefers tall grass vegetation to 

short grass, an environment was created on the edge of a new planting bordering a 

grazed field. The vegetation within the new planting was a mix of dense thistle and 

grass, 50 - 60 cm in height. The grazed field consisted of a short grass sward 10 cm in 

height. The short grass habitat was further homogenised in terms of vertical structure 

by clipping. Releases were made on two locations at this site. On the 24 th of August 

around noon, ten male and ten female wood crickets were released on the circular 

platform that was placed on the ground surface, half-lying within the tall grass 

vegetation and half within the short vegetation. The weather was overcast with a mean 
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daytime temperature of 18 "C at ground level. On the 26 th of August, a second release 
was undertaken with the release platform placed 1.25 m away from the tall grass edge 
(see Appendix 11). Ten male and ten female wood crickets were released around noon 
under bright and sunny conditions with a mean temperature of 22 *C recorded at 
ground level. 

6.2.12 Experiment 6-8 

To test which factors influenced the ability of wood cricket to orientate themselves 
towards a woodland edge, three release experiments were performed. For these 
experiments releases were made from a raised platform 60 cm above ground level, 

using a tripod (following Beugnon, 1979; Mieulet, 1980) (see Appendix 11). This method 
was used to avoid orientation bias towards the surrounding herbaceous vegetation. 
Experiment 6: On the 24 th of August, five releases were initiated along a 45 m transect 
between two mature (oak dominated) woodland edges. The mean height of the trees 
forming these edges was 13 m, measured with a clinometer. The first release was 
conducted in the middle of the transect 22.5 m away from both edges. A further two 

releases were performed on each side of this point at 20 and 15 meters from either 

edge. All of the releases occurred between noon and 18.00 h under overcast weather 

conditions. 
Experiment 7: On the 26 th of August between 10.00 h and noon, another four releases 

were initiated along a 50 m long transect running uphill away from a mature (oak 

dominated) woodland edge (117.5 m in height) into a grazed field with the sun 

predominantly shining towards the woodland edge. Releases were performed at 

distances 30,35,40 and 50 m away from the woodland edge. 

Experiment 8: On the 26 th of August at noon a single release was initiated at a site 50 

m from a mature (oak dominated) woodland edge (19.5 m in height) within the grazed 

field opposite the second transect with the sun shining away from the woodland edge. 
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6.3 Results 

6.3.1 Dispersal strategy (Experiment 1) 

Continuous observations within the first hour after release revealed that wood cricket 
nymphs moving away from the release site within the enclosures showed random 
explorative behaviour, by moving (i. e. walking) back and forth through the habitat. 
Jumping was only observed when disturbed. The majority of the released nymphs 
remained within the immediate vicinity of the release site. This situation was still 

evident 96 hours after the initial release and was observed in all five enclosures. 
Furthermore, nymphs that reached the periphery tended to remain close to this artificial 
boundary. When observed moving along the boundary towards one of the pitfall traps, 

they were not inclined to fall in when reaching them. When reaching the outer rim of the 

trap the nymphs briefly stopped moving to examine the surroundings with their 

antennae, and then returned into the leaf litter. The first nymphs reached the periphery 

of the 1m radius enclosure within 10 minutes. Further observations showed that for all 

enclosure sizes the first nymphs that reached the periphery averaged a straight-line 

movement rate of ý! l m hour -1. 

Adults that were released displayed explorative movement, mainly undertaken by 

walking. Jumping was only observed when disturbed. They moved randomly back and 

forth through the leaf litter. When reaching the enclosure boundary, they tended to 

return to the habitat to continue their exploration. After the first 24 hours following 

release, males were heard stridulating within the enclosures and over time males and 

females were increasingly observed in pairs. Contrary to the nymphs, after 96 hours 

the adults were evenly distributed within the enclosures and were generally observed 

some distance away from the boundary instead of directly adjacent to it. The first adult 

arriving at the periphery of the 2m radius enclosure took 55 minutes to do so. In the 2- 

4m enclosures, the first adult reaching the periphery demonstrated a straight-line 

movement rate of ý!! l m hour -1. This rate was not observed within the 5 and 7m 

enclosures (i. e. rates were <1m hour-'). 
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Table 19: Summary of the total number of observations made for the nymph populations (n 
50) released in the individual circular enclosures for four consecutive days. The numbers 
indicate both the number of nymphs caught in the traps and observed at the periphery. Radius: 
the radius of the enclosures in meters. 

Radius 24 h 48 h 72 h 96 h Total 
1 12 15 11 10 48 
2 14 17 12 10 53 
3 6 15 9 12 42 
4 6 12 9 7 34 
5 6 8 5 8 27 

Total 44 67 46 47 204 

In general, the number of nymphs observed at the periphery decreased with an 
increase in enclosure size (Table 19). The percentage of the total nymph population (n 
= 250) observed at the periphery of all enclosures together ranged from 17.6 - 26.8% 
with a mean of 20.4% per day (Table 19). Comparing the total number of observations 
made between the first day and subsequent days showed a significantly higher number 
observed on the second day (chi-square test: X21 = 4.766, n24h= 44, n48h = 67, P 
0.029; Table 19), but no difference was observed for the following days. 

Table 20: Summary of the total number of observations made for the adult populations released 
(20 M: 20 F) in the individual circular enclosures for five consecutive days. Radius = radius of 
the enclosures in meters. M= Male, F= Female, G Total = Grand Total. 

Radius 
24 h 

MF 
48 h 

MF 
72 h 

MF 
96 h 

MF 
120 h 

MF 
Total 

MF 
2 12 7 9 6 10 7 18 9 11 8 60 37 
3 5 3 12 6 8 9 10 7 11 9 46 34 
4 7 1 9 5 8 4 8 3 10 5 42 18 
5 2 2 1 3 3 2 2 4 12 7 
7 1 4 1 4 2 5 2 16 3 

Total 27 11 36 19 33 20 41 21 39 28 176 99 

G Total 38 55 53 62 67 275 

For the adults, the number of observations at the periphery decreased with an increase 

in enclosure size (Table 20). All first arrivals at each individual enclosure periphery 

were males and on every survey day, the total number of males that was observed was 

higher than the number of females (Table 20). The percentage of the total adult 

population (n = 200) observed at the periphery of all enclosures together ranged from 

19.0 - 33.5% with a mean of 27.5% per day. Comparison of the total number of 
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observations made between the first and subsequent days did not show any difference 
for the first three days. Only for the final day of survey was the number of observations 
higher compared to the first day; for all adults together (chi-square test: X2 1=8.010, 
n24h= 38, n120h= 67, P=0.005; Table 20) as well as for females (chi-square test: ' X2 1 

7.410, n24h = 11, n120h= 28, P=0.006; Table 20), but not for males (chi-square test: X2 

= 2.182, n24h= 27, n120h= 39, P=0.140; Table 20). 

6.3.1.1 Males vs. Females 

Table 21: Chi-square tests (goodness of fit) for differences between the number of males and 
females arriving at the enclosure periphery over time (for 3-7m enclosures; see Methods). 

Time Male Female df P 
24h 15 4 6.368 1 0.012 
48h 27 13 4.900 1 0.027 
72h 23 13 2.778 1 0.096 
96h 23 12 3.457 1 0.063 
120h 28 20 1.333 1 0.248 
Total 116 62 16.38 1 <0.001 

Overall, male wood crickets were almost twice as often observed at the periphery of 
the enclosures than females (Table 21), indicating a higher dispersal tendency for 

males and confirming the initial observations. However, the number of females 
increased more over time compared to the number of males. After 72 h from the initial 

release the number of females observed did not significantly differ anymore from the 

number of males observed (Table 21). Furthermore, the number of females attracted to 

males by appearing as a pair within the enclosures increased over time. After 72 h the 

number of pairs was significantly higher than the number of single females observed 
(Table 22) and overall significantly more pairs were observed than single females 

(Table 22), indicating that females are attracted to males and confirming the initial 

observations. 
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Table 22: Chi-square tests (goodness of fit) between the number of female/male (F + M) pairs 
and single females (F) observed at the enclosure periphery over time. 

Time F+M F df P 
24h 6 5 0.091 1 0.763 
48h 11 8 0.474 1 0.491 
72h 15 5 5.000 1 0.025 
96h 16 5 5.762 1 0.016 
120h 25 3 17.29 1 <0.001 
Total 73 26 22.31 1 <0.001 

6.3.1.2 Nymphs vs. Adults 

Table 23: Chi-square tests (goodness of fit) for differences between the number of nymphs and 

adults arriving at the enclosure periphery over time. Numbers are corrected for differences in 

total sample size (see Methods). Only data from enclosure 2-5m were used. 

Time Nymph Adult X2 df P 
24h 16 23 1.256 1 0.262 
48h 26 31 0.439 1 0.508 
72h 18 31 3.449 1 0.063 
96h 19 38 6.333 1 0.012 
Total 79 123 9.584 1 0.002 

Between nymphs and adults, several different patterns were observed in the number of 

individuals that reached the enclosure peripheries. Overall, the number of adults 

reaching the enclosure periphery exceeded the number of nymphs, indicating a higher 

tendency of wood cricket adults to disperse (Table 23). The total number of adult wood 

crickets being able to cover straight-line distances of 2-3m was significantly higher 

than for nymphs (Table 24). However, for the larger distances of 4 and 5 m, no 

differences were found, indicating a similar ability in both life-stages to disperse longer 

distances (Table 24). Together this indicates that although fewer nymphs disperse than 

adults, similar numbers are able to disperse long distances. 
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Table 24: Chi-square tests (goodness of fit) for differences between nymphs and adults that 
were able to cover the straight-line distance indicated, over a period of 96h. Numbers are 
corrected for differences in total sample size (see Methods). 

Distance Nymph Adult df p 
2m 27 49 6.368 1 0.012 
3m 21 38 4.898 1 0.027 
4m 17 28 2.689 1 0.101 
5m 14 8 1.636 1 0.201 

6.3.1.3 Movement rate of dispersers 

Table 25: Straight-line movement rate (m day -1) for wood cricket nymphs and adults that 

reached the enclosure periphery within the first and second 24h after the initial release, and the 

mean rate for both days together (0 - 48 h). 24-48h include only the additional number of 
individuals observed at the periphery of each individual enclosure compared to the number 
observed in the first 24h. Proportion of released population =n/n total . For nymphs, n total = 200 
(data enclosure 1 excluded); adults, n totai : -- 160 (data enclosure 2 excluded); males, n totai = 80; 

and females, n t,, t., = 80. 

Life-stage Interval n Proportion Rate 
Nymphs 0-24h 32 0.16 3.13 

24-48h 20 0.10 1.67 
0-48h 52 0.26 2.56 

Adults 0-24h 19 0.12 3.84 
24-48h 21 0.13 2.07 
0-48h 40 0.25 2.91 

Males 0-24h 15 0.19 4.00 
24-48h 12 0.15 2.08 
0-48h 27 0.34 3.15 

Females 0-24h 4 0.05 3.25 
24-48h 9 0.11 2.06 
0-48h 13 0.16 2.42 

In the case of nymphs and adults (males and females), a general increase in the 

number of observations was recorded over the first 48 h after release (Table 19 & 

Table 20). After this period, the number of observations stabilised over time (Table 19 

& Table 20). Overall, the proportion of wood crickets that were observed moving 

increased with a decrease in mean movement rate when using a 24 h or a 48 h time 

interval. The proportions of the nymph and adult population moving were similar after 
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48 h (0.26 - 0.25; Table 25), however the adults displayed higher movement rates over 
all time intervals compared to the nymphs (Table 25). During the first 24 h, only 5% of 
the total female population reached the enclosure periphery, whereas over the next 24 
h double this value was recorded (11 %) (Table 25). The proportion of males and 
females reaching the enclosure periphery over the second 24 h was similar (0.15 - 
0.11), with similar movement rates recorded (2.08 - 2.06). However, overall males 
showed a higher proportion of the population moving and displayed higher mean 
movement rates (Table 25). The results indicated that a quarter of the population of 
wood cricket nymphs and adults dispersed (i. e. diffuse) with a straight-line movement 
rate of 2.56 / 2.91 m day -1, respectively. This further indicated that there was a 
difference in dispersal 'tendency' between individuals within the population, where the 

majority of the population (75%) diffused with lower rates or not at all. 

6.3.1.4 Trapping success 

The observation of wood cricket nymphs not falling into the pitfall traps was confirmed 

statistically, as over the course of the experiment wood cricket nymphs were more 

frequently found outside (OUT) traps than within (IN) the pitfall traps (chi-square test: 

X11 = 93.35, nlN= 33, nOUT = 171, P<0.001). 

6.3.1.5 Habitat choice 

Table 26: Chi-square tests (goodness of fit) for habitat choice of wood cricket within the 

enclosures. SW facing/NE facing = number of individuals found at the south-west (SW) facing 

side of the forest track vs. the north-east (NE) facing side. Track/Forest = number of individuals 

found in habitat present on the track vs. habitat of the forest floor. 

Habitat choice 
Life-stage SW facin in g NE fagnq df P 

Nymphs 
Adults 

97 
193 

57 
121 

10.39 
16.51 

1 
1 

0.001 
<0.001 

Males 130 70 18.00 1 <0.001 
Females 63 51 1.263 1 0.261_ 

Track Forest 
Nymphs 48 54 0.353 1 0.552 

Adults 127 70 16.49 1 <0.001 

Males 87 43 14.89 1 <0.001 

Females 40 27 2.522 1 0.112 
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The total number of nymphs observed at the enclosure periphery of the south-west 
facing side of the track was significantly higher (with a canopy closure (CC) of 91 %, all 
other habitat variables being equal) than the total number observed at the north-east 
facing side of the track (CC 94%) (Table 26). A similar pattern was revealed for all 
adults together and for males only, indicating an overall preference for locations with 
low canopy cover for both life-stages. However, for females, no significant difference 
was found (Table 26). The total number of nymphs and adult females observed within 
the habitat represented on the forest track was not found to be significantly different 
from the observed number present within the forest floor habitat (Table 26). However, 
for males and all adults together, significantly more individuals were observed within 
the track habitat (Table 26). 

6.3.1.6 Modelling dispersal 

The cumulative data of the observations made within each enclosure were pooled and 
transformed to provide the mean proportion of the total population dispersing over the 

straight-line distance from the release point to the enclosure periphery. Both for 

nymphs and adults, data for the first four survey days (96 h) were plotted against 
dispersal distance (Figure 20). Furthermore, two additional maximum straight-line 
dispersal distances were also plotted that were obtained from separate group release 

experiments (see Methods, Experiment 2). The maximum straight-line dispersal 

distance that was included for nymphs was 29.5 m and was recorded in a group 

release experiment at 'Site 1' (Table 28). Of the initially released population (50), one 
individual was observed at this distance 72 h after release (proportion: 0.020 (1/50); 

Table 27). The maximum dispersal distance for adults (males and females) was 

derived from observations made at 'Site 2' (Table 28). Three individual males were 

found at 26 - 27 m from the initial release site after 60 days. Therefore, the maximum 

distance for dispersing adults was set to 26.0 m. One-hundred crickets were released 

at this location (50 nymphs, 25 males, 25 females; see Methods, Experiment 2). 

Therefore, the total proportion of the adult population that was observed moving this 

distance was estimated to be 0.030 (3/100) (Table 27). For adults males the proportion 

was calculated to be 0.060 (3/50) (Table 27), assuming an equal representation of both 

sexes in the released nymphs. No direct long-distance dispersal events were recorded 

for females. However, because males were found to disperse twice as often as females 

within the enclosures (see total numbers observed, Table 20), the proportion of the 

female population dispersing the maximum observed distance was estimated to be 

0.030 (i. e. half the proportion of males) (Table 27). 
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Table 27: Proportions of the total population moving in a straight-line distance (m) from the 
release point to the enclosure periphery for nymphs (n = 50 per release site) and adults (Male 
(M) & Female fl) (n = 40, nm= 20, nF= 20), averaged over the first 96 hours after release. 
Maximum observed distances and related proportions were derived from additional release 
experiments (see text). 

Distance Nymphs Adults Males Females 
2 0.293 0.488 0.613 0.363 
3 0.222 0.375 0.438 0.313 
4 0.177 0.281 0.400 0.163 
5 0.139 0.081 0.125 0.038 
7 0.075 0.138 0.013 

26.0 0.030 0.060 0.030 
29.5 0.020 

Equation 4: Inverse-power function 

P=aD-b or LN(P) = LN(a) - bLN(D) 

Equation 5: Negative-exponential function 

P=e -bD or LN(P) = -bD 

P= proportion of the population moving 
D= distance (m) 

a= constant 
b= slope of the regression curve 

The negative-exponential curve and the inverse-power curve were fitted to the data 

presented in Table 27 (Figure 20). To test the fit of the inverse-power function, LN(P) 

was regressed upon LN(D), and LN(P) on D for the negative-exponential function (see 

Equation 4& Equation 5). For the nymphs the inverse-power curve provided the best fit 

(Power: R2= 0.993, F1,4= 446.0, P<0.001 vs. Exponential: R2= 0.807, FI, 5 = 16.74, 

P=0.015) (Figure 20a & b). This was also the case for all adults considered together 

as well as for males only (Adults: Power: R2= 0.867, FI, 5= 26.04, P=0.007 vs. 

Exponential: R2= 0.779, F1,6 = 17.68, P=0.008; Males: Power: W=0.8510 F 1,5 = 

22.84, P=0.009 vs. Exponential: R2= 0.782, F1,6 = 17.97, P=0.008; Figure 20c - e). 

The better fit of the inverse-power curve was further confirmed by examining the 
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distribution of the residuals and plotting the individual curves against the field data (see 
Figure 20: e. g. compare fit power curve (a) with fit exponential curve (b)). For adult 
females the negative-exponential curve explained a slightly higher amount of the 

variation compared to the inverse-power curve after 96h of observations (Females: 
Power: R2= 0.526, F1,5= 4.44 1, P=0.103 vs. Exponential: W=0.611, F1,6= 7.842, P 

= 0.038). However, when examining the distribution of the residuals and the fit of the 

individual curves, the inverse-power equation was found to describe the data more 
closely (also see Figure 20f). Furthermore, for the female population, when including 
the observations made on the fifth day, the fit of the inverse-power curve improved 

significantly (96h: Power: R2= 0.526, F1,5= 4.44 1, P=0.103 vs. 120h: Power: R2 

0.733, F 1,5= 10.98, P=0.030). For the male and total adult population, no 
improvements were observed in the degree of fit when including the observations for 

the fifth day. 
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Figure 20: The proportion of the wood cricket population moving in the first 96h after release 
fitted against distance. (a) inverse-power function (ipf), and (b) negative-exponential function 
(nef) fitted for nymphs, (c) ipf for all adults, (d) nef for all adults, (e) ipf for males (nef: b 
0.1342)), (f) ipf for females (nef: b=0.1939)). 

(f) 

The mean distance (D) moved by individuals within the population is given by 11b 
(Harrison et al., 1988; Hill et al., 1996; Baguette et al., 2000). For the nymph population, 
the inverse-power function predicted a mean dispersal distance of 0.98 m (1/1.0251). 
The mean value predicted by the inverse-power function for all adults was 0.87 m 
(1/1.1517), and 1.07 m (1/0.9391) for males and 0.88 m (1/1.1304) for females. The 

graphs displaying the inverse-power curve for both nymphs and adults all show a rapid 
decline in the number of wood crickets moving with distance. Less than 10% of the 

released populations was shown to move further than 15 m from the release point (see 

Figure 20a, c, e& f). Furthermore, when comparing the individual relationships, the 

inverse-power curves derived for nymphs vs. adults (Paired-samples Mest: t= -4.777, 
df = 44, P<0.001) and males vs. females (Paired-samples Mest: t=6.293, df = 44, P 

< 0.001) were both significantly different from each other. Between life-stages, the 

predicted proportion of the nymphs dispersing was found to be lower than adults up to 

20 m in distance. From this point onwards, the proportions were more or less equal 

indicating that similar proportions in these life-stages reach their maximum dispersal 

distance. The predicted proportion of males dispersing was overall higher than 

predicted for females, indicating higher dispersal ability for males compared to females. 
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6.3.2 Dispersal capacity (Experiment 2,3 & Surveys) 

The following observations were made during the three-day group release experiment 
(Experiment 2). For wood cricket nymphs, all release sites (apart from 'Site T) were at 
locations with high canopy closure (92 - 99%). Nymph movements were observed to 
be directed towards the nearest open (i. e. sunnier) habitat locations. Dispersing 

nymphs were also readily observed in short and tall grass habitat with relatively low 
leaf litter availability. Ground vegetation composition seemed to be of lesser 
importance than canopy closure in this respect. Nymphs were quite clearly visible when 
surveying the area around the release sites. Re-sighting success using this survey 
method for the nymphs ranged from 28 - 73% after 48 h from the moment of release. 
However, when using this method for adults only very low re-sighting percentages (2 - 
12%) were achieved, making it impossible to perform any statistical analyses on these 

data. The second mass release (Experiment 3) for adult wood cricket initiated on 'Site 

6- 9' also displayed low relocation success. Of the 40 adult males released at each 

site, 5- 10% was relocated for 'Site 6- 8', with no observations recorded for 'Site 9'. 
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Table 28: Maximum absolute dispersal distances (m) recorded per survey site over time. LS 
(location) = Life-stage and location of re-sighting. WE = woodland edge, JE = edge of new 
planting, GL = grassland, HE = hedge edge. Time: 3- 60 d (days) is time elapsed between first 
release and recorded maximum distance (Max dist. ). 60 days covered a period including 2 
releases; initially 50 nymphs and 40 days later 50 adults (25 M, 25 F). 2y (years) is the period 
between establishment of the new plantings and the moment of survey. 3y is the number of 
annual surveys. The maximum distance (m) measured over 3,20 and 60 days represents 
straight-line distances from the point of release. The 2y distances represent straight-line 
distances to the nearest woodland edge. The 3y distance represents progression from the point 
where wood cricket was found in 2005. Vegetation measurements for the individual re-sighting 
locations: VH mean vegetation height (cm), VC = total vegetation cover (%), LC = total litter 

cover (%), LID litter depth (cm), CC = canopy closure (%). 

Site LS (location) Time Max dist. VH VC LC LID CC 
1 Nymphs (WE) 3d 29.5 30 45 90 1.5 72 

Nymphs (GL) 3d 23.0 10 85 10 0.5 54 
Adults (WE) 3d 5.5 10 20 45 1.5 89 
Adults (WE) 3y 0.0 47 36 64 2.0 82 

2 Nymphs (JE) 3d 8.5 5 95 10 1.5 6 
Nymphs (WE) 3d 6.0 10 30 85 2.0 98 
Adults (GL) 60 d 26.0 20 100 - - 0 
Adults (WE) 60 d 27.0 20 20 80 4.0 79 

3 Nymphs (HE) 3d 1.5 10 35 80 2.0 33 
4 Nymphs (HE) 3d 9.5 15 35 30 1.5 60 
5 Adults (WE) 3d 2.5 10 5 75 3.0 90 
6 Adults (WE) 20 d 5.0 20 100 10 1.0 88 
7 Adults (HE) 20 d 12.0 30 100 30 1.0 40 

8 Adults (WE) 20 d 2.0 15 100 30 1.0 46 

Adults (GL) 2y 23.0 20 100 - - 0 

9 Adults (JE) 20 d - - - - - 
10 Adults (GL) 2y 55.0 30 100 -- 0 

6.3.2.1 Site 1 

Distance from the release point where nymphs were found was significantly greater on 

the second day of survey compared to the first day (Mann-Whitney test: n= 28, z=- 

2.459, P=0.014). Nymphs significantly chose to move along the east-facing woodland 

edge rather than the north-facing edge (chi-square test: X2 1= 14.73, P<0.001) and no 

nymphs or adults were recorded on the north-facing woodland edge further than 1m 

away from the release site. To test that nymphs choose locations with lower canopy 

closure over time, differences between locations where wood cricket nymphs were 
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present were tested between the first and the second day. Canopy closure was found 
to be significantly lower for locations where nymphs were found on the second day 
compared to the first day of survey (Mann-Whitney test: n= 28, z= -2.044, P=0.041). 
Also, locations where wood cricket nymphs were present on the east-facing woodland 
edge displayed significantly lower percentages of canopy closure compared to 
locations at the same distance from the release site at the opposite north-facing 
woodland edge (Mann-Whitney test: n= 24, z= -2.377, P=0.017), indicating both their 
choice and preference for lower levels of canopy closure. 

The three year survey carried out at this location (see Surveys in Methods) did not 
show any signs of wood cricket advance along the east-facing woodland edge (Table 
28). In 2005, wood cricket was found at high densities up to 80.0 m along the edge 
from the main woodland area. In 2006, wood cricket was found up to the same 
maximum distance; however the population density was considerably reduced. In 2007, 
wood cricket was still observed no further than 80.0 m along the woodland edge; 
however, population numbers had slightly recovered compared to the previous year. 

6.3.2.2 Site 2 

Nymphs released in the three-day release experiment (Experiment 2) dispersed both 

along the edge of the new planting as well as along the woodland edge (Table 28). 

However, three individuals were found to have dispersed info the adjacent grazed field 

(Max dist. = 6.5 m; VH = 10, VC = 100, CC = 20). The maximum dispersal distance 

recorded for the nymphs (8.5 m) was recorded for an individual dispersing along the 

edge of the new planting (Table 28). Furthermore, dispersing nymphs significantly 

chose to move along the 'JIGSAW' edge through the tall grass/shrub vegetation 

compared to the woodland edge (chi-square test: X2 1= 29.43, P<0.001). There was no 

significant difference found for distance from the release point where nymphs were 

found between the first and second day of survey (Mann-Whitney test: n= 44, z=- 

1.097, P=0.273). There was also no significant difference found for canopy closure for 

locations where nymphs were found between the first and second day of survey 

(Mann-Whitney test: n= 44, z= -0.779, P=0.436). However, locations where wood 

cricket was present on the grass/shrub edge did display significantly lower percentages 

of canopy closure compared to locations at the same distance from the release site at 

the opposite woodland edge (Mann-Whitney test: n= 28, z= -4.558, P<0.001), 

indicating the preference (over ground cover habitat) for habitat locations with low 

levels of canopy closure. 

186 



The maximum straight-line dispersal distance recorded for adults was 4.0 m after three 
days from the moment of release (Experiment 2). The location of this individual was 
recorded along the edge of the new planting within herbaceous/grass habitat (10 - 40 
cm high) with an overhead tree canopy closure of 35%. After releasing both nymphs 
and adults (ntotal ": 100) over a period of 60 days, adult stridulating males were 
relocated within the near vicinity of the release site, along the woodland edge and 
within the grazed field. The highest maximum straight-line dispersal distance was 
recorded for an individual that had dispersed along the woodland edge (27.0 m) (Table 
28). However, two individuals were also recorded within the grazed field at a similar 
distance of 26 rn from the release site. Furthermore, compared to the woodland edge, 
slightly more individuals were relocated within the grazed field (5 vs. 3, after 60 days 
from the initial release), indicating similar ability to move through both grass and 
woodland/leaf litter habitat. No adult males were recorded along the tall herbaceous 

vegetation edge between the grazed field and the new planting during these surveys, 
indicating an overall preference for the woodland edge. 

6.3.2.3 Site 3 

During 'Experiment 2, nymphs significantly chose to stay within the improved release 

patch of short grass with added leaf litter rather than moving into the surrounding 

short/tall grass habitat (chi-square test: X2 1= 48.56, P<0.001), only showing a 

maximum dispersal distance (of 1.5 m), 72 h after the moment of release (Table 28). 

Furthermore, no single nymph was observed moving along the hedge edge. Together, 

this indicated that they preferred to stay in the suitable habitat conditions provided by 

the small release patch with added leaf litter and low canopy cover. 

6.3.2.4 Site 4 

During 'Experiment 2' conducted for wood cricket nymphs, the maximum straight-line 

dispersal distance of 9.5 m was recorded along the hedge edge (Table 28). Distance 

from the release point where nymphs were found was significantly greater on the 

second day of survey compared to the first day (Mann-Whitney test: n= 38, z= -3.059, 

P=0.002) and canopy closure was significantly lower for locations where nymphs were 

found on the second day compared to the first (Mann-Whitney test: n= 38, z= -3.233, 

P=0.001), confirming the preference for low levels of canopy closure. Furthermore, 

dispersing nymphs significantly chose short grass over moving into tall grass habitat 
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(chi-square test: X'l= 11.31, P=0.001). However, from the second day onwards equal 
numbers of nymphs were found within the uncut herbaceous 'JIGSAW' habitat and the 
(hand cut) short grass habitat. During the survey for adults carried out 60 days after the 
nymphal release, no stridulating males were recorded at this site, indicating no 
colonisation success. 
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Figure 21: Frequency distribution of the number of wood cricket nymphs observed in 

'Experiment 2', for all sites (1-4) together during 72h of observation. Inverse-power curve fitted 

to the data (R2 = 0.921), confirming the relationships presented earlier (see Figure 20a). 

Distance (m): straight-line distances from the point of release to the location of observation. n 

186. Mean absolute distance travelled for all nymphs observed = 1.62 m day-'. 

6.3.2.5 Site 5 

Three days after the initial release (Experiment 2), adult wood crickets were only 

observed close to the release site on a west-facing bank covered in sparse bramble 

with a well-developed leaf litter layer underneath. The maximum dispersal distance (2.5 

m) was also recorded at this location (Table 28). 

6.3.2.6 Site 6- 10 

Twenty days after the initial release (Experiment 3), one male wood cricket was 

relocated along the mature woodland edge (5.0 m) at'Site 6' (Table 28), with another 
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male and female observed at the release site. At'Site 7, one male was relocated along 
the hedge edge at 12.0 m from the release point (Table 28) and another at 3.0 m within 
the hay field underneath a sward of cut grass. At'Site 8" several wood crickets were 
relocated within the mature woodland edge close to the release site not more than 2.0 
m away (Table 28) and another two were relocated within the grazed field at 3.5 and 
4.0 m distance under low canopy closure conditions (6 and 0%, respectively). No 
individuals were relocated along the edge of the new planting. Additionally, at the 
preliminary survey (5 th August) two individuals were heard stridulating within the grazed 
field at a maximum distance of 23.0 m from the woodland edge (Table 28). This 
indicated that wood cricket was already present near release 'Site 8' before the 
'artificial' release. For 'Site 9', no individuals were relocated. For'Site 10', the maximum 
distance that was recorded for an individual that had moved away from a woodland 
edge was 55.0 m. This individual was located within the grazed field 18.0 m from the 
two-year-old new planting (Table 28). Furthermore, the maximum distance recorded for 

an individual male wood cricket from the nearest (permanent) source population 
situated within the boundaries of the main woodland body across a small woodland 
stream was 98.0 m. Several more recordings were made within the grazed field as well 

as along the edge of the new planting. Distances from the woodland edge to these 

points ranged from 23.0 - 45.0 m and distance from the woodland source ranged from 

64.5 - 90.0 m. 

6.3.3 Island releases (Experiment 4) 

6.3.3.1 Observations 

After release, both nymphs and adults aggregated around and moved along the island 

shore, actively looking for a way to cross. When making an attempt to cross the 

watercourse, the majority leaped approximately half way across the width of the 

watercourse (10-15 cm for the nymphs and 15-20 cm for the adults), after which they 

swam the remaining distance, often in a straight-line to the shore. They reached the 

shore by one or several powerful swimming bursts, propelling themselves by rapidly 

kicking their hind legs. Both nymphs and adults stayed afloat because of water tension; 

however contrary to adult wood cricket, nymphs were observed to sink less deep into 

the water mainly floating on their legs rather than their bodies. The longer time spent in 

the water, the shorter and less frequent the movements became. The majority of the 

observed escape attempts (8 out of 9 for the nymphs and 14 out of 15 for the adults) 

were directed to the nearest forest edge, 2.5 meters away from the island shore. 
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6.3-3.2 Crossing capacity 

Overall nymphs crossed the watercourse more readily than did adult wood crickets. 
Within the first hour after release 9 out of the initial 15 released nymphs actively 
crossed the watercourse from the island to the opposite shore, with two more 
attempting to do so, but returning to the island. For the adults only one (female) out of 
the initial 20 wood cricket that were released succeeded in crossing the watercourse 
within the first hour. This was a significant lower number compared to the nymphs (chi- 

square test: X2 = 9.308, P=0.002). Furthermore, within five hours, 13 out of 15 

nymphs (87%) had crossed the 25 cm wide watercourse. However, for the adults, over 
the first two hours, 15 (7 males, 8 females) attempts were made of which only 6 (3 

males, 3 females; 30% of the total) succeeded. All other adult wood cricket returned/or 

remained on the island. After 24 hours, 35% of the released adult population was still 

present on the island, and 7 males and 5 females (65%) successfully made the 

crossing. Only after 48 hours did the adults match the nymphs with 9 males and 8 

females (85%) having crossed the 35 cm wide watercourse. However, altogether both 

nymphs and adults were clearly capable of and preferred leaving the island by crossing 

the watercourse with no differences observed between the number of males and 

females succeeding in making this crossing (Table 29). 

Table 29: Displayed 'escape' success from the island by crossings the watercourse for wood 

cricket nymphs (after 5 h) and adults (after 48 h) (chi-square 'goodness of fit'tests) and 

between sexes (Fisher's exact tests). Crossed/Remained = number of individuals that crossed 

the watercourse or remained on the island. 

Life-stage Crossed Remai ,2 df P- 

Nymphs 
Aril Ilte 

12 
17 

3 5.400 
3 9.800 

1 
1 

0.020 
0.002 

Males 91 Fisher's test 1.000 
Females 82 
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6.3.4 Orientation experiments (Experiment 5- 8) 

6.3.4.1 Orientation towards tall grass edge 

When given a choice between tall grass (50-60 cm) and short grass (10 cm) habitat 
(Experiment 5), all released wood crickets moved towards the tall grass vegetation (n 
20), indicating a significant positive orientation towards the higher vegetation. However, 
when released at 1.25 meters away from the tall grass edge, wood cricket showed no 
preference for moving towards the higher vegetation (chi-square test: n tall = 13, nshort 
9; X21= 0.250, P=0.617), indicating a random orientation at this distance. The edge 
perception toward the tall grass habitat calculated as the angle from the release point 
was 39 ' and 18 * for these 2 release locations, respectively. 

6.3.4.2 Orientation towards woodland edge 

Table 30: Chi-square (goodness of fit) tests for the orientation of wood cricket at different 
distances from a woodland edge (Experiment 6- 8). Distance: distance from the woodland 
edge in meters. Distance = 50 (2) indicates the release location of 'Experiment 8' with a different 

sun direction compared to the other locations. Angle = angle measured from the release 
location to the top of the woodland edge (in degrees). Edge/Field = number of wood cricket 

exiting the release platform towards the woodland edge or towards the field. 

Distance Angle Edge Field X2 df P 
15 34 16 3 8.895 1 0.003 
20 30 14 1 11.27 1 0.001 
30 24 16 0 <0.001 
35 21 12 3 5.400 1 0.020 
40 19 15 3 8.000 1 0.005 
50 15 8 5 0.692 1 0.405 
50 (2) 15 5 8 0.692 1 0.405 

Up to 40 m from a woodland edge under an orientation angle of > 190 wood cricket 

showed a positive preference for moving towards the woodland edge (Table 30). 

However, for distances with a visual angle towards the woodland edge of 150, wood 

cricket showed no significant orientation effect, both when the sun was shining away 

and toward the woodland edge (Table 30). For all release locations, wood cricket 

demonstrated a significant preference for moving away from the direction of the sun 

(chi-square test: P<0.001 - 0.029) with the exception of release 50 (2) (chi-square 
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test: n ,,, y = 9, n t. = 5, X2 1=1.143, P=0.285), confirming earlier findings (see Beugnon, 

1979; Mieulet, 1980). 
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6.4 Discussion 

In a previous study, the higher speed generated by wood cricket adults and the more 
directed movement strategy found in experiments at a small spatio-temporal scale 
suggested a higher dispersal ability for adults compared to nymphs (Chapter 5). 
Furthermore, in the same investigation, no differences were observed in dispersal 
ability between the sexes based on their speed (Chapter 5). However, as shown here, 
when including larger spatial and temporal scales for observation, similar numbers of 
nymphs and adults were shown to be able to cover the maximum straight-line distance 
(Table 24), and fewer females were found to disperse compared to males (Table 21). 
This indicates that the scale of investigation influences the observed patterns and the 

relative importance of related processes. Moreover, when surveying the spread of 
wood cricket over increasing time intervals, the maximum observed distance from the 

release sight was found to similarly increase (Morvan et al., 1978; and this study), 
indicating the importance of observing dispersal over long temporal scales. Together, 

these results indicate the importance of recording movements over a range of spatio- 
temporal scales in order to fully assess the dispersal ability of this species. 

To fully understand the dispersal ability of a species it is important to consider both 

juvenile and adult life-stages (Diekofter et al., 2005). In this study, overall and in the 

smaller enclosures more adults than nymphs were found to show a tendency to 

disperse, supporting previous results (Chapter 5). However, equal proportions of the 

total released population of wood cricket nymphs and adult were found to perform long- 

distance dispersal. As wood cricket has a two-year life-cycle of which two-thirds is 

spent as a nymph and one-third as an adult (Gabbutt, 1959; Brown, 1978), this result is 

highly important in terms of inferring their life-time dispersal ability. Similar observations 

were made for the bush cricket (Pholidoptera griseoaptera) in a study conducted in 

Switzerland by Diekotter et al. (2005). This non-flying species also has a preference for 

deciduous wooded edges, where it can be found at low densities preferably within tall 

grass; along woodland edges, in woodland clearings and along hedges (Diekofter et al., 

2005). Diekotter et al. (2005) also found no differences in dispersal ability between 

juveniles and adults of this species. Together these results highlight the importance of 

considering all individual life-stages when assessing the dispersal ability of non-flying 

cricket species. 

ally not 
In adult crickets, differences in dispersal ability between the sexes are usu 

observed (e. g. Kindvall, 1999; Diekofter et al., 2005). However, for wood cricket, 
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significant differences were found between the dispersal ability of males and females. 
During the enclosure experiment conducted in this study, all the initial dispersers were 
found to be adult males. Furthermore, males were observed to disperse twice as often 
as females. This indicates that males were more inclined to disperse than females, 
which only significantly matched numbers of males at the enclosure periphery after 48 
hours of movement activity. This was most likely the result of male stridulation 
attracting the females, as has been found in several other cricket species (Marshall & 
Haes, 1988; Simmons & Ritchie, 1996; Scheuber et al., 2003). In this study, the 
number of wood cricket pairs that were observed to increase at the enclosures 
peripheries over time indicated the positive influence of this factor. This indicates that 
for wood cricket, adult males are initially more likely to disperse further and may be 
followed by females attracted by their stridulation. This also indicates that for this 
species during the adult phase, males can be considered as the primary dispersers. 

In this study, dispersal of both adults and nymphs was most accurately described by 
the inverse-power function. Given the possible limitations of the current study, in terms 

of the experimental designs and sample sizes adopted, this result should clearly be 

interpreted with caution. However, previous research has found that the inverse-power 

function is more accurate and robust than the negative-exponential function when 

using relatively few individuals over a short period of time (Fric & Konvicka, 2007), as in 

the current study. Furthermore, the combined data from the release experiments (Site 

1- 4) conducted with the nymphs recorded an accurate description of the data using 

the inverse-power equation (Figure 21). Similarly, after conducting further analyses on 

mark - resight data of wood cricket adults collected in France (Morvan et al., 1978), 

again- a more accurate description of the data was obtained using the inverse-power 

equation than when using the negative-exponential relationship. This data set was 

gathered under similar habitat conditions as included within the enclosures used here, 

but over a period of 30 days (Morvan et al., 1977; 1978). These combined results 

suggest that the inverse-power function does seem appropriate to describe dispersal 

for both wood cricket nymphs and adults. Compared to the exponential equivalent, this 

means that although only a small portion of the wood cricket population shows a 

tendency to disperse, a relative large amount is predicted to disperse to their maximum 

ability. Furthermore, use of the inverse-power equation for describing the dispersal of 

species that move by walking is also supported by results from other studies. The 

frequency distribution of the number of bush cricket (Metrioptera bicolour) dispersing 

through their preferred dry grassland habitat environment, within a matrix of pine 

forests and arable land, closely matched the relationship found here for wood cricket 
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(Kindvall, 1999). For the walking leaf beetle investigated by Chapman et al. (2007), the 
inverse-power curve was also found to approximate dispersal observed in the field 
better than the negative-exponential function. This indicates that although the 
relationship obtained might have been influenced by the experimental design adopted 
here, the inverse-power equation does seem more appropriate compared to the 
negative-exponential equation to describe the dispersal of non-flying species in this 
type of investigation. 

The majority of individuals in both life-stages were found to equally settle down into the 
limited area of the enclosures, preferring the areas characterised by low degrees of 
canopy closure, and engaging in their normal daily activities of feeding and in case of 
the adults courting and mating. This tendency of wood cricket nymphs and adults to 
settle down and remain within a limited area during their entire life-cycle was also found 
in earlier studies conducted in France (Morvan & Campan, 1976; Morvan et al., 1977; 
1978). A preference to remain within a specific area of suitable habitat has also been 
found for grasshoppers (Clark, 1962; Aikman & Hewitt, 1972). This indicates that 

similar to other Orthoptera, for both life-stages of wood cricket the home range 

requirements can be met at small spatial scales under suitable habitat conditions. 
Overall, wood cricket was found to be more sedentary than other cricket species. 
Within the enclosures, wood cricket nymphs and adults displayed a mean movement 

rate of 3.13 and 3.84 m day-' over the first 24 h after release, respectively. However, 

these rates were calculated only for the individuals observed at the periphery of the 

enclosure, which amounted to 12% of the adult and 16% of the nymph population, thus 

indicating that the majority of individuals moved shorter distances. For the bush cricket 

(Pholidoptera griseoaptera), Diekotter et al. (2005) found that nymphs and adults of this 

species were equally sedentary, but showed higher movement activity than wood 

cricket. In this case the daily movement rate was calculated over the first 24 h using all 

distances that were observed for the released population, recording mean movement 

rates of 1.7 - 3.8 rn day-' for juveniles and 3.0 - 6.3 m day-' for adults (Diekotter et al., 

2005). For another cricket species living in herb-rich meadows, similar rates were 

obtained for males, which moved a mean distance of 2.8 m day-' (Ritz & Kohler, 2007). 

By using the inverse-power function for both nymph and adult wood crickets, it was 

further estimated that the mean distance that each wood cricket individual dispersed 

during their life-cycle averaged less than 2 m. This suggests that compared to other 

cricket species for which data are available, movement of wood cricket is relatively 

limited. 
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Ninety-six hours after release, only small proportions of wood cricket nymph (13.5%) 
and adult (7.5%) populations showed the ability to cover the longest straight-line 
distance of 5 and 7 m, respectively, through their preferred leaf litter habitat. These 
limited dispersal distances achieved by the species are supported by earlier 
observations of wood cricket nymphs and adults moving through this type of habitat 
(Gabbutt, 1959; Morvan & Campan, 1976; Morvan et al., 1977; 1978). Similar 
observations indicating that only few individuals move long distances through their 
preferred habitat by walking have been made for a leaf beetle (Chapman et al., 2007) 
and a bush cricket species (Kindvall, 1999). However, the current study also showed 
that some nymphs were capable of moving up to 30 m in 72 hours through preferred 
habitat. Owing to low re-sighting success, no such observations were made over this 
timescale for adult wood cricket. However, dispersal distances of 27 m over a period of 
60 days and 55 m during one life-cycle were observed for adult males (Site 2& 10, 
Table 28). Furthermore, in a previous mark-recapture experiment within continuous 
open woodland habitat, adult wood cricket were shown to be able to disperse up to 60 

m over a period of 30 days (Morvan et al., 1978), and Richards (1952) noted that single 
adult male wood cricket were sometimes heard stridulating up to a mile (1.6 km) from a 

main colony. These observations together suggest that at least some nymphs and 

adults (males) are able to disperse relatively long distances. If adult females are able to 

disperse similar distances as the adult males, these observations are important in 

terms of the ability of this species to spread and establish new populations at locations 

where suitable habitat is available. 

Together, the release experiments and field surveys provided a deeper insight into the 

ability of wood cricket to move through the heterogeneous habitat environment 

associated with the agricultural matrix and recently established tree plantations 

surrounding the woodland fragments where it occurs. Both nymphs and adults were 

shown to be able and willing to move through less favourable grassland habitat and 

able to cross obstacles such as watercourses. Richards (1952) found several individual 

wood cricket males stridulating relative long distances away from larger populations, 

indicating their possible role as dispersers. In this study, similar observations were 

made with single wood cricket males found stridulating up to 90 m away from a source 

population that was located within woodland separated by a small forest stream, 

suggesting dispersal across the stream. Furthermore, some individual males were 

observed within grassland habitat up to 55 m away from their closest preferred 

woodland habitat environments. A similar distance (50-60 m) was also recorded over a 

period of 30 days for individuals moving through preferred woodland habitat (Morvan et 
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al., 1978), which might indicate that this absolute distance represents the upper limit of 
the life-time dispersal capability of wood cricket. It is likely, though, that individuals 
choosing to disperse away from woodland habitat through the relatively unfavourable 
matrix are unlikely to establish new populations, unless they encounter suitable 
woodland habitat enabling them to reproduce 

Previous studies of the development of the perceptual ability of wood cricket within 
natural environments have revealed that adults show a tendency to orientate 
themselves towards contrasting terrestrial features (Campan & Gautier, 1975; Beugnon, 
1979; Mieulet, 1980). This ability is not universal among invertebrates; for example, the 
ability to orientate towards terrestrial cues was found to be minimal in a wolf spider 
species (Bonte et al., 2004). However, in the current study it was revealed that the 
perceptual range of wood cricket adults had an upper limit between 40 and 50 m when 
released from a mature woodland edge. This value is larger than that obtained (30 m) 
for a habitat-specialist butterfly species that was released at different distance from its 

preferred habitat of wet meadow/peat bog environments (Schtickzelle et al., 2007). 
This relative high ability of orientation might help explain why some adult wood crickets 
actively disperse away from suitable habitat, being able to navigate towards distant 

terrestrial cues. More importantly, this observation also gives an indication for when 

woodland fragments can be considered functionally disconnected for wood cricket 
(Crooks & Sanjayan, 2006). Together with the maximum distance (55 m) that was 

observed for males penetrating unfavourable matrix habitat, it is suggested that 

woodland fragments separated by more than 50-60 m of non-woodland matrix habitat, 

might therefore be considered as effectively isolated for this species (also see Chapter 

2). 

Establishing a woodland habitat network under these circumstances might prove 

beneficial for wood cricket. The development of habitat corridors and 'stepping stones' 

between woodland fragments that are further apart than 60 m could be a useful 

conservation strategy. The positive effect of maintaining linear features within an 

agricultural matrix in terms of colonisation success has been shown in detailed studies 

on Roesel's bush-cricket (Metrioptera roesefi) (Berggren et al., 2001; Berggren et al., 

2002). Results suggested that these features helped in facilitating dispersal and the 

persistence of this cricket species within the wider landscape (Berggren et al., 2001; 

Berggren et al., 2002). For wood cricket, corridor functioning would be highly 

dependent on factors such as tree and ground vegetation cover, leaf litter presence 

and the geographical orientation of the corridor edges (see Chapter 3). Edges 

197 



represented by short vegetation in the transition zone between grazed grassland 
directly bordering mature woodland habitat, were found to be more readily used than 
edges characterised by tall herbaceous vegetation and young tree regeneration (e. g. 
Site 2& 8). Maximum movements of wood cricket were recorded along mature 
woodland edges up to 27 m (Site 2) and 29.5 m (Site 1) and only up to 8.5 m along the 
taller vegetation edges represented by the newly developed corridors (e. g. Site 2) (see 
Table 28). Particularly over time, no wood cricket were observed or heard in the latter 

edge habitats. Together these observations indicated that newly created corridors 
possibly need to 'mature' to such an extent that the habitat matches the requirements 
of wood cricket before the species will be inclined and able to use it, as suggested for 

other species (Gruttke, 1994; Bennett, 1999,2003; Bailey, 2007). Another key factor 

determining corridor functioning was the geographical orientation of the edge. Wood 

cricket populations were not found to progress along an east-facing suitable habitat 

edge over a period of 2 years (Site 1), but were found to move along a south-facing 

edge up to 27 rn over 60 days (Site 2) (see Table 28). These findings indicate that 

corridors can potentially function if suitable edge conditions are present. The ongoing 

investment and effort in creating woodland habitat networks therefore has the potential 

to facilitate the spread and population viability of wood cricket, given enough time. 
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Thesis discussion 

7.1 Introduction 

Current woodland restoration programs are increasingly looking at large scale 
restoration schemes in order to increase woodland cover and connectivity (Humphrey 
et al., 2003; Humphrey et al., 2005). The development of habitat networks has become 
a major conservation strategy in recent years, aiming at reversing the negative effects 
of habitat loss and fragmentation (Bennett, 1999,2003; Bennett, 2004a; Crooks & 
Sanjayan, 2006). However, the basic assumptions underpinning such strategies are 
largely untested for species associated with woodland habitat (Bailey, 2007). 
Furthermore, the lack of information on dispersal ability of many woodland taxa 
(Dolman & Fuller, 2003), makes relevant theories describing spatial population 
dynamics, for instance metapopulation theory (Hanski & Gilpin, 1997), potentially 
inadequate for explaining species presence and persistence within woodland 
landscapes. For many woodland invertebrate species, local scale processes are 
potentially more important in terms of species persistence, especially for those species 
showing high dependence on woodland habitat conditions and those that have a 
limited dispersal ability (Tscharntke et al., 2002). The applicability of these large scale 

concepts and principles for wood land-associated invertebrates therefore needed to be 

evaluated (Dolman & Fuller, 2003). 

The importance of examining a range of spatial and temporal scales to address issues 

in ecology (Wiens, 1989) was illustrated by the results of this project. First, factors 

influencing wood cricket (Nemobius sylvestris) presence measured at different spatial 

scales were found to change and differ in importance (Chapter 2& 3). Both factors 

measured at a fine scale within woodlands and factors measured at coarser landscape 

scales were able to explain wood cricket presence, but differed in explanatory power 

(Logistic regression: Chapter 2& 3). This indicated that key factors predicting wood 

cricket presence and their importance changed at different spatial scales, as has been 

found in other multi-scale studies on single species (e. g. Rukke & Midtgaard, 1998; 

Rukke, 2000). Second, the systematic review, examining movement rates of woodland- 

associated invertebrates, revealed a large variety of spatio-temporal measures used 

(Chapter 4). Some studies examined range expansion of species on a yearly basis at 

scales ranging from meters (Porter et al., 1988; Holway, 1998) to kilometres (Liebhold 

et al., 1993), whereas others looked at movement strategies using fine spatio-temporal 
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scales of m min-' (Hagvar, 2001; Ross et al., 2005) or m sec-1 (Haddad, 1999). 
Furthermore, where different techniques were used at different spatio-temporal scales, 
considerable differences in rates were sometimes obtained (e. g. Kennedy, 1994; 
Chapter 5& 6). Translating values into one uniform spatio-temporal rate in most cases 
would be unrealistic (e. g. Levin, 1992); therefore I had to take this scaling issue into 
account in order to produce valid comparisons between the habitat specialism groups. 
Therefore, only rates with the same spatio-temporal scale (m day-) were and could be 
used for further analyses (Chapter 4) 

Finally, the dispersal experiments of wood cricket found differences in dispersal ability 
and related processes when assessing different spatio-temporal scales (Chapter 5& 6). 
For instance, at small spatial scales the straight-line distances that were achieved by 
nymphs and adults through leaf litter were found to be significantly different and 
averaged 16.0 and 27.8 cm min-', respectively (Chapter 5). This would translate to 
distances of up to 9.60 - 16.68 m hour'. However, at larger spatio-temporal scales, no 
differences were found between the straight-line movement rate for dispersing nymphs 
and adults. Furthermore, for both life-stages only a quarter of the population was 
observed to be able to cover straight-line distances of up to 2.91 m on ad AiAl basis 

with the other 75% moving less (Chapter 6). This indicated that with increasing spatio- 
temporal scales of investigation, the observed absolute distances moved decreased 

and differences between life-stages changed. Altogether, these examples highlighted 

the fact that species responses and relationships changed when using different spatial 

and temporal scales of investigation (Wiens, 1989; Levin, 1992). From the onset of this 

study, it was not known at what scales wood cricket would operate and what processes 

would be important in terms of their colonisation success. Identifying what the 

appropriate scale should be for wood cricket conservation was therefore one of the key 

issues that needed to be addressed in this research project. 

This project was designed to address these questions and gaps in knowledge with a 

focus on wood cricket and related wood la nd-associated invertebrates. This chapter 

focuses on assessing whether current woodland management initiatives and policy are 

appropriate for the conservation of wood cricket and similar woodland invertebrate 

species (Objective 3, see 7.2). The sub-objectives that will be addressed are: (1) to 

determine the appropriate scale for conservation directed at wood cricket and 

associated invertebrate species, and (2) to evaluate the potential gain of creating forest 

habitat networks for wood cricket and associated species. Furthermore, this chapter is 
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aimed to critically evaluate the research project as a whole and to give further direction 
to future research and conservation management. 
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7.2 Methods 

Project objectives: 

To review the empirical evidence regarding the dispersal ability of different 
species and functional groups of organisms, in relation to their ecological traits 
and the characteristics of wooded landscapes. 

2. To analyse the key factors influencing species colonisation of woodlands, with 
particular reference to processes operating at the landscape scale, through a 
programme of field-based research. 

I To examine the potential impacts of current approaches to development and 
management of wooded landscapes on species composition. 

Each chapter presented in this thesis addressed one or a specific part of the original 
project objectives. For each chapter, these objectives were translated into specific aims 
matching the context of the individual investigations that were carried out. Objective 1 
was addressed in Chapter 4; Objective 2 was addressed in Chapters 2,3,5 & 6; and 
Objective 3 is addressed in this chapter (see Chapter outline and aims; Chapter 1). 

The key processes that were examined in this project were dispersal and colonisation 
of species associated with woodland habitat (see Project objectives). For the fieldwork 

program (Objective 2), these issues were addressed using a multi-scales approach 
(Chapter 2,3,5 & 6; Figure 23). Fieldwork was performed in and around the woodland 
fragments on the Isle of Wight (Figure 22) and data were gathered and analysed 

across a range of spatio-temporal scales (Chapter 2,3,5 & 6; Figure 23). Furthermore, 

prior to the detailed investigations on dispersal of wood cricket (Chapter 5& 6), a 

systematic review was carried out examining the dispersal ability of different woodland- 

associated invertebrates (Objective 1; Chapter 4). The review was used to explore the 

factors affecting dispersal ability of woodland invertebrates and to attempt making 

generalisations in terms of habitat specialism groups (Chapter 4). The key results and 

factors influencing wood cricket presence and colonisation found in the fieldwork 

program (Chapter 2,3,5 & 6) are displayed in Figure 23, and together with findings 

from the systematic review (Chapter 4) will be further discussed in the following 

sections. 
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7.3 Discussion of results 

I ý-I-o 
4? 

00 

IN 

8 km 

Figure 22: Distribution of wood cricket (Nemobius sylvestris) on the Isle of Wight as determined 

by the landscape scale survey (Chapter 2). The black patches represent woodlands where 

wood cricket was found. The grey and black patches together represent all the surveyed 

woodlands (see Chapter 2). The white, grey and black patches together represent all the 

woodlands on the island. Derived from digital map based on the National Inventory of Woodland 

and Trees (NIWT) (Smith & Gilbert, 2003). 
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7.3.1 Landscape scale (Chapter 2) 

At the landscape scale, wood cricket Populations were found to be evenly distributed 
over the northern part of the Isle of Wight (Chapter 2; Figure 22). This study further 
indicated that wood cricket was found in areas containing predominantly large 
woodland fragments in close proximity to each other, with ancient woodland 
characteristics and with a high amount of edge habitat (Landscape; Figure 23). This 
implies that areas where all these criteria are met have the highest potential to support 
wood cricket populations on the Isle of Wight. For conservation management purposes, 
the habitat model that was developed in this study might prove useful in making 
preliminary landscape suitability assessments (Fleishman et al., 2002). Based on 
fragment size and proximity to the woodland fragments in the wider landscape, this 
model can be used to make predictions where wood cricket can be or potentially is 
present in the landscape. Furthermore, in this study, landscape variables influencing 
wood cricket presence were extracted from readily and often freely available 'remote 

sensed' digital data. Assessing the landscape to identify priority areas for wood cricket 
conservation can therefore be relatively straightforward using GIS software (e. g. 
ArcGIS) and/or aerial photography (e. g. Google Earth) (Chapter 2& Figure 22). For 
instance, wood cricket was mainly found in areas with larger woodlands in close 

proximity to each other, which can easily be identified (Figure 22). These areas can 
then be analysed in more detail regarding the presence of ancient woodland site 

characteristics and the amount of edge habitat present. This quick preliminary 

assessment can save time when directing further efforts to verify the actual status of 

wood cricket presence in the field. 

On the Isle of Wight, targeted and untargeted restoration schemes have been 

implemented to reverse the effects of fragmentation and increase the amount of 

woodland area (Forestry Commission, 2003; 2005; 2006a; Quine & Wafts, 2007). 

Untargeted woodland expansion has been funded throughout the UK with limited 

restrictions on where new woodland should be created (Forestry Commission, 2003). 

However, initiatives were also undertaken specifically focused on extending and 

creating woodland on strategic locations in order to increase the level of connectivity 

between existing semi-natural woodland fragments (Forestry Commission, 2005). In 

their study on the effectiveness of both schemes, Quine & Watts (2007) found that a 

more targeted approach showed a higher 'de-fragmentation' effect at the landscape 

scale than untargeted woodland expansion. A similar result was found in a simulation 

study by Lee & Thompson (2005) where random addition of woodland within a 
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fragmented landscape resulted in a Poorer performance regarding de-fragmentation 
than more targeted habitat expansion. These examples highlight the effectiveness of a 
more targeted approach in increasing the level of structural or physical connectivity 
between habitat patches within the landscape. 

On the Isle of Wight, wood cricket was found to be present in the areas that were 
undergoing these targeted woodland expansions (e. g. Briddlesford, see Chapter 6). 
Increasing structural connectivity often positively influences the functional connectivity 
for species (Crooks & Sanjayan, 2006; Baguette & Van Dyck, 2007). Functional 
connectivity is highly species dependent and involves to what extent a species is able 
to move through the landscape and/or interact between distinct habitat patches 
(Crooks & Sanjayan, 2006). In an agricultural landscape, based on the species' 
dispersal ability, the intervening land-use type (i. e. the 'hostile' matrix) and distance 
that separates distinct habitat patches are often the main factors determining this level 

of functional connectivity. The current pattern of distribution of wood cricket suggests 
that areas where fragments are relatively large (> 9.5 ha) and in close proximity to each 

other (< 50 m) (see Figure 22 & Figure 23, Landscape - Key factors) represent a 
higher level of functional connectivity for the species. Therefore, a targeted approach in 

restoring, connecting and increasing woodland habitat in areas where distances 

between fragments are relatively small seems highly relevant to effectively increase the 

structural and functional connectivity for wood cricket and possibly other similar 

invertebrate species. 

7.3.2 Woodland scale (Chapter 3) 

One of the key factors found in the landscape scale study that influenced wood cricket 

presence indicated the importance of edge habitat availability for wood cricket within 

woodlands (Permanent edge; Chapter 2). This was confirmed by the pattern that was 

observed of individual wood cricket populations within woodlands. This pattern 

revealed that most populations were found in edge habitat along tracks, the woodland 

periphery, in clearings and in gaps (Figure 24). In particular, provision of enough 

permanent edge habitat within the interior of woodlands was found to be highly 

important for maintaining a sustainable wood cricket population (Chapter 3). As a direct 

result of permanent low cover of ground vegetation, low canopy closure and high 

availability of leaf litter (Woodland - Key factors (below line); Figure 23), large 'source' 

populations were found to develop at these permanent edge habitat locations 

(Brouwers, pers. obs. ). It was further found that large woodlands provided more 
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permanent edge habitat, hence the strong relationship found between wood cricket 
presence and woodland area (Area; Chapter 2). Large woodland areas were generally 
found to be more heavily and frequently managed than smaller woodlands (Brouwers, 
pers. obs. ). These activities seemed closely positively correlated with the amount of 
available habitat for wood cricket. In these larger managed woodlands, commercial tree 
harvesting and conservation activities (e. g. re-instatement of coppice rotation) not only 
creates more open habitat but also involves presence and maintenance of open tracks 
and roads for tree extraction (e. g. Firestone copse; Figure 24). Furthermore, the Isle of 
Wight is and has been the focus of extensive woodland restoration efforts including the 
restoration of planted ancient woodland sites (PAWS) by removing non-native tree 
species (Defra, 2005; Forestry Commission, 2006a; 2007). These activities were found 
to increase canopy openness, and with initial low levels of ground vegetation cover, 
improved habitat conditions for wood cricket on the ground by the increased amount of 
sunlight availability. Active management of woodlands therefore has a positive effect 
on wood cricket populations by providing more suitable habitat. 

An important factor influencing presence of wood cricket was the level of sunlight 

availability on the ground. One of the main factors influencing these conditions was the 

openness of the canopy. The main features characterised by more or less permanent 

open canopy conditions were found to be woodland tracks and the woodland periphery. 
Wood cricket occurrence was strongly positively related with the proximity to occupied 
locations along these permanent features (Woodland - NN Distance; Figure 23). 

Furthermore, an investigation of the spatial pattern of wood cricket populations within a 

large woodland fragment revealed that these features also seem to play a key role in 

the process of wood cricket dispersal and population spread (Figure 24). Wood cricket 

seemed to spread and disperse from the main source populations within the woodland 

by using edges of open tracks and forest peripheries (Figure 24). Almost all 

populations that were found were more or less (inter)connected with the source 

populations this way (Figure 24). In Figure 24, the most likely routes that wood cricket 

use(d) are indicated by arrows. These routes were largely based on the openness of 

the canopy made by direct observations within this woodland. However, where these 

routes clearly correlated with the (permanent) tracks and roads within the woodland 

(Figure 24), use of GIS based imagery (e. g. OS MasterMap imagery in ArcGIS) and/or 

aerial photography (e. g. Google Earth) could be helpful in making a quick assessment 

of the permeability of occupied woodland areas. It was further observed that wood 

cricket could rapidly colonise (i. e. within 1-2 summers) new felling/coppice clearings 

that were created adjacent to occupied woodland tracks (Brouwers, pers. obs. ). Where 
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felling and management interventions often take place in rotation, strategic planning of 
these activities could benefit wood cricket for instance by focussing these activities 
around the 'corridors' used by the species to spread through the woodlands. 

To summarise; ride and track edges, woodland peripheries and open areas within 
woodlands (e. g. coppice sites) were found to be the main habitat locations where wood 
cricket could be found. These features were also found to be preferred by a wide range 
of wood land-associated invertebrates and therefore are highly important for 

maintaining woodland invertebrate diversity (Bratton & Andrews, 1991; Warren & Key, 
1991; Greatorex-Davies et al., 1994). Additionally, for wood cricket, the woodland rides 

and tracks were not only important as habitat locations but also seemed to function as 

conduits facilitating their spread within woodlands. Within woodland management 
focusing on maintaining suitable habitat is therefore equally crucial (as landscape scale 
initiatives) to ensure the persistence of wood cricket and similar invertebrate species. 

7.3.3 Network scale (Chapter 5& 6) 

Colonisation success of wood cricket was found to be dependant and influenced by 

multiple factors (Figure 23). The factors that influence the dispersal ability of wood 

cricket will largely determine the potential success of a habitat network. The ability to 

disperse away from suitable habitat through unfavourable habitat conditions was not 

affected by potential physical barriers within the landscape such as small watercourses 

(Water barrier; Figure 23) and was possibly positively influenced by their ability to 

orientate themselves towards distinct habitat features in the landscape (Perceptual 

range; Figure 23). Furthermore, both nymphs and adults were found to have similar 

dispersal power, and females seemed less inclined to disperse than males (Dispersal 

ability; Figure 23). However, in order for individual woodland fragments to potentially be 

colonised, it was found that they had to be close together (Landscape; Figure 23, 

median distance between occupied woodland fragments: 50 m; see Chapter 2). A 

possible upper bound for the maximum distance between individual fragments was 

found to be 55 meters in this respect (Matrix permeability; Figure 23). Therefore, for 

wood cricket, fragments separated more than 50 - 60 m from each other by non- 

woodland matrix habitat are thought to be effectively isolated. 

When distances between fragments exceed this maximum distance, connectivity could 

be established by developing corridors between individual fragments (Network; Figure 

23). However, in order for corridors to function, edge habitat would have to meet the 

211 



same basic requirements as was determined here within woodland (Woodland - Key 
factors (below line); Figure 23). The ability of wood cricket to disperse along corridors 
was mainly driven and influenced by the physical structure of the edge and positioning 
of these corridor features within the landscape (Corridor functioning; Figure 23). The 
edges that were found to function best were mature woodland edges directly bordering 
arable/g rass land characterised by low ground vegetation cover (Chapter 6). A further 
decisive habitat requirement was the exposure of a corridor edge to the sun, which is 
likely related to the ambient temperature at ground level (Corridor functioning: Geo- 
positioning; Figure 23; Chapter 6). As an example, in Figure 23 (Network), if all other 
edge habitat requirements are met, the black corridor between the occupied woodland 
fragments has the highest potential to act as a conduit between populations. This is so 
because it runs in an East - West direction, maximising exposure of its South - facing 
edge to the sun (Figure 23). Along this type of edge, wood cricket was observed to 
spread (Site 2; Chapter 6). Furthermore, although the white corridor is shorter, the grey 
corridor has a higher potential to facilitate the colonisation process of the unoccupied 
woodland, again because of the higher exposure of its edge to the sun (Figure 23). 

Providing permanent suitable breeding habitat along corridors also seemed to influence 

corridor functioning. This is likely related to the presence of a well-developed leaf litter 
layer (Brown, 1978). No evidence was found of wood cricket establishing viable 

populations within semi-natural grassland or along hedge edges, both of which lack a 

suitable leaf litter layer. Along mature woodland edges bordering grassland or arable 
land, a situation common in fragmented agricultural landscapes, wood cricket was able 
to establish viable populations where leaf litter habitat was available (Site 1; Chapter 6). 

Furthermore, presence of a well-developed leaf litter layer was only found along mature 

woodland edges, indicating the considerable time that corridors possibly need to 

develop in order to meet the habitat requirements for wood cricket (Chapter 6). This 

has also been found for other ground-dwelling wood land-associated species. A nine 

year long study examining the natural spread of carabid species into newly developed 

linear tree plantations revealed that no specialised woodland species moved into these 

features (Gruttke, 1994), indicating their ineffectiveness as a corridor to facilitate 

dispersal. The main argument given for this result was also the immaturity of the 

woodland habitat represented within these features making it unsuitable for the 

specialist beetle species to live in (Gruftke, 1994). 

When mature woodland edges are present with suitable edge habitat for wood cricket 

to move along, overall wood cricket showed a low tendency to disperse. It is likely that 
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the majority of wood cricket will stay in areas where their basic habitat requirements in 
order to survive and reproduce are met, as was observed within the enclosures 
(Chapter 6) and in previous studies on wood cricket (Morvan & Campan, 1976; Morvan 
et al., 1977; 1978). AtSite 2' (Chapter 6), over 60 days wood cricket was found to 
have not progressed further than 27 m along a South-facing mature woodland edge 
through suitable habitat. Furthermore, in two separate studies conducted in France, 
mark - re-sight experiments conducted within woodlands with suitable leaf litter habitat 
revealed that over 30 and 180 days, wood cricket did not disperse further than 40 - 60 

m and 40 rn respectively (Morvan & Campan, 1976; Morvan et al., 1978). Although the 

nymphal dispersal was not included in these observations, the total life-time distance 
that wood cricket individuals will disperse probably does not exceed a distance of 60 m. 
Therefore, I argue that individual patches of breeding habitat along corridors that are 
further apart than this distance are unlikely to be colonised. Additionally, males were 
found to be the primary dispersers attracting females in their wake (Dispersal ability, 
Figure 23). It is however not known if wood cricket females have a similar tendency to 

disperse and reach similar maximum dispersal distances as observed for males. This is 

particularly important in terms of actual dispersal success, where new populations can 

only be established if females show the same dispersal tendency and ability as males. 

This issue needs to be addressed in further research in order to get a full 

understanding of the dispersal ability of this species. 

To summarise, these results indicate that dispersal of wood cricket can potentially be 

facilitated by creating woodland habitat networks. Woodland corridors and possibly 

woodland 'stepping stones' have the potential to be functional provided that suitable 

edge habitat is available at ground level at regular intervals (< 60 m apart). 

Furthermore, creating new woodland corridors and 'stepping stones'will increase the 

available woodland edge habitat over time. This particular habitat is favoured by many 

other woodland invertebrates (Bratton & Andrews, 1991; Warren & Key, 1991; 

Greatorex-Davies et al., 1994; Key, 1995; Diekotter et al., 2005), so creating woodland 

habitat networks will possibly benefit wood cricket and a range of additional species, 

given enough time to develop. 

7.3.4 Transferability of the results (Chapter 4) 

This thesis focused on woodland invertebrate species, with special reference to non- 

flying ground-dwelling species. However, the main body of work was conducted on a 

single species only (i. e. wood cricket). The main advantage of focusing on a single 
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species, which was fully borne out by the results of this project, is the much greater 
depth of information that can be obtained. However, one of the main limitations Of 
single-species studies relates to whether the results obtained are relevant for other 
species. When studying a single species, it preferably should represent this broader 
group of similar species (Ranius, 2006) in order to make useful generalisations. The 
systematic review was partially undertaken to identify a group of species for which 
wood cricket might be considered as representative (Chapter 4). The review revealed 
that the mean dispersal rate for dispersing wood cricket lies closest to that of ground- 
dwelling invertebrate species most strongly associated with woodland (Chapter 4; 
'Group V). This level of habitat specialism was consistent with the habitat preferences 
found for wood cricket, and therefore wood cricket can be seen as representative of 
this particular group of wood land-associated invertebrates 

Additionally, Bowne & Bowers (2004) performed a review of the scientific literature 

similar to the systematic review performed in this study (Chapter 4). Their aim was to 

provide basic statistics on movement of species between habitat patches (Bowne & 

Bowers, 2004). As discussed in Chapter 4, in this and their review study, comparable 

movement rates for mobile butterflies and ground-dwelling beetles were obtained that 

were measured at different spatio-temporal scales. This result might indicate a 

potential link between absolute distances travelled within habitat on a daily basis and 

the fraction of a population dispersing between distinct habitat fragments during one 

life-cycle. Movement rates obtained at small spatio-temporal scales within continuous 

habitat might therefore reflect the dispersal ability of the species at larger scales 

between habitat fragments. In terms of woodland invertebrate dynamics within 

fragmented landscapes (metapopulation theory (Hanski & Gilpin, 1997)), this might be 

a very useful generalisation to use in conservation management and planning. 

However, this relationship needs to be explored in more depth for a wider range of 

woodland invertebrate species in order to justify this kind of generalisation. 

7.4 Management implications 

7.4.1 Population dynamics / metapopulation consideration 

The current level of fragmentation and lack of connectivity between woodland 

fragments across the Isle of Wight suggests that for wood cricket within most areas a 

metapopulation structure (see Hanski & Gilpin, 1997) operating between woodlands is 

unlikely to exist. Similar to specialised beetle species (Driscoll, 2005), the results of this 
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study suggests that for wood cricket, individual woodlands function as distinct islands 
operating as more-or-less closed systems within the agricultural matrix. Extinctions 
within fragments that are further away than 60 m from another populated fragment are 
therefore likely to be permanent. However, the landscape scale survey also suggests 
that in some areas where the level of fragmentation is low (i. e. woodlands are in close 
proximity to each other), interactions between fragments are occurring. This further 
suggests that in these specific areas a functional form of metapopulation dynamics 
between woodlands might still exist. 

It is further thought that between distinct habitat patches within occupied woodlands 
also a form of metapopulation dynamics seems to apply. The species was typically 

observed in areas of open habitat where clearings and coppice/thinning activities had 
taken place. However, ground vegetation development was observed to be very 
vigorous and often covered these areas within one or two growing seasons after 
management interventions had taken place (Brouwers, pers obs). In these cases wood 
cricket populations were observed to disappear and/or retract to other temporary open 
habitat locations. The 'classic' metapopulation structure for wood cricket therefore does 

not seem to apply within woodland habitat (Hanski & Gilpin, 1997). In this case a 

nonequilibrium or habitat-tracking metapopulation structure seems to accurately 
describe the dynamics of this species within woodlands (Harrison & Taylor, 1997). This 

means that within the boundaries of the individual woodlands, wood cricket population 

dynamics are driven by the availability of suitable habitat. Distinct habitat patches in 

this particular metapopulation structure are only temporary, where in the case of wood 

cricket they become unsuitable after ground vegetation develops. This particular form 

of population dynamics driven by the succession of habitat was also observed for 

butterflies (Thomas, 1994). Thomas (1994) further reviewed that for many other 

(invertebrate) species, including butterflies living in woodland clearings and wide 

woodland tracks, this system is the main driver determining population dynamics and 

persistence. It is therefore important to maintain and create 'disturbance' habitats within 

woodlands in order to preserve wood cricket and other woodland dependant 

invertebrate species (Warren & Key, 1991). 

7.4.2 Conservation scale 

In order to direct conservation efforts for a particular species it is necessary to 

determine at what scale a species operates. Therefore, this investigation on wood 

cricket was undertaken at multiple scales. The results of the investigation indicate that 
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processes determining wood cricket presence both operate between distinct woodland 
fragments and within woodlands (see previous paragraph; Nearest occupied neighbour 
distance, Chapter 2& 3). The results suggest that interactions between woodland 
fragments do take place in areas where there is a low level of fragmentation. However, 
interactions between woodlands are already thought to be highly unlikely when they 
are separated more than 60 m from each other. Furthermore, wood cricket was also 
found to be persistent in actively managed woodlands that had a long history of being 
isolated within the agricultural matrix, indicating that without interactions with other 
populated woodlands, this species is also able to persist. Conservation for wood cricket 
can therefore focus on efforts carried out at relative small spatial scales equally within 
and between woodlands, preferably creating networks of suitable habitat areas no 
further than 60 rn apart. 

7.4.3 Wood cricket conservation management options 

Wood cricket is a'Species of Conservation Concern' in the UK (NBN Gateway, 2007). 
On the Isle of Wight wood cricket is therefore included in the local biodiversity action 

plan (Isle of Wight Biodiversity Action Plan Steering Group, 2000). To maintain viable 

populations and improve habitat conditions for wood cricket on the Isle of Wight and 

other wood cricket locations, a number of strategies can be adopted. Conservation 

aiming for the long-term persistence within the landscape of this species can focus on 

creating habitat networks in areas that include clusters of woodland fragments that are 

in relatively close proximity to each other and can focus on continuously providing and 

maintaining suitable habitat locations within woodland. 

The current situation on the Isle of Wight (and in most of the UK) is that between most 

woodland fragments the intervening matrix stretches more than 60 m and does not 

provide suitable breeding habitat (i. e. well-developed leaf litter layer) making most 

woodland fragments for wood cricket effectively isolated from each other. Developing 

habitat networks under these circumstances could possibly provide the necessary gene 

flow for the overall long-term persistence of the species within the fragmented 

landscape. Corridors and 'stepping stones' could further prove useful as escape routes 

and habitat refuges, when habitat conditions within woodlands deteriorate, for instance 

with a decrease in management activity. 

There are however a number of reasons why the creation of habitat networks, 

compared to other management options, arguably should not receive the highest 
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priority for the conservation of this species. (1) The creation of habitat networks 
involves high costs with practically no financial return. Compared to traditional forestry 
activities that already take place in woodlands that are equally beneficial financially and 
for the persistence of this species, the habitat network approach seems less necessary. 
(2) Furthermore, one of the reasons behind the creation of habitat networks is to 
provide escape routes for species in terms of climate change/global warming. However, 
the necessity for this species to escape adverse conditions will be unlikely, as this 
species, together with other Orthoptera, particularly favours warm(er) conditions 
(Marshall & Haes, 1988). (3) Finally, there is still a large amount of uncertainty if wood 
cricket will be able and willing to use the corridor features and/or 'stepping stones' that 
recently have been developed within the framework of habitat network initiatives. 
These network features first need to mature sufficiently to provide the necessary 
woodland habitat characteristics that this and other woodland specialist species require. 
In the long run, habitat networks might prove to be important for the overall persistence 
of wood cricket within the landscape. However, the time lag that is involved before 

wood cricket will be able to benefit from these initiatives make them currently less 

effective than activities within woodland where the basic habitat requirements (i. e. well- 
developed leaf litter layer) are generally already present. Therefore, until woodland 
features within recently created habitat networks had time to develop and were tested 

to prove their effectiveness, conservation efforts for this species, particularly at this 

moment in time, should equally focus on providing continuous suitable habitat within 

woodlands. 

Areas providing suitable edge habitat of only 100 M2 are thought to already provide a 

firm basis to sustain viable wood cricket populations. The species demands early 

successional habitat conditions related to natural and anthropogenic disturbances 

within woodland habitat. Current management strategies incorporating regular felling 

and restoration activities within woodlands (e. g. Forestry Commission, 2007) are highly 

beneficial in terms of creating suitable habitat conditions for this species. It is advised 

to maintain at least 30% broadleaf, preferably oak (Quercus spp. ), tree cover within the 

boundaries of the woodlands to provide and maintain the necessary leaf litter layer to 

secure successful reproduction. To maintain connectivity between populations and 

provide additional habitat within woodland, open tracks and rides should be maintained 

by preventing the tree canopy to close and yearly mowing/removal of the vegetation 

along the track edges will be equally beneficial. Providing larger areas characterised by 

permanent open habitat conditions maintained by regular management activities (e. g. 

public picnic areas and car parks; see circular source population in Figure 24) was 
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further found to be highly beneficial for the persistence of this species within individual 
woodlands and should therefore be continued. 

7.4.4 Additional management considerations 

7.4.4.1 Grazing 

A factor clearly affecting the habitat development within woodlands on the Isle of Wight 
is the absence of wild ungulates (i. e. deer) on the island (Pope et al., 2003). The 
development and natural regeneration of the ground vegetation after management 
activities such as coppice, felling and mowing of ride edges is therefore not hampered 
by browsing and grazing. As a result, ground vegetation development was observed to 
be very vigorous and often covered open areas within one or two growing seasons 

after management intervention had taken place (Brouwers, pers obs). This study 

revealed that this rapid successional development is highly unfavourable for wood 

cricket persistence. To prevent this adverse effect, annual active clearance of 

vegetation such as mowing of bramble could be one of the management options. 
However, an alternative management approach could also involve the introduction of 

some form of grazing regime within woodlands for instance by domesticated grazing 

animals. One of the main strongholds of wood cricket in the UK is the New Forest 

(Richards, 1952; Marshall & Haes, 1988; NBN Gateway, 2007). The long history of 

grazing in this location has had a major impact on habitat structure, creating a shifting 

mosaic of open and closed woodland habitats (Vera, 2000). In particular, herbaceous 

undergrowth is heavily affected by this grazing regime, reducing it to a minimum in 

most wooded areas. As wood cricket is highly persistent (Marshall & Haes, 1988) and 

widespread across the New Forest (NBN Gateway, 2007), the influence of (large) 

grazing animals on the habitat seems particularly favourable for this species. Therefore, 

the introduction of some sort of grazing regime within woodlands might be a feasible 

and possibly cheaper alternative compared to other management interventions. 

7.4.4.2 Re-introduction 

During the landscape scale survey, at least 50% of the woodlands that were surveyed 

where wood cricket was absent included areas of suitable habitat that were large 

enough to sustain viable wood cricket populations. Some of the surveyed woodlands, 

particularly those of secondary origin might never have been occupied. However, in 

other woodlands, the species might have gone extinct due to a lack of management 
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activities or the replanting of these sites with coniferous tree species. Either way, a final 
consideration could involve re-introduction of the species within woodland areas where 
it is currently absent. This strategy is likely to succeed when suitable habitat is 
available (Brouwers, pers. obs; Marshall & Haes, 1988). The present lack of functional 
mature corridors between woodland fragments on the Isle of Wight largely prevents the 
species from spreading naturally. This might justify re-introduction of the species to 
increase their overall distribution and persistence at the landscape level. However, its 
current distribution and overall persistence within the individual managed woodlands on 
the Isle of Wight suggests that it seems unnecessary to resort to this conservation 
strategy. 

7.5 Project appraisal 

The following section focuses on a critical appraisal of the work I undertook during this 

project. The considerations were mainly a consequence of the time constraints that 

were related to the individual fieldwork seasons and the total duration of the project. 
(1) Possibly the main weakness of this study was the fact that the main body of work 

was conducted using a single species only. Although it is recognised that focussing on 

one species is often the only option for detailed dispersal studies Jurchin, 1998), the 

inclusion of another species similar to wood cricket in the larger scale studies might 

have strengthened the overall findings. Including another species in the landscape 

scale study (Chapter 2) and/or woodland scale investigation (Chapter 3) might have 

proved useful in making comparisons between species, ultimately adding to our 

understanding of how woodland species utilise these features within the landscape. 

Repeating these investigations using a different wood land-associated species to 

compare with the existing datasets could be a feasible option for further research 

initiatives. 

(2) For a more accurate analyses of the landscape scale distribution of wood cricket 

and related woodland patch variables, preferably more woodlands should have been 

covered during the landscape scale survey of 2005 (Chapter 2). Furthermore, most 

woodlands were only visited once which might have resulted in wrongfully classifying 

woodlands as being unoccupied. In both cases, it is likely that the actual distribution of 

wood cricket on the island was underestimated. Future work could therefore focus on 

the following: to obtain the actual distribution of the species, additional surveys could 

be performed possibly focusing on the larger fragments with ancient woodland 

characteristics. Furthermore, to obtain a more accurate result in terms of the 
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relationships that were found (Chapter 2), preferably all remaining woodland fragments 
should be surveyed systematically from the North of the island to the South. The 
additional presence/absence data obtained could easily be added to the existing 
dataset and re-analysed. 

(3) The models that were developed for predicting wood cricket presence within 
woodlands were not statistically tested for their robustness with external datasets 
(Chapter 2& 3). Future investigations should include collecting these easily obtainable 
datasets to confirm the applicability of these models within woodlands at other 
geographical locations. This could further strengthen the findings and applicability of 
these models as an assessment tool of habitat suitability for wood cricket within 
woodlands. 

(4) This study highlighted once more the complexity of dispersal studies and stressed 
the fact that using a range of scales and techniques is an absolute must in order to get 
a clear understanding of the dispersal ability of invertebrates and possibly many other 
species. The main difficulties that were encountered with the various dispersal 

experiments here were directly related to these factors (Chapter 5& 6). 

(a) For the detailed movement studies, the design of contrasting habitats and the 

spatial scale of the grids might have influenced the movement strategy of the individual 

wood crickets that were released (Chapter 5). This possible bias in the data is hard to 

detect and only attempts can be made to eliminate these by analysing each path 

individually (Turchin, 1998), as was done in this current investigation. 

(b) A further possible bias in the data that was collected during the experiments was 

the estimate obtained for the proportion of the population moving for wood cricket 

populations released within the enclosures (Chapter 6). Particularly for the smaller 

enclosures, the number of individuals reaching the periphery of the enclosures over 

time might have been underestimated. The experimental set-up did not allow 

individuals to move any further than a fixed straight-line distance, which might have 

resulted in individuals reversing into the interior habitat after reaching the enclosure 

periphery, leaving their actual dispersal ability undetected. The initial strategy using 

pitfall traps was designed to prevent this bias in the data. Although suitable for ground 

beetles (see Baars, 1979; Nelemans, 1988; Vermeulen, 1994), this method was found 

to be unsuccessful for wood cricket. It was observed that in the case of nymphs they 

were able to sense the presence of the traps and were therefore able to prevent being 

caught. This strategy was therefore abandoned for the release experiment with the 

adults assuming similar sensory capabilities as found in previous studies (Morvan & 
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Campan, 1976; Beugnon, 1979). Developing a more sophisticated trapping system at 
the periphery of the enclosures could solve this particular problem in future 
investigations. 

(c) The spatial scale of the experimental enclosure set-up, time-scale of observations, 
and inclusion of the maximum dispersal distances derived from separate datasets 
might have influenced the overall fit of the dispersal curves that were derived in this 
study (Chapter 6). In particular, the data points that represented the long-distance 
dispersal events were extracted from data that was gathered at different spatio- 
temporal scales and under different more heterogeneous habitat conditions compared 
to the data obtained within the enclosures. The long-distance dispersal events, as in so 
many other studies (Turchin, 1998), were very hard to establish particularly for adult 
wood crickets. This was mainly due to the level of detection that could be achieved for 
this species in relation to the un-manipulated set-up of the release experiments 
(Chapter 6). As a result no long-distance dispersal events for adults were recorded that 
could be related to a precise temporal scale. Furthermore, for adult males an indication 

of their life-time dispersal ability could be obtained, however for the non-stridulating 
females no such recordings were made. Therefore, the dispersal ability of females 

remains largely unknown. The actual dispersal success of the species is however 

completely dependant on females that disperse to suitable habitat locations and 

produce a fertile brood to secure the development of a new population that can move 
further in following generations. 

Future investigations should therefore focus on obtaining the actual dispersal ability of 

female wood cricket. This should be tackled by incorporating the ability of males to 

attract females. For males that were recorded to perform long-distance dispersal, 

females were unlikely to have been present, where they were heard performing their 

stridulation typical for a single male (Marshall & Haes, 1988). Therefore, first the 

attractive power of a stridulating male upon a female should be established, particularly 

to what maximum distance this attraction is still functional. Second, a natural spread 

experiment needs to be conducted using larger spatio-temporal scales than were used 

in this study. This could be achieved for instance by using larger circular enclosures 

and longer periods of monitoring. Preferably, the spread of the species should 

incorporate a complete life-cycle of the species. This is however practically impossible 

to accomplish in an experimental set-up, not only because of the logistics involved, but 

also because of the high risks of failure related to losses to predation and/or adverse 

weather conditions etc. A realistic alternative approach could be the introduction of the 

species in woodland areas/networks where they are currently absent as was done in a 
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long-term study on Roesel's bush-cricket in Sweden (Berggren, 2001). Monitoring their 
natural spread over a long period of time (4-6 years) by simply surveying these areas 
on a yearly basis listening for multiple stridulating males could provide the basis to infer 
the overall dispersal ability and colonisation success of this species. 

7.6 Knowledge contribution 

This research project was designed to address the gaps in knowledge on: how 

wood Ia nd-associ ated taxa move through the landscape; how well they can disperse; 

and what factors and mechanisms influence their dispersal ability (Dolman & Fuller, 
2003). Furthermore, this project was aimed to contribute to the evidence base of 
developing woodland habitat networks (Bailey, 2007) by investigating how woodland- 

associated species use corridors and how capable and willing they are to move outside 
their preferred woodland habitat. I performed an in-depth case study on wood cricket 

contributing to the gap in knowledge on how wood land-associated species that are 

restricted to movement over the ground move through the landscape. I further provided 

a useful review on the status of knowledge on wood Ia nd-associ ated invertebrates and 

their ability to move through the environment. The movement parameters gathered for 

wood cricket and other wood land-associated invertebrates presented in the review 

(Chapter 4) could further benefit modelling approaches, for instance to inform 

woodland habitat network design. Finally, although it is recognised that wood cricket 

should not be the sole indicator guiding conservation management and policy (James 

& McCulloch, 2002), the obtained knowledge provided a better understanding of the 

potential for corridor and woodland habitat network functioning within the wider 

landscape for this type of species. 
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7.7 Conclusion 

This research project was designed to evaluate the relevance of conservation 

management and policy relating to future woodland creation initiatives that focus on the 
development of habitat networks. The results indicate that the overall success of 

woodland conservation lies in adopting a multi-scale and multi-management strategic 

approach (Lindenmayer & Franklin, 2002). Initiatives to increase woodland connectivity 
by creating habitat networks that target specific areas with a relative high amount of 

woodland fragments have a high potential to benefit invertebrate species persistence. 
However, restoration and re-instatement of traditional management activities within 

existing woodlands were found to be equally important for wood cricket and other 

wood land-associated invertebrates. Therefore, for non-flying invertebrate species both 

strategies should be applied to ensure that viable populations will be maintained within 

thelandscape. 
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Appendix 1: Publication plan 

The chapters in this thesis (Chapters 2- 6) were drafted as individual papers targeting 
specific scientific journals. These papers will be submitted for publication. The 

manuscript titles and target journals are listed below. 

The influence of habitat and landscape structure on the distribution of wood cricket 
(Nemobius sylvestris) on the Isle of Wight, UK. Landscape ecology (Chapter 2) 

Habitat requirements for the conservation of wood cricket (Nemobius sylvestris) on 
the Isle of Wight, UK. Journal of insect conservation (Chapter 3) 

Movement rates of woodland invertebrates: a systematic review of empirical 

evidence. Ecological entomology (Chapter 4) 

Movement strategy of wood cricket (Nemobius sylvestris) through different ground 

surface habitats. Ecological entomology (Chapter 5) 

Factors influencing dispersal of a woodland invertebrate: a case study of wood 

cricket (Nemobius SYlvestris). Ecological entomology (Chapter 6) 
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Appendix 11: Experimental designs 

Experimental grids (Chapter 5) 
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Experiment 2 
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Release grid (Bare soil, Figure d; Chapter 5) 

Release grid (Leaf litter vs. Bare soil, Figure f; Chapter 5) 
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Dispersal experiments (Chapter 6) 
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Pitfall trapping design within enclosures 



Release sites (Chapter 6) 

Experiment 2,3 and Surveys 
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Barrier experiment (Chapter 6) 
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Appendix III: Wood cricket biology pictures 
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Wood cricket habitat (Briddlesford, Isle of Wight) 
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