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Abstract 

Liquid crystal thermography in neuropathic assessment of the diabetic foot 

Manish Bharara 

Primary aetiologic factors of diabetic foot disease include peripheral neuropathy and 

peripheral vascular disease. Assessment of circulation, neuropathy, and foot pressure is 

employed routinely to determine the risk of foot ulceration in the patient with diabetes 

mellitus. Routine neuropathic evaluation includes assessment of sensory loss in the 

plantar skin of the foot using both the Semmes Weinstein monofilament and the 

biothesiometer. Progressive degeneration of sensory nerve pathways is thought to affect 

thermoreceptors and mechanoreceptors. However, thermological measurements of the 

foot to assess responses to thermal stimuli and cutaneous thermal discrimination threshold 

are relatively uncommon. Recent improvements in liquid crystal technology (LCT) 

including insensitivity to pressure, faster response times, lower cost and fast image 

acquisition offer potential for routine thermographic assessment of the diabetic foot. The 

present study was designed to evaluate if an association exists between abnormal plantar 

thermal images and sensory loss under conditions of normal loading. The system 

comprises a robust measurement platform, thermochromic liquid crystal polyester sheet 

(TLC), instrumentation and analysis software. In vitro calibration was performed to 

characterise three physical forms of TLC on the basis of linearity, hysteresis, pressure 

sensitivity and response time. An in vivo pilot evaluation study of the system was 

performed using three sub-groups (i) neuropathic diabetic (n=30), (ii) non neuropathic 

diabetic (n=30) and (iii) a healthy control group (n=30). The principal results of this 

study indicate raised plantar temperatures for the diabetic groups at baseline and post 

stress relative to the control group. Furthermore, poor recovery response to thermal 

stimulus in the neuropathic diabetic group suggests degeneration of thermoreceptors. 

Thus by assessing the thermal parameters at the same sites as that of sensory testing, the 

new LCT based approach appears capable of providing an alternative confirmation of 

clinical neuropathy and offers potential as an improved method compared to existing 

techniques. 
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Chapter 1 Introduction 

1.0 Introduction 

This thesis documents a research project to develop a liquid crystal thermography (LCT) 

system capable of dynamically monitoring microvascular response to thermal stimulus 

and to provide quantitative measurements of response thresholds, at the plantar surface of 

the human foot. 

1.1 Rationale 

Foot ulcers are the main cause of lower extremity amputation in patients with diabetes. 

Currently, there are 1.8 million people suffering from diabetes in the UK (World Health 

Organization 2004). Fifty percent of diabetic patients have some degree of neuropathy, 

resulting in at least one foot ulcer during a patient's lifetime (Palubo and Melton 1985). 

Recent clinical guidelines suggest foot ulcers occur in five percent of diabetic patients in 

the UK (Hutchinson, McIntosh et al. 2000). Despite technological advances in the 

prevention and treatment of diabetic foot complications, the incidence remains 

unacceptably high. Prevention of foot ulcers by identifying individuals at high risk 

represents the most effective way of reducing the incidence of lower limb amputation in 

diabetic patients (Reiber 1992; Boulton, Connor et al. 1998; Bharara, Cobb et al. 2006). 

Primary etiologic factors of diabetic foot disease include diabetic peripheral neuropathy 

and peripheral vascular disease. Progressive degeneration of sensory nerve pathways is 

thought to affect thermoreceptors and mechanoreceptors (Ziegler, Mayer et al. 1988; 

Viswanathan, Snehalatha et al. 2002). Neuropathy in diabetic patients is the most 

common reason for hospital admissions in developed countries and accounts for 50-75% 

of all amputations (Tanenberg, Schumer et al. 2001; World Health Organization 2004). 

This leads to a socio-economic burden for the national healthcare services and a poor 

quality of life for the patients. The neuropathic foot is characterised by heightened 

colouration and increased foot temperature (Stess RM, Sisney PC et al. 1986; Benbow, 
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Chan et al. 1994). The reactive hyperaemia following a period of loading is impaired in 

the neuropathic foot (Flynn, Edmonds et al. 1988; Cobb 2000). There is little evidence of 

thermally stimulated reactive hyperaemia in the neuropathic foot from other studies 

(Rayman, Hassan et at. 1986a; Rayman, Williams et al. 1986b). In comparison, there is 

better understanding of hyperaemia in Raynaud's phenomenon, which commonly affects 

the hands (Ring 1988; O'Reilly, Taylor et al. 1992; Ring, Aarts et al. 1998; Clark, Dunn 

et al. 2003). Assessment of thermal patterns and hyperaemic response in patients with 

Raynaud's disease has provided a suitable outcome measure for clinical evaluation 

(Boignard, Salvat-Melis et al. 2005; Foerster, Wittstock et al. 2006; Foerster, Kuerth et 

al. 2007). On the contrary, foot temperature and response of thermoreceptors is not 

routinely assessed in the diabetic foot clinic. Foot temperature is often assessed manually 
i. e. warm to the touch is often quoted. 

To the author's knowledge, quantitative clinical evaluation of thermal response is not 

routinely assessed in the diabetic foot clinic. This may be due to unavailability of low 

cost thermal measurement technique and lack of research focus on thermal patterns under 

the plantar foot. A simple thermometer is obviously such a technique; it is the problem of 

relating temperature to the clinical condition that is the problem. Development of a 

suitable full field thermal measurement technique for objective analysis could enable 

clinicians/biomedical scientists to further understanding of plantar foot ulceration and 

offers potential in the routine clinical assessment of the diabetic foot. This research 

project investigates the design and evaluation of such a system. 

1.2 Diabetes mellitus 

1.2.1 Introduction 

The World Health Organization (WHO) defines Diabetes Mellitus as `a metabolic 

disorder of multiple aetiology characterised by chronic hyperglycaemia with disturbances 

of carbohydrate, fat and protein metabolism resulting from defects in insulin secretion, 

insulin action or both' (World Health Organization 1999). 
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According to the current WHO characterisation, the two major sub-classes of diabetes 

mellitus classification are defined as: (World Health Organization 1999) 

a) Type 1 or Insulin Dependent Diabetes Mellitus (IDDM) 

b) Type 2 or Non Insulin Dependent Diabetes Mellitus (NIDDM) 

Table 1-1 compares the two primary features of type 1 and type 2 diabetes mellitus. 

Parameters Type 1 Type 2 

Aetiology Genetically inherited; Exposure Multifactorial; Obesity; 

to viral infections or Genetically inherited. 

environmental toxins. 

Description Beta cell destruction by Insulin resistance in peripheral 

autoimmune process; Absolute tissue and insulin secretion effect 

insulin deficiency; Abnormal of peripheral tissue; Reduced beta 

variations of sugar levels and cell function. 

starving of body cells due to 

non absorption of glucose. 

Incidence 10% of diabetics 90% of diabetics 

Age groups Mostly before 25 years of age; Middle old age; Incidence 

Peak onset age 10-13 years. increases with growing age. 
Treatment Regular injections of insulin for Diet; anti-hyperglycaemic drugs 

efficient glycaemic control. and physical exercise. 
Principle Retinopathy, nephropathy, Atherosclerosis, neuropathy, 

complications hypoglycaemia, diabetic diabetic foot disease, retinopathy, 

ketoacidosis, atherosclerosis, nephropathy 

neuropathy, diabetic foot 
disease 

Table 1-1: Primary features of type 1 and type 2 diabetes mellitus. 
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Diabetic foot complications are typical of type 2 diabetes mellitus imposing a huge 

socio-economic (accounting for 5% of the total National Health Services resources in the 

UK) burden on the patient and healthcare services (Boulton 1998; Currie, Poole et al. 
2007). 

1.2.2 Epidemiology and outlook 

There were 171 million diabetics worldwide in the year 2000 (World Health Organization 

2004), an increase of nearly 150 million during the last 15 years. This dramatic rise has 

been widely attributed to sedentary lifestyle, lack of awareness/education, high 

population density and obesity (Gill 1998; Ha and Lean 1998). It is predicted that by the 

year 2030, the total number of diabetics worldwide will reach approximately 366 million, 

with a 150% increase in diabetics in developing countries (World Health Organization 

2004). 

In the developed countries, the number of diabetics is typically estimated to be 2-6% of 

the population. However, the prevalence is relatively higher i. e. 10-20% of the 

population, for those over the age of 65 (Campbell and Lebovitz 1996). In 2003, the 

countries with the highest number of diabetic population were India (35.5 million), China 

(23.8 million), USA (16 million), Russia (9.7 million) and Japan (6.7 million) 

(International Diabetes Federation 2003). Currently, there are 1.8 million people 

suffering from diabetes in the UK (World Health Organization 2004). Recent statistics 

published by the American Diabetic Association suggest that prevalence of diabetes in 

the United States is 16 million and onset of type 2 diabetes mellitus preceded its 

diagnosis by 7 years on average (O'Brien, Patrick et al. 2003). 

The use of insulin and anti-hyperglycaemic drugs has greatly improved the life 

expectancy of those affected by diabetes. Impaired glycaemic control leads to similar 

acute and chronic complications in both types of diabetes mellitus. In type 2 diabetes 

mellitus, abnormal blood sugar levels even at early stages can cause damage to nerves, 

blood vessels, heart, eyes leading to neuropathy, peripheral vascular disease, diabetic foot 
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disease and rctinopathy (Herman and Crofford 1998; Pendsey 2003). Diabetic 

complications lead to a reduced quality of life for the patient and impose high costs on 

the health care service (World Health Organization 2004). The costs associated with the 

treatment and management of diabetic foot disease include treatment of foot ulcers, 

clinical diagnosis of underlying complications and limb amputations. A total annual cost 

of £252 million has been estimated towards the management of foot complications alone 

for the National Health Services in the UK (Gordois, Scuffham et al. 2003). 

1.2.3 Aetiology 

Diabetes is an incurable and chronic disease; yet it is treatable and long term 

complications can be prevented by glycaemic control. Insulin is primarily manufactured, 

stored and released by the pancreas through Beta cells in the Islets of Langerhans. Insulin 

is crucial for regulation of blood sugar by transporting it to various body cells. Thus, it is 

an anabolic hormone. It instructs the liver and muscles to manufacture and store 

glycogen, which is useful in the event of low blood sugar. The conversion of stored 

glycogen into glucose is facilitated by release of glucagon hormone by Alpha cells in the 

pancreas. Failure to regulate blood sugar appropriately can lead to hypoglycaemia or 

hyperglycaemia. 

Type 2 diabetes is a heterogeneous collection of conditions resulting from various 

degrees of insulin resistance and beta cell failure (Tooke 1996). Obesity is the major 

cause for insulin resistance in type 2 diabetes mellitus and affects the ability of the body 

to utilize the glucose transporting effects of insulin. The overweight tend to be insulin 

resistant as a group. This hereditary condition is directly related to the ratio of visceral 

and total body fat to lean body mass (Bernstein 2003). This increases the body's need for 

insulin and therefore, puts pressure on the pancreas. This also leads indirectly to high 

blood pressure (hypertension), a prevalent complication of diabetes. 
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1.2.4 Complications of diabetes mellitus 

Diabetes mellitus leads to both acute and chronic complications, particularly affecting the 

microvascular and macrovascular systems (Boulton, Connor et al. 1998; Herman and 

Crofford 1998). Microvascular dysfunction is associated with the prevalent complications 

of retinopathy, nephropathy and neuropathy. Macrovascular disease is associated with 

cardiovascular, cerebrovascular and peripheral vascular complications. Macroangiopathy 

is common to both diabetic and non-diabetic populations and is marked by plaque 

deposition and endothelial wall damage (atherosclerosis). However, there is a higher 

incidence and rate of development of macroangiopathy in the diabetic. The adhesion 

molecules that facilitate binding of monocytes, leukocytes and platelets to the 

endothelium are elevated in diabetes (Shaw and Boulton 1997). These macrovascular 

complications have a reduced rate of occurrence in the non diabetic groups and are less 

likely to co-exist (Levin 2001). The most commonly occurring diabetic complications 

that specifically affect the lower extremities are peripheral vascular disease and 

neuropathy. 

Peripheral vascular disease (PVD) is characterised by atherosclerosis in patients with 

long standing diabetes mellitus. Peripheral vascular disease is up to twenty times more 

prevalent in diabetic than in the non diabetic population (Currie, Morgan et al. 1998). 

Peripheral vascular disease leads to rheological changes in the blood and can impair the 

nutritional supply to the lower extremities, making the foot more susceptible to ulceration 

in the presence of a triggering factor such as minor trauma. 

Neuropathy refers to metabolic changes and poor blood supply in nerve cells as a result 

of altered blood glucose in diabetes. Diabetic neuropathy is the most common 

complication of diabetes, a major cause of foot ulceration and a considerable clinical 

burden (Elkeles and Wolfe 1991). The true prevalence of diabetic neuropathy is difficult 

to quantify because of variations in diagnostic criteria (Tooke 1996). Neuropathy is 

divided into sensory neuropathy, motor neuropathy and autonomic neuropathy. Sensory 

neuropathy affects the bodies ability to sense pain, thermal or vibratory stimuli (Shaw 

and Boulton 1997). Motor neuropathy affects muscle control (imbalance of flexor and 
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extensor muscles) and involuntary bodily functions (Ward and Tesfaye 1998). 

Autonomic neuropathy is characterised by sympathetic dysfunction in which blood flow 

in most of the microcirculation increases (Watkins and Edmonds 1998). 

Good glycaemic control is the best preventive measure against microangiopathic or 

neuropathic complications. This is especially important for people with insulin dependent 

diabetes in order to retard the development of retinopathy, nephropathy and neural 
disease. This was confirmed by the Diabetes Control & Complication Trial (1993), in 

which a long term prospective study to gauge the effects of improved glycaemic control 
in diabetics found: a 75% reduction in progression of early neuropathy; 50% reduction in 

the risk of kidney disease; a 60% reduction of risk for nerve damage; and, a 35% 

reduction in the risk of cardiovascular disease (The Diabetes Control & Complication 

Trial Research Group 1993). It is not known if the benefits of good glycaemic control 

could be extrapolated to the larger (type 2) non insulin dependent diabetic group (Tooke 

1996). Lack of awareness or motivation, presence of sensory neuropathy and failure to 

adopt simple preventive measures leads to limb threatening complications and lengthy 

hospital stay (Brand 1990; Knowles and Boulton 1996; Viswanathan, Madhavan et al. 

2005). This shows the need of alternative preventive strategies, especially to identify pre- 

ulcerous symptoms in order to reduce the clinical burden and improve patient lives. 

Unfortunately, glycaemic control alone cannot substitute the benefits of preventive 

strategies like patient education (St. Vincent's Declaration, Appendix A) and special care 

of patients with past history of ulceration. Studies have shown that many diabetics do not 

have adequate glycaemic control, due primarily to sedentary lifestyle, inappropriate 

administration of hypoglycaemic drugs and delayed insulin treatment (Groop 1998). 

However, the relatively recent availability and use of visual modalities for home 

monitoring and clinical assessment may improve current management of the diabetic foot 

disease (Lavery, Higgins et al. 2004; Bharara, Cobb et al. 2006). 
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1.3 Diabetic foot 

1.3.1 Introduction 

Complications, risk factors and symptoms of the diabetic foot are summarised. Diabetic 

neuropathy and its effect on the diabetic foot are discussed in detail. 

1.3.2 Complications, risk factors and symptoms 

Diabetic foot is the most commonly occurring complication of type 2 diabetes mellitus. 

It is associated with foot ulceration, which has traumatic consequences for the patient, 

often leading to amputation of the lower limb. Two precursors of ulceration in diabetic 

patients are peripheral vascular disease and neuropathy which may occur independently 

or coexist. Peripheral vascular disease is also referred to as ischaemic foot disease. 

Although, neuropathy and ischaemia are regarded as primary risk factors in the diabetic 

foot, a clear understanding of the pathophysiology of foot ulceration needs to be 

established. Other pathologic states or secondary risk factors that contribute to ulceration 

are structural changes in the foot (or foot deformities), callus, previous history of 

ulceration/lower limb amputation, chronic renal failure, impaired vision, low education 

status, non-compliant patient, inappropriate footwear, abnormal biomechanics and 

infection (Grunfield 1992). It is believed that the occurrence of ulcers is due to a 

combination of two or more risk factors. The risk of foot ulceration is higher in people 

with a previous history of ulceration, poor circulation in the feet, smokers and those who 

have anatomical deformities in feet (Boulton, Connor et al. 1998). 

Ulcers invariably occur as a consequence of interaction between environmental hazards 

and specific changes in the lower limbs of certain patients (Boulton, Connor et al. 1998; 

Perkins and Bril 2002). Intrinsic or extrinsic trauma triggers foot ulceration. 

Consequently, the foot becomes prone to ulceration especially at sites of abnormal 

pressure such as the prominent metatarsal heads. There is no compelling evidence to 



suggest that infection is a cause of foot ulcers. Infection occurs as a complication of an 

existing neuropathic or ischaemic ulcer or alternatively, results from breaks in the skin 
due to dryness or fungal infection (Grunfield 1992). With improved diabetic foot 

management and early detection of high risk patients, the rate of foot infections can be 

significantly controlled (Boulton, Connor et al. 1998). 

Foot ulcers can be classified as neuropathic, neuroischaemic and ischaemic. It is 

suggested that an average rate of occurrence for neuropathic ulcers is 60-70%, whereas 

the rate of occurrence for ischaemic ulcers is just 15-20% (Grunfield 1992; Boulton, 

Connor et al. 1998). One of the longer studies in UK, involving 6336 diabetics showed a 

58% and 16% rate of occurrence for neuropathic and ischaemic ulcers in type 2 diabetic 

patients (Nabarro 1991). The study population was limited to tertiary referrals. It is 

important to discriminate between the neuropathic and neuroischaemic foot; the clinical 

presentation of these conditions is different, so are subsequent therapeutic strategies 

(Tanenberg, Schumer et al. 2001). Photographs 1-1 and 1-2 show examples of a 

neuropathic ulcer and a neuroischaemic ulcer respectively in the plantar foot (Pendsey 

2003). 

Photograph 1-1: Neuropathic ulcer on the great toe. Forty percent of plantar ulcers 
are situated either on the ball of the great toe or the head of first metatarsal. A 
neuropathic foot is typically warm, painless and has palpable foot pulses. (With 
Permission- Pendsey 2003) 
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Photograph 1-2: Neuroischaemic ulcer on the periphery of little toe. Typically, this 
ulcer results from ill-fitting shoes leading to high frictional forces at the margins of 
the toe. A neuroischaemic foot is typically cold, painful and has feeble or non 
palpable foot pulses. (With Permission - Pendsey 2003) 

Three parameters that may be used for identification of neuropathy or neuroischaemia in 

the diabetic foot are skin temperature, pain and the Ankle Brachial Pressure Index (ABPI) 

(Pendsey 2003). Of these, both temperature and ABPI are objective measurements, the 

latter being widely available. It is important to point out that ABPI in the diabetic foot 

may be subject to errors (falsely high) on account of stiffening of the intimal layer of the 

arteries that is known to occur as a result of arterial calcification (Palubo and Melton 

1985, Hurley, Jung et al. 2001). Methods of assessment and treatment of the diabetic foot 

are considered in more detail in the following sections. 

1.3.3 Assessment techniques for complications of the diabetic foot 

Various screening and monitoring techniques are routinely employed in hospitals as well 

as speciality diabetic clinics. Presently, clinicians routinely assess circulatory function, 

neuropathic complications and pressure distribution under the foot to identify the risk of 

foot ulceration (NHS 2004). This combined approach is accepted in diabetic clinics and 

research centres as a means of preventing the onset of foot ulceration. National Institute 

of Clinical Excellence (NICE) guidelines suggest considering the risk category of 

patients, relative influence of all contributory factors and incorporating the respective 
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management strategies for the treatment of diabetic foot disease during initial 

examination and subsequent treatment. 

During a routine inspection, detailed physical examination of the whole foot is performed 

and important clinical symptoms such as swelling/oedema, increased temperature, 

ischaemia, scar tissue, callus, reduced sensitivity, deformities, dry fissured skin, injury by 

a sharp object, limited joint mobility, thermal trauma and any other sign of deterioration 

of the foot are recorded (Millington and Ellenzweig 2003; Pendsey 2003). Most diabetic 

clinics use patient case sheets to monitor the foot along with other complications. 

Detailed physical examination of the foot must be followed by inspection of the patient 

footwear for signs of excessive wear, any embedded objects and adequacy of fit. These 

signs may act as a triggering factor for the insensitive foot leading to ulceration. 

Clinical criterion for diagnosing diabetic foot complications have been defined by various 

groups. It is common in clinical practice to assess the presence and extent of peripheral 

neuropathy to identify the risk of foot ulceration. Diabetic neuropathy accounts for 

almost 60-70% of foot ulcers (Grunfield 1992; Morbach, Lutale et al. 2004; 

Viswanathan, Madhavan et al. 2005; Viswanathan, Madhavan et al. 2006) especially on 

the plantar surface of the foot at areas subjected to high pressure during walking. 

Traditionally the Semmes-Weinstein monofilament (SW) is used though biothesiometry 

may also be used for the assessment of neuropathy (Viswanathan, Snehalatha et al. 2002; 

Miranda-Palma, Sosenko et al. 2005). The presence and extent of peripheral vascular 

disease can be assessed using Doppler ultrasound (Hill 1987; Williams , Picton et al. 

1993), plethysmography (Felder, Russ et al. 1954; Hurley, Jung et al. 2001) or laser 

Doppler flowmetry (Cobb 2000), to determine systolic pressure/perfusion status at the 

ankle or great toe respectively. 

1.3.4 Management of foot in diabetes 

Management of the ̀ at risk' diabetic foot is essential to prevent the serious consequences 

of ulceration. Current focus is on a nutritious diet, patient education, collaborative 
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research and early diagnosis of the high risk patients to control disease complications (St. 

Vincent Declaration, Appendix A). The International consensus on the Diabetic Foot 

proposes that good management, patient & staff education, evidence based medicine and 

multidisciplinary treatment for foot ulcers can reduce amputation rates by 49-85% 

(IWGDF 1999). This will reduce the high rate of morbidity/mortality associated with the 

disease and high treatment costs. The overall burden of diabetes mellitus and its 

complications includes financial cost, pain, anxiety, immobility, inconvenience and 

reduced quality of life (World Health Organization 2004). 

Modern medical imaging techniques such as magnetic resonance imaging (MRI), 

scintigraphy, radiography (Fisher, Gilula et al. 2001) and ultrasonography (Hill 1987), 

can be used to test the bone and vascular supply to the foot. However, this is usually not 

cost effective for routine evaluation. Thermography and scintigraphy (to detect infection 

in the bone) are also used, particularly to test for the Charcot's foot i. e. a destructive 

arthropathy in a single or multiple joints (Pendsey 2003). Both techniques are used 

independent of each other, the former shows better sensitivity for foot infections 

(Harding, Banerjee et al. 1999) and the latter benefits from high specificity (Poirier, 

Garin et al. 2002). 

MRI is capable of resolving between the skin, soft tissues, blood vessels and bone and 

has proved useful in identifying areas of oedema and infection (Brash, Foster et al. 1999; 

Kao, Davis et al. 1999). MRI has proved to be a useful research tool to design suitable 

orthotic interventions, reducing rates of re-ulceration, identifying soft tissue damage, 

PVD, muscle atrophy and toe deformities (Foster, Damion et al. 1994; Bus, Yang et al. 

2002; Cavanagh, Lipsky et al. 2005). Further, the availability of small bore MRI scanners 

customised for lower extremity scanning (ONI Medical Systems, USA) has facilitated the 

above initiatives. It is the high cost of clinical scanning and limited availability in 

developing economies that discount its use in routine investigations. Although imaging is 

used for a broad range of clinical conditions, its application to the diabetic foot is recent 

(Brash, Foster et al. 1999; Fisher, Gilula et al. 2001; Aspres, Egerton et al. 2003; 

Armstrong, Sangalang et al. 2005; Minamishima, Kuwaki et al. 2005). Traditionally, 
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clinicians use visual inspection of the superficial skin surface followed by histopathology 

of biopsy samples (Boulton, Connor et al. 1998). Interest in using imaging techniques 

such as photography of the skin (Aspres, Egerton et al. 2003), surface microscopy 

(Lamah, Mortimer et al. 1999), ultrasonography (Williams , Picton et al. 1993) and laser 

Doppler (Cobb 2000) to image underlying tissue characteristics and blood vessels (for 

perfusion and haemodynamics) has grown over the past few years. 

1.4 Summary 

Diabetes mellitus is a disease with multi-system complications and it involves breakdown 

or partial breakdown of one or more of the important self regulating mechanisms in the 

body. Diabetic foot is the most commonly occurring complication of diabetes mellitus. 

The most important socio-economic consequences of the diabetic foot are the risk of foot 

amputation to the patient and economic burden on the health care services. In the UK, the 

total annual cost of treating diabetic neuropathy and its complications was £252 million 

(Gordois, Scuffham et al. 2003). Early detection of risk factors is important in preventing 

the development of ulceration. Current methods for determination of the risk of foot 

ulceration are the assessment of circulation, neuropathy and foot pressure. These methods 

are widely used clinically as well as in the research domain. Routine neuropathic 

evaluation includes assessment of sensory loss in the plantar skin of the foot using both 

the Semmes Weinstein monofilament and vibratory perception using the Biothesiometer. 

These methods use point based measurements and are subjective in nature, relying on 

verbal feedback from the subject. 

Although, there is extensive evidence in the literature suggesting degeneration of 

thermoreceptors in the plantar foot due to underlying neuropathic complications, 

thermological measurements of the foot to assess responses to thermal stimuli and 

cutaneous thermal discrimination threshold are relatively uncommon (Armstrong, Lavery 

et al. 2003; Bharara, Cobb et al. 2006). Applications of thermography and thermometry 

in lower extremity wounds, vascular complications and neuropathic complications have 

progressed as result of improved imaging software and transducer technology. However, 
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the uncertainty associated with the independent thermal testing modalities, the costs, and 

processing times make currently available techniques unsuitable for routine clinical 

assessment. Furthermore, assessment of plantar foot temperature in the diabetic foot is 

complicated by the problem of obtaining data during normal conditions of loading i. e. 

standing and walking. This is important as ulceration is strongly related to tissue loading 

and does not occur in patients with pressure relief. Armstrong et al. (2003) suggest that 

one time thermal screening of the plantar foot is not useful and emphasise the importance 

of home monitoring of temperatures under the feet to record trends and inflammatory 

responses. Ideally, the thermal technique and associated measurement protocol used 

should be economical, simple and safe. Risks associated with the measurements such as 

thermal injury to the foot, any physical trauma during measurement (such as fall from the 

platform, caused by potential instability due to sensory impairment) and cross infection 

must be minimised. 

The objective of this research is to overcome the preceding difficulties and thus enable 

reliable temperature measurements of the plantar foot to be made in order to establish if 

abnormal thermological measures are associated with sensory neuropathy. It is envisaged 

that this may be used as a full-field quantitative screening technique to identify diabetics 

at high risk of foot ulceration and allow improved intervention (i. e. pressure relief 

orthotics) to reduce the risk of ulceration. 

1.5 Aims 

Two main aims of this research are: 

" To develop a liquid crystal thermography system capable of dynamically 

monitoring microvascular response to thermal stimulus at the plantar surface of 

human foot. 

9 To develop a robust method for obtaining an independent measure of plantar 

sensory neuropathy. 
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Thermal measurement techniques can be employed to study pathophysiology of the 

vascular system and neuronal control in the diabetic foot disease (Bharara, Cobb et al. 

2006). LCT offers the potential to improve current diagnostic potential of diabetes and 

foot related disorders. However, the use of this technology and engineering techniques 

complementing the development of such a clinical system must be justified and validated 

using existing knowledge of the diabetic foot disease. A supporting clinical study is 

required to provide reasonable evidence in furthering the role of thermal measurements in 

clinical measurement of diabetic foot disease. The system under consideration and its 

measurement protocol must be independent of the LCT studies in the past (Stess RM, 

Sisney PC et al. 1986; Benbow, Chan et al. 1994). The limitations of the past studies and 

justification for the LCT system are discussed in the literature review. The system must 

be capable of both static and dynamic assessment of the diabetic foot. In order to 

supplement the existing measures of clinical neuropathy, an independent measure of 

sensory neuropathy is required, the proposal being to use a LCT system to assess the 

response of thermoreceptors under the plantar foot to thermal stimulus. 

1.6 Overview of the thesis 

In Chapter 2 `Theoretical background', important anatomical and physiological aspects 

of the plantar foot relevant to the diabetic foot disease are discussed. Temperature 

regulation in the plantar foot and underlying factors are presented. 

In Chapter 3 `Literature review', prior work in the field of clinical thermography, various 

thermological techniques and their application to the diabetic foot are reviewed, including 

practical details about the technology. Fundamentals of LCT and justification for its use 

in the assessment of the diabetic foot are described. 

Chapters 4 `Development of a liquid crystal thermography system' and 5 `Results' focus 

on the specific issues of system development, and analysis of results from preliminary in 

vitro and clinical data. Chapter 4 covers the methodology adopted, various designs of the 

measurement system, characterisation of different forms of TLC and clinical study 
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protocol. Chapter 5 `In vitro characterisation and clinical results' describes the handling 

of results and presents both in vitro evaluation and in vivo evaluation of the LCT system. 

Chapter 6 `Discussion' considers the clinical implications of the study and presents 

discussion of the preceding results related to the physiological issues and current 

knowledge of the diabetic foot. Chapter 7 `Conclusions' is a critical review of the study 

and provides recommendations for future work emphasising the wider clinical 

perspective. 
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Chapter 2 Theoretical Background 

2.0 Introduction 

The aim of this section is to review the anatomy and physiology of the foot with 

emphasis on those aspects of particular relevance to the diabetic foot. Foot skin structure 

and properties, microcirculatory mechanisms and temperature regulation are considered 

in detail. Additionally, the biomechanics of the plantar foot are considered with emphasis 

on their status in normal healthy human beings and pathophysiological changes in the 

diseased state. In the second half of the chapter, diabetic neuropathy and relevant 

assessment techniques are discussed. 

2.1 The plantar foot 

2.1.1 Anatomy & physiology of the plantar foot 

The foot comprises 26 bones and II muscles along with various ligaments and tendons. 

Both tendons and ligaments are support structures made up of collagen fibres. The 

skeletal structure of foot includes posterior tarsus (hind foot), central metatarsus (mid 

foot) and interior phalanges (forefoot). Two bones of the hind foot provide a structural 

link between the foot and bones of the lower leg. A large number of ligaments form a 

strong connection between the calcaneous and the bones of the mid foot as well as 

forefoot. The calcaneous is connected to the Achilles tendon and plantar fascia, both of 

which provide support allowing the foot to arch during gait. 

Under the calcaneous a thick layer of adipose tissue provides a protective cushioning that 

accommodates high pressure during gait. The internal structure of the bone is also 

adapted for weight bearing. The midfoot comprises of cuboid, navicular bones and three 

anterior cuneiform bones. The anterior surface articulates with the cuboid bone of the 

midfoot. The talus is angled slightly forward and medially to couple the force between 

the tibia and the calcaneous. The anterior aspect of the talus connects to the navicular 
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bone of the midfoot. The five tarsal bones (connected to the metatarsal bones) work 

together as a group and help during gait by conforming to the underlying contact surface. 

The first, second and third metatarsals are articulated by anterior medial, intermediate and 

lateral cuneiforms respectively. There are five metatarsal bones in the forefoot and a 

similar number of phalanges that form corresponding toes. The joints between the 

metatarsal bones and phalanges are the metatarsophalangeal (MTP) joints. Figure 2-1 

illustrates skeletal structure of the foot. 
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Figure 2-1: Skeletal structure of the foot 



Two important arteries of the plantar foot are the posterior tibial artery and anterior tibial 

artery. These main arteries branch into further segments, supplying the midfoot and the 

forefoot. The lateral and medial plantar arteries supply the Planta pedis -a rich network 

of blood vessels in the plantar foot. The venous network in the dermal tissue converges 
into the dorsal venous network. The plantar veins do not have valves and therefore, the 

direction of blood blow is determined by the dorsal veins (McMillan 2001). 

2.1.2 Skin structure of the plantar foot 

The , hin is the largest organ of the human body, accounting for 7-10% of body weight. 
The three main layers of the skin are the epidermis, dermis and subcutaneous fat tissue. 

Figure 2-2 illustrates the structure of the skin and microvasculature. 
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Figure 2-2: Structure of the skin and cutaneous microvasculature (Guyton 1992). 

The top layer of the epidermal tissue, the stratum corneum, acts as a physical barrier 

between the skin and the environment. It prevents ingress of harmful chemicals and 
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micro organisms. It is produced by keratinocytes in the lower epidermal tissue (also 

termed stratum basale or basal layer). The epidermal tissue is typically 0.007-0.12mm 

thick (Van De Graff and Fox 1992). 

The dermal layer (also termed as corium) lies beneath the epidermis, containing 

circulatory network, lymphatic vessels, sweat glands and neural fibres/tissues. This layer 

is typically 1-2 mm thick (Van De Graff and Fox 1992). It supports localised metabolic 

requirements and plays an important role in regulating body temperature and blood 

pressure. 

The subcutaneous tissue (also referred to as hypodermis) contains adipose tissue and 

bridges the skin to the underlying tissues. This is typically a thick layer extending several 

millimetres. The adipose tissue provides thermal insulation for the body and protection 

against physical shock. In the context of the present study this protective mechanism is of 

particular importance at those plantar locations subject to repetitive wear. Consequently, 

skin thickness on the sole of the foot can increase to about 6mm in normal subjects 

(Palastanga, Field et al. 1994). 

2.1.3 Plantar sensory system 

The dermis is extensively innervated with effectors and sensory receptors. Sensory 

receptors are specialised tissues that detect stimuli and are represented by tactile, 

pressure, thermal or pain sensitive nerve cells. The concentration of sensory receptors is 

relatively high in the sole of the foot (Kennedy and Inglis 2002). The receptors and 

pathways of cutaneous sensation are categorised as somatosensory systems. 

Thermoreceptors are structurally simple and are located near the surface of the skin 

(extereoceptors). Mechanoreceptors have a more complicated structure and are 

differentiated according to their response characteristics: The slowly adapting type is 

sensitive to the intensity of pressure; The rapidly adapting and very rapidly adapting 
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types respond to dynamic changes in plantar pressure (Guyton 1992). Skin temperature 

changes activate both, specific thermoreceptors and tactile receptors. -40 

Sensory receptors have a punctate distribution over the skin surface i. e. specific points 

are sensitive to different stimuli. Cold receptors are located at a depth of 0.16 mm at the 

endings of thin myelinated AS fibres and increase their firing rate with a decreasing 

temperature (Van Someren, Raymann et al. 2(X)2). Figure 2-3, gives a schematic 

overview of specific temperature ranges that affect thermoreceptor' (Guyton 1992). 
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Figure 2-3: Overview of the temperature range that affects thermoreceptors IGuyton 1992) 

Warm receptors are located typically at a depth of' 0.45 mm at the endings of' slower 

unmyelinated C fibres and increase their firing rate with increasing temperature (Van 

Someren, Raymann et al. 2002). Cold receptors outnumber warm receptors by a factor of 

3-10 in most areas of the body, this may be linked to evolution and is independent of the 

habitat (Guyton 1992). Both types of thermal receptors communicate with the central 

nervous system to adapt to the environmental/ambient conditions vascular changes. 
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skeletal changes, infection or a combination of these factors, mainly by the use of 

thermoregulatory capillaries. 

2.1.4 Structure of cutaneous microcirculation 

The arterioles terminate in meta-arterioles (link between arteriole and venule) and 

capillaries that together form the microcirculatory network. Capillaries are thin walled 

micro-vessels (less than 100µm diameter) that extend orthogonal to the meta-arterioles to 

perfuse the tissue. The anatomy of the microcirculatory components vary considerably at 

different body sites and between individuals (Ryan 1985). At some body sites especially 

fingers, toes, palms and face arteriovenous (AV) anastomoses or AV-shunts are observed. 

The AV-shunts are larger diameter vessels and are the primary heat exchange mechanism 

and play no role in tissue nutrition (Little and Little 1989). AV-shunts do not exhibit 

autoregulatory behaviour in response to physical or metabolic triggering factors. 

Cutaneous microvascular blood flow in diabetic patients is frequently abnormal and has 

been linked to microangiopathy and impaired blood flow regulation as a consequence of 

autonomic neuropathy (Rayman, Williams et al. 1986b; Flynn, Edmonds et al. 1988; 

Flynn and Tooke 1995). 

Clinically, the consequences of diabetic microangiopathy are most significant in relation 

to complications of the retina and kidney. However the process is systemic progressively 

involving the majority of capillary beds. Relatively high blood flow rates lead to pressure 

gradients in the lower extremities which are responsible for the increased incidence of 

cutaneous microangiopathy (Rendell and Bamisedun 1992). This accounts for the 

relatively low incidence observed in the upper extremities. 

2.1.5 Regulation of microvascular blood flow 

There are 2 main types of capillaries involved in skin perfusion: thermoregulatory and 

nutritive. Thermoregulatory capillaries facilitate the primary heat exchange mechanism 
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required to maintain body temperature. Blood flow in these vessels is controlled by the 

hypothalamus in response to thermoreceptor signals. Heightened metabolic activity 

produces vasoactive substances, which triggers a vasodilatory response in skin (Guyton 

1992). This is an autoregulatory mechanism which results in a hyperaemic response 
(elevated blood flow) following short term occlusion of blood vessels, biomechanical 

trauma or thermal stress. From the physiological standpoint, hyperaemia is a transient 

phase triggered by mechanical trauma to the muscular walls of arterioles or following 

release of a vasoactive substance, such as histamine, leading to full arteriole vasodilation 

(Michel and Gilliot 1990; Guyton 1992). 

Below 25°C skin surface temperatures, centralised control of microcirculation, plays a 
dominant role to stabilise changes in core body temperature (Guyton 1992). At skin 

surface temperatures above 30°C, thermoreceptors initiate sweating to radiate heat away 

from the body. At rest, nutritional perfusion is greatly reduced in comparison to the 

thermoregulatory component (Fagrell 1984). 

2.1.6 Biomechanics of the foot 

Poor glycaemic control in diabetes results in plantar sensory neuropathy, which coupled 

with biomechanical abnormalities, such as, high stresses, deformity, limited joint 

mobility and injury leads to high rates of morbidity in diabetic patients (Pendsey 2003; 

Viswanathan, Snehalatha et al. 2003; Edmonds, Foster et al. 2004). It is therefore, 

relevant to discuss biomechanical aetiology and its role in plantar ulceration/wound 

healing, especially in patients with loss of protective sensation (Cavanagh, Ulbrecht et al. 

2001). Such patients are at an even greater risk of plantar ulceration because of elevated 

mechanical stress on the plantar surface (Cavanagh and Ulbrecht 1995; Cavanagh, 

Ulbrecht et al. 2001). Although plantar sensory neuropathy is a precursor of ulceration, a 

triggering factor, which may often be unperceived tissue trauma and/or a biomechanical 

abnormality, initiates the individual ulcerative process. 
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The underlying mechanisms initiated by biomechanical abnormalities are well 

established (Bauman, Girling et al. 1963; Brand 1981; Cavanagh, Ulbrecht et al. 2001). 

In the current biomechanical framework, foot pressure (both in shoe and barefoot) and 

gait analysis are the two main type of assessment used to understand and measure the 

affects of abnormal biomechanics. Prescription footwear is followed as an intervention 

therapy to redistribute stresses under the foot. However, foot temperature under load 

could also be a useful assessment in order to further current understanding of causative 
factors leading to foot ulceration. Artificial provocation tests for repetitive stress 

measurements, such as a treadmill or normal walking can be used to determine 

temperature gradients before and after the stress in both normal subjects and diabetic 

neuropaths. This is discussed in detail in the next chapter. Presently, it is beneficial to 

review the effects of pressure on the plantar foot and techniques to quantify such 

pressures. This identifies some of the key issues in assessing the diabetic foot which are 

also pertinent for thermal assessment modalities. 

2.1.7 Plantar pressure and measurement techniques 

Mechanical stresses on the plantar surface comprise two components i. e. normal and 

orthogonal components. Alternatively, these stresses are termed vertical and shear 

respectively. The term `plantar pressure' used consistently in the literature is actually the 

force measured over a small defined area, especially plantar prominences and the heel. 

Plantar measurement technologies are summarised here, the reader is referred to several 

review papers for a more detailed consideration of the techniques (Lord, Reynolds et al. 

1986; Cobb and Claremont 1995). 

A number of commercially available plantar pressure measurement systems capable of 

assessing load and shear are finding increasing clinical adoption in diabetic care centres 

throughout the world (Lord and Hosein 2000; Raspovic, Newcombe et al. 2000; 

Viswanathan, Madhavan et al. 2004; Viswanathan, Sivagami et al. 2004) . Critical 

reviews by Lord M et al. (1986), Cobb and Claremont (1995) discuss transducers for foot 

pressure measurement and their respective clinical findings. 
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Although the use of plantar pressure measurement is widely accepted from an 
investigational and clinical standpoint in the diabetic foot assessment, there is variability 
between different instruments due to inconsistent calibration and measurement protocols 
(i. e. variations in gait characteristics such as speed, stride length) and a lack of agreement 

regarding the threshold pressure for ulceration (Hayes and Seitz 1997; Middleton, 

Sinclair et al. 1999; Urry 1999; Chesnin, Selby et al. 2000; Randolph, Nelson et al. 2000; 
Taylor, Menz et al. 2004). 

The majority of the plantar pressure systems enable barefoot measurements via arrays of. 
force sensing resistors (FSR) (Nicolopoulos, Solomonidis et al. 1995), piezoelectric 

sensors, optical waveguides (Wolinski, Nasilowski et al. 1998) and photoelastic materials 
(Arcan and Brull 1976; Rhodes, Sherk et al. 1988). Discrete sensors such as capacitive, 

piezoelectric, optical and magneto resistive sensors have also been used for insole 

pressure measurement devices (Akhlagi and Pepper 1996; Lord and losein 2000; 

Barnett, Cunningham et al. 2001). Insole pressure transducers provide localised 

information across multiple gait cycles. The popular Tekscan matrix insole technique 

uses FSR transducers embedded in a thin flexible sole. Such an arrangement overcomes 

the problems of targeting and barefoot walking as transducers can be located at 

appropriate sites of interest (Lord M, Hosein R et al. 1992). 

Forceplate type systems capture one step from a walk. For such systems, synchronised 

measurement of specific periods of the gait cycle (for example: heel strike) is difficult 

(Hurkmans, Bussmann et al. 2003). The centre of pressure pattern (COPP), quantified by 

its absolute integral has been used to describe abnormal foot movement and to asses foot 

orthoses (Middleton, Sinclair et al. 1999; Chesnin, Selby et al. 2000). For data collection 

purposes, EMED-SF & EMED PEDAR pressure platforms were used for data at the 

shoe-floor interface and to obtain in shoe data, respectively. 
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The use of the preceding types of system in a large number of clinical studies over the 

last two decades has provided definitive evidence that diabetic neuropathic ulcers are 
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associated with elevated plantar pressures. The effects of such pressures on foot 

physiology are considered in the following section. 

2.1.8 Effects of plantar pressure on the microcirculation 

An immediate effect of applying pressure to skin tissue ' is reduction in perfusion, 

evidenced by blanching. If sustained pressures are higher than the normal capillary 

pressure of 30-32 mmHg, collapse of blood vessels occurs (Kabagambe, Swain et al. 

1994). Whilst recovery is usually possible within a typical period of 12 hours following 

unloading, longer periods or repetition result in tissue necrosis as a consequence of 

inadequate nutrition (Tsay 1991; Huether 1998). The same process results from the 

elevated pressures prevalent under the plantar surface of the neuropathic foot (Meinders, 

Lange et al. 1996; Boulton, Connor et al. 1998). Furthermore, this problem is 

compounded by the simultaneous shear forces (due to anatomical abnormalities) and thin 

subcutaneous fat layer in patients with long standing type 2 diabetes mellitus (Cavanagh, 

Ulbrecht et al. 2001). Thinning of the subcutaneous fat layer compromises the ability of 

the tissue to distribute forces efficiently (Cobb 2000). It must be emphasised that both 

compressive and shear forces are considered to contribute to plantar foot ulceration 

(Cobb 2000; Perry, Hall et al. 2002). 

The main interventional techniques to identify plantar tissue at risk of ulceration in the 

neuropathic foot include: plantar pressure assessment, objective assessment of the 

hyperaemic response to pressure induced ischemia and histological examination of the 

tissue to assess structural damage to capillaries. Rapid assessment following symptoms is 

essential since under perfused tissue is at a significantly increased risk of infection, which 

frequently spreads to affect deeper tissues, such as, muscle and bones (Sandeman and 

Shearman 1999). In some cases this process can occur in as little as two weeks and this 

sub-classification of the diabetic foot, - the Charcot's foot is in itself of great clinical 

importance although not considered further in the present work. 
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It is straightforward to demonstrate that temperature changes occur in superficial plantar 

foot tissue subject to dynamic loading. The significance of this in the aetiology of 

diabetic foot ulceration arises from the metabolic demands of skin tissue which are 

known to vary considerably with temperature in normal skin (Scott 1986). However, to 

the author's knowledge there has only been limited consideration of the significance of 

this association by the diabetic research community (Brand 1981; Bharara, Cobb et al. 

2006). Such a temperature dependence may have direct implications for the duration over 

which elevated pressures can be sustained before tissue hypoxia (Cobb 2000). This is 

more important at high temperatures, where the tissue becomes hypoxic at a faster rate 

under the effect of compressive forces. At low temperatures, the hyperaemic response 

compensates for the thermal vasoconstriction. Neuropathic diabetic patients are therefore, 

more susceptible to limb threatening complications, considering the effect of sensory 

neuropathy, high plantar pressures (Boulton, Hardisty et al. 1983) and failure of 

hyperaemic response (Rayman, Hassan et al. 1986a). 

2.2 Temperature regulation in plantar foot 

2.2.1 Introduction 

In this section the role of thermal physiology, sensory receptors and thermal properties of 

the tissue are considered. 

2.2.2 Physiology of human temperature regulation 

Human beings belong to homeothermic species i. e. they have a constant state of internal 

environment, maintained in a very narrow range despite differences in surroundings & 

any physical activity. This phenomenon of temperature regulation along with psycho- 

physiological functions to keep body variables within normal range is termed 

homeostasis. Although there is a biological variation (i. e. 36°C - 37.2°C) in core 

temperatures for normal human beings, the average normal core body temperature is 

generally considered to be 37°C. Assuming a naked body and dry air, core temperature in 
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the body is regulated within 0.6°C, when ambient temperature is approximately between 

13° C- 60° C (Guyton 1992). 

A change in blood flow to skin is an important process in temperature regulation. Up to 

30% of cardiac output flows through the skin. Though heat is continuously transferred 

from blood vessels to skin surface, blood vessel dilation increases heat transfer and 

makes skin red and hot. The main physiologic mechanisms that regulate heat production 

and heat loss to maintain a stable core body temperature are (Bahill 1981): 

  Metabolic Thermogenesis - Large number of metabolic pathways in the body are 

accompanied by heat liberation, with the greatest metabolic source being skeletal 

muscle. Metabolic rate is regulated by several hormonal and neuro-regulatory 

mechanisms. Secretion of norepinephrine, epinephrine and thyroxin triggers 

metabolic activities. 

  Contractile Thermogenesis - This incorporates muscle contractile activity i. e. 

conversion of chemical energy to mechanical energy followed by liberation of 

frictional heat. A large amount of heat is produced during any useful muscle activity 

and a neurologically regulated heat source is activated when reflex 'shivering' is 

produced by drop in core body temperature below the optimum. 

  Lipolysis - This is basic fat decomposition mechanism in the body and is a significant 

factor in keeping the body warm during cold climates such as extreme environmental 

conditions. This process is triggered by sympathetic nervous system. 

The human body takes a very active role in thermoregulation & incorporates neural 

feedback mechanisms, sensors, a control centre and effectors. These sensors are found 

throughout the body, especially skin, body core and brain. Additionally, there are 

receptors found in the spinal cord, medulla, abdominal viscera, muscles and respiratory 

tract. The hypothalamus in the brain acts as control centre and has a mechanism similar to 

a thermostat. About 90% of body heat is lost through the skin, under control of these 
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mechanisms. Heat production of body remains almost constant under such a condition 

whereas, if the skin temperature drops below the core body temperature a large number 

of responses are initiated to conserve body heat and increase heat production such as 

vasoconstriction, cessation of sweating, shivering, increased metabolic rate and erection 

of body hair to increase insulation. In the following section consideration is given to the 

thermal properties specific to skin on the sole of the foot. 

2.2.3 Thermal properties of the skin 

Human skin structure and thermal receptors have been discussed in previous sections. 

The skin surface is an essential element in the thermoregulatory processes in humans, 

facilitating heat exchange with local tissues and ambient environment via conduction, 

convection and radiation (Jung and Zuber 1998). 

Skin temperature is affected by the internal tissues of the human body and its 

environment, controlled by the effectiveness of the circulatory system, anatomical 

position and ambient conditions respectively. Moreover, localised factors such as 

anatomical changes, thickness of muscular and adipose tissue (both act as heat insulators) 

also affect the skin temperature. These factors are particularly important when assessing 

thermal parameters in a diabetic neuropathic foot, where Charcot's foot, muscle atrophy 

and thinning of the adipose tissue at the heel are indicated. The conductivity of skin is 

dynamically modulated by the underlying perfusion, resulting from the effector reactions 

of the thermal regulation system, leading to restoration of thermal equilibrium (Jung and 

Zuber 1998). For a neuropathic foot, degeneration of thermoreceptors and arteriovenous 

shunting due to autonomic neuropathy may affect this normal response. Assessment of 

thermal patterns under the plantar foot and measuring response to thermal stimulus can 

be helpful to identify patients at high risk of ulceration (Bharara, Cobb et al. 2006). 
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2.2.4 Thermoregulatory vasodilation 

Cutaneous vasodilatation is one means by which body temperature can be reduced. 

Increased blood flow results in more heat transfer from body core to periphery of skin. 

Increased blood per unit time through the skin is proportional to greater heat loss per unit 

time from its surface. Vasodilation is produced by two influences, both acting to reduce 

precapillary vascular resistance: 

" diminished neural signals from the hypothalamus descending via sympathetic 

efferent fibres 

" local factors e. g. heat, humidity and hypoxia acting on smooth muscle 

Thus, blood flow is shunted from deep to more superficial plexuses within the skin. The 

autonomic nervous system may also decrease volume of blood passing through 

alternative vascular beds to skin e. g. the gut. Finally, a greater volume of blood per unit 

time through the skin also reduces the efficiency of counter-current exchange 

mechanisms between arterioles and venules. This results in less heat conservation. In 

patients with severe diabetic neuropathy, this mechanism may be affected due to 

degenerated thermoreceptors. Thermographic assessment of the plantar foot may 

therefore, further improve our current understanding about the causal pathways for 

degeneration of thermoreceptors. This may also also provide useful information about 

association between plantar ulceration and sensory loss in type 2 diabetes mellitus. 

2.2.5 Posture related blood flow and temperature regulation 

Integrity of venoarteriolar reflex, which results in raised precapillary resistance is 

deteriorated in patients with type 2 diabetes mellitus, especially in those having 

peripheral sensory neuropathy (Rayman, Hassan et al. 1986a). Under normal 

circumstances, for a healthy individual this increase in precapillary resistance leads to 

vasoconstriction and limits the rise in capillary pressure resulting from vertical column 

of blood between heart and foot (Flynn and Tooke 1995). Rayman G et al. (1986a) 

suggests two important reasons for investigating the venoarteriolar reflex. 
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(a) Patients with diabetic neuropathy are prone to oedema which may represent failure to 

limit rise in capillary pressure during dependency. 

(b) Due to raised capillary pressure in diabetic neuropaths, thickening of basement 

membrane is promoted. 

The venoarteriolar reflex is particularly important during standing as hydrostatic pressure 

in capillaries of lower extremities is higher upon dependency. Hydrostatic pressure in 

capillaries helps in movement of fluid to interstitial spaces. It is dependent on arterial 

pressure, venous pressure, precapillary resistance and post capillary resistance. 

Mathematically, it can be represented as following: 

Pc = [(Rv/Ra)Pa + Pi]/[1 + (Rv / Ra)] 

Where: 

P, = Capillary hydrostatic pressure 

P. = Arterial Pressure 

P, = Venous Pressure 

Ra = Precapillary resistance 

R� = Postcapillary resistance 

Equation 2-1 

Its impairment is associated with autonomic neuropathy in type 2 diabetic patients. 

Figure 2-4, shows the precapillary and postcapillary resistances for calculation of 

capillary hydrostatic pressure (Berne and Levy 1986). 
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Capillary Hydrostatic Pressure (Pc) 

Arterial Pressure (Pa) 
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Figure 2-4: Precapillary and postcapillary resistance for capillary hydrostatic 
pressure (Berne and Levy 1986) 

Rayman G et al. (1986a) examined vasoconstriction (reflex rise in precapillary resistance) 

using laser Doppler flowmeter in diabetic patients with & without neuropathy and 

compared their results with those from age & sex matched healthy controls. Observations 

were recorded in two sets, one with the patient supine (foot at the heart level) and other 

with the leg lowered (foot below the heart level). Skin temperature on lower extremity 

was also recorded for all patient groups. Foot skin temperature was raised indirectly by 

pressing a heat blanket to the abdominal wall in order to release central sympathetic drive 

and raise temperature of peripheral skin. 

Skin temperature was highest for diabetic patients with neuropathy along with highest 

resting blood flow and highest blood flow during dependency. During dependency blood 

flow fell to 18.9 (SD 11.9) %, 28.9 (18.6) % and 53.5 (23.7) % of the original resting 

flow for normal healthy subjects, diabetics without neuropathy and diabetics with 

neuropathy respectively (Figure 2-5). 
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Figure 2-5: Graph showing percentage fall in blood upon dependency In the study by Rayman et al. 
(1986a). Data was collected from three study groups that included healthy controls, diabetics 
without neuropathy and diabetics with neuropathy. 

Both skin temperature and vascular response to dependency in normal subjects after 

indirect heating closely resembled the measurements of diabetics with neuropathy. This 

exaggerated blood flow in diabetics with neuropathy indicates the failure of 

venoarteriolar reflex. These findings are in agreement with the work carried by Belcaro 

G et al. (1989) to evaluate skin blood flow in diabetics and patients with peripheral 

vascular disease during resting and dependency. The venoarteriolar reflex was also 

reduced in patients with claudication and was absent in patients with rest pain and 

impending gangrene (Belcaro G, Vasdekis S et al. 1989). 

Arteriovenous shunting allows blood to be transferred from the arterial side to venous 

side of circulation, thereby, bypassing capillary circulation. If this happens for a long 

period of time it can result in arterial calcification and susceptibility of the foot tissue to 
injury. This is supported by the animal study conducted by Manley & Darby (1980) 

Normals Diabetic w/o Neuropathy Diabetic w Neuropathy 
Patient Groups 
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wherein it was found that denervated rat pads subjected to repeated stresses were found to 

ulcerate at a faster rate than non denervated controls (Manley and Darby 1980). 

2.3 Introduction to the diabetic foot 

The term `diabetic foot' refers to complications of the foot specific to the diabetic, 

distinctive underlying factors of which include peripheral neuropathy and peripheral 
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Figure 2-6: The underlying pathophysiological factors leading to foot ulceration in the diabetic foot. 
Various treatment regimes for independent assessment of neuropathy and peripheral vascular 
disease are illustrated. 

vascular disease. Figure 2-6, illustrates the underlying pathophysiological factors leading 

to diabetic foot ulceration. It must be emphasised that infection is not a causative factor 

for foot ulceration; it may result from underlying neuropathic condition, which leads to 

cracks, physical trauma due to sensory neuropathy. Epidemiological findings suggest that 

neuropathic ulceration is the most prevalent form observed in the diabetic foot (Grunfield 

1992; Boulton, Connor et al. 1998). The most important feature of a neuropathic foot is 

the absence of ability to sense pain due to sensory neuropathy. The combined role of 

microangiopathy and loss of sympathetic control in the pathophysiology of diabetic foot 

disease is poorly understood. Clinical studies suggest that patients with long standing 
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neuropathy may have poor regulatory mechanisms and hence altered blood flow 

(Rayman, Williams et al. 1986b; Flynn and Tooke 1995). Evidence linking neuropathy 

and microvascular disease as underlying factors for diabetic foot ulceration is reviewed in 

the following sections. 

2.4 Insensitive foot and undetected trauma In neuropathy 

2.4.1 Introduction 

Clinical implications of diabetic neuropathy and commonly used assessment techniques 
for diagnosing clinical neuropathy are discussed. 

2.4.2 Neuropathy in the diabetic foot 

Patients with long standing diabetic mellitus, are susceptible to nerve damage throughout 

the body (peripheral, somatic or autonomic) due to poor glycaemic metabolism. 

However, clinical evidence suggests that peripheral nerves are most commonly affected 

(McNeely, Boyko et al. 1995; Viswanathan, Snehalatha et al. 2002). Peripheral 

neuropathy is also sometimes referred to as distal symmetrical neuropathy in the 

literature (National Institutes of Health). Table 2-1, summarises types of neuropathies 

occurring in type 2 diabetics along with their symptoms and consequences. 
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Type of Symptoms Consequences 

Neuropathy 

Sensory Loss of pain perception; Loss Repeated burn injuries; Abrasions; Repeated 

Neuropathy of temperature sensation mechanical stresses 

Motor Weakening of muscles Foot deformities; claw toe; Equinovarous 

Neuropathy (muscle atrophy); Weakening deformities; Abnormal weight bearing; 

of extrinsic peroneal nerve Charcot Foot 

muscle 
Autonomic Loss of sweating; Dilated Dry skin; Relative distal ischaemia; oedema; 

Neuropathy arteries; Arteriovenous Demineralisation of bone; Raised foot 

shunting perfusion; Susceptibility to injury & 

infection; Impaired healing 

Table 2-1: Type of neuropathies in type 2 diabetic patients 

Sensory neuropathy results in abnormal sensations such as pain or complete loss of 

sensation i. e. numbness (Tanenberg, Schumer et al. 2001). Sensory neuropathy has been 

shown to be the most common form of neuropathy affecting type 2 diabetic patients 

(Pendsey 2003). The loss of protective sensations of the feet affects both small and large 

nerve fibres. Small nerve fibres are responsible for thermal sensation, pain sensation and 

sweating, whereas, large nerve fibres affect vibration perception, touch sensation, 

position sense and deep tendon reflexes (Guyton 1992). 

For the insensitive foot, thermal trauma may lead to blisters, bullae, excoriation of skin or 

even full thickness burns (Pendsey 2003). Foot lesions commonly occur in the great toe 

and this may be related to the nerve length (Guy, Clark et al. 1985; Nasseri, Strijers et al. 

1998; Pendsey 2003). The heel is the toughest part of the foot and bears most of the body 

weight during heel-strike, despite this ulcers are more prevalent at the forefoot this can be 

explained by: 

a) Presence of thick subcutaneous tissue on the heel pad 
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b) Neuropathy is thought to be length related; longest nerve fibres are preferentially 

affected in the forefoot leading to greater loss of protective sensitivity (Nassen, Strijers et 

al. 1998; Pendsey 2003). 

Motor neuropathy results in imbalances between the muscles of the foot which can lead 

to poor load distribution and over time can lead to bone deformities in the foot. The risk 

of bone deformity can also be accentuated by sensory neuropathy. Such deformities can 

significantly increase the risk of foot ulceration by producing large increases in internal 

biomechanical stresses acting upon tissue. They occur frequently in the great toe, and 

ankle. Deformity is considered a surrogate marker for elevated plantar pressure (Pendsey 

2003). It significantly reduces the total weight bearing area of the foot, increasing plantar 

pressure. For a neuropathic foot, it leads to hyperkeratosis (thickening of the outer layer 

of the skin) and callus formation with eventual ulceration. The elevated blood supply due 

to autonomic neuropathy supports callus formation (Tanenberg, Schumer et al. 2001). 

Autonomic neuropathy leads to abnormal blood flow in the lower extremities and 
decreased sudomotor (pertaining to nerves that stimulate sweating due to activity) 
function (Tanenberg, Schumer et al. 2001). Figure 2-7, illustrates established pathways 
leading to neuropathic foot ulcers. The independent role of each type of neuropathy 
implicated in a diabetic foot is summarised in table 2-1. It must be emphasised that 

sensory neuropathy is most frequently associated with a neuropathic ulcer. The anatomic 

and physiological changes induced by motor as well as autonomic neuropathy lead to 

chronic tissue damage due to abnormal weight bearing. Intuitively, autonomic neuropathy 

plays a significant role in peripheral circulatory changes and results in arteriovenous 

shunting. The AV- shunts support callus formation which, further increases plantar 

pressure. Therefore, it is important to perform diagnosis based on the type of neuropathy 
by using appropriate measurement technique and well designed clinical protocols. 
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Figure 2-7: Pathways leading to neuropathic foot ulcers are illustrated. Sensory neuropathy is an 
important permissive factor for foot ulcers. The mechanisms leading to high plantar pressures and 

subsequent tissue damage are illustrated, which predispose a neuropathic foot to ulcers. Growth of 

callus further increases foot pressures. 

Causative factors for neuropathic ulcers can be intrinsic or extrinsic. Two or more factors 

must be present to result in a neuropathic ulcer (Pendsey 2003). The extrinsic factors 

(damaging stimuli or trauma) trigger foot ulceration under the presence of intrinsic 

factors which include limited joint mobility, bony prominences, foot deformities, plantar 

callus, scar tissue, fissures and neuro-arthropathy. Commonly cited extrinsic factors 

include ill fitting footwear, barefoot walking, thermal trauma, injury by sharp objects and 

falls/accidents. 

It is important to distinguish between the neuropathic and neuroischaemic foot; their 

complications are entirely different and so are the respective therapeutic strategies 

(Grunfield 1992). In the neuroischaemic foot increased pressure leads to direct tissue 
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damage and ulceration. Three important parameters used to distinguish neuropathic or 

neuroischaemic foot are skin temperature, pain, Ankle Brachial Pressure Index (ABPI) 

i. e. ratio between the highest systolic pressure at the ankle and the systolic brachial 

pressure. 

The neuropathic status of foot is confirmed by clinical symptoms and abnormal 

neurologic examination. The diagnostic criteria for diabetic ncuropathy varies across 

clinical centres. This variability combined with subclinical (symptomatic with absent 

clinical or neurophysiological signs) neuropathy in certain diabetic patient groups adds to 

the problem of identifying patients with increased risk of foot ulceration. The techniques 

used for neuropathic assessment of the foot are discussed. 

2.4.3 Techniques for sensory neuropathy assessment 

The clinical diagnostic criterion for diabetic foot complications is well established. From 

the clinical standpoint, it is common to assess the presence and extent of peripheral 

neuropathy to identify risk of foot ulceration. Diabetic neuropathy accounts for almost 
60-80% of foot ulcers (Grunfield 1992; Morbach, Lutale et al. 2004; Viswanathan, 

Madhavan et al. 2005; Viswanathan, Madhavan et al. 2006) especially on the plantar 

surface of the foot at areas subjected to high pressure during gait and routine activities. 
Traditionally, Semmes-Weinstein monofilaments and biothesiometry are used for the 

assessment of neuropathy (Armstrong, Lavery et al. 1998; Viswanathan, Snehalatha et al. 

2002; Miranda-Palma, Sosenko et al. 2005). Photographs 2-1 and 2-2, illustrate clinical 

monofilament and biothesiometer measurements respectively (Katsilambros, Tentolouris 

et al. 2003). Both methods relate to neuropathy affecting mechanoreceptors in the plantar 
foot and hence, provide evaluation of sensory neuropathy. 

According to the National Institute of Health and Clinical Excellence (NICE) guidelines, 

neuropathy is detected by using a lOg nylon monofilament that buckles at a reproducible 

stress and measures cutaneous pressure perception threshold. 
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Photograph 2-1: Semmes-Weinstein monofilament measurement (Katsilambros, Tentolouris et al. 
2003) 

Photograph 2-2: VPT (Biothesiometer) measurement (Katsilambros, Tentolouris et al. 2003) 

Additionally, a vibration perception threshold (VPT) of greater than 25 Volts is also 

considered indicative of sensory neuropathy. However, these methods are subjective and 

objective data in support of specific sites to be tested and minimum number of insensate 

sites required for prediction of foot ulceration have not been published in the literature 

(Miranda-Palma, Sosenko et al. 2005). 
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2.4.4 Optical Imaging of blood vessels 

Optical imaging is a recent technique that gives clinical investigators the ability to obtain 

real time in-vivo information such as neural activity and concentration of biochemicals 

such as haemoglobin and cytochrome, using appropriate lasers and optical fibre bundles. 

Some of the commonly used techniques that fall under the scientific discipline of optical 
imaging include small vessel imaging, spatially resolved diffused reflectance (Fridolin 

and Lindberg 2000) , NIR spectroscopy (Delpy, Cope et al. 1988; Yong, Cobb et al. 
2005). laser Doppler perfusion imaging, confocal microscopy and surface microscopy 

(Asprcs, Egerton et al. 2003). 

Optical imaging techniques are broadly classified into direct and indirect approach. The 

direct approach assumes that least scattered photons provide inherently better spatial 

resolution and contrast, also termed optical coherence imaging. On the other hand, the 

indirect approach assumes that there exists a unique distribution of scatterers and 

absorbers for every acquired dataset (Hebden, Arridge et al. 1997) . Such an approach 

usually requires an appropriate model of photon transport to be incorporated and solving 

the inverse problem i. e. extracting absorption and scattering coefficients from measured 
data. 

Small vessel imaging is a sensitive technique to identify physiological and anatomical 

changes in the microcirculatory network i. e. underlying capillaries. The important 

considerations for this technique include image resolution, video mode, data storage, 

source detector arrangement, light propagation model and vessel identification. The 

imaging system may include NIR spectroscopic model (Fridolin and Lindberg 2000). 

surface microscope (Aspres, Egerton et al. 2003) or capillariscopy. 

Spatially resolved diffuse reflectance, based on the NIR spectroscopic model holds good 

potential for its use as an optical imaging technique for blood vessels. Fridolin and 

Lindberg (2000) have discussed prerequisites for vessel imaging (i. e. colour-coded vessel 

map to represent spatial information for veins) based on diffuse reflectance 

measurements. This technique can be extended to image the capillary loops in the plantar 
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foot surface by incorporating appropriate photon transport models using Monte Carlo 

simulations (Delpy, Cope et al. 1988; Meglinski and Matcher 2003) . Both scatter and 

absorption play a crucial role in forward propagation of light in the tissue. However, both 

have varying contributions at different wavelengths. The attenuation coefficient `µ' is a 

function of both scatter coefficient 'p s' and absorption coefficient `µa'. 

NIR spectroscopy uses the optical window between 700nm to 1000nm to assess the 

properties of chromophores. It has potential to provide quantitative information regarding 

haemoglobin (oxidised and de-oxidised) and cytochrome oxidase concentration in tissue 

(Yong, Cobb et al. 2005). For the success of any spectroscopic measurements of skin 

tissue, the spatial distribution of the blood, index of blood oxygen saturation, water 

content in tissue, types of chromophores, data acquisition/need for tomography, type of 

detector, temperature dependence and physiological parameters must be considered. NIR 

spectroscopy may provide an objective assessment of toe perfusion using transmission 

approach; clinically important as toe tips are prevalent sites of foot ulceration. 

For clinical investigation of diabetic foot disease, imaging capillary loops under the 

plantar surface a high imaging resolution is required due to the small size of capillaries, 

typically 4-12 µm. As the source to detector distance increases, light photons are 

collected from deep spatial locations of the subject (Meglinski and Matcher 2003). 

Ability to measure dynamic behaviour of the arteriole may be clinically useful to identify 

arteriovenous shunting in diabetic patients. Due to large scatter in skin tissue and 

complex photon transportation, a direct approach such as spatial filtering, polarisation 

discrimination and coherent gating cannot be used for diabetic foot assessment. These 

techniques are suitable for thin or non-scattering human tissue and maximum tissue 

thickness of a few millimetres. Skin acts as a complex inhomogeneous multi-layered 

highly scattering and absorbing medium. 
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have var)ing contributions at different wavclcngths. The attenuation coctficicnt 'It' is a 
function of both scatter coefficient 'p and absorption cm(fiicicrtt 'N, '. 

NIR spectroscopy uses the optical window hctwccn lOOnm to 10ü0nm to as s the 

propcrtics of chromophorcs. It has potential to provide quantitati%c information regarding 
haemoglobin (oxidiscd and dc-oxidiscd) and c)tochromc oxida. c conccntration in tissue 

(Yong. Cobb ct al. 2005). For the succcss of any spcctrox-cpic measurements of skin 

tissue, the spatial distribution of the blood. index or blcxxf oxygen saturation, watet 

content in tissue, types of chrornophores. data acquisition/nced (or tcwnography. type of 
detector. temperature dependence and physiological paramcten must he considered. N111 

spectroscopy may provide an objective assessment of toe perfusion using transmission 

approach; clinically important as toe tips arc prevalent sites of torn ulceration. 

For clinical investigation of diabetic foot discasc. Imaging capillary loops under the 

plantar surface a high imaging resolution is requited due to the small site of capillancti. 

typically 4.12 Nm. As the source to detector distance Incrrases, light photons arc 

collected from deep spatial locations of the subject (Mcglinski and hatcher 2003). 

Ability to measure dynamic behaviour of the ancriolc may he clinically useful to identify 

artcriovcnous shunting in diabetic patients. Due to large scatter in skin tissue and 

complex photon transportation, a direct approach such as spatial filtering, polarisation 
discrimination and coherent gating cannot be used for diabetic foot a. %cssmcnt. 'these 

techniques are suitable for thin or non"scattcring human ti. auc and ma%imum tiv%uc 

thickness of a few millimetres. Skin acts as a Complex inhomogcneous multi"1.1)-c 'd 
highly scattering and absorbing medium. 
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2.4.5 Superficial imaging of the vascular bed under plantar foot 

There is significant difference between the appearance of the plantar surface of diabetic 

patients and healthy controls due to altered perfusion. Clinicians at present use visual 

inspection of the foot surface to identify normal, neuropathic and neuroischaemic feet. 

Measurement of capillary blood flow as an indication of foot pressure was first proposed 
by Seitz (Seitz 1901). In his experiments, he observed colour changes resulting from 

tissue ischaemia due to acting pressure by using a simple glass and mirror arrangement. It 

must be emphasised that it is important to assess the diabetic foot under loaded condition, 

replicating the stresses that the foot is subjected to during normal gait. Complex imaging 

techniques such as MRI (Brash, Foster et al. 1999) and computed tomography (Smith, 

Commean et al. 2001; Commean, Mueller et al. 2002) have also been applied to diabetic 

foot research. Although useful research tools, there application is limited by high cost. 

Digital photography, polarised photography and ultraviolet light photography are the 

most commonly used surface imaging techniques (Aspres, Egerton et al. 2003). The latter 

two provide selective representation of the imaged tissue i. e. areas of hyper pigmentation, 

collagen fluorescence, surface/sub-surface features of the tissue. High-resolution dynamic 

images provide useful information on the perfusion distribution, capillary density and 

hyperaemic response. Static digital images acquired represent the vascular state of the 

foot and can be a useful tool to assess wound healing (Rajbhandari, Harris et al. 1999). 

This is a simple technique but the results can be quantified and statistical significance 

proven. 

In assessing the diabetic foot, digital images supplemented with plantar pressures and 

loading durations can be a useful tool to predict possible sites of ulceration. At present, 

both imaging and pressure datasets are evaluated independently since a simultaneous 

combined measurement is not possible. Digital photography is used for a wide range of 

dermatological pathologies; however, for diabetic foot assessment visual inspection is 

preferred over digital photography due to cost issues (Boulton. Connor et al. 1998). 
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2.4.6 TcPO2 measurements 

Transcutaneous oxygen saturation (TcPO2) is a sensitive measure of dermal perfusion. It 

is a non invasive technique, gives functional information about cutaneous blood flow 

used to quantify skin oxygenation and determine ischaemic sites (Romanelli and Falanga 

1999; Wilmer, Voroshilova et al. 2001). A platinum electrode provides current 

proportional to the P02 (oxygen tension) at the measured site. The skin oxygen tension is 

measured in `mmHg' units as illustrated in Figure 2-8. At normal skin temperate P02 at 

the skin surface is close to zero mmHg. Typically, values greater than 60mmHg are 

considered to be normal (Pendsey 2003). Therefore, a vasodilatory stimuli such as 

warming the skin surface in the range of 37- 44°C is used to measure the P02 (liuch, 

Franzeck et al. 1983; Gaylarde, Fonseca et al. 1988). This metabolic consumption of 

oxygen can be used to define a figure of merit for perfusion profile of larger vessels as 

well as capillary loops and provide supporting evidence to clinicians for 

revascularisation surgery, amputation level and suitable drug treatment (Got 1998).. 

Arteriole 

Artery 

Figure 2-8: Typical TcPO2 measurement in assessment of diabetic neuropathy. Autonomic 
neuropathy results in decreased sympathetic innervations of the AV shunts resulting in dilation of 
the AV shunts (Arteriovenous Shunting). This produces a decrease in the nutritive capillary blood 
flow and a decrease in TcPO2 

Transcutaneous oxygen tension in legs and feet has been used to characterise the diabetic 

foot (Boulton, Scarpello et al. 1982; Kalani, Brismar et al. 1999). Peripheral vascular 
disease results in reduced P02 in type 2 diabetes mellitus. (Gaylarde, Fonseca et al. 1988). 

Sympathetic Nerves PO2 
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However, when compared with control subjects having equivalent degree of vascular 

disease, TcPO2 values are still lower, implicating possible involvement of autonomic 

neuropathy (Uccioli, Monticone et al. 1994). Boulton et al. (1982) have demonstrated the 

presence of increased venous oxygenation implicating arteriovenous shunting in the 

diabetic neuropathic foot. Gaylarde et al. (1988) report inability to increase TcPO2 with 
increase in temperature in diabetic subjects with neuropathy, consistent with the laser 

Doppler flowmetry study by Rayman et al. (1986). 

Diabetic neuropathy results in thick epidermal layer. This may affect the stabilisation 

time of the TcPO2 measurement. Furthermore, TcPO2 measurements provide localised 

assessment of the perfusion status; discounting its clinical use in the routine assessment 

of the diabetic foot disease. However, TcPO2 measurements correlate well with the rate 

of healing (Pecoraro, Ahroni et al. 1991) and therefore, can be used to assess benefits 

revascularisation surgery or drug treatment. 

2.5 Summary 

The foot is well adapted to load bearing with a robust anatomical structure that helps in 

distribution of compressive forces during loading. The integrity of weight bearing tissues 

is essential to protect deeper tissues. Use of plantar pressure measurement is common in 

the assessment of the diabetic foot. Advances in the plantar pressure measurement 

technology, have contributed significantly in the current understanding of foot ulceration. 
However, the results from one plantar pressure study cannot be extrapolated to the other, 

leading to difficulty in determination of threshold values for elevated plantar pressures in 

diabetic foot patients. 

In diabetic neuropathy, there is an increased likelihood of impaired mechanics of the 
lower extremities, the effects of which including pressure and temperature can be 

measured in static and ambulatory tests. Local tissue temperature may be a permissive 
factor for tissue necrosis and eventual ulceration. Therefore, from the clinical standpoint, 
it may be useful to further the current understanding about combined effect of local tissue 
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pressure and temperature changes at the load bearing tissue. There is a substantial 

amount of published information on the independent effects of elevated plantar pressure. 

However there exists much less data regarding the thermal physiology of the diabetic 

foot. 

Human core body temperature is maintained constant over a wide range of environmental 

conditions with the help of coexistence between physical and physiological conditions. 

Skin is the largest organ in human beings. Its temperature depends upon the intensity of 

underlying metabolic processes and perfusion (Arcan and Brull 1976). Thermal 

measurements of the plantar surface of the foot offer possibilities of monitoring the 

neurologic modulation of the circulation, essentially involving thermoreceptors and 

underlying capillary network. 
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Chapter 3 Literature Review 

3.0 Introduction 

In diabetic neuropathy, both mechanoreceptors and thermoreceptors are thought to be 

affected. The responses of thermoreceptors in the neuropathic diabetic foot to thermal 

changes at the plantar surface are of central importance in this project. In the first half of 

the literature review, liquid crystal thermography (LCT) and its application specific to the 

diabetic foot are discussed. The second half of this chapter focuses on developing the 

basic justification for using this technique as a modality for routine clinical assessment of 

the diabetic foot. 

3.1 Liquid crystal thermography 

Thermochromic liquid crystals (TLC) respond to temperature by selectively reflecting 
incident light. This is the basis for the technique of liquid crystal thermography which 

provides a colour response proportional to the temperature of a heated surface in contact 

with the crystals. Thermographic image represents a two-dimensional field in which 

temperature varies both spatially and temporally (Hay and Hollingsworth 1998). 

From a clinical standpoint, LCT is an economical, non-invasive and nonionising 
diagnostic tool used to produce temperature distribution and identify local hot spots 

(pathology). It can be used as an adjunct to other diagnostic modalities such as 

radiography, ultrasound, nuclear medicine and neurophysiological tests; or in some cases 

as a primary diagnostic tool where other modalities are contraindicated. 
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3.2 Determination of surface temperature using liquid crystal 
thermography 

3.2.1 Introduction 

Details related to the LCT technique, its development as a diagnostic tool, practical 

consideration and recent advances are discussed. 

3.2.2 Physics of liquid crystal thermography 

Liquid crystals are organic substances exhibiting mesomorphic (liquid crystalline) states 

within which elements occupy spatially fixed positions with respect to one another. 

However, the relative position itself is not fixed (Flesch 1985). Liquid crystals can be 

obtained either thermotropically or lyotropically. Those obtained by the former process 

are conventionally divided into three types i. e. the smectic, the nematic and the 

cholesteric (Portnoy 1970; Hallcrest 1991). This classification is primarily based on the 

molecular arrangement and optical properties of the liquid crystals. Liquid crystals show 

optical properties of crystals but exhibit mechanical behaviour of liquids. They reflect 

polarised light in a narrow region of wavelengths. 

Cholesteric liquid crystals are clinically most significant as they exhibit dichroism i. e. a 

phenomenon involving differential absorption of right hand and left hand circularly 

polarised light due to molecular asymmetry and are the most optically active substances 

known. Unpolarised incident illumination contains approximately equal amounts of right 

hand and left hand polarised light. Within the reflected wavelengths about 50% is 

reflected and 50% is transmitted (Flesch 1985). They are birefringent and optically 

negative; i. e. light in the crystal travels more rapidly perpendicular to the layers than 

parallel to them. These crystals are characterised by the presence of layers with all 

molecules in a single layer oriented in same direction. These layers trace a helical path 

whose single turn is 550nm (Flesch 1985). 
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Unpolarised white light falling on a cholesteric crystal is resolved into two circularly 

polarised components rotating in opposite directions (Azar, Benson et al. 1991). One 

component is absorbed, while the other is reflected. This reflected component upon 

scattering produces colour depending upon the crystal type. For a fixed angle between 

source of light and observer, colour is a function of temperature, chemical environment 

and electric field. Wavelength of reflected light is dependent on spacing between layers 

of the helical structure. The temperature represented is inversely proportional to both 

layer spacing and wavelength (Meyers, Cros et al. 1989). 

Figure 3-I, shows the principle of measurement of skin surface temperature with liquid 

crystals. The black absorbing layer acts as a harrier between skin and liquid crystals. it 

prevents reflection by skin surface. 

Incident 
white light 

Coloured 
reflected light 

Liquid 

Black absorbing 
Crystals 

layer Skin 

Figure 3-1: Principle of the measurement of skin surface temperature with liquid crystals 

The temperature range over which the TLC material actively reflects visible light and can 

be distinguished by the imaging equipment is termed the colour bandwidth or colour play 

interval (Anderson 1999; Bakrania and Anderson 2(X)2). The operating range of TLC's 

varies from -30°C to 150°C. Liquid crystals with colour bandwidth less than 5°C are 

narrow band and those with greater than 5°C are wide hand liquid crystals. 
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(a) 

(b) 

(c) 

Figure 3-2: Typical sequence of colours for thermochromic liquid crystal sheets. Figure illustrates 
R25C5W (a), R25CIOW (b) and R25C15W (c) TLC sheets from Hallcrest. The nomenclature 
adopted is typically, used in the literature to represent the colour bandwidth of the TLC material. 
R'T'C'X'W where T denotes the event temperature and X denotes the clearing point temperature. 

The sequence of colours most commonly observed is red followed by yellow, green, blue 

and finally violet (Hallcrest 1991). However, some liquid crystals only produce selective 

transitions i. e. red-green-red, or green to red during warming. Figure 3-2 illustrates 

typical sequence of colours in the commercially available TLC materials. The chemical 

formulation of liquid crystal material determines its colour versus temperature 

characteristics at manufacturing stage (Hallcrest 1991). Details related to the physics and 

characteristics of thermochromic liquid crystals (TLC) are widely published (Behle, 

Schulz et al. 1996, Hay and Hollingsworth 1996; Hay and Hollingsworth 1998; Anderson 

1999; Bakrania and Anderson 2002). 
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Figure 3-3: Typical reflected wavelength Vs temperature response of a temperature sensitive 
thermochromic liquid crystal mixture. 

Figure 3-3, illustrates the reflected wavelength versus temperature response of a 

temperature sensitive thermochromic liquid crystal mixture. The clearing point is the 

temperature at which the TLC becomes transparent as a consequence of the crystals 

achieving a non reflecting isotropic state. When TLC is cooled, the change back to the 

anisotropic semi-crystalline state is principally dependent on the rate of cooling which 

leads to a shift in the hue versus temperature profile. This change is reversible provided 

that the TLC is allowed to cool to a formulation dependent temperature termed the event 

temperature. 

3.2.3 Development of thermochromic liquid crystals 

Contact liquid crystal thermography exploits the fact that all objects with a temperature 

above absolute zero emit infrared radiation. The magnitude of emitted radiation is high in 

human skin, especially in diseased state (Dribbon 1983). The earliest applications of 

Rad Start Bluo Start ClurIng Point 

Temperature 
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liquid crystals were qualitative due to lack of robust imaging equipment. Wider adoption 

of LCT in medical applications has been limited by pressure sensitivity, imaging 

equipment and quantification of colour response. In the past, LCT was limited by poor 

thermal resolution (±0.5°C), poor spatial resolution (±5mm), slow response time (>60 

seconds) and subjective assessment (Anbar 1998). Recent advances in liquid crystal 

technology now offer potential for better thermal mapping, accuracy, faster response time 

(Hallcrest 1991) and temperature resolution using digital image processing (Anderson 

1999; Bakrania and Anderson 2002; Roth and Anderson 2005; Grewal, Bharara et al. 

2006). 

LCT is primarily used in thermal mapping, industrial heat transfer (Camci, Kim et al. 

1992; Jambunathan, Hartle et al. 1996; Ireland, Neely et al. 1999), non destructive testing 

(NDT), fluid flow visualisation (Brown and Saluja 1978; Ashforth and Rudel 2003), civil 

engineering to assess thermo isolation properties of building elements (Pospisil and 

Pospisilov 1990), aerospace engineering (Hallcrest 1991) and in studies of electronic 

cooling and boiling heat transfer (Hay and Hollingsworth 1996; Ireland, Neely et al. 

1999; Stasiek and Kowalewski 2002). 

Pure TLC material is difficult to work with due to its oily form, risk of chemical 

contamination and exposure to ultra violet (UV) light. Liquid crystals can be altered by 

catalytic action of surrounding substances. Cholesteric liquid crystals are oily substances 

and when they combine with fat present within skin surface, they produce a mixture with 

different properties (Flesch 1985). These difficulties can be avoided through polymer 

micro-encapsulation of the TLC (Hallcrest 1991; Massi 2004). 

Liquid crystals are enclosed in capsules typically, 10-15 microns in size. Smaller capsule 

sizes result in scattering of incident light i. e. milky colour of the film (Klosowicz, Jung et 

al. 2001). The capsule wall acts as a barrier and provides insulation from neighbouring 

liquid crystal capsules. This improves thermal mapping capability (Armstrong 2004) and 

solves the problem of stress dependency of liquid crystals (Wozniak, Wozniak et al. 

1996; Armstrong 2004) and prevents physical or chemical deterioration (Zharkova, 
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Khachaturyan et al. 1980; Stasiek and Kowalewski 2002). Encapsulation improves the 

accuracy of temperature measurements and ensures long term stability (Quagliardi 2005). 

Various production techniques are used to enable TLC to be offered in the form of an 

emulsion, polymer sheet or latex support. Table 3-1 provides the most common 

properties of three physical forms of thermochromic liquid crystals i. e. polyester sheet. 

water based emulsion and latex sheet. 

Property TLC Polyester Sheet TLC Emulsion TLC Latex Sheet 

Description Silk screen printing Water based liquid Liquid crystals 

onto acetate carrier crystal emulsion embedded on latex 

applied to target carrier 

using airbrush 

Typical Size Rectangular outline. Depends on the target Rectangular window 
Typical size - 0.45m by surface area. with pneumatic control 
0.3m system. Typical size- 

0.25m by 0.25m 

Protection Encapsulation and Only encapsulation Encapsulation and 

transparent acetate transparent acrylic 

sheet through which plate through which 

colour response is seen. colour response is 

seen. 
Application Industrial heat transfer Flexible approach; Sports injury 

(flat surfaces) and Aerospace research, assessment, breast 

research domain flow visualisation in thermography and 

fluids and particle back pain assessment. 

velocitimetry. 

Table 3-1: Properties of three physical forms of thermochromic liquid crystals. All details provided 
refer to the most common applications. 
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Customised sizes and geometries of TLC sheets can also be procured for specific 

applications. The acetate carrier sheet is usually black to enhance image contrast. TLC 

sheets are in general, restricted to measurement on flat surfaces/interfaces. 

A more flexible measurement approach is afforded through the use of water based liquid 

crystal emulsions which are typically sprayed onto the target surface using an airbrush. 

This approach does not allow additional protection beyond that afforded by the polymer 

encapsulation, therefore external physical influences must be avoided. A compromise 

between the sheet and spray forms is provided through embedding TLC in a thin 

compliant latex carrier which allows conformance to the underlying geometry of the 

target surface whilst providing a high degree of protection to the crystals. Latex LCT 

technology is used commercially in sports injury assessments, breast thermographic 

studies and back pain assessment (Ng, Chen et al. 2001; Leinidou 2003). In practise, 

flexing of the latex sheet can lead to birefringence which introduces noise into the colour 

image. This can be compensated for in critical applications through use of a pneumatic 

control system employed to equilibrate pressure over the contact surface. 

In the past, emulsion based liquid crystals were used, applied directly onto anatomical 

site over a black absorbing layer during investigation (Benjamin 1973). Microcapsules of 

different liquid crystal formulations could be mixed together to produce emulsions with 

multiple distinct active ranges (Hay and Hollingsworth 1996). When mixtures of several 

liquid crystals are applied to skin; differences in skin temperature cause crystallisation to 

occur at some places and not at others, which affects the original mixture and hence, the 

calibration (Flesch 1985). 

3.2.4 Liquid crystal thermography in medicine 

LCT helps to determine underlying physiology (local metabolic and vascular conditions), 

with lower skin temperatures indicating vasoconstriction and higher temperature 

indicating a state of inflammation or raised blood flow due to higher metabolic activity. 
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Biomedical applications and quantitative thermal imaging using TLC have been reviewed 

(Portnoy 1970; Ashforth 1996). 

There are numerous applications in medicine namely andrology (Goblyos and Szule 

1987), rheumatology, sports medicine, dermatology, dolorology, vasculopathies 

(Leinidou 2003), diagnostic podiatric medicine (Dribbon 1983), pulmonological 

diagnostics (Klosowicz, Jung et al. 2001) and consumer thermometry (Hallcrest 1960). 

LCT was used in evaluation low back pain for patients with degenerative discogenic 

lesions, acquired lesions, congenital and developmental lesions and back pain resulting 
from unknown causes (Rubal, Traycoff et al. 1982). Shlens et al. (1975) used 

thermochromic liquid crystals to evaluate inflammatory conditions and identifying 

underlying pathology (Shlens, Stoltz et al. 1975). Latex based LCT plates were used in 

detecting deep vein thrombosis with reported sensitivity of 97% and specificity of 62% 

(Sandler and Martin 1985; Free and Faerber 1989; Kalodiki, Marston et al. 1992). Latex 

based liquid crystal plates were also used in determination of baseline data for thermal 

patterns in the face of healthy individuals, with the intent of objective assessment for 

nerve injuries and monitoring recovery (Ariyaratnam and Rood 1990). 

A positive relationship exists between temperature changes and nerve injuries in lower 

and upper limbs (Nakano 1984; Uematsu 1985). Steele et al. (1994) used LCT to assess 

peripheral thermal changes in the hands of patients with chronic liver disease and 

established significant differences in the response to cold water immersion tests which 

were independent of changes mediated by the autonomic neuropathy (Steele, Dillon et al. 

1994). Dribbon (1983) suggested use of liquid crystal thermography in assessing 

neurovascular complications by studying characteristic patterns of hypoemissivity, taking 

contralateral foot as control. Normal thermographie patterns in humans are characterized 

by remarkable symmetry of temperature in homologous body parts as confirmed in their 

study of controls (Meyers, Cros et al. 1989). This fact is useful in bilateral studies of 

various pathologies, where thermographic patterns in the contralateral part are compared 

to the affected part. Diabetic neuropathy is generally symmetric i. e. both feet should 

represent similar thermal patterns. 
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3.2.5 Liquid crystal thermography in assessment of diabetic foot 

Baer et al. (1988) reviewed the use of liquid crystal thermography in podiatric medicine 

with emphasis on vascular, neurologic and musculoskeletal complications. Bergholdt 

proposed that results from thermal assessment of the insensitive foot can be used as 

objective evidence of potential damage to the patient (Bergtholdt 1979). Goller et al. 

(1971) reported the significance of pressure acting on the foot and associated thermal 

changes, proposing thermography as a useful tool in selecting suitable orthotic devices 

(Goller, Lewis et al. 1971). 

Boyko et al. (2001) re-examined the association of skin temperature in diabetic 

neuropathic foot in their study of diabetic subjects. The results show that diabetics with 

sensory or autonomic neuropathy do not have higher foot skin temperature. These results 

are contradictory to those obtained by other studies; which report that diabetic neuropathy 

results in elevated microcirculation in the foot and hence, raised foot temperature (Stess 

RM, Sisney PC et al. 1986; Benbow, Chan et al. 1994). Firstly, the two studies used 

different thermal modalities and hence, there is no direct correlation between the results. 

Secondly, there were no measurements on the healthy controls to assess the degree of 

variation in foot temperatures. There remains uncertainty with the protocol as to location 

of the patient feet (exposed to air or on thermally conductive sheet) and lack of baseline 

temperature measurements prior to walking. 

In cases of tissue trauma, liquid crystals can be used to differentiate between regions of 

normal and impaired vascularity (Portnoy 1970). Stess RM et al. (1986) and Benbow et 

al. (1994) have used LCT for diabetic foot assessment. Two major problems with these 

studies were low quality imaging equipment and pressure sensitivity of thermochromic 

liquid crystals. Both the studies under consideration had supine measurements for feet, 

which do not replicate normal loading conditions to which the feet are subjected for most 

of the time. Both studies used latex based TLC to evaluate plantar thermal emission 

patterns. A TLC characterisation study by the author found TLC on latex support to be 

pressure sensitive (Bharara, Cobb et al. 2005). Due to its manufacturing procedures and 
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material properties, it suffers from non-homogeneities resulting in high uncertainties in 

measured hue values, which further leads to limited temperature resolution. Chemical 

formulation and sealed/unsealed states of the TLC determine the pressure sensitivity of 

the liquid crystal (Wozniak, Wozniak et al. 1996; Armstrong 2004). 

Tables 3-2 and 3-3 list the results from the two LCT studies for their respective patient 

groups. Both the tables present, readings as temperature in 0C± Standard Deviation (SD) 

for the study groups used. Stess RM et al. (1986) have reported significantly increased 

plantar foot temperature and mottled thermographic patterns for patients with active foot 

ulceration. Three patient study groups were used, diabetics with history of foot 

ulcerations, diabetics with active foot ulceration and non diabetic healthy controls. 

Stess RM et al. 

Group 1 (Non 
Diabetic Controls) 

Group 2 (Diabetic 

without ulcers) 

Group 3 (Diabetic with 

active ulcer) 

2710.3 26±0.3 28±0.3 

Table 3-2: Research study by Stess R11 et al. (1986). Al l' (Temperature In °C±SD) for three study 
groups as determined by liquid crystal thermography. 

Benbow et al. 
Group 1 (Non Group 2 (Diabetic Group 3 (Diabetic with 

Diabetic Controls) with Neuropathy, Neuropathy, with PVD 

without PVD ulcers) ulcers) 
25.7±2.1 28.2±2.9 25.6±1.9 

Table 3-3: Research study by Benbow et al. (1994). MMFT (Temperature In °C±SD) for three study 
groups as determined by liquid crystal thermography. 

Elevated temperatures at weight bearing sites i. e. metatarsal heads and heel may indicate 

pressure trauma or increased arteriovenous shunting (Chan, MacFarlane et al. 1991). The 

study by Benbow et al. (1994) found increased mean foot temperature (MFT) 

temperature in diabetic neuropathic patients leading to foot ulceration measured using 
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temperature sensitive liquid crystals. The study comprised of three study groups i. e. 

neuropathic with PVD, neuropathic without PVD and non diabetic healthy controls. 

Benbow et al. (1994) proposed that a normal or low MFT in the neuropathic foot is a 

marker of PVD, which confers an increased risk of ischaemic foot disease. 

3.2.6 Practical considerations for liquid crystal thermography 

During the clinical thermographic assessment, both static and dynamic studies are 

performed. Typically for static assessment, subjects are allowed 15-20 minutes for 

thermal adaptation prior to the test. Exchange of heat within the surroundings is uniform 

and takes account of both physiological and pathological hyperthermia/hypothermia. 

Dynamic assessment is important in diagnosis of thermal gradients on the measured site. 

Dynamic measurements can be accomplished by using appropriate thermal or mechanical 

stimulation of the measured tissue. Considering thermal stimulation, it may be beneficial 

to perform forced cooling and warming independently in order to distinguish any local 

phenomenon from a systemic phenomenon. 

There are four important factors which must be evaluated to judge performance of liquid 

crystal thermography. These include temperature resolution, spatial resolution, temporal 

resolution and insensitivity to pressure (Armstrong 2004; Bharara, Cobb et at. 2006). 

External factors such as ambient radiation, heat exchange between skin surface and 

surroundings and presence of fat, moisture and air between skin surface and liquid crystal 

film can affect the measured temperature (Behle, Schulz et al. 1996). 

Temperature resolution depends on temperature range within which the colour spectrum 

is observed (colour play), this further depends on the mixture and purity of the liquid 

crystals (Hallcrest 1991; Massi 2004). It also depends on the amount of overlap of 

reflected colour band and those of adjacent temperatures (Farina, Hacker et al. 1994; 

Grewal, Bharara et al. 2006). Encapsulated liquid crystals are limited by varying colour- 

temperature characteristics for different capsules (Armstrong 2004). 
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Spatial resolution of the thermochromic liquid crystals is limited by the size of individual 

crystal i. e. 10-15 microns and resolving capability of the optical system (Ilallcrest 1991). 

In a study by the author the spatial averaging of colour images is investigated by image 

analysis at the pixel level and microscope studies which revealed a non-homogeneous 

distribution of thermo liquid crystals at the microscopic level (Bharara, Cobb et al. 2005). 

Temporal resolution is directly related to the response time of the liquid crystal detector. 

It is the time required for the detector output to reach 1/e of its final value following a 

step change in the input. In the early applications of LCT, reponse times of the order of 

60 seconds were clinically acceptable for static assessment (Portnoy 1970; Anbar 1998). 

However, improvements in the LCT technology coupled with better imaging systems 

provide flexibility towards dynamic assessment (Farina 1995; Bharara, Cobb et al. 2006). 

The importance of dynamic assessment using LCT for the present study has been 

discussed. Details of response times of TLC are not readily available although a study by 

Ireland and Jones (1987) indicated relatively fast response times on the order of a few 

milliseconds for unsealed TLC (Ireland and Jones 1987). However, the response time is 

affected by the heat capacity of the film which is dependent on the construction and 

precise formulation. Wozniak et al. (1996) have suggested the response times on the 

order of 50 ms for microencapsulated TLC. 

Sensitivity to incident load and shear forces can affect TLC calibration and can be a 

limiting factor in application of the technology (Bharara, Cobb et al. 2006). This is 

critical in the context of the proposed study since thermal measurements are to be 

obtained at the plantar surface under normal loading conditions. This constraint is 

important since ulceration does not normally occur in an unloaded condition (Boulton, 

Connor et al. 1998). However, it is currently not possible to obtain simultaneous thermal 

and pressure measurements at the sole. This implies that pressure compensation for TLC 

will not be possible in the proposed study and a TLC formulation that is insensitive to 

pressure within the expected range is essential. Some formulations and encapsulation 

techniques appear to exhibit good insensitivity to pressure although to the author's 

knowledge objective data in support of such observations has not been published in the 
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literature. For this reason an extensive and detailed evaluation of pressure sensitivity was 

conducted for TLC sheets supplied by the manufacturer. 

In order to attain good repeatability and comparability of pathological thermal patterns, 

conditions in which thermographic assessment is performed must be standardised. A brief 

outline of optimum conditions is given below (Armstrong 2004). 

" Constant ambient temperature (20-24 °C) 

" No direct exposure to heat sources in immediate vicinity 

" Controlled humidity 

" Minimum basal temperature of body to avoid affect of internal and external factors on 
body temperature. (Basal metabolism refers to energy used to maintain constant body 

temperature). 

All examinations must be performed at the same time of day to avoid any errors due 

to circadian rhythm variations (Klosowicz, Jung et al. 2001). 

" Liquid crystal sheets can be destroyed by exposure to water, solvents or ultra violet 
light. Therefore, care should be taken to prevent such exposure. 

3.2.7 LCT - Recent work and current status 

Preliminary thermographic results show good correlation between liquid crystal 

thermography and conventional infrared thermography (Baer, Hetherington et al. 1988). 

However, there were no further research initiatives to develop the liquid crystal 

technology. The current work is consistent with the requirement of developing liquid 

crystal thermography as a useful tool to study thermal patterns at the lower extremities in 

diabetics. 

Thermological measurements provide data related to influence of total blood flow (i. e. 

both thermoregulatory and nutritional) in the tissue. Results from infrared thermographic 

studies show that rate of warming, maximum recovery temperature, degree of 

temperature variation at the anatomical site and lag time (time interval between onset of 
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thermal stress to onset of cooling/warming) are useful when assessing response to 

thermal cycling (Merla, Di Donato et al. 2002). Careful interpretation of results is 

necessary with respect to their physiological meaning. 

One of the key points that justifies current work as a progression of past research 

initiatives is the pressure insensitivity of thermochromic liquid crystals used. Better 

chemical formulations and manufacturing processes have led to availability of pressure 

insensitive TLC's (Armstrong 2004). For flow visualisation studies on solid surfaces, 

temperature insensitive and shear sensitive formulations with unsealed TLC are available 

(Armstrong 2004). Microencapsulation of the raw TLC eliminates the shear-stress 

dependencies of the liquid crystals (Wozniak, Wozniak et al. 1996). 

Using microscopic optics, non-invasive temperature mapping to 0.1 C with micron-level 

spatial resolution can be obtained using the ThermView' system. However, cost of such a 

system is a prohibitive factor for use in the current study. 

3.3 Calibration procedure 

3.3.1 Introduction 

Typical calibration procedure, alternative approaches, calibration parameters and 

determination of optimum parameters are discussed. 

3.3.2 Calibration of thermochromic liquid crystals 

In early applications of LCT, manual interpretation of single colour isotherms was used. 

The colours selected were yellow or green as human sight is most sensitive to these 

wavelengths. However, this interpretation was subjective, inaccurate and had poor 

thermal resolution. These methods were time consuming when a large dataset had to be 

analysed with detailed distribution of surface temperature. Digital image processing has 

ThermView by Advanced Thermal Solutions, Inc., MA (USA) 
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greatly reduced time to process thermographic data and provides good spatial and thermal 

resolution. Both chromatic and monochromatic techniques are used to assess temperature 

distribution. 

Colour detection either involves human observation, intensity based image processing 

(either by using monochromatic filters or monochromatic illumination) or colour based 

image processing (camera transforms the incoming light into RGB intensities). Colour 

detection using human observation has high uncertainty and inaccuracy (Behle, Schulz et 

al. 1996). Thermal resolutions better than 0.02°C have been reported using hue based 

calibration technique (Ashforth 1996). 

Temperature measurement using thermochromic liquid crystals requires calibration of the 

reflected wavelength using either a steady state or a transient technique. Calibration of 

thermochromic liquid crystals involves illumination by a source with well defined 

characteristics and measurement of the reflected wavelength at a given calibration 

temperature. The steady state approach (Camci, Kim et al. 1992; Hay and Hollingsworth 

1996; Hay and Hollingsworth 1998; Grewal, Bharara et al. 2006) provides accurate 

measurements that are independent of variations in response time that occur within the 

colour bandwidth (the change in hue is not a linear function of temperature). However, 

the time required for stabilisation of the reference temperature results in a lengthy 

calibration procedure. 

A faster calibration cycle is afforded by the transient technique in which the thermal 

reference is ramped over the colour bandwidth (Bakrania and Anderson 2002). However 

care must be taken to ensure that the rate of change of the temperature is slower than the 

response time of the LCT sheet, which in some formulations can be as high as 60s (Anbar 

1998). The complexity or duration of the calibration is further complicated by the need to 

obtain measurements that are spatially averaged over the sensing area. This requirement 

arises from variations in the homogeneity of the liquid crystals due to manufacturing 

tolerances. 
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Modern approaches to LCT calibration employ RGB image sensors which provide 

measures of the reflected intensities of the three primary colours i. e. red, green and blue 

intensities. These are then encoded using a suitable colour model to produce a single hue 

value which has a one to one mapping with temperature (Behle, Schulz et al. 1996: Hay 

and Hollingsworth 1996, Jambunathan, Hartle et al. 1996: Hay and Hollingsworth 1998; 

Chan, Ash forth-Frost et at. 2001; Anderson and Baughn 2004). 

V 

(tan Rrd 

Figure 3-4: The IISI colour model. Angle from the red axis gives hue and length of the vector gives 
saturation. Intensity is given by position of the plane on vertical axis. (Gonzalez et al. 2004) 

Typically, hue intensity from HSV colour space is used in TLC calibration to describe 

surface temperature. Hue based measurements are also known as HSI chromatic 

interpretation technique. HSI colour system is considerably closer than the RGB colour 

system to the way in which humans experience and describe colour sensations (Gonzalez, 

Woods et al. 2004). Figure 3-4, illustrates the hue-saturation-intensity (HSI) colour 

model. The remaining two variables are saturation and value, representing the purity of 

the colour and maximum RGB intensities respectively. The hue represents the dominant 

wavelength of colour and is derived from the RGB triplet value. 
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8 if B: 5 G 
H= Equation 3.1 

360 -9 if B>G 

1/2[(R-G)+(R-B)] 
B= Cos-' /2 Equation 3-2 

(R-G)2+(R-BXG-B) 

S =J- 
3 [min(R, G, B)] Equation 3-3 

(R+G+B) 

I= 113(R+ G+ B) Equation 34 

RGB colour intensities can be transformed into HSI colour space by using equations 3-1 

to 3-4 (Gonzalez, Woods et al. 2004). Here, `R', `G', `B' denote the red, green, blue 

intensities; 'H', 'S', 'I' denote hue, saturation and intensity. '0' is the measure of hue. 

The hue is not affected by light intensity and therefore, theoretically, does not change as a 

function of distance to the light source (Anderson 1999). Changes in light intensity only 

affect the saturation and intensity in the image. Another important characteristic of the 

hue is that it increases monotonically with the temperature. Thus, it is the single most 

robust variable offering a one to one mapping between colour and temperature. For each 

image acquired by the steady state technique, the mean and standard deviation in the hue 

is calculated for the region of interest. In order to minimise the measured hue 

uncertainty, saturation and intensity should be maximised by improving the TLC 

coverage factor (the ratio of TLC reflection to the background reflection) and proper 

choice of illumination source respectively (Anderson 1999). 

Hue temperature calibration is the most common technique used for almost all 

applications of LCT (Behle, Schulz et al. 1996; Hay and Hollingsworth 1996; 

Jambunathan, Hartle et al. 1996; Hay and Hollingsworth 1998; Chan, Ashforth-Frost et 

al. 2001; Anderson and Baughn 2004). However, other colour maps such as RGB 
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(Matsuda, Ikeda et al. 2000) and artificial intelligence techniques such as neural networks 
(Kimura, Uchide et al. 1992) have also been used. Matsuda et al. (Matsuda, Ikeda et al. 
2000) used normalized RGB values to develop a smooth calibration curve in three 

dimensions by interpolating the missing values. The advantage of this technique is that 

the entire colour bandwidth can be used unlike the hue temperature calibration. However, 

Matsuda et al. (Matsuda, Ikeda et al. 2000) have not considered the high standard 
deviation in RGB values leading to higher uncertainty in the measured temperature. 

Small variations in light intensity will further affect the RGB values raising uncertainty in 

the measured temperature. Kimura et al. (Kimura, Uchide et al. 1992) used neural 

networks to improve the hue based calibration technique, but did not consider other 
image parameters and the effect of lighting which may affect the temperature accuracy. 
Using the proposed approach, a calibration map for the entire colour bandwidth of the 

TLC can be constructed based on training from all datasets i. e. datasets from repeated 

calibration runs. Neural network based calibration technique for TLC is helpful to 

minimise dependence of measured temperature on variations in background illumination 

(Grewal, Bharara et al. 2006). 

3.3.3 Calibration parameters 

Since hue is dependent only on wavelength, TLC calibration data is independent of the 

intensity of the illuminating source (Anderson 1999). However the image data can be 

corrupted by artefacts that depend on the optical path (distance and angle) between the 

illumination source and imaged object as well as illumination from external sources. 

Bakrania and Anderson (Bakrania and Anderson 2002) have shown that sensitivity to 

illumination artefacts is reduced by polymer encapsulation of the liquid crystals. Farina et 

al. (1994) demonstrated that such artefacts could be minimised through use of on axis 

illumination and a cross polariser in the optical path to the imager. 

Additionally, achieving a reliable calibration requires that the characteristics of the 

illumination source, hysteresis and pressure sensitivity of the TLC must be considered. 

Hysteresis effects can significantly affect TLC calibration. Several investigators have 
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reported that liquid crystals exhibit hysteresis when heated above the clearing point 

temperature (Anderson 1999; Bakrania and Anderson 2002). The clearing point is the 

temperature at which the TLC becomes transparent as a consequence of the crystals 

achieving a non reflecting isotropic state. When TLC is cooled, the change back to the 

anisotropic semi-crystalline state is principally dependent on the rate of cooling which 

leads to a shift in the hue versus temperature profile. This change is reversible provided 

that the TLC is allowed to cool to a formulation dependent temperature termed the event 

temperature. The event temperature also signifies the lowest temperature at which a 

change in hue can be detected. 

The final complicating factor in the calibration of TLC is a discontinuity of the hue 

versus temperature response over part of the operating bandwidth close to the red-green 

transition (Anderson 1999). If compare the normalised hue value for red (-0.9), green 

(-0.2 - 0.3) and blue (-0.6), there is a discontinuity in hue in the red to green transition. 

Consequently, it is difficult to apply a least squares polynomial fit to the calibration data. 

Traditionally, this problem requires manual intervention to complete the calibration 

which further lengthens the procedure. The discontinuity in the hue must be eliminated 

before a polynomial fit can be successful. This reduces the usable colour bandwidth of 

the TLC. Recently, a novel solution based on a neural network that allows a calibration 

curve to be obtained over the full operating bandwidth without manual intervention has 

been developed (Grewal, Bharara et al. 2006). Specific details of this neural network 

based calibration approach are discussed in the next chapter. 

3.3.4 Determination of optimum characteristics 

Different physical forms of thermochromic liquid crystals, their specific applications and 

typical calibration procedures have been discussed in the preceding sections. The purpose 

of this section is to converge above facts leading to specific characteristics of a clinical 

LCT system. It must be emphasised that choice of TLC material, calibration approach, 

image analysis and reporting of results is task specific. The important factors to be 

considered include colour bandwidth of the TLC, hysteresis assessment, pressure 
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sensitivity and choice of calibration. A robust calibration determines the accuracy and 

thermal resolution of the measurement system. Independent assessment for the spatial 

resolution and temporal resolution must be performed, in accordance with the desired 

parameters such as measurement surface, its geometry and response times. 

The focus of current work is to use LCT for static and dynamic measurements of the 

plantar foot. In order to characterise the measurement system, a consistent protocol must 

be developed and followed to achieve useful results. Keeping in mind the benefits and 

ease of calibration, hue temperature calibration will be most appropriate for the current 

work. 

In order to develop LCT as a tool for neuropathic assessment of the diabetic foot, the 

issues related to independent thermal measurements must be resolved. Considering this, 

various thermal measurement modalities such as electrical contact thermometry, infrared 

thermography and cutaneous temperature discrimination thresholds were considered. 

Each technique is independently discussed with a brief background, data processing 

requirements, medical applications, and suitability for diabetic foot assessment in the 

following section. 

3.4 LCT versus other thermological methods 

3.4.1 Introduction 

Different methods used clinically to assess small fibre function are discussed. 

3.4.2 Electrical contact thermometry 

Electrical contact thermometry in general means use of appropriate transducers 

(individual or arrays) to measure surface temperature of the body in contact. Thermistors 

or semiconductor resistors are used for accurate local measurements. Thermocouples are 
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application of Seeback effect, where two different metals under a temperature differential 

produce a contact voltage or thermal electromotive force (depends upon contact site). 

Kelechi et al. (2006) propose a limit of agreement of ± 1.5°C between infrared and 

thermistor thermometers (Kelechi, Michel et al. 2006). However, these are only suitable 

for localised skin temperatures for symptomatic sites and do not have whole field 

capability (Baer, Hetherington et al. 1988). Foot sized arrays or smaller local arrays 

could be built to measure foot temperature under the plantar surface (Anderson 2001). 

Giansanti et al. (2006) have simulated and developed a thermal odoscope for the 

wearable dynamic thermography (Giansanti, Maccioni et al. 2006; Giansanti and 

Maccioni 2007). This is a device based on thermocouples for contact thermography with 

typical applications in breast thermography, viability studies, dermatological studies and 

rheumatic disorders. A similar electronic thermometer for ambulatory measurements in 

the diabetic foot with neuropathy has been reported (Kang, Hoffman et al. 2003). 

Fundamental considerations associated with electrical contact thermometry are response 

time, calibration, temperature dependence of measured variable and effects on object 

being measured. Response time depends on measurement conditions, sensor (or probe) 

size and heat capacity. Calibration for skin surface measurements is difficult (unlike for 

fluid calibration). Special thermal phantoms can be made for comparative measurements 

with calibrated electrical surface thermometers. Excessive pressure from the sensor (or 

probe) could alter the blood supply and hence, surface temperature. 

However, there were issues relating to patient isolation, variable response times for 

different thermocouple units, compensation electrical circuits for thermocouple units and 

real time data logging instrumentation. 

3.4.3 Infrared thermography 

Infrared (IR) thermography is real time temperature measurement technique used to 

produce a coloured visualisation of thermal energy emitted by the measured site at a 
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temperature above absolute zero. Jones and Plassmann (2002) have provided an excellent 

review on IR technology along with related image processing considerations. 

Traditionally, a 2-D image representing 3-D thermal distribution is acquired using 

standard image acquisition hardware. Each pixel in the image depicts the radiance falling 

on the focal plane array/microbolometer type detector used in IR camera. 

Technological advances in IR cameras in terms of speed and spatial resolution now make 
it possible to quantitatively assess thermal patterns. It is recommended that IR imaging 

equipment must be regularly calibrated and characteristic parameters must be determined 

using simple tests like spatial resolution, stability of temperature measurement and 

linearity of field. The imaging protocol and quantitative techniques in medical 

thermography have been well described (Ring and Ammer 2000). Jones et al. (2005) 

identified a common need to establish a reference database of normal thermograms from 

which the abnormal findings can be reliably assessed (Jones, Ring et al. 2005). The 

reference database is a multi-centre effort to standardise infrared imaging for 

reproducible and clinically relevant thermal measurements. 

IR thermography finds numerous applications in medicine which include breast 

thermography, vascular complications (Wang, Wade et al. 2004), skin thermal properties 

(Otsuka, Okada et al. 2002), inflammatory response (Rajapaksc, Greennan et al. 1981; 

Ring, Dieppe et al. 1981; Ring 1987; Armstrong, Lipsky et al. 2006), Raynaud's 

phenomenon (Howell, Kennedy et al. 1997; Merla, Di Donato et al. 2002; Foerster, 

Wittstock et al. 2006), sleep research (Heuvel, Ferguson et al. 2003) and pain related 

thermal dysfunction. IR thermography is non invasive and high resolution technique used 

to measure physiological changes complementing standard radiographic investigations 

(Jones and Plassmann 2002). Wang et al. (2004) used lR thermography in a small patient 

group with vascular or neurological complications and emphasised the need for 

establishing normal variation of skin temperature, before establishing abnormal criterion. 

The technique has been used to assess both anatomical and functional changes. 
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Langer et al. (1972), Reardon et al. (1982), Armstrong and Lavery (1997), Armstrong et 

al. (1997) and Harding et al. (1998) have used IR thermography to study vascular 

complication and foot ulceration in diabetes mellitus (Langer, Fagerberg et al. 1972; 

Reardon, Curwen et al. 1982; Armstrong and Lavery 1997; Armstrong, Lavery et al. 

1997; Harding, Wertheim et al. 1998). Ideally, it will be beneficial to employ 

thermographic measurements to prevent foot ulceration by studying and documenting 

thermal findings in lower extremities in well designed clinical studies (Armstrong, 

Lavery et al. 2003; Lavery, Higgins et al. 2004). 

Other physiological techniques like capillary microscopy, laser Doppler flowmetry and 

plethysmography do not have the whole field measurement capability like IR 

thermography. Blood vessels close to skin surface can be easily traced by the IR images 

(Jones and Plassmann 2002). Merla et al. (2002) used IR thermography to assess 

vasoconstrictive response to cold stress for patients with Raynaud's phenomenon in a 

pilot study. One of the significant findings of the study was the ability to follow up 

pharmacological treatment effects. 

High sensitivity IR cameras are available but at an increased cost. Besides, IR 

thermography has poor specificity, for example, thermographic images cannot identify 

the cause heightened perfusion which could be inflammation, trauma, angiogenesis, 

systemic or local degeneration. It must be emphasised that the measurements can 

complement existing results from other modalities. Dynamic area telethermometry 

(DAT) is an useful biomedical technique based on IR imaging and can be used to assess 
diabetes mellitus (Anbar and Milescu 1998). It employs assessment of haemodynamic 

and neurogenic variations in the tissue and offers an objective and quantitative diagnostic 

figure of merit. 

3.4.4 Cutaneous temperature discrimination thresholds 

Temperature discrimination threshold is a measure of small fibre function and is 

clinically relevant as temperature sensation is affected early in diabetic patients 
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(Bertelsmann, JJ. et al. 1985; Guy, Clark et al. 1985; Ziegler, Mayer et al. 1988). Loss of 

small fibre function due to diabetic neuropathy is a major cause of morbidity in diabetic 

patients (Liniger, Albeanu et al. 1991). Viswanathan et al. (2002) investigated cutaneous 

temperature discrimination using TipTherm2 device (based on different conductivity of 

materials) for diagnosis of distal symmetrical polyneuropathy. It is a pen like device with 

two flat sides (one made of metallic material and the other from synthetic material) 

independent of external power sources, easy to handle and light weight. Its effectiveness 

was evaluated against standard methods of assessing neuropathy and it showed 97.3% 

sensitivity and 100% specificity when compared with biothesiomctry. Comparison with 

monofilament produced a comparable sensitivity (98.3%) and reduced specificity at 

92.1%. 

Bertelsmann et al. (1985) used two- alternative forced choice procedure method that 

employed thermostimulator (based on Peltier principle) to assess cutaneous thermal 

perception at foot dorsum and hand dorsum. Both warmth and cold receptors were tested 

using the thermal stimulator. Two most important findings of this research were the age 

related differences in thermal discrimination and length dependent nature of diabetic 

neuropathy. 36 normal subjects and 20 diabetic subjects with ncuropathy were selected 

for this study. It can be argued that these subjects were not age and sex matched. 

Secondly, to understand the age related differences a larger number of both elderly and 

younger patient groups are required. The operator bias, intra subject variability and 

overall subjective nature of the technique discount its use as a routine assessment tool for 

thermal measurements in diabetic patients. The size of the Peltier stimulator (3cm by 

4cm) used means only a local measurement can be performed at a time. This technique is 

based on subjective assessment and considers response of either cold receptors or warmth 

receptors due to two reasons (a) specific points are sensitive to either warmth/cold stimuli 

and (b) cold receptors outnumber warmth receptors by a factor of 3-10 in most areas of 

the body (Guyton 1992). 

2 TipTherm by Axon GmBh Dusseldorf, Germany 
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Liniger C et al. (1991) assessed thermal sensitivity in diabetic neuropaths using specially 

developed Thermocross tool (based on thermoresistances). They reported that the deficit 

in thermal sensation detected by Thermocross paralleled the decline of nerve conduction. 

3.5 Justification for using LCT in the present study 

Presently, clinicians assess circulatory function, neuropathic complications and pressure 

distribution in the lower extremities to identify risk of foot ulceration (NHS 2004). This 

combined approach is well accepted throughout the diabetic clinics and research centres 

to prevent the onset of foot ulceration. NICE guidelines suggest considering the risk 

category of patients, relative contribution of all contributory factors and incorporating the 

respective management strategies for the treatment of diabetic foot disease. 

Pathways leading to ulceration and underlying pathophysiology have not been fully 

identified. Although it is widely accepted that risk of traumatic consequences of foot 

ulceration can be reduced by clinical intervention following a reliable diagnosis based on 

clinical presentation and appropriate tests (Armstrong, Lavery et al. 1998; Viswanathan, 

Madhavan et al. 2005). It is highly unlikely, that a severely neuropathic foot will respond 

to any form of intervention, thus accentuating the need for early diagnosis of the 

neuropathic condition (Perkins and Bril 2002). 

The clinical diagnostic criterion for the diabetic foot is well documented in literature 

(NHS 2004). However, the research efforts in refining the diagnostic algorithm for 

diabetic foot disease have been limited. Armstrong et al. (1998) report on the marriage of 

simple sensory testing modalities to screen for risk of diabetic neuropathic ulceration 

with emphasis on the technique characterisation. They recommend selecting a quick, 

inexpensive and accurate instrument (high sensitivity and specificity) for clinical use 

followed by appropriate intervention modalities. It may also be beneficial to evaluate 

alternative relevant modalities for the same purpose. 
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Thermal changes under the plantar foot may be compounded by vascular insufficiency, 

diabetic neuropathy, skeletal changes, infection or a combination of these factors. 

Reactive hyperaemia following a period of loading is impaired in the neuropathic foot 

(Flynn, Edmonds et al. 1988; Cobb 2000). There is however, very little evidence 

suggesting the status of a similar response to thermal cycling specific to diabetic foot 

assessment. Systemic thermal stimulation increases skin blood flux through reduced 

sympathetic neural action on AV shunts, whereas local heating affects capillary perfusion 

irrespective of sympathetic neural activity (Hales, Iriki et al. 1978; Hales 1983; Hales, 

Jessen et al. 1985). A laser Doppler study (Rayman, Williams et al. 1986b) demonstrated 

impaired hyperaemic response to thermal stimulus in type I diabetic patients. 

Diabetic neuropathy results in increased microcirculation and dissipates heat due to 

increased metabolic rate (Archer, Roberts et al. 1984; Stess RM, Sisney PC et al. 1986; 

Clark, Goff et al. 1988; Benbow, Chan et al. 1994). Dynamic measurements may be 

sensitive for detection of perfusion abnormalities owing to neuropathy in diabetic 

subjects. The change in temperature when warming or cooling the foot are described by 

the change in environment, heat exchange between surrounding tissue by conduction, 

heat exchange owing to perfusion and heat production by metabolism. Figure 3-5, 

illustrates the measurement parameter when using LCT for a clinical assessment. It is 

therefore appropriate to consider the affect of neuropathy on regulation of blood flow, in 

the foot. Ring et al. (1984) recommended the use of thermography for information on the 

normal and abnormal functioning of the sensory and sympathetic nervous systems, 

vascular dysfunctions and local inflammatory processes (Ring and Phillips 1984). 
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Gradient 

Physiological changes: 

a) Vasodilation 

b) Vasoconstriction, 

c) Sweating 

d) Tissue metabolism 

Ambient conditions: 

a) Temperature 
b) Air flow 

c) Thermal radiation 
d) Clothing 

Skin and TLC surface interface 

Figure 3-5: Schematic diagram showing the measured parameter when using LCT. Contact 
thermography disturbs thermal conditions at the measurement site. Ideally, thermal patterns must 
be recorded before ambient conditions significantly induce physiological changes. 

Neurogenic modulations result from neuroregulatory processes which involve feedback 

from peripheral and visceral thermosensors (Anbar and Milescu 1998). It is suggested 

that diabetes disturbs unmyelinated nerve fibre function prior to and more severely than 

large fibre function (Guy, Clark et al. 1985; Ziegler, Mayer et al. 1988). The neuropathic 

foot exhibits increased skin temperature and heightened colouration under rest, indicative 

of increased blood flow (Cobb and Claremont 2002). There is supporting evidence from 

other studies (Stess RM, Sisney PC et al. 1986; Benbow, Chan et al. 1994) which confirm 

these findings. 

The above findings are also well supported by the developed hypothesis of `capillary 

steal' theory which incorporates arteriovenous shunting (Uccioli, Mancini et al. 1992). 

There are two main types of capillaries involved in skin perfusion, nutritive and 

thermoregulatory. According to the `capillary steal theory', microcirculatory blood 

bypasses nutritional capillaries through the dermal thermoregulatory capillaries leading to 
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tissue hypoxia due to maldistribution of skin microvascular blood flow (Uccioli, Mancini 

et al. 1992). Mork et al. (2000) provided a hypothesis similar to the popular `capillary 

steal' theory for arteriovenous shunting as the pathogenetic factor in erythromelalgia 

(Condition of red, warm and burning painful extremities). Mork et al. (2000) suggest 

disease etiology may be of neural or local vasoactive origin. Erythromclalgia is a rare 
disorder of unknown etiology (Mork, Asker et al. 2000) producing similar symptoms 

(AV shunting and denervated sympathetic pathways) as in diabetic neuropathy (Vendrell, 

Nubioda et al. 1988; Staub, Munger et al. 1992). An alternative proposal the 

`haemodynamic hypothesis' (Netten, Wollersheim et al. 1996) links microangiopathy and 

rheological changes in blood vessels with the observed impaired hyperaemic response. 

Despite evidence from the preceding studies suggesting local changes in the response to 

thermal variations may be significant in ulceration, there is no conclusive link and 

evaluation of thermal sensitivity remains a research topic that has seen little progress 

towards adoption as a routine clinical measure. A key development has been the 

relatively recent availability of pressure independent temperature measurements using 

liquid crystal films. The development and application of this technology in assessing the 

diabetic foot is primary goal of the present study. 

3.6 Summary 

In order to provide a reliable diagnosis for peripheral neuropathy and compensate for the 

frequently mild, subclinical or moderate nature of the disease, it is essential to 

supplement the standard array of neurophysiological tests. It has been discussed that 

assessment of small fibre function can further clinician's understanding about the extent 

of neuropathic damage. Quantitative assessment of small fibre degeneration offers 

possibility of monitoring effects of drugs and metabolic status in lower extremities due to 

altered glycaemic levels in diabetes. 

The focus of current work is to determine association between thermal changes in plantar 

foot and sensory loss in diabetic foot disease using an appropriate thermal imaging 
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technique. The development of appropriate technique must be able to emerge from the 

complex research protocol into a simple clinical tool, supporting evidence management 

of the diabetic foot. 

Measurement of plantar pressure and determination of extent of sensory neuropathy 

cannot be used to establish the mechanisms that lead to tissue damage and initiate 

ulceration. Thermological techniques can be used to supplement above measurements by 

providing both qualitative and quantitative data. Skin temperature is a product of 

influences arising from both internal structures and external conditions. In early stages, 

the affected areas appear as hot spots but later on appear cold due to significant vascular 

impairment. A low cost imaging technique with high sensitivity, high specificity and a 

well defined measurement protocol can significantly contribute to evaluation and 

treatment of diabetic foot. 

LCT allows the clinician to localise symptomatic areas and employ appropriate 

intervention and monitor its effects. The determination of a normal or abnormal thermal 

pattern must be by the thermal uniformity of temperature and by comparisons of 

symptomatic and asymptomatic areas. 
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Chapter 4 Development of a liquid crystal thermography 
system 

4.0 Introduction 

The purpose of the work presented in this chapter is to evaluate three physical forms of 

liquid crystals based on their characteristic parameters, including calibration, spatial 

density, pressure sensitivity, hysteresis and response time. The following sections discuss 

the development of the prototype system, characterisation of commercially available 

thermochromic liquid crystals, a new calibration algorithm using neural networks and 

implementation of a novel clinical LCT system. Analysis was accomplished through 

detailed hue-temperature calibration data for both narrow band and wide band TLC. The 

experiments described below were performed with the intent of developing a low cost 

clinical thermography system for assessing the diabetic neuropathic foot. The principal 

need for such a system is to further understanding of the pathogenic mechanisms of 

plantar ulceration in diabetic patients. 

4.1 Pre development work 

4.1.1 Design of initial prototype system 

The commercial contact thermography system (Contflex System3) was considered for the 

intended application. It consists of a measurement plate with an air inlet valve to enable 

the sensing surface of the sensor to adapt to the contours of the anatomical part. This 

system is intended for use in rheumatology, orthopaedics, dermatology, sports medicine, 

angiology and for detection of breast tumours (Leinidou 2003). This device is typically 

useful in breast thermography to assess the curved surface. Although, a similar system 

has been used for diabetic foot assessment (Stess, Sisney et al. 1986). Pneumatic control 

is not an essential permissive factor in the design of a typical LCT system. The 

measurement plate consists of thermochromic liquid crystals on latex support which is 

3By I . PS. s. r. l. - International Products & Services, Milan (Italy) 
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imaged by a Polaroid camera illuminated using a diffused flash light. However, this 

system was found to be unsuitable for assessment of the diabetic foot with neuropathy for 

the following reasons: 

a) The cost of the system4 (circa £2000.00) was discussed with diabetic consultants and is 

generally considered prohibitive for routine assessment. This is a central justification for 

the current study which aims to provide a lower cost solution employing thermochromic 

liquid crystals (a maximum target cost of £1000.00 has been specified following 

discussion with consultants). 

b) The Contflex System was not capable of recording thermal patterns under the foot in 

the presence of underlying pressures as there was a danger of physical damage to TLC 

plates. Moreover, the thermochromic crystals employed in this system are not tested for 

pressure sensitivity (Quagliardi 2005). Conversely, TLC sheets (available from Hallcrest, 

UK) specifically employ a pressure insensitive chemical formulation (Armstrong 2004). 

c) Temperature measurements using TLC plates in the Contflex system were limited by 

the manufacturer's calibration. This system is typically, used for qualitative analysis and 

it is difficult to calibrate latex based TLC using conventional approaches (Bharara, Cobb 

et al. 2005). 

d) The conformal properties of latex provide a cushioning effect such that the thermal 

measurements are not representative of actual loading conditions of the foot during 

standing and gait. 

To evaluate the feasibility of producing a low cost LCT system for assessing plantar 

temperatures under normal loading a simple measurement platform was constructed 

(Appendix B). A thermochromic liquid crystal polyester sheet (450mm x300 mm) was 

fixed onto an optical grade polycarbonate glasss of 6mm thickness using single sided 

4 Cost includes prices for Contflex AGT8 system and TLC plates 
5 By Edmund Optics, York, UK 
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adhesive tape. This assembly was then located in a recess such that it was flush with the 

surface of reinforced wooden box. Four fluorescent bulbs6 (20 watts each), colour 

temperature 6500K were located within the platform to uniformly illuminate the TLC 

sheet through the polycarbonate window. Photograph 4-1 illustrates this prototype 

measurement platform. 

To ensure stable illumination, matched fluorescent bulbs were used and driven from a 

filtered mains supply of 240V. A variable mains control was used which allowed the 

illumination to be switched and the illumination level accurately adjusted. These controls 

were mounted at the base of the platform in accordance with standard electrical safety 

procedures. 

The inside of the measurement platform was painted matt white to ensure diffuse 

scattering of light from the source. This was necessary to eliminate bulb artefact from the 

acquired images. Image capture was achieved using a three chip CCD (charge coupled 

device) video camera (Panasonic NV-MX 500, RGB) with integral digital (SD) memory 

card. The camera did not allow automatic image acquisition. 

The prototype measurement system was carefully assessed for safety under static loading 

using a 200 litre water butt filled with water to simulate loads up to 120 Kg. The system 

was then used to obtain test images from four healthy volunteers in accordance with 

University ethical regulations. 

Prior to image acquisition, all subjects were made comfortable and seated on a chair with 

feet flat on ground. The subjects were barefoot, with feet resting on their footwear. After 

15 minutes of temperature acclimatisation with the ambient temperature, they were 

instructed to place their right foot on the platform. A set of eight images were acquired 

for each subject in the seated position with a two second sampling rate. There was no 

stimulus (either thermal or physical), therefore only static data was acquired. The images 

were taken manually (whilst the camera rested on a tripod) and the sampling rate of two 

6 By Light Bulbs Direct Ltd., Bucks, UK 
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seconds was chosen for ease of operation. Photograph 4-2 illustrates individual images of 

the plantar surface of right foot for the four healthy test subjects. Image resolution was 

640x480 and all images stored on the SD memory card had to be manually transferred to 

the hard disk for analysis. 

Photograph 4-1: Photograph of the first prototype measurement platform. 

(a) 

v) 

(b) 

A 

Photograph 4-2: Typical images of plantar surface of the feet from four subjects acquired with TLC 

sheet. 

It can be seen that the anatomical shape of the foot, especially the foot arches has a 

considerable affect on overall image. Furthermore, small differences of temperature 

affect image content, for example compare toe area between images (a) and (c). 
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4.1.2 Evaluation of initial prototype system 

\VIaa"n te"ting the cltectiýcness of the L('T protot\pe systeni. , e%eral drawhacks were 

identified. There was optical distortion in the image due to flexing of the polycarbonate 

under load. Heat from the light source was found to induce thermal noise in the TLC 

sheet. Furthermore, the imaging approach employed in the original system resulted in a 

large physical size which was cumbersome to manoeuvre. 

To address this issue, imaging path length was reduced by employing two small mirrors 

which allowed for a smaller system with improved modular construction, greater 

portability and robustness. It was found that adequate image illumination was achievable 

using two rather than four sources. This fact coupled with the revised construction 

allowed the illumination sources to be effectively thermally isolated from the TLC sheet 

eliminating thermal noise. The revised position of the bulbs also solved the original 

problem of source artefacts in the image. Consequently it was no longer necessary to 

whiten the interior of the platform and a black matt paint was used instead to optimise 

image contrast. A further significant improvement provided by the final design was the 

ability to image both feet. This can further aid in evaluating bilateral symmetry in the 

diabetic neuropathic foot, by comparing the thermal patterns of contralateral foot with 

those from the symptomatic foot. However, due to design limitations and the need for 

expensive optics, both feet could not be assessed simultaneously. By shifting the camera 

module over the slider as illustrated in photograph 4-3. each foot can be assessed. 

aauent Feet 

1 

Slider Camera Cahbrafon Region 
Poeibon 

V rr r2 

Fluorescent Geht bulbs (20W, 6500K) Mirror 1 

(a) (b) 

Photograph 4-3: Second measurement platform with modular design and ability to image both feet. 

w+äi i 
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4.1.3 Final prototype of the measurement platform 

To improve the mechanical strength, image quality and portability of the of the 

measurement platform, a third prototype was designed. This eliminated the need for the 

modular design of the second prototype and the system was converted into a single 

smaller unit. The final prototype includes improved light sources (LED strip lights7), a 

high reflectivity mirror5 and a firewireTM (Apple Inc. 's trade name for IEEE 1394 high 

speed serial bus) CCD imaging device8. This design compromised on the ability to assess 

both feet simultaneously, however it significantly improved the image quality. 

The third (final) prototype was fabricated from reinforced wood in accordance with the 

design drawing given in Appendix B. Optical grade polycarbonate of 15mm thickness 

was used as the support for the TLC polyester sheet. This provided good optical access 

and low thermal conductivity. Three minutes was found to be suitable for the 

polycarbonate sheet to return to ambient temperature, after removing the calibration 

plate. This avoids any residual artefacts in the subsequent TLC images. In the final 

design, a small and portable imaging device based on the Institute of Electrical and 

Electronics Engineers (IEEE) firewirelm interface was included. This camera (DFK 

41028) is a progressive scan, single CCD device offering a maximum resolution of 

1280x960 pixels. Detailed specification and camera dimensions are provided in 

Appendix C. The camera uses DCAM protocol (standardised by Instrumentation & 

Industrial Digital Camera), approved for scientific and medical applications for transfer 

of image data and transfer of parameters to control the camera such as brightness, 

exposure and white balance. 

The light emitting diode (LED) strip lights are special solid state devices running on low 

power (12V DC) and producing high intensity light. Each LED produces cool white light 

with colour temperature 8000K and has a viewing angle of 85°. The LED strips are self 

adhesive and are mounted on steel brackets. The LED's replace the fluorescent bulbs in 

second prototype and offer flexibility, low cost, energy efficiency, shock/vibration 

7 By Ledtronics, Torrence, California, USA 
8 By The Imaging Source Europe GmbH 
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resistance, no RF interference, noise free operation, and high life. The most important 

advantage is however, that LED's produce no heat and do not effect the clinical 

measurement of plantar foot temperatures. Technical details and optical spectrum are 
discussed in Appendix C. 

In order to improve the image quality, it is important to maximise reflection from the 

mirror into the camera. One of the most important benefits of the third prototype design 

over its predecessor was that, it discounted use of two mirrors. In the latest design, a high 

reflectivity (>90%) was used in a rectangular shape (254x313mm; 6mm thickness). These 

are special mirrors coated with enhanced aluminium for high reflectivity. A rectangular 

shape provides additional benefit for the intended application i. e. mirror at 45° for a 90° 

bend in the path of light. 

Photographs 4-4 and 4-5, illustrate the top view and side view for the improved 

measurement platform. This approach reduced the construction time, cost of the material, 

portability, mechanical strength and made the unit easily serviceable. The need to prevent 

cross infection when designing a clinical system was also considered. However, the study 

protocol excludes patients with any active foot ulcers or infections. 

Photograph 4-4: Photograph of the LCT measurement platform illustrating top view. 



LI 
Black Paint 

(Matt) 

Photograph 4-5: Photograph of the L CT measurement platform illustrating side sits and camera 
position. 

Having established the design cif the measurement , Nsicin. it %%a,, important tu itie it tiIs the 

most suitahle TLC material l 'or use as temperature sensor. t'nt'urtunatels. it became 

apparent that TL(' manufacturers were only able or billing to provide sers limited 

characterisation data. Therefore it was considered necessary to conduct an e\trnsi\e 

analysis of various TLC materials to assess the Volloww ing performance characteristic.: 

thermal and spatial resolution. repeatability. %ernsitivity, hysteresis, pressure %ensitis it\ 

and respon e tu lie. 'File experimental procedures of tills investigation are drsrritkd in the 

t*ullOwing sections. 
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4.2 Evaluation of thermochromic liquid crystals 

4.2.1 Introduction 

This section focuses on the methodology adopted to choose the most suitable TLC 

formulation for use in the LCT system under consideration. This was accomplished by 

the independent, in vitro characterisation of three physical forms of TLC using a 

commercial liquid crystal thermography system, TempView9. Two different calibration 

approaches were implemented for the analysis of acquired data. The following sections 

discuss the experimental setup and procedures used. 

4.2.2 In vitro characterisation of three physical forms of TLC 

4.2.2.1 Experimental setup 

The experimental set up comprised an image acquisition system and a calibration plate as 

shown in figure 4-2. Three TLC polyester sheet1° materials with different colour 
bandwidths were used: R25C5W, R25CIOW and R25C15W. A standard TLC emulsion 

formulation10 R25ClOW was used. A sample of latex based TLC composite material was 

obtained from IPS3 (Milan, Italy) and was specified by the manufacturer as a 5°C colour 

bandwidth and event temperature of 26°C. 

Samples of each TLC sheet and latex material were prepared by cutting them into 25mm 

x 25mm squares using a scalpel. Due to practical difficulties, the edges cannot be 

resealed, however the TLC material is encapsulated and bonded 

to the sheet so cutting has no effect on the colour response of the sheets (Armstrong 

2004). Any direct contact with water can destroy the sheet, therefore this was avoided. 

These samples were mounted using a thermal epoxy on the aluminium carrier of a 

9 By ImageTherm Engineering, Waltham, MA, USA 
10 By Hallcrest Ltd., West Meadows Industrial Estate, Derby, UK 
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hotplate. For the emulsion specimens, TLC's were mounted onto aluminium hotplate 

carriers which had previously been painted matt black. 

The image acquisition system comprised a personal computer, a Sony XC-003 CCD 

colour video RGB camera, a 20W halogen light source11, a PC based National 

Instruments IMAQ PCI-1408 image processing board and a temperature controller9 
(Watlow Series 96 Temp Controller). RGB images were captured and saved in TIFF 

format with a resolution of 320x240 pixels. The calibration plate was a thermoelectric 

unit9 interfaced to the computer via LABVIEW to collect and store data. 

Figure 4-1: The optical spectrum curve for the A20800 EKE halogen bulb. The graph shows relative 
output versus wavelength curves for the three variants of the bulb. The experimental setup used 
`EKE' bulb for the work under consideration. It is a fairly linear spectrum with low intensity at the 
blue end (400 nm) and high intensity at the red end (700 nm) (Schott 2005). 

Figure 4-1, illustrates the optical spectrum for the illumination source (colour 

temperature, 3200K). This illumination source represents commonly used sources for 

TLC work, with a relatively flattest possible spectrum (Anderson 1999). The unit comes 

with an IR interference filter for cool illumination (Schott 2005). The power level of the 

light source could be manually controlled. The system lighting level was adjusted to 

avoid colour saturation. The camera and light source were placed above the calibration 

" By Schott North America Inc., NY, USA 
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surface with an optimum separation of 25cm. This value was determined empirically in 

order to maximise image clarity whilst minimising thermal coupling from the source to 

the TLC specimen. Room temperature regulation and forced cooling of the source were 

in accordance with manufacturers instructions. Additionally a silicon photodiode was 

used to monitor any fluctuations in light intensity and it was found necessary to allow a 

10 minute stabilisation period following changes in output power. Instabilities occurring 

during the measurement period were monitored using the silicon photodiode coupled to 

an 8-bit analogue to digital converter which provided intensity measurements in arbitrary 

units. Mean illumination intensity was calculated from 10 measurements obtained prior to 

the duration of each calibration cycle. This basic set up was held constant for all tests. 

Fibre Optic 
Light Source 

aooo 

if RGB-CCD 
Camera 

+II 

Power Supply Il 

TLC. Specini 

Hot Plate 

f; pj 

Figure 4-2: Basic experimental setup showing the image acquisition and temperature measurement 
system used for calibration of the TLC specimens. 

4.2.2.2 Hue versus temperature calibration 

Using the conventional calibration approach described in the previous chapter, data was 

acquired using the above setup. Table 4-1 defines the useful operating range for the 

various TLC materials considered in the calibration experiments. 



105 

Material Event 
Temperature 

De C 

Clearing Point 
Temperature Deg 

C 

Colour 
Bandwidth Deg 

C 

Useful 
Calibration 

Range De C 
R25C5W S 25 46 ±0.1 25-30 28-36 
R25C10W S 25 50±0.1 25-35 29-41 
R25C15W S 25 52±0.1 25-40 29-46 
R25C1OW P 25 50.5±0.1 25-35 29-41 
R27C5W L 26.3 42±0.1 26.3-31.3 n/a 

S- TLC Sheet; P- TLC Paint and L- TLC on Latex Support 
Table 4-1: Useful operating ranges for several TLC materials. The event temperature and 
colour bandwidth were supplied by the manufacturer. Clearing point temperature and 
usable calibration bandwidth were measured using the thermoelectric unit (Accuracy ± 0.1 
Deg Q. 

Images were acquired at each set point temperature (0.5°C apart) within the calibration 

range for all TLC materials. Detailed procedure and time taken for each calibration is 

discussed in Appendix D. 

MATLAB software was used to analyse the captured images and generate hue versus 

temperature calibration curves for each TLC sample. RGB values for all pixels were 

converted to hue in MATLAB using the `rgb2hsv' function. This algorithm is equivalent 

to the most common hue definition (Hay and Hollingsworth 1996), but it is numerically 

more efficient. The algorithm can be approximated by equation [1] (Bakrania and 

Anderson 2002). 

-ý 90-arctan(F/. ýG)+ 
G>B0 fG 

<B -* 180 Equation 4-1 
Hue = 360 

Where, F 
2R-G-B 

=G-B Equation 4-2 

Detailed results using the above experimental setup and procedure are presented in the 

next chapter. Measurement repeatability was evaluated to assess ageing and 

environmental behaviour these are considered in the following section. 
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4.2.2.3 Measurement repeatability 

To assess measurement repeatability per sample, 30 data sets were collected for the 

R25C5W TLC sheet. Considering the time taken for each calibration run i. e. 45 minutes, 

the complete data set was collected over five days. Figures 4-7 and 4-8 illustrate hue 

versus temperature calibration curve and hue data points for the R25C5WTLC sheet 

respectively. Mean normalised (8 bit hue scale converted to 0-1 scale by dividing all 

values by 255) hue is based on n=30 samples i. e. the calibration procedure was 

consistently repeated for 30 times consecutively on the same sample of R25C5W TLC 

sheet. 
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Figure 4-3: Hue versus temperature calibration curve for a TLC sheet material, in this case 
R25C5W. Only the useful hue range is displayed with temperatures from 28°C - 36°C. Mean 

normalised hue is based on n=30 samples. 

The temperature range shown in figures 4-3 and 4-4 is 28°C - 36°C corresponding to the 

temperature set points for the useful hue calibration range. The discontinuity in hue was 

removed before fitting the polynomial. This process of fitting a polynomial through the 

calibration data provides a continuous function describing the relationship between hue 

and temperature. The technique has been validated for LCT work (Camci, Kim et al. 

1992; Hay and Hollingsworth 1996; Bakrania and Anderson 2002). The order of the fit 

was decided by assessing the accuracy of the fit parameters such as SSE (sum squared 



107 

error), R-Squared error, Adjusted R-Squared error, and RMSE (Root mean square error). 

These parameters are further discussed in Appendix D. 
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Figure 4-4: Hue versus temperature data points for a TLC sheet material R25C5W. Only the useful 
hue range is displayed with temperatures from 28°C - 36°C. Normalised hue for n=30 samples is 

shown within the useful hue range at each temperature set point. Mean normalized hue and standard 
deviation for 30 samples is used to fit the appropriate polynomial and calculate the 95% confidence 
interval for the data, as shown in figure 4-7. 

Following data acquisition, additional hue versus temperature data can be added through 

interpolation by satisfying the requirements of the fitted curve. An example of 

interpolation is shown in figure 4-5. This implies that individual calibration for each TLC 

sheet must be performed for better results. 
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Figure 4-5: Illustration of interpolation for hue values using the polynomial fit for the calibration. By 
substituting the mean hue vales from a region of interest or hue values at Individual pixels, the 
corresponding temperatures can be calculated. 

Figure 4-6 illustrates hue versus temperature calibration data points with error bars for 

n=30 samples. The upper and lower limits on the error bars indicate the standard 
deviation associated with the mean normalised hue at each temperature set point. 



109 

0.65 

0.6 

0.55 
a, 

V 
= 0.5 

U) 
E 0.45 
0 Z 
cz 0.4 
a) 
2 

0.35 

0.3 

n 13 c 

I 
I 

I 
I 

I 
I 

I 
I 

I 
I 

I 
I 

I 

SD 
Mean Hue 

l26 28 30 32 34 36 38 
Temperature Deg C 

Figure 4-6: Hue versus temperature data points for a TLC sheet material R25C5W. Error bars 

shown indicate the standard deviation in hue for n=30 samples within the useful hue range at each 
temperature set point. 

The results of the preceding study indicated that the R25C5W TLC formulation has 

measurement repeatability within 5% under carefully controlled conditions. Table 4-2 

lists the correlation coefficients for mean hue data (n=30 samples) and mean hue data 

(n=5 samples) for each day. The results suggest good repeatability of the hue temperature 

relationship. The most important factors affecting this result were stability of the ambient 

light source and stability of the ambient room temperature. 

Set 01-05 Set 06-10 Set 11-15 Set 16-20 Set 21-25 Set 26-30 
Correlation Coefficient 0.999 0.999 1.000 0.983 0.978 0.998 

Table 4-2: Correlation coefficients for mean hue data points from n=30 samples and mean hue data 

points from n=5 samples. These values suggest good repeatability of the TLC calibration using a 
consistent experimental setup. 
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Figure 4-7 illustrates hue versus temperature calibration data points with error bars for 

n=5 samples. The upper and lower limits on the error bars indicate the standard deviation 

associated with the mean normalised hue at each data point. The datasets illustrated are 

sets 01-05 and sets 21-25 from the calibration data collected. These sets were selected 

randomly, to consider delayed repeatability (over different days) of the calibration run by 

comparing datasets from first day and fourth day. 
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(b) 
Figure 4-7: Hue versus temperature data points for a TLC sheet material R25C51V. Error bars 

shown indicate the standard deviation in hue for n=5 samples within the useful hue range at each 
temperature set point. The graph on top illustrates the results for sets 01.05 and the graph on bottom 
illustrates the results for sets 21-25. `SD' is the standard deviation, represented as error bars. 
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Figure 4-8 illustrates the standard deviation in the mean hue calculated from all 30 

datasets and sets 01-05 (n=5) as well as sets 21-25 (n=5). The pattern of the standard 

deviation distribution is similar for all the above sets considered in figure 4-8. Correlation 

coefficients for standard deviation from n=30 samples (sets 01-30) and standard deviation 

from n=5 samples (sets 01-05 & sets 21-25) are 0.942 and 0.998 respectively. The mean 

distribution of standard deviation also suggests that temperature resolution is not uniform 

across the useful temperature range for the TLC. However, prior knowledge of the 

calibration and TLC performance can be used to compensate for this non linearity and 

report accurate temperatures. However, this is a task specific procedure and accuracy can 

thus be determined based on the intended application. This issue has been further 

addressed in section 4.2.6, where the effect of colour bandwidth of the TLC is also 

considered when determining the accuracy. 
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Figure 4-8: Distribution of standard deviation within the useful temperature range for the R25C5W 
TLC sheet. Standard deviations are plotted for sets 01-05, sets 21-25 and sets 01-30 and have the 
units of 8-bit hue intensity measured from the calibration data. 
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Consider figure 4-9, the standard deviation distribution from sets 16-20 leads to the 

overall higher standard deviation from sets 01-30. The reason for this is unknown. 

However, this standard deviation does not affect the accuracy of the calibration, as seen 

from the correlation coefficients in table 4-1. Furthermore, these results justify employing 

only five sample calibrations for further analysis. 
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Figure 4-9: Distribution of standard deviation within the useful temperature range for the R25C5 V 
TLC sheet. Standard deviations are plotted for sets 01.30 and a group of five sets to view the 

consistency in hue measurement. Standard deviation has units of 8-bit hue intensity measured from 
the calibration data. 

This graph shows that at some temperatures, the variation about the mean hue is much 

greater that at other temperatures (especially, at the colour transition temperatures). This 

implies that the error is systematic. This may have a considerable impact on the LCT 

application, typically where high accuracy and temperature resolution is intended. It must 

be emphasised here that in the context of current application, this issue can be discounted 

as thermal patterns under the plantar foot are desired instead of highly accurate 

temperature measurement. The following section considers microscopic analysis of the 

TLC materials. 
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4.2.2.4 Microscopic analysis of TLC materials 

Sample to sample repeatability for TLC samples was assessed by obtaining 10 spatially 

averaged hue values from a region of interest, which was centred on the specimen to 

eliminate the possibility of edge effects. The importance of spatial averaging is evidenced 

by detailed image analysis at the pixel level and microscope studies which reveal non- 

homogenous distribution of thermo liquid crystals at the microscopic level. 

(a) 

(c) 

(b) 

Figure 4-10: Microscopic (Versamet Unitron 7293,12 X magnifications) images for TLC sheets: (a) 
R25C5W, (b) R25C1OW and (c) R25C15W. Images have a milky appearance and each coloured spot 
is an encapsulated liquid crystal. 
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(a) (b) 

Figure 4-11: Microscopic (Versamet Unitron 7293,12X magnification images for (a) R25C IOW TLC 
emulsion applied by air brush and (b) TLC on latex support. 

Figures 4-10 and 4-I1 provide images obtained under the microscope for the various 

TLC formulations used in the study. Images for TLC sheets have a milky appearance due 

to the binding material and polyester encapsulation. The coloured spots with blurred 

boundaries are the encapsulated liquid crystals. The most important difference between 

the three images is in the spatial density of liquid crystal particles which increases with 

colour play interval and is controlled by chemical composition and manufacturing 

process. A higher crystal spatial density improves colour saturation and gives a faster 

response time. Similar arguments apply to the emulsion and latex based technologies. A 

Versamet Unitron 7293 microscope with 12X magnification was used for this purpose. 

Several techniques such as brush painting, rolling, dipping, spray painting and screen 

printing are used to apply liquid crystals. These techniques determine thickness and 

uniformity of TLC material. The microscopic images suggest a random size of 

microencapsulated liquid crystal for TLC on latex support. The bigger size of liquid 

crystals affects the colour brightness of the material (Massi 2004): hence, poor colour and 

thermal resolution for the TLC on latex support. Microscopic analysis confirms these 

findings. 
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These microscopic images suggest poor sample to sample repeatability (especially for 

emulsion and latex based TLC materials), indicating that TLC sheets may be the best 

choice for intended application. From the calibration data above, it will be better to use a 

single calibration sheet to obtain all the in vivo data in order to avoid sample to sample 

variability. However, it is important to consider the pressure sensitivity and hysteresis of 

TLC materials before implementing any TLC into the final system design. 

4.2.3 Evaluation of pressure sensitivity of TLC polyester sheets 

4.2.3.1 Introduction 

The methodology adopted for pressure sensitivity assessment of the TLC materials is 

now presented. 

4.2.3.2 Experimental setup 

The experimental set up consists of an image acquisition system and test rig shown in 

figure 4-12. The test rig has a polycarbonate base (for optical access), aluminium block 

and appropriate weights. The TLC sheets are self adhesive and are sandwiched between 

the Polycarbonate and aluminium block. 

m ý-I; w A 
Metallic Weights 

Styrofoam > 
Aluminium Block 

TLC Sheet 
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Figure 4-12: Apparatus for pressure sensitivity testing. 
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A similar image acquisition system to that presented in the preceding section was used to 
investigate the effects of vertical loading on the TLC sheet and latex formulations. The 

TLC emulsions were not evaluated due to problems with containment. However, the 

camera and light source were re-located at the bottom of the rig to obtain images through 

the transparent polycarbonate face. This revised setup was then consistent with the 

intended method of loading for the clinical LCT system being developed. 

Constant temperature was maintained for both aluminium and polycarbonate using a 
heated water bath and circulator to feed a series of pipes embedded in the polycarbonate 

and aluminium. Two thermistors were bonded with thermal epoxy at the inlet and outlet 

terminals of the aluminium and polycarbonate respectively. These thermistors were 

connected to a digital multimeter lIP33401A12 to record temperature at is intervals 

during the pressure sensitivity tests. A period of 30 minutes was found appropriate for the 

system temperature to stabilise prior to testing. 

The range of weights selected for the load sensitivity experiments was 0-68 Kg applied 

over an area 0.01m2. The pressures (0-70 KPa) in selected range is consistent with the 

physiologically relevant range (0-200 KPa while stance). Fifteen weight blocks were 

stacked incrementally each weighing (4.5 Kg) resulting in a pressure range of nearly 0- 

7000 Kg/m2. Higher loads (>70 Kg) could not be used due to limitations in system design 

and safety. At each weight, 10 images were acquired and averaged to obtain a mean hue 

value. Images were acquired for both, loading and unloading cycles to evaluate the 

related hysteresis. There was no creep or permanent deformation observed within the 

range of loads used. 

Given that there is no independent method of measuring shear forces under the foot, only 

vertical loading was considered. Furthermore, for the clinical measurement the foot is 

kept still indicating that the affect of shear on the TLC will be minimal. The results of 

pressure sensitivity assessment are presented in the next chapter. hysteresis in the TLC 

colour response is now considered. 

12 By Agilent Technologies Inc., Santa Clara, CA, USA 
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4.2.4 Evaluation of hysteresis of TLC polyester sheets 

4.2.4.1 Introduction 

Hysteresis evaluation for TLC material is now considered. 

4.2.4.2 Experimental setup 

Using the basic experimental setup described previously in figure 4-2, hue versus 

temperature calibration curves were generated for both heating and cooling runs. Figure 

4-13 illustrates typical hysteresis behaviour in TLC. 

N 
2 

Temperature 

Figure 4-13: Typical profile of the hysteresis behaviour in thermochromic liquid crystals. 

Heating runs were initiated by bringing the calibration plate to a temperature below the 

event temperature. The calibration plate was controlled either by software using a manual 

set point or a ramp input dependent on whether a static or transient test was being 
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performed. Images were recorded 10 seconds after the set point temperature was reached 

i. e. soak time setting of 10s was used in the LABVIEW interface. This value was based 

on knowledge of the response times of the materials based on manufacturer's data 

(typically, 1-2 seconds). It should be noted that in the past TLC formulations exhibited 

response times of >60s (Anbar 1998). However, better chemical formulations and 

manufacturing techniques have led to availability of faster TLC (Armstrong 2004). The 

physiological changes in temperature are known to be relatively slow from other studies 

(Anbar 1998; Jung and Zuber 1998), therefore assessing this characteristic was not 

critical in the context of the clinical application. Two types of cooling run were 

performed: (a) heating to a temperature equal to the clearing point temperature and (b) to 

a temperature in excess of the clearing point temperature (in practise a 5°C above the 

clearing temperature was found to be sufficient to induce hysteresis effects). 

Detailed results of hysteresis are presented in the next chapter. Evaluation of calibration, 

pressure sensitivity and hysteresis was helpful in selecting the best TLC material for the 

clinical system. However, an alternative TLC calibration approach is discussed in the 

following section, with the intent of comparing the benefits of each technique for clinical 

use. 

4.2.5 Novel calibration approach using neural network 

4.2.5.1 Calibration procedure 

The TLC calibration procedure outlined earlier in this chapter provided acceptable results 

under conditions where accurate control of the illumination source and ambient light 

conditions were possible i. e. under carefully controlled laboratory conditions. However 

the required conditions were stringent for practical calibration of the TLC sheets in the 

clinical setting prior to in vivo data collection. Therefore, a novel automated calibration 

procedure based on a neural network was used to compensate for differences in the 

calibration light level. 
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A multi-layered feed-forward back propagation network was constructed using 

MATLAB's Neural Network toolbox. The network had one input layer, one hidden layer 

and one output layer as shown in figure 4-14. The training was performed by the 

Levenberg-Marquardt method (Mathworks 2002), chosen for its speed and suitability for 

moderate sized networks. Methods like gradient descent and gradient descent with 

momentum were also implemented, but found to be more time consuming (Mathworks 

2002). 

H idden Layer 
Input 

Output 

Il_ 
_J 

1L25 

Figure 4-14: Neural network architecture. 

Neural networks require a large number of training sets for successful training and 

generalisation. A region of interest (ROI) of 120x 120 pixels was marked on the acquired 

image and was then segmented into blocks of 10x10 pixels as shown in figure 4-15. For 

each block, 100 RGB triplet values were extracted and stored for the network training. 

Thus each acquired image contributed to 144 training sets. This enables an input 

dimensionality for the network of 300 (3x 100 for RGB triplet). Such a large input 

dimensionality if fed to a neural network would involve excessive training time and 

computational effort to learn. Thus, principal component analysis (PCA) was 

implemented to reduce input dimensionality. Sometimes the information held in a data 

set is redundant in nature, especially where the entire image has the same RGB and H 

values as in the present case. Under such circumstances, the purpose of PCA is to extract 

principal components from a data set whilst maintaining the essential information 

(Bharath and Drosen 1994, Bishop 1995). 



10x10 
block 

12 x 12 = 144 (blocks) 

Figure 4-15: Data extraction- Each image is segmented in blocks of 10x10, to make 

144 blocks. 

The total data extracted was divided into two subsets i. e. the input data (95%) and the 

validation data (5%). The validation data is essential to avoid over fitting or poor 

generalisation of the network. The value of weights selected affects the rate of 

convergence for the network, since the error surface is unpredictable. Thus, the network 

was trained for 50 different weights and results were presented for the weights with least 

root mean square error. The flow chart in figure 4-16 shows the step by step procedure 

from image acquisition to the testing of data. 
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Image Acquisition 
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Figure 4-16: Flowchart of the implemented neural network. 

A more detailed description of this novel calibration procedure is available in the 

literature (Grewal, Bharara et al. 2006). The results presented in Appendix E, support the 

idea that this technique has several advantages over the conventional technique for 

calibration of the TLC. This is further considered in chapter 6. In the context of the 

current study, automated calibration via the neural network provided the possibility of 

reduced constraints on the measurement environment simplifying clinical data capture. 

However, before this is possible further work is required on refining the neural network 

calibration approach by considering other available training methods and parameters. 
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Consequently, all data discussed in subsequent chapters was acquired using a system 

calibrated with the conventional hue-temperature calibration approach. 

4.2.6 Summary of the characterisation tests 

The main objective of characterisation of the three commonly available forms of TLC 

material was to investigate the linearity of the response across the physiological range of 

plantar foot temperatures. Furthermore, it tests the TLC materials for insensitivity to 

pressure and hysteresis effects, which are an essential requirement for the current work. 

There is no standard reference technique for satisfying these requirements in a single test; 

partially, because most common applications of LCT do not involve significant loading 

of the TLC material and hysteresis is application specific. It was, therefore, decided to 

carry out independent assessment of these requirements using hue temperature calibration 

curves and tests described in the preceding sections. 

Qualitative analysis of microscopic images suggests that spatial density of TLC capsules 

may play a role in altering the performance of TLC. This variation in spatial density may 

also explain the operational tolerance during various colour transitions of the colour play 
interval. These are summarised in table 4-3. 

Transition Tolerance 

Red start temperature ±0.5°C or ±10/0 of the colour bandwidth 

Green start temperature (whichever is greater) 

Blue start temperature 
00C or ±20% of the colour bandwidth ±1 

Clearing point temperature . 
(whichever is greater) 

Mild Green temperature 

Table 4-3: The operational tolerance for different transitions within the colour play of 
thermochromic liquid crystals (Hallcrest 1991). 

The exact changes in TLC performance are not documented in the literature. However, 

retrospective analysis of the calibration datasets for narrow band and wide band TLC 
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materials provide useful justification that `higher spatial density may be an essential 

requirement to induce larger colour range for the TLC'. This is an important finding and 

may provide basis for selection of a particular TLC formulation for a desired application. 

In the present study, physiological range of temperatures under the plantar feet was the 

dominant factor in selecting the specific TLC formulation for clinical evaluation. There is 

supporting evidence from the calibration data that this larger colour range is mapped onto 

a limited hue range, affecting the temperature resolution of wideband TLC. This is a 

fundamental issue with the chemical formulation of the TLC. Results may improve when 

using a high sensitivity camera and better image processing techniques. The 

manufacturer's data does not address the above issues. The microscopic analysis was 

however, most useful in determination of the quality of TLC material. 

The experimental results from characterisation tests (presented in the following chapter) 

were useful for selecting the appropriate TLC material for the intended application. 

Encapsulated liquid crystals on latex produce poor colour response, attributed to the 

spatial distribution of liquid crystals. The hue temperature relation cannot be linearly 

described by a polynomial. Use of emulsion based TLC formulation is limited by poor 

calibration performance and ethical issues involved in applying them to the anatomical 

site. The need for skin preparation using black paint (for enhancing colour contrast) and 

toxicity issue due to application of TLC paint discount further consideration for the 

current study. Both emulsion and latex based TLC materials are therefore, inappropriate 

for use with the intended protocol. 

TLC sheets offer higher stability and better colour response than the other two 

formulations. The R25C5W TLC sheet was considered to be most appropriate for use in 

the clinical LCT system based on the repeatability, calibration, pressure sensitivity and 

hysteresis tests. Furthermore, this formulation is widely available from the manufacturer 

and does not require a custom order, thereby lowering the overall system cost. The other 

two TLC sheets i. e. R25C1OW & R25C15W tested were discounted as they have a larger 

colour bandwidth near the event temperature which must be eliminated before a 

polynomial fit is successful. This approach limits the temperature range which can be 



used for the intended application. However, using an alternative calibration approach 

such as neural networks (Grewal, Bharara et al. 2006) may solve this problem. Both these 

TLC sheets may have higher sensitivity to the surface temperatures due to higher spatial 

density of capsules as revealed by the microscopic images. All proposed issues for 

R25C IOW & R25C 15W TLC sheets require further scientific testing and were not within 

the scope of the present work. 

The following section describes the design of the final LCT system (with R25C5W TLC 

sheet as the thermal sensor), implementation, data collection and processing 

requirements. 

4.3 LCT - Clinical system implementation 

4.3.1 Final system design 

Figure 4-17 illustrates a block diagram representation of the final prototype system. The 

camera was connected to the laptop computer as shown in figure 4-17, using the Personal 

LCT Platform 

Backup 1 
mal Hard 

DFK 4102 Camera 

3 

IEEE 1394 Firewire 
Interface 

Backup 2 
CD-R 

J'4 

A, 

l "i? 
cýý, 

Figure 4-17: Block diagram representation of the clinical LCT system. 
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('omputcr Memory ('ard International Association (P('\1('IA) card and 6 pin cable for 

IEEE 1394 device.. Figure 4-I8 illustrate,, the setup for in %i%u calibration unit. 

... ,,.. 

M, ý 5,44 1, %. I.... ,I. 

RS732 Intnrter» 
Reel, ard m LABIE W 

Laptop 

Figure 4-18: Block diagram representation for the in %i'0 caIihnitifin of K2 (*5%% 11 l material. 

The in vivo calibration unit was an independent nioduIc and could Ik connccicd k the 

camera when performing calibration ut' the clinical I"C"I' system. Details about the RS232 

interface realised in LABVIF. W and calibration algorithm are pros ided in Appendix F. 

4.3.2 Data acquisition and image processing 

In(ICI)endent "ultVtarc Component" \%& t. FL"ali\rd hwl 

processing of the data. Manual intervention was required to deal u ith static and dynamic 

data. I)ata acquisition tit' the clinical thermal images was Ixrfonned using the I(' Capture" 

version 2.0.0.277 (easy image acquisition) soft arc provided h) the manufacturer. Before 
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starting the acquisition, imaging device properties such as exposure, white balance, gain, 

brightness and saturation were checked to maintain consistency. These parameters were 

also consistent with the in vivo calibration settings. The 'Sequence Timer Dialog' 

sampled the RGB image at every five seconds and stored each sample image on the hard 

disk at a pre-defined location. Manual intervention was required to change the data 

storage location for successive patient and/or successive test. There were four tests per 

subject using the clinical LCT system, documented and discussed in the following 

section. Data acquisition was supervised throughout the duration of the test. The above 

approach for data acquisition allowed real time storage of approximately 950 Mega Bytes 

of test data and a text file detailing particulars per patient. Each image was stored as a 
'bmp' file and required 2.2 Mega Bytes of disk space. All acquired was manually 

transferred on an external hard disk and backed up on CD-ROM's for security. Two CD_ 

ROM were required for each subject included in the study. The use of an appropriate 

image compression algorithm, such as 'jpeg' could address the issue of large image size 

and data storage. However, due to its lossy nature the 'jpeg; format affects the quality of 

calibration and subsequent analysis. It must be emphasised that the current study was a 

pilot investigation and modification of the measurement protocol is likely to further 

reduce the burden of data storage for clinical acceptance. 

Computation of temperature was based on the in vivo hue temperature calibration of the 

R25C5W TLC sheet used for the tests. A diagram of the algorithm is given in figure 4- 

19. 
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In Vivo Hue Temperature 
Calibration 

Polynomial Fit 
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FI Image Acquisition 

(LCT System) 

MATLAB Routine 
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Figure 4-19: Hue to temperature mapping algorithm implemented in MATLAB. Using the 

polynomial coefficients, temperature can be generated at each pixel based on its corresponding hue 

value. 

The calibration procedure was validated through detailed tests described in the following 

chapter. A total of thirty in vivo calibrations were performed and mean hue was 

calculated at each set point temperature. An appropriate polynomial fit was then used to 

describe the hue temperature relation. Each LCT image must be converted into 8-bit 

intensity image before applying the hue to temperature mapping algorithm in MATLAB 

using its pre defined `rgn2hsv' routine in the image processing toolbox. The stored 

coefficients of the polynomial were then used to calculate temperature at each pixel in the 

image by using its corresponding hue value. Following this, a ROI can be drawn across 

desired anatomical site to monitor mean temperature at any instant through the duration 

of the test. 
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4.4 Clinical assessment of the LCT system 

4.4.1 Introduction 

This section defines the clinical measurement protocol and presents the formulation of 

study group and its pre-clinical assessment. A clinical study involving 90 subjects in 

three study groups was completed at the MV Hospital for Diabetes and Diabetes 

Research Centre, at Chennai India. Ethical approval for a preliminary clinical evaluation 

of the system on diabetic subjects with and without neuropathy was obtained from the 

local ethics committee at MV Hospital for Diabetes and Diabetes Research Centre for 

this clinical study (WHO accredited). 

4.4.2 Study group 

This research is a pilot study in evaluation of plantar foot temperature for patients with 

type 2 diabetes mellitus and clinically diagnosed peripheral neuropathy. The main 

objective of the clinical evaluation of the liquid crystal thermography system was to 

verify its application in a clinical setting, verify system safety in vivo and collect in vivo 

data for analysis. A larger prospective study is required to establish statistical 

significance and correlation between measured values and underlying neuropathic 

condition, but this is beyond the scope of the present study. Additionally, a longitudinal 

study to follow up patients at a fixed interval is required to see if the prediction of risk is 

borne out in practise. 

Dr. Vijay Viswanathan, the consultant diabetologist and joint director of the hospital 

accepted that a diverse type 2 diabetic (minimum duration 12 months) patient group be 

assessed, excluding patients with active foot ulceration, peripheral vascular disease, 

Charcot's foot deformity or any physical disability. All the subjects were native of 

Chennai and of Indian origin. Excluding patients with PVD differentiated current work 

from previous LCT studies (Stess, Sisney et al. 1986; Benbow, Chan et al. 1994), which 

did not consider peripheral vascular disease for exclusion criterion. These studies also 

considered patients with previous history of ulceration. 
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There was a total of three independent study groups including (a) Diabetics with 

neuropathy (n=30), (b) Diabetics without neuropathy (n=30) and (c) Healthy controls 
(n=30). For the neuropathic diabetic group, mean age was 58 years (range 41-71 years) 

approximately; whereas, for the non neuropathic diabetic group, mean age was 50 years 

(range 33-63 years) approximately. For healthy normals, mean age was 32 years (range 

20-51 years) approximately. This group was not well matched in terms of age to the other 

two groups due to difficulty in recruiting age matched subjects. A summary of the 

composition of study group and important parameters such as age, sex, duration of 

diabetes, %HbAlc and body mass index (BMI) is given in Table 4-4. 

Patient Group/Parameters Diabetic with 
Neuropathy 

Diabetic without 
Neuropathy 

Healthy 
Normals 

No. of subjects (n) 28* 23* 30 

Male\Female 24/4 15/8 8/22 

Age (in years; mean±SD) 57.92±7.08 50.35±9.79 32.43±7.3 

Duration of Diabetes(in 
years; mean±SD) 

14.75±6.8 9.45±5.8 n/a 

HbAl c (%mean±SD) 9.01 ±1.81 8.79±1.82 n/a 

BMI (in Kg/-'m ; mean±SD) 25.24±3.77 25.31±3.48 25.07±4.16 

*Note: A total of '30' subjects per group were included in the clinical study. Two 
(male) neuropathic diabetic subjects and 7 (3 male/4 female) non neuropathic 
diabetic subjects were excluded from the final analysis, as they were either recently 
diagnosed with diabetes or had duration less than 12 months. 

Table 4-4: Summary of the composition of study group for the clinical study. 

Patients were mainly selected from the outpatient department of MV Hospital and 

appointments were scheduled for in patients considering their schedule for other routine 

diagnostic tests. All subjects were given a prior verbal and written description of the test 

objectives and test procedure. Informed written consent was obtained from all patients 

before the thermographic examination. All the measurements were performed under 

controlled conditions in the foot laboratory at MV Hospital for Diabetes and in 

accordance with the test protocol approved by the ethical committee. 
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4.4.3 Pretest clinical assessment of the study group 

A qualified research nurse from the foot care laboratory at MV Hospital, who was well 

versed in the regional language assisted during the in vivo data collection throughout the 

study. A comprehensive evaluation of the patient's foot was performed, typical of the 

routine foot care programme at the hospital. Visual inspection of the foot followed by 

sensory neuropathy tests using lOg Semmes Weinstein monofilament and biothesiometer 

were performed by trained nurses. Both tests have been validated in previous studies 

(Viswanathan, Snehalatha et al. 2002; Miranda-Palma, Sosenko et al. 2005). Both tests 

were made at five sites on the foot and a vibration perception threshold for neuropathy 

was taken as 30V. Insensitivity to a graded lOg nylon monofilament at 3 or more sites 

was considered as clinical neuropathy. Furthermore, peripheral vascular disease was 

assessed by determination ABPI, with values at or above 0.9 considered as normal 

(Pendsey 2003; NHS 2004). Data for mean glycosylated haemoglobin HbAlc which 

indicates glycaemic control over previous three months was also recorded and is 

documented in Table 4-4 for the study groups. Two subjects in the non neuropathic group 

presented current evidence of oedema in the measured foot. This is further discussed in 

Appendix J. 

In order to standardise the patient recruitment process, a clear classification and staging 

system for the patients was adopted using the exclusion criteria as discussed. Therefore, 

the diabetic subjects were classified into one of the two groups depending on the results 

of tests for sensory neuropathy and PVD. An independent test for autonomic neuropathy 

was performed for diabetic with neuropathy (n=26) and diabetic without neuropathy 

group (n=17). The detailed results are discussed in Appendix I. 

4.4.4 Measurement protocol 

The testing procedure commenced with a 20 minutes rest period in order for the plantar 

temperature to equilibrate with the room temperature. The room temperature and 

humidity were consistently maintained at 24°C and less than 50% respectively with air 
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conditioning. A total of four different measurements were performed for each patient 

with 15 minutes in between each test i. e. baseline, repetitive stress, cold immersion 

recovery and warm up recovery. During the waiting period, patient was seated on a chair 

with the feet flat on ground. All patients were barefoot, with feet resting on their 

footwear. The plantar foot temperature was measured using a digital thermometer at the 

first metatarsal head and the heel before each test. These were used as a baseline 

reference measurement for each site. The patient feet were then located on the 

measurement platform using consistent alignment with reference markers. All subjects 

were advised to avoid movement during the duration of the test and use support from the 

handrail along the adjacent wall. 

For the baseline measurement, 60 static images of the right foot were recorded over a 

continuous five minute period. The sampling rate was one image every five seconds. 

Following a resting period of 15 minutes, subjects were advised to walk for 20 minutes 

for repetitive stress measurements. Following the walking, 60 static images of the right 

foot were recorded for five minutes, capturing images every five seconds. 

During the thermal cycling tests, the right foot for each subject was placed in water at 

controlled temperature. When skin is wet its temperature can be altered by evaporation. 

To prevent this problem, the foot was dried thoroughly using a pre-sterilised towel prior 

to placing on the measurement platform for the thermal cycling measurements. Patients 

with active foot ulcers, foot infection (toe nail infection, fungal infection) or wounds 

were excluded and therefore, any sterilisation procedure for the measurement platform 

was not considered. For the cold immersion test, the patient's foot was placed in a water 

bath at 18-20°C for three minutes. This variation in temperature did not affect the 

measurements, as the main purpose was to cool the foot below the ambient temperature at 

24°C. Following 15 minutes resting period after the cold immersion test, the foot was 

placed in a water bath at 37°C for three minutes for the warm up recovery test. The 

temperature of the non insulated water bath was maintained at 37°C by a ceramic water 

heating rod with a thermostat. In order to ensure patient safety, the ceramic rod was 

removed from the bath prior to placing subject's foot inside. Thermal changes during 
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both the tests were recorded for 10 minutes, capturing static images every five seconds 

giving a total of 120 images. 

Acclimatisation Period 
20 minutes 

Baseline Evaluation 
5 minutes 

t 
20 minutes of 

Repetitive Stress Test 
5 minutes 

15 minutes Break 

3 minutes of Cold Water Immersion 

Test 
10 minutes 

15 minutes Break 

3 minutes of Warm Water Immersion 

Warm up Recovery Test I 
10 minutes 

Figure 4-20: Step by step procedure adopted for the clinical protocol for four tests including baseline 

evaluation, repetitive stress tests and thermal cycling tests. 

Figure 4-20 illustrates a step by step procedure used for the four tests. Data was not 

acquired beyond 10 minutes for the thermal cycling tests due to the limited capacity of 

the recording equipment. It was not possible to analyse the data in real time due to 
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limitation of the analytical interface into the camera acquisition software. After 

completion of the test sequence, the light source was switched off (to prevent heating 

effects on the TLC sensor) and the foot was carefully removed from the platform to avoid 

any physical damage to the patient. 
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Chapter 5 In vitro characterisation and clinical results 

5.0 Introduction 

In this chapter, results from in vitro characterisation of TLC material, pre-clinical in-vivo 

assessment of the system and results from the clinical evaluation of the liquid crystal 

thermography system are presented. A clinical study involving 90 subjects in three study 

groups was completed at the MV Hospital for Diabetes and Diabetes Research Centre, at 

Chennai India. 

5.1 In vitro results 

5.1.1 Introduction 

Results from the in vitro characterisation of three physical forms of TLC material are 

now presented. 

5.1.2 R25C5W TLC sheet 

In the remaining analysis of in vitro calibration data, all results are illustrated for n=S 

samples of the calibration runs. This constraint was imposed by the time taken for each 

calibration run (45 minutes). Given the high repeatability (5%) of the TLC measurements 

established using n=30 sets it was considered that the smaller data set was acceptable for 

the purposes of the current study. 

Figure 5-1 presents a typical calibration curve for the TLC sheet material assessed in the 

study. In practise the data for this type of curve was obtained over a wider temperature 

range, i. e. from the event temperature to the clearing point temperature. This was found 

to be necessary to avoid possible errors due to application of a rapid thermal transient at 

the start temperature. Thus the calibration range of the system was typically ±3°C greater 
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than that of the TLC sheet. Typical data obtained over this extended range is shown in 

figure 5-2. 

U 
O 
O 

0 
O 

O 
a 

E 
O r 

r 

Figure 5-1: Typical calibration curve for a TLC sheet material R25C5W. Due to discontinuities in 
the response, the sensor is only useful over a part of the hue range and within this range hue is 

approximately linear. Here the mean normalised hue is based on n=5 samples. 
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Figure 5-2: illustration of discontinuity in hue. This must be removed before fitting an appropriate 
polynomial. 

It is clear that a discontinuity in the data occurs at the low temperature end of the range 

whereas at the high temperature end of the range, useful data can still be obtained. This 

Mean Normaised Hue 
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latter finding was important in the context of the current study as it suggested the 

possibility of using a single wide band TLC sheet over the full physiological test range. 

This is better than using two or more sheets each covering a different temperature band 

within the overall operating range. Note that the discontinuity at the lower end of the 

temperature range had to be removed before a calibration function was fitted to the data. 

Figure 5-3 illustrates the standard deviation of the hue for the samples evaluated in figure 

5-1. This figure also shows the affect of introducing a median filter. Using a 3x3 median 

filter reduces the standard deviation by a maximum of 30 %. Filtering is a task dependent 

process. Median filtering is typically used for eliminating data dropouts and salt and 

pepper type noise and has the important advantage over averaging filter, that it does not 
degrade edges or sharp gradients. Filtering operation should not be performed on hue due 

to its periodicity, but rather should be done on RGB intensity images used to calculate 

hue (Anderson 1999). However, this can decrease the spatial resolution of the image. 

Therefore, filtering was discounted for use in the in vivo calibration and the analysis of 

clinical data. It must be emphasised that image enhancement and image restoration 

techniques may be more useful for emulsion based TLC applications, where higher 

variation exists in the number of crystals per pixel. TLC sheets on the other hand have a 

uniform distribution due to better manufacturing technique. 
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Figure 5-3: Standard deviation in the mean normalised hue values used to produce figure 4-14. An 
increase in the measured variance is seen to occur at the colour transition temperature. 

The inherent spatial variations in the TLC have been considered using the microscopic 

analysis of samples. The coverage area which determines number of crystals per pixel is 

a significant factor in determination of spatial resolution and temperature resolution. This 

is however; a limitation of the TLC's and therefore, cannot be resolved by imaging 

device or image processing. 

The following section addresses the dependence of TLC colour response on the 

illumination source intensity. 

5.1.3 Effect of source light intensity 

It is now appropriate to consider the effect of changes in light intensity on the hue- 

temperature calibration. Figure 5-4 shows the effect of illumination intensity on hue 

temperature calibration for the R25C5W TLC sheet specimen. 
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Figure 5-4: The effect of different values of source intensity on the hue versus temperature 
calibration for R25C5W TLC sheet. 

The incident light intensity (`L') was changed by changing the power knob and F-stop 

setting ('F') on the camera lens. F-stop indicates the size of the aperture and is inversely 

proportional to the indicated number i. e. a smaller number like F3.5 means big aperture 

size and vice versa. For each light intensity setting, an image was acquired from the test 

surface with liquid crystals outside their colour play interval. The images were used to 

extract the mean pixel intensity and corresponding standard deviation from a similar 

region of interest. The order of the incident light intensity (maximum to minimum) is 

listed in Table 5-1. 

0.3 0.35 0.4 0.45 0.5 0.55 0.6 0.65 0.7 
Mean Normalised Hue 
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Light description Arbitrary intensity Standard deviation 

L90 F3.5 (maximum) 31.41 3.85 

L90 F5.6 24.81 3.22 

L90 F8.0 19.49 2.61 

L80 F3.5 19.53 2.53 

L80 F5.6 16.65 2.30 

L70 F53.5 (minimum) 15.62 2.17 

Table 5-1: Incident light intensity settings. 

Figure 5-4 suggests that there is a 10-12% change in hue when light intensity is changed 

by 50%. There is an upward shift in hue when light intensity is increased resulting in a 

different calibration curve. This shift in hue produces a corresponding shift in the 

measured temperature producing an error. This error was assessed by comparing it with 

an independent measurement of the calibration plate achieved using a thermistor 

(uncertainty 0.1°C), which confirmed that the effect was not due to the source 

temperature increasing with light level (bulb self heating). This change in hue 

corresponds to a maximum error in measured temperature of up to 1°C. 

The preceding investigation confirmed the necessity for calibration of the TLC material 

to include a means of compensating for possible variations in the intensity of the light 

source. To address this problem, a novel neural network based calibration approach was 

considered. Results of this study have been published (Grewal, Bharara et al. 2006) and 

are further considered in Appendix E. 

Wideband TLC sheets, emulsion based TLC and latex based TLV were also considered 

and their results are presented in Appendix D. A noticeable difference between the 

wideband and narrow band versions of this TLC material is the higher discontinuity in 

hue towards the event temperature for the former. This was significant to selection of the 

optimum TLC material for the intended final application. The higher the discontinuity in 
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hue, the lesser will be the useful colour bandwidth of the corresponding TLC material in 

relation to the required physiological test range. 

Results of pressure sensitivity assessment of R25C5W TLC sheet are now presented in 

the following section. 

5.1.4 Results of pressure sensitivity experiments 

Figure 5-5 illustrates a typical hue versus load graph for the R25C5W TLC sheet. A 

consistent light setting (L90 F8.0) and water bath at constant temperature (at 30°C) were 

used throughout pressure sensitivity experiments. At each load, mean hue was calculated 

from 10 images captured one second apart. 
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Figure 5-5: Typical hue versus load dataset for R25C5W TLC sheet. At each load, mean hue is 
averaged from 10 images. All data was collected under similar light intensity setting and constant 
temperature. 

Figure 5-6 illustrates a similar graph for a repeated dataset obtained at the same settings 

of the camera, light intensity and temperature to evaluate the repeatability of the 
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experimental setup. The hue range has shifted upwards at the same temperature for 

similar range of loads used. This test was performed after two hours of the previous test 

to provide sufficient time for the TLC sheet to recover. Therefore, this shift in response is 

not a short term effect. 
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Figure 5-6: Poor repeatability of the measured hue due to drawbacks in experimental setup. 
Movement between the aluminium and polycarbonate and physical damage to TLC material leads to 
poor repeatability of the test. 

This is due to two reasons: 

(a) The TLC material is sandwiched between the aluminium block and polycarbonate. 

Relative movement between the aluminium and polycarbonate causes physical damage to 

the TLC material as shown in figure 5-7. Each image is representative of damage caused 

during one increment and decrement cycle. All tests were carried on a single day. 

Furthermore, this leads to poor image quality and results in a different hue value. This 

relative problem was an inherent problem of the design and was addressed by altering the 

design. The clinical sheets were manually inspected after pressure sensitivity test to 

check for any signs of slip of the liquid crystals which would have important 
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consequence for the clinical measurement. But there were no signs of slip seen on the 

TLC sheet. 

(b) Due to different thermal conductivities of the aluminium and polycarbonate, there is a 

thermal gradient (over the aluminium surface) which directly affects the measured hue. 

This cannot be a time issue i. e. a time lag as the temperature reaches the correct value as 

sufficient time (30 minutes) was allowed for temperature stabilisation. Therefore, the 

actual value of the hue should be the same after this lag, independent of the load. 

However, it must be emphasised that temperature was only measured at the inlet and 

outlet of the aluminium block. Therefore, this issue could be addressed by having more 

thermistors over the aluminium block. This could not be implemented in the design under 

consideration, due to possibility of physical damage to the thermistors. 

(a) (b) (c) 

Figure 5-7: Images of R25C5W TLC sheet showing progressive physical damage due to movement 
between the aluminium and polycarbonate when testing for pressure sensitivity. 

To reduce the problem of movement between the aluminium and polycarbonate an 

industrial strength single sided adhesive tape (duct tape) was used between the two. In 

order to prevent scratches, a thin polyester film was introduced between the 

polycarbonate and TLC sheet. However, using polyester film changes the hue values 

significantly for the images as seen in figure 5-8 (a). This may be primarily due to the 

change in refractive index and therefore, reflection of the incident illumination. Besides, 

it changes the camera focus leading to blurring in the image. 
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(b) 

Figure 5-8: Change in colour information by using polyester film. Note the change in hue and 
blurring in image (a) due to change in refractive index and camera focus respectively. 

Therefore, the use of polyester film was discounted from further data collection. Figure 

5-9 illustrates the effect of using the duct tape in improving the image quality and overall 

experimental setup. Figure 5-10 illustrates the hue versus load graph for the R25C5W 

TLC sheet using the improved setup. The standard deviation in hue calculation from the 

region of interest is illustrated in figure 5-11. The standard deviation is higher than the 

value obtained from the calibration runs in section 5.1.2. This may be due to better 

thermal contact of the TLC sample in the experimental setup for calibration runs. 

(a) (b) 

Figure 5-9: Comparison between TLC images, illustrating the effect of improved pressure sensitivity 
setup. Image (b) illustrates the inherent problem of relative movement inducing physical damage to 
the TLC sheet. 
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Figure 5-10: Hue versus load dataset for R25C5W TLC sheet. Data illustrated here is collected from 
improved pressure sensitivity setup. 

C 

Figure 5-11: Standard deviation versus load illustrated for both loading and unloading cycle during 
pressure sensitivity testing. The standard deviation in measured hue is slightly higher than the value 
during calibration runs. 

For an independent assessment of pressure sensitivity of TLC, it was important to 

consider the effects of different field of view of the camera, different region of interests 
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for hue calculation and different physical size of the TLC sheet sample. By changing the 

field of view of the camera, it is possible to discount any changes due to thermal gradient 

on the aluminium surface. Intuitively, thermal gradient will be largest at the inlet and 

outlet and smallest at the centre of the aluminium. By evaluation of the hue versus load 

dataset for different regions of interest, changes due to variable loading at different areas 

of the sheet can be separated. Loads were applied sequentially as increment and 

decrement cycles to investigate pressure sensitivity. 

Table 5-2 lists the mean hue values and standard deviation (SD) for pressure sensitivity 

tests. `SD' is the standard deviation measured as shown in figure 5-12. Ideally, the hue 

should be independent of changes in load. Practically, there is a nonlinear behaviour of 

hue in a very narrow range with respect to the load as seen from the hue versus load 

graph in figure 5-12. Thus, `SD' gives a measure of the extent of this nonlinear hue 

behaviour. Figure 5-12 shows mean hue (average hue for all loads) and standard 

deviation for the increment steps for one of the datasets. Table 5-3 also shows the mean 

hue and standard deviation for multiple hue versus temperature calibration runs 

performed under similar lighting conditions. The hue and SD values are compared at the 

same load during the increment and decrement cycle. It can be seen that mean hue values 

for all the three fields of view are different. This may indicate non uniformity in 

temperature distribution. Temperature was only measured at the inlet and outlet of the 

aluminium block. Interestingly, the mean and `SD' values for the three fields of view 

follow a similar pattern except for the `SD' value in the left corner during decrement (this 

is an outlier). 
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Figure 5-12: Pressure sensitivity for R25C5W TLC sheet. Mean hue and `SD' values are calculated 

from different hue values at different loads to consider the spread of hue. 

ROI Left Corner Right Centre Centre Calibra tion 
Increment Decrement Increment Decrement Increment Decrement Hue St. 

Dev 

Mean 117.2 117.6 124.6 124.6 115.1 115.1 110.42 3.0 
SD 0.56 1.18 0.69 0.68 0.45 0.41 0.43 n/a 
Table 5-2: Pressure sensitivity results for R25C5W TLC sheet for different field of views. 

It was important to evaluate pressure sensitivity for a different TLC sample size, in order 

to discount the effect of thermal non-uniformities on the aluminium surface. Two sample 

sizes were used (25.4mm x25.4mm and 100mm x 100mm). Results are listed in Table 5- 

3. 
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Sample Size Small Large Calibration 

Increment Decrement Increment Decrement Hue St. Dev in hue 

Mean 117.7 117.9 115.1 115.1 110.42 3.0 

SD 0.30 0.64 0.45 0.41 0.43 n/a 

Table 5-3: Pressure sensitivity results for R25C5W TLC sheet for different TLC sample size. 

However, all the 'SD' values from tables 5-2 and 5-3 are of similar order as the standard 

deviation in hue calculation during routine calibrations of the same TLC material, 

confirming pressure insensitivity over the range of loads considered. This is a key point, 

justifying the use of TLC sheets in the clinical system for evaluation of thermal patterns 

under the plantar foot. It must be emphasised that contact thermography using TLC is the 

only method of measuring skin temperature under the influence of load. 

5.1.5 Results for hysteresis assessment of TLC 

Both narrowband and wideband TLC material were tested for hysteresis effects. A 

representative of the image taken from the heating and cooling runs is shown in figure 5- 

13. Note that the images are shown at 30°C and the image is at uniform temperature. One 

of the noticeable things in the images is the reduction in intensity during the cooling run. 

The RGB graphs shown later in figure 5-17, also exhibits this phenomenon. The heating 

run started at 25°C and using the ramp mode of the temperature controller was raised 

until 46°C i. e. the clearing point temperature of R25C5W TLC sheet. 

(a) (b) (c) 

Figure 5-13: Sample images at T=30°C for hysteresis tests. There is a decrease in intensity from left 

to right, during cooling run (b and c) as against heating run (a). 



148 

There is a significant decrease in R, G and B intensities when cooled rather than heated. 

The magnitude of this decrease is a function of peak temperature prior to cooling; the 

higher the temperature the greater is the decrease. This can be attributed to the decrease 

in reflectivity of TLC during cooling run, consistent with other studies (Bakrania and 

Anderson 2002; Anderson and Baughn 2004). 

A small ROI was selected at the centre of the image, converted to HSV domain and hue 

was determined using MATLAB. The graph in figure 5-14 illustrates hue versus 

temperature dataset for the R25C5W TLC sheet. 

50 

45 

U 
y 40 
D 
m 
3 
'o 
J"35 

30 

2 

o Heating from 25 Deg C 
+ Cooling from 46 Deg C 
+ Cooling from 65 Deg C 

"o + 
*0+ 

0 
0 
0 
e 

" 

all 
oº 

0* 
0 4+ 

o +. 
0 ++ 

0 1* 
o++ 

0+* 

.+0 

0.4 0.5 0.6 0.7 0.8 0.9 
Normalised Hue 

Figure 5-14: Results for hysteresis tests on R25C5W TLC sheet. The graphs show hue versus 
temperature curves for heating and cooling runs. 

Figure 5-15 illustrates standard deviation in hue calculation at each temperature 

increment, throughout the colour play interval and within the useful colour bandwidth 

(bottom) for the R25C5W TLC sheet. The standard deviation values are consistent with 

the calibration dataset. 
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Figure 5-15: Standard deviation in hue calculation for the hysteresis tests on R25C5W TLC sheets. 
The graphs illustrate standard deviation in hue values for complete (top) and useful colour 
bandwidth (bottom). 

Note the abnormally high standard deviation at the event temperature (25°C) in figure 5- 

15 (a) due to misalignment of the crystalline structure during cooling run. 
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The first indication of hysteresis is the decrease in R, G and B intensities when cooled 

rather than heated as seen in figures 5-16 and 5-17. 

Figure 5-16: Calibration bars for the heating and cooling runs. Notice the reduction in intensity of 
colours throughout the colour play interval for the cooling runs. 

Figure 5-16 illustrates the calibration bars for the hysteresis tests. These results are 

consistent with the current published literature for the TLC hysteresis (Anderson 1999; 

Bakrania and Anderson 2002; Anderson and Baughn 2004). A complete history of the 

testing order for R25C5W TLC sheet is presented in Table 5-4. 

Direction of calibration Maximum or minimum temperature 
°C 

Heating 25 
Cooling 46 (Clearing point temperature) 
Cooling 65 

Table 5-4: Testing order for R25C5W TLC sheet. 
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Figure 5-17: Results for hysteresis tests on R25C5W TLC sheet. The graphs show R, G and B 
intensities versus temperature curves for heating and cooling runs. 
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Wideband TLC and emulsion based TLC materials also show decrease in RGB intensities 

upon cooling, similar to narrow band TLC material. Results from the wideband TLC 

material (R25C15W polyester sheet) and emulsion based TLC material (R25C10W paint) 

are presented in Appendix H. 

Table 5-5 summarises the results of the hysteresis measurements for the TLC sheet and 

emulsion formulations that were found to exhibit significant hysteresis. 

TLC R G B 
R25C5W Sheet 37% 31% 26% 
R25C15W Sheet 6% 3.5% 4% 
R25CIOW Paint 39% 36% 25% 

Table 5-5: Maximum percentage decrease in R, G and B Intensities for TLC sheet and 
emulsion. 

5.2 Results of the clinical study 

5.2.1 Introduction 

Results from the clinical study at MV Hospital for Diabetes, Chennai (India) are now 

presented. 

5.2.2 Processing and analysis of test data 

Design of the clinical protocol and the test duration were limited by capacity of the LCT 

system, available disk space, acquisition software and patient ease. The LCT system 

design and its implementation are discussed in the preceding chapter. A total of 950 

Mega Bytes of data was generated per patient and could be immediately transferred to the 

external hard disk from laptop. 

There was no pre-processing algorithm or filtering applied to the data to prevent any 

smoothening of the raw data. However, there was a routine check to determine any 

corrupted files/images. Loss of mains supply and malfunctioning of the data acquisition 
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software caused corrupted files. During the measurement, the timing sequence was 

regularly monitored by the timer settings from the data acquisition software. The hue to 

temperature mapping algorithm was then applied to covert RGB colour images into hue 

plane, where hue at each pixel was used to represent temperature. By selecting an 

appropriate region of interest, the mean temperature at the respective anatomical site 

could be determined. 

Patient movement was observed throughout the test duration as any movement of the foot 

being measured can alter measured temperature, especially during recovery tests. Patient 

movement alters the temperature in the field of view of the camera leading to 

measurement errors. All patients were comfortable with the study times (up to 10 

minutes) and no movement in the feet was recorded except, in one patient who stepped 

off the platform due to discomfort. This subject was excluded from the final analysis. 

The recording of data from all subjects was within ±10 seconds, relative to the 

acclimatisation time before starting the measurement. This variation occurred because of 

the time taken to manually position the feet on the platform with reference to markers. 

Figures 5-18,5-19 and 5-20, illustrate the mean temperatures and standard deviations in 

the measured temperatures at the first metatarsal head using the digital thermometer prior 

to each of the four clinical tests. 
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Figure 5-18: Preclinical temperatures measured using digital thermometer, prior to the baseline and 
repetitive stress tests. The upper and lower limits of the error bars represent standard deviation in 
measured temperatures. 

Figure 5-18 represents the mean temperature for three study groups prior to the baseline 

and repetitive stress tests. 
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Figure 5-19: Preclinical temperatures measured using digital thermometer, prior to the cold 
immersion recovery (CIR) test. The upper and lower limits of the error bars represent standard 
deviation (SD) in measured temperatures. 

Figure 5-19 represents the temperatures measured using digital thermometer after the 15 

minutes resting period following the repetitive stress test and prior to the assessment of 

cold immersion recovery. The measurements were taken immediately after the foot was 

taken out from cold water (at 18-20°C) and dried thoroughly to prevent damage to the 

TLC sheet. All subjects had the foot cooled below the room temperature i. e. 24°C. 
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Figure 5-20: Preclinical temperatures measured using digital thermometer, prior to the warm up 
recovery (WR) test. The upper and lower limits of the error bars represent standard deviation in 
measured temperatures. 

Figure 5-20 represents the temperatures measured using digital thermometer after the 15 

minutes resting period following the cold immersion recover test and prior to the 

assessment of warm up recovery. The measurements were taken immediately after the 

foot was taken out from warm water (at 37°C) and dried thoroughly. 

Table 5-6 and 5-7 list mean temperatures (measured using a digital thermometer) and 

standard deviations for all study groups, measured at the first metatarsal head and the 

heel. The magnitude of the increase is highest in the non neuropathic group. However, no 

statistical inference can be drawn for the following reasons, (a) limited number of 

samples in each group and (b) poor accuracy of the digital thermometer (±1.5 °C). These 

results are indicative and considered as a reference measurements in the subsequent 

discussion. 
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Study 
Group 

Baseline Repetitive 
Stress 

Cold Immersion 
Recovery 

Warmup 
Recovery 

Measurement 
Units 

Neuropathic 28.93 29.80 22.20 28.13 Mean (°C) 
1.80 1.61 1.06 1.41 Standard 

Deviation 

Non 29.17 30.63 22.00 28.87 Mean (°C) 
Neuropathic 1.18 1.81 1.17 1.31 Standard 

Deviation 

Healthy 28.45 29.39 21.94 28.03 Mean (°C) 
1.52 1.67 0.77 1.20 Standard 

Deviation 

Table 5-6: Preclinical temperatures measured at the first metatarsal head using digital thermometer, 
prior to the clinical tests using LCT system. The mean temperatures in °C and standard deviation 

are shown for all study groups. 

Study 
Group 

Baseline Repetitive 
Stress 

Cold Immersion 
Recovery 

Warm up 
Recovery 

Neuropathic 28.87 29.63 22.17 27.80 Mean (°C) 
1.76 1.47 1.09 1.35 Standard 

Deviation 

Non 29.10 30.50 22.10 28.60 Mean (°C) 
Neuropathic 1.30 1.94 1.18 1.22 Standard 

Deviation 

Healthy 28.26 29.35 21.77 27.90 Mean (°C) 
1.55 1.60 0.88 1.14 Standard 

Deviation 

Table 5-7: Preclinical temperatures measured at the heel using digital thermometer, prior to the 

clinical tests using LCT system. The mean temperatures in °C and standard deviation are shown for 

all study groups. 

For the thermal cycling tests, the measurements in the above tables suggest that the foot 

cools down successfully below the ambient temperature at 24°C following immersion in 

cold water. The detailed response measured using the LCT system is discussed in the 

following sections. The foot was immersed in warm water at 37°C for three minutes to 

evaluate its response following this induced thermal hyperaemia. Warming of the plantar 

tissue (to temperatures up to 44°C) is used as a vasodilatory stimuli for TcPO2 

assessment (Gaylarde, Fonseca et al. 1988). 
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5.2.3 Results of baseline tests 

The results for evaluation of baseline temperatures in all study groups are presented in 

this section. Following the preclinical tests to categorise patients as neuropathic or non- 

neuropathic, detailed verbal description of the test procedure was given to all subjects. 

Efforts were made to comfort the patient throughout testing procedures to minimise study 

time and any motion artefacts. Figures 5-21 to 5-23, show the mean baseline 

temperatures in °C at three regions of interest i. e. first metatarsal head, second metatarsal 

head and the heel respectively. 

All measurements are shown for the complete five minutes of the baseline study. Figure 

5-21 (b) illustrates the mean temperature and standard deviation under the first metatarsal 

head at the start and after five minutes of the baseline test for all study groups. This is the 

typical error bar representation and the quantitative values are presented in tables 5-10 to 

5-12. The response of the diabetic groups is faster at all the regions and attains higher 

temperature at the end of five minutes. The response for the diabetic groups has similar 

start temperatures; however the non-neuropathic diabetic group exhibits a higher rate of 

increase post one minute leading to a maximum difference of 0.5 °C in final temperature 

at the first metatarsal head. 
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Figure 5-21: (a) Baseline mean temperature (°C) under the first metatarsal head for all three study 

groups, healthy non-diabetics, diabetics with neuropathy and diabetics without neuropathy. (b) 

Error bar curve representing the mean tempertaure and standard deviation under the first 

metatarsal head for all three study groups at the start and after five minutes of baseline test. 



160 

0 

0 
c 

id 

a E 
C) F- 
c CC C) 

JL 

31- 

30- 

0000000 Q°ýQQ`ý - 
0000000 

29 QýQooýpp0 

000000000000000 

ýoopoopp0000 

®ý®gýppp °ooooooýO°°°o°°°°°°°°°oooýoo°oo 26 

ýý®®®°d°°ooooo°°od3° 

lg 
12 00 27 °° 

00 
00 Healthy 

26 Q Non Neuropathic 
0 Neuropathic 

0 50 100 150 200 250 300 

Time in Seconds 

Figure 5-22: Baseline mean temperature (°C) under the second metatarsal head for all three study 
groups, healthy non-diabetics, diabetics with neuropathy and diabetics without neuropathy. 
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Figure 5-23: Baseline mean temperature (°C) under the heel for all three study groups, healthy non- 
diabetics, diabetics with neuropathy and diabetics without neuropathy. 
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Figures 5-24 to 5-26, illustrate the temperature and temporal information for all subjects 

in each study group with the mean temperature represented as a solid line through the 

data. All measurements in the figures are at the heel for the complete five minutes 

duration of baseline tests. Figure 5-27 illustrates the start and end temperatures for all 

subjects in each study group, represented in the form of histograms. The histograms 

clearly show that only 23% of the healthy non diabetics achieve the final temperature 

post five minutes above 30 °C, compared to 43% and 46% of diabetics without 

neuropathy and diabetics with neuropathy, respectively. The temperature threshold of 

30°C used in analysis of current data, was based on values stated in published literature 

(Stess, Sisney et al. 1986; Benbow, Chan et al. 1994). 
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Figure 5-24: Baseline temperature (°C) under the heel measured for five minutes for n=30 healthy 

non-diabetic subjects. The solid line represents the mean temperature for the group. 



162 

U 

c 
I 

E 
m F- 

Figure 5-25: Baseline temperature (°C) under the heel measured for five minutes for n=23 diabetics 
without neuropathy. The solid line represents the mean temperature for the group. 
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Figure 5-26: Baseline temperature (°C) under the heel measured for five minutes for n=28 diabetics 
with neuropathy. The solid line represents the mean temperature for the group. 
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Figure 5-27: Histogram representation of the start and end baseline temperatures for all study 
groups at the first metatarsal head. The graphs are indicative of percentage of people above a certain 
temperature threshold in all study groups. 

5.2.4 Results of repetetive stress tests 

The results for evaluation of plantar temperatures post repetitive stress in all study groups 

are presented in this section. Figures 5-28 to 5-30, show the mean temperatures in °C at 

three regions of interest i. e. first metatarsal head, second metatarsal head and the heel 

respectively. 

All measurements are shown for the complete five minutes of the repetitive stress study. 

The response of the diabetic groups is consistent with the pattern in baseline study, 
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leading to higher magnitude of measured temperature at the end of five minutes. Again, 

the response for the diabetic groups has similar start temperatures, however the non- 

neuropathic diabetic group has generally higher rate of increase. There is a difference of 
1.5°C between the final temperatures for healthy group and non neuropathic diabetic 

group. The response at the heel highlights an interesting finding; there is a difference of 

approximately 1°C between the diabetic groups and healthy group. The diabetic groups 

show a similar response in this region, unlike differences in the metatarsal heads. 
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Figure 5-28: Mean temperature (°C) post repetitive stress under the first metatarsal head for all 
three study groups, healthy non-diabetics, diabetics with neuropathy and diabetics without 
neuropathy. 
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Figure 5-29: Mean temperature (°C) post repetitive stress under the second metatarsal head for all 
three study groups, healthy non-diabetics, diabetics with neuropathy and diabetics without 
neuropathy. 
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Figure 5-30: Mean temperature (°C) post repetitive stress under the heel for all three study groups, 
healthy non-diabetics, diabetics with neuropathy and diabetics without neuropathy. 
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The temperature and temporal information for all subjects in each study group is not 

illustrated in further analysis, as there is a similar distribution as shown in figures 5-24 to 

5-26. The results for all clinical tests are summarised in tables 5-10 to 5-12 and discussed 

in terms of mean and standard deviation. Figure 5-31 illustrates the start and end 

temperatures for the repetitive stress test for all subjects in each study group, represented 

in the form of histograms. The histograms show that 30% of the healthy non diabetics 

have a final temperature post five minutes above 30 °C, compared to 65% and 54% of 
diabetics without neuropathy and diabetics with neuropathy. The highest increase in the 

percentage compared to baseline values is for the non neuropathic diabetic group, 

followed by the diabetic with neuropathy and healthy group. From a similar histogram 

analysis at the heel as shown in figure 5-32, only 17% of the healthy group have final 

temperatures greater than the set threshold, compared to 48% and 46% of the non 

neuropathic diabetic group and neuropathic diabetic group respectively. 
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Figure 5-31: Histogram representation of the start and end temperatures post repetitive stress for all 
study groups at the first metatarsal head. The graphs are indicative of percentage of people above the 
30°C temperature threshold in all study groups. 
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Figure 5-32: Histogram representation of the start and end temperatures post repetitive stress for all 
study groups at heel. 

5.2.5 Results of thermal cycling 

5.2.5.1 Cold immersion recovery 

The results for evaluation of plantar temperatures following cold immersion in all study 

groups are presented in this section. Figures 5-33 to 5-35, show the mean temperatures in 

°C at three regions of interest i. e. first metatarsal head, second metatarsal head and the 

heel respectively. 

All measurements are shown for the complete 10 minutes ofthe cold immersion study. 

Table 5-8 lists the differences between final temperatures post 10 minutes during cold 
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immersion recovery test and final temperatures post five minutes of baseline tests, at the 

three regions of interest for all study groups. 

Interestingly, diabetics with neuropathy show the highest differences at all the three sites, 

indicated in bold in table 5-8. This is a key clinical finding suggesting the impaired 

response of the thermoreceptors. This finding is further strengthened by qualitative 

analysis of the recovery curves in figures 5-33 and 5-34, which illustrate the saturation of 

the recovery at the metatarsal head region for the neuropathic group. 

Healthy 

(°C) 

Non Neuropathic 

(°C) 

Neuropathic 

(°C) 

1st MTH 1.46 3.09 3.46 

2nd MTH 2.44 2.29 3.01 

Heel 2.29 2.55 2.82 

Table 5-8: Differences between mean temperature post 10 minutes for cold immersion recovery test 

and baseline temperatures post five minutes for all study groups. 
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Figure 5-33: Mean temperature (°C) following cold immersion under the first metatarsal head for all 
three study groups, healthy non-diabetics, diabetics with neuropathy and diabetics without 
neuropathy. 
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Figure 5-34: Mean temperature (°C) following cold immersion under the second metatarsal head for 
all three study groups, healthy non-diabetics, diabetics with neuropathy and diabetics without 
neuropathy. 
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Figure 5-35: Mean temperature (°C) following cold immersion under the heel for all three study 
groups, healthy non-diabetics, diabetics with neuropathy and diabetics without neuropathy. 

5.2.5.2 Warm up recovery 

The results for evaluation of plantar temperatures following warm water immersion in all 

study groups are presented in this section. Figures 5-36 to 5-38, show the mean 

temperatures in °C at three regions of interest i. e. first metatarsal head, second metatarsal 

head and the heel respectively. 

All measurements are shown for the complete 10 minutes of the warm water immersion 

study. Table 5-9 lists the differences between final temperatures post 10 minutes during 

warm up recovery test and final temperatures post five minutes of baseline tests, at the 

three regions of interest for all study groups. Again, diabetics with neuropathy show the 

highest differences at all the three sites, indicated in bold in table 5-9. 
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Healthy 

(°C) 

Non Neuropathic 

(°C) 

Neuropathic 

(°C) 

1st MTH 0.37 0.22 1.29 

2nd MTH 0.47 0.22 1.19 

Heel 0.9 0.27 1.33 

Table 5-9: Differences between mean temperature post 10 minutes for warm up recovery test and 
baseline temperatures post five minutes for all study groups. 

Consider the histogram analysis at the first metatarsal head for all study groups as shown 

in figure 5-39. Approximately, 30% (n=7) of the non neuropathic diabetic subjects show 

the final recovery temperatures ranging from 32-35 °C. 
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Figure 5-36: Mean temperature (°C) following warm water immersion under the first metatarsal 
head for all three study groups, healthy non-diabetics, diabetics with neuropathy and diabetics 

without neuropathy. 
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Figure 5-37: Mean temperature (°C) following warm water immersion under the second metatarsal 
head for all three study groups, healthy non-diabetics, diabetics with neuropathy and diabetics 

without neuropathy. 
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Figure 5-38: Mean temperature (°C) following warm water immersion under the heel for all three 

study groups, healthy non-diabetics, diabetics with neuropathy and diabetics without neuropathy. 
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Figure 5-39: Histogram representation of the final temperatures post ten minutes warm up recovery 
test for all study groups at first metatarsal head. The arrow indicates a hand of subjects with highest 
recovery temperatures. 

5.2.6 General features of the results 

The mean plantar temperatures under the ef'f'ect of load for all study groups were well 

defined within the active range of the liquid crystal sensor. The temperature data was 

characterised by comparing the trends in mean temperatures, start temperatures (at time 

t=0 minutes) and final temperatures (at time t=5/10 minutes). Complete dataset for all 

study groups was analysed, according to the clinical protocol. Consistent data storage and 
image format helped accessibility and processing. Each stored data file represented a 

whole field image of the plantar foot. The extraction of hue plane and mapping of hue to 

temperature (at each pixel) was straightforward to code into the software. Tables 5-10,5- 

II and 5-12 summarise the mean temperatures at the start and end of each clinical test. 
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The data is listed for three regions of interests (right corner) in the form of mean and 

standard deviation for all study groups i. e. non diabetic healthy group (n=30), non 

neuropathic diabetic group (n=23) and neuropathic diabetic group (n=28). 

Baseline Repetitive Stress Cold Immersion Recovery Warm up Recovery 

Start 26.11 1.02 26.69 1.26 22.29 0.47 25.80 0.98 Ist 
MTH 

End 28.64 1.77 29.57 1.92 26.18 2.20 28.27 1.83 

Start 26.12 1.05 26.62 1.27 22.61 0.83 25.82 0.96 2nd 

End 28.78 1.80 29.50 1.99 26.34 2.00 28.31 1.82 MTH 

Start 25.90 1.27 26.62 1.49 22.66 0.84 25.71 1.02 Heel 

End 28.01 1.39 28.73 1.66 25.72 1.40 27.11 1.46 

Mean Standard Mean Standard Mean Standard Mean Standard 
Temperature Deviation Temperature Deviation Temperature Deviation Temperature Deviation 

Table 5-10: Summary of the mean temperature measurement at three regions of interest for the non 
diabetic healthy group. The start and end temperatures for all four clinical tests are listed. 

Baseline Repetitive Stress Cold Immersion Recovery Warm up Recovery 

Start 26.54 1.60 27.47 1.32 22.87 1.10 26.55 1.15 Ist 
MTH 

End 30.26 2.36 31.12 2.17 27.17 3.38 30.04 2.93 

Start 26.63 1.44 27.50 1.35 22.924 0.93854 26.59 1.10 2nd 
MTH 

End 30.20 2.21 31.08 2.10 27.91 3.06 29.93 2.64 

Start 26.21 1.48 27.16 1.04 22.78 0.87 26.32 0.83 Heel 

End 28.66 1.73 29.71 1.49 26.11 1.48 28.39 1.85 

Mean Standard Mean Standard Mean Standard Mean Standard 
Temperature Deviation Temperature Deviation Temperature Deviation Temperature Deviation 

Table 5-11: Summary of the mean temperature measurement at three regions of interest for the non 

neuropathic diabetic group. The start and end temperatures for all four clinical tests are listed. 
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Baseline Repetitive Stress Cold Immersion Recovery Warm up Recovery 

Start 26.67 1.41 27.25 1.22 23.01 1.01 26.14 1.28 1st 
End 29.65 1.84 30.29 1.42 26.19 1.40 28.36 1,93 MV 

Start 26.75 1.54 27.30 1.26 23.43 1.13 26.15 i, 31 2nd 
End 29.68 1.82 30.27 1.31 26.67 1.40 28.49 1,97 MTH 

Start 26.71 1.23 27.36 1.08 23.01 1.01 25.92 0.99 Heel 
End 29.01 1.43 29.79 1.24 26.19 1.40 27.68 

Mean Standard Mean Standard Mean Standard Mean Standard 
Temperature Deviation Temperature Deviation Temperature Deviation Temperature Deviation 

Table 5-12: Summary of the mean temperature measurement at three regions of interest for the 
neuropathic diabetic group. The start and end temperatures for all four clinical tests are listed. 

Mean temperatures are comparable at the first and second metatarsal heads for the study 

groups and non neuropathic diabetic group shows the highest temperature followed by 

the neuropathic group. 

The results of this study allowed an evaluation of temperature measurements under tissue 

loading using a low cost LCT system and rigorous clinical protocol. By restricting the 

regions of interest to three, it was possible to obtain detailed analysis of the dataset in 

each group with the intent of identifying useful parameters to assess the neuropathic 

diabetic foot. 

5.3 Summary 

All three physical forms of commercially available TLC were evaluated for the intended 

application and TLC sheets were found to be most appropriate based on the 

characterisation tests. TLC sheets have shown to be repeatable, easily calibrated, pressure 

insensitive and free from hysteresis effects for desired temperature range. 

Results for pressure sensitivity show that TLC sheets are insensitive to vertical pressure 

in the range of loads tested i. e. 0-70KPa' Current literature suggests that the pressure 

range for stance and walking are 0-200 KPa and 0-1000 KPa. Extreme pressures may lie 
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in the range of 2000-3000 KPa. TLC on latex support was found to be pressure sensitive. 

Due to the nature of the latex, upon flexing it results in uncertainties in measured hue 

values. This may be the reason for its limited temperature resolution. 

In vivo calibration of the TLC sheet used in the LCT system has been identified as the 

best approach for assessing the plantar foot temperatures. A well studied and validated 

calibration technique was employed for calibration of the TLC sheet used for the LCT 

system. Independent assessment of LCT pressure sensitivity proved that the TLC 

polyester sheets are insensitive to vertical loading within the physiological range of 

interest. Therefore, the measured response is only indicative of the changes in skin 

surface temperature in contact with the sensor. 

A consistent clinical protocol and pre-clinical tests were used for the present study 

approved by the clinician and foot care team. The protocol was approved by the local 

ethical committee. This protocol includes four clinical tests i. e. baseline evaluation, 

repetitive stress evaluation, cold immersion recovery and warm up recovery. 

All the measurements are useful in assessing the neuropathic diabetic foot. Given the 

current findings, the LCT system appears to be capable of assessing plantar foot 

temperatures under loading. Further clinical data is required to investigate some of the 

questions raised regarding the physiological factors for the findings and identify if these 

findings will be of clinical use in furthering the role of thermal measurements in 

assessing the diabetic foot. 
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Chapter 6 Discussion 

6.0 Introduction 

This chapter considers the implications of the methodology adopted for the current study 

and focuses on discussion of results of the clinical study based on the physical and 

physiological issues, including current knowledge of the diabetic foot. 

6.1 In vitro characterisation 

The simple calibration uses hue as a parameter, monotonically increasing with 

temperature. When the RGB data is converted into HSV, only the hue component is 

included for further processing in the calibration approach adopted. Ideally, choosing 

other available hue models such as HSI (hue, saturation and intensity) and HLS (hue, 

lumination and saturation) will not affect the calibration. As the image processing was 
done using MATLAB, an HSV model was employed due to ease of use. The light source 

used was placed at an angle of 15-20 degree with the axis of the camera. This 

angle/placement of the light source was maintained constant for all the tests. There was 

no distortion observed at this angle. In the context of the clinical study, this is not directly 

relevant as a different arrangement for illumination and camera was used in the LCT 

system. 

The in vitro characterisation tests were performed with the intention of justifying the use 

of a specific TLC material for the liquid crystal thermography system. However, the 

results presented may also be useful for developing LCT for other biomedical 

applications such as orthopaedic assessment, Raynaud's syndrome and Hansen's disease 

(leprosy). TLC sheets offer higher stability and better colour response than the other two 

formulations. Characterisation of commonly available TLC material demonstrates that 

TLC sheets have a monotonically increasing response of hue across the physiological 

range of plantar foot temperatures, as intended for the clinical LCT system. The 

wideband TLC sheets (R25C1OW and R25C15W) are discounted for use in a clinical 



179 

system as they have a larger colour bandwidth near the event temperature which must be 

eliminated before a polynomial fit is successful. This approach limits the temperature 

range which can be used for the intended application. However, initial tests using an 

alternative calibration approach based upon neural networks appears to offer a solution to 

this problem although a more comprehensive study is required to confirm this. 

Encapsulated liquid crystals on latex produce poor colour response, attributed to the 

spatial distribution of liquid crystals. 

There is a shift in the calibration curve during cooling leading to temperature bias in both 

narrow band and wide band TLC sheets. Hysteresis is only an issue when the crystals are 

heated above their clearing point temperature. If the liquid crystals are used within their 

colour bandwidth, the calibrations are repeatable. No permanent hysteresis effects were 

observed for the TLC polyester sheets and emulsion based TLC over relatively short time 

scales of two weeks. 

6.2 Neural network calibration 

With numerous emerging applications of neural networks in heat transfer, a new 

calibration approach was considered for thermochromic liquid crystals which has not 

been achieved by the conventional techniques. The neural network used the RGB 

intensities as training data for accurately calibrating the TLC under varying lighting 

conditions. The advantages of using neural networks over the traditional hue temperature 

calibration are: 

(a) It merges the different hue calibration curves from different lighting conditions into a 

single curve. 

(b) It is inclusive of the distribution of RGB intensities within the region of interest 

unlike the mean or median value of hue which can be significantly affected by the 

lighting condition, coverage factor and the TLC bandwidth. 
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(c) The entire colour bandwidth can be used without the need to remove discontinuities in 

the hue. However, the results are shown to improve when considering only the useful 

colour bandwidth of the TLC. 

(d) The shift in hue with the varying light intensity requires regular calibration checks 

during LCT measurements, this in turn will require a different colourmap (or Lookup 

Table) to produce accurate temperature measurements using the conventional techniques. 

Calibration using neural networks provides a more robust approach following the 

computing effort required for training. 

However, it should be emphasised that this technique is not intended as a replacement for 

conventional techniques. It offers significant advantages over manual hue temperature 

calibration that may be useful in certain research or industrial applications. For example, 

accurate determination of temperature distribution in complex geometries is dependent on 

highly stable illumination. Since, neural networks have been successfully used to deduce 

convective heat transfer coefficients in thermo-fluid applications (Jambunathan, Hartle et 

al. 1996), it is envisaged that by using this technique a completely automated and stand- 

alone system can be developed to map the TLC colour response and evaluate the heat 

transfer coefficients. 

The results obtained for the TLC polyester sheet are encouraging. However, better 

understanding of neural network calibration on wideband TLC materials and other 

physical types of TLC materials (i. e. emulsion based TLC and latex based TLC) with a 

similar trend of hue versus temperature curve is required to generalise the calibration 

technique. It will also be necessary to refine the procedure by taking into consideration 

TLC hysteresis and pressure sensitivity effects. This will require significant additional 

investigation and therefore was considered outside the scope of the current study. The 

conventional calibration approach was used for the analysis of clinical study results. 
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6.3 Liquid crystal thermography system 

The aim of the LCT system was to examine means of measuring thermal changes in the 

plantar skin of patients with diabetes and neuropathy. Vascular changes due to abnormal 

neuronal control involve changes that can be identified and monitored through their 

effects on the dynamics of thermal behaviour on human skin (Anbar 1998). Previous 

studies of diabetic neuropathy have utilised several instruments to detect lack of 

protective sensation in the foot. However, there has not been any instrument designed 

specifically for evaluation of thermal patterns under the foot and other temporal 

parameters, such as rate of change of vascularity and thermal hyperaemia. Ideally, there 

should be an instrument to evaluate neuropathy independently, objectively, easy to use, 

readily available, sensitive and specific. It would appear that limitations exist resulting 

from the thermal techniques themselves. 

Diabetic foot ulcers occur due to irregularities in underlying microangiopathy and 

neuropathy. Therefore, either measurements should be made at several discrete locations 

or a whole field technique such as LCT or IR thermography should be used. Electrical 

contact thermometry or cutaneous thermal perception need more time to make point 

measurements over the same surface area. Therefore, both techniques were discounted 

from use in current study. LCT is a factor of magnitude cheaper than IR thermography 

systems (Anbar 1998; Bharara, Cobb et al. 2005). Derived techniques using IR imaging, 

such as, DAT study thermal behaviour in the time domain and are therefore, less sensitive 

to reflection artefacts (Anbar and Milescu 1998). The technique may be suitable for 

speciality diagnostic centres and research teams. Additionally, neurogenic modulation of 

perfusion are exhibited at lower frequencies (Anbar and Milescu 1998). A low cost 

thermal technique such as LCT offers the potential to measure static and dynamic 

parameters under foot. 

6.4 Physiological interpretation of the measured response 

11be present study involves assessing the plantar foot temperatures when the foot is 

loaded. Evidence from other studies suggest that reperfusion of tissue following removal 
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of load is of clinical interest, especially in the diabetic group (Rayman, Hassan et al. 
1986a; Rayman, Williams et al. 1986b; Cobb 2000). Mean blood flow into the tissue, 

plantar pressure, duration of loading and dynamic response of perfusion has all been 

evaluated. However, there has been no study related to temperatures under the normally 
loaded foot. Thermometry has an important role in furthering current understanding of 
the pathogenesis of diabetic foot ulceration (Bharara, Cobb et al. 2006). 

During standing, the foot sole is exposed to high static pressure, resulting in changes in 

the microcirculation. It is suggested that the temperature response during the loading 

period is likely to be dominated by local metabolic factors, perfusion status and physical 

characteristic of the plantar tissue in contact with the TLC sheet. This increase is linked 

to a complex interplay between all these factors and their association can only be 

established by independent assessment of these factors. Vertical loading has a higher 

impact on superficial blood flow in contrast to shear, which affects perfusion deeper in 
dermis (Tsay 1991). The measured response is consistent with the above finding and only 

considers vertical loading of the foot. 

Microcirculation involves surface capillary loops which serve nutritional demands and 
deeper located AV shunts for body temperature regulation. Both nutritional and 
thermoregulatory blood flow is of interest in the current study. Considering nutritional 

capillaries only account for 15% of total blood flux (Fagrell 1984), it is reasonable to 

assume that thermoregulatory blood flow contributes to the majority of the thermal 

changes in the current study. However, it must be stressed that it is not possible to 

separate changes in blood flow from the thermal images acquired using the LCT system. 
The difficulty of making this distinction is further complicated by the fact that when the 

skin temperature is increased extrinsically the metabolic demands of the tissue also 
increase and therefore both nutritional and thermoregulatory flow will increase. Besides, 

when these changes are considered under the influence of load as in the present study, 

there is a rise in capillary pressure causing vasoconstriction to prevent oedema formation 

(Flynn and Tooke 1995). This is a strong additional control mechanism overriding the 

normal thermoregulatory response (Meinders, Lange et al. 1996). However, a precise 
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determination of interaction between the underlying pressure, its effect on 

microcirculation and associated thermal changes is not within scope of this study. 

Although it is clear, that the hyperaemic response compensates for the ischaemic state of 

tissue upon loading (Flynn, Edmonds et al. 1988; Winders, Lange et al. 1996; Cobb 

2000), there is no evidence suggesting whether any such response is induced when the 

duration of loading is longer. Current analysis was restricted to five minutes for baseline 

and repetitive stress tests and ten minutes for thermal cycling tests. This was due to 

limited capacity for data recording. However, the recording time is consistent with the 

commonly used cold stress test for Raynaud's syndrome where 10 minutes recovery 

period is observed (Ring 1988; Ring 1995; Jung and Zuber 1998). The response during 

all four tests had one similarity; there is an increase in temperature throughout the 

duration of the test with the rate of increase falling with time. Therefore, further analysis 

only considers measured temperatures, temporal changes and comparison for three study 

groups. 

Intuitively, thermal stimulus to plantar tissue will result in recruitment of 

thermoregulatory shunt flow mediated by the hypothalamus to maintain homeostasis. In 

the diabetic groups, this ability is compromised due to degeneration of thermoreceptors 

and autonomic neuropathy. The temperature values after immersion in warm water at 

37°C for all groups indicate temperatures much lower than the temperature of the water. 

This may be due to two reasons, (a) heat exchange with the surroundings at 24°C when 

the foot is taken out from water and wiped using a pre-sterilised towel and (b) withdrawal 

of nutritive blood supply following thermal vasodilation. The first reason results in 

hypothalamus mediated activity which counteracts the preceding thermal stimulus i. e. 

changes in ambient temperature could affect thermoregulatory blood flow independent of 

the temperature of water. The time difference between removal from water bath and LCT 

measurement was less than 60 seconds. The second reason can be physiologically 

justified with the findings of Flynn and Tooke (1995) and Meinders et al. (1996) as 

discussed above. It is suggested that blood flow remained uninfluenced by heating when 

measured in a dependent position. The importance of these physiological effects on 
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interpreting results from current study is affected by the extent of underlying neuropathy 

and impairment of microvascular system. 

Both sensory neuropathy and autonomic neuropathy can affect perfusion to lower 

extremities (Flynn and Tooke 1995) and hence, temperature (Bharara, Cobb et al. 2006). 

Both neuropathies coexist and therefore, it is not possible to establish an independent 

correlation between measured thermal response and each form of neuropathy using the 

current protocol. It is important to state that the patients were allocated to either of the 

three study groups, based on the results of monofilament testing and vibration perception 

threshold testing. Detailed information on the microcirculatory status of the feet was 

unavailable and therefore, the comparison between three study groups was based on the 

responses to thermal stimulus and physical stress on the plantar foot. It is shown that by 

assessing the thermal parameters at the same sites as that of sensory testing we are able to 

distinguish between both clinical and sub-clinical forms of neuropathy. 

6.4.1 Thermal assessment of the diabetic foot 

The remaining analysis problem relates to quantifying the results from the clinical LCT 

system. There is no `gold standard' method of validating in vivo LCT measurements and 

responses, therefore, in vivo calibration of the TLC sheet was considered appropriate for 

the clinical assessment. Simple measurements from a digital thermometer were however, 

used as reference and were consistent with the LCT system measurements. The 

importance of a whole field thermal image using LCT must be emphasised, when 

considering use of appropriate thermal modality for plantar foot assessment. 

Assessment of foot temperature under load resulted in a rise in temperature throughout 

the duration of the test, suggesting a compensatory physiological response of the tissue 

following loading. Temperature distribution under the plantar surface of the foot is 

determined by the heat conductivity of muscular and adipose tissues and heat emissivity 

of the skin. The highest increase in temperature was consistently observed for the non- 

neuropathic group, an important finding for sub-clinical neuropathy. This increase may 
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be physiologically justified by thinning of the adipose tissue, which is known to occur in 

the patients with diabetes (Kao, Davis et al. 1999; Cavanagh, Ulbrecht et al. 2001). 

Adipose tissue typically acts as a heat resistance and scatters the heat flux. Thickness of 

adipose tissue affects the heat transport from inner tissues (Jung and Zuber 1998). Being 

nearer to skin surface, the pathologic changes in the adipose tissue can be visualised in 

the thermogram as inflammatory responses, especially in the diabetic groups. 

Generally, the neuropathic group shows higher temperatures in all tests at all measured 

sites when compared with the healthy group. This is consistent with the generally 

increased blood flow in other studies (Stess, Sisney et al. 1986; Benbow, Chan et al. 

1994), attributed to autonomic neuropathy affecting the sympathetic regulation of blood 

now (Tanenberg, Schumer et al. 2001). The difference is smallest at the heel between the 

neuropathic group and non neuropathic group. This may be due to the influence of 

adipose tissue, which affects the thermal conductance from deeper vessels. The high 

prevalence of autonomic neuropathy in the diabetic group without detectable sensory 

neuropathy (tested independently using the Ansiscope, Appendix I), may be the 

underlying cause for the high temperatures under the plantar foot. 

6.4.2 Repetitive stress test 

The overall higher increase in the percentage of subjects above threshold, compared to 

baseline values for the diabetic groups (neuropathic and non neuropathic), may be of 

clinical interest, as this may indicate the underlying high plantar pressures experienced by 

the diabetic group leading to inflammatory responses at the areas of increased loading i. e. 

metatarsal heads and heel. High plantar pressures in the neuropathic diabetic subjects is 

clinically accepted and well documented (Lord, Reynolds et al. 1986; Cavanagh, 

Ulbrecht et al. 2001). A similar thermal trend in the non neuropathic foot provides a 

useful diagnosis of sub-clinical neuropathy. 

The above finding at the heel supports the claim that this may arise due to thinning of the 

adipose tissue in diabetic subjects. Structural alterations to the plantar skin and sub- 
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tissues are associated with the long term type 2 diabetes (Cavanagh, Simoneau et al. 
1993). The clinical importance of these changes lies in the fact that repeated mechanical 

stresses can exceed the damage threshold of the tissue (Kao, Davis et al. 1999). There is 

evidence of positive correlation between applied pressure and measured temperature 

(Goller, Lewis et al. 1971; Guy, Clark et al. 1985). This is also verified from the results 

of the current study during the repetitive stress test. 

The results from this test suggest the foot warms up after exercise presumably due to 
increased blood flow owing to increased metabolic requirement, especially at the high 

pressure areas. This is evidenced by the heat radiated from the foot in the thermal images. 

The effect of cooling due to evaporation of sweat was not dominant under the controlled 

ambient conditions (both temperature and humidity were consistently maintained at 24°C 

and less than 50% respectively with air conditioning). It must also be stressed that the 

ability to sweat is typically compromised due to autonomic neuropathy (Tanenberg, 

Schumer et al. 2001). 

6.4.3 Thermal cycling tests 

A linearly increasing recovery response for the healthy and non neuropathic groups, 

suggests that the response of thermoreceptors is intact. Both groups show good recovery 

post 10 minutes to baseline temperatures (consistent with the commonly used cold stress 

test studies), except the non neuropathic group assessment at the first metatarsal head. 

This may be due to selective degeneration of thermoreceptors in the foot. Thermal 

cycling tests provide a useful justification of the diminished or absent response of the 

thermoreceptors for the neuropathic group. The group shows poor recovery to baseline 

temperatures at all measurement sites indicating the failure of the hypothalamus mediated 

recovery under the foot following an event of thermal stimulus. These subjects have no 

clinical evidence of peripheral vascular disease but clinical evidence of sensory 

neuropathy, therefore the response is dominated by the function of thermoreceptors or 

related signalling pathways. 
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The response is more pronounced at the metatarsal head region for cold immersion 

recovery due to punctuate distribution of the sensory receptors. This is evidenced by 

considering the examples in Appendix J, where the images show that recovery starts in 

the metatarsal head region in all the study groups. 

For the warm up recovery test, the neuropathic diabetic group shows the highest 

differences in the recovery towards baseline temperature at all the three sites i. e. first 

metatarsal, second metatarsal and heel. This may be indicative of sub-clinical neuropathy 

and failure of the thermoreceptors to regulate perfusion to the foot following an event of 

warm immersion. This is consistent with the findings from cold immersion recovery test. 

From the histogram analysis of the non neuropathic group during the warm up recovery 

test, 30% of the subjects reach maximum temperatures above 32°C. The response of non 

neuropathic diabetic group leads to the overall high mean temperatures for this group. 

The recovery response at the heel is comparatively slower which is likely to be due to the 

presence of adipose tissue which provides thermal insulation. Besides, the geometrical 

condition of the skin surface may itself modify the processes of emission and absorption 

of heat (Jung and Zuber 1998). 

6.5 Summary 

There was a consistent trend for all measurements, where the temperature increased 

linearly over time and finally saturates. This may be indicative of underlying changes in 

perfusion due to posture and plantar pressure leading to changes in temperature. This is 

an important finding, but unfortunately the direct implications of changes in load 

distribution in terms of thermal coupling from foot to TLC sheet are unknown. Due to 

practical difficulties of using a simple thermometer simultaneously with the LCT 

measurement, it was not possible to confirm if temperature did increase with constant 

loading under constant temperature. 
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As shown in the data, there is a shoulder region with the highest rate of increase of 

temperature within the first two minutes, followed by a slower rate of increase of 

temperature. Typically, there is a reduction in perfusion under load due to compression of 

the tissue, followed by a hyperaemic response to provide tissue nutrition when unloaded 

(Cobb 2000). However, the skin surface temperature is affected by ambient temperature, 

tissue perfusion, internal metabolism and any pathophysiology. Considering, there was a 

consistent (similar temperature patterns during tests) response for all subjects, ambient 

temperature and pathophysiological factors (as patients with PVD and foot infection were 

excluded) can be ruled out as causative factors. Both tissue perfusion and metabolic 

activity are interlinked and the measured temperature under load can therefore, be 

considered as a function of both. It must be emphasised that lack of an independent study 

of tissue perfusion under load over time is a limitation of present study. Availability of 

results from a similar study can supplement the thermal measurement results and further 

the association between load and thermal changes. 

The histogram analysis of the clinical datasets provides an underlying bell shaped curve 

of the start/end temperatures for all study groups. The mechanism for this distribution is 

unknown and therefore, can be addressed in a larger clinical study. However, bell shape 

distribution implies a normal model (Bland 2004) and may be explained by assessing the 

independent factors identified during the current study. 

Higher temperatures for the diabetic groups may be due to the fact that, 65% subjects in 

non neuropathic diabetic group and 88.5% of the subjects in neuropathic diabetic group, 

show either late or advanced stage neuropathy (Appendix I). The temperature at the heel 

is consistently less than the temperature at metatarsal heads in each group for all clinical 

tests, indicative of the influence of adipose tissue. This is also supported by the fact that 

more than 50% of the subjects in the diabetic groups wear their footwear for less than g 

hours a day. Barefoot walking directly affects the plantar tissue, especially the heel. 

However, this comment is limited to the natives of the state in India, where the study was 

performed. 
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The high standard deviation in the measured temperatures and unmatched subjects in the 

study groups complicated the statistical analysis of the dataset. The mean temperature 

data shows poor correlation with the age, duration of diabetes, BMI and HbAlc 

percentage, with the exception of neuropathic diabetic group which shows a 40% 

correlation between the measured temperature at first metatarsal head and BMI. 

However, the consistency in the measured temperatures and temporal variation at three 

measurement sites are useful indications for the patterns associated with diabetes and 

subsequent neuropathy, which may be clinically asymptomatic but visible when testing 

the response of thermoreceptors. 
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Chapter 7 Conclusions 

7.0 Introduction 

A critical review of the development and clinical application of the liquid crystal 

thermography system is presented in summary form. Results of the in vivo clinical 

evaluation of the system are discussed. Recommendations for improvement of the current 

system and further work are given. In the final section, the overall contribution of the 

present work in considered. 

7.1 Summary 

The project is reconsidered in terms of the theoretical background and review of the 

literature; assessing the feasibility of the initial proposal and its clinical adaptation. 

Justification is given of the plantar temperature assessment under load by liquid crystal 

thermography using an appropriate protocol. Such a thermological assessment could not 

be performed using existing techniques or systems and the requirement of a LCT system 

is identified. The contact thermography approach provides the ability to measure foot 

temperature under load, critical to the neuropathic diabetic foot (Bharara, Cobb et al. 

2006). A review of the development of such a contact thermography system is discussed 

in the following sections. 

7.1.1 Review of justification for the study 

From the previous studies, perfusion related complications in the diabetic foot at both 

macrovascular (Shaw and Boulton 1997) and microvascular (Jaap and E 1995; Tooke 

1996) levels are well presented and understood. This has led to a clear distinction 

between ischaemic and neuropathic complications in the diabetic foot disease. Several 

techniques such as ankle brachial perfusion index, Doppler ultrasound and laser Doppler 

are used both clinically and in the research domain to assess peripheral vascular disease 
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(Williams , Picton et al. 1993; Hurley, Jung et al. 2001; Ouriel 2001). These techniques 

have also provided clinical evidence of elevated blood supply in the neuropathic foot. 

Routine assessment of risk of ulceration in the diabetic foot involves measurement of 

plantar pressure and determination of the extent of sensory neuropathy. However, it 

should be emphasised that these techniques alone cannot be used to predict mechanisms 

that lead to tissue damage and initiate ulceration. Limited lack of consensus on 

appropriate threshold values leading to plantar ulceration further complicate the problem 

(Cavanagh and Ulbrecht 1995), suggesting the need for supplementary techniques and 

evidence based diagnosis. Poor nutritional supply to compensate for higher tissue 

metabolism (due to excessive plantar pressures) and degeneration of sensory receptors 

are common factors leading to neuropathic ulceration. However, there is no conclusive 

evidence. Autonomic neuropathy further leads to impaired regulation of perfusion and 

depletion of the nutritive supply (Lord, Reynolds et al. 1986). The other important 

requirement of any supplementary evidence is the ability to diagnose neuropathic 

condition at an early stage (Perkins and Bril 2002). 

Careful investigation of the current techniques for assessing the neuropathic diabetic foot 

suggests a bias in measuring the response of mechanoreceptors. This bias is inappropriate 

in the opinion of the author and therefore, a clear requirement exists to asses the response 

of thermoreceptors. Thermal changes at the plantar surface reflect vascular status, 

skeletal changes, and inflammation at the site under consideration, all of which can be 

attributed to diabetic neuropathy. Considering clinical evidence suggesting dynamic 

loading leading to foot ulceration in diabetes, it is useful to measure foot temperature 

under load. 

Contact thermography is suitable for assessing the plantar temperatures in the 

neuropathic diabetic foot and considers the affect of neuropathy on regulation of blood 

flow. The findings of such an evaluation provide a whole field analysis of the plantar 

foot, identifying any localised event of neuropathic complication. The most important 

benefit of such an evaluation is the assessment of the foot under the influence of load. 
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Furthermore, it can be useful to validate the nutritional deficit's (during plantar loading 

and thermal stimulus) contribution in foot ulceration. 

7.1.2 Re-evaluation of objectives 

Justification for the focus of the present study on assessing thermal patterns under the 

diabetic neuropathic foot is discussed in the preceding section. Originally, it was 

envisaged to conduct a prospective clinical trial in order to relate thermal changes with 

underlying sensory neuropathy in patients with diabetes. The method of liquid crystal 

thermography was identified as the most appropriate technique because of low cost, 

ability to obtain data non-invasively, its non ionising effects and ability to assess the foot 

under load. This technique has been successfully used to assess the diabetic foot in other 

studies (Stess, Sisney et al. 1986; Benbow, Chan et al. 1994) and is typically, used in 

breast thermography and sports injury assessments (Leinidou 2003). One major limitation 

of previous studies was pressure dependence on the colour response. In the current study, 

pressure insensitive formulation was used. The commercial LCT system was considered 

unsuitable for current study due to higher cost, inability to assess the foot under load and 

inability for quantitative data analysis. The in vitro characterisation confirms these 

findings. 

Consequently, the aim of the study shifted from a rigorous clinical evaluation to 

constructing, characterising and validating a LCT system for assessing the diabetic feet 

responses to thermal stimulus. 

7.1.3 Limitations of the system design 

The LCT system was designed with the intention to provide a comprehensive justification 

for the potential clinical benefit in performing a contact thermographic assessment of the 

diabetic foot. Currently, the calibration unit was independent of the measurement 

platform and calibration data was acquired with the LABVIEW interface and analysis 

performed in MATLAB. Clinical data acquisition was realised using the camera 
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manufacturer's software and subsequent analysis performed in MATLAB. In order to 

account clinical acceptability, the calibration unit should be integral part of the 

measurement platform and data acquisition and analysis should be more streamlined, 

possibly using a simpler user interface. This could be accomplished using the software 

development kit available from the manufacturer but required significant implementation 

effort and therefore, was considered outside the scope of current study. 

The two hour duration for the measurement protocol is not suitable for routine clinical 

investigation. It must be stressed however, that the focus of current study was to prove 

diagnostic benefit for the high-risk foot and further current understanding of the 

association between thermal patterns under the foot and sensory neuropathy. In future 

studies, the measurement protocol can be modified to reduce the total time required for 

clinical investigation. 

A laptop computer was used to collect and store the clinical data from each patient. This 

data was transferred on an external hard drive and backed up on CD-ROM's. It would 

however, be beneficial to have a stand alone dedicated workstation for data collection, 

storage and processing. This will further provide benefits of real time data analysis and 

automated backup on an external drive. 

7.2 Recommendations for further work 

Thermal measurement of the diabetic foot has been shown to be a useful technique in 

clinical management of the diabetic foot. Various parameters of interest and measurement 

techniques have been identified to study pathophysiology of the vascular system and 

neuronal control in diabetic foot disease. At the start of this project it became evident that 

limitations of liquid crystal technology prevented application to assessment of diabetic 

foot disease. This study has demonstrated methods for successful deployment of LCT 

technology for assessment of the diabetic foot. 
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Application of the plantar monitoring system for a full clinical trial requires additional in 

vivo assessment of response time and shear sensitivity of the TLC sheets. The response 

time measured should be significantly less than the physiologically relevant times for the 

changes that are intended to be determined. 

An appropriate physiological model indicating changes in the perfusion based on clinical 

protocol can be further used to correlate perfusion and thermal changes post stress and 

application of thermal stimulus. Such a model can be realised by assessment of 

microcirculatory changes using a suitable modality. To the author's knowledge no such 

model has been postulated by other groups. The data provided by the current study allows 

such a model to be produced and then investigated by a future study. This model may be 

limited by localisation of measurements, unlike the whole field capability of contact 

thermography. However, local measurements at the most prevalent sites of ulceration i. e. 

metatarsal heads, great toe and heel can be clinically useful. 

Shear sensitivity assessment provides two major benefits. Firstly, it can be used to 

identify motion artefacts when evaluating elderly group of diabetic patients. Secondly, it 

renders the system's adaptation into a dynamic measurement system (such as one 

proposed in Appendix K), where the motion needs to be resolved into shear and vertical 

loading. The important benefit of such a system would be in identifying focal areas under 

the foot that are prone to repetitive stress due to cyclic loading, inflammation and skin 
breakdown. 

Furthermore, there is a need for refining currrent assessment protocol. Following 

recommendations are considered useful for future clinical studies: 

(a) For repetetive stress measurements, a treadmill may be more suitable in order to use 

consistent distances, speed and run time. For the current clinical study, it was unavailable 

and hence, subjects were asked to walk within the premises. 
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(b) Ideally, repetitive stress tests should have been the last test as the time to recover from 

exercise is unknown and could affect the thermal cyclic tests. An independent assessment 

of the recovery times, post physical stress may also be useful to improve the assessment 

protocol. 

(c) When evaluating patients with foot deformity or Charcot's foot, the maximum study 

time may need to be reduced as the normal balance mechanism during standing for these 

patients is significantly affected (Cavanagh, Ulbrecht et al. 2001; Pendsey 2003). 

(d) Use of an insulated water bath for thermal cyclic tests is appropriate for 

standardisation of the temperatures. Besides, if the foot is immersed in warm water there 

is often creep of the dermis. This was not investigated in the current study and therefore, 

must be considered for future clinical studies as it may affect the thermal coupling to the 

TLC sheet. 

(e) The measurement platform should be pre-sterlised using appropriate method (for 

example, Milton's fluid) to prevent any cross infection. This is an essential permissive 

factor for evaluating patients with active wounds or foot ulcers. This approach may be 

useful in assessing wound healing since tissue around the wound is often at higher 

temperature. 

(t) While evaluating the physiological differences between the diabetic group 

(with/without neuropathy) and the healthy group, the age/sex related differences in 

thermoregulatory mechanisms must also be determined. Furthermore, the incidence of 

type 2 diabetes increases with age and it is therefore, an important factor to be 

considered (Ha and Lean 1998; World Health Organization 1999). 

(g) For the cold stress test, it is recommended to use a plastic bag before immersion in 

cold water. This is a standard procedure in cold stress tests for Raynaud's phenomenon 

and prevents water retention by the plantar skin (Howell, Kennedy et al. 1997; Cherkas, 

Howell et al. 2001). In the current study, the patient foot was towel dried, to prevent 
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water retention by the skin and any physical damage to the TLC. However, water 

retention by the skin is likely to affect the temperature measurements as heat exchange in 

water is eight times faster than in air. 

It is recommended that the camera used in the current study is retained and a stand alone 

system is developed that provides an easy user interface for data acquisition and data 

analysis. This may also address the data storage issue, by using appropriate algorithms to 

eliminate the redundant data and only record incremental changes in the TLC images. 

Further image processing may help to remove background noise from the typical LCT 

images (Appendix J) and standardise the colour scale, consistent with the infrared 

thermography i. e. inverting the conventional colour scheme for TLC such that blue 

represents cold and red represents hot. 

The results from the past two LCT studies (Stess RM, Sisney PC et al. 1986; Benbow, 

Chan et al. 1994) and current study cannot be directly compared as they are different in 

many ways. This indicates the need for standardised guidelines for thermal assessment of 

the diabetic foot. There has been a growing interest in home monitoring and ambulatory 

measurements of the foot temperatures in diabetic neuropathic foot to prevent foot 

ulceration using simple digital thermometers (Lavery, Higgins et al. 2004), LCT 

technology (Kantro 2006) and smart insoles13. However, a clinical thermometry system 

with a standardised assessment protocol can further current knowledge about diabetic 

foot (and infections/ulcers) and provide evidence based diagnosis of symptomatic or 

asymptomatic neuropathic condition. The use of home monitoring devices is further 

strengthened by the clinical evidence that neuropathic thermal patterns are not constant 

from day to day, described as autosympathectomy (Clark, Goff et al. 1988). Using LCT 

over IR thermography to assess diabetic neuropathic foot may yield useful diagnostic 

information (at a lesser cost) at the expense of thermal accuracy (Cavanagh, Ulbrecht et 

al. 2001). There is clearly a need for rigorously controlled studies. 

13 Zephyr Technology Ltd., Auckland, Newzealand 
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7.3 Contribution 

A liquid crystal thermography system has been developed and applied in a clinical setting 

to assess its performance and implications on the clinical management of the diabetic 

foot. A new multi-centre collaboration was established for furthering the role of 

thermography in assessment of the diabetic neuropathic foot. The LCT system extends 

application of contact thermography in assessment of plantar temperatures under the 

influence of load which is essential for assessment of the diabetic foot. The important 

advantages of this system are safety of examination, non-invasive technique, simplicity, 

speed and low cost. Such a system promotes a coupling between prevalent sensory testing 

modalities and itself, aimed to characterise the diabetic neuropathic foot. Clinical 

application on a small study group has demonstrated that the system has the capability to 

provide supplementary evidence, in detecting neuropathic complications which may be 

symptomatic and asymptomatic, arising due to sensory neuropathy (most specifically 

thermoreceptors). This clinical study demonstrated for the first time, the evidence of 

poor recovery times for the diabetic foot with neuropathy when assessing the foot under 

load. 

The TLC sensors employed in the LCT system have been independently characterised 

and shown to be repeatable, pressure insensitive and free from hysteresis. A key finding 

from this study provides insight into the relationship between spatial density of TLC and 

colour bandwidth. The analysis of characterisation data suggests that higher spatial 

density may be an essential requirement to induce larger colour range for the TLC. A 

novel neural network based calibration technique has been developed, which can be 

potentially useful in thermological applications, after addressing the identified 

limitations. In vivo calibration has been shown to be most suitable for measuring plantar 

temperatures. Initial results for a small study group (n=90) indicate raised plantar 

temperatures for the diabetic group at baseline and post stress indicating the intact 

vascular status of the foot. Furthermore, a temperature deficit (due to poor recovery to 

baseline temperature) suggests degeneration of thermoreceptors leading to diminished 

hypothalamus mediated activity in the diabetic neuropathic group. 
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Appendix A St. Vincent's Declaration 

The Saint Vincent Declaration, St. Vincent, Italy (1989) 

The `Saint Vincent Declaration' is a model for prevention self care and is used as 

guidelines for national diabetes related service development. A joint initiative by the 

World Health Organisation (WHO) and International Diabetes Federation (IDF) is aimed 

at garnering support at local, regional and national level to tackle the socio-economic 

burden of diabetes and its complications. The goals of St. Vincent Declaration focus on 

diagnosis, treatment and prevention of diabetes and its complications such as retinopathy, 

nephropathy, neuropathy, amputation, cardiovascular disease and pregnancy related 

complications. 

Since its origin, a number of European meetings have been organized (Hungary-1992, 

Greece-1995, Portugal-1997, Turkey-1999). European Association for Study on Diabetes 

(EASD) and IDF conduct regular meetings for disseminating information on research, 

management and medical services in diabetes and its serious health problems. 

St. Vincent Declaration aims to promote: 

" detection and control of diabetes and of its complications with self-care and 

community support. 

0 awareness in the public, patients and clinical professionals of the present 

opportunities and the future potential for prevention of the diabetic complications. 

" training and teaching in diabetes management and care for people of all ages with 

diabetes. 

" specialised paediatric care for children with diabetes. 

" Reinforcement of existing centres of excellence in diabetes care, education and 

research and creation of new centres. 

" independence, equity and self-sufficiency for all people with diabetes. 

" fullest possible integration of the diabetic citizen into society. 
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" Prevention of serious diabetic complications by use of effective measures, 

thereby: 

" reducing new blindness due to diabetes by one third or more. 

0 reducing numbers of people entering end-stage diabetic renal failure by at 

least one third. 

0 reducing by one half the rate of limb amputations for diabetic gangrene. 

" cutting morbidity and mortality from coronary heart disease in the diabetic by 

vigorous programmes of risk factor reduction. 

0 achieving pregnancy outcome in the diabetic woman that approximates that of 
the non-diabetic woman. 

9 establishment of modem information technology for quality assurance of diabetes 

health care provision and for laboratory and technical procedures in diabetes 

diagnosis, treatment and self-management. 

0 European and international collaboration in diabetes research and development 

through appropriate agencies and in active partnership with diabetes patients 

organisations. 

" urgent action in the spirit of the WHO programme, "Health for All" to establish 

joint machinery between WHO and IDF, European Region, to initiate, accelerate 

and facilitate the implementation of these recommendations. 
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Appendix B Technical drawings 
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Figure B-1: Technical drawing for the first prototype of measurement platform. 



202 

Ii 
;. i ýý . ... 

'' i' 
.. ' ý; ;ý ý' i '. ;i 
,;; ; ... !i "' 

Figure B-2: Technical drawing for the second prototype of measurement platform. 
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Figure B-3: Technical drawing for the metallic stand for second prototype of measurement platform. 
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Figure B-4: Technical drawing for the imaging assembly for second prototype of measurement 
platform. 
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Figure B-5: Technical dra A ing for the final prototype of measurement platform. 
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Appendix C Camera and light source specifications 

This section provides the technical details of the camera and the light source used in the 

final prototype of the LCT system. Photographs, engineering drawings and functional 

specifications are provided. 

DFK 41AF02 RGB camera 

Photograph C-I illustrates the camera and the lens used for capturing RGB colour images 

representing the thermal patterns under the plantar surface of the foot. Figure C-1 

provides the technical drawings for the camera. The functional specifications of the 

camera are provided in table C-1. 

'' 
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Photograph C-1: Single CCD RGB camera based on IEEE 1394 protocol and its associated mount 
lens. 
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Figure C-1: Engineering drawings for the DFK 41AF02 RGB camera. All dimensions are in `mm'. 
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General behaviour: 
Video formats @ Frame rate 1280 x 960 UYVY @ 7.5,3.75 fps 

1280 x 96013Y8 @ 15,7.5,3.75 fps 
Sensitivity 0.5 Ix at 1P. 5s, gain 20 dil 
Dynamic range ADC: 10 bit, output: 8 bit 
SNR ADC: 9 hit at 25 °C, gain 0 dB 

Interface (optical): 
Sensor sification ICX205AK 
Type ro ressive scan 
Format 1 /2 " 
Resolution 11: 1360, V: 1024 
Pixel size If: 4.65 m, V: 4.65 pm 
Lens mount C/CS mount 

Interface (electrical): 
Supply voltage 8 to 30 VDC 
Current consumption approx 200 mA at 12 VDC 

Interface mechanical : 
Dimensions Il: 50.6 mm, W: 50.6 mm, L: 50 mm 
Mass 265 

Adjustments (man): 
Shutter 1/l0000 to 30 s 
Gain 0 to 36 dli 
Offset 0 to 511 
Saturation 0 to 200 % 
White balance 

-2 d13 to +6 dli 

Adjustments (auto): 
Shutter 1/10000 to 30 s 
Gain Oto36dII 
Offset 010511 
White balance -2 dli to +6 dli 

Environmental: 
Max. temperature (operation) -5 °C to 45 °C 
Max. temperature (storage) -20 °C to 60 °C 
Max. humidity (operation) 80 % non-condensing 
Max. humidity (storage) 95 % non-condensing 

Table C-1: Functional specifications for the DFK 41AF02 RGII camera, 

White light LED array 

The white light LED array (Model No: STP312C-2CW-012V from Ledtronics, 
California) was used as the illumination source for the final prototype of the LCT system. 
The chip material for the LED was InGaN. Figure C-2 illustrates the engineering drawing 
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for the LED strip and photograph C-2 represents the 27 LED's cluster used for the LCT 

system. The functional specifications of the LED's are provided in tables C-2 and C-3. 

Lead 3 Lead 4 

Lead 2 
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04 (016) 

5.08 (. 02) 

Figure C-2: Engineering drall ings for the STP312C-2CW-012V white light LED array. All 
dimensions are In'mm'. 
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Photograph C-2: Image for the STP312C-2CW-012V white light LED array. 

Parameter MAX. Unit 

Power Dissipation 220 n1W 

Peak Forward Current 
(1 10 Duty Cycle. 0.1ms Pulse Width) 

100 mA 

Continuous Forward Current 20 Q1. A 

Derating Linear From 50°C 0.4 mA : ̀ C 

Reverse Voltage* 5 

Electrostatic Discharge (LSD) 150 V 

Operating Temperature Range -20°C to + 80"C 

Storage Temperatiure Range -30°C to +I00°C 

Lead Soldering Temperature [1un11(. 157") From Body] 260C'C for 5 Seconds 

* VR rating tested for each individual chip 

Table C-2: Absolute maximum ratings at ambient temperature 25°C for the LED's. 
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Param eter Symbol min. Typ. Max. Unit Test Condition 

Luminous Intensity IV 3000 3500 -- mcd If=20inA (Note 1) 

Viewing Angle 2g1,2 -- 70 --- Deg (Note 2) 

Forward V oltage Vf 9.5 11 V Ir20niA 

Reverse Current IR -- 50 IiA VR 5V 

SCP 

Linnens 

Radiant Intensity -- -- 11100 -- li`V/sr - 
Table C-3: Electrical optical characteristics at ambient temperature 25°C for the LED's. 

The choice of the illumination source greatly affects the hue versus temperature 

calibration of the TLC material. The spectrum for the white light LED illustrated in 

figure C-3, typically provides high sensitivity of the TLC in the visible range. There is no 

significant UV component present in the spectrum, this prevents the degradation of the 

liquid crystal and poor repeatability. 
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Figure C-3: Optical spectrum drawings for the STP312C-2CW-012V white light LED array. 
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Appendix D Calibration interface and additional results 

LABVIEW interface for TempView system 

This section focuses on the calibration interface realised in LABVIEW for the 

commercial liquid crystal thermography system, TempView (by ImageTherm 

Engineering, Waltham, MA, USA). Figure D-1 illustrates the graphical user interface for 

the calibration of TLC samples. The system is capable of both data acquisition and data 

processing. However, data processing was accomplished using Image Processing 

Toolbox in MATLAB for consistency with the calibration of clinical LCT system under 

consideration. 
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Figure D-1: LABVIEW based graphical user interface for the thermochromic liquid crystal 
calibration. Image on the left shows the initial parameters for the calibration and image on the right 
shows the active window when the calibration is in progress. Label '1' in indicates the real time 
temperature curve and Label `2' indicates the real time image of liquid crystals. 

Detailed procedure for calibration is discussed in the thesis. However, some important 

factors are reviewed in this section. 
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(a) A ramp input is used for the thermoelectric unit to calibrate the TLC sample within 

the colour bandwidth in appropriate specified increments. The software waits for 10 

seconds before capturing the image at the set point temperature for stability reasons. 

(b) The time taken for a single calibration run for a TLC sample is dependent on the 

colour bandwidth of the sample. Typically, using the TempView system it takes 45 

minutes for a R25C5W sample, 75 minutes for a R25C10W sample and 90 minutes for a 

R25C 15W sample. 

(c) The hue temperature data is made continuous before entry in order to produce a valid 

polynomial. The order of polynomial fit is different for different colour bandwidths of the 

TLC material. The order of the fit is chosen by investigating the goodness of fit 

parameters and analysis of residuals. Typical parameters used to check the goodness of fit 

are SSE sum squared error (SSE), R-Square error, Adjusted R-Square error, and Root 

mean square error (RMSE). Ideally, the SSE and RMSE must be zero and R-square 

values must be 1 for a perfect fit (Mathworks 2002). The 95% confidence intervals are 

also plotted for the fit. The goodness of fit can also be visually assessed by with width of 

the 95% confidence intervals. 

(d) The usable range of TLC sheets or emulsion is reduced when using the polynomial 

fitting approach. Secondly, the sensitivity of is not constant and varies in red, green and 

blue regions of the calibration curve. This is a limitation of TLC and an appropriate 

formulation can be selected dependent on the application. 
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Results for wideband TLC, emulsion based TLC and latex based TLC 

R25C1OW TLC sheet 

Figures D-2 and D-3 provide hue versus temperature calibration curves for the R25C10W 

TLC sheet. A noticeable difference between the wideband and narrow band TLC material 

is the higher discontinuity in hue towards the event temperature for the former. This has a 

significant role in selecting the optimum TLC material for the intended final application. 
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Figure D-2: Calibration curve for a TLC sheet material R25C1OW. Here the mean 
normalised hue is based on n=5 samples. 
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Figure D-3: Illustration of discontinuity in hue for R25CIOW TLC sheet. This must be removed 
before fitting an appropriate polynomial. 



215 

C 

G 

0 

0 

"" 
3 

" 
!. 5 

"0"" 
"" 

2 

" 

.5" " 
" 

X28 
30 32 34 36 38 40 4 t 

Temperature Deg C 

Figure D-4: Standard deviation in the mean normalised hue values used to produce figure D-2. A 

similar increase in the measured variance is seen to occur at the colour transition temperature as 
observed for R25C5W TLC sheet. 

Figure D-4 shows the standard deviation of the hue for 5 samples evaluated in figure D-2. 

R25C15WTLC sheet 

Figures D-5 and D-6 provide hue versus temperature calibration curves for the R25C15W 

TLC sheet. Higher discontinuity in the R25C1OW and R25C15W TLC sheets, suggests 

that these may not be an ideal choice for the intended final application. The poor quality 

of fit in figure D-5 also supports these findings. 
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Figure D-5: Calibration curve for a TLC sheet material R25C15W. Here the mean normalised hue is 

based on n=5 samples. 



216 

Higher the discontinuity in hue, lesser will be the useful colour bandwidth of the 

corresponding TLC material. It must be emphasised that hue data points at corresponding 

temperatures are closely spaced; this may affect the temperature resolution. This is 

further supported with data in figure D-7 which illustrates the error bar representation of 

the calibration data. The upper and lower limits of the error bars are the standard 

deviation in hue as shown in figure D-8. 
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Figure D-6: Illustration of discontinuity in hue for R25C15W TLC sheet. This must be removed 
before fitting an appropriate polynomial. 
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Figure D-7: Error bar representation of the calibration data for R25C15W TLC sheet. 
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Figure 4-24 shows the standard deviation of the hue for 5 samples evaluated in figure D- 
5. 
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Figure D-8: Standard deviation in the mean normalised hue values used to produce figure D-5. A 
similar increase in the measured variance is seen to occur at the colour transition temperature as 
observed for R25C5W and R25C1OW TLC sheets. 

R25C1OW emulsion based TLC 

Figures D-9 and D-10 provide hue versus temperature calibration curves for the 

R25C1OW emulsion based TLC. 
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Figure D-9: Calibration curve for an emulsion based TLC R25C1OW. Here the mean normalised hue 

is based on n=5 samples. 



218 

The poor quality of polynomial fit can be attributed to the high discontinuity in hue as 

shown in figure D-10. The uncertainty is calibrating the TLC paints is evidenced by the 
high standard deviation in measured hue as shown in figure D-11. 
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Figure D-10: Illustration of discontinuity in hue for R25C1OW emulsion based TLC. This must be 
removed before fitting an appropriate polynomial. 

Ideally, all the reflected light recorded by the camera must come from the liquid crystals 

as the black backing is considered a perfect black body. Therefore, the hue versus 

temperature calibration is independent of the amount of liquid crystal (spatial density or 

coverage factor). However, practically a large background component of reflected light 

can overshadow contribution of liquid crystal component resulting in hue attenuation. 

The background component comprises of the binder material, encapsulation material and 
black paint. It must be noted that along with the coverage factor, other factors that 

contribute the hue versus temperature calibration are illumination source, spectral 

distribution of background and the camera electronics. Due to these reasons, the colour 

response for sprayable paint is poor in comparison with the TLC sheet 
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Figure D-11: Standard deviation in the mean normalised hue values used to produce figure D-9. The 
standard deviation in numerically higher for the emulsion based TLC as compared to TLC sheets. 

TLC sheets which have better and uniform coverage areas as compared to the TLC 

surfaces prepared manually. Microscopic analysis can be used to examine the coverage 

factor as discussed in the thesis. Background subtraction is commonly used to collapse 

calibrations for regions of differing TLC coverage factors with the same illumination 

source (Anderson 1999). 

Latex based TLC 

Figure D-12 provide hue versus temperature calibration curves for the latex based TLC 

material. 
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Figure D-12: Calibration curve for latex based TLC material. 

High standard deviation leads to uncertainty in calibrating latex based TLC using the hue 

versus temperature approach. The random distribution of hue with respect to temperature 

can be attributed to the physical properties of latex. This issue is further addressed in the 

microscopic analysis of TLC materials. Due to the nature of the latex, upon flexing it 

results in uncertainties in measured hue values. This may be the reason for its limited 

temperature resolution. 
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Appendix E Neural network calibration 

In this section, detailed results on neural network calibration approach are presented. The 

benefit of neural network approach is to achieve a hue measurement by eliminating the 

dependency on illumination intensity. 

Results for R25C5W TLC sheet 

Figure E-1 shows the hue versus temperature data for the repeated heating runs on single 

TLC sample and in figure E-2 the mean hue versus temperature for four different lighting 

conditions are shown. The mean hue was calculated from five different heating runs on 

the same sample under different lighting conditions. The repeatability of these 

measurements has been confirmed independently. 
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Figure E-1: Hue versus temperature curves for 5 repeated calibration runs under similar lighting 

conditions. 
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Figure E-2: Hue versus temperature calibration dataset for four different lighting conditions. At 
each temperature set point, the hue value is determined from the mean of n=5 samples. 

The change in light intensity settings, spectral content of the illumination source and 

ambient conditions have been discussed in the thesis. 
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Figure E-3: Polynomial fit for all four light intensity settings. 

It is evident from the graph in figure E-3 that there is an upward shift in hue when light 

intensity is increased resulting in a different calibration curve. This may produce 

inaccurate results as a particular hue value will be mapped onto four different 

temperatures leading to a maximum error in measured temperature of +/- 1°C. The graph 

shows that there is a 10-12% change in hue when light intensity is changed by 50%. This 

shift in hue produces a corresponding shift in the measured temperature producing an 

error. This error was quantified by comparing it with an independent measurement of the 

calibration plate achieved using a thermistor (uncertainty 0.1 °C), which confirmed that 

the effect was not due to the source temperature increasing with light level (bulb self 

heating). 
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The preceding investigation confirmed the necessity for calibration of the TLC material 

to include a means of compensating for possible variations in the intensity of the light 

source. It should be noted that even under controlled conditions of illumination errors 

were found to occur due to the ageing of the bulb as shown in figure E-4. 
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Figure E-4: Hue versus temperature calibration curves for n=30 samples. The effect of ageing of 
fluorescent light bulb is illustrated. There is a shift in measured hue pattern similar to one observed 
when calibration was performed using different light intensity settings. 

Figure E-5 illustrates the error bars for the above data indicating standard deviation in 

measured hue. The correlation coefficients for n=30 samples from repeatability dataset 

and n=30 samples for the current dataset (bulb ageing) is 0.52, indicating poor correlation 

in the measured hue value under similar light intensity setting. This issue can be 

addressed by replacing the bulb regularly, however this cannot be done cheaply. 
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Figure E-5: Hue versus temperature data points for a TLC sheet material R25C5W. Error bars 
shown indicate the standard deviation in hue for n=30 samples within the useful temperature range 
at each temperature set point. The data illustrates the high standard deviation and hence, poor 
accuracy in measured temperature due to ageing of the bulb. 

Training was accomplished by three independent sets of input parameters i. e. H intensity 

(alone), RGB intensities and RGBH intensities. Training using a higher number of input 

parameters yields better results when using neural networks (Grewal, Bharara et al. 

2006). The test data comprised of four comprehensive different sets, each obtained from 

a different light setting to represent the entire data and for the generalisation of the 

system. The mean percentage errors (deviation from the ideal response), for all test points 

were calculated for each set of input parameters. Ideal response was defined by a straight 

line fit between the achieved and target dataset. The percentage error for the current 

approach is defined as the absolute value of mean difference in target temperature and 

achieved temperature at each temperature set point used for calibration for each light 

setting. It can be represented as, 

Percentage Error= Abs [Mean (dT u, u s, i6 ,,,,,, 36)] Equation E-1 

Therefore, it is a single value describing the quality of calibration at all temperature 

points used under different lighting conditions. This error was considered to be the figure 

of merit for each of these input conditions. 
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Figure E-6: 8 bit hue intensity from 23 images each acquired at temperature set point in the 25 °C - 
36°C range under one lighting condition. A total of 14400 pixels at each temperature set point were 
used for the training of the neural network. 

Figure E-6 illustrates the typical training dataset from one lighting condition for the 

R25C5W TLC sheet. Four calibration datasets from four different lighting conditions 

were used for training the neural network. Therefore, 8-bit hue intensity for a total of 

14400x4 pixels was considered at each temperature set point. Figure E-6 illustrates 

training data from only one single lighting condition. 

Figure E-7 shows the test results when the hue alone was used for the training. The 

straight line indicates the ideal response between the target output and the achieved 

output. The plot shows the error in the measured temperature, the total error from four 

different test data sets was found to be 1.28%. 
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Figure F-7: Target output versus achieved output using 8 bit hue intensity. 

The effect of increasing the number of parameters from the image data was investigated 

by using the hue intensity along with the RGB intensities as input data as shown in figure 

E-K. It is important to note that the high standard deviation in the input parameters (RGB 

and H) near the event temperature may affect the test results therefore the neural 

networks were trained only within the useful colour bandwidth of the TLC, figure E-9. 

The total measured error as reduced from 0.77c/c for entire colour bandwidth to 0.40% 

for the usable colour hand%kidth. 
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Figure E-8: Target output versus achieved output using RGBH for entire colour bandwidth 25 °C - 
36°C. 
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Figure E-9: Target output versus achieved output using RGBH for useful colour bandwidth 28 °C - 
36°C 

The test results from figure E-7 give the highest errors in the measured temperature when 

the hue alone is used for training and testing. This shows that the hue is susceptible to 

error in the measured temperature. Furthermore, the same hue value exists for different 

38 -- _r 
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temperatures Mien k: on. idering the effect of changing lighting intensity. Therefore, 

eliminating it from the training data %%ill lead to better results. Figures E-lO & E-1 I show 

the test results when training was done using the RGB intensities within the entire and the 

useful colour bandwidth respectively. The errors obtained were 0.68%1o and 0.38% 

respectively. 
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Figure E-10: Target output %enu% achic%ed output using RGB for entire colour bandwidth 25 °C - 
36ýC. 
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Figure E-11: Target output versus achieved output using R(. B for useful colour bandwidth 28 °C - 
36°C. 

Figure E-1 I shows that the four different calibration curves, each representing a different 

lighting condition of figure E-3 can be merged into a single curve, where the RGB triplet 

has been mapped onto the temperature. 

The above plots suggest that the best results are obtained by using the RGB intensities 

provided training data is within the usable bandwidth of the TL('. Figure E- 12 shows the 

regression analysis for the plot in figure E-11. The x-axis indicates the target temperature 

and the y-axis indicates the achieved temperature. 
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Figure E-12: Regression analysis on RGB as training data. 

Summary of results and discussion 

38 

Table E- l lists the results of the regression analysis on the output data from all the 

independent input parameters considered. 
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Input Parameter Colour Bandwidth Regression Coefficient 

H Entire 0.990 

RGB H Entire 0.997 

RGB H Useful 0.998 

RGB Entire 0.997 

RGB Useful 0.999 

Fable E-1: Results of regression analysis. 

After considering the effect of input parameters on the test results, it is important to 

consider the performance characteristics for different network configurations relevant to 

the analysis. The effects of input dimensionality and the number of neurons in the hidden 

layer for the Levenberg-Marquardt method are summarized in Table E-2. 

Neural 

Network 

Configuration 

Input 

Dimensionality 

No. of 

neurons 

Weights RMSE Mean 

Percentage 

Error 

1 11 6 72 0.0048 0.36% 

2 13 8 112 0.013 0.38% 

3 15 8 128 0.015 0.34% 

4 17 3 54 0.008 0.37% 

5 19 9 110 0.0038 0.39% 

6 21 7 154 0.0043 0.34% 

7 23 9 216 0.0031 0.37% 

8 25 10 260 0.0044 0.36% 

Table E-2: Performance of different network configurations. 

The tests confirm that the errors can be reduced by increasing the input dimensionality 

and the number of neurons in the hidden layer. However, the best performance was 

obtained with the input dimensionality of 17 and 3 neurons in the hidden layer. This is 

because the network is generalized with a lower number of neurons and does not result in 

over fitting of the data, even though the configuration number 6 shows the least error. 

Figures E-13 and E-14 show results for the sixth network configuration from table E-2. 
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Figure E-13 : Target output versus achieved output using RGB for useful colour bandwidth (28 °C - 
36 C) using the best network configuration. 
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Appendix F In vivo calibration 

Requirements and setup 

The specific requirements of a clinical LCT system have been considered in the thesis. A 

low cost calibration approach (similar to the one used by TempView system) was realised 

in LABVIEW for in vivo calibration of' the TLC. In this section, the setup for in vivo 

calibration, LABVIEW G-code and results of in vivo calibration are presented. 

Power Supply 

i Coding Fan 

(a) (b) 
Photograph F-1: Thermoelectric unit, power supply and temperature controller used for the in vivo 
calibration of the TLC. 

Photograph F-I illustrates the thermoelectric unit, DC power supply and temperature 

controller used for the in vivo calibration of the TLC sheet. The thermoelectric cold plate 

assembly, model ST3353 (By Marlow Industries, West Sussex, UK) was used. The 

mechanical drawing for the unit is provided in figure F-1. The model 5C7-362, solid state 

thermoelectric temperature controller (By Auden Electronics, Nottingham, UK) was used 

with TS67-170 thermistor (By Audon Electronics, Nottingham, UK). The temperature 

controller is a bi-directional control for independent thermoelectric modules and its 

parameters are PC programmable using the RS-232 interface. "Typical parameters used 

for programming the controller are illustrated in figure F-2. 

Temperature Controller 
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Figure F-1: The technical drawing for the ST3353 thermoelectric unit. 

SLPw iIwEV5E 6151u P- Q1TWIiIMEýE 

- PPOP, OT! ON& 6NýIýMEiw ýiEN 
SEE VRL- ýE ý SET TEMP TYPE NPUI2 

"C xIf91LL WN S. SI YýEe ýÖ SET IENPNGM IYNff ýbbýVý 
i1' DIýMýiwE HN 

0.0 SET IENPLOW ßV1GE 

EDNIPOL DEA ASS 

Gu/Mt[ 

... MVIIORSEI 

- M1R: 01fsr Srd Bsvrý. 

:K HEAT SDE MULIINEP 

oC R1MEK'r,, IS 

'0.., .1 SEIFR EOIW PORT 

YIMICF CnýI. Ml 

+[w as - LaEM 

5[f Yew -` ^ ýll6E NAME 

W1Rli ýC IM EwABU 

MgJI)*S i[ýi ý` - LOG[IMB1 

' wac T14 iwýCONDS 

ý"ý ^ IW. PGINDR'ATO! 

D(-eaND DJNrna - CBNTFKX TYPE 

IEA1wfl. MLWP"2 MNrFla uODE 

IND Ua IS P000 4MM TwE 

JNU SNUTDm. N IFAL W- FQM(q OUT SHUT DOW IF ALMM 

00 HIGHAARNSETIING 0UTR11 EWDFT 

aF 
00 WW4 MSETTING 

00 AIfTM DEAD00MD 

, VARM LATU owl ý . ur. I torsi TEND Urp1RFAR 

JT5 141 WC TO 10% SEN401 Cowl 

CUNTRa SENSOR "ý CHOOSE SEN50R F¢RAIARN 

DEG F CN0050 DEGC OR DEGF UNITS 

0.1. L06 BOX EEPROM WPI1E BMBLE 

oamia. o orrauus 

- BNýf MaBIE 
VEMDEFAULTS 

I' 

Figure F-2: Ty pical parameters for the 5C7-362 temperature controller, programmable via RS-232 
interface. 
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The calibration software was realised in LABVIEW. Figures F-3 illustrates the user 

interface for in vivo calibration. 
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Figure F-3: Front end design for the calibration software in LABS IE%%. 

Figure F-4, illustrates LABVIEW's G-code for the software. 
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Results of in vivo calibration 

Thirty calibration runs were performed for the LCT system used for the clinical study. 

All calibration runs were performed in a controlled ambient temperature of 24°C and 

humidity at less than 50% (using air conditioning). The hue versus temperature relation 

was determined using the conventional calibration approach. Figure F-5 illustrates the 

fifth order polynomial fit for the in vivo calibration data. The standard deviation for hue 

calculation from the pixels in region of interest is shown in figure F-6. 
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Figure F-5: Fifth order polynomial fit for the in vivo calibration data. 

24' 111, i, 

0.35 0.4 0.45 0.5 0.55 0.6 0.65 0.7 
Normalised Hue 



239 

12 
G0 

x 10a 

4.5 
25 26 27 28 29 30 31 32 33 34 35 

Temperature Deg C 

Figure F-6: Standard deviation in hue calculation from in vivo calibration data. 
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Figure F-7: Hue versus temperature dataset for in vivo calibration. Error bars shown indicate the 
standard deviation in hue for n=30 samples at each temperature set point. 

The error bar plot in figure F-7 illustrates the standard deviation in hue from the n=30 

calibration runs at each temperature set point. It is important to state that each calibration 

run was performed at the same time of the day, using consistent settings of the camera 
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and light source. However, the calibration response is significantly affected by the 

polycarbonate sheet in contact with the TLC sheet, ageing of the TLC sheet and the usage 

limitations on the TLC sheet. Polycarbonate was not present for the in vitro investigations 

of different TLC samples. These issues can be addressed by suitable modelling 

techniques and detailed in vivo studies on different samples of the TLC. A simple 

solution will be to change the TLC sheet at the end of certain number of loading (or 

usage) cycles during clinical investigations. Unfortunately, the manufacturer does not 

provide any objective data for these findings. 
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Appendix G Pressure sensitivity results 

Wideband TLC sheet (R25C10W) 

Non linear behaviour of hue against changing loads was observed for the R25CIOW TLC 

polyester sheet at constant temperature of T=30°C. Figures G-1 and G-2 illustrate the hue 

and standard deviation plots for the R25C10W TLC sheet material using the improved 

setup. 

ýý 

z 
c 

c 

a 

Figure G-1: Hue versus load dataset for R25C10W TLC sheet. Data illustrated here is collected from 
improved pressure sensitivity setup. 
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Figure G-2: Standard deviation versus load dataset for R25C1OW TLC sheet. Data illustrated here is 
collected from improved pressure sensitivity setup. 
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Figure G-3: Hue versus load dataset for latex based TLC material. Data illustrated here is collected 
from improved pressure sensitivity setup. 

Figures G-3 illustrates the hue versus load plot for the latex based TLC material using the 

improved setup. Latex based TLC was not self adhesive like the TLC sheets. Thermal 

glue was used with the aluminium surface (good thermal contact). However, there was 
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signiticant mo ement in the latex material as it did not strongly bond to aluminium 

surface. This may he attributed to the material properties of latex. This is a design 

problem. as there will he some movement due to the elasticity of the latex, even if the 

latex is bonded to aluminium using better adhesive. The movement in the latex material 

changes the field of view and hence, the ROI for each image leading to abnormally high 

standard de%Tation. 

i; .. 

, 
ýe 

(a) (b) 
Figure (: -4: T) pical images of the latex based TLC, representing the green hue at 28°C temperature. 
The image (h) illustrates the effect of using the intensity threshold algorithm for image (a) in order to 
impro%e image quality . 

The white spot-, seen in the image for latex based TLC in figure G-4, may be direct 

reflections from the aluminium surface indicating poor spatial density of liquid crystals 

on the latex. Such an effect is also observed on the TLC polyester sheets upon ageing 

(Armstrong 2004). Contact with other surfaces and poor handling/storage may produce 

these effects on the TLC sheets. Due to the poor image quality obtained when using the 

latex material the standard deviation in hue calibration is abnormally high for 8 bit hue 

intensity. This can be solved by using hue and/or intensity threshold algorithms as shown 

in figure 4-62. HoweNer. these methods are highly subjective and still produce an 

unacceptable standard deviation in hue calculation (> five for 8 bit hue intensity). Such a 

large change in standard deviation indicates movement of liquid crystals on application of 

load. To establish if this movement in crystals produces a significant change in hue due to 

thermal or pressure effects would require further testing outside the scope of the current 

studs. 
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Appendix H Hysteresis results 

In this section, hysteresis assessment of wideband TLC and emulsion based TLC is 

presented. 

R25C15W TLC sheet 

The graph in figure H-1 illustrates hue versus temperature dataset for the R25C15W TLC 

sheet. 
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Figure H-1: Results for hysteresis tests on R25C15W TLC sheet. The graphs show hue versus 
temperature curves for heating and cooling runs. 

Figure H-2 illustrates standard deviation in hue calculation at each temperature increment 

throughout the colour play interval and within the useful colour bandwidth (bottom) for 

the R25C15W TLC sheet. The standard deviation values are consistent with the 

calibration dataset. Wideband TLC material also show decrease in RGB intensities upon 

cooling as shown in figure H-3, similar to narrow band TLC material. A complete history 

of the testing order for R25C15W TLC sheet is presented in table H-1. 
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Figure H-2: Standard deviation in hue calculation for the hysteresis tests on R25C15W TLC sheets. 
The graphs illustrate standard deviation in hue values for complete (top) and useful colour 
bandwidth (bottom). 

Direction of calibration Maximum or minimum 
temperature 'C 

Heating 25 
Cooling 52 (Clearing point temperature) 
Cooling 65 

Table H-i: 't'esting order for K25Ci5 W TLC sheet. 
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Figure H-3: Results for hysteresis tests on R25C15W TLC sheet. The graphs show R, G and B 
intensities versus temperature curves for heating and cooling runs. 
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Emulsion based R25CIOW TLC 

A representati% e of the image of R25C I OW emulsion based TLC, taken from the heating 

and cooling runs is shown in figure H-4. Images are shown at 30°C and the image is at 

uniform temperature. Images confirm that the decrease in intensity during the cooling 

runs is highest amongst all the three datasets i. e. R25C5W, R25C15W TLC sheets and 

R25C I OW emulsion based TLC. 

Figure 11-4: Sample images at T=30 U for hysteresis tests. There is a decrease in intensity when 
ccxoling as against heating as observed in previous datasets. This decrease is the highest amongst 3 
datasets. 
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Figure H-5: Results for hysteresis tests on R25CIOW emulsion based TLC. The graphs show hue 
, ersus temperature cures for heating and cooling runs. 
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The graph in figure H-5 illustrates hue versus temperature dataset for the R25CIOW 

emulsion based TLC. Figure H-6 illustrates standard deviation in hue calculation at each 

temperature increment throughout the colour play interval for the R25CIOW emulsion 
based TLC. 
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Figure H-6: Standard deviation in hue calculation for the hysteresis tests on R25C1OW emulsion 
based TLC. The graph illustrates standard deviation in hue values for complete colour bandwidth. 

A complete history of the testing order for R25CIOW emulsion based TLC is presented 

in table H-2. 

Direction of calibration Maximum or minimum 
tem Brature °C 

Heating 25 
Cooling 52 (Clearing point temperature) 
Cooling 65 

Table H-2: Testing order for R25C15W TLC sheet. 

The RGB intensity versus temperature curve for R25CIOW TLC paint is illustrated in 

figure H-7. The percentage decrease in RGB intensities for emulsion based TLC is listed 

in Table H-3. 
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Figure H-7: Results for hysteresis tests on R25C15W TLC sheet. The graphs show R, G and B 
intensities versus temperature curves for heating and cooling runs. 
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Appendix I Ansiscope - Autonomic neuropathy test 

The Ansiscope (By Dyansys Inc. Chennai, India) is a medical instrument which works in 

real-time and measures the two components of the autonomic nervous system i. e. the 

sympathetic system and the parasympathetic system. It depends on a accurate three lead 

ECG and a high sampling rate, typically 1666 samples/sec. The instrument plots a 

sympathovagal balance trajectory in real-time and also updates it with every heartbeat in 

order to calculate the percentage autonomic dysfunction and classify the patient into one 

of the four groups i. e. healthy, early, late and advanced. Figures I-1 and 1-2 illustrate 

typical result sheets for the subjects. 
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Figure I. 1: Typical result sheet from the Dyansys system for a neuropathic diabetic patient. This 

result is for a 55 yr Male patient with 61% autonomic dysfunction and is classified into advanced 
stage. 
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Diabetic Autonomic Neuropathy 
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Figure 1-3: Graph representing the autonomic dysfunction value for the subjects the neuropathic and 
non neuropathic group. 

Diabetic autonomic neuropathy is a common condition, in which the autonomic nervous 

system that regulates the major physiologic processes such as sweating and blood 

pressure is affected. Dyansys Ansiscope has been validated in other studies (Lafitte, 

Fevre-Genoulaz et at. 2005; Fevre-Genoulaz, Lafitte et al. 2(X)6; Maria, Maria et at. 

2006). The Ansiscope computes a percentage of dysautemomia from a recording of 571 

RR intervals recordings with the patient in supine position. This instrument was used to 

assess the autonomic neuropathy for the diabetic groups (neuropaihic with n=26 and non 

neuropathic with n=17) in the clinical study. 05'4, subjects in non neuropathic diabetic 

group and 88.5% of the subjects in neuropathic diabetic group. show either late or 

advanced stage neuropathy. Figure 1-3 represents the percentage autonomic dysfunction 

value for all subjects in the neuropathic and non neuropathic group. 
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Appendix J Clinical case studies 

40 y r% ººId Female ýý ith pain and oedema on the medial heel surface 

The patient has a poor control of diabetes over the last three months (%HbA lC is 9), 

clinical obe. itN (BNII 31-18) and late stage diabetic autonomic neuropathy with 

parasympathetic failure (from Dyansys Ansiscope). There was however, no clinical 

ncurop. rth' , erected in the patient using the monofilament and hiothesiometry technique. 

'a) (I) 
Figure , 

I-1: I. Npical haw Iine (a) and repetitiýc stress Ih RGB images acquired from the LCT system. 

'Hic tot temperature in both the tests is higher than the 30°C threshold (based on past 

studies) considered in the present study. Therefore, the task of identifying the 

inflammation areas in the images is complicated. The inflammation can however, be 

isualised better during the cold immersion test as shown in figures J-2 to J-3. 
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Figure J-2: Typical cold immersion reco%ery acquired post the minutes during the test. The oedema 
is visible on the medial surface of the heel with 100' %Iwcificity. 

0 

ýýý 0 
Figure J-3: The pseudoxoluur image representing the hue plane or the HS%* image ilu Crates the 
oedema during cold immersion recovery test. 

ýcolgl 
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49 

Figure J-4: The inten, it) image representing the contours on the plantar surface highlights the raised 
temperature area during cold immersion recovery test. 

It must he stressed that only hue was used to relate the colour information with 

temperature. Intensity image is shown in pseudocolour format to highlight the capability 

of the system in detecting clinical presence of oedema. There were two patients with 

clinical oedema during the study. The other patient is now discussed. 

60 yrs old Female with pain and oedema on the medial heel surface 

The patient has a poor control of diabetes over the last three months (%HbAIC is 10.2), 

clinical obesity (BMI 30.45) and advanced stage diabetic autonomic neuropathy with 

parasympathetic failure (from Dyansys Ansiscope). Clinical neuropathy detected in the 

patient using the monotilament and biothesiometry technique. 
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Figure J-5: The pseudocolour image representing the hue plane of the HSV image illustrates the 
oedema during baseline test for 60 Yr/F patient. 

The presence of oedema can be visualised in both baseline and repetitive stress test for 

this patient as seen in figures J-5 and J-6. The reduced temperature in the repetitive stress 

test image on the medial surface is supported by the general discomfort for the patient 

during gait. Inflammation is not visualised in the cold immersion recovery test because of 

a mottled image. 

I 
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Figure J-b: The pseudhxolour image representing the hue plane of the HSV image illustrates the 
oedema during repetiti%e stress test for 60 Yr/F patient. 
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Comparison of response of thermoreceptors during cold immersion recovery test 

As discussed in the thesis, the response of thermoreceptors during the cold immersion 

recovery test suggests punctuate distribution of the receptors on the plantar surface of the 

foot. Figure J-7 illustrates the comparison for response of' thcrmoreceptors for the three 

study groups. 

T= 1 minute T= 1 minute 
1� 

T= 1 minute 

T= 5 minute 
Cold immersion recovery 
for healthy foot, 

T= 5 minute 
Cold Immersion recovery 
for diabetic without 
neuropathy foot, 

T= 5 minute 
Cold immersion recovery 
for diabetic with 
n. uropathy foot, 

Figure J-7: Comparison of response of thermoreceptors during cold Immersion recovery test for the 
three study groups. 

These pseudocolour images suggest the delayed response for the diabetic groups, 

especially the neuropathic group as seen from the recovery images post five minutes. The 

recovery after cold immersion starts at the metatarsal head region and the heel suggesting 

higher density of thermoreceptors in these region.. The basis of this pattern can be 

confirmed in a larger clinical trial. 
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Appendix K Proposed temperature and pressure 
evaluation system 

It i, e nN i.. ý, eed that the LUT sN stem investigated in the current study can be extended into 

combined temperature and pressure measurement system. A need for such a system has 

been identified in the current study. The proposed design is based on the grid type 

forceplate fier pressure evaluation used by Manley et al. (1985). Figures K-1 and K-2 

1 ., 
hoti the forceplate and the areas subject to high pressure during loading respectively. 

Each horizontal bar in the grid can he constructed using 15 mm thick polycarbonate lying 

in the direction of balking with cantilevered with strain gauge based pressure sensors on 

the side. 

" Strain Gauge 

o Polycarbonate 

Figure k-l: Force plate using polyearbonate beams and cantilevered strain gauge based load cells. 

Polkarbonate is used for optical access and mechanical support, with excellent 

transparency. 'kcatherahility. thermo-formability and high impact resistance. The specific 
design issues and selection of pressure sensors need to be investigated. Measurements 

can either he taken during normal gait by mounting the forceplate flush into the floor or 

in accordance with the current clinical protocol. This instrument may be useful in 



26() 

evaluating temperature and pressure threshold values the weight hearing foot that lead to 

tissue breakdown in patients with impaired neurologic control. 

r 
i 
4' 

Figure K-2: High pressure areas tinder the plantar surface of the foot. 

Manley et al. ( 1985) used two cameras produce images of the plantar surface of the 

weight bearing foot and lateral limb respectively. Four channels of electromyogram 

(EMG) were correlated and displayed in real time with force and image data. Manley MT 

(1985) reported the measurements of the plantar foot in the farm of bar chart, wherein 

the change in shape of the bar graph represents the shifting of'load during walking. For a 

normal loading pattern, the load must he transferred from the heel, to the metatarsal head 

and then to the great toe. Mid foot loading is always minimum under normal 

circumstances. For diabetic subjects, forefoot loading is often abnormally high and can 

easily he detected by such an arrangement. 

Advantages of a combined temperature and pressure measurement system are: 

(a) Ability to monitor the effect of mechanical properties of the plantar skin in type 2 

diabetes mellitus. 

(b) EMG assessment gives the capability to monitor the specific muscles involved during 

walking. Although, occurrence of sensory neuropathy is higher than the motor 

neuropathy, motor neuropathy weakens the foot's intrinsic muscles causing foot 
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deformities (Birke James A et al. 1992). Therefore, the combined system provides 

possibility to assess specific patients with motor neuropathy. Abnormal gait can be 

visually identified and such a finding can be confirmed with force and time 

measurements obtained along with the thermal images. These results may give direct 

indications on abnormal weight bearing distribution due to distal motor neuropathy. 

(c) Enhanced flexibility to assess repetitive stress injuries in neuropathic diabetic patients 

with better understanding of the association between vertical loading (magnitude and 

times) with thermal changes. 

(d) There is a relatively better understanding about the biomechanics of the diabetic foot. 

Results of the current study and other thermal assessment devices reported in the thesis 

can further current understanding about the thermal changes under the foot. A low cost 

combined assessment system can provide a platform to answer questions raised in the 

current investigation. 

(e) Capability to assess thermal and mechanical properties of the regenerated tissue at the 

ulcerated site (post surgical intervention) and suitability of specialised drugs that assist in 

wound healing (an integral part of diabetic foot management). 
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Glossary 

" Ankle Brachial Index - Ratio between the highest systolic pressure at the ankle 

and the systolic brachial pressure while a person is at rest. 

" Atherosclerosis - Deposition of plaque and endothelial wall damage. 

" Basal Metabolism - Energy used to maintain constant body temperature. 

" Birefringence - Decomposition of a ray of light into two rays. 

" Colour Play - Temperature range over which the TLC material actively reflects 

visible light and can be distinguished by the imaging equipment. 

" Contralateral - On the unaffected foot. 

" Cooling Cycle - Process in which TLC liquid crystal sheet is cooled down by 

heating it above the clearing point temperature. 

" Coverage Factor - Ratio of TLC reflection to the background reflection. 

" Delta Temperature - The temperature difference between the hot spot and cool 

area indicating the degree of inflammation and thus, danger of tissue breakdown. 

" Dichroism - Phenomenon involving differential absorption of right hand and left 

hand circularly polarised light. 

" Homeostasis - Temperature regulation along with psycho-physiological functions 

to keep body variables within normal range. 
" Hyperaemia - Normal physiological response of the microcirculation to 

increased metabolic requirement following any incident of blood occlusion or 
ischeamia. 

" Hyperkeratosis - Thickening of the outer layer of the skin. 

" Ipsilateral - On the affected foot. 

" Ischaemic - Inadequacy of blood supply. 

" Mechanoreceptors - Body cells transducing mechanical stimuli to electrical 

impulses for the central nervous system. 

" Peripheral Neuropathy - Refers to metabolic changes and poor blood supply in 

nerve cells as a result of altered blood glucose in diabetes. 

" Plantar Pressure - Force measured over a small defined area, especially plantar 

prominences and the heel. 

262 
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" Somatosensory System - Involves the receptors and pathways of cutaneous 

sensation. 

" Subclinical - Symptomatic with absent clinical or neurophysiological signs. 

" Sudomotor - Pertaining to nerves that stimulate sweating due to activity. 

" Thermoreceptors - Body cells transducing thermal stimuli to electrical impulses 

for the central nervous system. 

" Thermoregulation - Control of body core temperature by varying skin blood 

flow. 

" Warming Cycle - Process in which TLC sheets are heated by cooling below the 

event temperature. 
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