
Technical Report TR-NCCA-2009-04

FAST RELIABLE RAY-TRACING OF

PROCEDURALLY DEFINED IMPLICIT

SURFACES USING REVISED AFFINE

ARITHMETIC

Oleg Fryazinov, Alexander Pasko and Peter Comninos

The National Centre for Computer Animation

Bournemouth Media School

Bournemouth University

Talbot Campus,

Poole, Dorset BH12 5BB

United Kingdom
2009

Technical Report TR-NCCA-2009-04

ISBN 1-85899-123-4

Title Fast Reliable Ray-tracing of Procedurally Defined Implicit Sur-

faces Using Revised Affine Arithmetic

Author(s) Oleg Fryazinov, Alexander Pasko and Peter Comninos

Keywords Ray Tracing, Implicit Surfaces, Function Representation,

Revised Affine Arithmetic

Abstract

Fast and reliable rendering of implicit surfaces is an important area

in the field of implicit modelling. Direct rendering, namely ray-

tracing, is shown to be a suitable technique for obtaining good-

quality visualisations of implicit surfaces. We present a technique

for reliable ray-tracing of arbitrary procedurally defined implicit

surfaces by using a modification of Affine Arithmetic called Revised

Affine Arithmetic. A wide range of procedurally defined implicit ob-

jects can be rendered using this technique including polynomial

surfaces, constructive solids, pseudo-random objects, procedurally

defined microstructures, and others. We compare our technique

with other reliable techniques based on Interval and Affine Arith-

metic to show that our technique provides the fastest, while still

reliable, ray-surface intersections and ray-tracing. We also suggest

possible modifications for the GPU implementation of this technique

for real-time rendering of relatively simple implicit models and for

near real-time for complex implicit models.

Report date 5 October 2009

Web site to download from http://eprints.bournemouth.ac.uk/

The authors’ e-mail addresses

{ofryazinov,apasko,peterc}@bournemouth.ac.uk

Supplementary notes

The National Centre for Computer Animation

Bournemouth Media School

Bournemouth University

Talbot Campus,

Poole, Dorset BH12 5BB

United Kingdom

http://eprints.bournemouth.ac.uk/

1

1. Introduction

In recent years, implicit surfaces (isosurfaces of trivariate

real functions) have proved to be a powerful and simple solu-

tion to some complex problems in the area of modelling and

animation. For example, implicit surfaces provide solutions

for surface reconstruction from scattered points and for fluid

simulation. Several operations, such as sweeping, metamor-

phosis and offsetting can be implemented quite easily with

implicit models unlike traditional boundary-representation

models. However, modelling with the whole range of im-

plicit surfaces is still a complicated task because interactive

rendering of arbitrary implicit surfaces is still an open prob-

lem. Because of that, most of implicit modelling tools to date

are limited to a narrow range of implicit surfaces or do not

have an interactive mode. Currently, there are two ways to

render an implicit model: generation of a polygonal mesh

and direct rendering using ray-tracing. Polygonization is a

well-known and widely used technique for rendering of im-

plicit surfaces. However, in many cases, when the model has

sharp or thin features, large numbers of small-sized disjoint

elements or internal microstructures, the generation of an

appropriate polygonal mesh takes a long time and requires

a large amount of memory. In many cases additional tech-

niques to refine the polygonal mesh are needed. Moreover,

in the case of an animated implicit surface, the polygonal

mesh has to be created for each frame and it is thus in-

appropriate for interactive applications. A more promising

technique is that of interactive direct rendering of implicit

surfaces using ray-casting and ray-tracing. Traditionally the

main disadvantage of direct rendering of implicit surfaces

was their slow speed due to the large number of ray-surface

intersection calculations. With recent developments of hard-

ware this problem becomes less critical, but not insignificant

all together.

Many techniques of ray-casting and ray-tracing implicit

surfaces have been developed. However, the majority of

these techniques have disadvantages, because they either

work with a small range of implicit surfaces (for instance

those defined only by polynomials), or not reliable. For ex-

ample, classic approximate techniques, such as ray march-

ing, are fast, but can easily miss sharp features and small

components. Classical numerical techniques, such as the

Newton search require different signs of the defining func-

tion at the ends of the ray interval, which is inappropriate

for arbitrary rays. Sphere-tracing based techniques require a

distance property of the defining function, which can not be

provided for general models. Techniques based on interval

analysis and other reliable numerical computations have also

been applied to the ray-tracing of implicit surfaces. How-

ever, classic Interval Arithmetic is slow because of the inter-

val overestimation.

The problem considered in this paper is that of finding a

technique for ray-tracing of general implicit surfaces, that

has the following properties:

• Its ray-surface intersection procedure should be reliable,

i.e. no roots should be missed.

• A wide range of implicit models should be supported –

meaning that the algorithm should be able to work with

procedurally defined models as well as with algebraic

ones.

• The procedure should be fast and suitable for a GPU im-

plementation of interactive rendering.

In this paper we propose to use Revised Affine Arithmetic

as a fast and reliable technique for calculating the range of

a function for a given interval and hence the core for the

ray-surface intersection procedure. The main contributions

in this paper are: 1) a new algorithm for reliable ray-tracing

of general procedurally defined implicit surfaces using Re-

vised Affine Arithmetic in contrast to the formerly reported

applications of Reduced Affine Arithmetic exclusively to al-

gebraic surfaces defined by polynomials; 2) a technique for

optimising the proposed ray-tracing procedure by using ar-

gument pruning and cell culling; 3) a possible implementa-

tion of this algorithm on both the CPU and GPU.

2. Related work

Ray-tracing of implicit surfaces is a well-researched area.

The classic techniques for ray-tracing of implicit surfaces

were presented in [Har93]. Most of the described techniques

are approximate and can miss small surface features, but on

the other hand they are suitable for all types of implicit sur-

faces. Later, several techniques were presented for particular

types of implicit surfaces that provide not only speed but also

reliability. Thus, in [Har94] a distance property is needed for

the ray-tracing procedure, in [She99] blobs, metaballs and

convolution surfaces are the type of implicit surface that can

be rendered fast.

Another way to increase speed of ray-tracing is by re-

ducing the number of processed rays intersecting the im-

plicit surface. In [Has03], image-space subdivision is used,

while [GM07a] uses progressive refinement.

Using specialised hardware also increases the speed of

ray-tracing. Many papers use the GPU for real-time render-

ing, however most of these papers have focused on polyg-

onal meshes [PBMH02], parametric surfaces [LB06] and

volumetric data [KW03]. GPU-based ray-tracing of im-

plicit surfaces was introduced only for particular types of

the objects, such as radial-basis functions [CD05], low-

degree implicit surfaces [KOKK06] and discrete isosurfaces

[HSS∗05]. Ray-tracing of general implicit surfaces on the

GPU was performed in [FP08] [SNar] by using approximate

methods.

Reliable computational techniques based of Interval

Arithmetic have been known for a long time. However, most

of the literature relates to fields such as global optimisa-

tion rather than computer graphics. The works of [Mit91]

and [Sny92] discussed applications of Interval Arithmetic

2

for computer graphics purposes, and Affine Arithmetic was

used for ray-tracing of implicit surfaces in [dCFG99] . A

good comparison of different interval techniques can be

found in [MSVW01], however the list of the implicit models

used in this paper is limited to those given in the polyno-

mial form. Interval Arithmetic and Reduced Affine Arith-

metic are applied for fast rendering of implicit surfaces by

using the GPU in [KHK∗09]. A more detailed comparison

of these techniques with the one proposed here can be found

in the "Results" section below. In this paper, we use Revised

Affine Arithmetic [VSHFar], which was introduced recently

for the purposes of constraint propagation and has not yet

been used in computer graphics.

3. Background

3.1. Procedurally defined implicit surfaces

A zero level set or an isosurface of a trivariate real function

f of a point with coordinates (x,y, z) is traditionally called

an implicit surface and is defined as f (x,y, z) = 0. It can also

be considered as the boundary of a solid (three-dimensional

manifold) defined by the inequality f (x,y, z) ≥ 0. There are

many different ways to specify the function f (x,y, z). The

simplest form is that of an algebraic implicit surface de-

fined by a polynomial function. Most of the extant work

on reliable ray-tracing concentrates solely on algebraic sur-

faces. More complex forms involve exponential, square root,

trigonometric and other non-linear functions. We deal with

the most general form of procedurally defined implicit sur-

faces, where the function f is evaluated by some procedure

involving all kinds of non-linear functions as well as loops

and conditional operations. This allows us to cover skeleton-

based implicit surfaces [BW97], Constructive Solid Geom-

etry (CSG) objects defined by nested R-functions [Sha07],

solid noise [PH89] [Gar84], fractals and other complex ob-

jects.

3.2. Affine Arithmetic

Affine Arithmetic is a technique for performing computa-

tions on uncertain numerical values. The main idea of Affine

Arithmetic is the calculation of an uncertain value (function)

based on other uncertain values (arguments). Initially this

model was introduced for self-validated numerical compu-

tations as an alternative to Interval Analysis – in some lit-

erature Affine Arithmetic is still considered as the modifi-

cation of general Interval Arithmetic – and currently it is

used in many different areas of computer science [dS97].

By keeping track of the errors for each computed quantity,

Affine Arithmetic provides much tighter bounds for com-

puted quantities compared to classical Interval Arithmetic.

Uncertain values in Affine Arithmetic are represented by

affine forms, i.e. polynomials of the form:

x̂ = x0 + x1ε1 + x2ε2 + ...+ xnεn

where xn are known real coefficients and εn are noise sym-

bols, i.e. symbolic variables whose values are assumed to lie

in the interval εn ∈ [−1,1].

In Affine Arithmetic, formula evaluation is performed by

replacing operations on real quantities by their affine forms.

Similar to Interval Arithmetic, the inclusion property is ap-

plied in Affine Arithmetic, i.e. for any operation ⊗,

A⊗B ⊂ {a⊗ b,a ∈ A,b ∈ B},

where a and b are real values and A and B are uncertain val-

ues in affine form.

All operations on affine forms can be divided into affine

(exact) and non-affine (approximate) operations. An affine

operation is a function that can be represented by the linear

combination of the noise symbols of its arguments. For ex-

ample, a multiplication by a constant is an affine operation:

αx̂ = αx0 +αx1ε1 +αx2ε2 + ...+αxnεn

Non-affine operations can not be performed over the linear

combination of the noise symbols. In this case an approxi-

mate affine function is used and a new noise symbol is added

to the affine form to represent the difference between the

non-affine function and its approximation. For example, the

multiplication of two affine forms is a non-affine operation

and introduces a new noise symbol, εn+1:

x̂ ∗ ŷ = x0y0 + (x0y1 + x1y0)ε1 + ... + (x0yn + xny0)εn +

(
n

∑
i=1

|xi|
n

∑
i=1

|yi|)εn+1

In the general case any operation can be represented in an

affine form:

x̂⊗ ŷ = αx̂+βŷ+ζ± δ

where the value of the new noise symbol is represented by δ.

In [dS97], different approximation techniques are discussed

for the affine form of several functions.

3.3. Reduced Affine Arithmetic

Pure Affine Arithmetic is computationally- and memory ex-

pensive and can not be used in algorithms where the reduc-

tion of computational complexity is equally important as the

quality of the computational result. In [Mes02], several re-

duced affine forms were introduced to reduce the number of

computations in Affine Arithmetic by accumulating errors.

The Affine Form 1 (AF1) is the simplest one and represents

the uncertain quantity as:

x̂ = x0 +
n

∑
i=1

xiεi + xn+1εn+1

The noise symbols ε1, ...,εi represent the errors of the

initial arguments. The last noise symbol represents all

the errors after the non-affine operations. Reduced Affine

Arithmetic [GM07b] was introduced for the AF1 and it was

shown that the best results from the computational point

3

of view can be obtained by using only two noise symbols,

i.e n=1. Thus, in Reduced Affine Arithmetic the first noise

symbol represents the error on the argument interval and

the second noise symbol represents the accumulation noise

symbol after all the non-affine operations have taken place.

Despite the fact that the general affine operation was not

clearly discussed in that paper, it can be defined similarly to

the ordinary affine operation with condensation as follows:

x̂⊗ ŷ = (αx0 +βy0 +ζ)+
n

∑
i=1

(αxi +βyi)+(|δ+αxn+1 +

βyn+1|)εn+1

The length of the reduced affine form remains the same

after the affine computations, however the accumulation of

all the errors in one symbol leads to a wider error and thus

to a widening of the bounds of the computed value.

3.4. Revised Affine Arithmetic

Revised Affine Arithmetic was introduced by Vu et al.

[VSHFar] for the purposes of numerical constraint propa-

gation and reduces the problem of growth of the error in the

last (accumulating) noise symbol. The revised affine form is

similar to the reduced affine form:

x̂ = x0 +
n

∑
i=1

xiεi + ex[−1,1],ex ≥ 0

Despite their similar forms and the fact that they have the

same geometric sense, the reduced and revised affine forms

have different mathematical backgrounds. While in Reduced

Affine Arithmetic we accumulate errors after non-affine op-

erations in the last noise symbol, in Revised Affine Arith-

metic we accumulate the error in the symmetrical interval.

From the formal point of view, the difference between

the Reduced Affine Arithmetic and the Revised Affine

Arithmetic is in the definition of the general non-affine

operation and the tight form for multiplication. The binary

affine operation is defined as:

f (x̂, ŷ) = (αx0 +βy0 +ζ)+
n

∑
i=1

(αxi +βyi)+(δ+ |α|ex +

|β|ey)[−1,1]

where α, β and ζ can be taken from the affine approxima-

tion of the function f . The unary affine operation is defined

in the same way:

f (x̂) = (αx0 +ζ)+
n

∑
i=1

αxi +(δ + |α|ex)[−1,1]

The formula for the multiplication is defined as:

x̂∗ ŷ = (x0y0 + 1
2

n

∑
i=1

xiyi)+
n

∑
i=1

(x0yi + xiy0)εi +exy[−1,1]

exy = exey + ey(|x0|+u)+ ex(|y0|+ v)+uv− 1
2

n

∑
i=1

|xiyi|

where u =
n

∑
i=1

|xi|, v =
n

∑
i=1

|yi|.

As for standard Affine Arithmetic, Revised Affine Arith-

metic has an inclusion property. In our technique we use a

shortest possible revised affine form, i.e. i = 1.

4. Ray-tracing with Revised AA

The main part of any ray-tracing procedure for implicit sur-

faces is the calculation of the zero roots of the defining func-

tion in the ray-surface intersection procedure. In this section

we show how Revised Affine Arithmetic can be used for the

intersection point calculation and we present several tech-

niques for speeding up this calculation.

4.1. Ray-surface intersection

Our algorithm is based on a ray-surface intersection tech-

nique for implicit surfaces that uses interval techniques,

which originally appeared in [Mit91]. We present the ray-

surface intersection procedure in Algorithm 1.

Algorithm 1 Ray-surface intersection

Procedure: bool intersect(tmin, tmax)

Calculate the affine form F for the function on the interval

[tmin, tmax]

Get the range of the function from the affine form

if the range of the function does not include a 0 value then

return FALSE (no roots in this interval);

end if

Calculate the argument estimation from the affine form:

t′min, t
′
max

Find the pruned argument range:

tmin = max(tmin, t
′

min);
tmax = min(tmax, t

′
max);

if the length of the argument interval is less than some

predefined accuracy then

Store the midpoint of the interval as the root;

return TRUE;

end if

Calculate the midpoint of the argument range:

tmid = (tmin + tmax)/2;

Repeat the procedure for the two subintervals:

bool b1 = intersect(tmin, tmid);

if b1 is TRUE and only the first root is needed then

return TRUE;

end if

bool b2 = intersect(tmid , tmax);

if b2 is TRUE then

return TRUE;

end if

return FALSE;

The basic idea of the algorithm is quite simple: we calcu-

late the range of the function for the given argument interval

4

(a)

(b)

Figure 1: a) The revised affine form for the function on the

interval [tmin, tmax] b) The revised affine form for the function

on the two subintervals after the dichotomy.

using Revised Affine Arithmetic, we reject the interval if the

range does not include the zero value, otherwise we subdi-

vide the interval into two intervals by using dichotomy and

we repeat the procedure for both subintervals. An example

of the affine form for the function before and after the di-

chotomy is shown in the figure 1. Note that in the case when

only the first root is needed (for example, for primary rays),

we can exit from the procedure earlier if we have found a

root in the first subinterval after the recursive procedure. Be-

low we explain several details of the algorithm.

4.1.1. Interval range for the function in Revised Affine

Arithmetic

The calculation of the interval of the function over the inter-

val of the arguments is performed in three steps. First, we

obtain the revised affine form for the argument interval:

t̂ =
tmin + tmax

2
+

tmax − tmin

2
ε1

We also obtain the affine forms for the coordinate variables

x, y and z, as the defining function is usually defined over

Figure 2: Pruning of the interval [tmin, tmax] to the interval

[t′min, t
′
max] after the evaluation of the revised affine form

for the function.

these variables:

x̂ = x0 + t̂ ∗dx, ŷ = y0 + t̂ ∗dy, ẑ = z0 + t̂ ∗dz

Here x0,y0, z0 are the coordinates for the ray origin and

dx,dy,dz are the coordinates for the ray direction. For each

ray these coordinates are constant.

Secondly, we calculate the range for the function by eval-

uating its revised affine form. The revised affine form is ob-

tained from the procedural definition of the function by re-

placing all the operations on real numbers by operations on

the revised affine forms.

Finally, we obtain the range of the function from the affine

form f̂ = f0 + f1ε1 ± e f :

fmin = f0 −| f1|− e f

fmax = f0 + | f1|+ e f

4.1.2. Argument pruning

One of the useful properties of the reduced and hence the re-

vised affine forms is that of argument pruning (a term taken

from literature of interval slope methods), that means that we

can not only calculate the function range for the interval, but

also can narrow the argument range in case the root exists

in this interval. In [GM07b], the argument pruning formula-

tion (the term interval optimisation is used in the paper) was

suggested for Reduced Affine Arithmetic. As the geometric

meaning of the revised affine form is similar to that of the

reduced affine form, an analogous formulation can be used

as follows. Given the revised affine form for the function

f̂ = f0 + f1ε1 ± e f for the interval t̂ = t0 + t1ε1, providing

5

that t1 6= 0, we have:

ε1 =
t̂ − t0

t1

f̂ = f0 + f1
t̂ − t0

t1
± e f = (f0 − f1

t0

t1
)+ t̂

f1

t1
± e f

The geometric meaning of this form in 2D space {t, f} is the

parallelogram bounded by the lines f = (f0− t0
t1

)+ t̂
f1

t1
−e f ,

f = (f0 − t0
t1

) + t̂
f1

t1
+ e f and the coordinate lines t = tmin

and t = tmax. This parallelogram intersects the axis t at two

points provided that f1 6= 0 and e f 6= 0:

t
′ = t0 −

t1 f0

f1
± e f

t1

f1

If these two points lie inside the interval [tmin, tmax], the in-

terval can be pruned. (see Fig. 2).

4.2. Cell Culling

If we subdivide the scene to be rendered into rectan-

gular cells, the ray-tracing procedure can be accelerated

by rejecting the cells where zero roots of the function

do not exist. This can be done because of the interval

nature of Revised Affine Arithmetic. Given a cell inter-

sected by a bundle of initial rays on the 3D interval

[(xmin,ymin, zmin), (xmax,ymax, zmax)] the cell can be entirely

rejected if the function range for the affine form on the cell

interval does not include a zero value. The calculation of the

function range is slightly different in this case as we have

to convert into the revised affine form the three intervals for

x,y, z independently:

x̂ =
xmin + xmax

2
+

xmax − xmin

2
ε1

ŷ =
ymin + ymax

2
+

ymax − ymin

2
ε1

ẑ =
zmin + zmax

2
+

zmax − zmin

2
ε1

If the function range includes a zero value, the cell can be

subdivided in octree- or quadtree-like manner until we reach

the pixel level and apply the ray-surface intersection. The al-

gorithm for ray-tracing in this case is presented in Algorithm

2.

The same technique can also be used for secondary rays

(for example, for a shadow test). In this case we take a bundle

of rays from the local area of the implicit surface, calculate

the argument range for this bundle of rays and then perform

the intersection test with another implicit object.

5. Implementation

In this section we present details of the implementation of

ray-tracing of procedurally defined implicit surfaces on the

CPU and the GPU. The implementation can be divided into

Algorithm 2 Ray-tracing of implicit surfaces with cell

culling

We start with a bundle of rays from pixels on the interval

[(xsmin,ysmin), (xsmax,ysmax)] in screen space

if xsmax − xsmin ≤ 1 AND ysmax − ysmin ≤ 1 then

We are at the pixel level, apply ray-tracing procedure

for this particular ray

end if

Calculate the interval for the coordinates in object space

Calculate the affine forms for x, y and z

Calculate the affine form F for the function for these affine

forms

Get the range of the function from the affine form

if the range of the function does not include a 0 value then

return FALSE (object intersection with this bundle);

end if

Subdivide the interval [(xsmin,ysmin), (xsmax,ysmax)] into

four subintervals by using a quadtree

Repeat the procedure recursively for these subintervals

three parts: the Revised Affine Arithmetic representation, the

function representation in the revised affine form and the

ray-tracing procedure.

5.1. Affine form representation

As we stated above, the revised affine form is a polynomial

with three terms. Thus, the affine form in the software imple-

mentation can be represented as a three-component vector,

where the first component represents x0, the second repre-

sents the noise symbol for the error along the ray and the

third represents the half-length of the accumulating inter-

val. The calculations in Affine Arithmetic can be performed

on these vectors. Almost all of the arithmetic operations

have to be overridden as only summation in the Revised

Affine Arithmetic matches the standard vector summation.

For example, the subtraction and multiplication can be im-

plemented as follows:

vec3 ra_subtraction(vec3 x, vec3 y){

vec3 ret;

ret[0] = x[0] - y[0];

ret[1] = x[1] - y[1];

ret[2] = x[2] + y[2];

return ret;

}

vec3 ra_multiplication(vec3 x, vec3 y){

vec3 ret;

ret[0] = x[0]*y[0]+0.5*x[1]*y[1];

ret[1] = x[0]*y[1]+y[0]*x[1];

ret[2] = x[2]*y[2]+

y[2]*(fabs(x[0])+fabs(x[1]))+

x[2]*(fabs(y[0])+fabs(y[1])) +

0.5*fabs(x[1]*y[1]);

return ret;

}

Similarly, non-affine operations can be implemented as

operations on the three-component vectors. Note that for

non-affine operations we are most likely to use the affine

6

constructor described above. For example, the square root

operation needed for CSG models with R-functions can be

implemented in this way by using Chebyshev approximation

described in [dS97]:

vec3 ra_sqrt(vec3 x){

vec2 i = ra_getinterval(x);

if (i[1] < 0) return 0;

if (i[0] < 0) i[0] = 0;

double sq1 = sqrt(i[0]), sq2 = sqrt(i[1]);

//calculate arguments for the revised affine form

double alpha = 1/(sq1+sq2);

double dzeta = (sq1+sq2)/8.0+0.5*sq1*sq2/(sq1+sq2);

double delta = (sq2-sq1)*(sq2-sq1)/(8.0*(sq1+sq2));

//create the revised affine form

vec3 ret;

ret[0] = alpha*x[0]+dzeta;

ret[1] = alpha*x[1];

ret[2] = alpha*x[2]+delta;

return ret;

}

In fact, any non-affine operation derived for pure Affine

Arithmetic with known al pha, dzeta and delta can be

adapted for Revised Affine Arithmetic in the same way.

5.2. Representation of the function

As we stated that our algorithm works with procedurally de-

fined implicit objects, this means that an object can be de-

fined by a real-valued function of real-valued arguments. In

the same way this function can be rewritten by using the fol-

lowing rules:

• Calculate the revised affine forms for x, y, z (see example

in the section 4.2)

• Each variable depending on the input arguments is re-

placed by a variable of the revised affine type, while each

variable not depending on the input arguments and con-

stants is left in the real form.

• If in the implementation of the Revised Affine Arithmetic

operations are overridden, the rest of the code for the ini-

tial function is left unchanged, otherwise each operation

has to be explicitly replaced by its revised affine version.

The returned value of the rewritten function is the range

of the function in the affine form, which is used in the ray-

surface intersection procedure described earlier.

Similarly to other ray-tracing techniques for implicit sur-

faces, we use finite differences to obtain the normal vector

for the shading and the secondary rays calculation. Therefore

the real-valued defining function of real-valued arguments

should be presented as well as the function in the revised

affine form.

5.3. Modifications for the GPU implementation

The speed of the calculation can be drastically improved by

using hardware acceleration on the GPU. In this section we

present possible modifications for the implementation of our

algorithm to be accelerated this way.

5.3.1. Ray-surface intersection for the GPU

Both the data structure and the ray-surface intersection pro-

cedure can easily be transferred to the GPU. The ray-

tracing process is performed in the well-known GPGPU

manner: the function definition, the Revised Affine Arith-

metic code and the intersection code are in the fragment

(pixel) shader which applies to the screen-sized polygon.

The GPU-oriented ray-surface intersection procedure with-

out a stack and recursion was proposed in [KHK∗09]. How-

ever, this implementation does not support argument prun-

ing. In the following procedure we propose the modification

of this implementation that supports argument pruning. Note

that the usage of arrays requires a modern GPU (for exam-

ple, the NVidia series 8 and above or any other OpenGL 3

compatible card):

bool find_point(in vec3 vecStart, in vec3 vecDir,

out vec3 vecIntersect)

{

int mask = 0;

vec2 vInterval = vec2(0.0,1.0);

vec3 func = aa_func(vecStart, vecDir, vInterval);

vec2 interval_func = aa2ia(func);

if (interval_func.x > 0.0 || interval_func.y < 0)

return false;

int d = 0;

int dlast = int(log2(length(vecDir)/eps));

if (dlast > 32) dlast = 32;

vec2 stack[32];

//

stack[0] = vec2(0.0,0.5);

for (;;)

{

vInterval = stack[d];

if (vInterval.y-vInterval.x < eps)

{

vecIntersect = vecStart+vInterval.x*vecDir;

return true;

}

func = aa_func(vecStart, vecDir, vInterval);

interval_func = aa2ia(func);

if (interval_func.x <= 0.0 && interval_func.y >= 0)

{

float t0 = (vInterval.x+vInterval.y)*0.5;

float t1= (vInterval.y-vInterval.x)*0.5;

float tmin1 = t0-model.x*t1/model.y-t1*abs(model.z/model.y);

float tmax1 = t0-model.x*t1/model.y-t1*abs(model.z/model.y);

if (tmin1 > vInterval.x) vInterval.x = tmin1;

if (tmax1 < vInterval.y) vInterval.y = tmax1;

if (d == dlast)

{

vecIntersect = vecStart+vInterval.x*vecDir;

return true;

}

else

{

d++;

mask *= 2;

stack[d] = vec2(vInterval.x, (vInterval.x+vInterval.y)*0.5);

continue;

}

}

if (mod(mask, 2))

{

for (int j = 0; j <= dlast; j++)

{

mask /= 2;

d--;

if (d == -1) break;

if (!mod(mask, 2)) break;

}

if (d == -1) break;

}

mask += 1;

vInterval = stack[d];

}

}

7

The description of the general stackless algorithm for ray-

tracing can be found in [KHK∗09]. In our implementation

several changes were introduced to reflect interval pruning.

Thus, the interval in each step of the depth is stored in the

stack variable, the position of the current interval can be

found with the depth variable d and the variable mask stores

the current position of the interval related to the traversal

procedure. We also have to limit the size of the stack be-

cause current graphics hardware does not support dynamic

arrays.

5.3.2. Cell culling for the GPU

Because of its recursive nature, cell culling can not be im-

plemented on the GPU directly. However, we can use a sim-

plified version of cell culling in a modified version of the

rendering algorithm. The modifications are as follows:

1. Instead of rendering one screen-sized polygon we render

a number of non-overlapping screen-sized polygons with

a size greater than 1*1 pixels. For example, we fill the

screen space with a uniform grid of polygons and display

them.

2. For each vertex we store polygon parameters, i.e., screen

spaced coordinates.

3. We apply a vertex shader that includes the calculation of

object space coordinates, the affine forms for the coordi-

nate variables and the affine form for the function. If the

function interval includes a zero value, we set the inter-

section flag equal to a 1 in the uniform variable, otherwise

we store a 0.

4. In the fragment shader we read from the uniform variable

for the intersection flag and if its value is 0, we reject this

ray, otherwise we calculate the ray-surface intersection as

usual.

The main idea of these modifications is to store the inter-

section flag in the vertex shader and to pass it to the fragment

shader by using a uniform variables mechanism. Because of

the attribute interpolation at the rasterisation step in graphics

hardware the pixels where there is no intersection will have

a 0 as a value of their uniform variable and will be rejected.

6. Results

In our tests we used a modified version of POV-Ray renderer

for the CPU and a stand-alone renderer based on the GLSL

language for the GPU. The results were generated on a PC

with an Intel Pentium 4 3.20GHz processor and an NVidia

9600 graphics card. Because of the nature of the POV-Ray

renderer we do not use cell culling in the CPU renderer, but

cell culling is used for GPU ray-tracing.

6.1. Offline ray-tracing of procedurally defined implicit

surfaces

We tested our ray-tracing algorithm on a wide range of pro-

cedurally defined implicit models (see Figs. 3, 4, 5). First,

(a) (b) (c)

Figure 3: Ray-tracing of algebraic surfaces: a) Mitchell b)

Bretzel c) Decocube

(a) (b) (c)

Figure 4: Ray-tracing of non-algebraic procedural implicit

surfaces: a) CSG with R-functions b) CSG with using blend-

ing union and blending intersection c) Sphere with trimming

(a) (b)

(c)

Figure 5: Ray-tracing of procedural implicit surfaces with

thin elements or small disjoint components: a) Sphere with

microstructure b) Sphere with procedural noise c) Procedu-

ral hair

8

we compare our procedure with other reliable techniques

based on uncertain computations, the technique based on

Interval Arithmetic described in [KHK∗09], the technique

based on pure Affine Arithmetic described in [dCFG99]

and the technique based on Reduced Affine Arithmetic de-

scribed in [GM07b]. The results can be found in the table

1. Note that in works [GM07b] and [KHK∗09] Reduced

Affine Arithmetic was applied only to arithmetic operations.

However, the models starting from CSG and below in this

table have non-affine operations other than multiplications.

To fairly compare our approach with Reduced Affine Arith-

metic we extended it with the affine forms derived for non-

affine operations in our work.

The results show that other rendering algorithms based

on standard Interval and Affine Arithmetic are significantly

slower than our algorithm which is based on Revised Affine

Arithmetic. The reason for this is that with Interval Arith-

metic algorithms there is an overestimation and with Affine

Arithmetic algorithms there is an overestimation as well as a

large number of terms in the polynomial form and thus there

is a large number of arithmetic operations in the affine oper-

ation calculations. Reduced Affine Arithmetic proves to be

faster than Interval and standard Affine Arithmetic for alge-

braic models, however the overestimation of the function in

Reduced Affine Arithmetic is wider than the overestimation

range for the Revised Affine Arithmetic. Therefore the range

of a function based on Revised Affine Arithmetic is tighter

than the range in all other techniques and hence the speed

of the calculation of the ray-surface intersections is signifi-

cantly better, especially for models with a large number of

non-affine operations.

The reliability of the Revised Affine Arithmetic allows us

to test our technique on several procedurally defined implicit

models with small features or thin surfaces. For example,

by using the proposed ray-surface intersection calculation

we can reliably render such models as models with internal

structure (see Fig. 5a), stochastic procedural models with

disjointed components (see Fig. 5b) and even procedurally-

defined hair (see Fig. 5c).

Our ray-tracing technique can be used with complex

scenes with a number of procedurally defined implicit ob-

jects. For example, we show how a functionally defined

scene "Virtual Shikki" [VPP∗04] can be rendered using our

technique (see Fig. 6). Note that because of the thin elements

in the models approximate techniques and polygonization do

not work well for this scene unless we use very small steps

for the approximate techniques of ray-tracing and a large

size for the polygonization grid and hence slow down the

rendering process significantly.

6.2. Real-time rendering

We tested the GPU implementation with several procedu-

rally defined models (see Fig. 7). We compared our tech-

Figure 6: Ray tracing of procedural scenes: Virtual Shikki

(a) (b)

Figure 7: Example of real-time rendering using the GPU:

a) The Mitchell surface b) The Mitchell surface with culling

(red denotes rays where ray-surface intersection is not cal-

culated because of early culling).

nique with the technique presented in [KHK∗09] for ray-

tracing with Interval Arithmetic and Reduced Affine Arith-

metic. The results are presented in the table 2. In this ta-

ble we also present a comparison of our technique using the

cell culling procedure in the vertex shader and without the

cell culling procedure. As can be seen from the table, Re-

vised Affine Arithmetic gives faster ray-surface intersection

– hence the higher speed. The use of cell culling (see Fig.

7b) depends on the nature of the model and can increase the

rendering speed for several models.

7. Conclusion

In this paper we presented a technique for ray-tracing of

general procedurally defined implicit models based on Re-

vised Affine Arithmetic. By using the inclusion property of

Revised Affine Arithmetic we were able to obtain reliable

ray-tracing of models and at the same time Revised Affine

Arithmetic proved to be the fastest compared to other in-

terval techniques. We also used argument pruning and cell

culling to further accelerate the ray-tracing procedure.

Currently the set of procedurally defined implicit models

does not include models with conditional operators. Some

9

Resolution Number of operations IA AA RAA* RevAA

(pixels) All / Non-affine / Multiplications

Mitchell 1280*1024 19 / 6 / 6 38 33 7 6

Bretzel 1280*1024 16 / 9 / 9 25 86 22 18

Decocube 1280*1024 30 / 17 / 17 17 226 19 13

CSG 640*480 96 / 40 / 32 126 129 20 18

Sphere with trimming 1024*768 142 / 54 / 37 837 2566 365 285

Sphere with noise 800*600 36 / 11 / 5 17 51 18 9

CSG with blending 640*480 105 / 42 / 32 266 72 34 31

Hair 640*480 88 / 34 / 22 4004 1935 708 658

Sphere with microstructure 640*480 65 / 33 / 22 1006 1079 328 293

Virtual Shikki 320*240 822 / 306 / 213 29244 >50000 422 390

Table 1: Comparison of the ray-tracing procedures for different computational models. IA stands for Interval Arithmetic, AA

for Affine Arithmetic, RAA* for Reduced Affine Arithmetic extended by non-affine operations and RevAA for Revised Affine

Arithmetic. The timings for ray-tracing all the rays are shown in seconds.

IA RAA RevAA RevAA

(without culling) (with culling)

Mitchell 28.1 90.1 92.2 97.4

Bretzel 83.8 90.2 90.2 90.5

Cup 0.56 5.12 5.95 6.1

CSG 4.3 14.6 15.6 17.2

Table 2: Comparison of ray-tracing procedures on the GPU. IA stands for Interval Arithmetic, AA for Affine Arithmetic, RAA

for Reduced Affine Arithmetic and RevAA for Revised Affine Arithmetic. All models were rendered with using only primary rays

at a resolution of 512*512 pixels. Timings are shown in FPS (frames per second) and all models were rendered using the same

camera parameters.

research was done using Interval Arithmetic [Dia08], how-

ever further research using Affine Arithmetic and especially

Revised Affine Arithmetic has to be done in this area. Also,

during our tests we found that an affine form can be found

not only for standard arithmetic and mathematical operators,

but also for any set of operations. We suggest that the calcu-

lation of the function can be speeded up by replacing these

parts of the code by some special affine functions. This is

also an area that merits further research.

References

[BW97] BLOOMENTHAL J., WYVILL B. (Eds.): Introduction to

Implicit Surfaces. Morgan Kaufmann Publishers Inc., San Fran-
cisco, CA, USA, 1997.

[CD05] CORRIGAN A., DINH H. Q.: Computing and rendering
implicit surfaces composed of radial basis functions on the GPU.
In International Workshop on Volume Graphics (June 2005).

[dCFG99] DE CUSATIS JR. A., FIGUEIREDO L. H., GATTASS

M.: Interval methods for ray casting surfaces with affine arith-
metic. In Proceedings of SIBGRAPI’99 - the 12th Brazilian Sym-

posium on Computer Graphics and Image Processing (1999),
pp. 65–71.

[Dia08] DIAZ J. F.: Improvements in the Ray Tracing of Implicit

Surfaces based on Interval Arithmetic. PhD thesis, Departament
d’Electronica, Informatica i Automatica, Universitat de Girona,
Girona, Spain, Nov. 2008.

[dS97] DE FIGUEIREDO L. H., STOLFI J.: Self-Validated Numer-

ical Methods and Applications. Brazilian Mathematics Collo-
quium monographs. IMPA/CNPq, Rio de Janeiro, Brazil, 1997.

[FP08] FRYAZINOV O., PASKO A.: Interactive ray shading of
FRep objects. In WSCG’ 2008, Communications Papers proceed-

ings (2008), pp. 145–152.

[Gar84] GARDNER G. Y.: Simulation of natural scenes using
textured quadric surfaces. SIGGRAPH Comput. Graph. 18, 3
(1984), 11–20.

[GM07a] GAMITO M. N., MADDOCK S. C.: Progressive refine-
ment rendering of implicit surfaces. Computers & Graphics 31,
5 (2007), 698–709.

[GM07b] GAMITO M. N., MADDOCK S. C.: Ray casting im-
plicit fractal surfaces with reduced affine arithmetic. The Visual

Computer 23, 3 (2007), 155–165.

[Har93] HART J. C.: Ray tracing implicit surfaces. In Siggraph

93 Course Notes: Design, Visualization and Animation of Im-

plicit Surfaces (1993), pp. 1–16.

[Har94] HART J. C.: Sphere tracing: A geometric method for the
antialiased ray tracing of implicit surfaces. The Visual Computer

12 (1994), 527–545.

[Has03] HASAN M.: An Efficient F-rep Visualization Framework.
Master’s thesis, Faculty of Mathemetics, Physics and Informat-
ics, Comenius University, Bratislava, Slovakia, Aug. 2003.

[HSS∗05] HADWIGER M., SIGG C., SCHARSACH H., BUHLER

K., GROSS M.: Real-time ray-casting and advanced shading of
discrete isosurfaces. Computer Graphics Forum 24 (September
2005), 303–312(10).

10

[KHK∗09] KNOLL A., HIJAZI Y., KENSLER A., SCHOTT M.,
HANSEN C. D., HAGEN H.: Fast ray tracing of arbitrary implicit
surfaces with interval and affine arithmetic. Computer Graphics

Forum 28, 1 (2009), 26–40.

[KOKK06] KANAI T., OHTAKE Y., KAWATA H., KASE K.:
GPU-based rendering of sparse low-degree implicit surfaces. In
GRAPHITE ’06: Proceedings of the 4th international conference

on Computer graphics and interactive techniques in Australasia
and Southeast Asia (2006), pp. 165–171.

[KW03] KRUGER J., WESTERMANN R.: Acceleration tech-
niques for GPU-based volume rendering. In VIS ’03: Pro-

ceedings of the 14th IEEE Visualization 2003 (VIS’03) (2003),
pp. 287–292.

[LB06] LOOP C., BLINN J.: Real-time GPU rendering of piece-
wise algebraic surfaces. ACM Transactions on Graphics 25, 3
(2006), 664–670.

[Mes02] MESSINE F.: Extensions of affine arithmetic: Applica-
tion to unconstrained global optimization. Journal of Universal

Computer Science 8, 11 (2002), 992–1015.

[Mit91] MITCHELL D. P.: Three applications of interval analysis
in computer graphics. In Frontiers in Rendering course notes

(1991), pp. 1–13.

[MSVW01] MARTIN R., SHOU H., VOICULESCU I., WANG

G.: A comparison of Bernstein hull and affine arithmetic meth-
ods for algebraic curve drawing. In Proc. Uncertainty in Geo-

metric Computations (July 2001), Kluwer Academic Publishers,
pp. 143–154.

[PBMH02] PURCELL T. J., BUCK I., MARK W. R., HANRAHAN

P.: Ray tracing on programmable graphics hardware. ACM TOG

21, 3 (2002), 703–712.

[PH89] PERLIN K., HOFFERT E. M.: Hypertexture. SIGGRAPH

Comput. Graph. 23, 3 (1989), 253–262.

[PP04] PASKO G., PASKO A.: Trimming implicit surfaces. Vis.

Comput. 20, 7 (2004), 437–447.

[Sha07] SHAPIRO V.: Semi-analytic geometry with R-functions.
Acta Numerica 16 (2007), 239–303.

[She99] SHERSTYUK A.: Fast ray tracing of implicit surfaces.
Computer Graphics Forum 18, 2 (1999), 139–147.

[SNar] SINGH J. M., NARAYANAN P. J.: Real-time ray-tracing
of implicit surfaces on the GPU. IEEE Transactions on Visual-
ization and Computer Graphics (2009, to appear).

[Sny92] SNYDER J. M.: Interval analysis for computer graphics.
In Computer Graphics (1992), pp. 121–130.

[VPP∗04] VILBRANDT C., PASKO G., PASKO A. A., FAYOLLE

P.-A., VILBRANDT T., GOODWIN J. R., GOODWIN J. M., KU-
NII T. L.: Cultural heritage preservation using constructive shape
modeling. Computer Graphics Forum 23, 1 (2004), 25–42.

[VSHFar] VU X.-H., SAM-HAROUD D., FALTINGS B.: En-
hancing numerical constraint propagation using multiple inclu-
sion representations. Annals of Mathematics and Artificial Intel-

ligence (2009, to appear).

Appendix A: Formulas of surfaces used in the paper

Mitchell

f = 20∗ (x2 +y2 + z2)−4∗ (x4 +(y2 + z2)2)−17x2 ∗ (y2 +
z2)− 17

Bretzel

f = 2− 60∗ z2 − (x2 ∗ (1.21− x2)2 ∗ (3.8− x2)3 − 10∗ y2)2

Decocube

f = 0.02 − ((x2 + y2 − 0.82)2 + (z2 − 1)2) ∗ ((y2 + z2 −
0.82)2 +(x2 − 1)2)∗ ((x2 + z2 − 0.82)2 +(y2 − 1)2)

CSG

f = b|(s&((c1 \ c2)|(c3 \ c4)) \ c5, where b = (0.36 −
x2)&(0.36 − y2)&(0.36 − z2), s = 0.7056 − x2 − y2 − z2,

c1 = 0.09−y2 −z2, c2 = 0.04−y2−z2, c3 = 0.09−x2 −z2,

c4 = 0.04− x2 − z2, c5 = 0.25− x2 − y2

Sphere with noise

f = 81− x2 − y2 − z2 +(3.8 ∗ sin(1.5 ∗ x)+ sin(1.111 ∗ x +
1.1 ∗ sin(1.5 ∗ x)) ∗ 1.624) ∗ (3.8 ∗ sin(1.5 ∗ y)+ sin(1.111 ∗
x + 1.1 ∗ sin(1.5 ∗ x)) ∗ 1.299) ∗ (3.8 ∗ sin(1.5 ∗ y) +
sin(1.111∗ x+1.1∗ sin(1.5∗ x))∗2.598)

Sphere with microstructure

f = (((1 − x2 − y2 − z2)&((sin(20 ∗ y) − 0.9)&(sin(20 ∗
z)−0.9))|((sin(20∗x)−0.9)&(sin(20∗z)−0.9))|((sin(20∗
x)−0.9)&(sin(20∗y)−0.9)))|((1− x2 − y2 − z2)\ (0.75−
x2 − y2 − z2)))&(−z)

CSG with blending

f = (((c1∨bc2)∧bs)∨bb)∧b(−c3), where b = (0.36 −
x2)&(0.36 − y2)&(0.36 − z2), s = 0.7056 − x2 − y2 − z2,

c1 = 0.09− y2 − z2, c2 = 0.09− x2 − z2, c3 = 0.25− x2 −
y2, ∨b denotes blending intersection: f1∨b f2 = f1 + f2 −
√

f 2
1 + f 2

2 + 0.5
1+ f 2

1 + f 2
2

, ∧b denotes blending union: f1∧b f2 =

f1 + f2 +
√

f 2
1 + f 2

2 + 0.5
1+ f 2

1 + f 2
2

Hair

f = o|(((1.8∗sin(1.8∗x∗ 9√
x2+y2+z2

)+ sx)∗(1.8∗sin(1.8∗

y∗ 9√
x2+y2+z2

)+ sy)∗ (1.8∗ sin(1.8∗ z∗ 9√
x2+y2+z2

)+ sz)−

10)&(o+2)&y), where o = (1− x2

16 −
y2

36 − z2

16)|(1− x2

1.6129 −
(y+2.5)2

2.25 − (z−3)2

1.6129), sx = 1.538 ∗ sin(1.33 ∗ x ∗ 9√
x2+y2+z2

+

1.4 ∗ sin(1.8 ∗ x ∗ 9√
x2+y2+z2

)), sy = 1.538 ∗ sin(1.33 ∗ y ∗
9√

x2+y2+z2
+ 1.4 ∗ sin(1.8 ∗ y ∗ 9√

x2+y2+z2
)), sz = 1.538 ∗

sin(1.33∗ z∗ 9√
x2+y2+z2

+1.4∗ sin(1.8∗ z∗ 9√
x2+y2+z2

))

Sphere with trimming: described in [PP04]

Virtual Shikki: files in HyperFun format can be found

here: http://www.hyperfun.org/App/shi/Shikki.html

In formulas & denotes set-theoretic intersection with

R-functions: f1& f2 = f1 + f2 −
√

f 2
1 + f 2

2 , | denotes set-

theoretic union with R-functions: f1& f2 = f1 + f2 +
√

f 2
1 + f 2

2 and \ denotes set-theoretic subtraction with R-

functions: f1 \ f2 = f1 − f2 −
√

f 2
1 + f 2

2

http://www.hyperfun.org/App/shi/Shikki.html

