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Abstract 

Feature-Based Object Tracking in Maritime 

Scenes 

Petr Vo1eg 

Bournemouth University 

A monitoring of presence, location and activity of various objects on the 

sea is essential for maritime navigation and collision avoidance. Mariners 

normally rely on two complementary methods of the monitoring: radar and 

satellite-based aids and human observation. 
Though radar aids are relatively accurate at long distances, their capability 

of detecting small, unmanned or non-metallic craft that generally do not reflect 

radar waves sufficiently enough, is limited. The mariners, therefore, rely in 

such cases on visual observations. 
The visual observation is often facilitated by using cameras overlooking 

the sea that can also provide intensified or infra-red images. These systems 

nevertheless merely enhance the image and the burden of the tedious and 

error-prone monitoring task still rests with the operator. 

This thesis addresses the drawbacks of both methods by presenting a 
framework consisting of a set of machine vision algorithms that facilitate the 

monitoring tasks in maritime environment. 
The framework detects and tracks objects in a sequence of images captured 

by a camera mounted either on a board of a vessel or on a static platform over- 

looking the sea. The detection of objects is independent of their appearance and 

conditions such as weather and time of the day. The output of the framework 

consists of locations and motions of all detected objects with respect to a fixed 

point in the scene. All values are estimated in real-world units, i. e. location 

is expressed in metres and velocity in knots. The consistency of the estimates 

is maintained by compensating for spurious effects such as vibration of the 

camera. 

In addition, the framework continuously checks for predefined events such 
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as collision threats or area intrusions, raising an alarm when any such event 

occurs. 
The development and evaluation of the framework is based on sequences 

captured under conditions corresponding to a designated application. The 

independence of the detection and tracking on the appearance of the scene and 

objects is confirmed by a final cross-validation of the framework on previously 

unused sequences. 
Potential applications of the framework in various areas of maritime envi- 

ronment including navigation, security, surveillance and others are outlined. 
Limitations to the presented framework are identified and possible solutions 

suggested. The thesis concludes with suggestions to further directions of the 

research presented. 
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Chapter 1 

Introduction 

As the maritime transport sector provides the transportation of goods and 

persons around the world on a massive scale, navigation safety and security 

must be paramount for all involved. Any disrupting events, either deliberate 

criminal acts such as piracy or accidental such as collisions, need to be reduced 

or avoided completely. 
Visual and radar-based navigation together with sea navigation and colli- 

sion avoidance regulations (NAVREGS, COLREGS), (International Maritime 

Organization, 2004) are established methods in maritime transport sector. 
Additional navigation aids such as Global Positioning System (GPS), very 
high frequency radio link communication (VHF) and recently Automatic 

Identification System (AIS) complement them. These additional technologies 

are, however, applicable only to adequately equipped craft which are willing 

or able to participate in the process of navigation. 
Both visual and radar-based navigations suffer from various limitations 

with potentially devastating consequences. Nielsen and Petersen (2001) 

illustrate on real situations that even the combination of various navigation 

aids does not always guarantee safe navigation. 
Following sections provide a detailed discussion of the limitations to 

established navigation methods. Three main areas of maritime transport where 

safety and security are essential are analysed in detail: collision avoidance, 

maritime piracy counter measures and Vessel Tracking Systems. Benefits of 

machine vision technology in each of these areas are suggested. The proposed 

machine vision framework is briefly introduced. The chapter concludes with 

an outline of the structure of this thesis. 
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1.1 Limitations to Radar-based Systems 

Marine radars can detect and locate objects on the sea up to tens or hundreds of 

nautical miles with relatively high precision. Majority of marine craft ranging 
from small leisure yachts to massive cargo ships are equipped with Automatic 

Radar Plotting Aids (ARPA) that combine information obtained by radar with 

electronic charts, GPS data and AIS. 

Despite continuous advances in the radar technology, a number of limita- 

tions can still be identified: 

. Radar-based systems do not operate beyond a certain minimum range. 
For example, Furuno (2004) limit the minimum range of their products 
to 1 /8 of nautical mile. This makes use of radar in confined areas such as 
harbour entrances unreliable. 

. The strength of radar response for a particular object expressed as Radar 

Cross-Ratio (RCS) depends on multiple factors such as material from 

which the object is built, geometry and pose of the object, speed, etc. 
Weather phenomena such as rain, waves, etc. generate false responses 
that can be mistaken for genuine objects, (Kingsley and Quegan, 1992). 

. Materials such as fiberglass are transparent to radar signal. Small and 
low objects can remain undetected as their RCS is insufficient. Smooth 

shaped objects such as hulls of fishing boats give a poor radar response as 

compared to rough shaped objects, (Australian Transport Safety Bureau, 

2004). 

" Use of radar requires experienced and knowledgeable operators who are 

able to associate information on the radar display with the underlying 

situation in the scene. 

" Radar is a sophisticated piece of equipment. There are numerous 

options and settings that have to be correctly adjusted for radar to 

function properly. Radar antenna contains moving parts that are prone to 

mechanical failures especially in severe weather conditions that are not 

uncommon in maritime environment. 

" There is a health concern associated with a long-term exposure to high 

frequency electromagnetic fields typically generated by radars, (World 

Health Organization, 1999). 
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The International Maritime Organization (IMO) and local authorities (Aus- 

tralian Transport Safety Bureau, 2004) appeal on mariners not to rely solely on 
ARPAs but to jointly use all available navigation aids with primary emphasis 

on vigilant watch-keeping. There are, however, serious limitations to human 

vigilance. 

1.2 Limitations to Human Vigilance 

Historically, the very first vigilance test in maritime domain was done by 

Mackworth (1950) at the request of the Royal Navy. This was concerned with 
the degradation of sonar operators detecting enemy submarines. The results 

showed that the vigilance could not be maintained at an optimum level for 

more than 30 minutes. After 30 minutes as many as 15% of omissions occurred. 
A more recent study into factors influencing the vigilance of humans was 

presented by The Institute of Applied Anthropology (2001). 

Although the main focus of this study was to draw up guidelines for 

lifeguards at swimming pools, the results can be extended to other similar 

activities requiring significant attention over an extended period of time, 

including maritime watch-keeping. 
The study by The Institute of Applied Anthropology (2001) identifies three 

main factors influencing the vigilance: 

9 characteristics of the task 

. physical surroundings 

. temporal progress of the task 

Characteristics of the task - the level of vigilance is proportional to the ratio 

of relevant over irrelevant information provided to the operator as proved by 

Hitchcock et al. (2003). 

The physical surroundings - environmental factors such as noise and high 

temperature have an adverse effect on the level of vigilance. 
Temporal progress - the study by The Institute of Applied Anthropology 

(2001) shows results from previous experiments that confirm that short term 

breaks have a positive influence on the level of vigilance. The influence of the 

time of the day was also confirmed; during low points in physiological activity 
(early morning, early afternoon) breaks should be longer than at other times. 
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The study supports the general perception that any vigilance task can only 
be maintained at the highest level for about a half an hour. The findings are 

confirmed in a study commissioned by Marine Accident Investigation Branch 

(2004). 

The study shows that crew's fatigue is the major cause of naval accidents. 
Broken sleeping patterns, extended working hours and limited crew num- 
bers all reduce the vigilance substantially. Many collisions occurred when 

watchmen on duty fell asleep or due to fatigue omitted various indications of 
developing emergency. An automated early warning system would certainly 

prevent many of these incidents. 

1.3 Collision Avoidance 

Similar to the Highway Code the traffic on the sea is governed by The 

International Regulations for Preventing Collisions at Sea simply known as 
COLREGS, (International Maritime Organization, 2004). A detailed knowl- 

edge of COLREGS is compulsory for any professional mariner involved in 

navigation. Despite that, the collisions still occur. 
A report by Maritime Accident Investigation Branch (2002) shows that 6% 

of all 5138 marine accidents involving fishing vessels reported to Maritime 

Accident Investigation Branch between 1992 and 2000 account for collisions. 
Despite their relatively low occurrence, collisions on the sea usually have more 
devastating consequences, especially at high seas where a rescue is not always 
to hand. Another report by Marine Accident Investigation Branch (2004) shows 
that most collisions are due to crew's fatigue, breach and misinterpretation of 
COLREGS and misinterpretation of radar and charting data. 

The importance of accurate correspondences between objects surveyed 

visually and by radar is illustrated by Nielsen and Petersen (2001) on a practical 

example of navigation of a large cargo vessel. The study shows that because 

the VHF radio link between vessels often cannot be established due to the 

absence of identification signatures intentions of the craft have to be assessed 
by visual and radar monitoring. Incorrect correspondence can lead to incorrect 

assessment of the intentions of the objects. This can consequently lead to an 
inadequate collision avoidance manoeuvre with disastrous consequences. 

Kjerstad (2003) presents results of an extensive survey involving navigators 

of High Speed Craft (HSC) operating along the coast of Norway. The survey 
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shows that radar and electronic charting systems are considered the most 
important navigation aids. Nevertheless, more than half of the navigators 

participating in the study admit that the radar is unreliable in bad weather and 
high seas. More importantly, 90% of surveyed navigators consider night vision 
(Turn Ltd., 2001; Vector Developments Ltd., 2004; Vistar Night Vision Limited, 

2004a; Vistar Night Vision Limited, 2004b; Vistar Night Vision Limited, 2004c; 

The Current Sales Corp., 2004) as a significant contribution to the safety in spite 
the fact that only 4% of craft are equipped with such a technology. In addition, 
72% of navigators would not object to more navigational technology on the 
bridge. 

However, mere provision of the enhanced image on the bridge still requires 
full-time attention of a designated operator. An automated highlighting of 

objects in a night vision image would relieve the operator of the constant 

pressure and help him/her to concentrate on other navigational duties. 

An important issue recently raised by United States National Oceanic and 
Atmospheric Administration are collisions of HSC with large marine mammals 

such as whales and dolphins, (Jensen and Silber, 2003). The photographic 

evidence gathered at Mediterranean during the last decade published by 

Tethys Research Institute (2004) illustrates the scale of injuries these creatures 

sustain during encounters with HSC. Fatalities are not exceptional. Despite 

the fact that marine mammals are difficult to spot when near the sea surface 
there is a potential for improvement and automated whale detection based on 

a machine vision would potentially help to avoid harming and killing of these 

creatures. 

1.4 Maritime Piracy Counter Measures 

Threats to the maritime traffic infrastructure can be numerous due to many 

security weak points along a cargo route. One of the most damaging threats is 

the act of piracy and armed robbery during transportation by sea, (Hawkes, 

2001; White and Wydajewski, 2002; International Maritime Organization, 

2002). The statistics presented by Maritime Transport Comitee (2003) show 

that there were a total of 335 officially registered acts of piracy in 2001. 

Hawkes (2001) and White and Wydajewski (2002) indicate that the real number 

could actually be much higher as many incidents are not reported to the 

authorities. The data maintained by the International Maritime Organization 
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Figure I. 1: Acts of piracy reported tip International Maritime (Organisation 
between May 2003 and May 2(X)4, (International Maritime Organization, n. d. ) 

(n. d. ) indicate that the number of incidents is increasing (see Figure 1.1) as 

piracy is a very lucrative form of crime. 
In some cases the capture of a vessel can lead to longer term profits by the 

operation of a 'ghost' ship, (Maritime "Transport C'omitee, 2(X)3). 

The main hot-spots of high-seas crime are the Fast Asian regions, Red Sea, 
African corner, South America and Central Africa where economic piracy goes 
hand in hand with the political situation (see Figure 1.2). 

According to Maritime Transport Comitee (2(H)3) 85% of attacks are com- 

mitted either underway or at anchor which means that the typical scenario 

of such an attack involves a fleet of small craft approaching the vessel in an 

attempt to board it and overpower the crew. Due to the inability of radar to 

detect small non-metallic craft approaching a ship the i rew must rely on careful 

watch-keeping. 

A comprehensive guidance for minimisation and avoidance of piracy 

attacks on vessels published by International Maritime Organization (2(X)2) 

considers watch-keeping as one of the main piracy counter measures. Careful 

watch-keeping helps to detect suspicious activities on the sea well in advance 
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Figure 1.2: Map of global sea routes and the piracy hot-spots, (Maritime 
Transport Comitee, 2003). 

allowing the crew to prepare for the attack. Nevertheless, proper watch- 

keeping is often difficult to maintain due to a limited number of personnel 

can modern cargo ships. 

The conclusion is that maritime piracy is a serious issue which cannot 

be easily resolved by existing technologies such as radars. The vessel crews 

rely mainly on careful watch-keeping and increased vigilance when it comes 

to piracy threat assessment. Automation of watch-keeping task provided 

by a machine vision based system would relieve the human operator from 

necessary continuous attention. The operator would he alerted only when a 

potential risk is detected by the system. 

1.5 Vessel Tracking Systems 

Most harbours, port facilities and busy waterways are monitored and con- 

trolled bv Vessel Traffic Systems (VTS), (Amiel, 2000; Slater, 1989). The VTS 

seamlessly integrate navigation, vessel tracking, surveillance, cargo and ship 

registration, administration and operational logistics in maritime environment. 

Systems typically consist of modules that are interconnected on a cooperative 

basis. This enables all the necessary information to he broadcast to various 

harbour authorities. For example, customs, traffic control, health and safety 

departments and other authorised bodies all have access to any information 
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required, such as traffic maps, ship identifications, cargo registrations, weather 

reports and forecasts, all through a single integrated system. The VTS 

also support communication links between control centres and vessels. The 

Automatic Identification System (AIS) is recently becoming substantial data 

source in the VTS. 

The navigation and tracking modules are essential parts of any VTS. For 

open seas and coastal areas the service is provided by radars in combination 

with GPS, (Phinney, 1998). For traffic hot-spots such as harbour entrances, 
busy transport lines and crossings additional navigation aids such as buoys 

and VHF radio link communications are used. Locations where radar is 

inapplicable are monitored by CCTV cameras linked to the central control 

room in order to assist in navigation, (Amiel, 20(X)). The cameras provide only 

an overview of such locations and no further automated analysis based on the 

visual information is performed. The operator must survey the scene, assess 

activity of craft, make appropriate decisions and take actions. 
The process would benefit from an automation of at least the first two 

stages alerting the operator only when decision and action are required. For 

example, the operator could be automatically warned by the system that "ship 

A is entering a forbidden zone" or "vessels C and D are on collision course". 

The system would be seamlessly integrated into the VTS structure, filling gaps 

in radar-based vessel tracking. 

1.6 Proposed Framework 

This thesis addresses the limitations of visual 'intl radar-haled navigations 
by proposing a machine vision-based framework that overcome. these limi- 

tations. The framework automates the visual surveillance task and provides 

human operator with relevant information about the activity of objects in the 

maritime scene. It identifies various activities requiring operator's attention 

such as collision threat, piracy threat, intrusion of forbidden zones and others. 

The framework facilitates the visual maritime navigation and complements 

other navigation technologies such as radar and (; I'S. 

Pertinence of the proposed framework is illustrated in three most promi- 

nent areas of maritime transportation sector: collision avoidance, maritime 

piracy threat assessment and Vessel Tracking System. The use of the frame- 

work is not limited to these areas and there are certainly other optional 
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applications of the framework, either stand-alone such as perimeter intrusion 

detection in small private moorings, or embedded in more complex systems 

such as Automatic Radar Plotting Aid (ARPA) or Vessel Tracking System 

(VTS). 

1.7 Thesis Outline 

This chapter identifies limitations to established technologies of maritime 

navigation and proposes machine vision-based framework addressing these 

limitations together with various applications of the framework. 

Chapter 2 characterises and analyses the problem domain, outlines the 

research objectives and describes research methodology used in the thesis. 

Chapter 3 reviews the previous work in relevant areas of machine vision 

applications in maritime sector and object tracking. 

Chapter 4 presents an adaptive texture-based segmentation algorithm for 

separation of objects from the background in the maritime scene. 

Chapter 5 introduces an object representation consisting of a weak perspec- 

tive projection of salient geometric features and submersion line. 

Chapter 6 describes a temporal correspondence matching of geometric 

features necessary for motion estimation. 
Chapter 7 presents the motion estimation by Kalman tracking as well as 

image stabilisation technique based on a registration of the horizon image 

projection. 

Chapter 8 details the inverse geometrical mapping of objects' location and 

motion estimates, threat assessments and analysis of the mapping precision. 

Chapter 9 presents the results of the cross-validation of the complete 

framework. 

Chapter 10 concludes the thesis by discussion of the results and suggestions 

on future directions. 
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Chapter 2 

Problem Characterisation 

2.1 Introduction 

This chapter provides several contexts of maritime scenes necessary to obtain 

characterisation of the problem domain. As the proposed framework is based 

on processing of visual information, contexts representing the appearance, 

geometry and dynamics of the scene and objects are analysed, (Strat, 1993): 

" optical context - appearance attributes such as shape, colour, scale and 

structure of various components of a maritime scene including back- 

ground and objects, 

. geometric context - the geometric model of the scene, position of the 

camera with respect to scene and location of objects within the scene, 

" temporal context - time-dependent properties of the scenes, such as motion 
dynamics of the sea and objects. 

The contextual analysis carried out in this chapter leads to the research 

objectives together with constraints and assumptions imposed on the problem 
domain being outlined. Research methodology is introduced including the 

architecture of the proposed framework and details of development sequences. 
The contextual analysis is based on several principal assumptions: 

. The vision based framework is assumed to be composed of an input 

represented by one or more independent or related cameras overlooking 
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the scene; a processing unit that performs a dedicated task on the data 

provided by input; an output that is an outcome of the processing. 

. An image is generated by projection of points in the scene through a 

camera lens onto a planar surface called the image plane. 

. The video sequence is a sequence of images acquired at equal periods of 

time. 

2.2 Optical Context 

2.2.1 Background 

The illumination of an outdoor scene depends mainly on environmental con- 
ditions, time of the day and the structure of the scene itself, (Narasimhan et al., 
2002). Outdoor illumination obeys multiple models - light can be diffuse 

(cloudy day) or directional (sunny day). The direction of light depends on 
time of day and season of the year. Although these two models are distinctive, 

it is their combination that provides an approximation to a real situation. 
The parameters of a daylight model depend on factors such as humidity and 

air temperature, wind conditions, dispersion of minute particles, etc. that 
directly affect the way light passes through the air. The outdoor illumination 

model is a non-linear function of multiple variables quantifying these factors, 

(Preetham et al., 1999). 

The background of maritime scenes is composed of the water, land and sky. 
The assumption is that land and sky are located above the water and that they 

are clearly separated by a horizon. If land is not present in the scene the horizon 

separates water directly from the sky. The focus of the proposed framework is 

only on the region of the water below the horizon. 

Optical properties of water surfaces in outdoor scenes are influenced by 

weather factors such as wind, temperature, atmospheric pressure, dispersion 

of particles (turbidity), etc. Specular reflectance (Jain et al., 1995) of the water 
depends on an incident angle and it varies from between 5% to 100'%, (Premoze 

and Ashikhmin, 2000). For reflectance close to 100% the sky is reflected with 

almost no loss. For reflectance close to 5% the light mostly comes from below 

the surface. This causes the familiar pattern of localised bright and dark spots. 
While the water is predominantly specular or transparent, maritime objects 
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are typically composed of parts with mostly Lambertian reflectance. This 

is due to the physical properties of materials from which the objects are 

composed. Exceptions are shiny elements such as window panes, chrome 

railings, etc. which are mainly specular and reflect the incident light with little 

scatter. 
Water surface that undergoes perpetual motion which appears as waves, 

projects onto the image as a pattern of fragments of similar size and different 

intensity. The pattern of the water surface does not remain static, it changes 

continuously, (Doretto et al., 2003) (see Figures 2. la, b). The fragments change 
intensity with changing illumination and incidence angle of the light. The 

position of the fragments changes as the wave oscillations propagate through 

the water surface. Wakes and crests that appear much brighter than the rest of 
the water are common during high wind speeds. 

Regular patterns often form on the water surface. These patterns are caused 
by factors such as disturbances caused by some event such as boat passing 
by or underwater streams near the surface. They usually appear as straight 
lines or curves of varying width and intensity that differs from intensity of the 

surrounding water (see Figure 2.1c). The patterns usually change position over 
time (e. g. wakes travel away from the source of disturbance). They typically 
blend gradually into the background and disappear over time. 

Some of these patterns can be permanent or change very slowly. Permanent 

patterns are usually caused by an interaction of water with sea vegetation, 

corals, rocks or other either natural or artificial objects that are close to the 

surface. Slowly changing patterns also appear on boundary of two underwater 

streams with different directions or speeds. Regions of different colours appear 

when the water is shadowed by clouds or at river deltas where fresh water 

enters the sea or where the depth of the sea suddenly changes. 

2.2.2 Objects 

Categorisation of objects in maritime scenes with respect to appearance is 

complicated due to variations in types, shapes, scales and colours. Figure 

2.1d shows a minimal example of objects that can be encountered in a typical 

maritime scene. The scale of objects ranges from less than a metre for a buoy 

to hundreds of metres for a cargo ship. The appearance of the same object can 

change significantly within a short period of time. For example, yacht takes 
down its' sail, cargo ship unloads, etc. 
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Figure 2.1: Maritime environment. (a) and (b) illustrate the spatio-temporal 
variability of the sea surface. Both frames are only approximately a second 
apart. (c) shows a typical 'wake' pattern occurring after high speed craft passes 
by. (d) illustrates maritime objects with various appearances and motion 
dynamics encountered in a maritim' environment. The object on the far left 
is a part of a fixed structure embedded into a sea floor, vessels in the middle 
are both moving at different speeds and buoy on the right is either static or 
rolling due to the sea motion depending on the weather conditions. 
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A maritime scene might also contain objects that serve the purpose of 

navigation such as buoys, waterway signs, beacons, lighthouses, etc. Other 

objects such as piers, moorings, docks, etc. are used in maintenance of the craft 

and the cargo. All these objects come in various shapes, colours and scales 

which makes their categorisation based on visual attributes difficult. 

In populated areas the sea surface can be littered with floating debris. The 

debris is mostly composed of waste coming either from passing vessels or it is 

washed off the land. The debris ranges from small and light household waste 
to logs of wood or cargo containers. 

Natural objects such as rocks, cliffs and other geological phenomena 

protruding above the water are integral components of a maritime scene as 

well. Large sea mammals such as whales and dolphins surface regularly and in 

such a case they can pose a navigation challenge. They usually appear as dark 

and shiny bows above the water surface with fins occasionally protruding. 
Smaller animals such as sea birds and fish are part of the maritime scene as 

well. They, however, hardly present a challenge to maritime traffic due to their 

natural tendency to avoid unwanted encounters with maritime craft. 

2.3 Geometric Context 

2.3.1 Scene Projection Model 

The model of projection of the maritime scene onto an image is derived from a 

general projection from 3D scene to 2D image plane through a pinhole camera 
(Shapiro, 1995; Jain et al., 1995) as illustrated in Figure 2.2. The point in the 

scene at location [X, Y, Z] is projected at position [x, y] in the image through 

the centre of projection 0. The focal length of the camera is f and the principal 

point is located at position [0,0] in the image. The image plane is a discrete 

array of pixels of a finite size spix. The pixels are assumed square which is 

acceptable for the majority of real cameras used in machine vision such as those 

by Hitachi Denshi (n. d. ). It is often convenient to express the focal length in 

pixels, fP+x =1 sp.. 
The objects in maritime scenes are assumed to float on the planar sea 

surface. The assumption is known as Ground Plane Constraint (GPC) (Wor- 

ral et al., 1995; Worrall et al., 1994). It stipulates that all objects are located 

on a plane with a constant Y-coordinate. The GPC is essential to many inland 
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Figure 2.2: General projection from 3D scene to 2D image plane through a 
pinhole camera with projection centre 0 and focal length f. L, is the line of 
sight connecting the scene point at [X, Y, Zj with projection centre. The scene 
point projects at position Ix, y) on the image plane. d is the line connecting the 
projection with the principal point [0,01. The pixels are assumed square with 
side size sp, =. 

traffic surveillance applications where cars and people are located on a road or 

a ground, (Dellaert and Thorpe, 1997; Magee, 2004; Williamson, 1998; Tai et at., 
2004). 

The model corresponds to a setup where the camera is mounted either on 

an articulated static point or on a mast of a moving vessel and it overlooks the 

monitored area. The model geometry is outlined in Figure 2.3. 

The imaging device is approximated by the pinhole camera. The projection 

centre of the camera is located at height II above the plane II corresponding to 

the sea surface. The camera is tilted by an angle w so that a section of plane n 

is projected onto the image plane. The projection can be expressed in terms 

of a plane-to-plane projection (Mohr and Triggs, 1996). No rotation about 

the optical axis is assumed so that horizontal edges of the image plane are 

aligned with the planen. The rotation about the Y-axis does not influence the 

projection as II hypothetically stretches to infinity in all directions. Rotation 

around the Y-axis would imply that a different section of the plane n is 

projected onto the image. 

Optimally, the horizon in the scene projects at the top edge of the image, so 

that the largest possible section of the plane II is projected onto the image. This 

allows for full utilisation of the image plane area. 
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Figure 2.3: The projection model of the maritime scene. Objects are located 
on the plane II representing the sea surface. The plane is projected through a 
pinhole camera onto the image plane. The camera is positioned at height H 
above the sea surface. It is tilted at an angle w. The horizon is assumed at 
infinity and it projects onto the image as a horizontal line. The object is located 
at range Robb in front of the camera and it's depth is Zoyj. 

2.3.2 Deviations from Scene Projection Model 

2.3.2.1 Curvature of the Earth 

In reality, the sea surface is not perfectly flat. On a large scale it is a segment of 

a sphere representing the globe as shown in Figure 2.4a, b. 

For camera placed at height H above the Earth surface the distance from the 

camera to the horizon is given as length of line 5 connecting the projection 

centre 0 with the point M at the horizon (Figure 2.4a) 

01ý1I = H(2D + H) (2.1) 

where D= 6378000 m is the diameter of Earth. For example, if camera is at 
H=7mthen IOll MI =9449m. 

The perceived distance to the horizon in somewhat longer due to the 

refraction of the light towards the Earth's surface caused by the atmosphere. A 

commonly used approximation (Young, 2003,2004) of the refraction is to extend 

the diameter of the Earth by a factor if Z. The modified distance to the horizon 

is then 
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Figure 2.4: Deviations from the optimal planar scene due to curvature of the 
Earth in (a) Z direction and (b) X direction of the scene coordinates. 
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IOMI 
= 

/H(D+H) 
= 10207 m (2.2) 

The distance to the horizon is the theoretical limit of the framework range. 
Figure 2.4a illustrates how the curvature of Earth violates the planar scene 

constraint. The point M in the scene detected at range Rdet on the plane 
Il is actually located further on the globe at range R. The relation between 

the range R on the globe and range Rdet detected on the optimal plane is 

obtained by solving for one of the two possible cross-points between line OM 

and circle sector C representing the Earth surface. The coordinate system is 

centered at point P, with Z-axis pointing to the right and aligned with the 

plane II and with Y-axis perpendicular and pointing upwards. The crosspoint 

corresponding to the physical setting outlined in Figure 2.4a is the one with 

a smaller positive Z-coordinate. The other crosspoint lies behind the horizon. 

The coordinates of the crosspoint are obtained by solving a set of equations for 

line and circle 

01A1: Y=H- 
H 

Z, Z>_0 (2.3) 
Rdet 

C: Z2 + (Y + D)2 = D2 (2.4) 

The Z-coordinate of the crosspoint corresponds to R 

(DH Z+ 
H2 ± D2H2 - 2DHRdet - H2Rdet (2.5) -R= Rdet 

(H2 + Rdet 

Real values of R are obtained for points that lie no further than the horizon. 

For example, when substituting for H=7m, D= 6378000 m and detected 

range Rdet = 500 m the range on the globe R= 501.41 m. Figure 2.5 illustrates 

the difference between the range detected on the optimal plane II and on the 

globe. The deviation is non-linear and it significantly increases towards the 

horizon causing objects to be detected closer than they actually are. 
The curvature in direction of X-axis can be safely neglected. For example, 

camera with a= 23° field of view placed at H=7m sees the horizon 

approximately 9449 m away. The horizon projects as an arc L=2x 9449 x 

tan 2 xiso x 7r 3798 m long (see Figure 2.4b). The height b of the arc is 30 cm 

which is negligible error. 
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Figure 2.5: Difference between the actual range R and detected range Rdet 
caused by the curvature of the Earth. 

2.3.2.2 Waves 

Waves are considered yet another source of deviations from the optimal planar 
scene model. Their influence is difficult to model analytically as the magnitude 
of these deviations depends on environmental conditions and location (open 

sea, coastal areas (Norland and Loberg, 2001)). 
The height of waves h,,, is measured from through to crest (see Figure 

2.6a, b). A measure commonly used for quantifying the sea state is known as 
significant wave height (SWH). The SWH is defined as the mean value of the 
highest third of measured waves present. As data from the National Oceanic 

and Atmospheric Administration website (National Oceanic and Atmospheric 
Administration, n. d. ) show, the average SWII values are between 0.3 to 
3 metres depending on location and season of the year. Nevertheless, the 
SWH for coastal seas and harbours is usually considerably less, (Norland and 
Loberg, 2001). 

Figures 2.6a, b illustrate the influence of waves on the detected range of 

objects. In the Case A (Figure 2.6a) an object located at range R is elevated by 
2 above the optimal plane. The camera at height 11 is lowered by ! below 

the optimal plane. The perceived range RA is longer than an actual range R. 
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Figure 2.6: The influence of waves of height h,,, on the detected object ranges 
RA, B. 
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Figure 2.7: Relative error of range detection with respect to wave height hw for 
various camera heights H. 

The situation is reversed in the Case B, i. e. the object is lowered and the camera 
is elevated by . The perceived range RI, is shorter than actual range R. 

The difference OR between R and RA or fly; can be derived from the 

triangulation 

I? RA. n (2.6) 
If h, il 

OR=R-RA. Q=Rt1lhw/ =R( 
: FIIwW) (2.7) 

11 T It 

where wave height hw is negative for the Case A and positive for the Case 

B. Equation 2.7 shows that the difference is directly proportional to the range 
R of the object in the scene. The relative error of detected range with respect to 

wave height hw and various camera heights 11 is plotted in Figure 2.7. The plot 
indicates that the waves considerably contribute to uncertainty of the detected 

range. 
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Figure 2.8: The error (Ox, Ay) in image projection of the scene point (X, Y, Z) 
under a weak perspective projection. 

2.3.3 Object Model 

Optimally, the objects in the scene would be recognised and treated as three- 

dimensional. This would, however, require a recovery of unknown 3D 

structures of the objects which is a paramount task beyond the scope of the 

research presented here. To keep the model mathematically tractable yet 

adequate a simplified 2D representation called 'weak perspective' (Shapiro, 

1995) is considered. The weak perspective assumes that the depth of an object 
Zobj in the direction of the line of sight L, is significantly smaller than the 

length of the line of sight IL, I (see Figures 2.2,2.3). In such case the object can 
be collapsed to a single plane parallel to the image plane and located at Rob3. 

The error caused by the weak perspective projection can be expressed as a 
displacement (Ax Dy)T of the image projection of the scene point, (Banerjee, 

2002) (see Figures 2.3 and 2.8) 

Ax 

_. 

f ( Zobj X 
(2.8) pix 

Ay ILeR \IL, I+Zobj Y 

where fix is the focal length of the camera in pixels and (X Y)T are the first 

two coordinates of the point in the scene. Assuming that the object is projected 

near the centre of the image so that X« Robb then IL, I can be approximated 
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from triangulation 

l L, l F12 
+ Ra 

j 
(2.9) 

Equation 2.8 indicates that small ratios of f (long range of objects in the 

scene compared to focal length), and " (small field of view) contribute 
to the validity of the model. 

For example, if a5 metres long vessel (Zb. =5 in) detected at 150 metres 
(&b, = 150 m) faces the camera with focal length f, = 1928 pix overlooking 
the scene from height II = 71n then the projection displacement caused by 

weak perspective approximation is 

Ay 71 + 

150 (7+1 

ViiO { ýý) 1=0.4137 

[X] 
(2.10) 

The value of fp, = is given by the physical dimensions of the pixels. CCTV 

cameras used in industrial and surveillance applications typically operate 
with square pixels with size sp,, r (see Figure 2.2) between 4 and 12 Urn 
(Hitachi Denshi, n. d. ) and lenses with focal lengths f between Ito 75 mm. The 

value of JD, _- used in the example corresponds to j= 16 inm and sp, = = 8.3 /tin. 
The displacement error as a function of the detected range Robf of the vessel in 

the example above is is plotted in Figure 2.9. 
The approximation given by Equation 2.8 is rather pessimistic. Most points 

belonging to an object in the real maritime scene are located closer to the 

weak perspective plane than the maximum object depth Z,, 61. Distant objects 

monitored by an elevated camera at a relatively low tilt angle. are partially 

self-occluded and only fractions of their structures are visible. For example, 
less than a half of the width of the small fishing boat in Figure 2.1 d is visible. 

2.4 Temporal Context 

Temporal context analysis looks at the dynamics of maritime scenes. The 

changes of structure and appearance of maritime scene are due to several kinds 

of motion and environmental factors. Four kinds of motion in maritime scenes 

can be recognised: 

. independent motion of objects in the scene, 
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Figure 2.9: Projection displacement caused by the weak perspective approxi- 
mation as a function of the detected object range Robb and various focal lengths 
f of the camera. 

. motion of objects due to interaction with waves, 

. motion of the sea surface due to sea waves, 

9 global displacement of the scene due to camera self-motion. 

Environmental factors such as clouds are locally or globally changing the 

illumination of the scene over time. Cloud shadows can locally reduce the 

illumination of the scene causing darker patches to appear on the sea surface. 
These darker patches travel approximately at the speed of the clouds. The size 

and shape of the patches depend on the weather conditions. 
The objects are assumed to obey laws of physics, namely rigid body 

mechanics. Their velocity and acceleration are assumed finite and smooth 
functions of time, their mass non-zero and approximately constant throughout 

their motion. The sea, however, does not obey rigid body mechanics and it's 

motion is modelled by fluid dynamics. 

The interaction of rigid objects with the sea is characterised by non- 
linear models, (Kim et al., 1987), as fluid dynamics interacts with rigid body 

mechanics. The resulting motion described as 'rolling' can be approximated 

as an oscillatory motion with time-varying amplitude and frequency. The 
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amplitude and frequency of these oscillations is given by the frequency of the 

waves, amplitude, and weight, dimensions and geometry of the object. The 
direction of the oscillations depends on these factors as well as on the pose of 
the object with respect to the direction of the propagating waves. 

2.4.1 Motion of the Sea 

Sea surface undergoes permanent motion that consists of vertically oscillating 
waves that propagate horizontally in all directions. Waves can he divided into 

two categories with respect to their prime source. Natural waves are generated 
by interaction of the water surface with wind. Artificial wakes are generated 
by interaction of the water with either static or moving objects. 

Among many environmental factors that contribute to generation of natural 

waves the most important are: wind strength, depth and shape of pool and 
location (coastal seas, open seas). The wave motion is difficult to model in a 
deterministic way, even in a controlled environment and for a one-dimensional 

case, (Capitao and de Carvalho, 2000), as the numerous factors mentioned 

above interact in complex ways. Due to its periodic nature, this motion is 

typically modelled as a Fourier series with stochastic time variant parameters, 
(Belmont and Morris, 1994; Capitao and de Carvalho, 2000; Kim et al., 1987). 

Section 2.3.2 described regular patterns such as wakes generated by the 

hulls of moving vessels, underwater streams and other sources. These wakes 

propagate along the surface away from their source before they gradually lose 

energy and fade away or blend into the surrounding background. A typical 

size and life span of the wake depends on the size and speed of the object that 

caused it and the state of the sea. Wakes can last from a couple of seconds up to 

several minutes. The wakes propagate for longer on a calmer sea as there is less 

attenuation due to interferences with natural waves. The propagation speed, 

magnitude and direction of the wakes are influenced by physical properties of 

the objects. 

2.4.2 Motion of Objects 

Categorisation of maritime craft is administered according to the intended 

purpose and functionality by official bodies such as Den Norske Veritas (DNV, 

2004). Following categories are typically recognised: 

. ships 
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" high speed, light craft and naval surface craft 

. fixed offshore installations 

. other objects 

For the purpose of tracking and surveillance, a classification with respect 

to activity of maritime craft is more appropriate. The main objective of such 

classification is to distinguish objects by their motion dynamics rather than by 

their purpose or appearance. If the motion is determined relative to a static 

point of observation then three classes of objects can be identified: 

" Static objects do not exhibit any kind of motion. These are, for example, 

piers, poles and other man-made constructions, either embedded into 

the sea floor or stretching from the shore. Natural objects such as rocks 

or shores belong to this class as well. 

. Fluctuating objects exhibit a short-term semi-periodical motion due to 

interaction with waves. Actual position of these objects is constrained to 

a certain limit around a fixed or drifting position. These are, for example, 
buoys, marine craft in an inactive state at a mooring or tied up to other 

static objects; sea birds sitting on the sea surface; floating objects such as 
debris, natural objects such as floating seaweed. The common factor of 

these objects is that their motion is purely by interaction with the waves. 

" Moving objects can undergo any kind of motion in any direction. For 

maritime scenes the motion is constrained by the GPC (Worral et al., 
1995) to two dimensions along the sea surface. Activities such as a hydro- 

plane taking off are considered as special cases and they are beyond the 

scope of the research presented here as they violate the GPC. The speed, 

acceleration and maneuverability of various maritime craft are usually 

given by their physical properties such as mass and geometry. 

The above classification of objects is not strict and objects can change 

categories over time. For example, a stationary vessel apparently motionless in 

calm seas belongs to a static category even though it is not embedded into the 

sea floor. Under different weather conditions it might actually start to fluctuate 

around a fixed point and thus be classified as fluctuating. If it starts to move on 

its own it will become a moving object. 
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Figure 2.10: An object in the scene travels from (X, II, Robb) to (X + 
OX, H, Rlb3 + AR) between two consequent frames of the sequence. The 
motion projects onto the image as displacement (Ax, Ay). 

2.4.3 Projected Displacement 

Assuming that maritime objects are rigid, their motion projects as a displace- 

ment of their images between two consequent frames in the sequence. Most 

motion detection algorithms assume a limited projected displacement, (Smith, 

1998; Zhang and Lu, 2001), in order to simplify the detection and to reduce 

computational overhead. Limited projected displacement in combination with 

the frame rate defined as reciprocal value of time between two frames in a 

sequence stipulate the maximum detectable speed of objects in the scene. 
The relation between the projected displacement and the speed of an object 

in the scene is obtained by the following analysis. A vessel moving in the scene 

is monitored by a camera at height II above the scene with a focal length f 

tilted by an angle w (see Figure 2.3). Two components of the vessel motion 

are considered - parallel and perpendicular to the image plane (see Figure 

2.10). Motion in other directions is obtained by linear combination of these 

two components. 
The point at location [X, Y= II, Z= Rob j] lying on the sea plane 11 projects 

onto the image plane at position 

X_ 
fr+xx (2.11) 

Hsinw+Robbcosw 

II cos w- Robj sin w (2.12) U-f ý`x 11 sines + Rob j cos w 

The projection is derived in detail in Chapter 8. 
The vessel moves between two frames from location (X, 11, Rob jj to (X + 

AX, H, Rob, + LRI in the scene. Its displacement (OX, 0, AR] in the scene 
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projects as a displacement [Ox, Ay] in the image. The vessel moving at velocity 

v= (vi, v,, ) travels distance OX and AR in time t=q reciprocal to the frame 

rate qr of the framework 

AX = vxt = 
vx (2.13) 
dir 

AR = vt = 
vy (2.14) 
qr 

The corresponding projected displacement can be determined from 2.11 

and 2.12 as 

Ax = fptz 
LX 

H sin w+ Robj cos w 
2.15 

) _ 
rHcosw-(Robj+AR)sinw 

- 
Hcosw-Robjsinw 

(2.16) ýy-fptx LHsinw+(R0bj+OR)cosw Hsinw+RobjcoswJ . 16 

The image displacement in terms of vessel's range Robb, velocity v and 
frame rate q, is obtained by substituting from Equations 2.13 and 2.14 into 2.15 

and 2.16 

Aý = Jixvx (2.17) 
gr(Hsinw + Robj cosw) 

=_f1 
Hvy Ay 

(H sin w+ Robb cosw)(Hgr sin w+ (vy + grRobj) cos w) 
(2.18) 

Both equations can be simplified under assumptions that angle w is rela- 

tively small and that vi, K grRobj . The displacements can be approximated 

as 

Ax 
fp'xyx 

(2.19) 
QrRobj 

Ay N -. fPsxHvy (2.20) 2 4T Robj 

2.43.1 An Example Scenario 

Parameters of the motion detection can be determined by evaluating the above 

approximations for a required maximum detectable velocity v at a specific 

minimum range Rmin. 
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Parameter Value 
Imaging area size 1/2" 

Imaging area width 823 pix 
_ Imaging area height 592 ix 

Pixel width . s,, 8.31nn 
Pixel height s 8.314in 

Horizontal multiplier w 6.4 
Vertical multiplier It 4.8 

Table 2.1: Parameters of the Hitachi Denshi (n. d. ) KPFI E camera used in the 
example scenario. The values of horizontal and vertical multipliers for 1/2" 
imaging area are obtained from RMA Electronics Inc. (2005) 

The following scenario serves as an example. The framework monitors 

a harbour entrance 400 in wide and 1 kin long. The camera overlooking the 

entrance is mounted on a pole at height 11 =7 in above the sea and tilted by 

w= 2°. The framework is required to capture objects moving at speeds up to 

50 knots (approx. 28 m/s) inside the harbour entrance in order to capture small 

recreational craft which are often capable of such high speeds. 

A standard machine vision camera such as Hitachi Denshi (n. d. ) with a 

fixed focal length lens is used. The selected camera can capture 25 frames 

per second. The focal length of the lens depends on the size of the camera's 

imaging area and the required field of view at a specified range. The 

parameters of the camera are summarised in Table 2.1. 

The focal length j is given as, (RMA Electronics Inc., 2005) 

f =WT- 
R (mm) (2.21) 

vfo� 

where w is a horizontal multiplier (see Table 2.1 for a specific value), R is 

the specified range and 1VIo� is the required width of the field of view. For the 

above mentioned harbour entrance the values are R= 1000 in, lV ja� = 400m 

and the focal length is f=6.4.4W = 16 mm. 
In order to establish the minimum detectable range Rmi� of the framework 

the height of the field of view must be obtained by rearranging Equation 2.21 

and replacing horizontal multiplier w with the vertical one, h (see Table 2.1 for 

a specific value) 

11/o� =hR=4.8.1000 = 300m (2.22) 
16 

The value of Rm;,, is obtained from triangulation illustrated in Figure 2.11. 

The vertical field of view -y is determined as 
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Figure 2.11: Minimum detectable range Rmttz is determined from the height H 
of the camera and the angle 2+w, where 2 is the half of the vertical field of 
view and w is the camera tilt 

ry =2 arctan(Hf,, 
/2) 

=2" arctan( 1300/ 0 002 
) 17* (2.23) 

and Rmin as 

Rmtn =H=7= 38 m (2.24) 
tan(2 +W) tan(2 + 2) 

The maximum projected displacement are obtained by substituting corre- 

sponding values into Equations 2.19 and 2.20 

ýLv ism . 28 
Ax R=8.325 

38 -' 57pix (2.25) 
(Ir min 

-LHV 16.10-s 
'Ay , 

8v = 8.3.10-5' '7.28 -11pix (2.26) 
4rR. bj 25.382 

The results show that in order to detect craft moving at maximum speed 
50 knots anywhere inside the monitored harbour entrance the expected pro- 
jected displacements are up to 57pix in horizontal and 11 pix in vertical 
direction. 

2.5 Research Objectives 

The contextual analysis provided in previous sections supplies information 

necessary for the formulation of the objectives addressed in this thesis. The 

objectives of the research are to deliver and evaluate a machine vision based 

framework that 
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" detects any objects in a maritime scene from a sequence of images 

captured by a camera monitoring the scene, 

" locates these objects with respect to a fixed point in the scene, 

" tracks any motion of the detected objects, 

" estimates location, velocity and their uncertainties in units that are 
related to the scene, i. e. location in metres, velocity in knots, 

" based on the estimates, identifies any events in the scene that by def- 
inition require attention of a human operator, i. e. collisions, threats, 
intrusions, 

" gives an early warning to the human operator if any such activity is 
identified. 

Automated early warning also known as cueing is an essential feature 

of many surveillance systems. It alerts the human operator of a situation 
requiring his attention and it gives them time to fully assess it and make 

competent decisions. 

A study by Hitchcock et al. (2003) concerns itself with the influence of 

cueing on the vigilance and decision making processes in humans. As the 
first study of its kind (Hitchcock et al., 2003) also investigates the effect of 
the reliability of the cueing. The results confirm that the ability of correct 

assessment is directly related to the quality of the cueing. If a vigilance task 
is to be automated then cueing must have the highest possible reliability to 

make it relevant and effective. Cueing might otherwise have adverse effects, 

making a chance of correct assessment by the operator less likely. 
Based on these conclusions the following two requirements are formulated 

regarding the early warning capability of the framework: 

" the ratio of relevant to irrelevant information in the output should be as 
high as possible and 

" the relevant information should be as reliable as possible. 

Apart from principal functionality the emphasis of the research is on 
following properties of the framework: 

" the performance of the framework is independent on the scene and object 

appearances as well as environmental factors, 
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. performance does not significantly change with time, 

" systematic errors identified at any processing stage are compensated, 

. stochastic errors identified at any processing stage are either compen- 

sated or minimised. 

2.6 Constraints and Assumptions 

The following constraints and assumptions arising from the contextual anal- 

ysis are applied to the problem domain in order to arrive to a suitable and 

effective solution: 

. the maritime scene is represented by an infinite horizontal plane corre- 

sponding to the sea surface with objects located on it, 

" both systematic and stochastic deviations from the planar model are 
identified to allow for their compensation or reduction, 

" the Ground Plane Constraint holds for the objects, i. e. all objects detected 

are assumed to lie on the plane representing the sea surface, 

.a single camera monitors the plane from an elevated point in such a 

configuration that the largest possible area of the plane is projected onto 
the image, 

. the camera is fully calibrated, i. e. all the necessary intrinsic parameters 

are obtained in advance; the height H of the camera above the sea surface 
is known, 

" the background of the maritime scene is represented by the sea; the land 

or sky are excluded from the processing, 

. the majority of the scene structure is the sea, objects occupy minority of 

the scene, 

. the appearance of objects is not uniform and it varies considerably in 

numerous aspects as there are several kinds of objects to be encountered, 

.a weak perspective planar model can be used to represent objects in 

maritime scene, 
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" the camera is either static or moving in any direction parallel to the scene 

plane, 

" the sequence consists of fixed size intensity frames taken at a constant 
frame rate; processing of colour is avoided. 

An assumption of a single camera input into the framework is based on the 
fact that the Ground Plane Constraint (Gl'C) resolves ambiguity of perspective 
projection where a single point in the image represents infinite number of 

points on a ray coming through the optical centre and the point in the image 

(see Figure 2.2). The GPC specifies that objects lie on the sea plane for which 
Y=0 (see Figure 2.3). If the height 11 and intrinsic parameters of the camera 

are known, then it is possible to unambiguously estimate the location of the 

object with respect to the camera from a single view. No multiple views 

generated by, for example, stereo camera rig (Li, 1994; Li and Lavest, 1995) 

are necessary in principle. 
Many machine vision applications targeting natural outdoor scenes (Bu- 

luswar and Draper, 1994; Campbell and Thomas, 1996; Skarbek and Koschan, 
1994; Lucchese and Mitra, 2001) operate on colour images. There is, however, 

a number of issues associated with the use of colour in image processing. 
The pixel value in the intensity image is proportional to the intensity and 

wavelength of the incident light. There are typically three values per pixel in 

colour images corresponding to intensities of red, green and blue regions of 
the spectra of the incident light. The colour image theoretically contains three 

times more data than an intensity image. The increase in volume of image data 

has to be considered in time-critical applications. Some applications reduce 
the amount of data in colour images by lossy compressions, (Murray and van 
Ryper, 1994), pp. 456-464. Such reduction of image data can have a serious 
impact on image quality, (Wang et al., 2004), namely precise location of edges, 

resolution of region boundaries, etc. 
Reflections of objects on the sea surface are common in maritime scenes. 

Reflections usually have the same colour as the reflected objects. Segmentation 

of a scene with reflections can present a challenge for colour-based methods. 
The colour attributes of the background and the objects are strongly influenced 

by the illumination which is a dynamic, constantly changing process in 

outdoor scenes, (Buluswar and Draper, 1994). 
In addition, there are numerous limitations to technology used in colour 

imaging devices as identified by Martinkauppi (2002): 
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" clipping - occurs when one or more colour channels becomes null or 

saturated due to a presence of dark or bright objects in the scene, 

" non-linearity of the sensor - the response of the sensor is non-linear, 
(Shafique and Shah, 2004; Tsin et al., 2001) it can be different for each 

channel and it can be influenced by features such as Automatic Gain 

Control commonly used in applications with time-varying illumination 

conditions, 

. white balance adjustment - is necessary in order to avoid bias of sensor 

response caused by diverse illumination conditions. 

Infra-red and intensifying imagery used in maritime night vision appli- 

cations normally provide monochrome intensity based images, (Vistar Night 

Vision Limited, 2004a; Vistar Night Vision Limited, 2004b; Vistar Night Vision 

Limited, 2004c). This offers an opportunity of straight-forward integration of 

the framework within such systems as the data representations are alike. 

2.7 Methodology 

A research methodology suitable for the addressed problem is specified in 

order to deliver the proposed objectives. The methodology is discussed from 

four aspects: research design, architecture of the framework, sample sequences 

used for development and methods of evaluation. Research design outlines 

the procedures necessary to obtain a plausible solution to the problem. The 

architecture of the proposed framework follows a bottom-up control model 
(Morris, 2004; Batlle et al., 2000) which is a feasible architecture for the type of 

the problem addressed in this thesis. Video sequences used for development 

of the framework are presented. Conditions under which the sequences were 

obtained are detailed. Finally, the methods of evaluation are described. 

2.7.1 Research Design 

The research deals with real open-world maritime scenes which are essentially 

of stochastic nature influenced by phenomena such as weather, daylight, etc. 
The stochastic properties of open-world maritime scenes are often difficult 

to model precisely as illustrated by Capitao and de Carvalho (2000) and 
Preetham et al. (1999) with many factors to be considered. 
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lt would be rather complex to encompass all these factors into a single 
mathematical model of the problem as their interactions are often unknown. 
Any simplifications to the model would have to be revised in order to preserve 
the ability of the framework to operate on real scenes. 

An alternative approach is to obtain a representative sample of the problem 
domain and derive the solution using the sampled data. In the case of maritime 
scenes the sampled data are represented by a set of video sequences captured 
at conditions similar to those in the eventual application of the framework. 

In order to make the research more manageable the problem is split into a 
series of linked sub-tasks that are solved separately. The specifications of input 

and output of each sub-task are outlined in advance. The solution is obtained 
by searching out, developing and assembling methods that are candidates 
for the solution to a partial sub-task. The best performing candidate is then 

selected using either relative or ground-truth based experimental evaluation. 
Once all the partial sub-tasks are solved, the whole framework is assembled 

and cross-validated in order to verify that the objective of the independence on 
object and scene appearance is delivered. 

2.7.2 Framework Architecture 

There are numerous system architectures available in machine vision and 
their choice depends on the underlying problem, (Morris, 2004) pp. 213-216. 
Battle et al. (2000) review these architectures using an example of a system 
for image understanding of natural outdoor scenes using colour information. 
They categorise systems into three groups depending on a control strategy 
these systems employ: top-down, bottom-up and hybrid. 

Top-down architecture starts with a hypothesis about possible objects in 

the image. A set of features, attributes and relationships that support 
the hypothesis is generated. The hypothesis is then verified by checking 
whether a same set obtained from the image supports it. The hypothesis 

is either accepted or rejected depending on the verification result. The 

top-down architecture is suitable for problems with a limited number of 

well-defined hypotheses to be tested. Such approach is of limited use 
in maritime scenes as the number of objects, their variety and, therefore, 

number of hypotheses to test is virtually unlimited. 

Bottom-up architecture follows on Marr's vision model (Marr, 1982). Marr 
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formalised an architecture of a machine vision system that is coherent 

with a structure of the human visual system. In Marr's vision model 

primary features called tokens are extracted from the image, assembled 
into a more complex set of compositions called the primal sketch. The 

compositions are grouped into surfaces to provide object description 

called 21D D sketch used in recognition. The model follows a logical 

progression: data are processed and refined, decisions are made. 

. Hybrid architecture attempts to overcome limitations such as inflexibility 

and propagation of errors from which the other two architectures suffer. 
Once the processing is initiated it does not stop until a result is obtained 

whether it is correct or not. Errors occurring at any levels of processing 

will propagate and influence the outcome. Hybrid architecture mixes 
both top-down and bottom-up principles. Features, attributes and 

relationships extracted from the image in a bottom-up branch are used 
in hypothesis generation. The hypothesis is then tested on the data from 

the image in a top-down branch. 

The proposed framework is derived from the bottom-up data processing 
hierarchy. Generic models of objects are first obtained by grouping together 

geometric primitives detected in the image and projecting them onto weak- 

perspective planes. The locations and dynamic characteristics of the objects 

are then established using their generic models. Final decisions are based on 

the characteristics obtained in previous steps. The architecture of framework 

is shown in Figure 2.12a. The framework adheres to the bottom-up hierarchy 

(see Figure 2.12b) with processing path divided into multiple modules. Each 

module takes data from one or more outputs of previous modules, processes 
them and passes the results as inputs to following modules. 

In principle, the information about the maritime scene flows in one direc- 

tion, from the visual sensor through the framework to the operator. The frame- 

work operates as an information filter that detects and represents relevant 
information about activity of objects and suppresses redundant information 

such as the motion of the sea background. The bottom-up hierarchy matches 
this type of one-directional processing control. 
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Figure 2.12: The architecture (a) of the proposed framework adheres to the 
bottom-up structure (b), (Morris, 2(X)4; Batik et al., 2(X)l). 

2.7.3 Development Sequences 

2.7.3.1 Absence of Ground Truth 

The research is using video sequences obtained at conditions matching those 

expected in the targeted applications of the framework. The sequences 

represent a sample of the real maritime scenes including objects and activities 
likely to be encountered in the proposed applications. 

The drawback of using real maritime sequences is the absence of ground 

truth. Ground truth can be defined as the actual facts of a situation, without 

errors introduced by sensors or human perception and judgement. Limited 

research resources did not allow to obtain maritime sequences with ground 

truth such as true scales, orientations, locations and velocities of objects or 

state of the sea. Two workarounds are applied in cases where ground truth 

is essential for evaluation. 

The first workaround is applied when only the presence or absence of an 

object has to be established. The sequence is interactively surveyed by a human 

and occurrences of objects and their activities in every frame are marked down. 

The obtained ground truth provides a rough characterisation of the activity in 

the scene. 

The second workaround is applied when precise locations of objects in each 

frame are necessary. An artificial sequence is generated by superimposing 
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images of objects with a known scale and geometry onto either real or artificial 

backgrounds. Different scenarios of object activity are obtained by a controlled 

placement of objects in each frame. Each generated frame is blended with 

Gaussian noise that approximates various types of noise present during image 

acquisition. Real backgrounds consist of sea surfaces with no objects in the 

scene. Various states of the sea are captured, ranging from calm to rough 

seas. Artificial backgrounds consist of two types of noise that are typically 

encountered at a pixel level - Gaussian and uniform. The obtained artificial 

ground truth sequences allow to evaluate object detection as well as precisions 

of location and velocity estimations. 

Use of artificial sequences is not novel in development of algorithms 

targeting maritime scenes. Messer and Kittler (2000) and Messer et al. (1999) 

evaluate their segmentation algorithm using a ray tracer generated artificial 

sequences. Despite the best effort to make the scenes look natural the scenes 

are too regular compared to real scenes which is reflected in over-optimistic 

results of the segmentation. 

2.7.3.2 Real-World Sequences 

The development sequences were captured by an analogue off-the-shelf Pana- 

sonic NV-Mb camera. The focal length of the camera was set to two values 

- 842 and 940 pixels. These values were obtained by an off-line camera 

calibration detailed in Section 8.3.3. 

Captured sequences were digitised using general purpose Fast Multimedia 

AVMaster x'1.3 frame grabber. In order to retain maximum detail in the image, 

the highest resolution of 768x576 pixels provided by the frame grabber was 

used. The colour was quantised at 8 bits per colour component. Digitised 

colour frames were converted to intensity frames by averaging red, green and 

blue components at every pixel, (Morris, 2004), pp. 34-35, and normalising the 

result to integer values between 0 and 255. 

The frame rates of the sequences are either 12.5 or 5 frames per second (fps). 

These values correspond to a half and a fifth of the standard 25 fps frame rate 

stipulated by PAL TV norm. These frame rates are sufficient for detection of 

all moving objects present in the scenes. Equations 2.19 and 2.20 are used to 

validate whether the chosen frame rates are realistic. The validation is done by 

determining the projected displacements for r,. -�-I /runt, a fixed detection 

range I; - 10 in and a given frame rate. Excessively large displacement values 
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tIl rý' 1.1rß 

l 
II (frames] [Fps) I [nil I jI Ipl\I [ pix/knot] 

2A 1045 12.5 4.5 2 M2 6.7 3 
2D 1418 12.5 4.5 2 842 6.7 3 
2E 918 

L- 
12.5 

--I', -. - - 
4.5 2 1 940 7.5 3.4 

Table 2.2: k'ttings for Weymouth seyut'nces. 

(a) 2A (frame 574) (b) 21) (frame 446) (c) 21i (frame 627) 

Figure 2.13: Sample frames from Weymouth development sequences. 

would indicate that the selected franse rate is too low for given velocity and 
detection range requirements. 

Weymouth Sequences The first set of sequences was acquired in Weymouth 

(Dorset, UK) overlooking the harbour entrance during a sunny and calm day. 

There are multiple vessels entering and leaving the harbour while sonic of 

them are maneuvering along the way. A small ferry crosses the middle of the 

scene at regular intervals. A top left part of the scene contains a pier which 

represents a static structure. The pier is about 100 metres from the camera. 

There is also a group of mooring vessels on the right side of the scene. These 

sequences illustrate scenarios of a threat and collision as many of the objects 

move straight towards the camera. Table 2.2 shows the settings at which the 

sequences were obtained. Sample frames from each sequence are shown in 

Figure 2.13. 

Sandbanks Sequences The second set of sequences was acquired at Sand- 

banks (Poole, Dorset, UK) near chain-ferry crossing on a windy and overcast 
day. The sequences contain multiple craft moving mostly from side to side 

of the sequence. The appearances and motion characteristics of objects vary 

throughout the sequence. There is a channel marker buoy visible on the right 
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Sequence Length 
[frames] 

TH 
[fps] [m] [°] 

1 
[pix] 

11 
JJn 

[pix/knot] 

2M 1352 5 3 0 940 9.4 2.8 
2Q 517 5 3 0 940 9.4 2.8 
2R 245 5 3 0 940 9.4 2.8 

Table 2.3: Settings for Sandbanks sequences. 

i 

(al 2M (frame SOU) (b) 2Q (frame 374) (c) 2R (frame 112) 

Figure 2.14: Sample frames from Sandbanks development sequences. 

in the scene. The camera monitors an open sea and it is positioned about 3 

metres above the water. Table 2.3 shows the settings at which the sequences 

were obtained. Sample frames from each sequence are shown in Figure 2.14. 

Poole and Portsmouth Sequences These two sequences were obtained in 

Poole (Dorset, UK) and Portsmouth (Hampshire, UK). The sequences are 

used only in a development of the segmentation algorithms due to unknown 

settings. The POOLEHARBOURI sequence shows three objects mooring near 

the observation point. A distant yacht sails slowly towards the left side of the 

inmage. A large dark vessel crosses the scene from right to left near the horizon. 

The frame size is 512 x 512 pixels. The sequence is 627 frames long. The frame 

rate is unknown. 
The PORTSMOUTH5 sequence shows a group of small dark speedboats 

moving in a formation on a calm sea from left to right. The size of the frame is 

512 x 7i12 pixels. The sequence is 1200 frames long. The frame rate is unknown. 
Sample frames from both sequences are shown in Figure 2.15. 

2.7.3.3 Artificial sequences 

A ground truth is necessary in evaluation of many design steps. Because of 

the complexity in obtaining the ground-truth from real maritime sequences 
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Figure 2.15: Sample frames from P(X)11IIARIiOURI and PORTSMOUTH5 
development sequences. 

artificial sequences are generated by controlled superimposing. Sequences 

containing the sea at various states were acquired tinder conditions similar 
to the real-world sequence,. Image% of various maritime craft were acquired 
by 'cutting out' the silhouettes of the objects. The ground truth sequences 

were then obtained by superimposing the object images onto the sea frames 

at locations given by a precise mathematical model. The resulting frames are 
blended with Gaussian noise to emulate noise generated during the process 

of image acquisition. Figures 2. Iba, h show %ample background frames and 
images of maritime craft used in production of artificial sequences. Figure 2.16c 

shows a sample artificial frame. 

2.7.4 Evaluations 

Numerous experiments conducted during IN, resear(h and Ir1tm vwork design 

presented here use either relative or goal-driven evaluations. The relative 

evaluation is done in cases where the ground truth cannot be obtained. The 

goal-driven evaluation is used in cases where the ground truth is available. 
A final cross-validation of the whole framework is conducted by pr essing 

previously unseen maritime sequences in order to test whether the attributes 

of development scenes did not bias the performance of the framework. 
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Figure 2.16: Backgrounds (a) and objects (b) used in production of artificial 
sequences. A sample artificial frame (c). 
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2.7.4.1 Relative Evaluation 

Relative evaluation is used in experiments where ground truth for data is 

absent. The evaluation consists of the following steps: 

" sample data that represent typical and exceptional cases are collected, 

" evaluation criteria based on relative quantifications are defined, 

" for method selection, 

- all methods evaluated in the selection are applied to the sample 
data, 

9 for parameter value adjustment, 

-a set of values that methodically covers the whole numerical range 
of the parameter is determined, 

- the sample data are successively processed with the evaluated 

parameter set to each value from the set, 

" relative indications that quantify the performance of the method or the 
influence of the parameter value are determined for the results, 

" the method or parameter value that maximises or minimises the evalua- 
tion criteria is selected. 

Minimisation of variance of the results for samples from the same group 

or maximisation of variance between results for samples from two different 

groups are two examples of evaluation criteria. Inclusion of exceptional cases 
in sample data allows to investigate stability and robustness of the evaluated 
subjects. 

The main drawback of relative evaluation is that it provides only relative 
assessment of the performance. The performance of the best candidate cannot 
be quantified in absolute terms as the ground truth is absent. Relative 

evaluation is therefore used only for selection of methods and parameter 
values that are not crucial to the outcome of the processing. 

2.7.4.2 Goal-driven Evaluation 

Goal-driven evaluation is applied when ground truth is available. The process 
is similar to the relative evaluation. The difference is that the ground truth 
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specifies the goal to be reached by the evaluated subjects. The evaluation 

criteria is based on minimisation of discrepancy between the obtained results 

and the goal. The evaluation consists of the following steps: 

. sample data that represent typical and exceptional cases are collected 
together with the ground truth, 

" evaluation criteria based on minimisation of discrepancy between results 

and the goal are established, 

" for method selection, 

- all methods evaluated in the selection are applied to the sample 
data, 

" for parameter value adjustment, 

-a set of values that methodically covers the whole numerical range 

of the parameter is determined, 

- the sample data are successively processed with the evaluated 

parameter set to each value from the set, 

"a function that quantifies the discrepancy between the results and ground 
truth is evaluated for all results, 

" the method or parameter value that minimise the discrepancy criteria are 

selected. 

An example of evaluation criterion is minimisation of average distance 

between detected and actual geometric features. The evaluation allows to 

select the best candidate and also to quantify its performance with respect to 

the ground truth. The uncertainty associated with the selection of the best 

candidate can be determined from the value of the criterion function. For 

example, uncertainty associated with a selection of a specific comer detector 

can be expressed as an average error of comer localisation. 

2.7.4.3 Cross-Validation 

A realistic and manageable data sample used in experiments typically rep- 

resents only a fraction of the whole problem domain. Experimental results 

can become biased due to the limited magnitude of data samples. The bias 
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could have an adverse impact on the performance of the framework. For 

example, the framework could be less reliable when detecting dark objects if 

the development sequences contained only bright objects. Most such issues are 

avoided by careful sampling and experimental design. Nevertheless, a suitable 

cross-validation is still essential. 
The cross-validation of the proposed framework is conducted by presenting 

it with maritime sequences previously unused for the development. The 

sequences were obtained at conditions different to those for the development 

sequences, namely locations, weather conditions, object types and geometric 

setup. The performance of the whole framework is evaluated in various 

categories including detection of objects, motion estimation and identification 

of threats. A robust framework should provide results consistent with those 

obtained during its development. 

2.8 Summary 

A detailed contextual analysis of the problem domain is conducted prior to 

the specification of research objectives. The analysis looks at optical, geometric 

and dynamic contexts of maritime scenes. 
The analysis of optical context concludes that appearances of the maritime 

scenes and objects are generally varying to such an extent that any modelling 
based purely on appearance attributes would he complex. 

Geometric context analysis derives a scene projection model from the 

general pinhole camera projection. The model complies with a plane-to-plane 

projection where the first plane corresponds to the sea surface and the other 

plane corresponds to the image. The objects are assumed to obey the Ground 

Plane Constraint, i. e. they are all located at the level of the sea surface. A 

planar-based representation of objects in the scene is inferred from a weak 

perspective projection. The weak perspective model assumes that the depth 

of an object is significantly smaller than its distance from the camera. All 

possible deviations from the optimal geometric models are identified as either 

systematic or stochastic errors contributing to the overall uncertainty of the 

processing outcome. Mathematical models of errors are provided. 
As a part of dynamic context analysis, the relation between an object 

projection displacement and the speed and location of the object in the scene 

is obtained. The relation provides a constraint to the solution in terms of 
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maximum detectable speed of objects at a given frame rate. 
Research objectives based on the conclusions of contextual analysis are out- 

lined together with constraints imposed on the problem domain. The research 
is based on analysis and evaluation of real-world video sequences that provide 

a representative sample of the problem domain. The problem is split into 

sub-tasks that are solved individually. The sub-tasks correspond to various 

components in the architecture of the proposed vision-based framework. Such 

a structure adheres to the bottom-up architecture which is an adequate solution 
for the type of problem addressed by this thesis. 

The sequences used in the development have been acquired at conditions 

similar to those of the intended applications of the framework. The sequences 
include various maritime scenes, objects and activities assumed to be typical 

samples of the maritime domain. 

Three categories of evaluations used in the development are introduced 

- relative, goal-driven and cross-validation. Relative evaluation is applicable 
in experiments where ground truth is absent. Goal-driven evaluation uses 
the ground truth as criterion. Cross-validation is a final evaluation of the 

assembled framework that checks whether the obtained solution is robust and 

unbiased. 
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Chapter 3 

Literature Review 

Three main areas of research and technology are reviewed in the following 

Chapter that are relevant to the subject of the thesis. These are: 

" Vision-based technology in maritime navigation and surveillance. Vision- 

based applications such as night-vision systems used nowadays to aid 

maritime navigation and surveillance are described and discussed. 

" Land-based surveillance and tracking applications. Common approaches to 

the problem of detection and tracking of objects in land-based applica- 
tions are categorised and discussed. Their limitations to the detection 

of objects in maritime scenes are pointed out. Two frameworks, VSAM 

(Collins et al., 2000) and ASSET-2 (Smith, 1998), are described in details. 

. Image processing in maritime sector. Recent research studies and works 

concerned with image processing in maritime sector are reviewed. These 

works are categorised with respect to the type of imagery they utilise - 
infra-red and visible range. 

3.1 Vision-based Technology in Maritime Naviga- 

tion and Surveillance 

Most vessels, ports and harbours are equipped with numerous navigation 

aiding devices that facilitate the complex task of secure maritime navigation. 
These are mainly radars operating at multiple wavelengths for detection of 
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Figure 3.1: Components (a), (b) of the Vistar IM405 Multi-Sensor Surveillance 
system (Vistar Night Vision Limited, 2(11)4(-). The image of the scene (c) 
provided by the image intensifying sensor of the system. 

objects, the Global Positioning System (GPS) for precise localisation of detected 

objects, Automatic Identification System (AIS) for identification of objects, VHF 

radio links for communications and electronic maps and charts for navigation, 
(Nera GmbH, 2004; Raymarinc limited, 2(X)4; Raytheon Marine GmbH, 2001). 

In addition, light intensifying (Vistar Night Vision Limited, 2(X)4a; Turn Ltd., 

2001) and infra-red cameras (Vector Developments I. td., 2(X)4; Vistar Night 

Vision Limited, 2004b) are often used as additional devices assisting the 

navigation during night time or in a had weather, 

A typical maritime vision system consists of one or more cameras in 

weather-proof (marinised) casing mounted on an articulated point of the vessel 

structure. An analog output from the camera is connected to a control panel 

with monitor on the bridge. The cameras provide the operator with either 

infra-red or light intensified images, (Vistar Night Vision Limited, 2004c). The 

operator can control the pitch, yaw and zoom of they camera from the cabin as 

well as essential settings of intensity or contrast of the image. Some infra-red 

based maritime vision systems (The Current Sales Corp., 2(X)4) are equipped 

with narrow beam infra-red reflectors that illuminate the scene and objects 

under observation improving the contrast of the acquired image. Figure 3.1 

shows the components and output image of a standard night vision system, 
(Vistar Night Vision l. irnited, 2(X)4(-). 

Nevertheless, the system's functionality is limited to a simple provision of 

intensified or infra-red images from the outside camera to the monitor inside 
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(a) Optical design (b) Range detection - results 

Figure 3.2: Optical infra-red ranger described by Reilly et al. (1999). The 

optical design (a) utilises two pentamirrors that reflect all rays in 90 towards 
the single lens. Results (b) of two encounters of the ranger with a small 
aircraft. The circles correspond to the estimates provided by the ranger, dashes 

correspond to ranges detected by a radar. 

the bridge. The system still requires the continuous attention of a human 

operator. The human operator has to constantly monitor and adjust the system 

parameters such as camera position, zoom or image quality in order to reliably 

detect any objects in the scene. So far, there is no commercial application 

capable of automated detection and tracking of objects in sequences obtained 

by these maritime vision systems. 

A notable exception is a passive infra-red ranger presented by Reilly et al. 

(1999). The system employs the principle of stereopsis in order to detect the 

range of objects using their infra-red signature. High precision of the system is 

achieved by a novel optical design shown in Figure 3.2a that employs a single 

camera and a set of so-called 'pentamirrors' that reflect all incoming rays in 90` 

angles. Both mirrors reflect the incoming rays towards the lens of the camera. 

A single image contains both projections of the object. The range is determined 

from the displacement of the two projections. 
The experimental results shown in Figures 32b indicate that the error in the 
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estimation of the range of the objects increases linearly with the range and at 
20 nautical miles the error is below 10%. The major advantage of the system is 
that it is a passive sensor resistant to detection by active sensor detectors used 
in the military sector. It , however, demands a high precision optical design 
that is costly. Also, the issue of protection of the device against harsh weather 
conditions at the sea remained unresolved at the time of publishing. 

The situation in maritime sector is in great contrast with the situation in 
land-based surveillance applications where automation of the detection and 
identification of objects and their activities is a well established subject of 
extensive research with successful commercial applications already emerging, 
(Dick and Brooks, 2003). 

3.2 Land-based Surveillance and Tracking Applica- 

tions 

A typical land-based surveillance and tracking application consists of one or 
more cameras mounted on a static or moving platform overlooking the scene. 
Depending on the purpose of the application, objects that are either static or 
moving are detected and located in the scene. Their motions and activities with 
respect to the rest of the scene are identified and assessed. The applications 
can be roughly divided into two categories with respect to the dynamics of the 

camera, (Morris, 2004). 

3.2.1 Static Camera Moving Objects 

The first category can be characterised as a 'static camera, moving objects' 
(SCMO) problem. The principal assumption is that subjects of processing 
in these applications usually undergo permanent or transitory motion while 
the background remains either static or slowly changing, (Lee and Hedley, 
2002; Tornieri et at., 2003), its change is due to the noise that can be either 
suppressed (Rosin and Ellis, 1995), or statistically modelled (Elgammal et at., 
2002; Magee, 2004). The assumption enables moving objects to be detected 

as localised changes between two consequent frames or between current 
frame and the reference frame representing the background (Lee and Hedley, 
2002; Collins et al., 2000), or as outliers to the background and noise models 
(Elgammal et at., 2002; Magee, 2004). 
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Detected objects are tracked by finding correspondences of their signatures 
in consequent frames of the sequence. Signatures uniquely characterise the 

objects in terms of location, geometry and other attributes such as intensity 

or colour. Typical signatures include coordinates of the centre of gravity 

of the blob representing the detected object (Fuentes and Velastin, 2001), 

coordinates of the rectangle bounding the blob (Black and Ellis, 2002), a 

rectangular template including the object projection (Collins et al., 2000). More 

sophisticated signatures involve statistical distributions of intensity or colour 

and location of the objects (Sheikh et al., 2004), 2D curves (Tai et al., 2004) 

or 3D wire-frame models (Worral et al., 1995; Remagnino et al., 1997) fitted 

to the object projection. The correspondence search is based on minimisation 

of a specific error function that quantifies the difference between candidates 
for correspondence. An example of such a quantification is the correlation 

coefficient in a template-based tracking (Collins et al., 2000). Kalman filtering 

is often employed in order to support reliable tracking (Tai et al., 2004; Magee, 

2004; Dellaert and Thorpe, 1997). 
Examples of typical SCMO applications include monitoring of public 

areas such as metropolitan undergrounds (Cupillard et al., 2003), car parks 

(Micheloni and Foresti, 2003), railway crossings (Sheikh et al., 2004), highway 

traffic surveillance (Remagnino et al., 1997; Tai et al., 2004; Worrall et al., 

1994), etc. A substantial level of the automation has been already achieved 

in these applications including analysis of behaviour of individuals and 

groups of people (Cupillard et al., 2003), classification of interactions between 

individuals and other static or moving objects in the scene (Collins et al., 

2000; Micheloni and Foresti, 2003; Haritaoglu et al., 2000), estimation of 

various attributes of traffic scenes such as density, jam developing, detection 

of stalled vehicles, (Tai et al., 2004; Smith, 1998). 

3.2.2 Moving Camera Moving Objects 

A generalisation to SCMO problem can be characterised as 'moving cam- 

era, moving objects' (MCMO) problem. A common assumption in MCMO 

algorithms is that the structures and appearances of the background and 

moving objects in the scene do not change substantially between the reference 

and current frames in the sequence and that the inter-frame displacements 

in the scene are limited, (Barron et al., 1994; Lipton et al., 1998; Lipton, 

1999; McCane et al., 2002; Galvin et al., 1999a; Galvin et al., 1999b; Smith, 
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1998). The methods addressing MCMO problems are often based on estimation 

of an optical flow in the image which is a 2D projection of the 3D motion in 

the scene. The numerous methods of optical flow estimations available are 

overviewed by Beauchemin and Barron (1995). Their choice depends on the 

purpose of the application. An extensive area of the research is dedicated to 

a so-called 'structure-from-motion' problem of determining the 3D structure 

of the objects in the scene from the 2D motion in the image which is an ill- 

conditioned task (Shapiro, 1995; Torr and Murray, 1993; Torr, 1998). 
The MCMO surveillance and tracking applications can be typically found 

in autonomous navigation of vehicles (Dellaert and Thorpe, 1997; Kastri- 

naki et al., 2003; Broggi, 1995), detection of motion from an airborne platform 
(Cohen and Medioni, 1998), image stabilisation (Irani et al., 1994) and others. 

ASSET -2 

Smith (1998) presents a typical example of an MCMO application that esti- 

mates the optical flow in sequence using correspondences between detected 

geometrical features (see Figure 3.3). 
Two-dimensional features using either the SUSAN corner detector (Smith 

and Brady, 1995) or the Harris corner detector (Harris and Stephens, 1988) are 
detected in each frame of the video sequence. The features are matched across 
the frames using a similarity measure based on properties of the detected 

comers such as intensity at the corner location. This is in contrast with 
traditional matching methods which use correlation of small image patches 
located at the corners. Smith (1998) argues that there is a little justification for 

such an approach as usually less than a half of the patch area covers object's 

structure, the rest of the area containing the changeable background of the 

scene. They show that their alternative scheme drops the amount of correct 

matches only by 10% (from the original 95%) while significantly reducing the 

computational overhead that is associated with correlation methods, (Lewis, 

1995). 

A constant velocity motion model is initiated for every pair of comers 

matched in the first two frames of a sequence. The search for the consequent 

matches is simplified as the projected position of each corner is calculated from 

the motion model. A list of flow vectors is estimated from the matched comers 

that characterises an optical flow in the scene. 
The list of flow is segmented into separate clusters by fitting an affine 
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Figure 3.3: The structure of the ASSET -2 tracker proposed by Smith (1998) 
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(a) traffic surveillance (b) estimation of vclocitict; 

Figure 3.4: The results of traffic surveillance by the ASSET-2 tracking system: 
(a) - detection and motion estimation of objects in a typical traffic scene; (b) - -_ 
estimation of velocities of vehicles on a highway. 

motion model to sets of displacement vectors by minimum spanning tree 

method also used by Shapiro (1995). Fach independent cluster is assigned 

a centroid and a boundary. The clusters are matched across the sequence 

using a time-symmetric matching, i. e. both, previous and current clusters 

must prefer the proposed candidate. The matching is based ein the motion 

parameters and the contours of the clusters. The contour of the cluster is 

encoded using a convex radial map which is a concept similar to active 

contours. A contour enhancement method that iteratively shifts the cluster 

contour towards detected edges is also proposed. Matched clusters are tracked 

by a simplified Kalman filter. 

Contour tracking enables to resolve two types of occlusions - object by 

The and object by background. he first one is based on the amount of 

overlap between two clusters and an assumption that occluded object is higher 

in the scene. The second occlusion is detected by a rapid change in numbers of 
features belonging to the cluster. 

The results in (Smith, 1998) show the ability of tilt, ASSET-2 to track 

objects in both SCMO and MCMO problems, to deal with occlusions between 

objects and between object and background. In addition, a traffic surveillance 

application is presented where the system overlooks a highway and estimates 
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Figure 3.5: The structure of the surveillance, tracking and monitoring testbed 
VSAM at Carnegie Mellon University, (Collins et al., 2000) 

velocities for an oncoming traffic (see Figure 3.4). 

VSAM 

VSAM (Video Surveillance and Monitoring) project at Carnegie Mellon Uni- 

versity (Collins et al., 2000) is a complex testhed for an outdoor surveillance, 

monitoring and visualisation of objects including cars and people and their ac- 

tivities and interactions to support battlefield awareness. The system consists 

of an extensible hierarchical architecture shown in Figure 3.5 that can control 

and process data from multiple distributed sensors such as monochrome, 

colour and infra-red cameras. The sensors can be static, panning, tilting and 

zooming, omnidirectional, mobile or airborne. Geo-locations of the detected 

targets are obtained by combining processed visual data with detailed digital 

maps of surveyed estates. Targets such as people, cars and interactions 

between them are recognised and logged into a database. Techniques such 

as multi-sensor tracking, occlusion detection, target classification into multiple 

categories according to appearance and dynamic behaviours are all integral 

parts of the system. 

Three algorithms for moving object detection are used in the VSAM. 

The first is used with static sensors and is a combination of a three-frame 

difterencing and an adaptive background subtraction. The motion is first 

detected from the frame differencing, the background subtraction is used to fill 
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in the missing pixels that belong to the moving object. A layered representation 
of objects in the scene and analysis of pixel dynamics enables the system to 
identify occlusions and objects that suddenly stop. 

The second algorithm is a background subtraction method modified for 

pan and tilt cameras. A complete set of all background images for varying 
camera position settings is obtained and stored. New images are registered to 
the nearest background image using salient features. The registered image is 

processed the same way as an image from a static camera. 
The third algorithm is used in airborne surveillance where a compensation 

for motion of the camera is necessary. The incoming frames are warped to an 
initial image which is updated at regular time intervals. The objects are then 
detected in the warped image by means of the first algorithm. 

An object detected by any of the three algorithms is matched in the 
following frame by a weighted correlation of an image patch containing the 

object. The correlation weights are generated by a linear radial function with 

centre located at the centre of the patch. A new location of the object is used 
in estimation of position and velocity. A hypothesis tracking with confidence 

values enables it to resolve ambiguous cases of objects grouping or parting. 
Tracked objects are then classified by a neural network based on geomet- 

rical features such as dimensions and rigidity into humans, human groups 

and cars. Furthermore, cars are classified into various groups such as trucks, 

sedans, vans, etc. Finally, the interactions between objects are recognised by a 

gait analysis and Markov models. 
The VSAM functionality and performance in various surveillance tasks are 

well-documented through video sequences available at the project website, 
(Collins et al., 2000). Figure 3.6 shows sample results of tracking and target 

classification performed by the VSAM. 

3.3 Image Processing in Maritime Sector 

The challenge of object detection and tracking in maritime scenes lies in the 
fact that the background of maritime scenes represented by the sea does not 

obey the assumption of being static that is essential to methods typically 

used in land-based SCMO systems. In addition, the background of maritime 

scenes does not satisfy any of the three conditions required for calculation of 

optical flow in MCMO applications stated by Beauchemin and Barron (1995): 
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(a) (h) 

(c) (d) 

Figure 3.6: The tracking and classification results provided by the VSAM 
monitoring the warehouse entrance and the parking lot 

the illumination of the maritime scene is often directional and, therefore, not 

uniform, the reflectance of the sea is specular and, therefore, not Lambertian 

and the motion of the sea is not pure translation parallel to the image plane. 
This is reflected by the fact that majority of the image processing research in 

maritime environment concentrates on a primary task of spatial segmentation 

of the scene. The complexity of the task is illustrated by the diversity of 

the methods proposed. The methods address very specific, substantially 

constrained problems that do not go beyond basic scene segmentation. 
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(a) sequence A- sample frame (b) sequence B- sample frame 

nýunJ trntIi X11>ýy ILIi Iý ý, n, unýl truth 

Figure 3.7: Artificial sequences used in evaluation of segmentation framework 

proposed by Messer et at. (1999) 
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(a) (b) 

(') (d) 

Figure 3.8: The results of the segmentation by Messer et al. (1999) appli 
the sample sequence B shown in Figure 3.7b, d 
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sea background into the statistical model. 
The method proceeds by thresholding and morphologically dilating each 

frame in the sequence. A temporal averaging across five frames filters out 

short term noise while enhancing the target signature. 
The modified method is tested on the same artificial sequence used in 

(Messer et al., 1999) and, additionally, on a real sequence with real targets 

shown in Figure 3.9. The extended method is compared with the original 

version. The evaluation criteria are average numbers of true and false positives 
in each sequence. When applied to the artificial sequence, the modified method 

reduces the average number of false positives from the original 18.06 to 4 

while preserving the correct number of true positives. When applied to real 

sequence, the modified method again reduced the number of false positives 
from the original 14.29 to 4.86 while preserving the number of true positives. 
The results clearly indicate that the dynamics of the sea background is a 

significant factor contributing to the structure of the scene. 
A similar method for background clutter removal in infra-red images based 

on PCA is proposed by Diani et al. (2003). They construct the vector space 

using the image columns instead of rectangular blocks in order to compensate 
for the horizontal striping noise typical for infra-red imagery. The method is 

also insensitive to the transition between sea and sky. The vectors of dimension 

Al equal to image height span a vector space. The space is split into a subspace 
U of dimension MB corresponding to the background structure and clutter 

and an orthogonal residual subspace 17 of dimension Al - MB containing 

random vectors with zero-mean Gaussian distribution. The optimal dimension 

MB is determined iteratively by a X2 and correlation tests applied to the 

residual subspace L! which is assumed to contain uncorrelated random vectors 

with zero-mean Gaussian distribution. By projecting the image data onto the 

residual subspace 0, the problem of target detection is reduced to a standard 

null hypothesis testing. 

In real applications the target is often present in the image used in PCA. 

The authors investigate the influence of the target presence on the results of 

the PCA (so-called target leakage) and conclude that the method is feasible for 

detection of weak targets with a signal-to-clutter ratio below 24 dB. Stronger 

targets leak into the background structure and, therefore, adversely influence 

the separation of the vector space. Unfortunately, any rigorous numerical 

evaluation of the method is missing as only visual results for a single image 
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(a) Evaluation sequence (b) Ground truth 

(c) segmented sample frame (d) segmented sample frame 

Figure 3.9: The results of the segmentation by Messer and Kittler (2000) applied 
to the sample real sequence. 
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with a superimposed artificial target are provided as shown in Figure 3.10. 

Toet (2002) provides a less complex approach to detection of small and dim 

objects in maritime scenes based on morphological operators. The algorithm 

operates on multi-spectral infra-red images of small targets at the sea captured 
from a position simulating a large vessel bridge. The images were obtained by 

two infra-red cameras operating at 3-5 and 8-12 pm wavelengths and a visible 

range camera. All three cameras were mounted at the same platform close 
to each other and the capture was synchronised. The images from infra-red 

cameras were aligned by using fiducial markers in the scene in order to obtain 

pixel-to-pixel correspondences. The visible range images serve for reference 

and comparison. The scene contains small and slowly moving objects distant 

from the camera at a calm sea. 
Both infra-red images are subjected to a 'top-hat' morphological filtering. 

The filtering consists of two steps. Bright regions smaller than the processing 

element are removed in the first step of morphological opening. A residual 
image is obtained in the second step by subtracting the opened image from the 

original one. The residual image contains only the bright regions removed by 

the opening. Both filtered images contain a considerable level of noise. The 

hypothesis is that noise is mostly restricted to a single particular band. By 

taking the intersection of the filtered images the targets are retained and noise 
is suppressed. 

The algorithm is tested on numerous images obtained using the setup of 

multiple cameras described above. The method successfully detects small 
targets a couple of pixels in size as shown in Figure 3.11. Noise is significantly 

suppressed by the intersection of the 'top-hat' filtered images confirming the 

hypothesis of noise being restricted to a single band. The method, however, 

fails to detect larger objects composed of multiple parts. Unfortunately, only 

visual results for images of a similar nature are presented. Any further 

evaluation of the method is absent. 
Methods by (Messer et al., 1999; Messer and Kittler, 2000; Diani et al., 

2003) indicate that PCA has a potential for detection of small and dim targets 

in infra-red maritime scenes in presence of significant background clutter. 
Disadvantages of the approaches are the need of prior training and the fact that 

an unaccounted presence of the target in the training data significantly reduces 
detection capabilities of the trained feature sets. Method by Toet (2002) does 

not require any training, it is simple and effective. It, however, requires infra- 
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(a) The original image with superimposed target before and after clutter removal 

1.444 

(b) The vertical cross-sections of the above images at the "ition of the target 

Figure 3.10: The results of the enhancement method for infra-red maritime 
images proposed by Diani et al. (2003) 
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(a) The original image with Mip rimpoari target before and alter clutter removal 

(b) The vertical cross-sect ions of the aborve images at the position of the target 

Figure 3.10: The results of the enhancement method for infra-red maritime 
images proposed by Diani et al. (2(H)3) 
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(e) multiband alarms (f) CCI) image with potential targets 

Figure 3.11: The detection of objects in multi-band maritime images by 
morphological filtering and fusion proposed by Tcºet (2002). 

red images obtained in two different wavelength ranges that are wnchronised 
and aligned. Neither of the methods have been throtaghly tested on more than 

two scenes with more complex targets. 
Sato and Ishii (1998) present a machine vision system that complements 

nautical radar. The purpose of the system is to instantly determine the pose of a 

vessel detected by the radar as the pose cannot be determined directly from the 

radar echo. The pose indicates the intended course of the vessel which does not 

always correspond with the direction of the trace on the radar. Unambiguous 

course is essential in collision avoidance especially if large vessels with slow 

response to a course change are involved. 

The system uses an infra-red image of the detected vessel obtained by 

pointing the camera with a narrow field of view onto the vessel detected 

by radar. The vessel projects as a bright homogeneous region on a dark 

background. A rectangle enclosing the vessel projection is specified interac- 

tively. The area within the rectangle is filtered by median and segmented 

using thresholding algorithm based on area information, similar to (Sezgin and 
Sankur, 2004), pp. 154. 

The initial length of the vessel is estimated from the width of the hinarised 

projection and the bearing provided by the radar. An aspect angle between the 

course direction of the vessel and line of sight is determined from the projection 

width and initial vessel length. The aspect angle is then updated by using 
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Figure 3.12: A detection of course alterations based on the infra-red projection 
(a) of the vessel by Sato and Ishii (1998). A sample scenario (b) shows a vessel 
heading straight towards the observation point changing its course along the 
vvav. The radar trace (c) does not indicate any major course alterations. The 

calculated aspect (d) in comparison to the GPS ground truth. 
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the projection width obtained from consequent frames. A relative centroid of 
the binarised projection is calculated. Relative horizontal position of centroid 
indicates the direction of the vessel's bow. The pose of the vessel with respect 
to its course is determined from the aspect angle and relative position of the 

centroid. 
The system was evaluated using a real world scenario of two 400 gross ton 

vessels approaching at 45° and 0° bearings initially 4 km apart. The course of 
one of the vessels was changed by 15° to either side of the course at regular 
intervals. The system was capable to instantly recognise the change of the 

pose of the vessel. The standard deviation of the estimated aspect angle was 
4.5% in the first case and 15.4% in the second case. The setup and results 
of the second scenario are illustrated in Figure 3.12b-d. Despite promising 
results there remain unresolved problems of initial object segmentation as the 

rectangle enclosing the vessel projection is specified manually. The method 
assumes that all vessels have similar geometry with the tower located at the 
back of the hull. The evaluation experiment was done during the winter and 
the vessel projects as very bright, homogeneous and well connected region 
against very dark and smooth background as shown in Figure 3.12a. These are 
rather constraining assumptions and idealistic conditions. 

Withagen et al. (1999) propose a segmentation method as a part of their 

evaluation study of methods and features for classification of vessels from 

airborne infrared images. The method consists of the following steps. Shad- 

ing due to non-uniform illumination is removed by fitting and subtracting 
quadratic surface from the original image. A top-hat transform is applied to 
the result that detects hot-spots corresponding to funnels. The whole vessel is 
detected by applying two thresholds onto the region surrounding the hot-spot. 
The threshold values are specified as it - 20 and µ+ 3o where it and a are mean 
and standard deviation of the pixel values corresponding to the surrounding 
sea. Asymmetry of the threshold values compensates for bright caps that 

appear on the sea surface. Morphological closing fills in the gaps caused by 

imperfect segmentation. A Hough transform is applied to find the waterline 
of the vessel. The vessel image is spatially transformed so that the waterline 
appears horizontal. The skewed image of the vessel is used to determine the 
features to be used in classification. 

The segmentation method proves to be robust as it is a part of extensive 

evaluation with many various images of vessels involved. The drawback is 
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that the method is specifically designed for airborne images where the vessel 
is distant from the camera and the background structure does not significantly 

change with the scene depth. The method also relies on detection of the hot- 

spot which is available only for objects with temperatures significantly higher 

than the surrounding sea. 

3.3.2 Visible Range Images 

The research into the processing of visible range images of maritime scenes is 

less extensive than research into infra-red sequences. One reason is that visible 

range images are available only during the daytime which severely limits 

their use for some applications. Another reason is that water under outdoor 
illumination is in general perceived as complex entity with appearance that is 

difficult to characterise and model. This section looks at a selection of methods 
that either attempt to segment maritime scenes or characterise and model the 

water surface in outdoor environment. 
Yamamoto et al. (1999) describe an airborne maritime surveillance system 

used in rescue operations that detects maritime craft, namely life-rafts, floating 

on the sea. The system consists of two cameras mounted on an airplane that 

overlook the sea surface from approximately 5,000 feet (see Figure 3.13). One 

camera is a high resolution infrared camera that detects any signal coming 
from emergency life flares. The other one is a colour camera that allows life- 

rafts to be recognised by their typical orange colour. The outputs from both 

cameras are filtered for noise by median filter. Filtered images are fused and 

a detection algorithm based on shape and intensity variance comparison is 

applied to identify the life-rafts in the fused image. Only visual results on a 

single image are provided, any further analysis is missing. 
Sumimoto et al. (2000) present a similar airborne system for detection 

of orange life-rafts on the sea. The system operates on visible range colour 
images. The processing is divided into four stages depending on the environ- 

mental conditions. In favourable conditions when the sea is calm and appears 
homogeneous and the colour of the raft is distinguishable the detection uses 
difference between red and green components of the image. If the scene is 

dim then there is a bias between the red and green. The bias is cancelled 
by offsetting the values of one of the colour components. The offset is done 

line by line as it is assumed to vary vertically in the scene due to outdoor 
illumination conditions where light is coming from the top of the scene. The 
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Figure 3.13: An airborne syltuni for detection of Iife-raft on tIu' sea proposed b 
Yamamoto et al. (1999). The system consists of colour and infra-red cameras. 
The life-rafts are detected in the images fused from both cameras. 

colour information is unavailable during the night time. In such a case, a 

sensitive camera provides an image of the sea that appears homogeneous and 
brighter than the target. The segmentation is dome by histogram thresholding. 

Finally, if the image is captured when the camera is facing the sun, no colour 
information is available and histogram based segmentation is applied. 

A detailed description of the histogranm-based segmentation is missing, as 

well as crucial details about criteria for the selection of each method. Only 

visual results are provided, any further analysis is missing. 
Sanderson et al. (1997) present a two-stage algorithm for detection and 

tracking of objects in maritime scenes. The algorithm operates on visible range 

monochrome sequences captured from a point elevated above the sea surface 
by a couple of metres. The objects tracked are entering and leaving the port 

entrance. 

The first stage provides so-called motion cues by finding regions in the 

scene where motion is likely to occur. A six-level pyramid representation 

is built by partitioning the image at each level into regular segments and 

determining the mean and standard deviation of intensities in each segment. A 

standard t-test with significance level of 5'% compares the statistical pyramids 
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Figure 3.14: Maritime scene segmentation method by Sanderson et al. (1997) 
based on a hierarchical statistical characterisation of image segments. The 
frames show segmented vessels leaving the port. 

of two consequent frames at each level. A significant difference in statistics 

indicates change in the image due to motion. Segments with significant change 

at each level of the pyramid are labelled and 8-neighbourhood connectivity is 

applied. Dach resulting blob is assigned a unique label, it's centroid and area 

calculated and enclosing rectangle determined. All the values are arranged in 

a feature vector characterising the blob. 

The motion cues stored in the pyramid are evaluated at the following stage. 

The algorithm starts at the initial level of the pyramid at the coarsest resolution. 

Any change at this level corresponds to the motion of the largest objects in the 

scene. Anv overlapping or connected blobs at lower levels are removed. If 

there remain any blobs at lower levels the process is repeated, starting at the 

actual level. A measure of 'edginess' of each remaining region in the pyramid 

is added to the feature vector. The measure indicates whether the motion is 

likely due to the presence of a rigid object. Only regions that comply with 

motion constraints specifying maximum acceleration and orientation change 

are considered. The objects are tracked by finding correspondences between 

regions in consequent frames by evaluating an Euclidean distance between 

feature vectors of each correspondence candidate. 

The system is evaluated on a single sequence showing a large vessel 

surrounded by smaller craft moving across the scene in same direction. Figure 

3.14 shows that all moving objects are detected. Ani, further analysis of 

the algorithm performance is missing. Though the results indicate robust 

performance when detecting large moving targets the method cannot detect 

static objects. 
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Sanderson et al. (1999) modify the above algorithm by introducing an 

alternative motion cue generation stage of the algorithm. It is based on Fourier 

analysis of the sea background. In the first step a Fast Fourier Transform 

(FFT) is applied to 10 randomly selected regions of 32x32 pixels in a reference 

frame that contains sea only. The Fourier spectra obtained for each region are 

averaged. The resulting average spectrum characterises the current sea state. 

In the second step each input frame is split into 32 x 32 pixel tiles. The FFT is 

applied to each tile and previously determined average spectrum is subtracted. 

Each modified tile is transformed back to spatial domain and the filtered 

frame is reassembled. Frame differencing is applied to filtered frames in order 

to obtain motion cues. Motion cues enter the tracking process described in 

(Sanderson et al., 1997). In case the number of motion cues increases over a 

specified threshold the average spectrum is updated using a recent frame. The 

structure of the segmentation method is shown in Figure 3.15a. 

The system is evaluated on a single sequence showing two small rubber 

inflatable boats moving across the image (set, Figure 3.15b). Both boats are 

detected as shown in Figure 3.15c. l hic to the absence of any further analysis it 

is not clear how does the depth of the scene influence the average spectrum 

characterising the sea. Main drawback of the method is the reliance on 

randomly sampled reference images that do not contain any objects. The 

computational complexity of the method is another notable factor. The method 

works on 512x512 pixels images. Fach image requires 16 x 16 256 FFT 

transforms. The complexity of 2D radix-2 ITT transform is 

where . VR and N(" is number of pixels in row and column of the tile. Pro essing 

of a single image would therefore require more than 1.3 million operations. 

Smith et al. (2003) employ a statistical characterisation of the sea in 

localised regions in order to obtain a segmentation of maritime scenes into 

objects and background. The algorithm consists of two steps. The range of 

intensity levels corresponding to the sea is determined in the first step. The sea 

region in the scene is divided by 2x2 grid into four areas. A set of five 32x32 

pixel tiles are placed inside each area so that four tiles are located near the 

comers and the fifth tile is in the centre of each area as shown in Figure 3.16. 

Mean p, and standard deviation a, are calculated for each tile, i-l..... T. 

The values are compared and those that vary greatly are rejected as being 

contaminated by a possible object. The initial intensity range of the sea is 

given by rrriu, = .. 5(µ, - 2c, ) and t mx, 1... r (lý, 1 2(1, ) of remaining values. 
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Figure 3.15: Maritime scene segmentation method bv Sanderson et al. (1999) 
based on a substraction of FFT spectra of the background. The frames show 
segmented vessels leaving the port. 
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Figure 3.16: The grid used by Smith e't al. (2(X)3) to statisticaIIv characterise the 
sea intensity levels. Intensity mrans and standard dvviations are determined 
for pixels within the marked segments in each quarter (it the image. 

The process is repeated for each of the four areas. 
The sea region is split into 32,32 pixel tiles in the second step. Each tile is 

labelled as the sea or the object by determining a relative amount of pixels that 

lie within the sea intensity range estimated in the previous step. If the amount 
is more than 90% the tile is labelled as the sca. It the amount is less than 101% 

the tile is labelled as an object. Labelling of individual pixels is applied in case 

the value is between 101%, and 90'%i, A maximum in and standard deviation 

a of the pixels in the tile are determined first. It the maximum in lies inside 

the sea range then pixels with intensity within maa range are labelled as the 

sea. Other pixels within the tile are labelled as object. If the maximum in lies 

outside the sea range then pixels with intensity within m # a are labelled as 

object and remaining pixels are labelled as the sea. The segmentation results 

are improved by joining object pixels using an N-way connectivity check. 
The algorithm is evaluated on two maritime sequences showing static and 

moving objects. A numerical analysis shows that the number of incorrectly 

classified tiles is less than 5%, in the first sequence and 10%, in the second 
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sequence. The method exhibits a good performance in cases of calm seas and 
homogeneous objects. It, however, tends to break up more structured objects 
into multiple separate parts. 

Spencer and Shah (2004) introduce a spatio-temporal analysis based on 
Discrete Fourier Transform (DFT) of the video sequences showing the sea 

surface. The analysis provides estimates of various parameters that represent 
the state of the sea, namely wave height, wave period and, consequently, 

wind speed. The actual scale of objects in the scene can be derived from the 
knowledge of these parameters. 

The first step of the analysis consists of the DFT of each frame of the 

sequence. The Fourier spectrum expressed in polar coordinates encodes the 

spatial periodic patterns that represent the waves. A profile of the spectrum 

magnitude is obtained by averaging the spectrum across all angles in the 

polar coordinates. The position of the peak in the profile is reciprocal to the 

wavelength in pixels of the most dominant waves on the sea. 
The second step involves a temporal analysis of the sequence. The amount 

of data in the sequence is reduced by Principal Component Analysis. The 

sequence is represented by a 2D array where rows correspond to frames and 

columns correspond to PCA coefficients. The DFT is applied to the array and 
the spectrum values in each row are summed. The sums indicate the energy at 

each temporal frequency. If the frame rate of the sequence is known the period 

of the waves in seconds can be determined from the position of the maximum 
in the spectrum energy sums. 

The wavelength in metres is given as L= T2 where g is acceleration due 

to gravity and T is the period of the waves in seconds determined from the 

temporal analysis. Finally, the scale of the scene in pixels per metre is obtained 
by correlating the temporal spectrum with the spectra of the individual frames. 

The results of the analysis can be used, for example, to determine wave 
heights which are given as 0.008L to 0.1L. The wind speed can be approxi- 

mated from the wave heights using Beaufort scale. 
The analysis is tested on three sequences showing various states of the sea. 

The estimates of the wavelengths, wave heights and wind speeds are realistic 

and, according to authors correspond to the actual weather conditions at the 

day of capture. These preliminary results suggest that the method can be used 
for other purposes such as determining the camera parameters (zoom, tilt, roll) 

or scene segmentation. 
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Figure 3.17: Water scene segmentation by Ahlavsky (2(X)3): (a) the structure 
of the segmentation system, (h) a sample frame, (c) initial segmentation of the 
foreground, (d) coherence map containing the wake, (e) fused result. 

Ablavsky (2003) points out that most background modelling techniques 

based on statistics do not consider spat io-temporal correlations between the 

background pixel values typical for water siirtaces in outdoor scenes. He pro- 

poses a background estimation model that combines a local optical flow with 

a statistical background model similar to one described by Haritaoglu et al. 

(2000) (see Figure 3.17a). 

The regions that violate the statistical background model are selected 
first. The selected regions form the first foreground likelihood map shown 

in Figure 3.17c for a sample sequence. A motion map filter designed to 

extract regions of a high eccentricity is applied to the selected regions. Highly 

eccentric regions supposedly correspond to wakes, ripples and small moving 

objects. A localised optical flow calculation is applied to the output of the 

filter. A coherence of the optical flow directions is determined and the second 

I 
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foreground likelihood map is obtained that associates the probability of the 

wakes with the regions in the map as shown in Figure 3.17d. Both maps 

are fused by Bayesian rule to provide a probability of regions belonging to 

foreground or background classes (see Figure 3.17e). 

Ablavsky states that the method is being tested on several dozen sequences 

at various environmental conditions. The results presented in (Ablavsky, 2003) 

are for a single sequence of small boat moving away from camera on a calm 

water surface. The results show that most of the wakes are successfully 

removed from the image. It is not, however, clear whether the object has 

been detected as well or if it has been removed together with wakes. No 

further analysis is provided. The method assumes that the motion of the 

wakes is consistent and that their appearance does not significantly change 

over extended period of time. Such assumptions are valid only on a calm water 

such as very calm seas or slow rivers and they do not apply to most maritime 

scenes. 

3.4 Summary 

The importance of visual information is clearly recognised in maritime sector. 
Night vision systems based on infra red or light intensifying visual sensors 
(Vistar Night Vision Limited, 2004c; The Current Sales Corp., 2004) are becom- 

ing essential aids to navigation in unfavourable environmental conditions. The 

systems, however, merely provide the images from outside the bridge. The 

process of detection and identification of objects in the images relies strictly on 

the vigilance of the operator. 
This is in contrast with land-based surveillance systems where a high 

degree of automation has been achieved, (Dick and Brooks, 2003). The systems 

are capable of automated classification of object types (Collins et al., 2000), 

suspicious activity of individuals in the scene (Cupillard et al., 2003), analysis 

of the traffic parameters (Tai et al., 2004), etc. 
The major obstacle in development of similar applications in maritime 

sector is the spatio-temporal variability of the maritime scene due to the 

presence of waves. Machine vision applications in maritime sector concen- 

trate mainly on processing of infra-red sequences. Various infra-red image 

segmentation algorithms detect small and weak targets (Messer and Kittler, 

2000; Messer et al., 1999; Diani et al., 2003) common in military and rescue 
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operations. Several applications employ a fusion of multi-spectral images 

in order to improve the detection rate and reduce the noise, (Toet, 2002; 

Yamamoto et al., 1999). 

There is a limited number of methods and applications that detect and 
track objects in visible light images in maritime sector. The method by Sander- 

son et al. (1997) based on statistical differences in the hierarchical pyramid and 
the modified version (Sanderson et al., 1999) using the substraction of the sea 

spectrum detect only moving objects. The algorithm by Smith et al. (2003) 

detects both static and moving objects. It, however, requires objects to have 

intensities outside a specific interval which is not always the case in maritime 

scenes. 
Studies by Spencer and Shah (2004) and Ablavsky (2003) concentrate on 

modelling of the phenomena of the water surface and wakes caused by moving 

objects. Both studies provide only limited evaluations of the functionality of 

the proposed methods. Possible use of the methods for a segmentation of the 

scene are only suggested in the conclusions of both studies. 
The works concerned with infra-red and visible range maritime scenes 

are either specialised at a particular task such as a detection of life-raft 

from an airborne platform (Yamamoto et al., 1999; Sumimoto et al., 2000), 

detection of change in course (Sato and Ishii, 1998), classification of objects 
(Withagen et al., 1999), etc. or provide a mere detection of objects in infra-red 

(Messer et al., 1999; Messer and Kittler, 2000; Toet, 2002) or visible sequences 
(Sanderson et al., 1997; Sanderson et al., 1999; Smith et al., 2003) without any 

consequent processing. 
The review indicates that despite the importance of visual information 

in maritime navigation and safety applications a robust system that would 

process and exploit this information in a way similar to land-based surveillance 

and tracking systems is yet to be developed. The basis of such a vision-based 
framework is already available in the maritime sector in terms of night-vision 

systems. It is a matter of providing it with more functionality and automation. 
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Chapter 4 

Segmentation 

4.1 Introduction 

The nature of the background in the maritime scene is temporally and spatially 
highly changeable in appearance as discussed in Chapter 2. The waves on the 

sea typically appear as a nearly regular pattern with apparent directionality 

due to the perspective projection. Features such as wakes and crests of 

similar size are scaled down towards the horizon in the image. Despite an 

evident presence of a perceptible regularity in the pattern of the sea that 

can be described as a texture, the texture analysis remains unexplored in the 

maritime related research. Texture is characterised by a spatial distribution 

of pixel intensities in a fundamental neighbourhood (textons) that is repeated 

periodically with little or no variation. Texture analysis identifies the texture 

by characterising the textons and their distribution. Generally, there is an 

apparent spatial relation between neighbouring elements in textures that are 

not purely random. This relation can be used to identify texture properties as 

shown by Chetverikov and Haralick (1995). 

In a similar fashion, the objects in maritime scenes can be perceived as being 

composed of neighbouring texture patches. These texture patches typically 

differ from textures representing the sea. Usually they are more homogeneous 

or their structure or intensity range vary. Even though the difference in 

intensity ranges for sea and objects has been exploited by Smith et al. (2003), 

the results show that it is not always reliable criterion for segmentation, 

especially when objects are composed of parts with various intensities. 
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Instead, segmentation can be achieved by characterising various textures in 

the scene and separating those corresponding to the objects from the texture of 
the sea. The segmentation of the maritime scenes by textural characterisation 
is the subject of the following sections. 

4.2 Statistical Characterisation of Textures 

Textures are generally composed of multiple repeating primitives that are 

spatially transformed. It is possible to characterise textural properties by 

using either semantic, spectral or statistical approaches, (Schalkoff, 1992). 
Semantic approaches are well suited for highly regular undistorted textures 
that are mostly uncommon in natural outdoor scenes. Spectral approaches 
to texture characterisation of maritime scenes were explored by Spencer and 
Shah (2004) who apply the Discrete Fourier Transform to image sequences of 
the sea in order to identify wave parameters. The method, however, does not 

convey image segmentation. Sanderson et al. (1999) determine the frequency 

spectrum of the regular sea pattern and filter it out prior to the segmentation 
of the scene. The method is computationally demanding and it cannot detect 

static objects. Statistical methods are used in the analysis of outdoor scenes as 
they capture the stochastic properties of the natural textures. 

Various properties and attributes of the texture patterns are described by 

so-called features. Features have two main purposes: they reduce the amount 

of data to be processed and they provide more efficient representation of the 

texture. Features can be determined either directly from the image intensities 

(Laws, 1980) or as parameters of some functional model that approximates 
the data by, for example, minimising residual error or maximising likelihood 

(Chen and Kundu, 1995). The latter approach is inefficient in maritime 

scenes due to the complexity of the sea texture, as pointed out in Section 2.2. 

Therefore, the features are inferred directly from the intensity data. 

The spatial correlation of the texture pattern can be described by a co- 

occurrence matrix. The co-occurrence matrix contains the joint probabilities of 

two pixels having certain intensity values and particular layout. The layout of 

the pixel pairs must be specified in advance of constructing the co-occurrence 

matrix. This, however, assumes a prior knowledge about the texture geometry. 
In practice, the co-occurrence matrix size is reduced by assigning each 

single column or row to a range of intensities. For example, instead of 
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Figure 4.1: A sample maritime image (a) and co-occurrence matrices (b), (c) for 
two layouts of the pixel pairs. In the first layout (b) the pair is 5 pixels apart 
horizontally (dx=5, dv=0). In the second layout (c) the pair is 5 pixels apart 
vertically (dx=0, dy=5). Both matrices are 32x32 elements in size where one 
element corresponds to a range of 8 intensities. Dark elements correspond to 
high counts of the corresponding pixel pairs. 

using all 256 intensities in the image which would lead to a 256x256 matrix, 

the intensities are quantised by a factor of 8 which gives a 32x32 matrix as 

illustrated in Figure 4.1. The reduction of the intensity resolution can lead 

to a situation where low-contrast textures are characterised as homogeneous 

regions. 
Some suggestions how to decrease a computational demand of co-occurren- 

ce matrices have been proposed by Argenti et al. (1990). Walker et al. (1995), 

propose a method for improving the discrimination of co-occurrence matrix 

features. 

The co-occurrence matrix is an intermediate step in the characterisation of 

the textures. The features characterising the texture are obtained as statistical 

weighting functions (features) applied to the data in the co-occurrence matrix. 

These weighting functions employ either the values in the co-occurrence 

matrix or their positions, (Walker et al., 1995). Four of these commonly used 

features are: 

Emig? I = fýI.. (") 2 (4.1) 

r. (-00 

H-I. ('-I 

Ei, t ropiý f (r. (ý) 10, ý. f ý'i 
.O+ 

1) (4.2) 
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Homogeneity = jrr(ccI +1 
(43) 

r, c-0,0 
/t- I, r- I 

Contrast =E f(r, c)(r - c)2 (4.4) 

r, cm0,0 

where f (r, c) is the element value at the position (r, c) in the matrix with 
dimensions R, C. 

4.2.1 Redundancy of the Co-occurrence Matrix 

The ultimate goal of the segmentation is not to characterise the texture of 
the sea in an absolute quantitative way but to separate varying textures 

representing the objects from the texture of the sea. It is then possible to apply 
the features directly onto the image data instead of the co-occurrence matrix. 

A co-occurrence matrix can also be regarded as an intensity image of 
different texture where the values of matrix elements correspond to the 
intensity values at each pixel. Similarly, an image can be regarded as a 
co-occurrence matrix determined for some unknown texture. The intensity 

values in the image segment then represent values of the elements in such co- 
occurrence matrix. 

If there is an object in the segment of the image then the structure in the 

segment would differ from that of the sea. Similarly, the structure of a co- 
occurrence matrix and hence the feature values vary for different textures. 
Regarding the values of the features, it is the relative difference between the 
features characterising the sea and the objects which is important, not their 

absolute values. If the features are able to quantify the difference between 
different textures directly from the image intensities, the co-occurrence matrix 
would become redundant. 

This hypothesis was later confirmed in an experiment where the seg- 
mentation described in the following Sections 43 - 4.7 was applied using 
features obtained from co-occurrence matrices. The co-occurrence matrices 
were generated for three intensity resolutions (8,32 and 64 levels) and nine 
different spatial configurations covering all possible directions (see Figure 4.2). 

The results of segmentation utilising co-occurrence matrices were com- 

pared against ground truth obtained by applying the same segmentation on 

evaluation sequences using features calculated directly from image intensities 
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Figure 4.2: Spatial configurations of pixels used in the generation of co- 
occurrence matrices. 

and visually checking the correctness of the segmentations. Any frames where 

the prior segmentation failed were excluded from the evaluation. Three criteria 

commonly used in evaluation of object segmentation techniques (Cohen and 

Medioni, 1998) were considered: 

" false negatives (segmentation failed to identify an object), 

" mismatched positives (an object was split into multiple parts or multiple 

objects were merged into a single one), 

" false positives (segmentation identified non-existent objects in the scene). 

The evaluation was applied to SANDBANKS2M (first 45 frames) and 

WEYMOUTH2E (first 100 frames) sequences. The graphs in Figures 4.3b-cl and 

4.4b-d show average numbers of detected false negatives (FN), mismatched 

positives (MP) and false positives (FP) per sequence. 
The results indicate that the features determined from co-occurrence matri- 

ces do not perform better than those determined straight from intensity data. 

Furthermore, there is an obvious dependency on the configurations of the 

pixel pairs as well as the intensity resolutions that must be set beforehand. 
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Figure 4.3: Evaluation of the co-occurrence matrix redundancy hypothesis 

using the segmentation described in Sections 4.3 - 4.7. Results shown for 
SANDBANKS2M sequence: (a) sample frame, (h)-(d) average false negatives 
(FN), misclassified positives (MP) and false positives (1: 1)) per sequence for 

various spatial configurations of the pixel pairs. Three intensity resolutions 
of the co-occurrence matrices are considered - 8,32 and 64 levels. 
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Figure 4.4: Evaluation of the cc, -occurrence matrix redundancy hypothesis 

using the segmentation described in Sections 4.3 - 4.7. Results shown for 

WF: YMOUTH21: sequence: (a) sample frame, (h)-(d) average false negatives 
(FN) miSclassitied positives (MP) and false positives (1: 1)) per sequence for 

various spatial configurations Of the pixel pairs. Three intensity resolutions 

of the co-occurrence matrices are considered - 8,32 and (4 levels. 

87 

10 1C 2A 2B 2C 4A 4B 4C 
Spatial configurations 



Perspearvs projecUon of horizontal plane - dep. ndsnw on omega 

I " 

I 
ä 

0 a 

Figure 4.5: Perspective projection of the horizontal sea surface onto the image 
plane. Multiple projections are shown for varying camera pitch angle w. 

The conclusion from the experiment above is that the redundancy of a co- 
occurrence matrix in the segmentation process is justified. 

4.3 Segmentation Geometry 

Projection of maritime scenes is perspective which means that the scales of 
objects in the scene depend on their distances from the observation point. The 

objects are located on a planar surface representing the sea. Therefore, their 

vertical positions in the image change with their distances as well. Objects 
further from the camera project higher in the image. The scale of the scene 
gradually changes from bottom to top. The projection of the sea surface plane 
onto the image plane is shown in Figure 4.5. The setup is the same as in the 
Section 23. The horizontal axis shows the location of a point on the sea plane. 
The vertical axis shows the projected position of the same point in the image 

plane. The principal point is located at (0,0). Multiple curves correspond to 
various camera tilt angles w. 
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(a) Structure of the segmentation grid. (b) An example of optimised segmenta- 

ti n grid applied on a maritime scene. 

Figure 4.6: The structure of the segmentation grid compensates for scale 
change due to perspective projection of maritime scenes (a). An example of 
the segmentation grid applied to a sample maritime scene (h). 

The geometry of perspective projection places strong contextual constraint 

on the principles of the segmentation which must account for the fact that the 

scene being segmented is a perspective projection. Therefore the proposed 

segmentation does not operate on segments of the same scale across the whole 

image unlike other traditional segmentation algorithms that do not reflect the 

depth of the scene, (Pal, 1993). Here, the size of segment changes, depending 

on its position in the image. The change is monotonic reflecting the shape 

of the perspective projection profile (see Figure 4.5). The structure of the 

segmentation grid and an example of the grid applied to a maritime scene are 

shown in Figure 4.6. 

The segments are smallest at the top edge of the image and their size 

increases towards the bottom of the image. Figure 4.7 shows a comparison 

of the perspective projection with the vertical position y,,, of segments in the 

segmentation grid. The plot indicates the approximation of the change of 

scale in the segmentation grid structure. The segmentation is more gradual 

in the change of scale than the perspective projection. If the segmentation 

strictly adheres to the perspective profile, the segments near the top edge 

of the image would be too small to be analysed by texture features. The 

variable segmentation approaches the perspective projection while preserving 

the usability of the segments for textural analysis. 
The position and size (! ('u,. h) of segments is given by the 
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following equations 
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where Wm, f, h,,,,,, are the initial dimensions of the segments, Os, A. are the 

relative changes in segment sizes expressed in percent in both directions, os, os, 

are the relative overlaps of segments expressed in percent in both directions, 

m, n are row and column indexes of the segments and xm. n indicates that the 

position depends on both indexes. The grid is grown from top (the smallest 

segments) to bottom. The following constraints apply for the index boundaries 

m,,, a1 and nm. ma: 

Sin 
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Ym = 0, 
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mas : Xm, n.,... -1 
+Wm 5C< Xm. n.... +Wm (4.11) 

where m,,, o= -1 is the index of the last segment that fully fits into the image 

of height R, nm,,,, a= -1 is index of segment that fully fits into the image of 

width C. The extra index m indicates that the value of differs for each 

row of in the grid (see Figure 4.6a). 
When applying the segmentation grid to an image, certain parts of the 

scene may be left uncovered. This occurs when the segments are overlaid 
horizontally or vertically and a gap is left uncovered at both ends. The size 

of this gap depends on the parameters of the segmentation. It is the same for 

all segments in a vertical direction, but varies for every row of segments in 
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Figure 4.7: Comparison of perspective projection profile (PP) and vertical 
positions of segments in the segmentation grid (SP). 

a horizontal direction. To fully cover the whole scene the layout is optimised 
by shifting every segment by a certain residual displacement in both directions. 

This corrected position (x(m, n), y(m)) of the upper-left corner of each segment 

can be expressed as 

2m, n = xm, n + c��-� 7L = 1, 
... , nm, max - 1; m=0, ... , mmax -1 (4.12) 

gm 
= ym + ey, m=1, ... , mmax -1 (4.13) 

where em, x and eb are residual displacements in both directions that are 
determined from following relations 
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where s, n, x indicates that the horizontal residual displacements vary for 

each row in the segmentation grid. Residual displacements are applied to all 
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segments in both directions except those in the first row where vertical dis- 

placement is inapplicable and the first column where horizontal displacement 

is inapplicable. Such a corrected segmentation grid covers the whole scene 

completely (see Figure 4.6). 

4.4 Calculation of Features 

Once the scene is subdivided into the segments by the variable windows 

grid the search for objects within the segments is initiated. Each segment is 

regarded as a sample of a texture that is characterised by features defined 

by Equations 4.1 - 4.4. Features are grouped to form a four-element vector 
that uniquely characterises each segment. The search for object is based on an 

assumption that there is a substantial difference between vectors characterising 
the segments with objects and vectors that characterise segments with sea only. 

4.4.1 Intensity Unbiasing 

Illumination of the sea surface produces various effects under different envi- 

ronmental conditions. This is illustrated in Figure 4.8 that shows an average 
intensity profile of a typical maritime scene. The average intensity profile was 

obtained by convolving the original image with a 31 x31 pixel averaging mask. 
The intensity values slope towards the bottom of the image. As intensity 

data are used to calculate features directly it is necessary to compensate 
for illumination offsets, otherwise features will become biased hindering the 

detection of objects. 
The unbiased values of f (r, c) in Equations 4.1,4.2,4.3 and 4.4 are defined 

by 

r(r, c) = I1'(r, c) - 11 (4.16) 

where J'(r, c) is the original intensity at position (r, c) and f is the offset 

value determined as a constant for each segment in the grid. The absolute 

value is necessary in order to determine the entropy feature (Equation 4.2). 

The value of j is either mean or median of all intensity values in a single grid 

segment. The difference between mean and median is analysed in Section 4.9.2. 

92 



Al-w flIOnsh . ", 

(a) sample image (b) averaged intensity profile 

Figure 4.8: An example of intensity biasing in maritime scenes. 

4.4.2 Segment Resizing 

It is evident from each row of Table 4.1 that the values of features depend on 

the scale of the texture. The dependency is also apparent from Equations 4.1 

- 4.4 with summations done across segments of different areas. This would 

introduce a systematic bias to the feature vectors which would complicate the 

search for vectors representing the objects. 

One solution is to normalise the values by the area of the segment. This is 

possible for energy, and entropy as the sum values are directly proportional to 

the area. The same, however, does not hold for homogeneity and contrast. The 

values of these features would remain significantly biased. 

Another solution is to resize the segments to a single initial scale, x 

Details in larger segments are reduced and textures are smoothed. An 

alternative is to expand segments to their final scale, ti .......... x h....... 
1, . 

This is 

inefficient for two reasons - the amount of data to process increases and the 

new intensities result from extrapolation of values already available thus no 

new information from the scene is obtained. Even though reduction of the 

scale reduces the details in the image by leaving out pixels in larger segments 

it reduces the amount of noise that is due to the appearance of the sea. 

An optional method that compensates for the perspective projection of 

the scene is used in traffic applications (Kastrinaki et al., 2003), namely 

automated navigation of cars (Broggi and 13erte, 1995). The method consists 

of an image transform that reverts the original perspective projection. The 

scale reduction is done in finer steps as each pixel is transformed instead of 
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Scales 
Orig.: Eng 2.6.5 1« I 1.1ii(' )54275 431372 105622 

Ent 510421 t 328037 183212 82557.4 20196.5 
Hom 10063.5 7695.56 5319.93 3259.66 1288.03 
Con 8.5)(i " 101, . {. r) " l0 1.1 " II) 2.2.10 L-1-10, 

Norm.: Eng 
Ent 

120.3 
23.1 

120.7 
23.2 

120.5 
23.1 

121.9 
23.3 

121.4 
23.2 

Hom 0.46 (1.54 0.07 0.92 1.48 
Con 3886() 24874 13972 6249 1555 

Scaled: Eng 105622 11074') 99632.3 117741 105622 
Ent 20196.5 2174.3.9 10509.8 21773.5 20196.5 

Hom 1288.03 1385.17 1264.27 1383.04 1288.03 
Con 1. "3.10' 1.4 106 1.3 106 1. "1 10' 1.4 10 

Table 4.1: Linearisation of the features by scaling. 

larger segments, so the resulting image is better compensated for perspective 
distortions. Because the rectilinear grid of the image is not projected to the 

same rectilinear grid, intensity extrapolation is needed and the resulting image 

takes the shape of an isosceles trapezoid, (Wolherg, 1990). Segmentation of 

such an image would have to take this into account by either cropping edges 

of the image to obtain a rectangular region of interest or applying a non- 

rectangular segmentation grid. Positions of objects detected in the transformed 

image would have to be transformed hack in order to obtain the locations 

of objects in the original image. In contrast to that, the variable windows 

segmentation compensates implicitly for the perspective distortion without 

requiring to change the geometry of the segmented image. 

Two resealing methods are considered: re-sampling of the image and 
bilinear interpolation. Re-sampling reduces the scale of the segment by simply 
dropping out pixels at intermediate positions. No interpolation is necessary, re- 

sampling is simple and fast. The resuilt, however, suffers from discontinuities 

at ramp edges that may introduce high frequency noise. Bilinear interpolation 

provides smoother results by linear interpolation of the intermediate values, it 

is, however, more complex. 
Finally, the features determined for eich unbiased and resealed segment 

are arranged into vectors. Fach vector represents a point in so-called feature 

space (Jain et al., 2(X)0) (Figure 4.9). The segmentation of objects continues by 

partitioning and analysis of the feature space. 
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Figure 4.9: Feature space containing feature vectors describing the grid 
segments. The assumption is that outliers represent segments with probable 
objects in the scene. Only three coordinates are considered for illustrational 

purposes. 

4.5 Partitioning of the Feature Space 

The next step in the process of segmentation is the partitioning of the feature 

space into a main class cluster and outliers. The main class cluster contains 

vectors representing the most prominent structure in the image which is the 

sea while outliers correspond to segments with probable objects. This is in 

accordance with the assumption declared in Section 2.6 that states that objects 

occupy only minority of the scene. The partitioning produces a boundary 

maintained in the feature space that separates the main cluster from the 

outliers. 
The partitioning of the feature space is a typical problem of pattern 

classification. The partitioning can he done in numerous ways (Jain et al., 

2000) and the choice depends on the specific task. The categorisation of 

these methods is shown in Figure 4.10. The amount of information available 

about the data to be classified decreases from left to right in the tree. The 

choice of method depends primarily on the knowledge of class-conditional 

probability densities. Class-conditional probability states the probability of a 

feature having a certain value for a certain class. As this is not usually known 
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Figure 4.10: Commonly used classification methods, Uain et al., 2000). 

in advance in most real world applications, a majority of classifiers have to 

undergo learning stage prior to actual classification. 
The method of learning depends on the availability of labelled data from 

which the classification rules can be inferred. If a representative set of labelled 

data for training is not available unsupervised classification methods such as 

cluster analysis should be considered. Cluster analysis is a valuable technique 

that groups and partitions a feature space into different class representatives. 
Widely used criterion in cluster analysis is based on iterative minimisation of 

square-error (Jain et al., 2000). 

The objective of iterative square-error clustering is to obtain partitioning of 

the feature space that minimises the overall square error. If there are K classes 

then for every cluster Ck, k=1,... ,K representing a single class the centroid 

µ(k) is defined as 

<<k) =1: xýk) (4.17) 
1dk1ý1 

where x, ' k) is the i-th feature vector belonging to cluster Ck and nk is the 

number of feature vectors belonging to cluster Ck. The square-error ek for 

cluster Ck is the sum of the squared Mahalanobis distances between each 
feature vector in Ck and its centroid 11(k) 

nw 
ek = 

E(Xik) 
_ 11(k))A(k)(X(k) _ ýý(k))T (4.18) 

ja] 

where A(k) is the inverse covariance matrix of the data in the cluster Ck. 

Equation 4.18 becomes a sum of Euclidean distances, in case the covariance 

matrix is an identity matrix, A(c) = I. The overall square error Eh of the 
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clustering is the sum of all intra-class errors 

EK = Ek-1ek (4.19) 

The minimisation of EK is generally achieved by an iterative process 

of repartitioning and re-evaluation of the criterion function. The iterative 

process also known as the K-means algorithm consists of the following steps 

(Jain et al., 2000): 

1. Select an initial partition with K clusters. Repeat steps 2 to 4 until the the 

cluster membership stabilises. 

2. Generate a new partition by assigning each pattern to its closest cluster 

centre. 

3. Compute new cluster centres as the centroids of the clusters. 

4. Repeat steps 2 and 3 until an optimum value of the criterion function is 

found. 

Non-parametric clustering is a popular method of texture segmentation in 

natural scenes (Fauzi and Lewis, 2003; Pauwels and Frederix, 1999) for which 
labelled data are often difficult to obtain. Segmentation of maritime scenes is 

assumed to belong to the same category of problem. The clustering method 
introduced in the next section therefore follows the principle of the K-means 

algorithm. 

4.5.1 Iterative Clustering 

The standard K-means algorithm assumes that there are K>1 clusters in 

the feature space. Considering the maritime scene with no objects in the scene 

there is only a single class representing the sea. When objects enter the scene 

their textures are characterised by features spanning additional classes. The 

number of these classes is unknown as there can be any number of objects in 

the scene constituting of any number of textures. 

The unknown number of classes can be estimated from the density of points in 

feature space, (Pauwels and Frederix, 2000). These methods, however, require 

that the clusters do not contain less than a given minimum of points. The 

requirement often does not hold in maritime scenes. Maritime objects occupy 

a minority of the scene and, therefore, only a limited number of segments in 
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Figure 4.11: Two iterations of the centroid estimation procedure (two-dimen- 
sional projection). The first subset is inside a dashed ellipse, the second set is 
inside a solid ellipse. 

the segmentation grid. This implies a limited number of points in the feature 

space that correspond to the objects. In addition, there is no guarantee that a 

compact cluster representing the objects in the scene will form as these objects 

can be composed of several parts with varying textures. 
An alternative approach of the feature space partitioning is proposed. The 

centroid of the main cluster in the feature space is iteratively located and a 
decision boundary enclosing the main cluster is constructed. The points in 

the main cluster correspond to the sea and all points outside the boundary 

represent objects. The procedure is outlined as Algorithm 1. Two iterations 

are illustrated on the 2D projection of the data in Figure 4.11. The subsets are 

outlined as ellipses. 

4.5.2 Optimal Number of Iterations 

The population G; of points in the subset used in centroid estimation reduces 

at each iteration step. The outliers are excluded from the subset, further 
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Algorithm 1 The iterative procedure of main cluster centroid estimation. 
1. The position of the centroid µ(i) in the i-th iteration is determined using 

points in a subset of the feature space 

C. 
Am =1E xj(t) (4.20) Gti 

ý=1 

where Gi is the number of points within the subset and X(i) is the j-th 

feature point in the subset. Initially, i=0 and p(s) is determined using a 

subset that contains all points Go in the feature space. 

2. The average distance D(i) between points xý(`), j=1, ... , G, in the subset 

and their centroid a(') is determined as 

G; 

D(1) =1 GE 
d(x(a), µý1ý) (4.21) 

ti j=1 

where d(xý'), µ(O) is the Mahalanobis distance defined as 

(t) (i) (i) x () T 
). A(') . 

(xj 
_µ(i)1 (4.22) p(i) 

where xý') is the j-th feature point in the subset, µ(2) is the centroid and 
AM is the inverse of the covariance matrix estimated from the subset. 

3. A new subset is generated containing points within the average distance 

DM from the centroid µ(t). 

4. i=i+1 and steps i to 3 are repeated. 

5. The procedure is stopped when i reaches predefined value. 
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improving centroid estimation. However, after a certain number of iterations 
the subset becomes too small and the information about the shape of the cluster 
is lost. 

This can be illustrated by analysing the normalised eigenvectors of the 
covariance matrix for feature points within the subset used in centroid es- 
timation. Eigenvectors of the covariance matrix are aligned with the major 
variance axes of the feature points (Dunteman, 1989; Iversen and Norpoth, 
1987). As all points are involved at the initial iteration step the outliers will 
influence the covariances and consequently the orientation of eigenvectors. 
As the population of subset reduces, so does the influence of outliers on the 

covariance and the orientation of the eigenvectors will change. After a couple 
of steps the shape of the main cluster is well captured by the covariance matrix 
and the orientation of eigenvectors does not change substantially. However, if 

more steps follow, this orientation equilibrium is broken and eigenvectors start 
to shift again. This is undesirable as the resulting covariance matrix ceases 
to encode the shape of the main cluster causing the segmentation results to 
deteriorate. 

Table 4.2 shows the evolution of orientations of normalised eigenvectors of 
the covariance matrix (two cases are illustrated - with and without the objects 
in the scene). The values in Table 4.2 are defined as I- cos ap where % is the 

angle between j-th normalised eigenvectors at iteration steps i and i+1. This 

angle can be obtained from vector dot products: 

v j(i) " vj(i + 1) = lv1(i)I lv j(i + 1)1 cosy j (4.23) 

Both normalised eigenvectors have a length equal to one, therefore the dot 

product gives directly the values of cosaj. It is clear from the definition of 

vector dot products that parallel vectors have a, equal to zero. Change in 

orientation causes a; to increase. 
The values in Table 4.2 show that within the first two or three iteration 

steps there is an initial alignment of the covariance matrix eigenspace with the 

orientation of the main cluster. With more iterations the change of orientation 
is minimal but after five or six iterations the eigenspace stops following the 

orientation of the main cluster and starts to change the orientation again. 
Values greater than one in the Table 4.2 indicate an initial value of a, >, 
(cos a, < 0). Figure 4.12 shows the evolution of the position of the centroid 

over the iterations. The position changes linearly up to approximately five 
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Iterations 12345 

No objects in the scene 
VI 0.48.10' 0.12.10' 0.15.10- 0.27.10- 0.83.10' 

- 7- - V2 0.15.10' 0.16.10' 0.18.10- 0.3-. 10' 2 4T- 107 17 

0.56.10- 0.59.10' 0.55.10 0.59.10' 0.16.10' 

V4 0.43.10' 0.37.10' 0.37.10- 0.33710' 0.89 
Objects present 

vl 0.68 0.23.10-2 0.56.10- 0.16.10- 0.54.10' 
V2 0.36.10- 0.5-. 10- 0.95.10- 0.31.10- 0.15.00- 
V3 0.10.10- 0.13.10' 0.43.10' 0.17 0.97.10' 
v4 1.30 0.30.10' 0.84.10 0.23.10' 0.13.10' 

Iterations 67 8 9 10 

No objects in the scene 71 
VI 0.20.10' 0.98.10' 0.14.10' 0.16 

V2 0.13.10' 0.27.10' 0.35.00- 1.3 
V3 0.13.10' 0.18.10' 0.40.10' 0.54 
V4 0.10.10' 0.11.10' 0.45.10' 0.45.10' 

Objects present 
vl 0.50.10- 0.1.10' 0.48.10' 0.44.10' 

- V2 0.82- 10' 
- 

0.20.10' 0.36.10- 0.21 -. 10---7 

V3 7.10' 6 
.5 - 

0.19.10' 
- - 

0.39.00' 0.22.10 

V4 0.51.10-1 0.10' 7 1 0.12 10' 0.20.10' 

Table 4.2: Evolution of covariance matrix eigenvector orientations. The values 
represent dot products between consecutive corresponding eigenvectors. 
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Figure 4.12: Evolution of centroid position with respect to iterative clustering 
steps. After approximately five iterations the position does not change 
significantly. 

iterations but starts to oscillate after five iterations. 
Taking into account the results in Table 4.2 and Figure 4.12 it can be 

concluded that the results start to deteriorate after four iterations as the data 

covariance matrix no longer characterises the structure of the main cluster and 
the centroid starts to fluctuate. 

4.6 Adaptive Thresholding 

The classification of outliers is based on a thresholding scheme that establishes 
and maintains a boundary surrounding the main class. The boundary is set up 

at a Mahalanobis distance Db from the centroid 14 of the main cluster estimated 
in the final iteration of the Algorithm 1. 

Because the shape of the main cluster generally varies from scene to scene 
there is no single optimal value of Db that would work for all the scenes. The 

threshold has to be established individually for every scene. Also, temporal 

I 
00 

CA 
468 10 2468 10 

Iterations Iterations 
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illumination changes in a single scene can influence the main cluster shape 

and thus the relative positions of outliers can change over time. All these 
factors should be considered when determining the threshold to provide time- 

consistent thresholding. 

4.6.1 Distance Histograms 

A modification of Mahalanobis distance between all feature points xj and the 

centroid µ is introduced: 

di (. 7) = di (xi, µ) =I log((x3 - µ)A(Xi - µ)T) (4.24) 

where A is the inverse covariance matrix obtained at the final iteration. 

The logarithm regularises extreme values of the distance that occur with 
outliers. The distances dl (j) can be regarded as samples drawn from two 
distinct statistical distributions. Figure 4.13 shows histograms of the distances 

for a typical maritime scene without and with objects present. The data 

for the histograms are collected over multiple frames and the histograms 

are smoothed by a moving average window filter 3 samples wide. Two 

distributions can be distinguished in Figure 4.13b - the major one on the 
left represents the background feature points while the minor distribution 

on the right corresponds to the feature points representing the objects. The 

distributions are separated by defining a threshold in the histogram. The 

search for the threshold is detailed in the following sections. 

4.6.2 Distance Unbiasing 

The image intensity unbiased values f (r, c) obtained from Equation 4.16 have 

larger variances due to the prevalence of details in larger segments of the 

segmentation grid. The values of features obtained from Equations 4.1-4.4 and, 

consequently, the distances are larger for these segments. It is necessary to 

correct the bias prior to the construction of the histogram. 

A partial correction of the bias is achieved by modifying each distance by 

subtracting a weighted mean 

dt (m, n) = di(m, n) -h 
h"` 

ýº; n=1, ... nmax(m); m=1, ... , mmax (4.25) 
mma s 
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Figure 4.13: Histograms of distances for scenes (a) without and (b) with objects. 
A secondary distribution in (b) on the right represents outliers in the feature 
space. 

where d! (m, n) is the unbiased distance of feature point x,..,,, for a segment 

at position (m, n) in the segmentation grid, d, (m, n) is the original distance for 

the same segment, pz is the average distance, hm is the height of segments in a 

row m and h,,, 
mo, 

is the height of segments in the last row of the segmentation 

grid. Indexing of the distances and feature points changes from a single index 

j to a pair of indexes m, n as the unbiasing value depends on the vertical index 

m of the segment in the grid. 
Figures 4.14a, b show the original distances and their mean values across 

each row. Figures 4.14c, d show the original and the corrected mean values 

across each row together with the difference in these values. 

4.6.3 Threshold Selection 

Histogram analysis methods are common in image processing as they provide 

straight-forward mechanism of separation of classes represented by modes in 

the histogram (Sezgin and Sankur, 2004). The analysis establishes thresholds 
between the modes usually by directly searching for the peaks and valleys in 

the histogram outline or by fitting parameterised curves such as Gaussians to 

the outline. 
A minimum requirement for most methods is that the number of modes 

is known in advance. A popular thresholding method by Otsu (1979), for 

example, assumes a bimodal histogram. This is in contrast with the distance 
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histograms introduced above as their number of modes varies with the 

presence or absence of objects in the scene. 
The histograms in Figures 4.13a, b show that the major mode is always 

present. By fitting a parametric curve to the outline of the main mode the 

presence of the secondary distribution can be established from a discrepancy 

between the fitted curve and the outline, The secondary distribution is always 

on the right side of the main mode as the feature points corresponding to 

objects lie further from the main cluster centroid. 
McLaughlin (1999) provides an exhaustive list of probability distribution 

functions as well as definitions of their parameters. Figures 4.13a, b indicate 

that there is an apparent skew of the histogram with the right tail elongated. 
The Generalised Logistic Distribution (GLD) has been selected as an adequate 

approximation of the histogram outline. The GLD can be expressed as 

eý) 
AjjA 

PDFGL(x) _C- (4.26) 
ii f 1+eýýr`-)1 

+ý 

where parameters A, 13 are determined from fallowing definitions relating 
to statistical moments calculated directly from the data 

VarGL = 
[! ' 

6+ 
V"(C) B2 (4.27) 

Rrcdat =A-B log(2 '- 1) (4.28) 

where -y = 0.577215GG is Euler-Gamma constant and v'"(x) is multi-Gamma 
function. A value of C is predefined. Figures 4.15a, b indicate that there is not 

a major difference in the shapes of the curves for C>S. A value of C= 10 

has been chosen. The variance and median of the distances jh(m, n) are used 

as estimates of the MedGL and VarGL model parameters. 
The secondary mode in the histogram is detected as a positive deviation 

from the GLD to the right of the GLD's peak. By evaluating the relative 
deviation of the histogram from the GLD it can be established whether this 

deviation is significant enough to represent a secondary distribution of object 
distances. Figure 4.16 shows the relative deviation between fitted GLD curve 

and the histogram for two sample scenes. Secondary distribution is considered 

significant if the relative deviation exceeds 80%. The value is acceptable for the 

development scenes. A threshold is set up at the position between the two 

modes. The position is given as (Yusoff et al., 2000) 
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Figure 4.15: Distance histograms with General Logistic Distribution curves 
fitted. The secondary peak in the distance histogram (b) indicates the presence 
of objects in the scene. 

td = mo - koco (4.29) 

where mo is the peak position, o,,, is the estimate of standard deviation of the 

secondary distribution and ks =2 so that 95% values are included assuming 
that the secondary distribution is normal. 

The distances determined from multiple frames are collected in order to 

smooth the histogram and, consequently, improve the estimation of GLD 

parameters. Results of the segmentation evaluation show that between 5 to 

10 frames provide an ample amount of data for histogram generation. 
A temporal long-term averaging is applied to avoid any short-term incon- 

sistencies in the threshold values 

Ti = 
((Ne - 1)Ti_1 +td) (4.30) 

Nt 

where Ti is the overall threshold in frame i, Nt is the length of the 

temporal filter and td is the current threshold obtained from Equation 4.29. 

If, for example, the relative deviation of the secondary distribution is close 

to the threshold value of 80% it occasionally drops below that value and the 

secondary distribution remains undetected. The histogram is then treated as 

unimodal pushing the threshold to higher values. That causes objects to flash 

on and off, making the segmentation inconsistent. The value of Nt is set to 

approximately 50 frames which corresponds to a couple of seconds. 
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Algorithm 2 Adaptive thresholding algorithm. 
1. A histogram of d, (in, n) values is generated. An optimal bin size is 

determined by formula derived by Scott (1979) 

a. 3.49. od ,1c (4.31) 

where od is the standard deviation of the data for which the histogram is 
built and C is the number of values. 

2. GLD is fitted. Parameters of the GLD are determined from the 
parameters (median, variance) of the real distribution. 

3. The histogram is smoothed by moving average filter of length 3. 

4. Both GLD and smoothed histogram are normalised with respect to their 

areas. 

5. Relative deviation of the histogram from the GLD is determined for all 
values on the right from the GLD's peak. 

6. If the relative deviation exceeds 80%, then a presence of secondary 
distribution is indicated. 

7. The secondary distribution parameters (modus, standard deviation) are 
estimated. 

8. Current threshold is determined from Equation 4.29. 

9. Overall threshold is updated by using temporal filtering in Equation 4.30. 

10. The threshold T; is applied to the distances of the current frame. 

11. The distances d? (m, n) above the threshold are labelled 'object', distances 
below the threshold are labelled 'sea'. 
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Figure 4.16: Relative difference between the histogram outline and the fitted 
GLD curve for a scene without (a) and with (b) objects present. 

The adaptive thresholding algorithm is outlined as Algorithm 2. Each 

labelled distance corresponds to a feature point in the feature space and in turn, 

each point corresponds to a segment in the segmentation grid. The threshold 
Ti represents the classification boundary that separates sea background from 

objects in the scene. 

4.7 Remapping of Segmentation Results 

Once the feature vectors are classified, segments corresponding to each class 

can be mapped back onto the original image as objects or background using 
the segmentation grid. There are three possible ways of the remapping. The 

first option is to output only those segments labelled as objects. This results 
in irregular segments that do not necessarily cover the complete objects (see 

Figure 4.17a). Such irregular regions would pose difficulties for consequent 

processing steps as they are not true representations of actual objects. 
A second option is to enclose irregular regions into rectangles that outline 

the regions of interest in a more convenient way. This, however, leads to 

segmentation ambiguity when rectangles enclosing multiple segments of an 

object broken into several parts overlap. 
The third option is to optimise the remapping by unifying the overlapping 

rectangles into a single one. This is the preferred approach as optimally each 

object is represented by a single enclosing rectangle. 
The segments obtained by remapping provide coarse locations of likely 
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(a) remapped segments (b) mmapped wgments marked by enclos- 

ing n-rt. in); k 

Figure 4.17: Remapping of segments and resulting segmented image. 

objects in the scene. The segments represent the input to the consequent 

processing stage that generates geometric characterisation of detected objects, 

namely the weak perspective model introduced in Section 2.3. 

4.8 Structure of Segmentation Module 

The segmentation steps described above are &sse, nbled into a processing path 

that represents a segmentation module in the maritime tracking framework. 

The structure of the module is outlined in Figure 4.18. 

The segmentation module takes as an input the current frame in the 

sequence. A following set of operations is applied to the frame: 

" Segmentation. Frame is split by the segmentation grid into individual 

segments. 

" Rescaling. Each segment is resealed to match the size of the smallest 

segment in the grid. 

" Calculation of features. A vector of textiirt" characterising features is 

calculated for each resealed segment. 

" Partitioning. Feature vectors span a feature space. A centroid of the space 

is located iteratively in several steps. 

" Maltalanobis distance. A Mahalanohis distance between each vc'cto, ind 

the centroid is determined. 
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Figure 4.18: The structure of the segmentation nodule. 

" Histogram gr'ncration. A histogram of the distances is updated. The 

histogram is initialised using data from multiple frames. 

" Adaptive tlm'sholdin, g. The histogram is divided by an adaptive threshold 

into sections corresponding to the sea and to the objects. The value of the 

threshold is derived from the shape of the histogram and it is updated 

with each new frame. 

" RenuappinE of se nu'nts. The thresholded histogram data are remapped 
back to the corresponding segments in the segmentation grid. Overlap- 

ping segments are grouped together. 

The coordinates of segments containing possible objects form the output 

of the module. These coordinates are passed to the consequent module 

that builds a geometric model of each object in the scene. Some parts of 

the segmentation module require parameter values that are obtained from 

experimental evaluations described in the following sections. 

4.9 Evaluation of Segmentation Performance 

4.9.1 Introduction 

An essential part of any classifier design is the evaluation of its performance. 

Success of classification is proportional to the ability of features to distinguish 

between different classes. Several tests have been designed in order to analyse 

the results produced at various stages of the classifier introduced above. 
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The initial test compares on a statistical basis the performance of the two 

options of intensity unbiasing described in Section 4.2. A standard t-test and 
f-test (Dowdy and Wearden, 1991) are employed to confirm the hypothesis 

that both, mean and median, unbiasing provides the same results. The 

confirmation of the hypothesis allows the selection of mean as the unbiasing 
method due to its lower computational demands. 

The ability of feature descriptors to separate the outliers from the main 
cluster is evaluated in the next test. All possible combinations of feature 
descriptors are generated and each combination is evaluated on a set of sample 
sequences. Structural and temporal consistency of separability of the selected 
features is also evaluated. The performance of the classifier is optimised 
by selecting the combination of features that provide the best separation of 
features. 

The final set of tests establishes adequate values of configuration parameters 
of the segmentation regarding the best achievable performance of the classifier. 
The tests involve evaluation of the segmentation for different scaling values 
0=, AY of segments in both directions, different overlaps or, ov and varying 

numbers of frames involved in the distance histogram. 

4.9.2 Evaluation of Intensity Unbiasing Methods 

An essential step in the segmentation algorithm is the intensity unbiasing 
introduced in Section 4.2. Unbiasing is done by subtracting either mean or 

median of pixel values determined for each segment in the segmentation grid 
from each pixel value in the segment. The question is which method gives 
better results: mean or median ? One possible way to establish the answer is 

to perform an exhaustive evaluation test of the segmentation performance for 

a large number of images using both methods on ground truth data. 

A more efficient solution is available, that does not involve exhaustive evalua- 
tion. Before evaluating the performance of segmentation for each frame in each 

sequence a hypothesis is made that the values of mean and median are similar. 
The values would be similar if the intensity values in each segment obeyed 

symmetrical, preferably normal distribution. This assumption is common in 

image segmentation algorithms such as (Elgammal et al., 2002). 
If the hypothesis is rejected then the exhaustive performance evaluation 

is inevitable as the results would differ for each method. If the hypothesis 

is accepted, i. e. mean and median values are similar, the evaluation is 

112 



Frame 11 12345678 
t test ARAAAAAA 
f test ARAAAAAA 

I Frame 11 91 101 111121 131 141 151 AIRI 
t test AAAAAAA 14/1 
f test ARRAARA 11/4 

Table 4.3: Intensity unbiasing - results of hypotheses testing. The hypothesis is 
that mean and median of intensity values in each segment come from the same 
distribution and are therefore similar. The symbols indicate if the hypothesis is 
A- accepted or R- rejected. 

unnecessary as it will provide the same results, no matter which method is 

chosen. 
This test assumes that the values of mean and median calculated for each 

segment are considered as samples from two statistical distributions. One 

distribution represents the mean and the other median values. It is possible 
to find the similarity between these two distributions by using t-test and f-test. 

T-test is designed to confirm or reject the hypothesis of two distributions 

having the same means (Iversen and Norpoth, 1987). In a similar manner, the 

F-test is designed to test the hypothesis of two distributions having the same 

variances. If both tests prove that the hypotheses are true then the conclusion 
is that means and medians determined for each segment and each frame are 

samples from the same distribution and are therefore similar. 
A set of 15 frames randomly chosen from a sample of testing images was 

used for testing both hypotheses. The results summarised in Table 4.3 prove 

that both hypotheses are true for the majority of the scenes which means that 

there is no significant difference in the values of mean or median. As mean is 

generally easier to determine it is the preferred method of intensity unbiasing. 

4.9.3 Evaluation of Separability of Outliers 

The ability of features to distinguish between patterns corresponding to 

objects and those representing the sea is vital for classification. Efficient 

features should place an outlier in feature space away from the main cluster 

while preserving its compactness. The following section investigates the 

performance of various feature combinations listed in Table 4.4 for the purpose 

of selection of the most efficient combination. 
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Number Combination 
1. energy-entropy 
if. energy-homogeneity 
III. energy-contrast 
IV. entropy-homogeneity 
V entropy-contrast 
VI. homogeneity-contrast 
VII. energy-entropy-homogeneity 
VIII. energy-entropy-contrast 
IX. energy-homogeneity-contrast 
X. entropy-homogeneity-contrast 
Xl. ener -entro -honmo geneit -contrast 

Table 4.4: All possible combinations of features in segmentation. 

4.93.1 F-test 

Main objectives of the feature selection process are the efficiency of the 
classifier and possible reduction in complexity. The feature selection is 
important in cases where reduction of high number of features is necessary for 

manageable data representation. As the number of feature combinations grows 
approximately with the factorial of the number of features feature selection by 

an exhaustive evaluation of all possible combinations becomes impracticable. 
Dash and Liu (1997) provide an overview and evaluation of several alternative 
feature selection methods that provide faster but suboptimal feature selection. 

As the highest possible dimensionality of data used in the segmentation 
of maritime scenes is limited to four, the exhaustive evaluation of all possible 
eleven feature combinations is feasible and there is no need to employ other, 
suboptimal feature selection techniques. 

To evaluate the separability of outliers for different combinations of feature 
descriptors the following approach is proposed. The distance values d, (in, n) 
obtained from Equations 4.24 and 4.25 are considered to be samples of two 
distributions - one for background feature points and the other for object 
feature points. These two distributions will presumably have different means 
and variances. 

The f-test (Dowdy and Wearden, 1991) is commonly used to evaluate the 
difference between two statistical distributions by checking the hypothesis that 
the two distributions have similar means and variances. The decision is based 

on the F-value that reflects the differences. if this value is close to one the 
hypothesis is true and the distributions are similar. if the F-value is larger than 

114 



one, the distributions are significantly different. The F-value is proportional to 

and therefore can also be considered as a measure of the difference between the 

two distributions. A higher F-value indicates that the distributions of feature 

vectors belonging to the main cluster and to outliers are less similar. This 

implies that the separation between outliers and the main cluster in the feature 

space is greater. The F-value is determined as 

ddb - d°)2 
(4.32) 

Gb G. 

where 
2_ Gb-1 2 Go-1 2 

Gb+G0-2ab+Gb+G0-2-* 4.33 

and db, do are the means of the distributions of background and objects 
feature points respectively, ob and Qo are the standard deviations of the 
distributions and Gb and G,, are their magnitudes. F-values for all possible 
feature combinations listed in Table 4.4 are determined and the combination 

with the highest F-value is chosen. 

4.9.3.2 Test of Separation Consistency 

Another important criterion is the consistency of the separation of outliers with 

respect to time and scene appearance. The consistency of segmentation results 
depends directly on the consistency of separation of outliers. As far as possible, 

separation should remain independent of the scene illumination changes and 
the scale and appearance of the background and any objects. Adaptive 

thresholding partially compensates for possible short-term instabilities in data 

separation by accumulating data over multiple frames. 

The algorithm assumes that the distance di (m, n) for any objects in the scene 

remains similar. In terms of feature space, the constraint expresses a detectable 

and consistent 'gap' between the main cluster and the outliers. In addition, 

the outliers should be located at approximately the same distance from the 

cluster centroid to span a detectable and compact secondary distribution of 
distance values. These properties should preferably remain independent of 

the structure and appearance of the scene. 
The evaluation of the separation consistency is done in the following steps: 

1. Artificial sequences are constructed by placing a target at a known 

position onto the images of a varying background as described in Section 
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1. 410 857 1108 1192 3208 9.34 787 3397 
If. 414 965 1130 1222 3243 1076 811 3466 
III. 681 1000 1162 1339 3668 1157 960 3662 
IV. 975 1947 1061 1459 3057 2391 1311 4360 
V. 1880 1926 1951 1624 2308 2440 2280 4541 
VI. 3117 3587 4884 37ß50 1992 4391 2920 4091 
Vll. 423 887 1104 1202 3. '307 1016 788 3410 
VIII. 422 907 1108 1202 3288 991 787 3409 
IX. 457 1008 1118 1211 3233 1095 849 3548 
X. 746 1878 1641 1XIO 3324 2331 1284 4160 
XI. 416 833 11üß lltiýl 3; 367 1040 767 3 38 

Table 4.5: F-values for combinations of different backgrounds and targets. 

2.7.3.31. 

2. The F-values for all the frames in the sequence are determined for a single 

sequence with a single target at a known position. 

3. The previous step is repeated for multiple combinations of targets and 
backgrounds. 

4. F-values are unbiased by their averages in each frame. 

5. Average F-value for each sequence is determined. 

6. Box-plots of F-values are constructed for each combination of features. 

Box-plots illustrate the distributions of F-values for each combination of 
features. Figure 4.19 shows the box-plot for real backgrounds with real targets 

superimposed. The box contains 95 % of all F-values, brackets delimit minima 

and maxima. Values are unbiased by their mean. 

4.93.3 Evaluation Results 

Test results are summarised in Table 4.5 and Figure 4.19. The results indicate 

certain combinations of descriptors separate the objects from background 

IF-test is not applicable if the population a,, of object distances is it-so than two. This would 
yield zero standard deviation. The targets are designed and placed such that they cover at least 
four segments in the segmentation grid. 
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Figure 4.19: Box-plot of unbiased F-values for different combinations of 
features (a). Comparison of F-values for different combinations of features (b)- 
(d). 
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better than others. Unfortunately, this is at the expense of spatial and temporal 
stability. For example, combination No. VI - homogeneity-contrast in Table 4.4 
has an average unbiased F-value around 1900. However, the 95% interval is 

very broad, almost 1000, and the lowest F-value is -3500. This indicates poor 
spatio-temporal stability of separation and this combination is not favourable. 
Two-fold combinations No. 1,11,111 provide results similar to the combination 
No. XI - all features, and thus can be considered as viable alternatives. 

Figure 4.19b-d shows the plots of F-values for different feature combina- 
tions determined from 950 frames randomly generated using real backgrounds 

and real objects. The values are sorted to emphasise the overall differences 
(McCane, 1997). The plots indicate that the best overall separation is obtained 
for a two-fold combination of homogeneity and contrast. As this combination 
is temporally less stable the second best threefold combination No. X- entropy, 
homogeneity and contrast is selected instead (sec Figure 4.19d). 

4.9.4 Evaluation of Structural and Temporal Parameters 

The geometrical structure of the segmentation grid depends on a set of 
predefined parameters. In order to provide reliable functionality the scale 
of the segmentation grid should reflect the scale of objects in the scene. 
Segments that are not in proportion to the expected scale of objects encountered 
in maritime scenes would render the segmentation impossible. The scale 
conformance also applies to the amount of overlap. If the segments are not 
overlapping, objects may be only partially segmented or split into multiple 
regions leading to a misinterpretation of the scene structure. If the overlap 
of the segments reaches beyond a certain limit, segmentation granularity 
decreases and multiple objects are interpreted as a single one. 

The task of the evaluation is to identify the scales and overlap limits 

of the segmentation grid (i. e.. structural parameters) to allow for the best 

segmentation outcome. The evaluation is done by changing the segmentation 
parameters and evaluating the segmentation on a sample sequence with a 
known ground truth. 

Another important parameter of the segmentation is the number of frames 
involved in temporal filtering and the accumulation of data used in adaptive 
thresholding. If data accumulates over too many frames, short-term changes 
are filtered with a consequence of misinterpretation of activities in the scene. If 

not enough data is collected the histogram of distances becomes sparse making 
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the estimation of distribution parameters unreliable. To evaluate the influence 

of the number of frames on segmentation outcome the sample distance is 

processed with different numbers of accumulating frames and the results are 

compared against a known ground truth. 

The criteria for evaluating segmentation performance take the following 

three indications into consideration: 

" extra spurious segments that do not represent any rigid objects - false 

positives (FP) 

. misinterpretations of the objects, i. e. object is segmented into multiple 

segments or one segment covers multiple objects - misinterpreted posi- 
tives (MP) 

. lost objects, i. e. segmentation failed to find an object present in the scene 

- false negatives (FN) 

Tests are run for a sample sequence and the performance is evaluated over 

a range of values of tested parameters by using the indications mentioned 

above. Remaining parameters are kept constant through each test phase. The 

indications are counted each time they occur and the final score is established 

as a ratio of the number of occurrences to the length of sequence in frames. The 

score is expressed in percent. 
The parameters tested are 

" Ox - relative change of segment size in x-direction 

" Ab - relative change of segment size in y-direction 

" oz, y - horizontal and vertical overlays 

" NT - number of frames involved in histogram construction 

4.9.4.1 Results 

The results of the evaluation are presented in Tables 4.6-4.9 for POOLE 

sequence. The POOLE sequence contains multiple objects of different scales 

and appearances that provide a suitable sample of likely objects in a maritime 

scene. 
The results indicate a relation between the geometry of the segmentation 

grid and the outcome of the segmentation. For small values of Ox, Dy (2%, 5% 
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Ds o H 'o MI' 0 1N lo 
2 92 1'1 6 
5 64 19 K 
10 74 18 1 
15 52 25 12 
20 42 . 10 82 
30 22 55 1! 

kt 

Table 4.6: Evaluation of the segmentation with regard to the relative change 
of the size of segments in vertical direction. Other parameters are set to the 
following values: Ot, = 10%, os = o. = b0%, it = 5. 

Do 
2 

FI' o 
100 

MI' o 
100 

IN%n 
0 

5 69 44 0 
15 42 14 28 
20 52 36 6 
30 39 44 74 

Table 4.7: Evaluation of the segmentation with regard to the relative change of 
the size of segments in horizontal direction. Other parameters are set to the 
following values: As = 10%, o2 = oy = 50%a, it = f,. 

in both directions) objects that are close to the camera (large in scale and near 
the bottom of the image) are split into many parts and can be misinterpreted 
or lost completely. If the size of segments increases by more than 15%, objects 
that are small or far from the camera (small in scale and near the horizon) can 
be misinterpreted or lost completely. Best results are obtained for scale change 
of about 10`% in both directions. 

Overlapping influences the misinterpretation of the objects. For values 
of o=, i, less than 20'% the objects are either partitioned or missed completely. 
For values exceeding 50% objects are grouped together. if the overlapping 
drops below 10%, adaptive thresholding fails as the number of feature vectors 
for segments with objects drops below the 80% level of significance and the 
threshold is pushed towards higher values. 

A number of accumulating images in the adaptive thresholding is evalu- 
ated in the final part of the test. Results show that the optimum number of 
frames for data accumulation is between 5 and 10 frames. Below this amount 
there are not enough feature vectors to make the secondary distribution 

significant enough to be separated by a threshold. On the other hand, more 
than 10 frames decrease temporal adaptivity of the thresholding. 

The high values of false positives are due to a number of wakes that 
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ox,, [%] FP[%] MP [%] FN[%] 
2 29 78 77 
5 59 19 15 
10 16 86 47 
20 70 19 6 
33 64 17 0 
66 86 50 0 
75 61 62 0 

Table 4.8: Evaluation of the segmentation with regard to the relative change 
of the overlap of segments in both directions. Other parameters are set to the 
following values: Ax,, = 10%, h=5. 

h[frames] 
1 

FP[%] 
49 

MP[%] 
39 

FN[%] 
68 

2 57 15 7 
10 67 17 2 
20 68 18 4 
50 67 17 5 

Table 4.9: Evaluation of the segmentation with regard to the number of frames 
used in estimation of distance distribution. Other parameters are set to the 
following values: Ox,, = 10%, o--, y = 50%. 

appeared in the testing sequence. These are rapidly moving objects that leave 

traces in a form of bright spots or lines and are picked up by the segmentation 

algorithm but they are filtered out in consequent processing modules as they 

are present in the scene just for a couple of frames. 

4.9.5 Cross-Validation 

The segmentation is cross-validated on two other previously unused sequences 
in order to confirm validity of the values obtained by the evaluation de- 

scribed above. The segmentation is applied to the SANDBANKS2P and 
WEYMOUTH2B sequences with segmentation parameters set to values sum- 

marised in Table 4.10. 

The SANDBANKS2P sequence is 330 frames long. It contains two RIBs 

ýz Dy Oy O Wmin hmin iter. h 
[%] [pix] [fr] 

10 10 50 50 10 10 2 7 

Table 4.10: Segmentation parameters used in cross-validation. 
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(a) frame 21 (b) frame 142 

ilaw + 

(c) frame 21 (d) frame 61 

Figure 4.20: Sample sequences used in segmentation cross-validation. SAND- 
BANKS2P: (a) false positives caused by the wake, (h) correct segmentation. 
WEYMOUTH2B: (c) misinterpreted positive on right, (d) correct segmentation. 
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Sequence FP FN MP 
SANDBANKS2P 29.4 3.9 
WEYMOUTH2B 0 

Lzi 
2.3 

Table 4.11: The results of the segmentation cross-validation. The values 
indicate the probability of occurrence of false positives (FP), false negatives 
(FN) or misinterpreted positives (MP). 

moving fast across the scene, one at a distance, the other close to the camera. 
There is a large bright wake at the beginning of the sequence caused by a cargo 
ship passing. Two segmented sample frames are shown in Figure 4.20a, b. 

The WEYMOUTH2B sequence is 422 frames long. It shows an entrance to 
Weymouth harbour on a calm day. There is a boat leaving the harbour on the 

right side of the scene. A small ferry passes across the scene in the middle. 
Another boat enters the harbour on the right side. Two segmented sample 
frames are shown in Figure 4.20c, d. 

The segmentation results of the test are shown in Table 4.11. The values 
represent the probability of the false positives (FP), false negatives (FN) 

or misinterpreted positives (MP) to occur in each frame. The values are 
determined as average occurrences with respect to the length of the sequence. 

There is a 29.4% probability of false positives in the SANDBANKS2P 

sequence. This is due to the presence of a large bright wake at the beginning 

of the sequence. Other values for both sequences indicate that the selected 

parameter values provide satisfactory results. 

4.10 Summary 

An essential task of the scene segmentation into background and objects is the 
initial stage of the processing. There are number of methods that try to achieve 
this. Due to a textural nature of maritime scenes, the selected segmentation 

method is based on statistical characterisation of the textures appearing in 

the scene. Statistical characterisation of textures often utilises a co-occurrence 

matrix. Statistical features, namely energy, entropy, homogeneity and contrast, 

are determined from the values in the co-occurrence matrix. The evaluation of 
these features conducted in Section 4.9.3 shows that combination of entropy, 
homogeneity and contrast provides the best segmentation results. 

A hypothesis is tested that the co-occurrence matrix is redundant for 

successful segmentation of maritime scenes. The statistical features can be 
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determined directly from image intensity patches. The hypothesis is confirmed 
in multiple tests that compare the segmentation of sample scenes with and 

without co-occurrence matrix involved. The results in Figures 4.3 and 4.4 

illustrate the deterioration of the segmentation performance when using the 

co-occurrence matrix. 
The compensation for the perspective projection of the scene is inherent 

in the structure of the proposed segmentation grid. In order to regularise 
the feature values the segments are resized to the scale of the smallest ones. 
Calculated features for each grid segment form vectors in a feature space that 

is partitioned into main class cluster and outliers by an iterative search of main 

cluster centroid. 
The boundary of the main cluster is obtained from a histogram analysis of 

distances between individual feature points and the main cluster centroid. The 

boundary serves as a decision rule that assigns outliers and their correspond- 
ing segments either to the sea background or to the objects. 

The values of the segmentation algorithm parameters devised by a set 

experimental evaluations are cross-validated in Section 4.9.5. The results 

show that the devised values achieve less than 1% probability of objects being 

undetected (see Table 4.11). 

The results of the texture-based segmentation provide primary localisation 

of areas with possible presence of objects in the scene. This information is 

utilised in the consequent processing steps. 
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Chapter 5 

Detection of Geometric 

Features 

5.1 Localisation of Objects 

Once the segments containing likely objects are obtained, precise locating 

of objects to a pixel level within each segment can be determined. Many 

segmentation algorithms such as (Elgammal et al., 2002; Magee, 2004) directly 

work at a pixel level. However, such methods assume a temporally static 
background with only minor disturbances from scene noise such as shadows or 

tree branches moving in the wind that change the distribution of background 

intensities within a limited interval. An alternative to a pixel based segmen- 

tation is proposed which detects only geometric features useful for tracking of 

objects in the scene regardless of their structure and appearance. 

5.1.1 Edge-based Segmentation 

The pixel level segmentation algorithms are based on assumptions of spatial 

or temporal region consistency and/or edge continuity, (Pal, 1993). Unfor- 

tunately, the use of edges is not effective for objects in maritime scenes, as 

illustrated in Figure 5.2. A set of standard edge operators - Canny, Frei-Chen, 

isotropic, Marr-Hildreth, Prewitt and Sobel, was applied to a sample maritime 

scene in Figure 5.1a. The results show that the horizontal edges detected in 

the scene are buried in substantial noise originating from the presence of high 
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Figure 5.1: Sample maritime scenes used to evaluate standard methods of 
edge- and region-based segmentations. 

contrast wakes on the sea surface. 
Maritime objects are often composed of parallel, mainly homogeneous 

regions with strong edges present along boundaries (see Figure 5.1). These 

edges trigger a strong detection response causing the objects to be split into 

multiple, disjointed, homogeneous regions. Such a situation is shown in 

Figures 5.2 where the vessel on the left is split into many disjointed parts, some 

of which have open boundaries that do not fully enclose the region. 
Thresholding of edge responses is necessary for the majority of algorithms 

using edges for segmentation. The process is generally called non-maxima 

suppression. Edge responses are not uniform as illustrated in Figures 5.2 

where the yacht on the right fails to be detected as a uniform region with a 

closed boundary even though it is clear from the original image that the hull 

of the yacht is a uniform region. Some form of adaptive thresholding or edge 

tracing is necessary to ensure boundaries are closed. However, the thickness 

of edges does not remain uniform even after non-maxima suppression, so 

an optional edge thinning would be needed to obtain an unambiguous edge 

representation. In general, because edge methods are mainly gradient-based, 

their noise sensitivity prohibits their employment in maritime domain where 

scenes are considered noisy in principle. 
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Figure 5.2: Edge operators applied to a sample maritime scene. Varying edge 
responses are indicated by varying thickness of lines. The thickness of lines 
remains different for different edges even after non-maxima suppression. 

5.1.2 Region-based Segmentation 

The homogeneity of regions can be also considered as a criterion for the pixel- 
level segmentation. Typically, pixels with similar intensities and spatially close 

are assigned to the same region. The segmentation based on classification of 

the pixels is usually iterative and/or hierarchical, (I'al, 1993), and it relies on 

predefined similarity criteria. 
A set of pixel-based segmentation results based on similarity criteria 

applied to a sample maritime scene are shown in Figure 5.3. In addition, Figure 

5.1b shows two different vessels, one of them leaving and the other entering 

port. A segmentation algorithm based on clustering, available in Khoros image 

processing suite by Khoral (2003), was applied locally to the segments obtained 
in the previous step. The algorithm assigns the same label to pixels within 8- 

connected neighbourhoods based on their similarity defined as the intensity 

difference below a given threshold. The number of labels is unknown and 

the merging factor is set to 7 %, of maximum difference between intensities of 

neighbouring pixels which is the recommended value. 
The results of the region segmentation are shown in Figure 5.3. Both 

objects are fragmented into multiple exclusive parts. The background in the 

segment with the second object (small boat on the right in the original frame) 
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Figure 5.3: Region labelling applied to a sample maritime scene. 

is misclassified and split into two separate regions. The results show that the 

homogeneity of regions is insufficient criterion for segmentation of maritime 

scenes due to their variable nature. 

5.1.3 Effects due to Initial Segmentation 

A partial failure of the primary segmentation described in Chapter 4 brings 

other issues that must be considered. Ideally, rectangular segments provided 

by the segmentation should contain whole objects plus a small part of the 

surrounding sea. Segmentation partially fails when the segments contain 

either only parts of objects or multiple objects in a single rectangle. 

The solution in the first case would involve an expansion of the original 

segment to take in the whole object. The criteria of such an expansion are 

difficult to establish, especially if the object is composed of multiple varying 

parts. 
The case of multiple objects in the segment is even more difficult to resolve, 

especially if the objects are close together. Unless the number of objects ill 

the segment is known, it is difficult to decide whether the regions correspond 

to multiple separate objects or to a single object composed of multiple parts. 

The solution would probably involve temporal filtering for moving objects but 

there is no simple solution for static ones. For example, in (Lipton et al., 1098) 
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objects that cease to move for a certain period of time become parts of the 

background. 

The conclusion is that the option of obtaining a representation at pixel-level 

of complete objects is unrealistic due to such factors as image and scene noise, 

complexity of the objects and the presence of both static and moving objects. 

5.1.4 Motion-based Segmentation 

For some surveillance applications in a traffic environment the motion esti- 

mation is their primary goal. Numerous segmentation methods provide the 

structure of the scene from information about the motion (so called 'structure 

from motion' methods). There is a vast number of algorithms for motion 

segmentation available in the machine vision area, (Zhang and Lu, 2001). They 

can be divided into two main categories - optical flow-based and feature- 

based. While the optical flow based algorithms are successfully used in 

many applications involving outdoor scenes, (Lipton, 1999), the temporally 

variable background of maritime scenes generates a lot of false motion cues. 
An essential overview of optical flow estimation algorithms is provided by 

Barron et al. (1994) and Beauchemin and Barron (1995). The authors also 

provide implementations of algorithms discussed. 

To evaluate performance of optical flow estimation techniques on maritime 

scenes a group of algorithms was chosen and applied to a sample maritime 

scene. The algorithms that were chosen for evaluation are those implemented 

and presented by (Galvin et al., 1998a). These are namely: 

" methods of Horn & Schunck and Lucas & Kanade (both standard and 

modified versions) based on the first order image derivatives 

" methods of Nagel and Uras based on the second order image derivatives 

" methods of Anandan and Singh based on region matching 

"a method by Quenot (Quenot, 1996) based on dynamic programming 

Due to the difficulty in obtaining the ground truth for the real scenes used in 

evaluation (Galvin et al., 1998b), the results presented in Appendix A provide 

mainly qualitative insight rather than objective quantitative evaluation. The 

results show that for many algorithms a substantial number of motion vectors 

are due to the temporal variability of the water surface. The methods of Lucas 
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& Canade (modified version) and Nagel provide the best results. Although 

other methods detect motion of rigid objects, this motion is not separated from 

the motion of the sea. The major factor in the failure of optical-flow based 

algorithms is the violation of the essential temporal intensity conservation 

constraint that stipulates that local temporal change of intensity is only due to 

the displacement. The violation occurs due to the changes in the appearance of 

the water surface that are not only due to the displacement but they are mostly 

caused by interaction of the water media with the incoming light. Despite an 

attempt to use optical flow for segmentation of natural scenes of water surfaces 
(Ablavsky, 2003), the principal requirement of intensity conservation is not met 
in maritime scenes. 

5.1.5 Salient Features 

An alternative to the pixel-based segmentation is proposed which is based 

on the following assumptions drawn from optical and geometric contexts of 

maritime scenes discussed in Sections 2.2 and 2.3: 

. The depth of the scene is greater than the depth of the objects in the scene. 
A weak-perspective projection where objects are collapsed to the planes 

perpendicular to the water plane and parallel to the image plane can be 

used as object representations. 

. For temporal tracking the structure of the object is not essential. Objects 

can be tracked as grouped sets of features' such as corners that obey 

consistency rules such as representation of underlying structure and 
localisation, a little change of appearance between two consequent 
frames, (Shi and Tomasi, 1994). These features are usually detected in 

the image as, for example, saliency points defined as image locations 

with high intensity gradients in more than one direction, (Harris and 
Stephens, 1988; Smith and Brady, 1995). All these points lie on the 

same plane regardless of the actual depth of the object when the planar 

representation of objects is considered. 

. For threat assessment and collision detection the distance between the 

closest structural point on the object and the observation point is crucial, 

1The word 'feature' is not used in connection with texture characterisation. In this and 
following chapters, the 'feature' corresponds to a structural attribute of an entity in the scene such 
as corner, line or other point of saliency. 
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Figure 5.4: Projection of objects onto a single depth plane that represents the 
object in the scene (a weak perspective model). 

not structure of the object. If the object is represented as a plane then its 

closest structural point lies on this plane. 

This situation is illustrated in Figure 5.4. If Zobj « Zave then the object can be 

collapsed by a local orthographic projection to the plane with zero depth and 

parallel to the image plane. This plane is at position ZaTe in the scene. Note 

that the plane is not located in the middle of Z0 as proposed by Shapiro (1995) 

but at the position of submersion closest to the camera so that it is bound to the 
location of the submersion line. 

Based on the above assumptions a following approach of object localisation 

is outlined. Instead of detecting the objects in segments at the pixel level the 

alternative is to find salient points (corners) that presumably belong to objects 

and the submersion lines which locate the objects in the scene with respect 
to the camera. Each object is then presented by the segment that encloses it, 

the submersion line and a set of detected salient points that lie on the weak- 

perspective plane of that object. This set of features is used in consequent 

processing steps for location and motion estimation. 

5.2 Detection of the Line of Submersion 

The lines of submersion are chosen as features for locating the objects on the 

sea plane for the following reasons: 

" Due to a low pitch angle of the camera the submersion lines of any objects 

project as horizontal, almost straight edges in the image no matter what 
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is the shape of the submerged object. This makes them simple to detect 

as their orientation is assumed to be known. 

. The projections of the lines in the image are directly related to the 

positions of the lines in the scene through the perspective projection, i. e. 
if the submersion lines are detected correctly in the image, there are no 
depth ambiguities as the real submersion lines lie on the horizontal sea 

plane. 

. The lines represent the closest points of impact for distances significantly 
larger than the depths of the objects. Even though for many objects an 

overhanging structure means that the actual closest point is closer to the 

observation point than the one on the submersion line (overhang of ship's 
bow, for example), the difference is negligible with respect to the depth 

of the scene. 

Submersion lines are detected in all regions obtained in the initial segmenta- 
tion. The position of the closest point of the object is important in collision 

prediction and avoidance as it is also the point of possible impact, discounting 

possible structural overhang. From the geometrical point of view, the submer- 

sion line represents the intersection of the weak-perspective plane onto which 

the object is orthographically projected, with the sea plane (see Figure 5.4). 

5.2.1 Detection Algorithm 

As the orientation of the submersion lines is assumed to be horizontal the 

detection task is reduced to a search of horizontal edges within each segment. 
The search is constrained by the width of the segment in which the object 
is likely to be. Even though standard edge detection methods seem to be 

well-suited for the task, Figure 5.2 shows that the edges are very often buried 

under the noise caused by wakes that, incidentally, project as horizontal edge 
fragments as well. 

A method that is more robust to the noise and appearance variability is 

proposed. The method employs a vertically sliding mask divided into two 

parts of equal size. The pixels under both parts of the mask act in a X2- 
based test that determines the difference between the intensity distributions 

in the upper and lower parts of the mask. The X2 measure is suggested by 

Smith et al. (1998) as an alternative to a standard cross-correlation similarity 
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measure in matching spatial features. The advantage of the measure is that 

it scales inversely with the overall intensities due to the sum of intensities in 

denominator of (5.1). This allows line candidates tobe detected even when the 

scene illumination conditions are not favourable (cloudy day, dark objects in 

shadow). 
The difference value is defined as 

d(k) 
R- -1 ff(k-r, c)- f(k+r, c) 

2 
5.1) 

r, 

Eo 

L(f(k-r, c)+f(k+r, c) 
c=0,1 

where the d(k) is determined for every vertical position k in the scanned 

segment, f (r, c) is the intensity value in the mask at position (r, c) and R, C 

are dimensions of the mask. Figure 5.5a shows the structure of the detection 

mask together with the sample d(k) profile obtained and the submersion line 

candidates being detected. 

There are multiple peaks in the profile. Each peak represents significant 
difference between the intensity distributions in the top and bottom parts of 

the mask which indicates that there is a horizontal boundary between two 

different regions under the mask. Each horizontal boundary is a submersion 
line candidate. To localise the extremes in the profile and the corresponding 
line candidates Algorithm 3 is applied to every d(k) profile. 

The principle of the Algorithm 3 is similar to the principle of a compass 

operator proposed by Ruzon and Tomasi (1999). Ruzon uses a circular mask 

that is divided into two halves to detect boundaries between regions in colour 
images. His search is based on an Earth Mover's Distance (EMD) between 

colour signatures determined for each half of the mask. The mask is rotated by 

180° and the EMD profile is calculated. The maximum of the profile indicates 

the orientation of the boundary at a given point. 
The difference between compass operator and algorithm presented here 

is that the mask is rectangular and the distance profile is determined for 

displacements instead of rotations as the angle of the boundary is known. Also, 

the X2 measure is used instead of EMD as it is less complex while sufficiently 
discriminating. 

5.2.2 Adaptive Parameters 

The width of the sliding mask is governed by the width of the segment and 

the height of the mask is adjusted according to the absolute vertical position 
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Algorithm 3 Algorithm for detection of submersion line from X2 profile. 
1. Profile is thresholded to avoid low, noisy peaks caused by waves or 

inhomogeneities in parts of the object. The threshold value td is 

established as 
td =µ+O. 1v2 

where µ is the average and a2 is the variance of the whole profile (Figure 

5.5c). The sum is chosen as it reflects the scaling of values in profiles for 

segments of different sizes. 

2. The thresholded profile is smoothed by a moving average filter three 

samples wide. 

3. The 1st difference of the profile is determined so that extremes are 

mapped to zero crossings. 

4. The differentiated profile is scanned for zero-crossings. Each crossing 
locates the line candidate (Figure 5.5d). 

5. Two types of zero-crossings are possible: narrow and wide. Narrow 

crossing represents the extreme in the profile while wide crossing occurs 
due to thresholding. Only the narrow crossings are considered to be valid 
line candidates (Figure 5.5d, dashed lines represent the narrow crossings, 
dotted lines are the broad crossings). 

6. The crossing at the lowest position in the segment is selected as 

a submersion line projection (Figure 5.5b, the thick dashed line 

corresponds to the chosen submersion line projection). A line at this 

position is most likely to represent the submersion line, any line above 
it might represent a boundary between various parts of the object. 
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(a) The structure of the scanning mask (b) Submersion line candidates and the 

detected line (thick) 

-ýI 

(c) vertical X2 profile of a sample segment (d) Ist difference of the X2 profile with 

narrow and wide zero crossings 

Figure 5.5: Detection of the submersion line. 

of the top edge of the segment in the image. The adjustment accounts for the 

changes in scale in the scene due to perspective projection. The height of the 

sliding mask is larger for segments closest to the lower edge of the image and 
it decreases linearly in a series of discrete steps towards the horizon. 

The height of the sliding mask would optimally follow the perspective 

projection profile (see Figure 4.5). The difference in the mask height at the 

bottom of the image to that at the top is, however, only a couple of pixels 

with typical values of 10 pixels for bottom position and 3 pixels for horizon 

position. Such a small range limits the capture of nonlinear perspective 

projection considering that the values of mask height have to be rounded to 

integer values. A linear change is therefore chosen as an approximation. 
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5.3 Feature-based Object Characterisation 

Considering three advantages of low-level feature-based tracking mentioned 
by Shapiro (1995) - generality, opportunism and graceful degradation, feature 

based methods seem well suited for maritime scenes. 
The generality is a necessary assumption considering the variability of ob- 

jects in the scenes. Low-level features are local and therefore less constraining 
than a high-level object model. This makes them more general and feasible for 

applications where variable structure is encountered. 
The objects in maritime scenes are mostly man-made and rigid. That 

means they have a fixed structure composed of straight or crossing lines with 

acute angles and homogeneous regions of differing intensities or textures. 

Such structures comprise points of local high intensity gradients that remain 

relatively unchanged when observed over multiple frames. These points can 
be detected and used in correspondence matching for motion estimation. Their 

appearance in the scene offers the opportunity for their tracking. 

Another advantage of feature based methods is the reduction of data 

in the processing chain. Local features such as corners with a predefined 

neighbourhood occupy only a fraction of the original image, thus reducing the 

amount of data needed to be processed. 

5.3.1 Corner Detectors 

Despite an abundance of corner detectors (Smith and Brady, 1995; Sheng and 
Wang, 2000; Shen and Wang, 2001; Achard et al., 2000; Olague and Hernandez, 

2002; Trajkovic and Hedley, 1998a; Ying and Lawrence, 1995; Cooper et al., 

1993) in the image processing and machine vision areas, only a handful of 

them are considered competent for general applications. Three main groups 

of corner detection methods are recognised: contour based, intensity based 

and parametric model based. Both the contour and parametric model based 

methods rely on a substantial amount of prior knowledge, such as the location 

of thinned edges, which is not always available, particularly in a maritime 

scene. Corner detectors based on a parametric model are restricted by the 

number of corner types they can detect, typically L-type comers, (Olague and 

Hernandez, 2002; Wan-Ching and Rockett, 1997). 

The main focus is, therefore, on the intensity based methods suitable for 

general machine vision applications. A thorough evaluation of intensity based 
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corner detectors is provided by Schmid et al. (1998). Based on the results 

presented in the evaluation study and by Smith and Brady (1995) two corner 
detectors were chosen as feasible for use in maritime scenes - SUSAN (Smith, 

1992; Smith and Brady, 1995) and Harris (Harris and Stephens, 1988). 

5.3.1.1 SUSAN Corner Detector 

SUSAN corner detector, introduced by (Smith and Brady, 1995), is an intensity 

based edge and comer detector that employs a 'Univalue Segment Assim- 

ilating Nucleus' to detect one- and two-dimensional features in the image. 

The acronym 'SUSAN' stands for 'Smallest Univalue Segment Assimilating 

Nucleus'. The authors define the 'SUSAN' principle as: 

An image processed to give as output inverted USAN area has 

area edges and two dimensional features strongly enhanced, with 

the two dimensional features more strongly enhanced than the 

edges. 

The functionality of the SUSAN detector consists of the following steps. A 

circular mask is applied to every pixel in the image. General diameter value of 
the mask is 3.4 approximated by a discrete mask with 37 pixels. 

The pixels under the mask are weighted according to their intensity 

f(r)-f(ro) e 

c(r, ro) = e_ (5.2) 

where ro is the position of the central point in the mask, r is the position 

of the actual point, f (r) is the intensity at the position r and t is the similarity 
threshold. The weighted intensity differences c(r, re) are then added together 

over the entire mask 

nlrý -ý` ýýrýroý ý5ýý 
jJT 

he Yespome of the Whet is ýwcnby 

R(ro) _g- n(ro) if n(ro) <9 (5.4) 

0 otherwise 
(5.5) 

n.. aý 
where g is a geometrical threshold given as 2, where rima: is the 

maximum sum over the mask. A non-maximum suppression is performed 

by using a 5x5 pixels mask. 
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The results presented by Smith and Brady (1995) show very good local- 

isation, noise robustness and a low number of false positives in detected 

features. The detection is also independent of the type of corner ('Y, 'T' and 

more complicated junctions are also detected). Another appealing fact is that 

no image derivatives are needed which explains the noise robustness of the 
detector. Also, the simplicity of the algorithm makes it a good candidate for 

real-time implementation as illustrated in (Smith, 1998). 

Finally, the main advantage of the detector is that the detection sensitivity 
in terms of the number of detected comers is regulated by a single parameter 
t which has a clear, physical meaning. The parameter t is a threshold that 

represents the minimum intensity difference between USAN and surrounding 

pixels to indicate the presence of a comer. 
When applied to maritime scenes (see Figure 5.6a, c) the SUSAN corner 

detector performs adequately, with precise localisation and sensitivity to low 

intensity salient features. 

5.3.1.2 Harris Corner Detector 

The comer detector by (Harris and Stephens, 1988) is an extension of Moravec's 

'points of interest' detector. While Moravec used discrete displacements to 

determine the changes in image intensities that indicate the presence of an 
interest point, Harris employs autocorrelation matrix defined as 

(a rk, ek )2 
8 k, Ck 8 rk, Ck 

aal(r, c) - 
(rk, ck)EW ac (rk, ck)EW 8ct Or 

[ý a_(rk_Ck) _f J(rk, Ck) (OJ(rk, Ck))Z 
[-(rk, ck)EW 8c Or (rk, ck)EW 

(5.6) 

where (rk, ck) are pixel positions in the window W centred at position 

(r, c) in the image and ä, ä are directional image gradients. The window 
W is a two-dimensional Gaussian with a width parameter a. The values in 

the sums are weighted by the window coefficients. If both eigenvalues of the 

autocorrelation matrix are large then the pixel is marked as a comer. To avoid 
eigenvalue decomposition, the corner response function is defined as 

CRF(r, c) = det(A) -k" trace(A)2 (5,7) 

where k=0.04, as suggested in the original paper. 
After the CRF(r, c) is determined for all pixels in the image a non- 

maxima suppression is performed. The size of the window used in non- 
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maxima suppression stage d is user defined. Finally, the remaining maxima 
in CRF(r, c) are compared against another threshold T provided by the user. 

The parameters, a, d and T influence the performance of the detector. While 

o and d have physical meanings, the values of threshold T are inferred by trial 

and error. 
The major disadvantage of the detector lies in its computational overhead. 

For example, there are three multiplications by Gaussian coefficients over the 

window for every pixel. A number of modifications to the algorithm were 

presented. For example, Trajkovic and Hedley (1998b) suggest reducing the 

calculation of CRF(x, y) to points with significantly high gradients. 
The detector provides similar results to SUSAN when applied to maritime 

scenes as illustrated in Figure 5.6b, d. 

5.3.2 Comparison of The Detectors 

A final choice of the detector suitable for maritime scenes is based on a 
following evaluation test. The test is designed to quantify the essential 

property of the detectors - the precision in corner localisation. The second 

quantity evaluated in the test is the total number of detected comers in each 
test image. When compared with the actual number of corners in the image, 

this measurement indicates the number of false positive detections that occur 
due to noise as well as any missed corners (detection dropouts). Similar tests 

are used by Trajkovic and Hedley (1998a). Nevertheless, they do not compare 
the results with a ground truth when evaluating the localisation precision. 

5.3.2.1 Test Design 

A testing sequence comprises of a square pattern of four homogeneous regions 
being rotated at a fixed angle around the pattern's centre. The rotation 

evaluates the geometrical invariance of the detectors. The background of the 
frames is constant. Each frame in the sequence is blended with Gaussian noise. 
The positions of the corners in each frame of the sequence are known precisely 

as the rotation of the square pattern is predefined. There are nine corners to be 

detected in the pattern, accounting for three typical corner junctions - L, T and 
X. 

The sequence is subjected to both Harris and SUSAN detectors. Figure 

5.7a, b shows a sample frame with corners found by both detectors. At first, 
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(a) SL'L AN corner detector (t=20) (b) 11 1RRIS corner detector (sigma=2, 

r=3, T=10000) 

(c) SUSAN - /domed detail (d) I IARRIS - zoomed detail 

Figure 5.6: Corner detection in sample maritime scenes using SUSAN (Smith 

and Brady, 1995) and Harris (Harris and Stephens, 1988) corner detectors. 
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the total number of comers detected in each frame is stored. Then, the closest 

detected comer for each corner in the image is found and the offset is stored. 
If no corners are detected within the circular neighbourhood of a given radius 

the actual feature is marked as undetected. An average Euclidean distance of 

the closest detected corners from the actual ones is determined as the global 
displacement error for all frames in the sequence. This indicates the general 
localisation precision of each detector. 

The parameters of the test are: 

" test pattern: two pairs of squares (50x50 pixels) with alternating intensi- 

ties of 20 and 195 

" background (512x512 pixels): a constant 127 with added Gaussian noise 

(! i = 128, (7 = 8) 

" sequence length: 20 frames 

" rotation per frame: 5 degrees clockwise 

" Gaussian noise parameters: p- 128, a-8 with unique instance for 

every frame; blending factor 0.5 

" maximum corner matching radius: 7 pixels 

" settings for the Harris corner detector: (7 2.5, d 5.7' - 1T0(8) 

" settings for the SUSAN corner detector: t= 25 

5.3.2.2 Test Results 

Both detectors found all the corners in the pattern in every frame of the 

sequence indicating that there were no detection dropouts. The results in 

Figure 5.7c show that the SUSAN detector localised the corners with a smaller 

global offset than the Harris detector. The higher localisation error of the Harris 

corner detector is well-known fact mentioned in a number of related works 

(Achard et al., 2000; Shen and Wang, 2001). The disadvantage of the SUSAN 

comer detector is the larger number of extra points detected (Figure 5.7d). This 

indicates that the SUSAN is less robust to noisy images, generating more false 

positive responses than the Harris detector. 
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(a) Icaturcý, detected by I larris corner (b) Features detected by SUSAN detector 

detector 
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(c) (Displacement error (values sorted (d) Number of leatures detected (values 

increasingly) sorted increasingly) 

Figure 5.7: Harris and SUSAN corner detectors - analysis of localisation 

precision. The values in graphs (c) and (d) are ordered according to the values 
for clearer illustration of the results. The order of the frames in the sequence 
has no importance to the test results. 
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Figure 5.8: The stnicture of the object modelling module of the tracking system. 

5.4 Structure of Object Modelling Module 

The algorithms for detection of geometric features are assembled into an object 

modelling module that is a component of the framework. The structure of the 

module is shown in Figure 5.8. 

The segmentation module takes as an input the current frame in the 

sequence and the coordinates of detected segments provided by the preceding 

segmentation module. The detection of features consists of the following four 

steps: 

" Scanning of segments. Each detected segment is scanned for the submer- 

sion line candidates by vertically sliding mask. A scanning profile with 

peaks corresponding to submersion line candidates is generated. 

" Location of submersion lines. The location of the actual submersion line is 

detected by thresholding of the scanning profile. 

" Detection of points. A corner detector that detects salient features is ap- 

plied to the input frame. Detected salient features represent geometrical 

points of interest within the scene. 

" Assignment of features. Each detected segment is assigned corresponding 

vertical position of the submersion line and all geometrical points located 

within the segment. 

The resulting feature sets represent the weak perspective models of objects 

within the scene. The sets are passed to the following processing module that 

establishes temporal correspondence between the sets. 
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5.5 Summary 

A set of geometric features that represent an object in the scene are de- 

tected prior to motion estimation. An alternative approach to pixel-based 

segmentation of objects in the scene is employed that projects every object 

orthographically onto its average depth plane obtaining a weak perspective 

projection of the object. Geometric features are then bound to this plane. 
The first feature that provides the location of the object in the scene is the 

line of submersion. A submersion line detection that uses a vertically sliding 

mask divided into two parts is proposed. The location of the submersion line 

is detected as a peak in a x2 profile. 
Corner detection is applied to each segment in order to localise salient fea- 

tures characterising the object structure. Two candidates for corner detection 

are considered - SUSAN and Harris. An evaluation test is designed to compare 
their performances in terms of localisation precision. The results of the test 

indicate SUSAN to be superior in precision of comer localisation and it has 

the advantage of requiring a single user-defined parameter with clear physical 

meaning. 
The planar representation of objects in the scene consists of the coordinates 

of the bounding segment detected during the primary segmentation, the 

vertical position of the submersion line and the geometric points - comers 
detected within the segment. All these geometric features are assumed to lie 

on a weak-perspective plane that represents the object structure. The planar 

representation of the object enters the process of motion estimation performed 
in the consequent parts of the framework. 
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Chapter 6 

Correspondence Matching 

6.1 Introduction 

The motion of objects detected in the scene is estimated by temporal matching 

of geometric features detected at previous processing stages. Jain et al. (1995) 

states that the following three properties guide the matching process: 

" discreteness -a measure of the distinctiveness of individual points, 

" similarity -a measure of how closely two points resemble one another 

and 

. consistency -a measure of how well a match conforms to adjacent 
matches. 

Discreteness is assured by the use of comers as features for tracking. As 

discussed in the previous chapter, corners are suitable for tracking as they 

encode a high level of structural information. Another advantageous aspect is 

their spatial and temporal stability due to the fact that the comers are inherent 

in most man-made rigid objects which is the subject of the tracking. 
Laws of physics, namely inertia and rigidity laws, and physical properties 

of rigid bodies constrain their possible motion. For example, the direction 

and velocity of motion do not change abruptly. The motion is assumed to 

be smooth with changes occurring only gradually. Furthermore, the rate of 

change of the velocity and direction of most rigid bodies in real world is usually 

much slower than the frame rate used in standard machine vision applications. 
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These assumptions imply that the projection of the object's structure 
between two consecutive frames in the sequence does not change significantly. 

As the structure is characterised by the geometric points, their resemblance will 
be preserved between the frames and will only degrade over a substantially 
longer period of time compared to the frame rate. 

The inter-frame resemblance of geometric features is an essential principle 
in feature based applications such as (Smith, 1998; Shapiro, 1995). The trans- 

formation of the features between two consequent images is often modelled 

as affine, (Shi and Tomasi, 1994; Shapiro, 1995). Only displacement element of 

the affine transform is considered in maritime scenes, as rotation and scaling 

are limited and can be expressed in terms of displacement. This is due to 

a relatively high frame rate compared to speed of objects in the maritime 

environment. 
The motion of the object in the scene projects into displacements of the 

detected geometric points. The task of finding these displacements involves 

a search for corresponding points between two consequent frames of the 

sequence. The correspondence search is typically based on evaluation of an 

affinity measure between two candidates for a correspondence match that 

quantifies their resemblance. An affinity measure based on correlation between 

image patches centered at the detected points is a typical example. 

6.2 Affinity Measures for Corners 

A traditional approach of correlating local intensity patches between frames 
is frequently used in machine vision applications, (Shapiro, 1995). The 

normalised cross-correlation measure is defined as 

FR-1, C-1 1Ot 

.I 

(r, c)g(r + u, c+ v) 

C(u, v) (6.1) 
ßc 1°1f (r, c)2I LF_nc. o, o 

19(r + u, c+ v)2, 

where f (r, c) and g(r, c) are image patches, R, C are dimensions of the 
matching area and (u, v) is the offset at which the measure is determined. 

Standard cross-correlation technique is used in many applications, either 
directly in a space domain or as a multiplication in a frequency domain, (Lewis, 
1995). Because of the popularity, numerous methods for a fast calculation 
of cross-correlation are available. For example, a box filtering technique 
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presented by Changming (2002), together with subregioning of the matched 

images, significantly speeds up the cross-correlation process of the estimation 

of dense disparity maps commonly used in 'structure from depth' applications. 

Another optimisation approach exploits the fact that convolution becomes 

multiplication in the frequency domain, (Lewis, 1995). 

Although these optimisations bring significant speed-ups when larger 

image regions are involved, for small patches the gain is minimal or contrary. 

These facts led to the development of other alternatives to cross-correlation. 

Smith et al. (1998) proposes the following affinity measure variants: 

. zero mean cross-correlation (correlation coefficient) 

Czm(U, V) = 

ERS=ö 1 [f (r, c) - f] [9(r + u, c+ v) - (u, v)] (6.2) 
[hr, 

c= 
ö1 [f (r, c) - fl 2] [ERc=O, 

0 
1 [9(r + it, c+ v) - 9(u, v)]2] 

" Sum of Squared Differences 

R-1, C-1 
Cssd(u, v) _E[f (r, c) - g(r + u, c+ v)]2 (6.3) 

r, c=0,0 

" x2 test 

R-1, C-1 

C, 2(u, v)= ý [f(r, c)-g(r+u, c+v)]2 

r, c=o, o 
[f(r, c)+g(r+u, c+v)]/2 

(6.4) 

9 Jeffrey divergence 

CJD(U, V) _ 
R-1, C-1 

Ef (r, c) log f (r, c) 

r, c=O, O 
If (r, c) + g(r + u, c+ v)] /2 (6.5) 

+ g(r + u, c + v)log 
9(r + u, c + v) 

[f (r, c) + g(r + u, c+ v)] /2 

where the functions are the same as in Equation 6.1 and, in addition, 
the f and g are mean values of intensities in each patch. Even though the 
correlation coefficient does not provide any benefits in terms of simplification 
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of the measure, it is invariant to intensity offset and scaling. There are 

other two measures based on statistics also suggested by Smith et al. (1998) 

- Kolmogorov-Smirnov distance and Earth Mover distance. Smith et al. 

(1998) shows that Kolmogorov-Smimov distance does not outperform the 

standard cross-correlation. Earth Mover distance that relies on a complex 

strategy of linear programming outperforms the standard cross-correlation. 
Nevertheless, it is outperformed by all other approaches except the zero- 

mean cross-correlation. These two measures are therefore excluded from the 
following evaluation for their poor performance and complexity. 

6.2.1 Performance Evaluation of the Affinity Measures 

To assess performance of each measure in the intended maritime tracking task 

a set of evaluation tests is conducted. Multiple artificial sequences with moving 
targets are generated and then subjected to the correspondence matching using 
different measures defined above. The deviations between the actual and 
detected displacements are evaluated as indications of performance. 

For such testing a knowledge of ground truth motion is a prerequisite. It 

would be rather challenging to obtain such information from real scenes, as the 

precise motion of the selected objects would have to be obtained. Instead, an 
artificial sequence is generated by overlaying an image of a target (vessel, buoy, 

etc. ) over a background containing the sea as described in Section 2.7.3.3. The 

overlaid target is displaced by a known amount of pixels in either direction in 
each frame of a sequence. Gaussian noise with predefined parameters is added 
to each frame as well to simulate the effects of real noise generated during the 
image capture process. As Figure 6.1a shows, the resulting sequence is very 
close to a natural one. 

Two artificial sequences were generated for the evaluation. The first 
sequence contains a large, highly structured vessel with approx. 70 detected 
corners in each frame. The second sequence contains a small rowing ferry with 
approx. 10 detected corners in each frame. Both objects undergo the same 
motion described by following recursive relations 

rn+1 = rn +1 [pix] (6.6) 

c. +i = en +2+3 sin(2U) [pjx] (6.7) 
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(a) Artificial scene with target path super (b) Real scene 

ün)u)(Ii 

Figure (,. I: Samplc frames from sequences used in evaluation of affinity 
nip ýiSurt ý. 

where ii�. ,�i and ( r� ,i. f�. i) are object locations in current and next 

frarnc-s and r is the frame index. 

A real scene with a static object (a tied-up buoy) is also used in the 

ev"rlu, lliom testing (see Figure 6. Ib). As the buoy is static it is possible to 

estiiiiatc tin ground truth the displacement, of the buoy- are assumed to be 

zero in faith direction,. 

All three s, vgi wnreý, have .1 similar length of about IOO frames. The size of 

tllc. 111,14 rr'. ed in (Ittinil\ nmeastires is set to O, O pixel". 

lit' sutilnl, ºnv Of results is presented in Tables 6.1,0.2 and 6.3 with rl. r and 

(1tI corresponding try localis. rtion errors in horizontal and vertical directions. 

I. rn"tli"atirin errors represent the discrepancy between the detected and the 

actual local uni, oot the objects in the sequences. The different data fusion 

rrrcthucis are also tested. Mean and median fusion methods simply delimit 

file re-, tilting displacenlvnt for the object as either mean or median of all 

(1ispiatenlents of matched corners within a segment. The weighted mean 

method weigh" each displacement by a coefficient proportional to the length 

Of tluc trace to �"lii'. lr the Corner is assigned. Such a scheme preserves long 

e olrerent traces. Ihr cow truction and maintenance Of traces is discussed in 

(lel, lii in Section 6.5. 

As the results show the error, are similar for all affinity measures tested. 
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mean median weighted mean 
error [pix] dx dy dx dy dx dy 

JEFFREY 0.91 0.24 0.37 0 0.78 0.2 
SSD 0.7 0.22 0.37 0 0.63 0.2 
X2 0.77 0.21 0.37 0 0.73 0.2 

XCORR 0.68 0.21 0.37 0 0.64 0.2 
ZM-XCORR 0.91 0.24 0.37 0 0.78 0.2 

Table 6.1: Displacement errors of affinity measure variants for artificial motion 
- SCENE01 

mean median weighted mean 
error [pix] dx dy dx dy dx dy 
JEFFREY 0.81 0.21 0.36 0.01 0.81 0.21 

SSD 0.63 0.13 0.37 0 0.58 0.13 
X2 0.69 0.15 0.36 0 0.7 0.16 

XCORR 0.65 0.18 0.36 0 0.64 0.18 
ZM-XCORR 0.81 0.21 0.36 0.01 0.81 0.21 

Table 6.2: Displacement errors of affinity measure variants for artificial motion 
- SCENE02 

All values are below one pixel. Noticeable differences in results are evident in 

the fusion methods. From all three methods the median fusion provides the 
best results. This is expected, as the median is insensitive to outliers in the 
data typically caused by false matches inconsistent with true displacements. 

Because of the feasibility for fast and efficient implementation (Nickels and 
Hutchinson, 2002), SSD in combination with median fusion is the preferred 

method used for correspondence matching in maritime scenes. 

mean median weighted mean 
error [pix] dx dy dx dy dx dy 
JEFFREY 0.18 0.21 0.18 0.21 0.18 0.21 

SSD 0.19 0.2 0.19 0.2 0.19 0.2 
X2 0.18 0.21 0.18 0.21 0.18 0.21 

XCORR 0.18 0.2 0.18 0.2 0.18 0.18 
ZM-XCORR 0.18 0.21 0.18 0.21 0.18 0.21 

Table 6.3: Displacement errors of affinity measure variants for real scene - SANDBANKS2R 

152 



6.3 Corner Correspondence Search 

A detailed description of the feature matching and tracking algorithm is 

provided in a seminal work on affine motion analysis of image sequences 

by Shapiro (1995). Two essential parts of Shapiro's framework are corner 

matcher and correspondence tracker. The matching is based on an evaluation 

of zero mean cross-correlation similarity measure defined by Equation 6.2. To 

ensure a high level of generality throughout the framework great attention is 

paid to resolution of possible matching ambiguities. The tracking phase of 

the algorithm deals with dropouts by a simple prediction technique based on 

constant velocity or acceleration linear predictors. Because of the suitability 

of the feature-based technique for motion estimation of rigid objects in the 

sequence, the technique utilised in maritime tracking draws mainly from the 

aforementioned work of Shapiro. 

6.3.1 Spatial Proximity Constraint 

The worst-case scenario of matching search for two groups of detected corners 

in consequent images is to determine the affinity measures for all possible 

pairs. If all possible combinations of pairs are involved the total number of 

matchings would be NPNc where Np and NN are the numbers of detected 

features in the previous and the current frames. 

To avoid such an exhaustive evaluation a set of constraints that excludes 
unlikely matches is usually imposed onto the feature pairs. A frequently 

applied constraint is a spatial one: assuming that the motion of rigid objects 
in the scene implies gradual change of velocity and direction, the inter-frame 

displacements are relatively small (a couple of pixels in most cases). Therefore, 

the evaluation is reduced only to feature pairs that are no further apart than 

a certain predefined distance. Same constraint is utilised in the maritime 
tracking system - it is assumed that the inter-frame displacement of an object 
is less than 7 pixels in any direction. The value is adequate for maritime scenes 

used in the development of the framework. The value can be adjusted taking 
into an account the relation between the velocity of objects and their projected 
displacements as discussed in Section 2.4.3. 
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Figure 6.2: Mutual matching scheme. The corner detected in current frame ii is 

matched against candidates in previous (', I) and next (n) ;1) frames. 

6.3.2 Mutual Matching 

The principle of mutual matching based on a mutual affinity is shown in Figure 

6.2. The mutual matching is necessary in order to resolve matching ambiguities 

(Shapiro calls them 'love triangles'). A greedy approach is used for matching, 

i. e. every corner is matched to all its proximate candidates with no constraints 

imposed on resulting smoothness or orientation of the resulting path, as any 

possible outliers are resolved by median filtering. 

The mutual affinity measure is calculated in two steps. In the first step, 

so-called forward matching from previous to current frames finds the affinity 
between a corner in a previous frame and all valid candidates in the current 
frame. In the second step, a corner in the current frame is matched against its 

valid counterparts in the previous frame in so-called backward matching. 

6.3.3 Stable Complete Matching 

The matching results in a pair of sparse correspondence matrices for for- 

ward and backward matching with elements representing the affinity values 
between corners detected in both consecutive frames. The correspondence 

matrices will necessarily contain multiple ambiguous matches when one 

corner attracts more candidates and some of the corners in previous or 

current frames can remain without any candidate. To resolve such cases the 
information encoded in the matrices must be pruned leaving just unambiguous 

one-to-one correspondence between matched corners. All unmatched corners 
in previous and current frames must also be identified. The procedure can he 

reformulated as bi-partite matching. 

Sara (1999) introduces a methodology of the bi-partite matching based on a 
concept of a stable complete matching for an application in stereo vision. The 
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Figure 6.3: Definition of X(P) zone (empty circles only) of an element in 
correspondence matrix (P). 

concept, however, can be extended to any bi-partite matching problem. 
Elements of the correspondence matrix are ranked with respect to their 

values. A zone X (P) of an element P in the correspondence matrix is defined 

as shown in Figure 6.3. 

X-dominant matching is defined such that the element P has the highest 

rank of all points in X (P). Because there is no other element QEX (P) such 
that it has a higher rank than element P then the X-dominant matching is 

also considered stable. If all the pairs are uniquely matched then the matching 
is pronounced stable and complete. Algorithm 4 to obtain stable complete 
matching is set out in (Sara, 1999). 
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Algorithm 4 Stable Complete Matching Algorithm as presented by Sara (1999). 

1. Form a list L of all elements of correspondence matrix and sort them in 

descending order according to their rank. Initialise M (a set of elements 

representing pairs successfully matched) to an empty set. 

2. If L is empty, terminate. The set M is a stable complete matching. 

3. Let p be the first element in L. Add p to M and remove p together with 

all qEX (p) from L. 

4. Go to step 2. 

6.3.4 Modified Stable Complete Matching 

Modifications to the matching algorithm provided by Sara (1999) are intro- 

duced in order to suit the problem of corner correspondence search. To 

change the asymmetry of the mutual matching due to directional (forward and 

backward) affinity measures CF, CB a mutual affinity C is proposed 

c- 
CF + CB 

(6.8) 
1+JCF-CBI 

As Figure 6.4 shows the mutual affinity is symmetrical and it prioritises 

stronger and symmetric matches. The original matching method operates on 

rankings of the matches to ensure the independence of the measure used. 
The mutual affinity C that increases monotonically in directions of increasing 

affinities CF and CB enables these rankings to be established. 
Another modification arises due to the fact that the algorithm in (Sara, 1999) 

assumes that the number of rows of the correspondence matrix equals to the 

number of columns, NN = Nc. This assumes that there is the same number 

of points to be matched across the frames and the correspondence matrix is 

square and symmetrical (true bi-partite matching). 
In comer matching the numbers of corners detected in each frame can vary 

and the correspondence matrix is not necessarily square. Furthermore, even 
for an equal number of corners some of them could remain unmatched in 

cases of proximity constraint violation, i. e. the corners are not close enough. A 

modified Algorithm 5 is presented that handles unmatched and new corners 

as well. 
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Figure 6.4: Mutual affinity as a function of normalised forward CF and 
backward CB affinities. 

6.4 Segment Correspondence Search 

The objects detected in maritime scenes are represented by segments in which 

they are likely to occur. The corners, together with the submersion line, 

are bound to these segments. To find a temporal correspondence between 

segments detected in each frame the segments have to be matched across 
frames in a way similar to the corners. In fact, the same Algorithm 5 is used 

with a modified affinity measure. 
The same assumptions as in the case of corner matching are applied to 

segment matching. The velocity of rigid objects in the scene is limited by their 

physical properties. The displacements in the image are restricted to a couple 

of pixels, the image displacement is generally much smaller than the size of the 

object itself due to the sufficient frame rate. 
When the object in the scene moves the segment does not change signif- 

icantly in size and is displaced or resized by the amount corresponding to 

multiples of the overlap in the segmentation grid, either horizontal, vertical 

or both, depending on the direction of motion. In conclusion, corresponding 

segments will overlap either partially (rapid moving objects) or completely 
(slow moving objects, static objects) between frames. 
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Algorithm 5 Modified Stable Complete Matching Algorithm that identifies 

new and unmatched comers. 
1. Scan the correspondence matrix for any empty rows and columns. 

2. If an empty column is found, mark the corresponding comer in previous 
frame as unmatched. 

3. If an empty row is found, mark the corresponding comer in the current 
frame as new. 

4. Reduce the correspondence matrix by all empty rows and columns. 

S. Apply Algorithm 4 on the reduced correspondence matrix. 

6.4.1 Affinity Measure 

The measure for matching the segments is based on the amount of overlap 
between the segments. If an object appears in the segment and it is either static 

or moving the detected segments in which it will appear in consequent frames 

will either completely or partially overlap. Forward and backward affinity 

measures are defined as relative overlaps between segments, namely 

e- 
(rrfyht - rifj)(CGattom - clop) GF 

(rprrv - rprau (JftU 
-Lyre 

o 
(6.9) 

right IffI 
)( 

bottom tap 

ýrftght 
- riefi)(Cbnttam - clp) CB = 1rcurr 

_ ýcurr`(rcurr - xurr) 
(6.10) 

right Itft / bottom ton 

where 
rieft = msix(rifi , r`"'f ji) (6.11) 

rrrv rurr rr; ght =mink. right+ right, (6.12) 

ct, J, = invc( t7' e urr) (6.13) 

ct, ouaºn = train( e, 'om+Cwiiom (6.14) 

With (rprev ryrev cyrev cprev ) and (reurr reurr Crurr murr corresponding left' right, toy + frot(orn left + right' tap + buttinn) 

to the coordinates of the segments in previous and current frames respectively 
(see Figure 6.5a). The mutual symmetric affinity is then given as an average 
overlap measure 

CF + Cli 

2 (6.15) 
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Figure 6.5: Matching of segments using their overlap (a). The temporal stack 
contains a list of all segments detected in last 5 frames (b). 

6.4.2 Temporal Stack 

Temporal dropouts are prevented by keeping a stack of segments detected in 

the scene for a given number of frames. The segments in frame n are matched 

against all segments in frame n-1. If there remain some unmatched segments 
in frame n the matching is repeated against unmatched segments in frame n-2. 
The matching is then repeated for any unmatched segments in frame n-3 and 

so on until the last frame in the stack is reached. If there are still some segments 

unmatched they are labelled as new and stored (see Figure 6.5b). 

6.5 Feature Traces 

For every newly-detected and unmatched corner a new trace is spanned. 
Traces describe the motion of each corner across the sequence by storing the 
information about all previously matched candidates for that particular corner. 
A single trace corresponds to a single corner. Even though the traces are not 
essential for determining the motion of the objects (this is done in the following 

module using Kalman tracking and fusion of inter-frame displacements), they 

are convenient for maintenance of the coherence of the object path and also 
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allow to predict the position of the comers and their displacements in case a 
dropout in corner detection occurs. 

6.5.1 Position Prediction 

When the corner in the previous image remains unmatched due to a dropout in 

corner detection, or when all possible candidates for a match are further apart 
than the proximity constraint permits, the trace would have to be terminated 

which would cause a loss of valuable information about the motion of the 

object. Should the corner re-appear in the following frame a new trace would 
be spanned starting where the previous one terminated. 

To avoid losses due to short-term detection dropouts a simple prediction 

scheme is used that tries to establish the position of the undetected corner 
from previous displacements. While some approaches use a Kalman filter, 

(Galvin et al., 1999a), for the majority of tracking applications where rigid 
objects are involved such an approach is often unnecessary. For example, at 
least one four-dimensional matrix and one four-element vector would have to 
be updated and stored for every trace and every frame in the sequence if both 

position and velocity are taken as elements of the motion state of the comer. 
Instead, Shapiro (1995) suggests predictors based either on constant velocity 
(ate = 0) or constant acceleration (ate = 0) assumptions. 

The first one, called linear predictor, can be expressed after discretisation of 
the differential as 

x(n + 1) = 2x(n) - x(n - 1) (6.16) 

and the second one, called quadratic predictor, as 

x(n + 1) = 3x(n) - 3x(n - 1) + x(n - 2) (6.17) 

where x(n) is the location of the corner in the frame n. The linear predictor 
needs two previous successful matches to establish a new position of the 
feature while the quadratic predictor needs three such matches. In maritime 
scenes the rigid objects mainly undergo motion with constant velocity as 
acceleration changes only gradually due to the nature of the environment. 
The linear predictor therefore produces results that are generally in accordance 
with the actual motion of objects in maritime scenes. 
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Figure 6.6: Detected traces in the artificial sequence. Red markers indicate 
traces with comers matched in the current frame, yellow markers indicate 
the predicted corners and blue markers are without a successful match in the 
current frame. 

The trace is terminated when five consequent predictions occur without 

any successful match with a detected corner. This enables traces that tend to 

"stray" or those that ceased due to occlusion in the scene to be terminated. 

An example of traces detected in the artificial scene (see Figure 6.1a) 

is shown in Figure 6.6. The yellow markers indicate corners obtained by 

prediction. Red markers correspond to matched corners. Blue markers are 
traces without a match in the current frame. Green markers outline locations 

of the matched segments. 
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(a) Artificial (b) WFYMOUTl12A 

Figure 6.7: Evaluation of position prediction. The graphs indicate that the 

number of the longest traces decreases rapidly without the prediction. The 

prediction maintains long, coherent traces. 

6.5.2 Evaluation of Position Prediction 

The benefits of the position prediction are illustrated in Figures 6.7a, b. The 

artificial sequence described as the first sequence in Section 6.2.1 and WEY- 

MOUTH2A sequence are subjected to the tracking with and without the 

prediction. Relative lengths of the traces are measured with respect to the 

length of the sequences. The graphs show the number of traces in the sequence 

with the same length as that of the sequence, i. e. the longest possible traces. 

The graphs indicate that without the prediction the number of coherent long 

traces decreases rapidly with the position in the sequence. The relative average 

lengths of the traces in the artificial sequence are 57°/o with prediction and 45% 

without prediction and 37'G, with prediction and 32'%, without prediction in 

the WEYMOUTH2A sequence. This indicates that prediction maintains long 

traces by filling the gaps caused by dropouts in corner detection. 

6.5.3 Sub-pixel Localisation 

To improve the precision of tracking and to allow detection of displacements 

less than a pixel per frame, sub-pixel techniques are commonly used in tracking 

applications. 
A comprehensive study of sub-pixel precision in motion estimation is 

provided by Borman et at. (1999). The authors infer a mathematical model 

of a transfer function of an optical system with a CCD imaging device as a 
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combination of the characteristic function of the optical device and the point- 

spread function of the CCD chip. The resulting model shows significant anti- 

aliasing occurring due to the limited resolution of the imaging device. The 

authors employ the inferred model in tests that evaluate three commonly used 

block-matching motion estimators, namely Sum of Absolute Differences, Mean 

Square Error and Normalised Correlation. In the test, a step edge is displaced 

and the displacement is determined using the above-mentioned estimators. 

Borman et al. (1999) conclude that an achievable sub-pixel resolution is 

firmly limited and cannot be further improved beyond a certain minimum. 

The minimum is based on statistical distribution of the residual errors that 

should be uniformly distributed on the interval given as f2I where Pres 

is a reciprocal value of the desired precision. The results show that for all 

three methods the value for which the residual errors are uniformly distributed 

inside the interval is around 5, which leads to achievable precision of about 

±0.1 pixel for a standard CCD imaging device. 

6.5.3.1 2D Interpolation 

The most common technique of sub-pixel localisation is based on interpolation 

of the cross-correlation surface at maximum peak and surrounding values by 

an analytical function of two variables. Correlation surface is composed of 

correlation values obtained and located at different offsets (u, v) in Equations 

6.1-6.5. The analytical function typically fitted is a paraboloid (Gleason et al., 
1991) 

f (u, v) = au2 + bv2 + cuv + du + ev +f (6.18) 

The parameters of the paraboloid are obtained by solving a set of linear 

equations 

C(u-i, v-i) u? 1 
C(uo, v-i) Uo 

C(u-i, vo) u? i 

v2 1 u-IV-1 u-1 v-1 

v? i UOV-1 U0 v-1 

vö u-ivo u-1 VO 

a 
1b 

1 

d 
(6.19) 

1e 
f 

or 
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C= Ab (6.20) 

where C(u, v) is the correlation value at position (u, v) and (u,,,,, va); m, n= 

-1,0,1 are coordinates of points surrounding the minimum at position uo, vo. 
A pseudo-inverse method provides a closed solution 

b= (ATA)-IATC (6.21) 
From there, the sub-pixel location of the interpolated maximum of the 

correlation surface is obtained as 

_ Umax 
(2db - ce) (6.22) 
(c2 - 4ab) 

(2ae - dc) 
Vmax = (c2 - 4ab) 

(6.23) 

Even though the method provides the results in a simple, closed form the 

results are often unstable and sensitive to noise. Such a case is illustrated in 

Figure 6.8. There is a clear maximum present, surrounded by values along 
the diagonal that are close to that maximum. The fitted paraboloid has the 

maximum at position (-4, -6.5) which is clearly the wrong location of a true 

maximum. A non-maxima suppression method finds the correct maximum at 

pixel resolution, but the interpolation method fails, introducing a significant 

error into the location of the match. 

6.5.3.2 Sub-pixel Correlation 

An alternative method proposed by Lan and Mohr (1998) is based on a linear 

sub-pixel correlation. The idea behind the method is that a translation of 
some signal can be approximated by convolution and the estimation of the 
convolution mask then provides a sub-pixel translation estimate. 

A translation of a signal f (x) by t can be expressed in terms of convolution 
as 

f (x - t) =f (X)* d(x - t) = 
1. f (u)b(x -t- u)du (6.24) 

u 

where b(x) is a Dirac pulse function. When converted to a discrete domain 
(x -p i), Dirac becomes Delta-Kronecker (unit sample) and the integral changes 
to the sum 

164 



0 935 

093 

0 925 

0 92 
0915 

0.91 

0905 

(a) ((, rrcl. itR ll v aI- (b) correlation plane 

tics 

Figure 6.8: An illustration of unstable sub-pixel location when paraboloid 
interpolation method is used. Clearly, the maximum is in the middle of the 

Patch. However, the fitted paraboloid has its centre at (I (J ), which is 
incorrect. 

(6.25) 

If t is non-integer, there is no exact answer, as the values of 
. 
/' are missing 

between the samples. However, by assuming Shannon's sampling theorem, a 

piecewise interpolation is adequate 

.f(i-()(1- 
Of(i)+(. 1'(i - 1): (<F<1 (6.26) 

This corresponds to convolution with (1 -- ( )b(, r) + F(1(. r -1), which is an 

approximation of 60 r ). More generally, given b, 
, 

\,: b, > such that 

Y 1), = I, then 

A, ý 
.fV. 

ý A, o, ) (6.27) 

In other words ý; 1), 60- - A; ) is an approximation of S(. r - \, h for a 
sufficiently smooth function. 

Lan defines the matching problem as: 

given f, and f2, find t E: R such that Fi (. r) --0=F, (. r) 
6(1 t). Fi and 1', are sampled f, and f2. The - means 'equal up 
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to a signal transformation' - for instance, an offset and a scaling in 

the values of the Ft - and noise, i. e. 

Fl (x) = SF(x - t) +0+e (6.28) 

In case of precise matching, fl and fz are known and tE [-1; 1] is to be found. 

Since fl and f2 are only defined at discrete integer values, 5(x - t) can be 

approximated by a linear combination b_lb(x - 1) + boS(x) + bib(x + 1) where 

b_1 + bo + bi = 1. The displacement can then be estimated as bl - b_1. 

When extended to a two-dimensional case, Equation 6.28 can be rewritten 

as 

Il(x) =Za. I2(x + k) +0+, -(x) (6.29) 
kEN 

where Il (x) and I2 (x) are the two image patches to be exactly matched, 

x runs through a chosen window W, xEW= {(x, y) Is- seen <x< 

S+ sien, t - teen <y<t+ teen}, k runs through the neighbourhood N of 

x, kE {(ky, ky) 1 -1 < kx < 1, -1 < ky < 1}. The neighbourhood N can 

either be a 4-connected or an 8-connected neighbourhood. The results in (Lan 

and Mohr, 1998) show that a 4-connected neighbourhood is sufficient for most 

cases. While ak encodes the shift and scaling, 0 represents possible offset and 

e(x) is uncorrelated white noise. Given two patches in matching windows, 
Il and I2, ak (for kE N) and 0 can be estimated from linear least-squares 

minimisation 

min Z (Il (x) - (Z akI2 (x + k) + O))2 (6.30) 
ak'0 

xEW kEN 

The estimated standard deviation of e(x) directly follows from Equation 
6.29 

E 
(I1 (X) 

- 
X: 

kEN 2kI2 (X + k) - 0)2 

QE _ (6.31) 

xEW 
(2slen + 1)(2t en + 1) 

The value u, is used for estimating the uncertainty of displacements. 
The problem is symmetric, therefore another displacement estimate can be 

obtained, 

12 (x) =Z akIl (x + k) + 0' + E' (x) (6.32) 
kEN 
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The sub-pixel displacements can be determined afterwards from Equations 

6.29 and 6.32 as 

dxl =: bkk 
kEN 

and 

(6.33) 

dx2 = bkk (6.34) 
kEN 

An uncertainty of the estimated displacements can be used to obtain an 
improved result. If the covariance matrices of both displacements are known 

as CV, and CV2 then the resulting displacement is given as 

dx = (CVj 1+ CV21)-1 (CV- ldxl + CV21dx2) (6.35) 

This fusion is optimal if the error distribution is Gaussian and uncorrelated 
(Thacker and Cootes, 1996). 

To obtain the solution of Equation 6.30 a matrix notation is used. First of 

all, Equation 6.29 is written as 

I1 =I2T+c(x) (6.36) 

where I1 is a column vector with elements 11 (x), xEW, I2 is a matrix with 

row vectors ({I2(x+k), kE N}, 1) and T= (Jak, kE N}, 0)T. When denoting 

L= (I2 I2)-'I2 , the least-squares solution is obtained 

T=LI1 

Denoting 

dx = (dx, dy) 

var(dx) cov(dx, dy) 
CV = 

cov(dx, dy) var(dy) 

L={LI, L2,..., Ln+lJT 

(6.37) 

where n is the number of pixels in neighbourhood N, the displacement and 
its' covariance matrix for a 4-connected neighbourhood is obtained as 

a(i. o) - a(-i, o) a(o, l) - a(o, -I) 1 (dx, dy) _(ss)= S((L5 - LI)II, (La - L2)11) 
(6.38) 
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where S= EkEN ak, 

2 

var(dx) = 
S2 (L5 - L1)(L5 - L1)T (6.39) 

z 
var(dy) = 

S2 (L4 - L2) (L4 - L2)T (6.40) 

2 
cov(dx, dy) = 

SZ (L4 - L2) (L5 - L1)T (6.41) 

Because of the symmetry, two displacements with their covariances can be 

obtained and fused by the means of Equation 6.35. 

Lan and Mohr (1998) provides a modified version (called 'robust' algo- 

rithm) of the above method (called 'fast' algorithm) that also considers a local 

affine transformation of the image patches. The method is computationally 

more expensive and prior knowledge of a dense map is necessary. For minor 
inter-frame displacements that commonly occur in wide range rigid object 
tracking the 'fast' method suffices as the optional inter-frame distortions are 

negligible. 
The described method is more robust than paraboloid fitting, it operates 

directly on the image data so it can be used with any affinity measure. The 

method also quantifies the uncertainty of the matching that can be employed as 
a confidence measure in consequent processing steps. The size of the window 
W is set to 11 pixels in both directions as recommended by Lan and Mohr 

(1998). 

6.6 Spatio-temporal Correspondence Database 

The correspondence matching algorithm applied on data coming from the 

previous modules of the framework determines the temporal correspondence 
of segments and corners detected in the scene. Every segment detected 
during the primary segmentation described in Chapter 4 is assigned a segment 
record that contains all information essential for successful identification and 
tracking of an object in that segment. Each segment record holds the following 
information: 

9 frame number when the segment first appeared in the scene 

. frame number when it vanished 
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9a list of all matched segments with coordinates 

.a list of all trace records for traces that were generated when matching 

corners within the segments 

Each trace is described by a trace record similar to a segment record. The trace 

record holds the following information: 

. frame number when the trace was spanned 

. frame number when the trace was terminated 

"a list of all corners that belong to the trace 

Finally, each corner is described by a corner record that contains the following 
information: 

. number of frame in which the corner was detected and assigned to the 

trace 

. detected location of the corner in the current frame 

" matched sub-pixel location of the corner in the previous frame 

" matched sub-pixel location of the corner in the next frame 

.a flag indicating if the corner was detected, matched or predicted 

A structure of the segment record is outlined in Figure 6.9. The database of all 

segment records is maintained through the sequence. To avoid uncontrolled 

growth of the database size, the segments that vanished before a given number 

of frames are disposed of. The number of frames for which the unmatched 

segments are kept is same as the depth of the temporal segment stack described 

in Section 6.4.2. 

The information stored in the database is employed in the following 

modules of the tracking system for estimation of the motion parameters and 
for remapping of the image positions into the scene coordinates. 

6.7 Structure of Matching Module 

The spatio-temporal matching of the geometric feature sets generated by the 

previous module of the framework consists of four consecutive steps. These 
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STARTFRAME 
END FRAME 
LIST OF SEGMENTS 

10, Xleft, Xright, Ytop, 

ID, Xleft, Xright, Ytop, Ybottj 

ID, Xleft, Xright, Ytop. 

Figure 6.9: Structure of the segment record used for maintaining the spatio- 
teniporal information about the objects in the scene. 
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Figure 6.10: The structure of feature matching; 

steps are assembled into the feature matching module. The structrnr of the 

module is outlined in Figure 6.10. 

The feature matching module takes as inputs the current and previous 

frames in the sequence together with all feature sets detected ill those frames. 

Following processing steps are applied to the data: 

" Matrliin, ý of ' ec,, irntc. Primar`' correspondences between the segments in 

two consequent frames dc limiting; the locations of objects are estahIislhed. 

The correspondences are based on the area of segment overlap between 

two consequent frames. 

. Matclhin of coorners. The matching between two sets of corners belonging 

to the matched segments is found. The correspondence search employs 

the correlation between two image patches surrounding the corner can- 

didates. The selected correlation measure is based on the Sum of Squared 

Differences. A linear prediction scheme maintains the consistency of the 

matching over multiple frames in case a dropout in the corner detection 

occurs. 

. Subpixcl localisation. Displacements of the corresponding purl pairs 
between the frames in the sequence are refined to sub-pixel levels in order 

to improve the precision of the consequent motion estimation. 

. Spatio-te; nporal database. The history of the presence and motion of objects 
in the scene is maintained in the spatio-temporal database. The objects 
are represented by segment records containing the enclosing segments 
and list-, of corners within these segments matched across the sequence. 
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The motion of objects is implied from the displacements of the matched 

corners. 

The motion parameters of the objects are estimated in the consequent 

module of the framework. The estimation is based on the corner displacements 

stored in the segment records of the spatio-temporal database maintained by 

the feature matching module. 

6.8 Summary 

An inter-frame correspondence between the geometric points detected at 

previous stages of processing is established. The correspondence search is 

an initial step in motion estimation. The correspondence search method is 

based on a local image registration of intensity patches centred at positions 

of comers detected in the frames. The Sum of Squared Differences serves as 
the best performing affinity measure between candidates for correspondence 

matching, as indicated by evaluations on artificial and real scenes. The Sum 

of Squared Differences combined with the median fusion of the values detects 

the displacements in the evaluation sequences with errors below 0.5 pixel. 
A two way matching is employed in order to resolve ambiguities in the 

matching process. The candidates are matched according to their mutual 

affinity by a modified X-dominant matching algorithm proposed by Sara 

(1999). For corners that are left unmatched in the recent frame a linear 

prediction estimates their future position. The linear prediction improves 

the long-term coherence of the matches by 12% in artificial and by 5% real 

evaluation scenes. The localisation of the matches is improved by a sub-pixel 

matching scheme devised by Lan and Mohr (1998). The matched corners are 
assigned to traces. Traces encode the movement of each corner in time. 

Similar to corners, the segments are matched using a modified X-dominant 

matching algorithm. The affinity measure is based solely on the amount of 
the overlap of detected segments. To deal with occasional dropouts in the 
initial segmentation, a temporal stack of all segments detected in a number 
of previous frames is maintained and used in matching. 

Finally, the corresponding segments and comers are stored in a spatio- 
temporal database with a hierarchical structure - each segment is assigned 
a record with references to corresponding traces and each trace contains a 
list of all assigned corners. The information in the database is passed to the 
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consequent processing modules that estimate the motion of objects and remap 
the results to scene coordinates. 
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Chapter 7 

Motion Estimation and 

Tracking 

7.1 Introduction 

The ultimate goal of a tracking system is to detect, characterise and possibly 

classify any activity in the scene being surveyed. While for some applications 

the fact that 'something is moving' might be the required outcome of the 

tracking process, more specific characterisation of the detected activity is 

usually desired. Some applications can use the characteristics of the detected 

activity to distinguish among different types of objects such as cars versus 

people, (Lipton, 1999). Other applications are not engaged as much in object 

classification based on the activity characteristics but they attempt to achieve 

the best possible precision in the estimation of motion parameters, regardless 

of the type of object, (Dellaert and Thorpe, 1997). For example, in collision 

avoidance application the type of object that is on the collision course is not as 
important as its velocity and direction. 

In considering the intended application of a maritime tracker, object recog- 

nition based on characteristics of detected motion is not the main goal. 
Furthermore, the varying appearance of maritime objects would make any 
inference of the type of object somewhat vague. The maritime object classes 

outlined in Section 2.4.2 are explicitly based on motion characteristics without 

any direct or unambiguous inference of their type. A floating object can be a 
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buoy, a wooden log, a mooring vessel, a drowning person, etc. A completely 

static object can be a pier, a large mooring vessel, a rock, etc. 

The aim of the maritime tracking system falls into the second category - 
to provide estimates of any motion as precise as possible, regardless of the 

structural characteristics of the objects undergoing the motion. The outcome 
depends on the precision, completeness and consistency of the data. Although 

the method used in the correspondence search module of the framework 

reduces errors by fusing multiple displacements in the segment using median, 
there remains uncertainty in the obtained values. This uncertainty is due to 

various effects that cannot be compensated for such as, for example, horizontal 

fluctuation of the image caused by environmental conditions. 
An important issue in outdoor tracking applications is the compensation 

for errors in localisations of detected features in the image that occur due to 

uncontrolled oscillations of the imaging device platform. These displacements 

occur inevitably due to the cross-wind impact on an imaging device harness. 

The mechanical noise caused by a vessel's engines acts as another source of 
systematic localisation errors. 

A method that compensates for inter-frame global displacements of the 
image is therefore proposed. The method estimates the displacement of the 
horizon that represents a strong horizontal feature feasible for tracking. The 

results are used to compensate for the localisation errors by relating positions 

of all detected geometric features to the tracked position of the horizon. 

As the problem of noisy input data is common in many engineering 
applications and, especially, in navigation, robust methods to estimate system 
states treating the data at a stochastic level are typically used. The Kalman 
filter (Welch and Bishop, 2001) and its extended and modified versions as in 
(Li et al., 2004) are essential parts of various systems that operate with noisy 
input data. As the motion of the objects in maritime scenes is generally smooth 
with only gradually changing parameters, a standard linear version of the 
Kalman filter is appropriate for tracking purposes. 

7.2 Motion Model 

Once the corresponding features between consequent frames are established 
using local registration techniques any motion that might occur can be detected 

using these spatio-temporal correspondences. The selection of appropriate 
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motion models is complicated, especially when multiple complex motions 

are involved. Shapiro (1995) assumes affine motion of rigid objects and 
he provides a structure from motion analysis framework based on corner 
tracking. Ton (1998) assumes multiple general transformation models between 

images including projective one and provides selection criteria based on the 

maximum likelihood estimation of the parameters of the fitted model. 
Both frameworks resolve the problem of motion segmentation by fitting 

various motion models onto the matched feature pairs without any prior 

assumption about their correspondence to the structure of the scene. The 

approach is commonly known as a 'structure from motion', where objects 
in the scene can be detected and modelled from the motion of the matched 
features. If the locations of the objects in the scene are known and their 

corresponding features used in inter-frame matching are detected, the motion 

estimation is significantly simplified, as the structure of the scene is inferred 
from the segmentation and does not have to be deduced from motion. 

The geometric context of maritime scenes provides constraints essential 
for the motion estimation. First of all, due to the fact that all objects 
lie on a horizontal plane the motion is restricted to two dimensions in 
the scene neglecting vertical displacements due to waves or other natural 
effects. All objects are considered rigid, which means that there is no 
motion due to deformation of the objects' structure. The only significant 
rotation that can occur is parallel to the sea plane, i. e. boat is turning, 
rotations in other directions are either negligible such as those due to waves 
or highly unlikely, i. e. boat is turning upside down. Due to the nature of 
the maritime environment rotations of objects are typically slower than their 
translations. The rotations can be approximated by many small translations 
between consequent frames. Thus, it is possible to assume that the majority of 
detected motion in maritime scenes is translational. 

The ego-motion of the camera has an essential effect on estimation of 
motion of independent objects in many applications (Irani et al., 1994; Cohen 
and h1edioni, 1998). It is necessary to determine and compensate for the ego- 
motion of the vision system first in order to estimate independent motions 
of the objects in the scene. If the camera is mounted on a vessel the ego- 
motion will be mainly translational. Even if the vessel rotates around its axis 
the rotation will cause a panning effect which is mainly translational for large 
depths of the scene. A motion relative to the observation point is essential 

177 



I N_ 

o_ 
own ship ö 

............... .. - 
>....... 

........... 

relative motion -- 
ego-motion 
object motion 

0,9 
ýfý 

Figure 7.1: Relative motions of the objects in the scene are essential for collision 
threat assessment. Ego-motion is considered as a component of these relative 
motions. 

for threat assessment applications (see Figure 7.1). The relative motion is a 

combination of the translational ego-motion and object's motion components. 
Therefore, the ego-motion component can be considered as a component of 
independent motions of objects in the scene. 

Finally, with the exception of fast moving and highly maneuverable small 

craft the motion of most maritime objects is uniform or changing gradually. 
A combination of an adequate value of the proximity constraint introduced in 

Section 2.4.3 and sufficiently high frame rate of the imaging device allows to 

capture these gradual changes making it possible to track them using the linear 

motion model. 

7.3 Feature Displacements 

Each trace stored in a spatio-temporal database contains a set of corresponding 

comers detected in consequent frames. The differences in the positions of 
corresponding comers indicate the displacements of these features between 

the frames. When divided by the frame duration reciprocal to the frame rate 
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the actual velocity of each feature is obtained. 

To improve on the precision of the displacement a two-way sub-pixel 

matching scheme is proposed as shown in Figure 7.2. A corner detected in the 

current frame at position (xc, urr, 
Ycurr) is matched to sub pixel positions in both 

previous (xprev+dxpre�, yprev+dyprev) and next (xnext 
"+"dxnext, ynext+dynext) 

frames. The difference of these two positions divided by the number of 

frames Nf across which the correspondence was found determines the average 

displacement of the feature across a single frame to a sub-pixel precision 

Ax = 
Xnext + dXnext - Xprev - 

dxprev 
r` 

N `7.1) f 

AY = 
Ynext + dynext - Yprev - dyprev 

(7.2) 
Nf 

This scheme enables displacements to be determined even when the 

features were matched across more than two frames (N1 = 2). Such a situation 

occurs when the current segment is matched against a segment deeper in the 

temporal stack (see Figure 6.5b). In such a case the number of frames Nf > 2. 

The advantage of the two-way matching scheme is that any offset of a corner 
during the detection in the current frame does not introduce an error into the 

displacement estimation. The detection error will just cause the centre of the 

matching patch to be shifted but the average inter-frame displacement of the 

whole patch is still recovered correctly. 

Smith et al. (1998) shows that median provides an adequate estimation of 

a global inter-frame displacement in the scene from displacements between 

corresponding features. Similarly to Smith, median value of all displacements 

in a single segment represents the fused displacement of an object in the 

segment. A variance of the displacements serves as a confidence measure of 
the estimation. 

Finally, the Kalman filter is associated with each segment. The fused 
displacement, its variance and position of submersion line represent input data 

measurements in the process of motion estimation. 

7.4 Horizon Tracking 

Any machine vision system for outdoor applications faces an ultimate chal- 
lenge of weather conditions. Most prominent among these is the cross-wind 
impact on the imaging device platform. Even though the imaging devices used 
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Figure 7.2: Two-way sub-pixel matching of comers: the comer detected to 
a pixel precision (z, �rr. yr�rr) in the current frame is located to a sub-pixel 
precision in the previous (ia,., � + dr , n, ya,.,. + dy,.. ) and next (z�e: t + 
dznext, ynezt + dyne=s) frames. The difference between the coordinates in 
previous and next frames provides a sub-pixel displacement between these 
frames. Matching across more than one frame is possible if the corresponding 
segment was matched against segment deeper in the segment temporal stack 
(see Figure 6.5). 

in the maritime environment are stabilised for oscillations due to vessel-wave 
interaction (Vistar Night Vision Limited, 2004a; Vistar Night Vision Limited, 

2004b; Vistar Night Vision Limited, 20043c), fluctuations caused by cross- 

wind impact are too rapid and brief to be captured by an electro-mechanical 

control system based on a gyroscope and feedback loop. Another source 

of displacement can originate from vibrations of the vessel itself caused by 

running engines. These factors cause small movements of the imaging device 

that result in displacements of the captured frames. When projected onto an 
image, the fluctuations usually amount to a couple of pixels over variable time 

spans and are often completely random. Dcllaert and Thorpe (1997) model 
these displacements as first-order Markov process or as time-correlated noise. 

A systematic error is introduced into the location of all detected features 

in the image by these fluctuations. Because the displacement is similar for 

all features the displacement variance does not increase and only the fused 

displacement is shifted. The error propagates through the matching and 
tracking to the remapping where it can cause significant deviations in the scene 
location and velocity estimates due to a non-linearity of projective mapping. 
The situation is outlined in principle in Figure 73. The original feature position 
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Figure 7.3: The effect of horizon displacement on two-way corner matching. 
The horizon moved between previous and current frames by amount of dpre1 

and between current and next frames by dc,,,.,. pixels (the direction of the 
displacement is given by signs of the values). Ideal positions of the features 
in consequent frames are indicated as primed symbols. The systematic error in 
displacement da,.. � + dr,,,.,. is same for all detected features. 

(rn, e,,, y'p, �) changes with respect to image coordinates even though it remains 
fixed with respect to the horizon. If the horizon displacement is not accounted 
for the resulting vertical displacement would not be zero indicating vertical 
displacement of the feature which is clearly not the case. 

Image to scene mapping is non-linear (perspective projection) and the 

same image displacements are mapped to larger values near horizon as those 

near the image bottom. This leads to an error in motion estimation that 

progressively increases towards the horizon. It is necessary to compensate for 

such systematic errors, namely the offsets caused by vibrations of the imaging 

device in order to improve the estimations. 
The compensation methods for imaging device vibrations are commonly 

referred to as image stabilisation techniques. Multiple approaches to image 

stabilisation are used in the photography and imaging domains. One approach 
called 'optical image stabilisation' (Canon, 2004) is based on complex electro- 
mechanical devices that compensate for the vibrations by changing the optical 
properties of the imaging devices. The stabilisation is done prior to the image 
being captured. This type of stabilisation is mostly available in high-end 

photography only. The second approach is called 'digital image stabilisation', 
(Morimoto and Chellappa, 1996; Ko et al., 1999; Erturk, 2003). It is typically 

used in low-end consumer digital video cameras or in machine vision applica- 
tions. The stabilisation is done by a registration on a frame to frame basis of 
some strong directional features detected in the scene. 
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A method for digital image stabilisation is introduced into the framework 

that compensates for vertical displacements of the image. A strong feature that 

is simple to track and can always be present in the scene is the horizon, e. g. 
dividing line between the water plane and either the shore or sky. A horizon 

tracking algorithm is applied to the sequence that evaluates the inter-frame 

vertical displacements caused by the camera vibrations. The displacement in 

the horizontal direction is not compensated for as a feature suitable for tracking 

the horizontal motion is not always available. 
The initial position of the horizon h in the scene together with a fluctuation 

ranges Ah� and Ah�_1 are input into the tracking algorithm. A strip 

surrounding the horizon line that stretches along the image width is used 
to determine the displacements by a correlation technique. The strip in the 

current image is matched against the same strip in the previous image. Because 

only the vertical displacement is of interest, the correlation is done for vertical 
displacements only. Strips can be expressed as matrices 

In, n_1 = {In, n_1(r, c); h- Ah,, 
�n_1 

<r<h+ Ahn, n_1; 0<c< C} (7.3) 

where are current and previous images that have equal width C 

and Oh� > Ah,, 
-, when matching horizon in frame n-1 against the one in 

frame n (see Figure 7.4). The matching is done by finding the Sum of Squared 

Differences defined in Equation 6.3 between corresponding columns of the 

matrices for different shifts d, 

h+&h., 
_ 1 

MSSD(i, c)_ E (I,, (r+i, c)-In-1(r, c))2 (7.4) 

r=h-Ah. _1 
where c is the actual column in matrices In, f_1 and i=0, 

... , Ahn - 
Oh,, 

_ 1+1. The offset is detected at the minimum of MssD (dc, c) profile 

dC = arg min (MssD(z, C)) (7.5) 

A sub-pixel refinement to improve the displacement estimate of the offset 
is done for every column. A same technique by Lan and Mohr (1998) used 
in corner matching in Section 6.5.3 is applied in a single dimension to every 
column in the matching strip. The one-dimensional matching follows the same 
principles as the two-dimensional one. In fact, two-dimensional sub-pixel 
matching is an extension of the one-dimensional one, (Lan and Mohr, 1998). 
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Figure 7.4: Detection of horizon displacement between the previous frame n -1 
and the current frame o. The detection is based on vertical correlation of the 

strip in frame n-1 with the strip in in frame ii. 

The resulting overall vertical shift Ali, is delimited as a median value of all 

column offsets (1,: rl..... C. This avoids a contribution of any outliers in 

offsets caused by noise or change in the scene structure. 
Two-dimensional matching is effectively divided into C one-dimensional 

matching procedures. Such division has numerous advantages. First of all, a 

parallel implementation of the process is possible. Secondly, by performing 

C independent matches and fusing the results through a median any likely 

inconsistency in individual correlations does not influence the result. 

The stabilisation is done by relating locations of all detected submersion 
lines and corners to the position of horizon projection rather than to the image 

boundaries. Any changes to the locations of features are then likely due to the 

motion in the scene rather than the displacement of the camera. 
An example of the compensation for horizon oscillations applied to a 

sample sequence is shown in Figure 7.5. A SANDBANKS2Q sequence shows a 

channel marking buoy approximately 150 metres away from the camera. Even 

though the sequence has been taken on a relatively calm day small vibrations of 
the camera can be registered throughout the sequence. Estimations of location 

of the buoy for the first 200 frames of the sequence have been determined with 

and without the horizon tracking. 

The results summarised in Table 7.1 show the average location, it's variance 
and estimate of the state variance obtained by Kalman tracking. The example 
clearly indicates the benefits of the horizon tracking in increased estimation 
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I avg. location location variance state variance 

compensation xy xy xy 

no 49.1 135.2 2.62 18.63 0.0045 5.88 

yes 48 132.2 0.35 2.49 0.0042 5.53 

Table 7.1: Evaluation of horizon oscillation compensation in SANDBANKS2Q 

sequence for the first 200 frames. The values are in pixels. 
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(a) frame 114 from SANDl3ANKS2Q (b) position states 

sequence with channel marking buoy 

highlighted 

Figure 7.5: Compensation for the horizon oscillation. Channel marking buoy 
(a) highlighted in the sample frame is tracked over the first 200 frames of the 
SANDBANKS2Q sequence with and without compensation for a horizon shift. 
The resulting estimated locations (b) for both cases clearly indicate the benefits 
of the compensation. 

precision. The similar values of the state variances after Kalman tracking in 
both cases indicate that the systematic error due to the horizon shift is indeed 

undetectable. The presence of the error is indicated by the high value of the 
location variance when the shift is uncompensated. 

184 



7.5 Kalman Tracking 

7.5.1 Linear Kalman Tracker 

The translational motion is characteristic for most objects in maritime scenes. 
It can be estimated as a linear process using a discrete version of the Kalman 

filter. The Kalman filter (Maybeck, 1979; Reid, 2002; Welch and Bishop, 2001) 

is a common tool in tracking and navigation applications where the state of 

the system is updated by a combining the prediction and noisy measurements, 
(Dungate et al., 1999; Chi-Min et al., 1994). The combination of measurement 

and prediction is optimal in terms of residual mean squared error. The 

standard Kalman filter models linear systems. For other cases the principle 

of the filter can be extended to suit non-linear models, (Li et al., 2004). 

If the actual position and velocity of a target in the image represent a state 
of linear system then the relation between previous and current states can be 

written as 

Xk+1 = FkXk + Wk (7.6) 

where Xk, xk+l are the previous and current state, Fk is the state transition 

matrix and wk is additive noise of the system process. The observation of the 

states is done through an observation system represented by linear equation 

Zk = HkXk + Vk (7.7) 

where Zk is the observation or the measurement at time k, Xk is the state 

at time k, Hk is the observation matrix and vk is additive measurement noise. 
The following assumptions are made: 

" wk and vk are uncorrelated, zero-mean white-noise processes with 
known covariance matrices Qk and Rk. Both matrices are symmetric, 
positive and semi-definite. 

" initial state xo is a random vector that is uncorrelated with both system 
and measurement processes. 

" initial state estimate zo is known and it has known covariance matrix P0. 

The task is to obtain an optimal state estimate zk+l given the observations 
z1, ... , zk that minimises the expectation of the squared error between the 
actual state and it's estimate, E [IlXk+l 

- 1121 . 
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The solution is provided in recursive steps defined by the following 

equations. The index k corresponds to the previous step and the k+1 

corresponds to the current step. The index k+ ilk represents the transition 

from previous to the current steps. 

" Prediction step (time update): 

Xk+ljk = Fk*k (7.8) 

Pk+ilk = FkPkFT + Qk (7.9) 

9 Update step (measurement update): 

Xk+1 = Xk+lIk + Kk+1[Zk+1 - 
Hk+1Xk+1lk] (7.10) 

Pk+i = (I - Kk+lHk+i)Pk+llk(I - Kk+lHk+i)T + Kk+lRk+IKk+i (7.11) 

where Kk+1 is Kalman gain matrix defined as 

Kk+i = Pk+ilkHý+i[Hk+lPk+llkHý+i + Kk+i1-1 (7.12) 

7.5.2 Kalman Tracking in Maritime Scenes 

For motion estimation of a rigid object in a maritime scene, the state vector 

contains the following data 

Rk =[ px, k vx, k py, k vy, k 
IT (7.13) 

where Pk, vk are the position and velocity estimates at time k and x, y 
denote horizontal and vertical components of the vectors. 

The input measurement vector contains the data obtained from submersion 

line detection and corner matching 

T 

Zk _I Px, k Vx, k Py, k vv, k 
] (7.14) 

where Px, k is the centre of the submersion line and Py, k is the horizontal 

location of the submersion line as detected in frame k. Instead of velocities, 
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the average per-frame displacements dy, k and dy, k are used as measures. Both 
displacements are obtained from Equations 7.1 and 7.2 determined for each 
segment. 

In many applications the measurement covariance matrix Rk is kept fixed 

in time. This is not necessary because the variance of the d,,,, measurement is 

obtained as a part of the displacement fusion. 

The vertical location measurement p, corresponds to the position of the 

submersion line and the horizontal location py is at a centre of the segment 

width. The minimum change of the size of the segment is at least a couple 

of pixels given by the overlap of the segmentation grid. The change occurs 

when an object moves over the boundary of the segment. The change 

increases towards the bottom of the image as the resolution of segmentation 

grid decreases. This would cause a step change in the horizontal location 

measurement. In addition the size of the segment can fluctuate despite 

the object being still. This occurs when the distance value from Equation 

4.24 for the particular segment is close to the classification threshold in the 
initial segmentation. Such fluctuations can cause false changes to the location 

measurements. 
To reduce these effects a median value together with a variance taken over 

multiple frames are given as input location measurements. If the segment 

remains stable, i. e. its size and position does not change over time, the 

measurement variance would become zero, which would indicate infinitely 

large confidence in the measurement. Such over-confidence would then cause 
the displacement measurement values to be ignored for slowly moving objects. 
To enable the filter to estimate motion of slow objects a fixed value of two pixels 
is added to the variance of location measurement values. The value matches a 
typical localisation error obtained for sample sequences as presented in Section 
7.5.5 (see Table 7.2). 

The Rk matrix has a following structure 

Vark(px) 000 

0 Vark(d., ) 00 Rk = (7.15) 
00 Vark(py) 0 
000 Vark(dy) 

where the positions and velocities are considered uncorrelated (hence zero 
elements in Rk at corresponding positions) and 
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Vark(u) 
k)Vark_1(u) 

+Var(u) (7.16) 

are temporal averages of all previous values of variances up to current time 

k and u is any of px, ps,, dx or d.. The averaging enables the noise levels of the 

measurements to be identified and stabilised. The state transition matrix Fk is 

defined as 

1 dT 00 

0100 
Fk = 

001 dT 

0001 

where dT is a duration of a single frame. The measurement matrix Hk is 

defined as 

1000 

0 hk 00 
Hý _ 0010 

000 hk 

where hk is either equal to dT if the displacement data are available or 0 

otherwise. Changing the Hk matrix in such way allows to estimate the object 

state with only a partial observation available. When displacement data in the 

observation are unavailable the Vark(d,, ) and Vark(dy) are both set to infinity. 

Finally, the process noise covariance matrix is defined by Reid (2002) as 

dT3 dT2 Q0 32 

dT2 dT 00 Qk =q 
2 

dT3 dT2 0032 

00 d22 dT 

where q is a constant set to q=0.1. The values gives satisfactory results for 

the sequences used in the development. 

The initial state vector and its covariance matrix are obtained by averaging 

corresponding measurement values over multiple initial frames. The state 
is updated every frame, together with the Rk matrix and the Zk input 

measurement vector. The output of the estimation is the state comprising 
the actual position and velocity of the object in the segment. An example 
of Kalman tracker applied to data in WEYMOUTH2A sequence is shown in 
Figure 7.6. 
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Figure 7.6: Kalman tracking of moving and static objects. The state is split 
into two parts: (a), (c) position, (b), (d) velocity of the objects being tracked. 
Both, measured and estimated, states are shown. The uncertainties of the 
measurements are outlined by the red crosses. 

7.5.3 Kalman Smoother 

To further minimise the error of state estimates found by the Kalman tracker 

a recursive method proposed by Anderson and Moore (1979) that updates 
the state vector and its covariance matrix in reverse order is employed. If 

N states are already estimated, then for every state xti. where k=N.... 
,2a 

smoothed state vector *k_ I and it's covariance matrix PA. 
_ 1 are obtained from 

the following relations 

Xti- 
-1 =Xk_I f Kti. (x-k -Fk. xk-1) (7.17) 

Pti 
-i= 

Pti i Kk(Pti Pti ý, ý i )Kti (7.18) 
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Kk = Pk-jFk klk-i 
(7.19) 

As the indexes indicate, the process is non-causal, i. e. future states are 

required to obtain current ones. The Kalman smoother is useful for display 

purposes providing a smooth path of the object in the scene. 

7.5.4 Analysis of the linear motion model 

A correct choice of the motion model and filter parameters can be confirmed by 

a simple analysis of filtering results for sample data. The analysis uses values 

of the state innovation defined as 

vk+1 = Zk+1 - Hk+lkk+llk (7.20) 

If the assumption is made of measurement noise being white and uncorre- 

lated then the innovation should be zero mean and white as well. Denoting the 

covariance of innovation as Sk+lthe innovation should be consistent with this 

covariance and at least 95% of vk+l values should lie within ±2 Sk+1. This 

is illustrated in Figure 7.7. The innovation values used were obtained from 

the same sequence as in Figure 7.6 which contains a typical sequence of a boat 

approaching the camera. This simple test indicates that the filter is adequate 

for modelling the motion of objects in maritime scenes in the image plane as 

a clear majority of innovation values lies well within the standard deviation 

boundaries. 

7.5.5 Detection of Occlusions 

Occlusions often occur in open world scenes containing numerous moving 

objects with crossing paths. General perception is that occlusions are difficult 

to resolve, especially in complex structured environments, (Mirmehdi et al., 
1996; Lipton et al., 1998). Maritime scenes are no exception. In theory, the 

strong geometric constraint of horizontal ground plane enables to distinguish 

which object is in front of the other from vertical positions of their image 

projections. The feature-based object characterisation, however, does not 

provide sufficient information about the object structure and appearance that 

could be utilised in resolution of the occlusion. If an object is occluded some 

of it's salient features become hidden and new features might occur at the 
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Figure 7.7: The innovations of the state values show that the Kalman filter is 

adequate for tracking of maritime objects. This is indicated by the fact that at 
least 95% of the innovation values lie within the standard deviation boundary. 

occlusion boundaries. The features can be mismatched, producing wrong 
displacement estimates. 

The segmentation presented in Chapter 4 is unable to separate objects that 

are closer than approximately the amount of overlap of the segments in the 

grid. Such close objects are treated as a single one. When two objects are 

moving towards each other their corresponding segments will join into a single 

one. The line of submersion will be detected and the objects will be treated as 

a single one. The detection of a submersion line always detects the line which 
is nearest to the camera. When the objects move apart, the segment will split 
and the tracking of two independent objects will be initiated. 

The measurements of location and displacement during the occlusion are 
less reliable and their variance increases. An average standard deviation of 
the measurements embodies the overall certainty of the measurements. It is 

calculated as 

Qavg = Ry +R, + Rdy (7.21 

where Ry, Rdx and Rdy are variances of vertical location given by the 
submersion line and horizontal and vertical displacements. The horizontal 
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Figure 7.8: Change in average measurement error for occluding objects. 
The error for the pier on the left remains approximately static during 

tracking. When the pier becomes occluded by a boat coming from the left 

the measurement error increases instantly indicating sudden change in the 

structure within the segment. The Kalman filter is reset at this stage and it 

locks to the new object. 

position is excluded from the calculation as it is derived from the segment 

width and it does not reflect the motion of the object. 

An example of the average measurement deviation when occlusion occurs 

is shown in Figure 7.8. The occlusion occurs in the frame 311 of the WEY- 

MOUTH2A sequence. A boat leaves the port on the left occluding the pier. 

The segmentation extends the segment covering the pier to include the boat as 

well. A submersion line closest to the camera is found in the segment. Because 

the position of the submersion line changes suddenly by a significant amount 

of pixels the measurement becomes uncertain. This uncertainty projects into 

the average deviation as a sharp peak. The uncertainty decreases back to a 

stable level after a very short time as the new location is confirmed in multiple 

consequent frames. Such 'jumps' in measurements would de-stabilise the 

Kalman filter producing unrealistic estimates. It is, therefore, necessary to 

detect these changes and re-initialise the filter accordingly. 

A fixed threshold is applied to o,,.,,,. The value of the threshold is set 

to 5 pixels and it has been determined from an average standard deviation 

of measurements for a set of sample scenes containing targets of various 

complexity and dynamics. The whole unoccluded paths of objects from each 

sequence have been evaluated. The length of these sequences is between 150 

to 400 frames. Table 7.2 shows that the average error is 3f 2.5 pixels. 
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Scgllt'lice ldl l't LocdIIsltioll l'. I flll 

Average Standard Ucvi, it 11)11 

WEYMOUTH2A static 0.87 0.25 

WEYMOUTH2A moving 1.30 0.40 
WEYMOUTH2A static 1.25 1). 21 

POOLEHI moving 1.87 0.54 
POOLEH1 moving 1.47 0.40 
POOLEH1 fluctuating 2.86 2.2') 
lOOLEH1 fluctuating 1.88 0.69 

WEYMOUTH2D static 1.27 0.44 
WEYMOUTH2D moving 1.33 O. 16 

Table 7.2: The average standard deviation of the measurements of vertical 
location and displacements for sample maritime scenes and objects. The 

objects varied in their appearance, scale and dynamics. 
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Figure 7.9: The structure of the tracking module. 

7.6 Structure of Tracking Module 

The tracking module estimates the states of objects within the scene. The stete 

consists of the location and velocity of an object. The state estimation is done 

by Kalman tracking that operates on the displacement data in the segment 

records generated and maintained by the matching module. The structure of 
the tracking module is outlined in Figure 7.9. 

The estimation consists of the following steps: 

. Trick initialisation. A Kalman tracker is initialised and associated with 

each object in the scene detected and matched in a specified rnu»her of 
initial frames. The initial estimates are obtained by averaging the input 

data in segment records over the specified number of initial frames. 

" Displacemt'nt compensation. Systematic errors in the location and dis- 

placement data are filtered out. These systematic errors are caused by 

vibrations of the imaging platform due to environmental conditions such 
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as cross-wind impact. The amplitudes of the vertical oscillations are 

detected in the Image stabilisation section of the module. The amplitudes 

are determined by a correlation based registration of an image patch 

surrounding the horizon projection. 

. Kalman tracking. The filtered location and displacement data enter the 

linear Kalman tracking. Possible occlusions are detected by a fixed 

thresholding of the current standard deviations of the input data. The 

Kalman tracking is re-initialised whenever an occlusion is detected. 

. Smoothing. The variances of the state estimates are further reduced by 

the Kalman smoothing. The smoothing is non-causal and therefore it has 

mainly the purpose of improving the visualisation of the tracks of the 

objects. 

The output of the tracking module consists of the estimated and smoothed 

states of the objects detected in the scene. The states consist of the location 

and velocity data in the image image units, i. e. pixels. The data enter the final 

module of the framework that remaps the data into the scene units using an 
inverse perspective projection. 

7.7 Summary 

A methodology for estimating the location and motion parameters of objects 
detected in the scene is presented. The estimation is based on displacements of 
geometric features detected in previous module of the framework. The tracks 

of objects are initialised by the data from the spatio-temporal database using a 
specified number of initial frames. 

Geometric features for motion estimation are detected tip to a certain 
precision and confidence. Even though the majority of the errors in detection 

can be regarded as uncorrelated noise, there are numerous sources of errors 
that are systematic and that can be filtered out. One type of the systematic 

error in maritime scenes originates from the vibration of the imaging device. 
An image stabilisation scheme is devised, based on image registration, that 
detects the vertical displacement of the horizon on a frame-to-frame basis. 

The positions of the submersion line, displacements and their variances 
represent measurements and their uncertainties that enter the Kalman track- 
ing. A discrete linear Kalman tracker is used for estimation of linear motion 
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parameters from noisy measurements. The suitability of the tracker is con- 
firmed by results of an analysis of filter state innovations. 

To avoid instability of the tracker in case the objects become occluded, 
the partial trace of the measurement matrix is compared against a preset 
threshold. The filter is re-initialised whenever the trace drops below the 
threshold, indicating that an occlusion occurred. 

Finally, the results of the Kalman tracking enter a non-causal Kalman 

smoothing that further minimises the residual error of the estimation. The 

smoothing improves the tracks for the display purposes. 
The results of the tracking and motion estimation enter the final module of 

the framework that relates the data to the real-world units and coordinates. 
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Chapter 8 

Remapping 

8.1 Introduction 

Up to this stage the framework modules operate on a two-dimensional image 

data. Objects are detected, tracked and their motions estimated in units 

of image coordinates. The final module of the framework converts the 

information acquired from the image into a real world coordinate system 

and units. This will enable all activity detected in the image to be related 

to the real world structure. For a human operator the information is more 

comprehensible using real world coordinates and units than image-based ones. 
The image to scene transformation is devised from a general perspective 

projection (Shapiro, 1995) by imposing geometry constraints applicable in 

maritime scenes as discussed in Section 2.3. Transformed information is then 

used for frame annotation. The original image is annotated and augmented 

with a radar-like view of the scene with all estimated and transformed 

parameters displayed. 
Detection of possible collisions using a collision zone surrounding the ob- 

servation point serves as an example of detection and assessment of predefined 

scenarios from the remapped data. In case a collision is detected a time to 

contact is determined which is a crucial information in decision making related 

to navigation of vessels. The collision zone surrounding the observation 

point represents just one of numerous early warning scenarios which can be 

configured. 
It is important to analyse the precision and resolution of the results obtained 
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as, inevitably, restrictions on the detection range and precision will be inherent 

due to the discrete nature of the imaging device (Borman et al., 1999). Closely 

related to the topic of precision and resolution is camera calibration, (Clarke 

and Fryer, 1998). Most machine vision applications are intended for indoor 

use and majority of calibration methods are designed with that fact in mind. 
An alternative approach to calibration based on vanishing points detected in 

images of architecture is considered as a camera calibration alternative for 

outdoor applications (Cipolla et al., 1999). 

8.2 Projective Transformation 

The mapping of a real world scene to image coordinates is typically expressed 
in terms of a projection matrix. A general projection from scene to image can 
be written as, (Shapiro, 1995; Pettofrezzo, 1978; Mohr and Triggs, 1996) 

X1 T11 T12 T13 T14 1 1X1 
X 

(8.1) X2 = T21 T22 T23 T24 
X3 

LX3 T31 T32 T33 T34 
X4 

where (xl, X2i X3) and (X1, X2, X3, X4)are homogeneous coordinates re- 

lated to image and world coordinates as 
(x, y) = (3 

, i) and (X, Y, Z) _ (k 
,X, -XLI). The transformation matrix 

T= [Tij] can be decomposed into 

f0 oy 1000 
Rye Rxy Rýz D., 

T= CPG =0f oy 0100 
Ryy Ryy Ryz Du 

0010010 
Rzy Rz, R2z Dz 

0001 

(8.2) 
where C is a calibration matrix accounting for intrinsic camera parameters 

(f is a focal length, ý is an aspect ratio, (or, oy) is the location of the principal 
point). As a convenience, the focal length is often expressed as two separate 
parameters, fx and f, instead of using intrinsic scale parameter ý. Matrix 
P is the projection and matrix G accounts for extrinsic camera parameters 
by encoding a relative transform between the world and camera coordinate 

198 



systems. The elements of G correspond to rotation {Ri 
, ß. 2T, It3 } and 

translation [Di, Dv, D,, ]T of the coordinate system. 
From there, the relation between image point x and scene point X can be 

written as 

f(R, X+Dý) 
O 

X=f 
R3 X+D. z (8.3) R2 X+D� 
R3 X+D, 0Y 

A simple example with the R= 13 and D=0, so that image and scene 

coordinates aligned, and e=1 and (os, oy) = (0,0) gives 

y-ZY 
(8.4) Xfx 

This transformation is clearly ambiguous, i. e. the relation holds for an 
infinite number of scene points lying on a line passing through principal point 

and image point (x, y). The relation makes a recovery of scene structure 

possible only up to an arbitrary scale. 
Nevertheless, if the points in the scene are planar and the position of the 

plane relative to the camera is known, the planar structure can be recovered 

unambiguously. To illustrate this a real world coordinate system is provided 

such that the position of the camera is known up to the tilt angle w around 

the X-axis (see Figure 2.3). All scene points are considered to lie on the 

XZ-plane. The camera is placed at the point (0, H, 0) and oriented in such 

a way that it overlooks the XZ-plane. The Z-axis is assumed to always point 
in the direction of the optical axis of the camera. The edge of the image plane is 

assumed co-linear with the XZ-plane so that the yaw and roll angles rc, 0 are 
both zero. The rotation matrix elements can be expressed using Euler's angles, 
(Jain et al., 1995) 
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r.,,, = cos 0 cos it 

rxy = sin w sin 0 cos it + cos w sin rc 

r,, Z = -coswsin0cosk+sinwsinn 

ryx = -cos0sink 

ry, = -sinwsin0sinK+coswcosrc (8.5) 

ry, = coswsin0sini+sinwcosic 

rzx = sin 0 

rzy =- sin w cos 

rzz = cos w cos 0 

From there, the matrix G can be written as 

10 

0 cos w G= 
0 sin w 
00 

By obtaining the intrinsic camera pa 

mation matrix T in 8.2 becomes 

oo 
- sin w0 

cos w0 
(8.6) 

01 

rameters from calibration the transfor- 

fx o.,, sin wO cos w0 
T0fy cos w+ oy sin w- fy sin w+ oy cos w0 (8.7) 

0 sin w cos w0 

Making T= {T1, T2, T3}T, a relation between image point X= (X, Y, Z) 
and scene point x= (x, y) can be written as 

_ 
Tl(X 1)T 

_ 
fxX 

+ ýý (8.8) T3(X 1)T Y sin w+Z cos w 

= 
T2(X 1)T 

- 
fy(Ycosw - Zsinw) 

Y T3(X 1)T Y sin w+Z cos w+ 
OY (8.9) 

Assuming that for scene points lying on the plane Y=H, Equations 8.8 

and 8.9 become 

fxX 

(8.10) Hsinw + Zcosw + oý 
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(a) Triangulation for range (b) Triangulation for horizontal offset 

Figure 8.1: Triangulations used to determine the range R and horizontal offset 
TV of an object in the scene from image measurements h and w. 

- 
fy(llcosw - Zsinw) 

+ oy (8.11) 
11sinw+Zcosw 

It is clear from Equation 8.11 that there is a one-to-one inverse mapping 
between the position in the image and the Z-coordinate of the point in the 

scene. By inverting Equation 8.11 a mapping from image y-coordinate to the 

scene Z-coordinate is obtained 

Z= 
H 

(8.12) 
tnn(w + arctanI'm J Y 

By inverting Equation 8.10 the mapping from image x-coordinate to the 

scene X-coordinate is obtained 

x-o= X=f (Z cos w+ II sin w) (8.13) 

The same expressions can be obtained from a simple triangulation. The 

configuration of the setup where a camera overlooks a planar scene from a 
height II above the plane under a tilt angle w is shown in Figure 8.1a. The 

objective is to obtain the range R and the offset IV on the scene plane in terms 

of an image measurement h and w. A main assumption is that the scene plane 
stretches to infinity in all directions, in which case the line connecting the 
horizon at infinity and the principal point are parallel to the scene plane. If 
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the location of the horizon projection in the image and the camera height H are 

known it is possible to obtain the range R assuming that 

ry=w+a (8.14) 

cot 7=y (8.15) 

tan a=7 (8.16) 

then R can be expressed as 

R=H (8.17) 
tan(w + arctan 7) 

It is the same relation as Equation 8.12, considering h=y- oy, f= fy and 

R- Z. 

The offset 6V is obtained from a simple triangulation outlined in Figure 8.1b, 

+ lie LV =w 
FýhI-2 2 

+f2 
(8.18) 

It can be shown that the relation is equivalent to Equation 8.13 by substitut- 
ing for h=y- ov from Equation 8.11 and considering w=x- ox. 

The f, f� and H are all obtained directly from the camera calibration, the 
tilt angle w is determined from the projection of the horizon. Assuming that 

the sea plane area under the observation of the camera is ideally horizontal 

and flat and that it stretches to infinity in all directions, the horizon can be 

placed at infinity. The tilt angle w can be determined from the projection of the 
horizon by inverting Equation 8.17 

tan(w + arctan 
ý) 

= Rl 
R/ 

=0w=- arctan f (8.19) 

where R' is the range of the horizon and h' is the projection of the horizon 
in the image. 

8.3 Camera Calibration 

The projection back to scene coordinates depends on the camera parameters 
that have to be obtained from a camera calibration process. These parameters 
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can be divided into two groups - intrinsic and extrinsic. The only extrinsic 

parameter that is crucial and that has to be obtained off-line is the height H of 
the camera above the sea plane. The value is easily obtainable as the structure 

of the vessel caring the camera is usually known to a great precision. 
There are, however, numerous intrinsic parameters that influence the 

remapping accuracy as well. Most calibration methods for machine vision 

are built on well-established methods developed for aerial surveying, dating 

back to World War I, (Clarke and Fryer, 1998). The main principle of the 

calibration techniques is to determine the parameters of camera devices such 

as focal length, principal point, pixel aspect ratio and distortions due to the 

imperfections of lenses and structure of the cameras. This is best achieved 

from the projection of a target with known geometry. Many methods have 

been developed, most of them are based on the projection of 3D calibration 

targets with known geometrical pattern, (Stein, 1997; Heikkila and Silven, 1997; 

Bakstein, 1999), or 2D planar calibration pattern, (Bakstein, 1999; Brand et al., 
1996; Zhang, 1998,1999; Stein, 1993). For applications in robotics, the 

calibration of cameras with zoom lenses is often needed, (Li and Lavest, 

1995; Li, 1994). 

The intrinsic parameters that are usually the subjects of calibration are 

" focal length in pixels (fi, fv) 

" principal point (ox, oy) - point where optical axis intersects the image 

plane 

" skew coefficient (a) - the angle between x and y pixel axes 

" distortions (k1, ... , k5) - radial and tangential lens distortion parameters 

The lens distortion model as specified, for example, in (Heikkila and Silven, 
1997), can be written as 

Xd 1= (1 + kir2 + k2r4 + k5r6) x" 
+ 

2k3xn yn + k4(r2 + 2xri) 

Yd Yn 

[k3(r2+2y)+2k4xnyn 

(8.20) 

where (xe, y, s) are undistorted coordinates from a pinhole camera projec- 
tion, (xd, yd) are distorted coordinates and r= xn +y ri is the radial distance 
from the projection centre (assumed (0,0)). The first part of Equation 8.20 
corresponds to radial distortion and the second part represents the tangential 
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distortion. For wide angle lenses these distortions are more significant and 

they would cause a substantial systematic error in image to scene mapping. 
In order to avoid propagation of the systematic error through the processing 

chain of the framework all images entering the framework are corrected for the 
lens distortions. The distortion consists of a pixel-based geometric transform 

of the image that reverts the distortion given by Equation 8.20. Efficient 

implementations of the lens distortion correction can be found, for example, 
in (Tsai, 1987; Heikkila and Silven, 1997; Bouguet, 2004) 

8.3.1 Calibration for Long-Range Imaging 

Stein (1993) points out an important aspect of camera calibration: the calibra- 
tion should be done for the range and depth of field at which the camera will 

operate in the actual application. The reason is, that the parameters established 
for a certain focal length do not remain the same for other focal lengths. Their 

changes are not linear and they cannot be easily extrapolated, (Li and Lavest, 

1995). 
Another assumption is that for a complete estimation of lens distortion 

parameters the target should cover the majority of the image used in cali- 
bration. For a near-range imaging this does not pose a significant problem 

as it is possible to build a target that would suit such constraints. However, 
for outdoor applications and longer imaging ranges any purpose-built target 

would be impractical. When calibrating aerial cameras (Clarke and Fryer, 
1998), natural targets like stars and frozen lakes were often used as calibration 
targets. Another option is calibration using aligned collimators available in 

photogrammetric laboratories. However, such equipment is very expensive 
and of limited availability. The main drawback of all these methods is that 
they are designed for cameras that are projecting onto a real film which still 
has resolution much higher than the resolution of an off-the-shelf CCD device. 

An alternative option for calibration for long range imaging applications 
arises from the use of architectural structures such as buildings where strong 
geometrical features of straight and parallel lines are inherent. Such a method 
is presented by van den fleuvel (1999). It uses vanishing points and straight 
lines (van den fleuvel, 1998) to estimate focal length, principal point and 
the first radial distortion coefficient. Even though van den Heuvel (1999) 
argues that the prime goal of the method is not a precise camera calibration for 
3D reconstruction, it seems feasible as a less precise alternative to laboratory 
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methods using collimators. 

8.3.2 Estimation Precision 

An important issue closely related to the camera calibration is the precision 

achievable when transforming from the image to the scene. Because the image 

is a discretisation of the actual scene and the transformation is not linear any 

error in estimation also becomes non-linear. This is indicated in Figure 8.2. The 

resolution of a single pixel decreases with the range in the scene. 

For example, for focal length of 1000 pixels and range 100 metres one pixel 

corresponds to approximately 2 metres, which means that the average error is 

2"/a per pixel. However, for 1000 metres the error is almost 100% per pixel and 

the estimation of the range is impossible. This is the major drawback of using 

a standard imaging device for range estimation in long range applications 

(Reilly et at., 1999). 
There are two options how to improve the resolution: larger focal length 

and higher image resolution. The relative resolution of the image is increased 

by increasing the focal length as the same field of view projects onto a larger 

area of the image. Because the area of the image is limited the increase in the 

focal length leads to the reduction of the overall field of view. A smaller field 

of view contains less of the scene structure and, therefore, it reduces the chance 

of the system detecting possible threatening objects. 
The second option is to increase the resolution of the image. This is done 

by increasing the size of the CCD chip inside the imaging device. There is 

no reduction in the field of view. The only limiting factor is the cost of such 

an enhancement as larger CCD chips are more expensive and require more 

powerful processing platforms to allow the increased number of pixels to be 

processed in a required amount of time. 

8.3.3 Calibration for Development Sequences 

The camera used in acquisition of the sequences for development of the 
framework was calibrated off-line, in laboratory conditions using a planar 
target and calibration toolbox by Bouguet (2004). A_sequence of 20 calibration 
frames of the planar target grabbed from differing positions was used. The 
depth of field was set to infinity and focal length preset to fixed values. Two 

values are used as various sequences were grabbed at two different focal 
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Influence of focal length on pixel resolution 
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Figure 8.2: Pixel resolution as a function of distance in the scene where camera 
overlooks planar scene. Note that both axes are logarithmic. The focal lengths 
are given in pixels. As the plot indicates, due to the non-linear projective 
transformation and discretisation of the scene in image, the resolution is non- 
linear. The resolution is approximately reciprocal to the range. This restricts 
the possible precision of range estimation towards horizon. One solution, as 
indicated in the plot, is to increase the focal length. This, however, reduces the 
field of view. 

f2[pix] f [pix] o2[ ix] o ix] k1 k2 k3 k4 
843 840.2 387.7 279 -0.2912 0.2141 -0.0001 -0.0016 
940 939 370 280 0.07 -0.07 0 0 

Table 8.1: Calibration parameters. The calibration frames are 736x560 pixels. 

lengths. 
The results are shown in the Table 8.1. The obtained parameters are 

approximations of the values that could be obtained when using a calibration 
target matching the above stated requirements. The calibration parameters are 
put to use at the beginning of the processing chain. All frames are corrected 
for lens distortions prior to any further processing by a transform inverse to 
Equation 8.20. Focal lengths and principal point are substituted into Equations 
8.10 and 8.11 and image coordinates are transformed to real world coordinates. 
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8.4 Image Annotation 

The final stage of the framework processing chain is the presentation of the 

results in a comprehensible form to the human operator. The important cues 

(Hitchcock et al., 2003) for collision detection are the position, velocity and 

direction of motion of the object. It is necessary to draw the attention of the 

operator to any activity in the scene that might result in an accident such 

as targets on collision course towards predefined zones. For objects on a 

collision course a time to contact is crucial information in the decision making 

process. Provision of such an information is an essential purpose of any 

semi-automated surveillance system that is designed to help the operator in 

situation assessment. 

8.4.1 Events of Interest 

Events of interest are user-specified heuristic rules that trigger various pre- 
defined responses whenever location or motion data of objects meet the 

conditions specified by these rules. Three quantities enter the evaluation of the 

rules - position, velocity magnitude and velocity direction. The rules can either 
test the individual quantities or their combinations. The specification and 

representation of the rules defining events of interest is application-specific. 
The following examples are some illustrations of how the events of interest 

can be defined. 

Security zones A security surveillance application monitoring a harbour 

might require detection of any craft entering private moorings. The entrance 
to the moorings is overlooked by a camera on a fixed, elevated platform. A 

security zone is set up that covers the mooring entrance. The security zone 
is specified by an interval of ranges and bearings detected with respect to the 
location of camera. An event-specifying rule is based on the evaluation of the 
objects' current location data. The rule specifies that "any detected object with 
current location within the intervals specified by the security zone triggers 
the response". The response can be a notification of an operator, an alarm, 
launching of an automatic video logging facility, etc. 

Collision Avoidance A camera mounted on a vessel overlooks the sea in 
front and detects any moving objects in the scene. Event of interest is specified 
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as detection of any object on a collision course. A collision zone surrounding 

the point of view is defined. The width of the zone corresponds to the 

minimum allowed distance between the vessel and any object passing it. 

The event-specifying rule is based on the evaluation of the velocity direction. 

The rule states that "any detected object with velocity vector pointing inside 

the collision zone is on a collision course and it triggers the response. " The 

response can be a notification of an operator, an alarm, an automated change 

of course, etc. 

Speed camera A camera is monitoring a busy confined area with imposed 

speed limit such as a harbour entrance. The event of interest involves any 

craft exceeding the speed limit. A simple rule based on the evaluation of the 

velocity magnitude of each detected object states that "any object with velocity 

magnitude greater than specified limit triggers the response". The response 

can be a notification of an operator, an alarm, launching of an automatic video 
logging facility for evidence gathering, etc. 

The rules specifying the events of interest are not restricted to the cases 

presented above. A more complex scenarios can be built up depending on the 

targeted applications. 

8.4.2 Time to Contact Estimation 

In addition to the targeted events of interest discussed above a time to contact 
(TTC) is estimated in collision avoidance scenarios. Time to contact is a crucial 
information necessary in the process of decision making. Sufficient time ahead 
is necessary when planning any collision avoidance maneuvers. The maritime 
objects move with considerably larger inertia due to a low friction of the water. 
Any change of direction must be initiated well in advance. 

The TTC is determined as the time for an object to reach the collision zone 
when moving at the current speed along the line connecting the centres of the 
submersion line and the collision zone. This connection line represents the 
line of sight between the object and the collision zone. The Kalman tracker 
produces estimates of object location and velocity states together with their 
uncertainties. These uncertainties can be employed in the estimation of the 
TTC as well. 

The situation of a target approaching the collision zone is illustrated in 
Figure 83. The target moves towards the collision zone with velocity vector 
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Figure 8.3: A target is on a collision course moving towards a collision zone. 
The Time To Contact estimates are determined from the projections of velocity, 
it's uncertainty and uncertainty of the location onto the direction of the line of 
sight. The line of sight connects centres of the object's submersion line and the 
collision zone. 

v in such a way that its profile projected along the line of sight overlaps with 
the collision zone. The TTC is determined in the following steps 

1. The length of a line of sight d connecting the submersion line and the 

zone centres is calculated. 

2. The uncertainty of the location estimation in X and Z coordinates of the 
scene is projected onto the direction of the line of sight. The length of the 
projection Ad is calculated. 

3. A projection vp,. o j of the velocity vector v onto the direction of the line of 
sight is obtained. 

4. The uncertainty of the velocity estimation in X and Z coordinates is 
projected onto the direction of the line of sight. The length of the 
projection ýý�. 

01 
is calculated. 

Three values of the ITC are determined, pessimistic, centre and optimistic as 
defined by 

d- Ad 
Tv = (8.21) (v'proi I+ A�y. 

o; 

d 
Tc ' ýVproj (8.22) 
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d+id 
r0 = 

VProjI - 
1Vyroj (8.23 

The rp indicates how much time is left if the target moves at the highest 

speed over the shortest distance, the centre estimate r, is the most probable 

estimate and -r0 is the time left if the target moves at the lowest speed over the 
longest distance. All three values provide the operator with crucial information 

needed in planning of any action. 

8.4.3 Image Annotation 

The results are presented to the operator on a convenient radar-like chart due 

to the prevalence of radar applications in maritime traffic domain. Each frame 

of the sequence is annotated with detected segments highlighted and labelled 

by unique numbers. The segments contain the detected submersion lines as 

well. The centre of projection is marked at the bottom of the frame by a short 

vertical line. The line marks the origin of horizontal coordinate in the scene. 
The image is augmented with a radar-like chart of the scene monitored by 

the camera with targets located at estimated locations. Each target is assigned 
the same number of the corresponding segment in the frame. 

An additional information about the range and velocity of the target is 
displayed on the radar together with estimation uncertainties. If the target 
has been tracked for a longer period of time, it's smoothed track is shown as 
well. 

A collision zone is outlined on the radar as line on each side of the centre of 
coordinates. This zone has a predefined width and it represents the minimum 
distance from the observation point where the passing by is still considered as 
safe. 

Objects on collision course are highlighted in the annotated frame and on 
the radar. The highlighting provides a visual cue to the operator that there is 

a collision likely to occur. A TTC values obtained from Equations 8.21-8.23 are 
displayed on the radar as well. 

Outputs of the annotation process for sample sequences are shown in 
Figures 8.4,8.5. 
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8.5 Structure of Remapping Module 

lie i, 1] 1. +1 'l'IT1)" 111, tidldc i, the I-t"t patt tit tile framework. It takes the data 

provided by tlu' tracking mtxiulc as an input and re-projects them back to 

the Keene co ordinates and units. The data are also evaluated for any user- 

th"cthed events of interest. The hrnx-essing coticlitdes by annotation of the 

tirW11. I ""tlueme and notification of (1w operator about any events requiring 

his attention such as collision threats. The structure of the remapping module 

1%. �u111lied in Figun" 8.6. 

I Ii, mudtilr t tm. tst,. of the following parts: 

. Irarrlirrmafrrri of cc'c, rclnwtr". The location and velocity data provided by 

the tracking nuxitile are transformed back to the scene co-ordinates and 

units in order to provide the operator with comprehensible information 

about the activity in the scene. 'I he transformation is based on an 

inverse projective tran. torm that is constrained by the ('round Plane 

( inistraint, (Worrall et al., 11004). The parameters of the transform are 

obtained during an oft line calibration of the camera. The parameters 

are also utilised in the I)isfcrrtio n correction module of the framework that 

< oilliviisate% it it itim t for the lens distortion. 

"1 rrtrt fnorr ()/rz'eut of rrrterrct. I'vents of interest are detected by evaluating 

the rrflhlppx"d location and velocity data against the set of predetined 

nrleý I he framework triggers a response whenever the conditions 

ýIýý ili. "d by the rtilees . irr met. 

0 lma%y annotation. The final step in the prc ersing is the annotation of 
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the original sequence. The detected objects are highlighted and labelled. 

A radar-like overview of the monitored scene is generated with all 

important data such as speeds, directions and ranges of objects in the 

scene. Any objects involved in the events of interest are highlighted as 

well. 

The annotation of the input sequence is one of many possible utilisation 

of the output of the framework. There are other applications including an 
integration of the framework into a more complex environments such VTS as 
discussed in the introducing Chapter 1. 

8.6 Summary 

The remapping module (shown in Figure 8.6) of the framework comprises of 
the inverse mapping, assessments of events and image annotation. The inverse 

mapping relates all the estimates obtained in the two-dimensional image to 

the three-dimensional scene structure. An unambiguous relation between the 
locations in the image and on the sea plane is obtained either from a general 

projective transform or by a simple triangulation. 

Issues of camera calibration for long range imaging are discussed. An 
inherent limitation of the precision of the inverse mapping is analysed. The 
limitation is caused by non-linear projection of the sea plane onto a discrete 
image plane with a finite resolution. An improvement is suggested, either by 
increasing the resolution of the sensor or by increasing the focal length. 

The output of the framework is presented to a human operator in a 
comprehensible form. Each original frame is annotated to indicate the detected 

objects. A radar-like chart is plotted and regularly updated. It contains all the 
important information such as the location and velocity of objects in the scene. 

An early warning functionality is illustrated using a simple scenario of a 
collision zone surrounding the observation point. Any object moving towards 
the collision zone is highlighted by the system as a possible threat. A Time To 
Contact (TTC) is introduced as a measure crucial in decision making and action 
planning. It is determined from the location and motion of the threatening 
object relative to the observation point. Objects that are on collision course are 
highlighted in the original image as well as on the radar chart. 
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Chapter 9 

Framework Cross-validation 

9.1 Introduction 

The cross-validation of the complete framework is done on two maritime 

sequences previously unused in the development of the framework in order 

to test whether the framework possesses scene and object independence. Both 

sequences are captured at scene conditions varying from those in development 

scenes. In addition, both evaluation sequences are taken from a moving camera 

mounted on a passenger ferry which differs from the development scenes that 

were captured by a static camera. 
Both evaluation scenes contain objects that are varying in their appearances 

and motion characteristics. This will allow confirmation that the parameter 

values and thresholds are chosen by logical and experimental means and that 

they work for the majority of scenes. 
The system is evaluated in the following three categories: object detec- 

tion and tracking, motion estimation and inverse mapping. The evaluation 

methodologies used in each category are detailed in following sections. 

9.1.1 Object Detection and Tracking 

The system is evaluated for its ability to detect and continuously track genuine 
objects while minimising false negatives and positives. False negatives corre- 
spond to objects that are undetected in the scene. False positives correspond to 
detected regions that do not correspond to any actual object or it's part. 
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Detected objects are tracked by means of a feature-based correspondence 

matching. Motion parameters are estimated based on the matching. All 

tracked objects are also continuously assessed for predefined events of interest 

by evaluating the location and motion parameters using a set of predefined 

rules. The choice of the rules generally depends on the requirements of a 

particular application. The scenario proposed here is the one of collision 
detection where a collision zone surrounding the observation point is defined. 

The performance of all detection, tracking and threat assessment is illus- 

trated by an activity chart. The activity chart clearly shows if and when an 

object is detected, tracked or obeys the scenario rules. Detection and tracking 

of false positives is charted as well. The activity chart is used to determine 

time periods of tracking and threats relative to the periods of detection of each 

object. The chart also shows detection and tracking of false negatives and 

positives. The data in the chart express the detection sensitivity and tracking 

robustness of the tracker. 

9.1.2 Motion Estimation 

The stability and accuracy of the estimation of location and motion of tracked 

objects are evaluated. The level and consistency of estimation errors during 

tracking are also evaluated. 
The evaluations are only in relative terms as the ground truth for the eval- 

uation scenes is unavailable. Paths generated by Kalman tracker/smoother 
for objects in the scenes are plotted together with velocity vectors and location 

uncertainties. 

9.1.3 Inverse Mapping 

The consistency of the remapped values throughout the scene is evaluated. The 
hypothesis is that the estimated dimensions of an object in the scene are similar 
and independent of the position of the object in the image. The evaluation tests 
the hypothesis by determining heights of the buoys in the scene coordinates 
along their paths and checking the consistency of these values. 

The buoys are chosen for the consistency evaluation as it is only their size 
that changes through the sequences. They appear as homogeneous regions 
of low intensity compared to surrounding sea which makes them simple to 

segment. A binarisation method by Otsu (1979) is applied to every detected 
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Figure 9.1: Horizon oscillations in evaluation sequences. The apparent 
increasing trend in the height of the detected horizon is due to the fact that 
the camera has been hand-held during the acquisition process. 

segment containing the buoy being tracked. The height of the buoy in the 
image is given as a vertical size of the corresponding blob. 

The actual height of the buoy is obtained from the inverse projective map- 
ping. Camera calibration parameters indicate square pixels as the difference 
between f= and fy is negligible. It is, therefore, possible to assume that 
horizontal and vertical resolutions are same at a particular depth of the scene. 
The actual height of the buoy is given as a product of height in pixels and 
horizontal resolution at the location of the buoy in the scene. 

9.2 Evaluation Sequences 

Both sequences were taken from a moving passenger ferry that travels between 

Cowes and Southampton Ports. The camera was positioned approximately 7 

metres above the sea surface. In both scenes the horizon is projected within 
the visible area. This enables the horizon tracking to compensate for the 

oscillations of the camera. The detected oscillations are quite significant in 
both sequences (sec Figure 9.1). There is an apparent increasing trend in the 
detected displacements of the camera. This is due to the fact that the camera 
was not mounted on a fixed platform during the capture but it was hand-held. 
Slight continual relaxing of the muscles due to the prolonged holding of the 
camera caused a vertical decline from the initial camera position. 

The errors in position estimation of the objects in the scene due to the 
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presence of the waves are analysed in Section 23.22. However, the errors are 

not considered significant as the sea conditions in either of the scenes are calm 

with negligible significant wave heights. 

The intrinsic camera parameters were not available at the time of a capture 

except for the focal length which was fixed to 100 mm in both scenes. 

The parameters were approximated from parameters obtained for a different 

camera of a similar type. The approximated parameters were 

" f,, = fy = 940 pixels 

" o, = 312 pixels, oy = 267 pixels 

" kl = -0.02 and k2 = 0.17. 

The frame rate in both sequences was 12.5 frames per second which is a half of 

standard 25 frames per second, the frame size was 720 x 576 pixels. 

9.2.1 Sequence A 

The sequence is 847 frames long. The initial horizon position is estimated at 30 

pixels from the top edge of the frame. The processed region is 512x512 pixels, 

starting at position (150,40) in the original frame (site Figure 9.2a). 

The scene contains a single large channel marking buoy on the right, 

moving down and out of the image. There is a yacht moving from the top 
left to the middle right of the image. It is accompanied by a large and bright 

wake moving in a same direction. A second channel marking buoy appears on 
the right, near the top edge of the processed region. Channel marking buoys 

and the yacht all start within the scene. 
The near channel marking buoy leaves the scene first, after approximately 

210 frames. The yacht follows, after approximately 790 frames. The far channel 
marking buoy remains in the scene throughout the sequence. A large bright 

wake develops through the scene that travels towards the bottom edge of the 
image. It changes structure along it's way and breaks into smaller wakes as it 

reaches the observation point towards the end of the sequence. Figures 9.2a-d 

show the initial, intermediate and final states of the scene. 

9.2.2 Sequence B 

The sequence is 560 frames long. The initial horizon position is estimated at 
112 pixels from the top edge of the frame. The processed region is 512x436 
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Sequence A 1 1 Large 
buoy 

Yacht Small 
buoy 

Large 
wake 

Other 
wakes 

Detected 198 788 633 827 302 
Tracked 194 729 593 400 112 
Threat 0 86 1 138 9 

Tracked 100% 93% 94% 49% 38% 
Threat 0% 11% 0% 17% 3% 

Table 9.1: The evaluation of object detections, trackings and threats for 
sequence A. 

pixels, starting at position (200,140) in the original frame (see Figure 9.3a). 

The scene contains small channel marking buoy moving from the centre 
towards the left. A boat enters the scene at the top right corner of the image 

travelling at a constant speed and direction across the scene towards the left 

and centre of the image. A distant yacht and a second channel marking buoy 

appear near the centre and on the right of the top edge of the processed region 

approximately one third through the sequence. They both remain visible in 

most of the frames through the rest of the sequence. 
The first channel marking buoy starts within the scene and leaves the scene 

after approximately 74 frames. The boat enters the scene at frame 23 and leaves 

the scene at frame 308. The yacht and the second buoy enter the scene at 

approximately frame 232. They both remain in the scene till the end of the 

sequence with an occasional dropout caused by a horizon oscillation. 

9.3 Evaluation Results 

9.3.1 Detection and Tracking 

Activity charts for both sequences are shown in Figures 9.4a, b. The charts 
indicate whether and when objects are detected, tracked and considered as 
threats. A single black vertical line corresponds to a single occurrence of one 
of the three events - detection, tracking and threat - in a single frame. Multiple 

occurrences in a single frame are colour-coded. 
Tables 9.1 and 9.2 summarise the results presented in activity charts. The 

periods of tracking and threat relative to detection periods are provided in the 
last two rows of each table. The values are calculated for detection periods 
shortened by five frames necessary for initialisation of the Kalman tracker. 
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Table 9.3: 'I'll(, evaluation results of the detection and tracking obtained for the 
sequences used in the development of the framework. The values are relative 
to the number of the frames in which the objects are present in the scenes (a 

whole sequence is considered in case of the wakes). 

9.3.1.1 Detection 

No false negatives are encountered in detection of any of the objects in both 

sequences which indicates adequate sensitivity, scene and object independence 

and robustness of the initial segmentation algorithm. Objects are detected as 

soon as they enter the scene and detection continues until they leave the scene. 

I)rohuººts in the detection of certain objects are not due to any failure of the 

segmentation but they are caused by occlusions. An occlusion occurs in the 

sequence A where the yacht moving across the scene occludes the small buoy 

near horizon in the last third of the sequence. This is indicated by a gap in 

the activity chart in Figure 9.4a (labelled 'SMALL BUOY'). These results are 

consistent with the results for sample development scenes SANDIANKS2H 

and W1 YMOUTI12A (see Figure 9.5) presented in the Table 9.3.1. The 

maximum amount of T% of false negatives is detected in the SANDI ANKS2H 
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sequence for a small target of a significantly low contrast at the horizon. The 

WEYMOUTH2A sequence contains no false negatives. 
False positives are detected in 39% of the frames in the sequence as 

indicated in the last row of activity charts (labelled 'OTHER WAKES'). These 

false positives correspond to wakes that occur due to motion of man-made 

objects in both scenes. 

The question is, should the wakes be generally ignored by the system or 

are they significant in threat assessment ? The wakes are mainly caused by 

presence or motion of rigid objects that can become subject to a collision. The 

large, bright wake in sequence A, for example, has well defined sharp contours 

and homogeneous texture and one can imagine a piece of debris of a similar 

appearance floating on the water. Smaller objects such as jet skis can be easily 
distinguished by the wake they generate, even over a longer distance. The 

conclusion is that wakes are usually associated with a presence and activity of 
objects that might become potential threat candidates. 

The small wakes that appear in the sequence A are caused by breaking up of 
the large wake. The large wake moves towards the point of observation which 
is indicated by a high number of frames in which the wake is considered as a 
threat. 

The wakes in the sequence B are caused by the motion of the boat across the 

scene. The wakes start to appear when the boat leaves the scene. Their number 
gradually decreases as the trail wake generated by the boat disintegrates. 

9.3.1.2 Tracking 

Once the object is detected, associated Kalman tracker and smoother are first 
initialised by data from five frames. The data from these frames are necessary 
to estimate the initial object state. Tables 9.1 and 9.2 show that all objects in 
both sequences are tracked at least in 93% of frames in which their presence 
is detected with two noticeable exceptions - the YACHT in the sequence B is 
tracked in 85% of the frames and SMALL BUOY 11 in the sequence B is tracked 
in 55% of the frames. There are two causes of the reduced tracking periods: 

" no corners are detected - if an object is small or it hasn't got any salient 
features it is not possible to determine it's displacement. 

. detected submersion line is unreliable - the position of the line detected 

over multiple frames changes by more than allowed amount of pixels. 
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This is a common issue with wakes and occlusions as the structure within 

the segment changes rapidly. It also happens with small objects near 

the horizon with low contrast and blurred appearance. The difference 

in intensity distributions covered by the detection mask is usually not 

enough to trigger a response of the line detector. 

As soon as the geometric features are reliably detected again the tracking 

resumes. A gap of five frames is, however, necessary for tracker initialisation. 

Occasional dropouts in tracking occur in the sequence A as the large wake 

moves closer to the yacht. Both are segmented as a single object causing 

the tracker to reset. The small buoy in sequence A is located close to the 

horizon. The buoy partially disappears from the scene and the tracker is reset 

as the horizon drifts upwards during the sequence. The large wake breaks up 

towards the end of the sequence making the detection of the submersion line 

unreliable. Many dropouts in the tracking occur as a consequence. 

The large buoy and the boat in sequence B are tracked without any dropouts 

for most of the time. The tracking of the boat drops out initially for a couple 

of frames even though the boat is being detected. This is due to the fact that 

the boat is segmented as a part of a wake detected previously. The tracking 

resumes after five frames. The second dropout follows shortly after the wake 

and the boat separate. 
The dropouts in tracking of the remaining two objects (the yacht and the 

buoy) are caused by the oscillating horizon. Both objects are very close to the 

top edge of the processed region and they disappear from the region on several 

occasions. 
A number of small wakes are tracked in both sequences. The period of 

tracking for most wakes is relatively short due to their transient nature. If 

the wake is more persistent then it is probably associated with a presence and 
activity of an object and it is tracked for longer. Such is the case of the wake 
following the boat in the sequence B. Figure 9.6 shows tracking periods for 

various small wakes detected in the sequences. As the plots indicate most 
wakes are tracked for less than ten frames. 

These results are consistent with those obtained for the development 

sequences listed in the Table 93.1 with two following exceptions. The BOAT 
A is near the horizon and there is not enough visible structure on which to 
detect any trackable corner. The POLE has a strong reflection in the water that 
prohibits a reliable detection of the line of submersion. 
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Figure 9.6: Tracking periods (trace lengths) of various small wakes detected in 
both evaluation sequences. As the plots indicate most of the periods are below 
ten frames. The longest traces are associated with motions of real objects in the 
scene (wake following the boat). 

9.3.1.3 Threat Assessment 

All tracked objects are assessed for a scenario of a collision threat. If the 

current velocity of an object points inside the collision zone surrounding the 

observation point the object is highlighted as a potential threat. The scenario 

of the collision threat is established by defining a5 metres collision zone 

surrounding the observation point. An object is marked as a threat if it's 

motion vector points inside the collision zone. 

The significant threats in the sequence A come from the yacht and the large 

wake as both subjects move across the scene and close to the observation point. 
The threat from the yacht occurs in the first half of the tracking period as the 

yacht moves from top left comer towards the centre of the image. The threat 
diminishes as the yacht passes by the image centre and continues to move 
towards the right edge of the image. The threat from the large wake is more 
persistent as the wake moves directly towards the observation point. 

The only major threat in the sequence B comes from the boat moving from 

right to left across the scene. The threat is detected at the beginning of the 

tracking period. The threat diminishes as soon as the boat passes by the image 

centre. The secondary threat occurs when wakes generated by the passing boat 

move towards the observation point. The threat from these wakes does not last 

for a long, as the values in Table 9.2 indicate. 
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93.2 Motion Estimation 

Figures B. 1 - B. 6 in Appendix B show the outputs of the Kalman tracking in 
image and scene coordinates. The results for objects that are tracked in at 
least 80% of frames are provided. The locations and uncertainties are plotted 
together with every tenth motion vector placed at the corresponding location. 

Table 9.4 summarises the detection errors for each tracked object. The 

values are median standard deviations. The median is used to avoid influence 

of states with high variances that occur during the initial transient phase of the 
Kalman tracking. 

The transient phase of the Kalman tracker is characterised by a high 

variance of the estimated states. It occurs at the beginning of the tracking over 

a couple of frames as illustrated in Figures B. 2a, b, for example. The transient 

state estimates are close to the actual states of an object despite initial high 

variance. 

The non-linear mapping from image to scene coordinates dramatically 

increases the estimation errors for objects close to the horizon. This is 

illustrated in Figures B. 3, B. 6 as well as indicated by values in Table 9.4. Both 

objects are tracked in the image with errors less than one pixel. The inverse 

mapping causes approximately ten times larger errors than for other objects 
due to the fact that both objects are close to the horizon where the resolution 

per pixel decreases. The results confirm the limits of the system's precision 

caused by camera resolution as discussed in Section 8.3.2. 

Figure 9.7 shows polar plots of velocity vectors for some of the objects being 

tracked. The speed is in knots (1 knot (international) = 0.51444457 m/s or 
1 knot (UK) = 0.51477004 m/s) and the bearing is in degrees. The average 

speed estimates together with standard deviations are summarised in Table 
9.5. Relatively high standard deviation is caused by inclusion of all motion 
vectors along the path of the tracking. 

9.3.3 Inverse Mapping 

The final evaluation tests the consistency of the inverse projective mapping 
by checking the heights of buoys in both the image and the scene. Both se- 
quences contain channel marking buoys that are well-suited for the evaluation 
described above. Each buoy seemingly moves due to the self-motion of the 
ferry. The buoy in the sequence A moves predominantly towards the ferry, 
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Figure 9.7: Velocity vectors of tracked sample objects. The speed is in knots. 
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Image 
location pix velocity JpixTsT 

y x y 

LARGE BUOY (se q. A) 0.7 0.5 1.0 0.9 
YACHT (se q. A) 1.1 0.8 1.1 1.0 

SMALL BUOY (seq. A) 0.5 0.7 0.9 1.0 
LARGE BUOY (seq B) 0.7 0.6 1.0 0.9 

BOAT (se q. B) 1.6 0.4 1.3 0.9 
YACHT (seq. B) 11 0.5 0.9 0.9 1.1 

Table 9.4: Medians of errors (standard deviations) of state estimates for objects 
in evaluation sequences. 

Object velocity [knots] standard deviation [knots] 
Buoy (A) 2.0 0.5 
Yacht (A) 2.0 1.6 
Buoy (B) 8.3 3.3 
Boat (B) 5.9 2.8 

Table 9.5: Summary of velocity estimation in evaluation sequences. 
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Figure 9.8: The estimated height of LARGE BUOY in sequence A. 

while the buoy in the sequence B moves along the horizontal direction. 

The binarised segments containing the buoys are listed in Figures B. 7, B. 8 in 

Appendix B. The heights of each buoy in the image and the scene are plotted in 

Figures 9.8,9.9. Tables 9.6 and 9.7 contain average heights, standard deviations, 

extreme values and distance ranges for both buoys. 

The nomenclature of U. S. Coast Guard (G-SEC-2,2003) recognises different 

types of buoys according to their dimensions. The types are distinguished by 

labels such as '9X35' where the numbers represent the total width and height 

of the buoy in feet. These values can be considered as a ground truth assuming 

that there is no significant difference between the US and UK regulations. 
Doolin (2003) points out that only about one half of the height of the buoy 

is above the water. 
The height of the buoy in the sequence A is estimated at 3.5 metres (11 

feet 5 in) with 0.2 metres (7 in) standard deviation. This would correspond 
to one of 8X26 or 8x21 buoy types designed for open locations according to 
G-SEC-2 (2003). The height of the buoy in the sequence B is estimated at 1.4 

metres (4 feet 7 in) with 0.2 metres (7 in) standard deviation. This would 

correspond to one of 7X15 or 5x11 buoy types that are designed for semi- 

exposed and protected locations. Both heights are estimated with the same 

standard deviation which confirms the consistency of the inverse mapping. 
These estimates are only approximations due to the absence of a ground truth 
information and due to approximation of camera calibration parameters. 
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Figure 9.9: The estimated height of LARGE BUOY in sequence B. 

I Ai2(: F. RI 10Y (Al Height Range 

average std. dev min. max. min. max. 
image [if ix 37.5 4.2 30 47 92.9 69.6 

scene m 3.5 0.2 3.1 3.9 74.5 98.3 

Table 9.6: Buoy tracking results for sequence A. 

9.4 Summary 

The system is evaluated in three categories: detection and tracking, motion 

estimation and inverse mapping. The evaluation in the first category shows 

the ability of the system to detect various objects in the scene regardless of 

their size and appearance. The system attempts to track each detected object 
by estimating it's motion parameters. The state of the object is assessed for 

a threat and an alarm is raised if the motion parameters fit the conditions for 

threatening object. 
The results show that all objects in the scene are detected with no false 

negatives present in either of the scenes. The tracking of the objects is more 
than 90% of their presence in the scene. The remaining 10% of time without 
tracking corresponds to occlusions and drop-outs in corner detection in case of 

LARGE BUOY (B) Height Range 
average std. dev. min. max. min. max. 

image [pix] 1 9.1 11171 12 1 92.3 1 54.8 1 

Table 9.7: Buoy tracking results for sequence B. 
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small objects near the horizon. These values are consistent with those obtained 
from evaluation of the framework using the development sequences. The 

threat is established for all objects that match the conditions of a threat. 
The evaluation in the second category investigates the error of the location 

and motion estimates. All objects are tracked with an error (standard devia- 

tion) in the image which is less than two pixels in either direction excluding 

the transient states at the beginning of the tracking. The errors of estimates 

remapped back to the scene are significantly larger for objects near horizon 

which is expected as the resolution of the camera is limited. 

The estimated average speeds of some selected objects are about 2 knots 

for sequence A and 6 and 8 knots for the sequence B. These values can be 

considered in accordance with the real situation despite the absence of a 

ground truth for either sequence. 
The last evaluation category tests the hypothesis that inverse mapping 

should produce consistent values that are independent of location and velocity 

of the objects. The hypothesis is tested using projections of channel marking 
buoys in the sequences. Each sequence contains a buoy that is tracked and its 

height in pixels is determined from binarisation of the corresponding segment. 
The heights of the buoys are estimated at 3.5 metres with relative 5% standard 
deviation in the sequence A and at 1.4 metres with 11% relative standard 
deviation in the sequence B. Both buoys can be associated with actual buoy 

classes specified in (G-SEC-2,2003) nomenclature. 
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Chapter 10 

Conclusions 

10.1 Summary of Results 

The work presented in this thesis has identified and addressed the problem 

of automated visual surveillance systems for the maritime transportation 
domain. The main objective has been to deliver a machine vision framework 

that analyses the maritime scene, identifies and tracks any objects in it, assesses 
their activities for specified events of interest and delivers the information 

to a human operator in a comprehensible form. The framework operates on 

monocular, monochrome, visible range video sequences captured by a camera 

monitoring the sea plane from several metres above. 
The general contribution of the thesis consists in bringing the technology 

of conventional land-based surveillance and tracking systems to the maritime 
sector. Until now the surveillance task in maritime sector relied on the 
limited vigilance of the human operator. The proposed framework automates 
the surveillance process and offers new areas of vision applications. The 

potential integration of the framework with existing navigational aids can 
solve some of the persisting problems associated with the use of the radar. 
As a complementary technology it can provide additional information that can 
facilitate resolution of the navigational tasks. 

In order to achieve that the following two primary contributions are 
delivered: the novel segmentation method based on a scene and object 
independent texture analysis of the individual sequence frames and the 
introduction of a new geometric feature corresponding to the submersion line 
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of an object in the scene that allows an unambiguous localisation of the object 
in the scene coordinates from a single calibrated camera view. Both methods 

are essential elements in the presented framework that consists of the following 

parts: 

Texture-based Scene Segmentation Main emphasis of the research is on 
the segmentation part of the framework as there is a perceptible absence 

of robust segmentation methods that can specifically target the maritime 

scenes. Previously proposed segmentation methods of maritime scenes are 

of limited use due to their specialisation. Methods that operate on infra-red 

or airborne sequences can automatically detect only targets that are small, 

weak (Messer and Kittler, 2000; Messer et al., 1999) or have a specific colour 
(Sumimoto et al., 2000; Yamamoto et al., 1999). Other methods can detect 

moving targets only (Sanderson et al., 1997; Sanderson et al., 1999) or they 

rely on restrictive assumptions (Smith and Teal, 1999; Smith et al., 2003). The 

proposed segmentation algorithm addresses all these issues and provides a 
method of detection of a variety of static and moving objects at extended 
ranges in maritime scenes with varying environmental conditions. 

The algorithm proposed in Chapter 4 is a scene and object independent 

segmentation algorithm that perceives the maritime scene as a planar texture 
under perspective projection where objects correspond to local variations in 
the texture. The structure of the segmentation grid adapts to the projection 
so as to minimise a bias in texture characterisation. By accounting for 

perspectiveness in the scene, the segmentation can detect objects at extensive 
ranges. The texture is described by a set of statistical moments commonly used 
for characterisation of natural textures. 

The proposed thresholding method based on principles of non-parametric 
clustering enables to find objects in the scene without any prior knowledge of 
their appearance. No training is necessary and the thresholding scheme used 
for selection of objects in the scene is temporally adaptive. All values of param- 
eters of the segmentation algorithm have been obtained either by evaluations 
using multiple sets of typical maritime scenes or derived empirically. 

The cross-validation of the segmentation algorithm carried out in Section 
4.9.5 shows that the relative number of objects being missed in the sequence is 
below 1%. The final cross-validation of the complete framework in Chapter 9 
confirms the result as all objects in both evaluation scenes are detected. 
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Object Characterisation The proposed object characterisation using geomet- 

ric features avoids segmentation of the object at pixel level that often assumes 

object's homogeneity and plain structure, thus restricting it's use. Instead, 

each detected object in the scene is assigned a set of geometric features that 

characterise it. Salient features such as corners prove to be a competent 

representation of the structure due to the man-made nature of majority of 

objects in maritime scenes. 
A new geometric feature corresponding to a submersion line that is spe- 

cific for objects in maritime environment is introduced in Section 5.2. The 

submersion line is a competent estimate of the position of the nearest point 

of an object with respect to the camera. This nearest point is convenient for a 

collision detection as it also represents the point of the possible impact. Any 

object detected in the scene is completely specified by the segment enclosing 
it, its submersion line and a set of corners detected within the segment. This 

allows to locate and track the object without the need to resolve it's exact 2D 

shape or 3D structure. 

Object Tracking A feature-based motion tracking algorithm is described 
in Chapters 6 and 7. A search for inter-frame correspondence between 

corners based on the criterion of similarity between small intensity patches 
surrounding each comer provides an estimate for inter-frame displacement of 
the object. The Sum of Squared Differences in combination with median fusing 

provide the minimum error in displacement estimations. The error is below 
0.5 pixels in both directions for the artificial and real evaluation sequences. 

A simple linear predictor propagates the tracking in case of dropouts in 

corner detection, as suggested by Shapiro (1995). The predictor increases the 
coherence of the tracking by 12% for artificial evaluation sequence and by 5% 
for real evaluation sequence. 

A sub-pixel localisation improves the precision of matches. A horizon 
tracking scheme is proposed to avoid systematic error in localisation of the 
matches caused by vertical oscillations due to a cross-wind impact on the 
imaging device. 

Based on an assumption that motion of objects in maritime scenes is piece- 
wise linear the estimation of motion parameters is done by a linear Kalman 
filtering. Possible occlusions are detected from the values of the measurement 
covariance matrix. The Kalman tracker is re-initialised in case the target 
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becomes occluded. 

Inverse Mapping The information about objects and their activities obtained 
from the 2D image is related to the 3D structure of the monitored scene. The 

relation is characterised by a perspective projection between the image and sea 

planes. Two extrinsic camera calibration parameters are necessary to find the 

inverse transform: projection of the horizon and height of the camera above 

the sea surface. The first one is directly available from the image. The second 

one is obtained from an off-line camera calibration. 

The re-mapped locations and velocities are tested against a set of heuristic 

rules specifying criteria of events of interest such as collision threat, intrusion 
detection, violation of traffic regulations, etc. Any object that meets the criteria 
is highlighted and a pre-defined response such as an alarm is triggered. 

The output of the system is in a form of annotated image of the original 

scene with objects being marked, labelled and optionally highlighted. A 

radar-like chart of the scene with details of objects positions and velocities 
is generated as well. In such a way the result is comprehensible to a human 

operator. 

10.2 Future Work 

The framework presented in the thesis has been developed using image se- 

quences acquired by a camera operating in visible light range. The applicability 

of the system is restricted to daytime hours. In addition, severe weather 

conditions such as heavy rain or thick fog would reduce the visibility and, 
consequently, restrict the operational range of the framework. Shifting the 

wavelength range of the imaging device towards infra-red would enable to 
deploy the framework in less favourable lighting conditions as the temperature 

of objects generally differs from the temperature of the sea. Even though 
this option hasn't been considered in the research the fact that the image 

segmentation is illumination independent suggests that there is a possibility 
that the system would operate on these sequences without necessarily re- 
designing the framework structure and derived algorithms. 

There is a substantial increase in the tracking uncertainty for small and 
homogeneous objects located near the horizon. Not enough salient features 

are usually detected making the estimate of displacement unreliable. An 
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alternative displacement detection method such as registration of the whole 

segment containing the object would improve the tracking results. 
The collision detection and estimation of the time to contact are done only 

with respect to fixed pre-defined zones in the scene. A natural extension 
is to estimate collision in between any detected objects in the scene. Such 

functionality would further extend the possible applications of the system. 
The limitations of camera calibration should be addressed in the future 

research. The precision of location and velocity estimates is directly related 

to the precision of intrinsic camera parameters. The 'rule of thumb' for camera 

calibration states that the camera should be calibrated for the same depth of 

scene at which it will operate. Calibration of cameras for wide range imaging 

cannot adhere to this rule as any calibration target would be unrealistically 
large. An option is to extrapolate the calibration results. The relation between 

scene depth and calibration parameters, however, is not always predictable. A 

realistic approach to the calibration process for wide range imaging is to use a 
calibration target as large as practically manageable with camera lens focused 

to infinity. A representative statistical sample of the calibration parameters 
can be obtained by repeating the calibration process several times at different 

ranges and configurations of the target. Finally, the obtained values can be 

checked for consistency by, for example, a method using architectural features 

of buildings as proposed by van den Heuvel (1999). 

Finally, the exploration of possible applications of the framework in real 
world scenarios is desirable. The specific demands of the maritime industry 

regarding the surveillance and navigation tasks should be identified and 
incorporated into the framework. In such a way an attractive solution that 

catches the attention of the maritime industry can be provided. 
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Appendix A 

Optical Flows 

An evaluation of optical flow estimation algorithms is presented here. The 

algorithms evaluated are those discussed and implemented by Barron et al. 
(1994). All methods require user-defined parameters or thresholds. The param- 

eters used for the evaluation are those suggested as defaults by Barron et al. 
(1994). The images of the optical flow are generated by sub-sampling the 

resulting motion field by factor of four and all motion vectors are magnified 
by a factor of two for clarity. 

The results for the following methods are presented: 

" ANANDAN - Anandan's method based on region matching 

" HORN - Horn's and Schunck's method based on first derivatives of the 
image 

" LUCAS - Lucas' and Kanade's method based on first derivatives of the 
image 

" MB-LUCAS - Lucas' and Kanade's modified method 

" NAGEL - Nagel's method based on second derivatives of the image 

" QUENOT - Quenot's method based on linear programming 

" SINGH - Singh's method based on region matching 

" URAS - Uras' method based on second derivatives of the image 
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The original sequence 

The testing sequence contains two objects of different appearances moving at 
different speeds in similar directions. The frame rate of the sequence is 12.5 

frames per second. 
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(a) ANANI )AN (b) I iORN 

(c) MB-LUCAS (d) LUCAS 
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Figure A. 2: Optical flow algorithms - the results 
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Appendix B 

Cross-validation 

B. 1 Motion Estimation 

The plots show the results of Kalman filtering applied to objects detected in 

evaluation sequences. There are four plots for each object. The first two plots 

show the estimated locations and uncertainties (red crosses) in both the image 

and scene coordinates. The other two plots show velocity vectors placed at 

corresponding locations. Every tenth vector is displayed for clarity. 

B. 2 Inverse Mapping 

The lists of binarised segments containing buoys used in the evaluation of 
inverse mapping are presented here. 
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Figure B. 1: Estimates of location and velocity in the image and the scene for 
the LARGE BUOY object in the sequence A. 
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Figure B. 2: Estimates of location and velocity in the image and the scene for 
the YACHT object in the sequence A. 
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Figure B. 3: Estimates of location and velocity in the image and the scene for 
the SMALL BUOY object in the sequence A. 
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Figure B. 4: Estimates of location and velocity in the image and the scene for 
the LARGE BUOY object in the sequence B. 
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Figure B. 5: Estimates of location and velocity in the image and the scene for 
the BOAT object in the sequence B. 
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Figure B. 6: Estimates of location and velocity in the image and the scene for 
the YACHT object in the sequence B. 
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