
On the Definition of Non-Player
Character Behaviour for Real-Time

Simulated Virtual Environments

Eike Falk Anderson
National Centre for Computer Animation

A thesis submitted in partial fulfilment of the requirements of
Bournemouth University for the degree of

Doctor of Philosophy

Submitted: April 2008

This copy of the thesZs has been supplied on condition that anyone who consult's

it is understood to recognise that its copyright rests with its author and due ac-
knowledgement must always be made of the use of any materzal contained in, or
denved from, this thesis.

On the Definition of Non-Player Character
Behaviour for Real-Time Simulated Virtual

Environments
Eike Falk Anderson

Abstract

Computer games with complex virtual worlds, which are populated by artifi-
cial characters and creatures, are the most visible application of artificial intelli-

gence techniques. 1n recent years game development has been fuelled by dramatic

advances in computer graphics hardware which have led to a rise in the quality
of real-time computer graphics and increased realism in computer games. As

a result of these developments video games are gaining acceptance and cultural
significance as a form of art and popular culture.

An important factor for the attainment of realism in games is the artificially
intelligent behaviour displayed by the virtual entities that populate the games'

virtual worlds. It is our firm belief that to further improve the behaviour of vir-
tual entities, game Al development will have to mirror the advances achieved in

game graphics. A major contributing factor for these advancements has been the

advent of programmable shaders for real-time graphics, which in turn has been

significantly simplified by the introduction of higher level programming languages

for the creation of shaders. This has demonstrated that a good system can be

vastly improved by the addition of a programming language.

This thesis presents a similar (syntactic) approach to the definition of the
behaviour of virtual entities in computer games. We introduce the term be-

haviour definition language (BDL), describing a programming language for the

definition of game entity behaviour. We specify the requirements for this type of

ii

programming language, which are applied to the development and implementa-

tion of several behaviour definition languages, culminating in the design of a new
gaine-genre independent behaviour definition (scripting) language. This exten-
sion programming language includes several game Al techniques within a single
unified system, allowing the use of different methods of behaviour definition.

A subset of the language (itself a BDL) was implemented as a proof of concept
of this design, providing a framework for the syntactic definition of the behaviour

of virtual entities in computer games.

iii

This thesis is dedicated to Monika Anderson.

Author's Note

I write this at the end of a long journey. For lack of a better word to describe
it., the work behind this thesis, as well as the thesis itself has been a journey of
discovery, not invention; and while the map is now a lot less empty than it was
before (back in 2001), there are still areas of "Terra Incognita" where there be
dragons.

Computer games have fascinated me ever since I first came into contact with
computers. My interest in computer programming then grew out of a desire to

understand the inner workings of games, so that I could modify and create games
by myself. Learning to program taught me that programming languages are a
powerful tool through which a computer can be made to do almost anything.
The CGAL animation system that 1 was introduced to during my undergraduate

studies proved this, as it provided the means to create moving images through the

power of programming. Graphics alone, however, do not make a game - there is

also the artificially intelligent behaviour of NPCs (Non-Player Characters) within
the games.

The majority of NPCs that we (game programmers) send into battle are
doomed to suffer a dreadful fate. It is quite obvious that the main cause of an
NPC`s death is the often bloody confrontation with a human player's avatar.
The moral implications of this virtual carnage aside, the question we must ask is

whether we have done the best we can in preparing these artificial warriors for

battle. The truth is, I do not know. I hope though, that the work described in

this thesis will provide a glimmer of hope to NPCs everywhere - not that it will

really improve their chances of survival... I am a bad loser and I would hate to

see them win. I am content as long as they lose convincingly.

V

Acknowledgement s

This thesis owes its existence to many people who encouraged and supported
my research.

First and foremost I need to express my gratitude towards my supervisor,
Peter Comninos, for his help, encouragement and guidance. Without his support
and advice this project would not have reached its current state. The constant
feedback and ideas that he provided me with during the preparation of this thesis

were invaluable.

Also, I thank Anargyros Sarafopoulos, my second supervisor, for inspiration,

support and the permission to use his GP system for the development of the
GP Asteroids scripting system. His expertise and suggestions contributed signif-
icantly to the development of this system.

I ain also grateful for the comments and suggestions offered by iny thesis

examiners, Meurig Beynon and Alexander Pasko, which were very useful for the

preparation of the final version of this thesis.
I also should mention the ZFX forum admins and moderators (current and for-

mer) who provided a valuable source of information and inspiration. First among
them the founder of ZFX, Stefan Zerbst, for "mentioning" that a scripting exten-

sion to his game project "Pandoras Legacy" might be a good idea, prompting me
to develop the ZBL/O behaviour definition (scripting) language that turned out
to be the perfect test bed for a number of hypotheses relating to behaviour defini-

tion languages. Regarding the ZBL/O language I also need to thank the members

of the ZFX team for program testing and for the feedback they provided me with,

especially Milo Spirig, Sebastian Pech and Oliver Diivel. Their suggestions and

comments were always encouraging and very useful for the design of the ZBL/O

vi

Svstcm.

Additional thanks go to my fellow PhD students Marina Militadou, Olusola
Aina. and more recently Leigh McLoughlin and Steffen Engel, who made life in

the research lab bearable and interesting. Sola introduced me to DTFX and "PhD
Comics"', both of which have been incredibly helpful - the first turned out to
be a useful tool for the preparation of conference papers, as well as this thesis,

whereas the second provided some needed comic relief.

To Leigh McLoughlin and Steffen Engel I owe inany thanks. They have been

good friends, as well as my partners in crime, first on the C -Sheep project - the
fluffy stuff of nightmares - and lately on the project that we ha\-c tentatively
dubbed "Project Flatline"

Finally I would like to thank my family who have supported me throughout

this journey. This is especially true for my late grandmother, without whom I

would not have got to where 1 am now.

lhttp: //www. phdcomics. com

vii

Contents

List of Figures xvii

List of Tables xviii

Introduction 1
1.1 Aims

.................................. 3
1.2 Contribution

.............................. 4
1.3 Thesis overview 5

I Game Al

2 Intelligent Non-Player Characters 8
2.1 Artificial Intelligence in Computer Games

........... .. 8

2.1.1 Artificial Intelligence
................... .. 9

2.1.2 Smoke and Mirrors (Game AI)
.............. .. 11

2.2 The Roles and Requirements of Al in Computer Games
.... .. 12

2.2.1 The NPC World Interface 15

2.2.2 Al in Real-Time Computer Games
........... .. 16

2.3 Game Al Techniques - The State of the Industry 20

2.3.1 Rule Based Techniques 21

2.3.2 Knowledge Based Techniques 22

2.3.3 Machine Learning and Emergent Behaviour 24

2.3.4 Extensible NPC Intelligence 25

2.3.5 Hybrid Techniques - Agents, Animats and Avatars
.. .. 27

2.3.6 AI Middleware and Dedicated Hardware 29

viii

CONTENTS

3 Data-Driven Architecture in Computer Games 31
3.1 Data-Driven Design

.......................... 31
3.2 Data-Driven Design in Computer Games

.............. 32
3.2.1 Caine Extensibility and Modification

............ 33
3.2.2 Scripting and Data-Driven Design in Computer

Games
............................. 34

4 Common Approaches to the Implementation of NPCs 36
4.1 General NPC Implementation 36

4.2 Decision Making 38
4.2.1 Implementation of Finite State Machines for NPC

Behaviour 39

4.2.2 Alternative FSM Implementations 43

4.3 Path Finding 44

4.3.1 Evaluating the Cost of Travel 44

4.3.2 Virtual World Representation 45

4.3.3 Planning the Path 47

4.4 Steering 48

4.5 Construction of an NPC 49

II Syntactic Behaviour Definition 51

5 NPC Behaviour Definition Languages for Computer Games 52

5.1 Behaviour Definition Languages 52

5.1.1 Al Languages 53

5.2 Requirements for Behaviour Definition Languages 58

5.2.1 Language Requirements 59

5.2.2 Run-Time System Requirements
61

5.3 Behaviour Definition Language Design
62

5.3.1 Design Principles 63

5.3.2 Resemblance to Natural Languages
64

5.3.3 Resemblance to Educational Programming

Languages
65

ix

CONTENTS

5.3.4 Resemblance to Production Programming

Languages 67
5.3.5 Scripting System Design 68

6 Scripting Languages and Computer Games 70

6.1 Scripting Languages and Scripting Systems 70

6.1.1 A Brief (and incomplete) History of Scripting Languages 73

6.1.2 Comparative Analysis and Classification of Scripting Sys-

tems in Games
........................

74

6.1.3 Improving Game Design Through the Addition of a Script-

ing System
...........................

76

6.2 Frequently Used Scripting Languages in

Games
.................................

79

6.2.1 The Lua Extension Language
80

6.2.2 AngelScript
82

6.2.3 GameMonkey Script
82

6.2.4 Python
82

6.2.5 Other Scripting Systems Based on Generic

Languages
83

6.3 Scripting Tools for Game Designers
84

6.3.1 Scripting Tools in Popular Computer Games
84

6.3.2 Dedicated Al Definition Systems for NPCs
85

6.3.3 Programming Solutions that Modify NPC

Behaviour
87

6.3.4 Visual Script and NPC Generation
87

6.4 Syste ms for Syntactic Behaviour Definition
90

7 The Development of Three Behaviour Definition Languages 91

7.1 GP Asteroids Script
91

7.1.1 The GP Asteroids Script Programming Language
92

7.1.2 Designing Artificial Players Using GP Asteroids

Script
96

7.1.3 Concluding Remarks on GP Asteroids Script
99

7.2 FPS NPC Behaviour Definition Language ZBL/O
100

x

CONTENTS

7.2.1 The Design and Development of ZBL/O
...... 101

7.2.2 The ZBL/O Programming Language
........ 103

1.2.3 ZBL/O Virtual Machine 105
7.2.4 Extending a Game Engine with ZBL/O

...... 106

1.2.5 ZBL/O Extensions 118
7.2.6 Concluding Remarks on ZBL/O

.......... 119
7.3 Educational Programming Language

C-She ep 121

1 . 3.1 The C-Shcep Programming Language 122
7.3.2 The C-Sheep Virtual Machine 125
7.3.3 Concluding Remarks on C-Sheep

......... 128

III A Behaviour Definition Language 130

8 NPC Behaviour Definition Language AvDL 131

8.1 Towards a Better System for Defining Computer Game Al - Ra-

tionale for the A-, -DL Scripting Language 132

8.2 The AvDL Programming Language
133

8.2.1 The Syntax of AvDL
.....................

135

8.3 Using AvDL to Create NPCs
152

8.3.1 An AvDL FSM Example
152

8.3.2 An AvDL Trigger System Example
157

8.3.3 A Nondeterministic NPC Example 158

9 The Simple Entity Annotation Language 161

9.1 SEAL within AvDL
................... 161

9.2 Entity Annotation for NPC Behaviour

Definition 162

9.2.1 Affordance and Annotations
..........

163

9.2.2 Implementing Smart Environments 163

9.3 The Syntax of SEAL
164

9.3.1 Entity Annotation with SEAL
167

9.4 Using SEAL to Create NPCs
170

xi

CONTENTS

10 Implementation of NPC Programs on the System's Run-Time

Environment 176

10.1 Virtual Machine Architecture
................. ... 177

10.1.1 Virtual Machine Instruction Set
............ ... 180

10.1.2 Extension Architecture 181

10.2 Implementation of the System Prototype's Features 183

10.2.1 Implementation of Actions 183

10.2.2 Implementation of Events 185

10.2.3 Implementation of FSMs 187

10.2.4 Implementation of Entity Annotation 189

10.3 Considerations for Extension to Full AvDL Specification 191

10.3.1 Considerations for FuSM Implementation 193

10-3.2 Considerations for Goal Implementation 193

10.4 Interfacing a Host Application with the

System 194

10.4.1 The System API 194

10.4.2 Using the System API 196

11 Analysis of the System 200

11.1 Meeting of Criteria
200

11.1.1 Language Requirements
201

11.1.2 Run-Time System Requirements
202

11.2 Features of the Avatar Description

Language
204

11.2.1 Object Orientation
204

11.2.2 FSM Type
205

11.2.3 FuSM Type
205

11.2.4 Goal Data Type
206

11.2.5 Entity Annotation
206

11.3 Concluding Remarks on AvDL and its

SEAL Subset
207

xii

CONTENTS

12 Conclusion 209
12.1 Summary of Contributions

...................... 209
12-1.1 Synt, -ictic Behaviour Definition for Virtual Entities

.... 209

12.1.2 Classification of BDLs and Scripting Systems in Computer

Games
............................. 209

12.1.3 Implementation of a Prototype Behaviour Definition Systern210

12.2 Discussion 210

12.3 Future Work 213

12.3.1 Language Additions 213

12.3.2 Run-Time System
.......................

215

12.3.3 System API
..........................

215

Appendices 217

A A* Sample Implementation 218

A. 1 Dependencies
218

A. 1.1 Node
218

A. 1.2 Pathnode
219

A. 1.3 Cost of Travel
219

A. 2 A* Function
220

B GP Asteroids Script 224

B. I Original Language Definition
225

B. 2 GP Asteroids Script with ADFs
226

B-3 GP Asteroids Script with Super Actions
227

BA GP Asteroids Script Functions
228

B. 4.1 Sensor Functions
228

B. 4.2 Action Functions
229

B. 4.3 Control Structures
230

C The ZBL/O Programming Language 232

CA Garne-Bot Scripting Language
232

C. 1.1 Core Functionality
233

C. 1.2 ZBL/O Function Set
237

xiii

CONTENTS

C. 2 Virtual Machine Interface of the ZBL-API 244

C. 2.1 Error Handling
246

C. 3 ZBL/O Syntax
.............................

247

C. 3.1 Core Functionality
247

C. 3.2 Intrinsic Functions
251

D The AvDL Scripting Language 253

D. 1 Programming in AvDL
............... 254

D. 1.1 Core Functionality
254

D. 1.2 AvDL Data Types
255

D. I. 3 Operators
266

D. I. 4 Control Structures 266

D. 1.5 Commands & Functions
273

D. I. 6 Object Orientation
276

D. 1.7 AvDL Standard Functions
276

D. 2 AvDL Syntax
277

E The SEAL Scripting Language 293

E. 1 SEAL Syntax
294

F SEAL/AvDL System Prototype 304

F. 1 Virtual Machine Instructions
304

F. 1.1 Proccss Control Instructions
304

F. 1.2 Data Handling Instructions
305

F. 1-3 Function Handling Instructions
307

F. 1.4 Comparisons
308

F. 1.5 Operators
309

F. 1.6 Heap Operations
311

F. 2 Intrinsic System Functions
311

F. 3 FSM Translation Example
312

FA API Functions (Selection)
316

FAI Virtual Machine Control Functions
316

F. 4.2 Process Interaction Functions
317

F. 4.3 Housekeeping Functions
318

xiv

CONTENTS

Glossary

List of Publications

References

319

321

322

xv

List of Figures

3.1 A typical game engine 32

4.1 Typical entity class hierarchy in a computer game 37
4.2 Finite State Machine for a typical NPC 40

6.1 Computer game extensibility reasons poll (source: GameAi. com). 71
6.2 Computer game scripting poll (source: GameDev. net) 77
6.3 Embeddable scripting language poll (source: GameDev. net). ... 79
6.4 BioWare's Aurora Toolkit 84
6.5 Computer game Al extensibility poll (source: GameAi-com)

... 86
6.6 Stottler Henke's SimBionic middleware 88

7.1 The interface between ZBL/O virtual machine and host application. 108
7.2 A ZBL/O game-bot patrolling a warehouse 113
7.3 ZBL/O game-bots in a "light-cycle race 119

7.4 Components of the C-Sheep system 121

7.5 C-Sheep Syntax
............................ 127

8.1 Syntax for declaring an 'entity' object 136

8.2 Declaration and use of arrays in AvDL
................ 137

8.3 Syntax for declaring an event with event-handler (instruction list). 142

8.4 Syntax for FSM declaration
143

8.5 Syntax for FuSM declaration
146

8.6 Syntax for declaring a goal 148

9.1 Syntax for declaring an 'entity' object
165

xvi

LIST OF FIGURES

9.2 Syntax for FSM declaration
166

9.3 SEAL specific operators
167

9.4 Syntax for 'action' declaration
168

10.1 Organisation of the system prototype's virtual machine 177

10.2 Organisation of an entity's process in the system prototype. ... 178

10.3 The classes of the run-time environment's API
...........

194

xvii

List of Tables

7.1 CP Asteroids Script functions
..................... 94

7.2 ZBL/O intrinsic functions
....................... 104

7.3 Game-bot interface methods of the ZBL-API (class zblbot). ... 109
7.4 Virtual machine interface methods of the ZBL-AP1 (class zbl-vm). III
7.5 C-Sheep standard functions

...................... 124
7.6 A simple C-Sheep program in comparison to an equivalent program

written in ZBL/O: if the path of the sheep entity is blocked, it will
turn right, otherwise it will take a step forward

........... 126

9.1 SEAL standard functions for use with annotated entities 169

10.1 Intrinsic system functions of the prototype's virtual machine. .-- 181
10.2 Týanslation example for an AvDL class 192

C. 1 ZBL/O reserved words 233
C. 2 ZBL/O operator precedence 234
C. 3 Public attributes of the 'zbl-errorA' type 246

D. 1 Basic structure of an AvDL program 253

D. 2 AvDL reserved words 254

D. 3 AvDL operator precedence
265

E. 1 SEAL reserved words 293

xviii

Chapter 1

Introduction

Computer games have come a long way since the days of Spacewar' [Fleming

2007]. 1n recent years interactive video games have greatly gained in prominence,
and with video games gaining acceptance and cultural significance as a form of
art and popular culture, games are now more visible than ever.

Modern computer games aim to immerse the player in a virtual game world
by placing him in an interesting and challenging setting that he can interact with,

which clearly distinguishes games from other entertainment media. They allow
the player to become the narrator and sometimes even the protagonist - either

as his virtual self or by assuming the identity of an established character - and
tell his own story.

This growth in the popularity of games has been driven by significant advances
in game technology, and as a consequence virtual game worlds have become in-

creasingly realistic over the years. Modern games usually employ 3D animated

graphics (and 3D sound effects) to provide players with the illusion of realism.
A major contributing factor to this end has been a steep rise in the quality of

real-time computer graphics, fuelled by dramatic advances in computer graphics
hardware.

Whereas once the limitations of the available hardware required ad-hoc solu-
tions, i. e. the development of a new, tailor-made renderer for almost every game,

i-Spacewar is the first computer game that can be considered the ancestor of modern video

games. Created in 1962 at MIT using a DAC PDP-1 computer, it featured two player- controlled

spaceships in a deadly duel.

1

now standardised APIs and functionality for high-end graphics have made the
creation of multiple-title, reusable game engines possible.

The stage that graphics have now arrived at leaves little room for significant
developments ill this field that could lead to all overall improvement of computer
games. Furthermore, it is easily recognisable that graphical realism alone does

not necessarily make the experience of playing a game realistic. As a direct

consequence of this the games industry needs to find other avenues to further
improve quality and to distinguish their games. Graphics aside, another very
important factor for the attainment of realism in computer games is the behaviour

of the characters and creatures that populate the virtual game environments.
This becomes blatantly obvious if the behaviour of computer controlled Non-

Player Characters (NPCs) [Olsen 1991] does not "feel right", effectively destroying

the illusion of realism.
NPCs are virtual entities inhabiting the game world, whose perception and

actions within the game are controlled by a computer program. The behaviour

displayed by the NPCs is usually generated with the aid of "artificial intelligence"
(Al) algorithms and techniques. The improvement of game Al therefore provides

an avenue to achieving the goal of an overall improvement of computer games
that is certain to become increasingly important.

There is no single, common method for the implementation of a game charac-
ter Al. The life-like behaviour of the NPCs that populate the virtual game worlds

often requires the combined use of several techniques determined by the desired

effect. This kind of artificially intelligent entity is commonly referred to as an

autonomous agent2.
Despite the importance of a good NPC Al in games, over the past decade

there have been few changes to the techniques employed by the game developers.

While there exist a multitude of possibilities for creating a game character AI,

only a relatively small subset of tried and tested methods are used, usually to

create a project-specific Al solution for that game's virtual entities.

2An agent is a program that has the ability to perceive and to (re-)act. An autonomous

agent is a program that has the ability to control itself. Its actions are derived from an analysis

of the agent's situation and environment based on its knowledge and experience.

2

1.1 Aims

Until recently, the artificially intelligent behaviour for NPCs was almost al-

ways hard-coded into the game itself, i. e. the source code for the Al forms an
intrinsic part of the game program, and only works for the particular game it

was created for. The behaviour of NPCs in games is therefore not easily reusable
for other game productions, and generally impossible to transfer to other game
genres.

The shift towards data-driven architectures has partially addressed this issue,

and the introduction of Al middle-ware now allows a certain degree of reusability,
however, the use of ad-hoc solutions for each individual game is still prevalent

among game developers.

A comparison between our initial observations on the development of graphics
in games, especially the move from individual approaches to more standardised

methods, and recent developments in NPC Al development allow us to draw

certain parallels:
The introduction of programmable GPUs (Graphical Processing Units) and

therefore the advent of programmable shaders for real-time graphical applications
in recent years [Lindholm et al. 2001] has shown that with relatively little effort,

great advances in the graphical quality of computer games can be achieved. Fur-

thermore, the successive introduction of higher level programming languages for

the creation of these shaders [Mark et al. 2003] has demonstrated that even better

graphical quality for games is attainable by providing more powerful tools to the

developers.

It is our firm belief that to achieve further improvements in the quality of

computer games a similar approach will have to be taken for the creation of the

artificially intelligent characters that populate the virtual worlds of computer

games, i. e. the creation of a high-level programmable system for defining NPC

behaviours is the logical next step.

1.1 Aims

There are a lot of different AI techniques that are suitable for computer games

and our motivation is not the exploration of new Al techniques. In light of the

game industry's trend to embrace data-driven design, however. one of the main

3

1.2 Contribution

challenges is to efficiently define the behaviour of artificially intelligent characters
by placing these definitions in external game assets that are not hard-coded into
the game program itself.

In that respect, one of the main objectives of our research was the design of an
extendable and preferably modular system which will simplify the interface that
allows the creation of virtual entities in computer games that are able to interact
with each other and the virtual environment that they inhabit, effectively tying
together the available Al techniques.

This interface should take the form of a behaviour definition language, pro-
viding a syntax-driven approach to the definition of Al behaviours for the virtual
entities in computer games. A program written in this behaviour definition lan-

guage would therefore become an external asset for the data-driven architecture
of the game in which it is used.

This would provide the first step towards the development of a unified software
package for creating life-like NPCs in computer games, just as there are software
packages for the creation of other game assets like, for instance, three-dimensional

animated artwork for games.

1.2 Contribution

The focus and main contribution of this thesis is the design and implementation

of a behaviour definition language for virtual entities, suitable for application to
NPCs in computer games.

1n particular, this work covers the following aspects:

9 An investigation of flexible architectures and different interface implemen-

tations that enable the exposure of behaviour definition capability to com-

puter game engines, making the creation of reusable behaviours for virtual

entities possible.

9 The development and implementation of several behaviour definition lan-

guages for virtual entities, evaluating different approaches and implemen-

tations.

4

1.3 Thesis overview

Dependent on the results of the above, the design and prototype implemen-

tation of a game-genre independent behaviour definition language, exposing
different methods of behaviour definition, including the definition of virtual
entities as well as elements of their environment that they can interact with,
through a unified software interface that will allow existing software to be

extended to use this system for behaviour definition.

1.3 Thesis overview
This thesis is divided in three parts.
Part 1, starting with the chapter following this introduction, examines the ap-

plication of artificial intelligence techniques and scripting systems in computer

games, showing how those different subject areas are directly related to our work.
In particular, chapter 2 focuses on Al in general, and especially Al in computer

games, offering an insight into the use of artificially intelligent entities in com-

puter games and further elaborating some of the points made in this introduction.

It reviews common techniques, details problems faced by game Al and consid-

ers possible solutions. The discussion pays particular attention to classical Al

techniques that are permeating into computer game AI and highlights the most

promising game Al methods.
Chapter 3 discusses data-driven architectures for computer games, focussing on

the manifestation of the data-driven design philosophy in the use of scripting

languages.

Part 2 explores the general requirements for the design of behaviour definition

languages for use in computer games as well as existing approaches to behaviour

definition using syntactic methods.
Chapter 4 reviews common approaches to the implementation of NPCs in com-

puter games, noting how these game Al techniques are usually applied to satisfy

the demands placed on the Al by modern computer games.

Chapter 5 examines requirements and design principles for the creation of be-

haviour definition languages. It also explains the considerations and ideas that

5

1.3 Thesis overview

have directly influenced our work, including educational mini-languages and ded-

icated Al (scripting) languages that fit into the category of behaviour definition

languages.

In light of these, chapter 6 provides an overview of scripting systems and script-
ing languages with a specific focus on existing solutions using generic embeddable

scripting languages for use in computer games.
Following this. some of the behaviour definition languages that have been created
in the course of our work are discussed in chapter 7, which includes the ZBL/O

programming language that we developed for inclusion in a book on game devel-

opment [Zerbst et al. 2003].

Part 3 charts the design and implementation of the behaviour definition sys-

tem which lies at the core of our solution, the AvDL language and its SEAL

subset.
Chapter 8 provides a brief overview of AvDL, the Avatar Description Language,

while the topic of chapter 9 is the SEAL subset of AvDL which enables the sys-

tem to make use of the most promising game Al techniques introduced in chapter

2.
Chapter 10 describes the design of the SEAL/AvDL Virtual Machine which

executes SEAL/AvDL programs, as well as the implementation of the interface

to the virtual machine that allows it to be embedded within a host application.

Finally, chapter 11 provides a discussion of our system, integrating it with the

findings of part 2, followed by the presentation of conclusions on this thesis in

chapter 12.

The main body of the thesis is followed with several appendices that contain

additional information on the syntax and usage of the behaviour definition lan-

guages that were created as part of this research project.

6

Part I

Game Al

7

Chapter 2

Intelligent Non-Player
Characters

One of the earliest developments since the appearance of computer games has been
the introduction of Al to provide human players with a challenging, involving and

- most importantly - with a --fun" experience. The first games with computer
controlled players started using Al related techniques for the creation of believable

adversaries or enemies to compete with or fight against the human player if no
real human opponent was available to take its place. Depending on whether
these Al players were tactical opponents in classical board-games or monsters in

role-playing games or arcade games, the methods used for creating the Al were
different, but their purpose was ultimately the same - to create intelligent NPCs

that are life-like opponents for the human player.

2.1 Artificial Intelligence in Computer Games

When we refer to Al in computer games, that which we refer to is not truly
AT - at least not in the traditional sense of the term. The techniques applied to

computer games are usually a mixture of Al related methods whose main concern
is the creation of a believable illusion of intelligence.

8

2.1 Artificial Intelligence in Computer Games

2.1.1 Artificial Intelligence

Al is one of the oldest branches of computer science, almost as old as computer
science itself, although it took some time for the field to be recognized as such.
Research in artificial intelligence even existed a very long time before the term
-artificial intelligence" was first used, with roots going as far back as ancient
Greece when philosophers (Socrates, Plato, Aristotle) discussed the way in which
the human mind functions and how intelligent decisions are made [Anderson
2003a]. The study of what we now call Al is very much rooted in the study of
philosophy and the quest for the understanding of the human mind and body.
The term "artificial intelligence" for this field of research was coined in 1956 when
a number of researchers interested in the study of intelligence and neural networks
took part in a workshop (Dartmouth Conference) organised by John McCarthy
[1955]. Since this early research there have been numerous attempts towards the

creation of Al, often depending on whatever definition of the term Al was used.
Each distinct interpretation of the term "artificial intelligence" is associated with
different approaches to creating Al. In turn. each of those approaches is more or
less suitable for the different areas of AI research. Independent of the definition of
Al used, however, the problem they all try to solve and their ultimate goal is the

understanding and creation of intelligent programs. The dictionary definition for

ctartificial intelligence" is "the study of the modelling of human mental functions

by computer programs" [Collins 2001a]. A closer look at this branch of computer

science, however, shows that this description is far less than accurate. Al is not

necessarily confined to the simulation of methods that are biologically accurate or
biologically possible [McCarthy 2007]. A different definition for Al for instance is

the ability "to solve problems that would require intelligence if solved by humans"

[Johnson and Wiles 2001], or the ability of a system to adapt to its environment
through learning.

There are many who question if Al can ever reach a level of intelligence that

could be compared to that of a human, and while not everyone thinks of human-

level intelligence as a goal for the development of Al, human-level Al is especially
interesting for games as it promises a human-like opponent for the human player.
An early measurement for the presence of a kind of human-like intelligence that

9

2.1 Artificial Intelligence in Computer Games

would comply with these aims is the Turing test' [Turing 1950]. If a program
manages to pass the Turing test, i. e. manages to convince a human that it
is human (and therefore intelligent) itself, that program should be considered
somewhat intelligent. John Searle's "Chinese Room argument" [Searle 1980],
however, suggests that the Turing test is overrated and alone would not be enough
to allow judgement of the artificial intelligence of a computer program. It states
that just by following a set of rules regarding a language one does not even
understand (Chinese in the case of his argument), one might be able to pass the
Turing test in that language which would mean that the Turing test itself could
not be used as a measure for intelligence or understanding. A further argument
against the Turing test is that during the experiment the interrogator knows
that he is participating in a game, resulting in his anticipation and expectations
generating some form of bias in which the interrogator's imagination makes him

perceive intelligence where there is none.
This classical Al goal, aiming for human-like intelligence, is still far away from

reaching a solution despite many advances in technology and half a century of
research. The fact that an increasing number of the Al techniques developed
towards this goal are "spilling over" into computer game Al might suggest that
in the future the ability of NPCs to project the illusion of life-like behaviour will
increase substantially. However, it cannot automatically be taken as an indicator
for these Al techniques' suitability or success, as long as the question of Al itself

remains unanswered.

'The Turing test, also known as the imitation game, can be explained in simple terms.
It requires a set-up of a closed room containing a human test person (the interrogator) at a
computer terminal running a chat program, which has two connections. One connection is to a
second hunian operated ternihial in a, different room and the second connection is to a computer
running an intelligent program which pretends to be a human (chatterbot). The interrogator

now has to decide which of the two chat partners is human and which one is the chatterbot. If

the chatterbot manages to convince the interrogator that it is human, then it has passed the
Turing test.

10

2.1 Artificial Intelligence in Computer Games

2.1.2 Smoke and Mirrors (Game AI)
The problem that Al in computer games tries to address is a different one, since
here its aim is not the creation of actual intelligence, but rather the illusion of
intelligence [Scott 2002b]. The behaviour of NPCs only needs to be believable
to convey the presence of intelligence and to immerse the human player in the
game world. As this means that very little real reasoning is involved, some might
argue, that the term "artificial instincts" might be a better description for the
level of intelligence that is found there, mainly due to its reactive nature. In the
light of some games, the acronym AS for the term "artificial stupidity" might be

even more appropriate.
As a rule of thumb one can say that the creation of a simple Al for a computer

game is a relatively easy task, as the human brain is easily fooled. With very
little effort, an observer can be convinced of the --intelligent actions" of a fairly
basic NPC, as long as these actions appear plausible, in a very similar way to the
ccuncanny valley" phenomenon encountered in the study of the effect of humanoid

robots on human observers [MacDorman 2005; Hayward 2007]. The effect of a
complex Al, on the other hand, is actually quite invisible and will hardly be recog-

nised as such, suggesting that the concept of "less is more" can be applied to Al

in computer games. Its main requirement for creating the illusion of intelligence

is perception management, i. e. the organisation and evaluation of incoming data

from the Al entity's environment. This perception management mostly takes the
form of acting upon sensor information but also includes communication between

or coordination of Al entities in environments which are inhabited by multiple
NPCs which may have to act co-operatively.

The problems encountered by an Al entity in a game are a combination of the

virtual "real-world problems" that face a human game player, as well as various

problems that are specific to the various techniques that were used to build the

Al. In many cases game Al is deterministic, using rule-based systems which allow

game designers to exert a high level of control over the NPCs' behaviour, but

while most game Al solutions are provided by a small number of tried and tested

methods, a convergence of techniques from a wide range of different fields can be

found in computer game Al. These include but are not limited to:

11

2.2 The Roles and Requirements of AI in Computer Games

Traditional (academic) Al [McCarthy 2007], as described above (see Section
2.1.1).

--Artificial Life" (AL), the study of "inulti-agent systems that attempt to
apply some of the universal properties of living systems to Al agents in

virtual worlds" [Tozour 2002b], which includes some machine intelligence
techniques related to emergent behaviours like flocking [Reynolds 1987] and
evolutionary techniques like Genetic Algorithms (GA) or Genetic Program-

ming (GP) [Koza 1992], both of which are automated techniques that pro-
duce algorithms by using a process that parallels evolution through natural
selection, i. e. a simulation of life.

9 Robotics, especially the cognitive robotics techniques that allow a robot to

orient itself and navigate in the world.

o Empirical observation of behaviour. Much information on behaviour can be

acquired through the study of nature. The science of ethology, the biological

study of behaviour, provides valuable insight into the behaviour of animals
[Roberts 1971], some of which can directly be applied to the creation of
life-like NPCs in computer games.

A game Al is usually comprised of an amalgamation of possible solutions for

each of the combined problems from the different fields. The exact combination

required for a solution depends on the role assigned to the Al in the game and

subsequently the behaviour which a human player might expect from that type

of virtual entity.

2.2 The Roles and Requirements of Al in Com-

puter Games

To gain an understanding of what is expected of an artificial character in com-

puter games one needs to look at how over time NPCs have evolved into the Al

entities that one can encounter in modern computer games. The artificial entities

populating the virtual worlds of computer games will typically take on one of the

following roles [Laird and van Lent 2001; Glasser and Soh 2004]:

12

2.2 The Roles and Requirements of Al in Computer Games

The human player's (tactical) enemy (unit or individual). This is the origi-
nal Al role in computer games. While the most challenging opponent for a
human player is another human being, human opponents are not always
available, which was especially true before the proliferation of personal
computer networks and networked multi-player games, requiring the use
of good Al enemies instead. Starting with the 'intelligent' monster in the

game "Hunt the Wumpus" [Yob 1975] to the enemy NPCs in modern first

person shooter (FPS') games, Al controlled entities have been used as the

core method for providing the challenge for the human player.

9 The human player's partner (team-mate). This kind of Al entity is closely
linked to the rise of the team-based networked multi-player game. In the

early 1990s the development of the internet and improvements and cost

reductions in networking technology which led to the widespread introduc-

tion of local area networks (LANs) made the creation of games in which

multiple players could engage over a network connection possible [Falise

2000]. While in the first of these multi-player games all of the players were

opponents, it did not take long, however, for different ways of playing than

just fighting against each other over a network to emerge. The co-operation

of some players and the subsequent team formation (referred to as clans)
have led to games in which large teams engage each other competitively.
The overwhelming success of the team-based multi-player games that were

created in reaction to this development prompted game developers to at-

tempt to generate the same kind of sensation and experience in single-player

games. Artificial team-mates that act in league with the player (collabora-

tive NPCs) have evolved as a direct result of this trend [Kushner 2002].

The supporting character (incidental), a character that enriches the virtual

game world without actively having to contribute to the plot of the game.

2An FPS or First Person Shooter game is an action video game in which the player experi-

ences the gameplay from the viewpoint of the protagonist. This type of game usually involves

the exploration of some sort of building complex and frequent skirmishes with other players

or NPCs. Falise [2000] presents a study of the FPS game genre, providing an overview of its

history.

13

2.2 The Roles and Requirements of AI in Computer Games

The resources that have become available to games as computers have be-

come more powerful have been the addition of background characters and
creatures. Just as in a film, --extras" such as flocks of birds in the virtual sky
above or people going about their business in the background of the action,
generate a sense of reality which deepens the player's immersion within the

game world of games that are continuously growing more complex. In the
literature this kind of neutral synthetic entity is sometimes referred to as a
Non-Player Character (NPQ [Siem 2006], in that case meaning a character
that does not act like a player (human or computer controlled). We prefer
the meaning of NPC to include any kind of virtual entity that is not human-

player controlled [Yue and de Byl 2006], making the support character a
kind of ambient NPC [Cutimitsu et al. 2006].

The strategic opponent. an artificial entity often encountered as the human

player's adversary in real-time strategy (RTS') games [Scott 2002a]. Dif-

ferent from other intelligent characters, this kind of NPC does not usually
have a single avatar within the game world but instead is represented by

a variety of smaller units under its control. Its tasks within the game in-

clude research and resource management, unit construction and training,

as well as combat control. The responsibility for carrying out these tasks

is normally divided among a number of interrelated Al subsystems which

are under overall control of the strategic Al player. The strategic opponent
NPC is therefore one of the most complex Al entities found in modern com-

puter games. Path planning and decisions making, comprising of terrain

analysis and strategic reasoning, are carried out on a much higher level than

found in normal NPCs. A number of RTS games therefore share a number

of features with real-life military simulations [Atkin et al. 19991. However,

while at first sight the RTS AI does seem to be very different from the FPS

game NPC, many of its underlying concepts are the same.

3An RTS or Real-Time Strategy game is a strategy game which is not played round-base

but in real-time, i. e. all of a player's units and his opponents have to be directed/make choices

on the fly, while all action takes place simultaneously.

14

2.2 The Roles and Requirements of AI in Computer Games

The observer (commentator, tutor or director), an often omniscient entity
that provides narrative commentary of the human player's actions and in

some cases attempts to guide the human player or NPCs towards the com-
pletion of his tasks within the game world [Forbus and Hinrichs 20061. A

recent incarnation of this type of entity are the "intelligent" cameras found
in some games that aim to focus the human player's view of the game world
onto important events [Kharkar 20041.

The actions of an NPC are governed by its "behavioural model". This defines
how the game character reacts to any input it receives from its environment.
The interpretation of these inputs depends on the way that this information is

exposed to the Al entity and its domain knowledge, i. e. the NPC's perception
and understanding of the virtual world it occupies. It is common for games to

use high-level inputs that carry a lot of implied information, which can result
in believably intelligent behaviour even if only a very simple and basic decision

making process is used [Welsh and Pisan 2005], provided that the NPC has the

required domain knowledge.

2.2.1 The NPC World Interface

Providing this domain knowledge is important and can be problematic. An NPUs

Al needs to be able to clearly map - or anchor - the NPC`s environment to its

understanding of this environment. Coradeschi and Saffiotti [19991 discuss this

"anchoring" problem in the context of autonomous robotics in real environments.
They especially stress uncertainty as being the main difficulty in matching real-life

sensor data to the symbolic representation of knowledge by the Al. Fortunately

this problem is a lot less prevalent in the completely self-contained, virtual en-

vironment of a computer game world. Through a game s world interface the

incoming sensor data can be controlled to a much higher degree than real-life sen-

sor data, considerably simplifying the matching of sensor information to stored

knowledge, which in many cases can be directly mapped to one another. The

process of providing this knowledge in the first place. however, still remains quite

complex and there are different possible solutions:

15

2.2 The Roles and Requirements of AI in Computer Games

1. All associations can be explicitly defined. This is the simplest method but

also the least feasible if the Al resides in a large and complex environment,
as the amount of data that would have to be provided would be too large.
This approach only works in very small or simple scenarios.

2. Associations can be generated. For this various techniques can be used.
One way to achieve this would be to employ some kind of learning tech-

nique like reinforcement learning which has been successfully implemented
in commercial computer games [Johnson and Wiles 2001]. Another possi-
bility would be the use of emergent behaviour techniques like evolutionary

algorithms.

3. The environment can be annotated (see Section 2.3.4.4). An annotated

environment with smart objects holds all the information necessary for the
NPC to interact with it. As a result the NPC can be less complex which

not only benefits the development process but also makes the NPC's Al

-infiiiitel-ýr extensible" [Orkin 2002], making this method for simplifying the
11

creation of intelligent NPC behaviour a promising game Al technique [Rabin

2004].

2.2.2 Al in Real-Time Computer Games

A major difficulty facing the developers of a computer game Al is the requirement
for the NPCs to work in real-time, i. e. concurrently with the human player's

interaction with the virtual world and without the dedicated "thinking" cycle

for decision making which is available to Al entities in round-based games. The

Al has to be made to work so that to the human player it looks like the NPCs

are making decisions as they play along. Resource restrictions are an important

factor as even at the current rate of advances in computing power, there are still

limits to memory and processor (CPU - central processing unit) capabilities and

this automatically excludes a number of Al techniques from being used in games,

as it would be unacceptable for an NPC to spend minutes of game-time with

decision making.

16

2.2 The Roles and Requirements of Al in Computer Games

Another problem, which is closely related to this real-time requirement for

game AT, is the fact that the AT has to share the computer's processing resources
with the rest of the game which will include graphics, input processing, sound
processing and synchronisation issues arising from networking. In early computer
games, AT was given very little importance and was therefore allocated only little

processor time. Only after the development of graphics accelerators in the mid-
1990s, when more and more elements of the graphics pipeline were redirected onto
dedicated graphics hardware, AT acquired a higher priority and with it additional
resources. At first CPU budgets for AT exploded and a number of games spent
up to 30% of their processor time doing AT calculations, but this has now levelled

off at about 10% of CPU time [Woodcock 2001].
The exact range of problems that an NPC within a computer game has to solve

depends on the context in which it exists and the virtual environment in which the

game takes place. The tasks which need to be solved in most modern computer

games and to which the intelligent actions of NPCs are usually restricted to (by

convention rather than technology) are [Anderson 2003a]:

e decision making

9 path finding (planning)

9 steering (motion control)

2.2.2.1 Human-like NPC Intelligence

Until recently the unique selling point for many video games used to be the quality

of graphics and the number of polygons that could be displayed simultaneously

on screen. The realisation that graphical realism alone does not make a good

computer game has replaced this development trend with a drive to improve the

complexity and therefore the believability of the artificial characters that populate

the virtual game worlds. NPC behaviour that appears natural adds more life-like

qualities to the NPC and makes it seem more realistic. As a crucial factor for

the success and popular acceptance of a computer game this has now become

more important than ever. Laird and van Lent [2000] argue that the intelligence

displayed by NPCs in computer games will ultimately have to reach a human level

17

2.2 The Roles and Requirements of Al in Computer Games

at some point in the future, to keep entertaining human plavers. To achieve this,
NPC Al will have to become scalable, i. e. less restrictive and less deterministic

than current implementations allow for. Attempting to realise this with current
hardware however still results in a number of real-time performance problems.
The decision cycle of human-like NPCs can be decomposed into three steps that

are constantly executed [van Lent et al. 1999; Wright and 'Marshall 2000]:

sense/perceive (accept information about the environment - sensor infor-

mation)

2. think (evaluate perceived information & plan appropriate actions)

3. act (execute the planned actions)

Van Lent and Laird [1999] suggest that a system for the creation of this kind of
NPC would therefore consist of three components:

1. An inference machine which would constantly execute the NPC decision

cycle. This would have an internal memory for remembering goals, which
is one of the necessary preconditions for human-like behaviour. lts require-

ments would be:

9 to use reactive agents

9 to be context specific

9 to be flexible

9 to be realistic

9 to be easy to develop

2. A world interface to the underlying game engine which should mimic the

human player's interface as closely as possible, i. e. provide the NPC with

all the information (or a representation thereof) that is provided to human

players, i. e. audio & visual data, and the controls that allow the NPC to

interact with its environment in a similar fashion to the human player.

18

2.2 The Roles and Requirements of Al in Computer Games

IA knowledge base, to provide the NPCs with the necessary domain knowl-
edge, allowing the NPC to correctly interpret its situation in the game world
and therefore to make meaningful decisions to inform its actions.

Their rule-based Soar (State, Operator And Result) agent architecture imple-
ments such an inference machine. Soar was originally developed as a cognitive
architecture for building realistic Al entities with strong military applications.
In recent years it has also been used to create NPCs for various FPS games'.
For example, Soar agents created for the FPS game Quake2 have the ability to
anticipate a human player's actions and to adjust their actions accordingly to
counter the human player's moves [Laird 2001]. In these games the Soar engine
which provides the NPC's run-time environment uses a network connection to
communicate with a plug-in 5 to the game engine. This plug-in only provides an
interface between the Soar engine which runs remotely with the game engine into

which it is plugged in.

2.2.2.2 NPC Complexity vs. NPC Performance

The use of the Soar architecture for computer games is not an ideal one. Soar

controlled NPCs are so computationally expensive that it would be very hard for

more than one NPC to run on a single computer at the same time. The focus

of research into games using this architecture has mainly been on the cognitive
capabilities of Soar NPCs by adding learning and some prediction methods to the

system to improve the NPCs themselves. While this has certainly made them ap-

pear more realistic, it has largely ignored the real-time requirement of computer

games, making the Soar architecture unsuitable for general deployment in com-

puter games. Khoo and Zubek [2002] argue that the Soar approach to achieving
human-like intelligence for NPCs is over-ambitious and that similar results could
be achieved by using a combination of more conventional and inexpensive NPC

creation techniques. Observation of FPS game players has shown that the per-

ception of NPC intelligence and skill is determined by reaction (decision) time

4 http: //www. soargames. org
5A plug-in is an external software module which is not part of a program but which can

interface with the program to provide it with additional functionality. Plug-ins are often im-

plemented as dynamically linked libraries which a program can load during run-time.

19

2.3 Game AI Techniques - The State of the Industry

and aiming accuracy [Laird and Duchi 20011. This automatically disqualifies the
use of complex - and therefore slow - reasoning algorithms, which is why Khoo
and Zubek suggest that a behaviour-based approach from robotics would be more
suitable. One result of their work is a successful NPC called "Groo" which was
created for the FPS game Half-Life. It interfaces with the Half-Life game engine
through a plug-in using the FlexBot [Khoo et al. 20021 plug-in AP1 (application

programming interface 6)
- The control program for the Groo game-bot itself is

written in the GRL programming language [Horswill 2000] (see Chapter 5, Sec-
tion 5.1.1.2) from robotics which in turn is compiled into native C++ source code
for use with FlexBot. A further development of NPCs using this technology is
the Half-Life game-bot Ledgewalker [Khoo et al. 2002] which confronts human

players with an effective opponent NPC with many qualities which are perceived
to be human-like.

2.3 Game Al Techniques - The State of the In-
dustry

Just like computer games have come a long way, so have the Al techniques that

are employed within those games, many of which are derived from traditional Al

methods. Some of the more proven and successful techniques have changed little

over time and those techniques are almost always the first choice of developers

when they need to implement Al in their games. However, since the early 1990s

an increasing number of novel ideas and methods for game Al have filtered into
the game development process [Sweetser 20031. The greatest changes in the use of
Al in games however have involved the selection of AI to solve different problems

rather than the choice of Al techniques.

6An application programming interface (API) provides the programmer with an interface to

a group of related functions that are usually located within a library of functions. The interface

in this case is the description of data types, return types and formal parameters to functions

and methods (if object orientation is used).

20

2.3 Game AI Techniques - The State of the Industry

2.3.1 Rule Based Techniques

Rule-based techniques are the oldest and most commonly found Al methods used
in computer games. They can be implemented with relatively little effort and they
provide a robust and reliable solution to a wide range of problems but are often
used for decision making.

Finite State Machines

Finite state machines (FSMs) are the most commonly used type of Al used in

games [Fu and Houlette 20041. They arrange the behaviour of the NPC in logical

states - defining one state per possible NPC behaviour - of which only one, the
NPCs behaviour at that point in time, is active at any one time. A state is a
Boolean value which is either active or inactive - ýon' or -off. When the current
behaviour needs to be changed to a different behaviour, for example a transition
from a guarding stance to an attack on the closest opponent, the FSM will switch
between the states. It is relatively simple to program a very stable FSM that may
not be very sophisticated but that "will get the job done". The main drawback

of FS'Ms is that they can become very complex and hard to maintain, while on
the other hand the behaviour resulting from a too simple FSM can easily become

predictable. To overcome this problem sometimes hierarchical FS. Ms are used.
These are FSMs where each state can itself be an FSM.

2.3.1.2 Fuzzy State Machines

Fuzzy state machines (FuSMs) are a permutation of FSMs which uses fuzzy logic

instead of Boolean logic [McCusky 2000]. As a result states in FuSMs are not
limited to existing in one of the two states 'on" or 'off' but they can hold an
intermediate value. This means that at any one time more than one state may
be active and to some degree be on and off. While this makes the construction
of FuSMs slightly more complicated than the creation of an FSM the existence

of simultaneously active states greatly reduces the predictability of the resulting
behaviour. lt also dramatically reduces the complexity of the state machine, as a

wider range of different behaviours can be encoded with fewer states. FuSMs are

21

2.3 Game Al Techniques - The State of the Industry

a relatively new game Al technique that can be used in almost all of the areas in

which FSMs are usually found.

2.3.2 Knowledge Based Techniques

Knowledge based techniques are rarely used on their own when it comes to game
Al, but they are often used as subsystems of game Al. This would include terrain

analysis techniques within strategy games such as influence mapping [Tozour

2001] which allow a strategic Al in a war-game to assess the current situation, to

identify choke points for ambushes [Higgins 2002b] or to position its troops on the

virtual battlefield. Related to this are the search strategies that are frequently

used for path finding for NPCs in a wide range of games.

2.3.2.1 Al Planning

Considered a promising game Al technique [Rabin 2004], planning in games is

often performed by using a search algorithm on a knowledge base, representing an
NPC's domain knowledge. In computer games, this has mainly been implemented

as a method for path finding to facilitate NPC navigation in virtual game worlds,
but recent developments aim to apply planning to NPC decision making. While

there exist many search methods for path finding, such as Dijkstra's algorithm
[Dijkstra 19591, for path planning in games the algorithm of choice is the A*

algorithm [Stout 2000] (see Chapter 4, Section 4.3.3) which is optimal, i. e. proven

to find the optimal path in a weighted graph if an optimal solution exists [Dechter

and Pearl 1985].

More general planners use a notation based on the representation of initial

and goal states and the operators or actions required to reach the goals, as is the

case with the pioneering STRIPS (STanford Research Institute Problem Solver)

program and language which has provided a template for many modern Al plan-

ning systems [Russel and Norvig 1995]. Planning can be a complex and time-

consuming task that may not be fully computable within the time available in

the update-cycle of a real-time computer game, requiring the computation to be

"staggered" [Evans 2001], i. e. distributed over several update-cycles to spread

the workload of the CPU. This process, known as time-slicing, usually involves

22

2.3 Game Al Techniques - The State of the Industry

the careful management of Al processes that need "to be dynamically suspended
and reactivated" [Wright and Marshall 2000], which can be achieved using multi-
tasking techniques usually associated with operating systems.

2.3.2.2 Goal-Oriented Techniques and Goal-Oriented Action Plan-

ning

Goal-directed behaviour is one of the simplest forms of nondeterministic be-
haviour. A goal is the end-state of a set of goal-directed actions. Dybsand
describes it as a technique in which an NPC "will execute a series of actions

... that attempt to accomplish a specific objective or goal" [Dybsand 2004].
Goal-oriented techniques have only recently been introduced into computer game
development and so far, goal-oriented methods for creating NPC behaviour are
employed in only a small, but steadily growing number of commercial games.
In its simplest form, goal-orientation can be implemented by determining a goal
with an embedded action sequence for an NPC. This action sequence, the NPC's

plan, will then be executed by the NPC to satisfy the goal [Orkin 2004a]. Solu-

tions that allow for more diverse NPC behaviour can improve this by selecting

an appropriate plan from a pre-computed "plan library" [Evans 2001] instead of
using a built-in plan.

More complex solutions use plans that are computed dynamically, i. e. -on the
fly", as is the case with Coal-Oriented Action Planning (GOAP) [Orkin 2004a].

In GOAP the sequence of actions that the system needs to perform to reach its

end-state or goal is generated in real-time by using a planning heuristic on a set

of known values which need to exist within the NPC's domain knowledge. To

achieve this in his implementation of GOAP, Orkin [2004b] separates the actions

and goals. implicitly integrating preconditions and effects that define the planner's

search space, placing the decision making process into the domain of the planner

and therefore relieving the designer of the need to micro-manage game logic.

In GOAP the representation of the search space can be augmented by asso-

ciating costs with actions that can satisfy goals, turning the NPC's knowledge

base into a weighted graph, allowing the use of path planning algorithms such

as A* that find the shortest path within a graph as the planning algorithm for

the NPC's high-level behaviour [Orkin 2006]. This has the additional benefit of

23

2.3 Game Al Techniques - The State of the Industry

greater code re-use as the planning method for high-level decision making, as well
as path planning is the same and can therefore be executed by the same code
module [Orkin 2004b] if the representations of the search space are kept identical.

2.3.3 Machine Learning and Emergent Behaviour

Recently the use Al techniques that involve machine learning in games to achieve
emergent behaviour has become more frequent and surprisingly effective [Graepel

et al. 2004]. The implementation of systems that "learn to play good" can be done

without too much effort; however, their unpredict ability makes them unsuitable
for many games. The danger with learning algorithms is always that instead of
making the Al seem smarter by behaving clever, it could in fact learn to behave

more stupidly by misinterpreting its inputs. To prevent this from happening the
NPCs need to be trained to act in a desirable manner by the game's developers.
This learning is usually done before the game itself is published, often using

automated off-line calculations, with the commercial product then only using the
locked-in, previously learned behaviour, while the learning itself is disabled.

2.3.3.1 Artificial Neural Networks (ANNs)

Neural networks are used to emulate the functionality of human and animal
brains. In an artificial neural network the neurons are modelled using intercon-

nected nodes that are able to make new connections, which allows the network to

learn and improve itself. Using a neural network can enable games to adapt to the

way that the player plays by updating itself during gameplay. As such they have

been used in strategy games but they have also been successfully implemented

in adventure games or action games, allowing artificial entities to improve their

skills in line with the human player's performance.

2.3.3.2 Decision Trees

Decision trees that grow as they learn new information are another machine learn-

ing method that is used in computer games. They are one of the most reliable and

robust learning methods available and usually the preferred choice if a game Al

requires to predict future outcomes or classify situations. When it is generated the

24

2.3 Game Al Techniques - The State of the Industry

decision tree will store situations and their outcomes within its nodes, allowing it
to "remember" the best course of action in case a similar situation is encountered
in the future. In games, they have been generated using reinforcement- learning
(gathered from the human player's reactions to NPC behaviour).

2.3.3.3 Evolutionary Techniques

Evolutionary techniques are the least often used machine intelligence methods
used in computer games. In these techniques a basic initial set of problem solv-
ing strategies for NPCs is usually evolved over time using a range of selection
methods as well as random mutations, which are then evaluated until an optimal
solution is found. While these solutions are usually very robust and reliable it

can take a long time for a program to reach the desired level of competence which
makes evolutionary techniques unsuitable for most real-time games. Neverthe-
less a number of games have made use of evolutionary techniques like genetic

algorithms (GA) and genetic programming (GP) that have been used for evolv-
ing agents for a number of games, including arcade games [Anderson 2002]. GP

has so far been applied exp erinient ally to a number of different computer game

scenarios. Among these are classic video games like Pac Man [Koza 1994] or
Tetris [Siegel and Chaffee 1996]. In these experiments game playing behaviour

has been evolved in modified game environments. Most of the game versions

used have been round-based, i. e. the computation of actions in the game are

performed while the game itself is paused. Gameplay resumes only after those

computations have finished. and only lasts until the pre-calculated actions have

been executed. This is in contrast to real-time games in which all actions have to

be calculated "on the fly". One of the few attempts to apply CP to a real-time

game (RoboCup Soccer) is documented by Luke [Luke et al. 1998; Luke 1998].

The methods employed for that experiment bear some similarities to our own

experiments [Anderson 2002]' (see Chapter 7, Section 7.1).

2.3.4 Extensible NPC Intelligence

A recent trend in computer games is to make them extensible by allowing users to

modify them to their needs, one of the main areas for doing so being the definition

25

2.3 Game AI Techniques - The State of the Industry

of game Al. There are several methods with different levels of complexity that
can be used to achieve this.

2.3.4.1 Parameter Tweaking

The simplest way for modifying Al behaviour is by modifying the rules that are
used internally by the game Al. This is usually done by setting internal program
parameters that determine the behaviour of NPCs to given values. There are a

number of games that employ this technique - some games even have graphical

user interfaces to make this as simple as possible. Other games employ very

simple initialisation scripts (see scripting systems below) to achieve this effect
[Tapper 2003].

2.3.4.2 Plug-In Interfaces

As mentioned above (see Section 2.2.2.1), some games contain software interfaces

that can be used for writing plug-ins that can change the Al of NPCs in the

game [Laird 2001], effectively allowing parts of the games to be reprogrammed.
For this purpose, some games even have complex SDKs (software development

kits) to simplify the modification of the game behaviour.

2.3.4.3 Scripting Systems

Many new games contain complex scripting systems (see Chapter 6) that allow

the game Al to be defined or extended. Through scripting, game modification

without the need for the program source code to be recompiled, a task that can

be accomplished by a game designer alone, becomes possible. This enables the

introduction of "parallel development", which means that the programmers" time

is freed up as they no longer need to concern themselves with design elements

which designers can now manipulate themselves with scripts [Huebner 1997].

A type of scripting language which is domain specific to the creation of NPC

intelligence is the behaviour definition language [Anderson 2004] (see Chapter

5). As their name suggests, behaviour definition languages are used to define

the behaviour of virtual characters - often in the form of programs running on

26

2.3 Game Al Techniques - The State of the Industry

a virtual machine 7 which interfaces with the character controls within the game
engine.

2.3.4.4 Annotated Environments

A number of games now use annotated environments ("Smart Terrain") to sim-
plify the simulation of intelligent behaviour. If the environment of the NPC holds

all the information necessary for the NPC to interact with it, the NPC can be
less complex which allows for the rapid development of game scenarios [Cornwell

et al. 20031. This use of "annotated" objects [Doyle 1999] to make up the virtual
game world greatly benefits the development process and also makes the NPC's
Al highly extensible. The idea of annotated environments is based on the theory

of affordance (or affordance theory) that was developed in the fields of psychology

and visual perception. Affordance theory states that the makeup and shape of

objects contains suggestions about their usage. A real world example would be a

mug whose handle "affords" to be gripped to pick up the mug. Transferred into

the context of a computer game, this means that the objects in the virtual world

contain all of the information that an NPC will need to be able to use them, effec-
tively making the environment "smart". In the game "The Sims" these "Smart

Objects" [Peters et al. 2003] were used for behaviour selection to great effect.
This means that most of the Al is not actually programmed into the Sims char-

acters but into their environment. An object will broadcast information about
itself to the entities in its proximity, including all instructions that are necessary
to enable meaningful interaction between the NPC and the object [Forbus and
Wright 2001].

2.3.5 Hybrid Techniques - Agents, Animats and Avatars

The literature often refers to computer game NPCs as agents. Although the term

agent is used frequently, there is no single definition for it, but generally speaking

an intelligent agent is "anything that can be viewed as perceiving its environment

7A virtual machine (VM) is a program that emulates the functionality of a whole computer

system. It provides applications with a level of abstraction above the actual hardware (and the

operating system) of the computer.

27

2.3 Game Al Techniques - The State of the Industry

through sensors and acting upon that environment through effectors"' [Russel and
Norvig 1995]. As the choice of terminology shows, a substantial amount of re-
search using the concept of agents has been carried out in robotics, however in

terms of software agents or --softbots" this means a program (module) which is

able to collect information about its surroundings and evaluate this data using

whatever Al method seems appropriate, resulting in a plan of action which it will
then carry out - in effect a decision-making entity. The agents that are referred
to most often in the context of computer games are autonomous agents [Nareyek

2000]. Autonomous agents are agents that are self contained, i. e. agents that base

their actions upon the information that they are able to gather themselves and
their own knowledge. They do not have inputs that allow for external control but

they are perceiving, "thinking" and acting by themselves. Using this definition

one can clearly see that almost all NPCs in modern computer games can qualify

as agents. This can be taken further by transforming the autonomous agents
into embodied systems, i. e. virtual beings that interact with their environments

using their bodies which take the place of abstract sensors or effectors. These

truly autonomous NPCs are called animats [Champandard 2004]. The definition

of animats is very close to what might be regarded as the ideal NPC, as it is a
believable virtual entity. However, we think that to describe this kind of entity

that could be considered the ultimate NPC a different term should be used. The

dictionary definition for the word avatar is "the manifestation of a deity ... in

human, superhuman, or animal form" [Collins 2001b]. This meaning has been

transferred - mainly in multi-player computer games - onto the visual representa-

tions of the players within the virtual environments of such games. However, we

strongly believe that the meaning of the term avatar in the context of computer

games should be expanded to also include virtual characters or virtual creatures

which can interact with other avatars and the virtual environment they populate.

We come to this belief because in a number of NIMOGs (Massive Multi-player

Online Games), the human player's avatars will sometimes interact with very

human-like NPCs that behave similarly to other players' avatars. The bound-

aries between player and NPC are effectively blurred and - depending on the

realism of the performance of the NPC - it may be hard to distinguish between

human player and NPC. This kind of avatar could be called a most human-like

28

2.3 Game Al Techniques - The State of the Industry

NPC. Therefore in the context of computer games an alternative definition of the
word avatar is: "an intelligent entity playing a part in a game".

2.3.6 Al Middleware and Dedicated Hardware
While most game Al solutions are proprietary there are several game Al tech-
niques that are frequently used in a variety of games. Consequently there have
been a number of attempts to create game Al SDKs for generic solutions to these
common problems [Fairclough et al. 2001]. So far this kind of middleware has
followed rather than led the development of game Al. Mainstream games apply
innovative designs a long time before they appear in middleware solutions. As a
result these SDKs have found limited acceptance in the games industry [Skibak

and Stahl 2002] and although there is a growing market within the game devel-

opment community, Al middleware is still looked at with a considerable amount
of suspicion [Dybsand 2003] with only a few solutions finding widespread use.

The Al middleware solutions that are currently available are not necessarily
bound to the field of computer games and as a result the Al techniques they
implement differ from product to product. Some have originally been created as
3rd party extensions to 3D animation software; others were developed for mil-
itary simulation purposes. The interfaces that they provide vary greatly from

code centric APIs for programmers to complex GUIs (graphical user interface)
for designers. As such each system is relatively task-specific which makes these

systems useful for some tasks but unable to carry out others. The greatest prob-
lem faced by the creators of the middleware is a lack of standard interfaces. Game
Al interface standardisation would provide common ground for developers and

middleware based on those interfaces should find easier acceptance from the in-

dustry. To that end the 1GDA Al lnterface Standards Committee is currently

attempting to formalise the use of game Al [Nareyek et al. 2005].

Some game Al researchers are convinced that at some point in the future

dedicated hardware for game Al, co-processors similar to the GPUs that have

revolutionised graphics in computer games, will become available [Funge 1999].

The main hindrance for this type of hardware is the lack of a market, as chances

are that the only use for this specialised and therefore expensive kind of hardware

29

2.3 Game Al Techniques - The State of the Industry

would be computer games. The target audience for this kind of equipment would
be hard-core game players, who make up only a fraction of the total number
of computer game players, making the investment of time and resources in the

research and development of dedicated hardware for games largely uneconomi-
cal. However that does not mean that there won't be any hardware solution for

computer game Al. Using GPGPU (general purpose CPU) computation tech-

niques, some Al calculations are already carried out outside the main processor

and on GPUs instead [Erra et al. 20041. Furthermore, only recently co-processors
for physics and dynamics simulation [Hegde 20051 for use with games were in-

troduced, providing further computing power that could be used for Al calcu-
lations themselves or to free up CPU resources for Al. Finally, the introduction

of multiple-core CPUs provides developers with what amounts to a generic pro-

grammable co-processor that could be adaptable to a number of different prob-
lems, including Al, physics and graphics, as can be seen in recent games console
developments [Reynolds 2006].

30

Chapter 3

Data-Driven Architecture in
Computer Games

Data-driven design takes program modularisation and code-reusability to its ex-
tremes. It is the logical progression from separating out task-specific functional-
ities into distinct AP1s and the use of common application frameworks to speed
up program development.

3.1 Data-Driven Design

In software development, in general, the use of a data-driven architecture usually
means the distinction of an application's core components from application spe-
cific code. The former are code elements that may be reused unchanged in other
applications, whereas the latter indicates code or data that is unique to the indi-

vidual application. This implies an abstraction of the application's internal logic
from the data which is used to define the application's behaviour [Rabin 2000c],

separating the definition of the application's make-up from the application's core
functionality, which becomes effectively "policy free".

Being "policy free" means that while the application's core provides function-

ality which entails only the means for the creation of an application, i. e. the
building blocks from which a comprehensive application can be constructed, it

does not, however provide the application's functionality itself. In simple terms,

it provides the "how to do", but not the "what to do"

31

3.2 Data-Driven Design in Computer Games

3.2 Data-Driven Design in Computer Games

Engine
Core

application
specific

code

Engine Modules
(input, renderer etc.)

Resource
Manager

Game Assets

Figure 3.1: A typical game engine.

If the application is a computer game, a data-driven architecture results in

games driven by a game engine [BinSubaih et al. 2007] (see Figure 3.1). This

allows developers to make a clear distinction between engine (code) and game

code, the former being the core elements that may be shared among several
distinct games and the latter being the code that is unique to the specific game.
As most of the game specific logic is no longer an intrinsic part of the core source

code, in general a data-driven game engine is highly reusable and believed to be

cost efficient [Danc 20061, enjoying a relatively long shelf-life.
There are different layers of abstraction that define the make-up of the data

part of data-driven games, but borders between these layers are not strictly de-

fined and vary depending on the individual implementation. In its simplest form,

32

3.2 Data-Driven Design in Computer Games

the game specific data can take the form of source code which can be linked with
the game engine core. A higher level of abstraction on the other end of the scale
is to store this data as an external game asset. Game assets are those elements of
a game that are loaded into the game engine at run-time to provide the content
of the game, including elements which are created by designers and artists like
3D models, textures and animation or sounds and music.

The Achilles heel of this high level of data-driven design in any computer
application is the fact that an outsourcing of product specific data into an external

asset can allow malicious users to effectively hijack the system by modifying those

external resources or by replacing them with their own resources. This however

can be easily prevented if the application properly verifies the integrity of its

external resources before they are used. In the case of computer games, sometimes

the modification of external assets can even be desirable, which is evident in the

many extensible games that allow users to make their own modifications (see

Section 3.2.1).

In game development data-driven design is often understood as a way to em-

power artists and designers to independently modify game logic without a pro-

grammer*s help or intervention [Wilson 2002], requiring this to be accomplished

without the need to recompile parts of the game program's source code. The

methods used to achieve this are the same ones that also allow external game

modification.

3.2.1 Game Extensibility and Modification

Over the past decade there have been many games that have been created in a way

that allows the players to directly modify the games. This "modding" of games
[Wallis 2007] goes from the simple extension and addition to existing games up

to the creation of completely new games. This has been supported by the games

industry through the publication of the same tools used by the game designers for

the creation of the games themselves. By exposing the end-user, i. e. the players.

to the tools allowing them to extend and modify the games themselves and by

assisting them with any game modifications they intend to make. the developers

add value to a game and dramatically increase its shelf-life. To simplify this,

33

3.2 Data-Driven Design in Computer Games

some games provide extensive software interfaces into the game engine. allowing
parts of the games to be reprogrammed by direct manipulation of the game code
or through plug-ins, however, the method by which the extensibility of most
modern games is realised is by the use of more or less complex scripting systems
(see Section 3.2.2 and Chapter 6).

3.2.2 Scripting and Data-Driven Design in Computer
Games

A scripting systern in which the script has complete control over the behaviour

of the application that it is embedded in is the ultimate implementation of a
data-driven design.

Varanese [Varanese 2003] explains and discusses in detail how scripting is

used in combination with computer games and how scripting systems can be

embedded within computer games. Scripting can be used to issue commands
to the game engine, such as loading of objects, textures and levels, but also for

much more complicated tasks like playing animated cut-scenes, directing camera
movements or triggering events inside the game worlds. It removes a large part

of the - previously hard-coded - internal game logic from the game engine and
transforms it into a game asset. Scripts themselves can be used to direct the

application of these assets to the game, effectively modifying the behaviour of
the game engine and the game itself without the need for the game source code
to be recompiled. With scripts themselves being game content, this means that

the game engine only provides a shell, i. e. a protected "sandbox" environment
for scripts within the game engine. Scripts operate within this "sandbox" with
the scripts creating the game and its environment without being able to adversely

affect the running of the game engine itself.

A number of games have built-in dedicated scripting languages, like Quake

which includes a scripting language called QuakeC [Simpson 2002] or Unreal

which has a scripting system called UnrealScript [BinSubaih et al. 2007], both

allowing extensdve modification of the games through scripting alone. Other

games use existing scripting systems that have been modified according to the

34

3.2 Data-Driven Design in Computer Games

game's requirements. A much more in-depth discussion of scripting languages

and games is presented in chapter 6.

35

Chapter 4

Common Approaches to the
Implementation of NPCs

NPCs are a significant factor in the playability of computer games, i. e. if the
NPCs do not perform (act) as expected, the player's enjoyment of the game suf-
fers. It therefore does not come as a surprise that with the intention to avoid
unnecessary risks in NPC development, game developers have a tendency to em-
ploy proven solutions to the challenges faced by NPCs. These solutions typically
include methods such as NPC behaviour definition using FSMs and the use of
the A* algorithm for path planning [Orkin 2004b].

4.1 General NPC Implementation

Combs and Ardoint [20041 state that a popular method for the implementation

of game Al is the use of an "environment-based programming style", i. e. the

creation of the virtual game world followed by the association of AI code with
the game world and the entities that exist in it. This means that the NPC intelli-

gence is built around and is intrinsically linked to the virtual game environment.
This type of NPC intelligence can be created using -traditional" methods for "de-

cision making", "path finding" (planning) and "steering" (motion control). As

mentioned before (see Chapter 2, Section 2.2.2), these are the tasks that are car-

ried out by NPCs in most modern computer games and to which. by convention

rather than technology, the actions of NPCs are usually restricted. In terms of the

36

4.1 General NPC Implementation

Figure 4.1: Typical entity class hierarchy in a computer game.

"percei N, e-think- act cycle" (see Chapter 2, Section 2.2.2.1) of human-like NPCs

some of these tasks closely mirror those that have to be performed by human

players, i. e. both NPCs and humans need to perceive the environment, process
that information and act on it. The human player usually visually perceives the

virtual world through the computer's screen, while the NPC is anchored in the

virtual environment, perceiving it through sensor functions. The human player's

thinking is mirrored in the NPC's decision making and path planning. The ac-

tions of human players as well as NPCs both directly affect the virtual world, so

the obvious solution is to use the same interface for both, allowing them to share

some of the required functionality. In games that are programmed using object

orientation in the C++ programming language this can be achieved by deriving

both, NPC as well as human player controls from the same base class (see Figure

4.1). This mechanism aims to allow human players and NPCs to compete on an

even playing field. This is important to preserve the player's suspension of dis-

belief and create an enjoyable experience, as the player's enjoyment of the game

would suffer if NPCs appeared to be too "stupid" or if they displayed superhuman

competence at playing the game.

37

4.2 Decision Making

4.2 Decision Making
Of the three common NPC tasks, "decision making" most strongly implies the use n,
of intelligence. In the case of the human player this usually means the evaluation
of the visual information, received as input from the computer screen. which
will determine the player's actions and which needs to be emulated by the NPC.
The creation of a seemingly intelligent and therefore believable NPC requires the
formulation of rules to govern the NPC`s behaviour, allowing the NPC to perceive
and interact with its environment. To formalise this, Funge [1999] applies the
following equation:

behaviour = (domain) knowledge + instruction

Funge*s definition of --instruction" encompas6es pre-defined rule based be-
haviour for NPCs (see Chapter 2, Section 2.3.1). His definition of "domain
knowledge" includes information that allows an NPC to take reasonable deci-

sions. such as axioms describing cause and effect of actions that allow NPCs to
develop action plans to achieve nondeterministic, goal-directed behaviour. This

combines deterministic and nondeterministic behaviour methods to create seem-
ingly intelligent NPCs that can dynamically decide on actions but who also always
ha%-e a fall-back position in case the NPC's plan fails. Funge's definitions can be

extended, however, if one assumes the NPCs behaviour to be mainly reactive. i. e.
directed by events that occur in the virtual world. 1n this case one could refer to
the NPC`s behaviour as instinctive behaviour. Approached from this ethological

point of view, we have defined the domain knowledge of an 'NPC as follows [Zerbst

et al. 2003]:

(domain) knowledge = instincts + perception

The instincts are the rules that define the NPC's reactions to stimuli (sensor

data) from its environment, making them effectively low-level instructions for

the NPC. They are directly dependent on actual perception of the virtual game

world at a given moment in time, i. e. the inputs received from the NPCs sensors,

and combined with the latter these rules provide the NPC*s domain knowledge.

While the game is running this domain knowledge is evaluated during the NPC's

38

4.2 Decision Making

decision making process and then augmented -with the pre-defined instructions to
produce the NPC's actual behaviour.

Funge's equation is inclusive, allowing for rule-based techniques, as well as
knowledge-based and machine intelligence methods. Only a small minority of
games perform decision making by employing machine intelligence techniques,
such as neural networks that have been trained to select appropriate reactions for

situations that arise in the game world. For these on-line learning has usually been
disabled as this method's outcome is hard to predict and may therefore have a
negative impact on the "game experience" if NPCs learn undesirable behaviours.
Consequently in most commercial games decision making is implemented using
more or less complex finite state machines.

4.2.1 Implementation of Finite State Machines for NPC
Behaviour

FS-Ms in game development are more flexible than the formal definition for de-

terministic FS-Ms in computer science that usually have only single states follow

one another, whereas the loose definition in games allow each ,, -, tate to have seN. --
eral possible follow states. In game FS-Ms each state is usually associated with
a specific behaviour and an XPC's actions are often implemented by linking be-

haviours with pre-defined animation cycles for the NPC that allow it to enact the

selected behaviour [Orkin 2006].
A typical scenario found in many computer games that would use an FSM

involves N PCs on patrol, guarding an area in the virtual game world. These

_NPCs will follow a pre-defined path on their patrol and react to disturbances

caused by other NPCs or human players entering the area they are guarding.
1 This type of scenario could just as well exist in RPGs as in FPS or RTS games,

making it a suitable model for further examination. An example state machine
for this game scenario could hold the states -patrolling', 'challenging intruder'

'An RPG or Role Playing Game belongs to a computer game genre that has been derived

from traditional paper-based games and board games like the popular "Dungeons and Dragons".

In these games the player usually controls a hero character or a party of hero characters and

needs to solve a series of quests within a fantasy setting.

39

4.2 Decision Making

and 'attacking intruder' (see Figure 4.2). The first of these states is the NPCs
default state for the 'patrol' behaviour that is executed by the NPC when no
other entity is within its patrol area. The second state is entered when an entity
enters the NPCs patrol area, resulting in the execution of the 'challenge intruder'
behaviour. If that entity is identified as friendly. the NPC reverts back to the
'patrolling' state; however, if the entity is identified as hostile, the third state is
entered and the 'attack intruder' behaviour is executed.

intruder detected

patrolling

intruder friendly

intruder dead

challenging
intruder

attacking
intruder

Figure 4.2: Finite State Machine for a typical NPC.

intruder
hostile

In its simplest form the implementation of a finite state machine in a computer

game will take the form of a multiple selection in which each case represents one

of the states of the FSM. This is then evaluated once during each execution cycle
for this NPC to determine if the current state needs to change or to execute any

actions that need to be performed for the current state. The FSM for the game

40

4.2 Decision Making

scenario described above could then be implemented as follows:

enum fpatrolling, chal 1 eng ing-i nt ruder, attack ing-int ruder I state;

switch(state)
f

case patrolling:
if (intruder

-detected0) state = chal 1 eng ing-int ruder;
/* execute 'patrolling' behaviour */

break;

case chal 1 eng ing-i nt ruder:
if (intruder

-hostileM state = at tack ing-int ruder;
else if (intruder

-friendly0) state = patrolling;
/* execute 'challenging-Mtruder' behaviour

break;

case att acking-int ruder:
if(intruder-deado) state = patrolling;
/* execute 'attack intruder" behaviour */

break;
I

If implemented in CIC++ as above, this code can be problematic due to
the peculiarities of the mechanics of the multiple selection available in CIC++
(, switch' statement) in which there is a fall-through between the different cases.
This makes the implementation error prone, as easily missed logical errors can

cause unwanted side effects. For instance, oinitting a single 'break' instruction

between cases that then lead to unexpected results are hard to debug, as they are

syntactically correct. An alternative to this type of implementation would use a

series of nested dyadic (if-else) selections as the listing below demonstrates:

41

4.2 Decision Making

if(state==patrolling)
I

if (intruder
-detected0) state = challenging-intruder;

/* execute 'patrolling' behaviour */

I

else if (st ate ==chal 1 enging-int ruder)
I

if (intruder
-hostileM state = att acking-int ruder;

else if (intruder
-friendlyM state = patrolling;

/* execute 'challengMg-Mtruder' behamour */

I

else if (state==attacking-intruder)

I

if(intruder-deado) state = patrolling;
/* execute "attack intruder' behamour */

I

While using these dyadic selections would avoid the problems caused by un-

wanted fall-throughs, possible errors here would be the accidental use of a monadic

selection, effectively breaking the structure of the FSM by possibly allowing sev-

eral states to be entered or even the wrong states to be evaluated during a single

execution cycle. The creation of an FSM using this type of dyadic selections can
be simplified using a macro-based language (see Chapter 6, Section 6.1) [Rabin

2002b], which also prevents the introduction of errors into the FSM definition

which may otherwise be hard to debug. Using this FSM language, the implemen-

tation of the above FSM would be easier to maintain and take the following form:

BeginStateMachine

State(patrolling)

OnUpdate

42

4.2 Decision Making

if(intruder-detectedo) state = chal 1 eng ing-int ruder;
I*execute "patrol ling' behav iour */

State (challenging-intruder)

OnUpdate

if (intruder
-hostile()) state = attack ing-int ruder;

else if(intruder-friendlyo) state = patrolling;
/* execute 'challenging-Mtruder' behamour */

State(attacking-intruder)

OnUpdate
if(intruder-deado) state = patrolling;

execute 'attack intruder' behamour

EndStateMachine

4.2.2 Alternative FSM Implementations

Similar functionality can be achieved through object oriented methods using a

state class. Whatever method is used, however, a problem that remains is that

this type of FSXI implementation may not scale well, i. e. it can easily grow to

a size that will leave it in a confusing and therefore unmaintainable state. One

possible solution to this problem is the use of a hierarchical state machine that

breaks up complex states into a set of smaller ones that can be combined, allowing

the creation of large and complex FSMs.

An alternative to these hard-coded solutions is the use of data-driven FS_NIs

that only require a relatively small amount of code with the actual data contained

in external assets. This allows the use of specialist tools for the construction and

maintenance of the state machine (see Chapter 6, Section 6.3.4).

43

4.3 Path Finding

4.3 Path Finding

After decision making, the next task for NPCs is "path finding". i. e. the identifi-
cation of a tra; %-elable route between the NPCs current position and its destination
in the virtual world. In the context of the above patrolling NPC example (see
Section 4.2.1), this could mean the planning of a path between the waypoints
that the NPC needs to visit during its patrol as well as the generation of a path
for intercepting intruders that enter the NPC's patrol area.

A path finding priority is usually the discovery of the shortest or most cost-
efficient path from the NPCs current position to its desired destination. A re-
quirement for achieving this is the calculation or estimation of the cost involved
in travelling the path which is dependent on the application, i. e. there is no
prescribed method for calculating this cost. Consequently, an ,y path finding im-

plementation in a game will have to be provided with a suitable cost evaluation
method.

4.3.1 Evaluating the Cost of Tý-avel

The most obvious measure for calculating the cost of travel is the distance between

start point and destination. Other conceivable influences on the cost of travel are

surface properties that could influence the NPC's progrcss while moving across
the terrain [Stout 20001, such as surface type, texture, consistency or condition.
These surface properties can be used to simulate the effects that forces, such as
friction, would have on the cost of travel. From these considerations the following

equation can be derived:

PS +PD ID-SI x2

In the above equation, c is the cost of travel; S and D are position vectors

encoding start and destination positions respectively. The value ps is a modifier

encoding the start surface property and the modifier value PD encodes the des-

tination surface property. Consequently the cost of travel is the product of the

distance between start and destination, i. e. the length of the vector spanning

44

4.3 Path Finding

from start to end point, with the arithmetic average of the sum of the surface
property modifiers of the start and end points.

Additional data that could be taken into account are height differences in the

virtual world's topography, i. e. upwards or downwards sloping of the terrain,

which could be used to generate an additional weight value to be factored into
the cost calculation. Travelling down a slope should reduce the cost of travel,

whereas travelling up a rise in the terrain should increase the cost, resulting in

the equation shown below:

PS + PD
c=ID Slx-xh

2
The modifier value h in this equation is supposed to act as a weight encoding

the height difference from start to destination. This is to provide an upwards or
downwards correction of the cost of travel depending on the presence of a slope
in the terrain's topography. For this the value h is defined as follows:

hI+
Du - Sv

5x ID, - SvI

The result of this is a plausible cost equation that can be used for path plan-

ning in computer games.

4.3.2 Virtual World Representation

The virtual world in which NPCs, as well as player characters reside needs to

exist in a form that can be perceived and processed by the NPCs. ln many

modern computer games large portions of the virtual game world are represented

as a graph, i. e. as a set of interconnected nodes that encode the area which

the NPC can traverse. These nodes are sometimes generated from a so-called
"Navigation Mesh" [Snook 2000], "a set of convex polygons that describe the

'walkable' surface of a 3D environment" [Tozour 2002a]. This can be derived

from the world's actual geometry by simplifying it to form a mesh that encodes

the world"s geometric extremes.
The minimum information required for a node in a graph that defines the

search space for path finding are the node's position in the virtual world, as well

45

4.3 Path Finding

as its connections to other nodes. This can then be augmented with additional
data, such as information regarding the world's surface properties at the node's
position. NN'lithin a computer game, the node information would usually be stored
inside a record data structure.

An implementation of a node record encoding the node's position as a point
in space given by its Cartesian co-ordinates, annotated with an additional value
that holds information about the surface properties and storing the node's con-

nections as a null-terminated array of links to neighbouring nodes, could take the
following form:

struct node
I

double

double

double

double

struct

X;

Y;

z;

P;

node **neighbours;

A cost function using the above cost equation (see Section 4.3.1), using the

straight-line distance between two nodes and taking into account surface prop-

erties, as well as the virtual world map's topography, could be written as shown

below:

double cost(node *s, node *d)
I

double h 1.0;

double x (d->x s->x)*(d->x s->x);

double y (d->y s->y)*(d->y s->y);

double z (d->z s->z)*(d->z s->z);

double c= sqrt(x+y+z);

c *= (s->p+d->p)/2.0;

h += (d->y - s->y) / (5.0*fabs(d->y - s->y));

46

4.3 Path Finding

C *= h;

return c;
I

The encoding of the virtual world that uses a graph of nodes using a data
structure, such as the above node record structure, as well as the provision of a
cost of travel function, such as the function shown above, are the requirements
for the implementation of path finding in the virtual world. To then search the
virtual world for the shortest path between two locations within it, a planning
algorithm must be applied to the information provided in the graph.

4.3.3 Planning the Path

The most popular path planning algorithm used in modern computer games is
the A* algorithm [Matthews 2002] (see also Chapter 2, Section 2.3.2.1) ,a gener-
alisation of Dijkstra's algorithm [Dijkstra 1959], which is guaranteed to find the
lea, st costly path if such a solution exists within the search space.

A* perforins an iterative best first search of its search space using ýi heuristic
based on three functions:

g(x), named "goal", i. e. the actual cost involved in reaching the current
node from the start node

h(x), named "heuristic", i. e. an estimated distance to the destination node
from the current node that should be an underestimate of the actual cost
for the algorithm to find the optimal solution [Dechter and Pearl 1985]

3. f (x), named "fitness", i. e. the sum of the functions g(x) and h(x), resulting
in an estimated cost for the path from the start node to the destination node

Beginning with the start node, the results of the evaluation of these functions

informs the selection of the next node from the search space to be examined. To

achieve this, the algorithm requires additional information to that stored within
the nodes of the graph that defines its search space, i. e. fitness, goal and heuristic

values as well as links to the actual node data structure, as well as the parent node:

47

4.4 Steering

struct pathnode
I

node *mapnode;
double fitness;

double goal;
double heuristic;

pathnode *parent;

1;

node within the graph
sum of the goal and heuristlic values
cost of travel up to current node
eshmated cost of travel to destmation

parent node within the path

The planning algorithm (see Appendix A for an A* sample implementation)

returns a list storing the nodes of the path from start node to destination node,
which can then be used as waypoints by the NPC.

4.4 Steering

Once a path from the NPC's position to its destination in the virtual world has
been discovered, the final task that an NPC needs to accomplish is to move to its
destination in a believable manner. This is achieved using "steering", i. e. naviga-
tion and motion control. This incorporates several methods of varying complexity,

ranging from totally random movement via exploratory terrain traversal in un-
known environments, which is unplanned as there is no known destination, to

the rigid following of a given path. "Path following" is a "steering behaviour"
[Reynolds 1999] that involves following a pre-planned path through the virtual

entity's environment. These generated paths are frequently unsuitable for cre-

ating believable NPC motion, a common problem that stems from the fact that

paths in virtual environments usually take the form of straight line segments

connecting the nodes that make up the path. The simplest solution for creating

smooth appearing movement along the path over time is the application of an
interpolating parametric curve (spline) through the path's nodes [Rabin 2000a]

and to follow the resulting curve rather than straight lines between the nodes.
lmprovements that can be made to generate better believable NPC movement

are the addition of other steering behaviours, such as "local steering" methods

48

4.5 Construction of an NPC

[Tomlinson 2004] that facilitate (dynamic) obstacle avoidance, allowing the NPC
to exist in a dynamic, changing environment without the need to constantIv re-
evaluate its planned path. These Iocal steering" methods also include emergent
behaviour methods such as flocking [Reynolds 1987] (see also Chapter 2. Section
2.1.2), which are useful in situations when pre-computed plans do not exist or
fail due to unforeseen changes to the virtual environment.

4.5 Construction of an NPC

The typical techniques for implementing NPCs described in this chapter are com-
monplace in most computer games and can be employed to construct NPCs with
or without the use of a data-driven architecture (see Chapter 3), which could tie
together the individual components that make up the NPC.

As stated above (see Section 4-1), in a game application the code performing
the implementation of NPCs usually shares a lot of code with that of human

players' avatars. Code elements that are often identical for both (NPC and human

player's avatar) are the methods that encode effectors for actions that can be

carried out by both.

Methods that are usually unique to the NPC object are the sensor functions

that enable it to perceive the virtual world. A method that NPC and human

player's aý-atar have in common, however, is an 'update' method which updates
the entity's state and position in the virtual world and which is usually called
for each update cycle of the application (once every frame). 1n addition to the
instructions found in the 'update' method of a human player's avatar, an NPC

object*s 'update' method usually also incorporates the NPC's perceive-think-act

cycle".
In most game applications the "decision making" process is unique for each

NPC type and sometimes even for each NPC in the game. Decision making code
that can incorporate FS'-\Is such as those described above (see Section 4.2.1) and

which may include the initiation of the execution of actions (equivalent to the

human player's input to an avatar) is either placed inside the 'update' method for

each NPC object or within a separate method which is called from the -update'

method.

49

4.5 Construction of an NPC

Path planning, which is generally initiated during the "decision making" pro-
cess for NPCs (but is also used for indirectly controlled avatars of human players),
is usually implemented as a generic method which is identical for all NPCs (fre-

quently implemented within a top-level class), whereas cost calculations may vary
from NPC to NPC as different types of NPC might be influenced by the virtual

world's terrain and its properties in different ways, requiring each NPC to supply
their own cost of travel function to the planner. A further reason for decoupling

the cost calculation from the planner is that some NPC implementations will keep

the planning method even more generic, allowing it to be used for other purposes
than just path finding [Higgins 2002a] (see also Chapter 2, Section 2.3.2.2). Fi-

nally, "steering" is a mostly generic task that is usually identical for all NPCs

and therefore usually implemented as a method within a top-level class, unless

steering behaviours that are specific to a type of NPC are used. which would

require the NPC object to supply their own steering methods.

50

Part 11

Syntactic Behaviour Definition

51

Chapter 5

NPC Behaviour Definition
Languages for Computer Games

While the use of scripting in games can mean simple manipulation of the ap-
pearance of the virtual game environment, one of the main areas in which games
allow niodifications of this kind is in the behaviour of the game Al. Furthermore,

the use of scripting is also the most common method by which the Al behaviour

of a game is extended or modified. In fact, one of the features that people have

come to expect when it comes to FPS games is the provision of a scriptable in-

terface for controlling NPCs. In the context of NPCs, simple data-driven design

in which the behaviour of the Al entities in a game depend on the interpretation

of an external game resource (i. e. a script program) effectively bridges the gap
between hard-coded Al and fully scripted NPCs.

5.1 Behaviour Definition Languages

We define the term Behaviour Definition Language (BDL) - not to be confused

with the term "Behaviour Description Language" [Bertrand and Augeraud 19991 -
to be a programming language used for the definition of game character behaviour

(in the ethological sense of the word), often found in the form of programs running

on a virtual machine which interfaces with the character controls within the game

engine. Thus the task of BDLs is to facilitate the application oriented creation of
believable virtual entities that inhabit game worlds. While behaviour definition

52

5.1 Behaviour Definition Languages

languages are domain specific to the creation of NPC intelligence, they are often
more than just a Domain-Specific Language (DSL) [West 2007] for game Al. Mally
behaviour definition languages maintain the flexibility of traditional programming
languages while at the same time offering powerful Al functions and operators.

As the purpose of BDLs is to facilitate the definition of artificially intelligent
behaviour, it may be beneficial for the design of such languages to utilise elements
and concepts found in Al languages (see Section 5.1.1). BDLs also bear some
considerable resemblance to the educational mini-languages [Anderson 20041 that
have found use in computer science education for decades [Brusilovsky ct al. 1997]
(see Section 5.3.3). These mini-languages usually provide a task-specific set of
instructions and (sensor) queries which allow users to take control of virtual
entities or actors, acting within a micro world, similar to a BDL, controlling an
NPC that inhabits a virtual game world.

1.1 Al Languages

There exist a number of languages that were designed with Al applications in

mind, some of which could be categorised as behaviour definition languages. but

most of these languages are unsuitable for direct application to NPC behaviour
definition in computer games. Some rule-based Al languages provide hybrid pro-
gramming methodologies that combine elements of logic programming languages
(from traditional Al research) and the more commonly used imperative implemen-

tation languages [Wright and -Marshall 2000]. These implementation languages

provide the most often used means for NPC behaviour definition in computer

games, and even in the simplest form they can be used successfully in that capac-
ity. One example for this is the use of the AWK [Aho et al. 1979] based GANNK

(Gnu AWK), a simple scripting language, which has been used as an Al problem

solving language to great success, in some situations attaining better results than

those achieved with traditional Al languages [Loui 19961.

Programming languages that have been developed especially to solve problems
in the development of Al, such as LISP [McCarthy 1959] or logic languages such

as Prolog, which use a declarative paradigm for the definition of a search space
in which a solution for the problem may be found rather than an algorithm that

53

5.1 Behaviour Definition Languages

describes the solution to the problem [Colmerauer and Roussel 1993], are too
different from the C-like procedural languages, which allow a simple mapping
from the way that algorithms would be expressed in natural languages to the

programs. The use of these Al programming languages would be considerably

more difficult for a non-programmer to learn than the use of a procedural language

and consequently complicate the definition of the behaviour of virtual entities.
However, this does not mean that it is impossible to use these Al program-

ming languages in the context of computer games. We have used a LISP based

language (GP Asteroids Script) for defining the behaviour of an artificial player
in an arcade game [Anderson 2002] (see Chapter 7, Section 7.1), and another
LISP based language, Tapir [King et al. 2002], has been used to define Al enti-
ties in war-games. The target user group for Tapir, however, is a programmer

who understands the difficulties of agent control, thus making it unsuitable for

non-programmers. Tapir is nonetheless one example for the number of Al specific
languages that can be used to solve the kind of problems faced by NPCs in com-

puter games. Some of these languages have their origins in the field of cognitive

robotics, a selection of which is presented below, and one of the attributes that

many of them share is the concept of "Action Languages" [Gelfond and Lifschitz

1998]. Gelfond and Lifschitz describe action languages as a formalized method
for describing the cause and effect of actions within an environment, a domain

that robotics shares with Al entities in a virtual game world. They differen-

tiate between two distinct categories of action languages that can also be seen

as individual components that can be combined into a unified action language

[Lifschitz 1997]. Those two components are action description languages, used to

express the rules that define state transition systems (a category that is matched

by several logic programming languages), and action query languages, which can

be used to express "properties of paths in a given transition system" [Lifschitz

19971.
The "classical" Al languages, i. e. those that are not concerned with NPCs in

computer games, can often be found among (but are not restricted to) constraint

logic languages and cognitive modelling languages for goal-oriented systems (a

recent development of which are the high level behaviour representation languages

54

5.1 Behaviour Definition Languages

that aim to simplify access to intelligent systems and make them easier to use
and comprehend [Ritter et al. 20061).

Other Al languages that can be applied to NPC creation are agent oriented
languages ýHuget 2002], as most Al entities in computer games can be classified

as agent programs. Agent oriented languages often bear similarities to object ori-

ented languages [DeLoach 19991 and programs developed using these languages

can often be represented by a visual abstraction, allowing the use of meta lan-

guages like UML to be used for defining the agents (see Chapter 6, Section 6.3.4).

This can considerably simplify the Al entity development process and makes this

kind of language ideal for the definition of NPC behaviour in computer games.
While many of these languages are used to direct the behaviour of artificial

entities, i. e. robots (physical and virtual), not all conform to our definition of
behaviour definition languages. Instead they are modelling languages that aim

to indirectly describe human-like behaviour to be realised by an underlying ar-

chitecture, rather than the behaviour definition (programming) languages that

describe an algorithm that creates the illusion of human-like behaviour. While

the effect i-nay be similar, the methods used to generate the entities' behaviour

are vastly different. Behaviour definition languages provide direct control of the

behaviour, whereas in the case of modelling languages, the behaviour is emergent

and beyond the developer's immediate control.

5.1.1.1 GOLOG -A Cognitive Robot Control Language

GOLOG (alGOL in LOGic) [Levesque et al. 1997] is an action language devel-

oped by the cognitive robotics group at the University of Toronto for the purpose

of behaviour definition for robots. While GOLOG is at its core a logic program-

ming language that is based on the situation calculus [Levesque et al. 19981, it

explicitly provides high-level control operations for robots that allow the defi-

nition of action sequences for execution by the robot, as well as program flow

control structures, such as sequence, selection and iteration which are more remi-

niscent of imperative programming languages, allowing a blend between logic and

imperative programming styles.

55

5.1 Behaviour Definition Languages

The lack of immediate feedback and low-level control in GOLOG which does
not provide any fault tolerance or means to handle run-time errors has prompted
the development of the -execution and monitoring system" GOLEX [Hdhnel et al.
1998]. COLEX is a companion system for GOLOG which resides in-between the
high-level GOLOG and low level control software, extending GOLOG with the
means for implementing simple interaction and sensing in GOLOG programs.

GRL -A Language for Robots and Game-Bots

The -Generic Robot Language" (GRL) is a functional language for the definition

of behaviour-based systems [Horswill 2000], which is an extension to the high-level

programming language Scheme [Steele and Gabriel 1993], a functional language

that is itself based on LISP [McCarthy 19591. The language itself, extendable
through macros, only exposes (makes accessible) a sub-set of its host language,

requiring the use of GRL for most tasks and restricting the use of Scheme program
code to the definition of signal sources as well as the expression of some form of
FSMs.

GRL was originally developed to write control programs in behaviour-based

robotics. defining robot behaviours at a relatively low level at the expense of
the expressiveness that could be achieved with a language such as GOLOG (see

above), however the resulting performance gain, combined with the functional-

ity provided by GRL, lends itself perfectly to the definition of game character
behaviour. For this, the language provides the means to implement and eas-
ily combine higher level operators, allowing the creation of concise yet powerful
behaviour definition programs.

The entities controlled by GRL programs reside in an event driven environ-

ment which needs to be provided by the underlying architecture, with GRL pro-

grams continuously processing the signals they receive. The language is not bound

to a specific robot architecture and can output programs for use with a variety of

systems, one type of which are programs in the UnrealScript language that can
be used to control NPC behaviour.

The use of GRL in conjunction with FlexBot [Khoo and Zubek 2002], a soft-

ware development kit for game-bots (NPCs) for the commercial game Half-Life,

56

5.1 Behaviour Definition Languages

has shown the system's capability to enable the parallel existence of a large num-
ber of very convincing NPCs within a typical game environment. The game-bots
resulting from the application of this approach (see Chapter 2, Section 2.2.2.2)
have complex state machines at the heart of their behaviour which are of a similar
kind to those that have previously been defined manually for NPC behaviour in
commercial computer games.

5.1.1.3 CML - Cognitive Modelling for Animation

John Funge*s Cognitive XIodeling Language CML [Funge 1998] is a high level
behaviour definition language for Al entities in computer games and computer
animation. Funge created CML to provide an intuitive method for creating vir-
tual entities that have the ability to interact with the virtual world that they
inhabit. CML is related to the programming language GOLOG [Funge 1999] (see
Section 5.1.1.1 above) in so far as like GOLOG it is based on the situation calculus
[Levesque et al. 1998]. CML, however, was designed with computer games and
computer animation in mind. CML aims to strike a balance between cognitive
modelling and deterministic methods by providing means to use both, employ-
ing deterministic techniques as fall-backs for the nondeterministic methods. CML

uses the situation calculus to provide the NPCs with the necessary domain knowl-

edge to help them understand their environment and their own situation within
that environment by defining preconditions and by expressing the effects that
NPC actions will result in within the game world. This description can then be

interpreted as the desired behaviour by a run-time system. The situation calculus
is used to define a world by describing world states and the possible combinations

of actions that can lead to the creation of these states which is a similar concept
to that of the action languages described above (Section 5.1.1). The precise re-
lationship between the situation calculus and action languages and methods for

translating expressions from one to the other are described by Giunchiglia and
Lifschitz [Giunchiglia and Lifschitz 1999]. The syntax of CML is based on the

mathematical notation of the situation calculus but is held close to the English

language to simplify program development.

57

5.2 Requirements for Behaviour Definition Languages

Soar and Related Systems

Soar (see Chapter 2, Section 2.2.2.1) is a software toolkit used in Al research. It
includes an Al programming language as well as an architectural framework for

creating autonomous agents with human-like cognitive abilities. The Al language

allows the description of production rules that are stored in a knowledge base in

the memory of the Soar framework. The production rules map conditions (states)

to actions and the knowledge base of productions provides a search space from

which the behaviour of an artificial entity can be selected. An agent using this
framework gathers world state information (from sensor data) as its inputs and

searches the productions in its knowledge base for the most appropriate action

which is then passed as output to the environment. If no appropriate solution is

found in the search space, i. e. if the agent cannot decide what to do, a machine
learning mechanism in Soar attempts to develop an alternative solution through

the automatic generation of additional productions.
Soar programs themselves provide a relatively low-level of abstraction, i. e.

the Soar language cannot really be counted as a high-level BDL if compared to

other Al languages. The real power of the system lies in its architecture, which

is targetable by higher level Al programming languages such as the high level

behaviour representation language Herbal [Cohen et al. 20051.

5.2 Requirements for Behaviour Definition Lan-

guages

The design of a programming language for the definition of artificial behaviour

as an extension to a specific game or genre of computer games (for example

First Person Shooter games) is relatively simple if only deterministic behaviour

is involved. For instance, the first prototype for our ZBL/O behaviour definition

system [Anderson 2004] (see Chapter 7. Section 7.2) - an educational tool lor

learning how to syntactically define NPC behaviour in FPS (First Person Shooter)

games [Zerbst et al. 2003] - was developed over a period of little more than a

fortnight (from conception to first use) -
In effect such a language does little more

than provide a function binding interface to a game engine for the creation of

58

5.2 Requirements for Behaviour Definition Languages

rule based systems. The game engine itself does all the work while the script
program only ties together the different game engine components that provide
the NPCs -, ý-ith functionality. Unfortunately the specialisation for a single genre

greatly restricts the reusability of such systems and they are usually proprietary
to a specific product or range of products.

5.2.1 Language Requirements

A systern that controls the behaviour of autonomous agents in a virtual game

world usually exists on two levels [Anderson 2004]. The higher level is a behaviour

definition (scripting) language that often resembles a traditional programming
language, Nvhereas the lower level is the corresponding run-time engine which
interfaces Nvith the game (see Section 5.2.2). The former, i. e. the BDL, needs

to achieve a number of objectives. Some of these objectives are conflicting, so

compromises will need to be found. For computer game developers to benefit from

a BDL, it has to be designed to be intuitive (see Section 5.3.1), i. e. the language

must be easy to learn and possibly easier to use than traditional programming
languages. One way this could be achieved would be by making the language as

similar to a natural language as possible, as suggested by Funge [1998]. It is our

belief. however, that a close resemblance of a behaviour definition programming
language to a natural language may easily prove counterproductive (see Section

5.3.2). NN, e are also convinced that the notion that a traditional programming

language may be too complex for non-programmers to use is wrong. A much

more practical approach would be to base a BDL on an existing production

language (see Section 5.3.4). Furthermore, a BDL should not only be intuitive,

but it should also be kept as generic as possible to be useful for the creation of

computer games of different genres. While the generation of simple deterministic

behaviour for NPCs may be suitable to some games, other games may require

their entities to have goal-directed behaviour. Consequently, both of these Al

methods will need to be accommodated by the language.

Among all possible programming language features, we have identified the

following to be especially useful for BDLs:

59

5.2 Requirements for Behaviour Definition Languages

a state machine data type (finite and possibly also fuzzy - see Chapter 2,
Section 2.3.1)

9 entity annotation and smart environments (see Chapter 2, Section 2.3.3.4)

goal-orientation specific data types and operators (see Chapter 2, Section
2.3.2.2)

simple object orientation (because an NPC entity is analogous to an object
[DeLoach 1999])

A programming language for the definition of NPC behaviour should therefore
incorporate as many of these elements as possible while avoiding any impediment

of the system's ability to direct NPCs in real-time games. While some of these
features, such as special operators, can be addressed by direct integration into the
BDL, others might preferably be implemented as functions of a standard function
library to accompany the BDL and not within the confines of the core language
itself. Similar to the C/C++ programming languages, the use of intrinsic func-

tions within the definition of the BDL that would be liard-coded into the run-time
system should ideally be avoided, i. e. the language core as such should not pro-
vide the system with any specific functionality. Instead, all functionality for the
AI definition with the BDL should be provided through external functions which
would be implemented as libraries for optional inclusion into programs. The

minimum functionality for defining artificially intelligent NPCs using the BDL

should be provided in the form of a standard library containing standard func-

tions and compound data types. The functions provided by this standard library

must enable a user to define an Al entity's domain knowledge, i. e. to anchor
the NPC's perception of its virtual environment to its understanding of that en-

vironment. For the benefit of upwards compatibility to future developments, a

standard library should also provide the BDL with interfaces to frequently used

game Al functions as defined in the findings of the IGDA Al Standards Commit-

tee [Nareyek et al. 2004], once those interface definitions have been published.
All additional functions that do not directly aid the definition of NPC behaviour

but which may be useful for NPC program development should not be part of

60

5.2 Requirements for Behaviour Definition Languages

the BDL's standard library itself. Instead those functions should be incorporated
into a secondary set of utility libraries.

5.2.2 Run-Time System Requirements

The low-level run-time element of the behaviour definition system should be a

scripting system, i. e. a specialised embeddable program module to execute BDL

programs within the host game engine. The benefit of this is that the game

application itself does not have to be recompiled for the changes to the game*s
NPCs to take effect. The run-tinie system could take the form of an interpreter

which translates and executes BDL scripts during run-time. Preferably it will
be a virtual machine, executing programs that have previously been translated

into intermediate code, targeting the virtual machine. This translation could
be done by a compiler that could be implemented externally or as an internal

ahead-of-time (AOT) compiler or possibly even as an internal OTF (on-the-fly)

compiler. Both forms of scripting system provide the same benefits to a game,

as both allow the alteration of NPC behaviour by modifying a script program.
Code contained within a BDL's libraries (see Section 5.2.1), however, should not
be bytecode for the system's virtual machine or code written in the BDL, but

bytecode of the native environment of the run-time system's host application for

dynamic loading and execution by the virtual machine or interpreter.

The requirements for the run-time system therefore are:

implementation as an embeddable module or as a plug-in for the host ap-

plication

independence of BDL programs from the rest of the application (to prevent

run-time instabilities) and pre-emptive program termination if the environ-

ment changes beyond expected limits

e as small an overhead as possible for the execution of BDL programs

e platform independence (to the highest possible degree)

V_
For an application's run-time stability it is very important that the virtual ma-

chine that executes a BDL's programs does so independently from the application

61

5.3 Behaviour Definition Language Design

into which it is embedded, so it will be impossible to crash the application by
executing an erroneous BDL program. 1n the case of an erroneous BDL pro-
gram being run the virtual machine should be allowed to degrade gracefully, i. e.
it should have the capability to detect the error and to stop execution of the
program without interfering with its host application.

While it would be desirable for the run-time system to notify the host appli-
cation of any errors that have occurred, it still must be able to act independently

without requiring the host application to select the next operation. This will have
to be addressed by the run-time system's API, the interface that will allow the
host program access to the run-time system. This API will also need to be able
to map the data and functionality of the host application to the corresponding
structures within the run-time system.

5.3 Behaviour Definition Language Design

We believe that a behaviour definition programming language for an NPC defi-

nition system needs to be designed according to the requirements laid out in the
previous section if it is to cater for the needs of modern computer game devel-

opment. For the creation of a language which is easy to understand and easy
to employ by users - the people who will write programs in that programming
language -a number of additional language design related issues need to be taken
into consideration. Foremost of these is the understanding of the intended user
base, i. e. the system's target audience. This would be game developers, but not
restricted to programmers alone. Another contributing factor is what type of lan-

guage the BDL is going to be. Strictly speaking a BDL in our definition could be

called a scripting language, as its programs are not compiled into native machine
code but are executed within a run-time module which is embedded within an

otherwise independent game engine. Consequently the BDL should be considered

an extension language, combining the flexibility of a production language with
the power of a task-dedicated scripting system. The restrictions imposed on users
by the structure of such a BDL need to be reduced to a minimum and must not
interfere with the user's task - instead they need to be harnessed in a way that

can empower the uscr. An example of how this could be achieved is the use of

62

5.3 Behaviour Definition Language Design

strongly typed data combined with a reduction of possible data types. While
this would slightly reduce the choice available to the user, it would also eliminate
possible sources for errors and mistakes.

5.3.1 Design Principles

A BDL that is supposed to be used by non-programmers as well as by program-
mers needs to be designed accordingly: It is likely that for some game designers
the BDL will be the first programming language that they encounter so it is only
logical that it should embrace some of the methods used for introductory pro-
gramming languages. In the context of those requirements McIver and Conway
[1996] have identified seven "deadly sins" and design principles and their poten-
tial problems and benefits. They argue that a language which has too many
different features ("more is more*') or too few features ("less is more") or which
contains too many syntactical "false friends" ("grammatical traps", "violation of
expectation", "excessive cleverness") would make it very hard for users with little

programming experience to comprehend the language and to understand what a

program does. For the same reason they consider "backwards compatibility" to a

similar existing language a hindrance as the prior knowledge of the previous lan-

guage would only benefit those who already know how to program. Programming

languages that are supposed to be used by novice programmers need to have a
WYSIWYG' character with program source code being able to deliver expected

results. McIver and Conway conclude that the ideas they present can only be

taken as a guide - not a general solution - and that ultimately the success of the

language design can only be measured through user feedback.

Stroustrup [1991] lists five principles that apply to the design of any program-

ming language, and that consequently also apply to the design of a behaviour

definition language. These principles can best be described as:

1. Consistency, i. e. the clean integration of features.

1WYSIWYG stands for "what you see is what you get", a computer aided design (CAD)

paradigm which implies that the output received from the design application will be identical

to the final result. In the context of programming languages it is used in terms of predictability,
describing syntactic features that closely map to the results of their execution.

63

5.3 Behaviour Definition Language Design

2. Modularity, i. e. the possibility of combining existing features to achieve
new functionality.

3. Simplicity, i. e. the omission of features for special cases.

4. Performance- neutrality, i. e. the omission of a language feature in a program
should not affect the performance of said program.

5. Logical disjunction of features, i. e. the language should allow the existence
of programs that do not employ all of the language's features.

A BDL should facilitate object orient ed-programming [Stroustrup 1991], as "this

paradigm closely reflects the structure of systems 'in the real world"' [Wirth 20061,
but, as Wirth notes, it does so as an extension to the traditional programming
techniques found in structured programming. Object orientation needs to be

regarded as a double edged sword, however, as the additional complexity the

object oriented paradigm presents may be overwhelming for novice programmers
[Beaubouef and Mason 2005]. Some of the features and mechanisms of modern
object oriented languages such as multiple inheritance, polymorphism and excep-
tion handling should be avoided or possibly hidden from novice users within a

separate access layer to the BDL. This is because they are often confusing for

novice programmers as from their "point of view it is simply a case of gratuitous

complexity" [Warren 2001].

5.3.2 Resemblance to Natural Languages

We have mentioned before (see Section 5.2.1) that there are arguments in favour

of the resemblance of a programming language to a natural language as this may
help non-programmers to understand it and use it. Attempts have been made
to make existing languages more similar to natural languages by adding various

qualifiers and modifiers to keywords and identifiers [Herriot 1977]. Herriot argues

that the replacement of abstract structures in programming languages by - among

others - adjectives and prepositions to more closely resemble the English language

would allow "the program to be its own comments". Some of the presented

concepts such as the use of contextual modifiers to allow instances to use the

64

5.3 Behaviour Definition Language Design

same identifier as the type definition may be worth further consideration for
enhancing the readability of programs. However, most of the changes to the
structure of programming languages proposed by Herriot would be mainly of a
cosmetic nature and while they would make programs easier to read, they would
also make programs much harder to write. Using keywords that result in semantic
changes in certain usage situations would make the construction of a compiler
for that language much more complicated as it would have to compile context
sensitive programs. This is because natural languages are context sensitive and
contain too many ambiguities which require additional specification to clarify
problems and to resolve these ambiguities. We think that the additional effort
required to do this would negate all the benefits gained from the use of a natural
language structure in the first place.

The addition of more keywords would also make the use of the language

much more error prone. Moreover, linking a programming language's structure
intrinsically to a specific natural language would make it much more difficult
for non-native speakers of the natural language to write meaningful computer
programs, while it would become practically impossible for programmers who do

not know the natural language to write programs at all. Providing multi-language

versions of a programming language is undesirable, as the language would have to
be modified according to the structure of each of the supported natural languages.

Consequently, while natural languages as such may be easy to learn, we believe

that their usage would not only make it quite hard to effectively use the language

to define NPC behaviour but it would also greatly complicate the overall structure

of the system. As a result the computational cost could easily become too large

to make this feasible for real-time computer games.

5.3.3 Resemblance to Educational Programming

Languages

Some of the most successful introductory programming languages used for the

teaching of computer programming employ the "Karel the Robot" paradigm [An-

derson and McLoughlin 2006] which relies on the use of a mini-language that

provides a small number of instructions and which allow users to take control of

65

5.3 Behaviour Definition Language Design

virtual entities, acting within a micro world. The aim for all of these languages
is to motivate students to take up programming and to provide them with an en-
joyable experience at the same time. The "Karel the Robot" paradigm is named
after the very successful "Karel the Robot" program [Pattis 1981], which is one
of the widest known computer science teaching tools and has had considerable

success. Untch [1990] describes Karel as "essentially a programmable cursor that

can inove across the flat world" of a 2D grid with obstacles (walls) that cannot
be passed and objects (beepers) that can be placed in or removed from the micro

world, providing a game-like setting for the task of computer programming.
The use of computer games as the environment for mini-language programmed

virtual entities is not a new idea. Apart from the purely educational systems such

as "Karel the Robot" there are several examples of games that provide interaction

through this paradigm - most of which are available on-line (on the World Wide

Web), such as Robocode [Li 20021 or the full 3D action game GUN-TACTYX

[Boselli 2004]. In these games the human player interaction is limited to the

programming of the entities that "play" the games. The similarity between the

control languages in these "programming games" and educational mini-languages

clearly shows the correlation of the mini-languages to BDLs for NPCs in com-

puter games [Brom et al. 2006]. The instructions found in the games' control
languages as well as in the educational mini-languages are usually a set of actions

to be taken by the virtual entities - effectively NPCs - in the virtual environment,

as well as a set of (sensor) queries, providing information about the immediate

surroundings of the virtual entities in the micro world they inhabit. This micro

world provides a graphical representation of the algorithms used in the programs

controlling the virtual entities and their position and orientation within the vir-

tual world visualise the current state of the program. This is especially useful for

the educational mini-languages as many problems faced by novice programmers

can possibly be traced back to an inadequate understanding of program state

[Dann et al. 2000]. Among the educational programming languages that use this

method of program state visualisation we can usually distinguish between lan-

guages that are specially developed to be a teaching tool rather than a language

applicable to solving practical problems -a design decision which is often reflected

in the choice of an uncommon but possibly more intuitive syntax - and languages

66

5.3 Behaviour Definition Language Design

which are directly based on existing production programming languages, provid-
ing a more or less complete subset of the "parent" language's syntax, such as our
own C-Sheep language with its virtual world of "The Meadow" [Anderson and
McLoughlin 2006].

5.3.4 Resemblance to Production Programming
Languages

Closely related to these educational programming languages is the Pascal pro-
gramming language which was meant to be both applicable to real world pro-
gramming problems but also suitable for the teaching of computer science and
programming [Wirth 1993]. For this reason it does not come as a great surprise
that many educational "toy- languages", "Karel the Robot" for example (see Sec-
tion 5.3.3), are based on the syntax of the Pascal programming language. A BDL

could therefore be based on a mini-language related production language such as
Pascal or a derivative thereof, as is the case with our own ZBL/O [Zerbst et al.
2003] behaviour definition language (see Chapter 7, Section 7.2). Another possi-
bility would be to base a BDL on the C/C++ family of programming languages

which includes the popular implementation programming languages C, C++,

Java and more recently the language C#, as well as the scripting languages Perl

and JavaScript. One might argue that this approach would complicate the us-

age of the language. especially if the behaviour definition system is intended to
be easily accessible to programmers and non-programmers alike, but we strongly
believe that this can be achieved if the system is based on a language which is

similar to CIC++. Evidence for this can be found in the film effects industry

where many artists have been using complex scripting systems for many years and

recently the GPU developer NVlDIA [Mark et al. 2003] has shown with the Cg

shader language that artists and shader writers, who may be non- programmers,

can understand and effectively use C like programming languages. A further con-
tributing factor for the consideration of a CIC++ like language is the flexibility

provided by languages of the C/C++ family which is a necessary precondition
for a successful BDL.

67

5.3 Behaviour Definition Language Design

5.3.5 Scripting System Design

As explained above, an important part of the process of designing a programming
language for novice programmers is the analysis of how many non-programmers
who are exposed to a programming language go about using this language. Poiker
[2002] explains how novice programmers write programs employing a mixture of
"copy and paste, ' 2 with "trial and error". This stresses the need for extensive
debugging support and good language documentation to help users identify and

solve problems with their source code, as well as the necessity of a collection

of properly annotated (commented) sample source code which can be used as a
template by novice programmers. This comes on top of the language features

themselves which should include a case insensitive syntax, with an orthogonal

structure and strongly typed data types. Tozour notes in "the perils of Al script-
ing" [Tozour 2002c], that the scripting language design pitfalls which are most
destructive to gameplay are:

*a lack of language maturity, i. e. a design which is untried and untested and

may not really be suitable for the task for which it is used

9 missing develOPment tools and an unsuitable interface which would compli-

cate system usage, program implementation and debugging

9 bad real-time performance of the runtime environment of the scripting sys-

tem

predictability of scripted events and behaviour through lack of randomiza-

tion

If the intended user base for the language is carefully considered and if the lan-

guage is properly designed, then those pitfalls could be easily avoidable, as Brock-

ington and Darrah [20021 point out. Their experience has clearly shown that every

scripting system will be used for purposes unforeseen by the system's designers

and users will tend to bend the system close to its breaking point. Such a system

therefore has to be as flexible and extensible as possible while at the same time

2 "Copy and paste" is a programming technique in which users copy existing code which has

usually been proven to work to reuse it in other places with minor modifications.

68

5.3 Behaviour Definition Language Design

being robust and maintaining run-time stability to avoid the kind of catastrophic
failure which could disrupt the game engine beyond the point of recoverability.

69

Chapter 6

Scripting Languages and
Computer Games

The games industry is now actively making computer games extensible by allow-
ing the players, to modify the games according to their needs and likes (see Figure

6.1). The method by which this is most often achieved is by using a scripting lan-

guage. Many developers use well established existing generic scripting systems or

permutations of these systems (modified according to the game's requirements)
to add scripting facilities to their game. Other games have proprietary purpose-
built scripting languages that are dedicated to a single game or game engine.
Examples for these scripting languages are QuakeC [Simpson 2002], found in the

game "Quake", UnrealScript [BinSubaih et al. 20071, used in games based on the

Unreal engine and Scrit [Bilas 2002], the language used in the game "Dungeon

Siege".

6.1 Scripting Languages and Scripting Systems

The Oxford Reference Online defines a scripting language as "a programming

language that can be used to write programs to control an application or class of

applications, typically interpreted" [OUP 2002]. This is only one of many different

definitions for scripting languages and this very broad definition encompasses a

vast range of programming languages which is - unfortunately - not very helpful.

70

6.1 Scripting Languages and Scripting Systems

Are there any truly good reasons to build an Extensible A] into your game?

029%

M 23%

41*
Absolutelyl

* Sure!

* Maybe.

* No wayl

* Neverl

* Other.

Figure 6.1: Computer game extensibility reasons poll (source: GameAi. com).

When it comes to games, some consider scripting a method for prescribing

specific events and behaviour [Sweetser and Wiles 2005], -very much like a film

script which cannot be altered. We however refer to the terms scripting language

and scripting system when we describe a system using a programming language

which allows the modification of program logic without the need to recompile the

application (game engine) source code.
Scripting languages are used to provide a control interface for combining dif-

ferent components into a single whole, which is why they are also "referred to

as glue languages or system integration languages" [Ousterhout 1998]. They are
'meant to be easy to program in" [Kerninghan and Van Wyk 1998], often at the

expense of run-time performance. As such, scripting languages provide an addi-
tional layer of abstraction on top of components (or programs) usually written
in a high-level programming language. This abstraction, combined with the fact

that modern scripting languages such as Perl [Schwartz 1992] have a lot in com-

mon with traditional system programming and implementation languages such

71

6.1 Scripting Languages and Scripting Systems

as C and C++, makes scripting languages a form of VHL (Very High Level)

programming languages [Bezroukov 2006].
Scripting systems have a wide range of applications and can appear in many

different forms. depending on the area of application. Some of the simplest script-
ing systems are the sophisticated command-line interpreters related to UNIX

shells such as Ksh [Korn 1994], their main task being to tie together external
programs into a unified construct. Their scope can be greatly enlarged through
the use of file processing languages such as AWK [Aho et al. 1979], which form the

next higher level of scripting system. Different from these standalone systems are
integrated scripting systems such as MEL (Maya Embedded Language) [Gould

2002] that control a single application from the inside, often requiring very little

overhead from the application's side for executing scripts, although this is not
the case with MEL (see above). Embedded scripting languages are often found

in applications for use by non-programmers, i. e. in programming terms "less-

skilled personnel" [Wilcox 2007] or "semiprogrammers" [Harmon 20051 for whom

programming is not an intrinsic part of their j ob- description. They include DSLs

[West 20071 that can also take the form of macro-based languages that are em-
bedded within an implementation language to be actually translated into native

code and linked with its host application [Rabin 2002b], which is a technique

considered to be a good use of preprocessor macros [Kernighan and Pike 1999;

Rabin 2002a] -
While many scripting languages are interpreted, this is not generally the case.

Immediate interpretation of scripts which are directly analysed and executed

statement by statement is an expensive operation. To achieve a better perfor-

mance it makes sense to compile script programs, however, not into a frozen

executable in native machine code, but rather into an intermediate form for ex-

ecution within a virtual machine. Scripts that are not interpreted directly but

pre-compiled into intermediate interpreter code, running on a virtual machine,

can attain considerable performance improvements over those that are interpreted

statement by statement, while also preventing some otherwise hard to detect run-

time errors by catching them during script compilation. If that compilation hap-

pens to be performed on-the-fly, i. e. if the compiler is integrated into the virtual

machine as a kind of script preprocessing step, this process is hidden from the

72

6.1 Scripting Languages and Scripting Systems

script programmer, providing the illusion that the script is directly interpreted.
This is a, technique employed by some of the more advanced scripting languages

with features that are very close to those of popular implementation languages,

showing that they can be a viable alternative to those very same "conventional"

programming languages [Prechelt 20031.

6.1.1 A Brief (and incomplete) History of Scripting Lan-

guages

Appearing towards the end of the 1960s to early 1970s, the earliest scripting
languages were command-based languages that provided more powerful versions

of the then common syntax driven user interfaces, allowing operations such as
batch processing [Schneider and Nierstrasz 1999]. They allowed for a much more

efficient use of the then available file processing filter programs that were capable

of interpreting regular expressions, themselves simple languages. The expressive-

ness of these command-line interpreters was greatly extended with the creation

of UNIX shells and the introduction of the pipe which presented a simple method
for combining several filter programs [Korn 1994]. This truly showed scripting

systems to be an alternative to implementation programming languages, as the

combination of existing programs into a different application through scripting al-
lowed the use of a higher level of abstraction, greatly reducing the effort required
for solving complex problems [Schaffer and Wolf 1991]. This recognition of the

usefulness of scripting led to developments to programs such as the pattern-action
language Awk in the late 1970s.

The mid-1980s saw the development of Perl, a language designed to unite the

functionality of Awk and the UNIX shell within a single program.
Among the most popular scripting systems in the early to mid-1990s apart

from the shell were the languages Awk, Perl and TCL [Kerninghan and Van Wyk

1998; Prechelt 2003], TCL being one of the first embedded scripting languages

[Korn 1994] that did not work as an independent command interpreter but had to

be integrated with a host application. The need for ever more powerful scripting

systems at about the same time led to the creation of systems such as Python,

then Lua, soon joined by JavaScript, a development of the emergence of the

73

6.1 Scripting Languages and Scripting Systems

world-wide web (WWW), and then the language Ruby, the latter being one of
the few programming languages developed in the far east (Japan) jerusalemschy
et al. 20071.

The late 1990s and the 2000s have seen the rise of the generic embedded script-
ing language, the more successful of which often have a small memory footprint.
At the forefront of this trend resides the scripting language Lua (see Section
6.2.1), leading some to refer to the 2000s as "the decade of Lua" [Harmon 2005].

6.1.2 Comparative Analysis and Classification of Script-
ing Systems in Games

Just as the term '*scripting" has different interpretations, there are different types
of scripting systems, each working differently and not all of them are suitable for

use in computer games. Our classification of the various types of scripting systems
is restricted to those found in modern computer games and does not attempt to
be complete but rather means to serve as a guide for distinguishing between
different script types. The various types of scripting systems in games are:
STI - INITIALISATION SCRIPTS:

STI initialisation scripts are the simplest form of scripting system [Tapper
2003]. During program runtime scripts of this type are usually only executed once,
at program start-up, while the application is initialising. In most cases this type

of script is used only to set internal program parameters to the values given in
the script which is why they are also known as "property scripts" [Sherrod 2007].
This is the way we have used this type of script to initialise the application in our
evaluation of genetic programming generated computer game players [Anderson

2002]. Initialisation scripts are often nothing more but lists of value declarations,

usually interpreted directly and sometimes using additional syntactic elements
to make scripts easier to read and edit. This semi-declarative behaviour places
initialisation scripts among the DSL family of small programming languages [van

Deursen et al. 2000].
ST2 - TRIGGER-ONLY INDUCED SCRIPTS:

In event based scripting systems the occurrence of an event within the game
triggers the execution of a script or part of a script. This means that scripts do not

74

6.1 Scripting Languages and Scripting Systems

run in a pre-defined order but rather when a specific situation in the game-world
has occurred. This category of scripting systems also includes rule-based scripting
systems which call be used for the definition of domain knowledge in expert
systems, an example of which are intelligent NPCs in many computer games.
Commercial computer games that use this kind of scripting system are Bioware's
Role-Playing Games "Neverwinter Nights" and "Baldur"s Cate". Among the
event based scripting systems there are two sub-types:
Ma - EVENT HANDLER SCRIPTS:

The simpler sub-type of scripting systems in this category uses events that are
built into its host game engine as predefined events. Here scripts only define the
event handlers and possibly additional conditions that may influence the trigger
mechanism. Events are triggered and event handlers are called from the game
engine itself, when the events occur.
ST2b - EVENT ORIENTED SCRIPTS:

The second sub-type are more sophisticated scripting systems that follow the
concept of "Action Languages" as described by Gelfond and Lifschitz [19981 (see
Chapter 5, Section 5.1.1). Their scripts first define the triggers and the situations
in which they should act on events in addition to the event handlers themselves.
These trigger-definitions will usually be executed during the initialisation of the
scripting system so that these events can be generated by the game engine if

all necessary preconditions are met. Once per execution cycle of the script, in

many games once every frame, the conditions for triggering events will be checked
against the current game-state, i. e. the in-game situation, and if these conditions
evaluate as true they will induce the execution of the event handler. The exam-
ination of the game-state can happen through active polling of event data from

the game engine. Alternatively events can be triggered from within other events
or posted as messages to the scripting system by the host game engine.
ST3 - SCRIPTS WHICH RUN LIKE A TRADITIONAL COMPUTER PROGRAM:

Finally there are the scripting systems that are modelled on "traditional"

procedural, functional or object oriented programming languages that would im-

mediately appear familiar to most programmers. Here we can identify two sub-
types:

75

6.1 Scripting Languages and Scripting Systems

ST3a -
LOOPING SCRIPTS:

ST3a scripts will be executed repeatedly to (re-)evaluate the current situation
within the game, i. e. they will restart execution from the beginning of the script,
once the end of the script has been reached. Effectively, scriDts of this tvDe
are used to describe a single (high- frequency) control loop. This is the type of
script that was generated in our evaluation of genetic programming for computer
generated game players [Anderson 20021 (see Chapter 7, Section 7.1). If run once
only at program start-up, scripts of this type are also suitable for use in similar
environments as scripts of type STI.
ST3b - REGULAR SCRIPTS:

Scripts of this type will execute once only, i. e. they will run from start to
finish, concurrently with the host application. Consequently any kind of repeating
operation to be executed by the scripting system will have to be implemented as
a looping operation within the script itself. An example for this is our mini-
language like behaviour definition system ZBL/O [Anderson 2004] which we will
refer to later in this thesis (see Chapter 7, Section 7.2).

6.1.3 Improving Game Design Through the Addition of a
Scripting System

In game development, scripting languages are used within the games themselves
(by embedding them within the game engines) or in the tools used for game
development - usually in situations where the use of an implementation language

such as C++ would be inappropriate [Campbell 2006]. A fairly recent poll at the

game development website www. gamedev. net - the site is frequented by many

game development professionals, as well as amateur developers - suggests that

nearly 75% of game engines in development include some form of support for game

modifications through scripting systems (see Figure 6.2). Robert Huebner's case

study of how scripting support was implemented in the FPS game "Jedi Knight:

Dark Forces"' details the development process of a proprietary language called
COG for use by the designers of the game [Huebner 1997]. COG uses a syntax

that is loosely based on the syntax of the C programming language [Kerninghan

76

6.1 Scripting Languages and Scripting Systems

Which language do you use for scripting in your game engine?

mi%-

EI l% -
zl%-

ul%

35

010%

01 made my own (custom ýanguage)

0 Lua

0C (with co-roubnes)

ci Python

" Other

" Lisp

0 Parl

Cl Ruby

" TO

" My engine doesn't ham scripting

Figure 6.2: Computer game scripting poll (source: GameDev. net).

and Ritchie 1988]. The approach to the design of the language was to use the
definition for the C prograinining language as a starting point and to reduce it

until only the desired features were left. Huebner notes that this allowed for a
rapid design and implementation of the core scripting system. Similar to C the

power of COG does not lie within the core language itself, but within its external
functions. These library functions are directly implemented as native functions

within the game engine itself and then hooked up to the virtual machine as

callback functions. This means that none of the COG library functions executes

within the virtual machine of the scripting system but on the computer's CPU,

saving a lot of processing time. The virtual machine in the game engine has a

stack-based architecture and uses an integrated parser for on-the-fly compilation

of COG scripts.
Huebner clearly identifies the benefits of using a scripting system:

The complexity of the core game engine is reduced as elements of the game
logic are taken out of the engine and put into scripts instead.

77

6.1 Scripting Languages and Scripting Systems

The stability of the core game engine is enhanced as a less complex engine
design will have fewer vulnerabilities and bugs.

"Parallel development" becomes possible, which means that the program-
mers' time is freed up as they no longer need to concern themselves with de-
sign elements which designers can now manipulate themselves with scripts.

Designers are empowered and given the opportunity to realize more aspects
of their designs - this is especially true when the virtual machine can do just-
in-time (JIV) compilation of scripts and when the script editor is integrated

with the level editor.

He also lists a number of possible weak points that need to be taken into account
to guarantee the safety of the scripting environment:

Direct access to game engine variables should be avoided as this could se-
riously disrupt the engine. A script must not be able to crash the game
engine.

9 Run-time debugging of scripts must be catered for. If possible source-level
debugging should be made available.

Huebner concludes that the design was so successful that designers managed
to generate scenarios which would have appeared inconceivable and very hard

to realize if it had not been for the COG scripting system. He explains that

the similarity of COG to the programming language C not only simplified the
development of the language but it also made it easier to learn and understand for

the designers - non-programmers - who used COG for the creation of the game.
A wide range of documentation and introductory tutorials for the programming
language C are available from many on-line and off-line sources and as experience
from numerous productions suggests non-programmers can easily be expected to

understand and to learn how to effectively use C-like programming languages.

This has had a significant impact on the structure of the scripting systems used

'JIT or Just-In-Time compilation is an interpretation method in which program source-

code is first compiled and then immediately afterwards executed by an interpreter or a virtual

machine.

78

6.2 Frequently Used Scripting Languages in
Games

Which is your favourite embeddable scripting language?

m 0%

a 0% ýý

ml%- ý

M 3%ýA

M 43%

m Lua
0 Python

c Ruby

cAngeIScript

a Squirrel

0 GameMonkey

m SpiderMonkey

[310
0 forge

0 Jewelscnpt

0 OVier

Figure 6.3: Embeddable scripting language poll (source: GameDev. net).

by game developers. Although scripting has been used in game development for

quite a long time [Given 2002], access to those scripts has usually been limited to
the game developers, and only in recent years the power to modify games has been

opened up to the end users, i. e. the game players. Whereas originally the scripting

systems were only used in-house by a game's programmers and designers who had

direct access to the programmers in case of any difficulties with the system arose,

now they have to be developed to a point where they could potentially be "let

loose" on the general public where mainly non-programmers would use them to

modify the game.

6.2 Frequently Used Scripting Languages in

Games

Whereas only a few years ago the majority of scripting solutions used in computer

games were proprietary languages (see Figure 6.2), the trend has now shifted

79

6.2 F'requently Used Scripting Languages in
Games

towards the use of generic scripting solutions of which some have been designed
explicitly for use in computer games (see Figure 6.3). This becomes evident in
a recent survey of scripting languages in computer games [Garces 2006] which
focuses on the languages Lua, Python, AngelScript and GameMonkey Script,
presented below, all of which are embeddable languages that have been used
in commercial games. This does not, however, mean that the development of
proprietary scripting solutions should be avoided at all costs, as Wilcox notes
that despite the effort and development overhead involved in the creation of a
new scripting system "you are not reinventing the wheel. You are creating a way
to concisely express your thoughts in a new language" [Wilcox 2007].

6.2.1 The Lua Extension Language

The scripting language Lua is currently the language of choice for building the
scripting solutions in many computer games (see Figure 6.3). lt is a generic
programming language that was originally designed to be used to extend programs
by adding various scriptable features, which is why the creators of Lua have
dubbed it an "extensible extension language" jerusalemschy et al. 1996]. Lua has

aC API, making it easy to embed in C/C++ based applications and Lua is also
easy to learn which makes it ideal for game development environments in which
non-programmers may be required to write some scripts [Harmon 2005]. The Lua
development environment consists of a compiler which can create bytecode as well
as an interactive interpreter which allows execution of singular Lua statements.
The latter is especially useful for script development as it is a means of generating
immediate feedback to a Lua statement which can be tested without full scripts
having to be written and compiled.

The Lua run-time environment is embeddable into applications as a portable
C library. This library contains a virtual machine, as well as a version of the Lua

compiler, allowing on-the-fly compilation of Lua scripts that can then immedi-

ately be interpreted by the application into which Lua is embedded in without
the need of the scripts to exist in pre-compiled form. If scripts that have been

pre-compiled into bytecode are used instead, the run-time environment can be

80

6.2 Frequently Used Scripting Languages in
Games

embedded without the compiler component, reducing its already very small foot-
print. As of Lua version 5.0 a register-based architecture is used for the virtual
machine of the Lua run-time environment, which had originally started as a stack-
based abstract machine. This is used to improve program performance, as well
as compile-time program optimisation, making Lua one of the few register-based
virtual machines used in scripting systems Jerusalemschy et al. 2005].

Lua is a procedural language which has borrowed features and syntactical el-
ements from a number of existing programming languages. Syntactical influences
stem from main-stream languages like C/C++ and there are syntactical similar-
ities to elements of the Pascal based programming language Modula. Another
language that influenced Lua not syntactically, but semantically, is the functional

programming language Scheme [lerusalemschy et al. 2007]. One of the more in-
teresting features of Lua is the ability of functions to return multiple values which
allows for the creation of powerful scripts for complex situations. Lua uses dy-

namic typing, i. e. there is no strong typing of variables and only individual values
have a data type. Apart from strings there is only one numeric data type which
can take floating point values as well as integer values which greatly simplifies
the language. The most powerful and useful aspect of Lua however is the use of
tables, a dynamic form of associative array inspired by AWK [Aho et al. 1979] and
Perl [Schwartz 1992], however implemented in a different, less restrictive manner
Jerusalemschy et al. 2007]. These tables, while very useful by themselves, can
also form the basis for much more complex compound data types and even allow
the emulation of object orientation.

The language features provided by Lua can simplify the creation of solutions to

various problems in the developnient of computer games, which is why it does not

come as a surprise that since its first conception Lua has been used extensively in

computer games development, being embedded in a large number of best-selling

computer games.
One of the first commercial game developers to adopt Lua were Lucas Arts,

a pioneer of the use of scripting in games [Huebner 1997; Given 2002], who

used Lua as the scripting language of their GR1ME system for the game "Grim

Fandango" [Mogilefsky 1999]. Other early adopters of Lua in game development

are the company Bioware who used Lua in their action adventure game "MDK2"

81

6.2 F`tequently Used Scripting Languages in
Games

[Brockington and Darrah 2002]. and Relic Entertainment. who make extensive
use of Lua scripting in their games, using a Lua-based system dubbed SCAR
(Scripting at Relic) [Rel 2003].

6.2.2 AngelScript

AngelScript or the "Angel Code Scripting Library" is an embedded scripting lan-

guage, designed with graphics applications and computer games in mind. Like
Lua, AngelScript is an extension language, but whereas Lua was designed as an
extension language for the C-subset of the C++ language ("clean C" Jerusalem-

schy et al. 20071), i. e. C and C++, AngelScript was designed mainly for embed-
ding in C++, although it has separate C bindings. AngelScript is object oriented
but in its current implementation does not yet allow inheritance, although this

can be emulated with the system [Shay 2004]. The major differences to similar

scripting systems are type safety, i. e. variables that are strongly typed, and the

use of native C++ calling conventions for functions in AngelScript which simpli-
fies the integration of scripts with C++ programs, as proxy (wrapper) functions

are not required [Garces 2006].

6.2.3 GameMonkey Script

Another scripting language with C-like syntax, developed specifically for com-

puter games, is the language GameMonkey script [Sherrod 2007]. Unlike the

OpenSource AngelScript library, GameMonkey Script started life as a propri-

etary closed-source language which was later open-sourced. GameMonkey script

was created for use with C++, but does not provide an object oriented language

itself. In a similar manner to Lua, however, tables can be used to emulate object

oriented functionality [Garces 2006].

6.2.4 Python

Python is a powerful and feature rich scripting language that also allows some

object orientation. lt is a general purpose language that can be used as a stand-

alone command interpreter but it has also been used as an embedded scripting

82

6.2 Fýrequently Used Scripting Languages in
Games

environment for various computer graphics applications and also a number of
games and game engines [Dawson 2002]. While the language syntax may be

considered unusual as it only allows grouping of command sequences into blocks

through code indentation, it has an easy to use API which simplifies the embed-
ding of Python into applications, although this is not as easy to do as with the

other embedded languages mentioned here [Garces 2006].

6.2.5 Other Scripting Systems Based on Generic

Languages

Other than these popular choices for scripting languages in games, there exist

a number of less frequently used but mature scripting languages which can be

embedded in computer game engines. Most of these languages are generic, i. e. not

specialised for specific tasks [Varanese 2003]. Generic languages of this type that

are frequently mentioned in the context of game development are the languages

Tcl and Ruby. Other languages used with games are the object oriented language

Squirrel or the language JavaScript (standardised as ECMAscri pt2 - ECMA-

262) which has its origins in web-browsers but has since found a wide range of

applications (often embedded through the SpiderMonkey system). An example
for this use of ECMAscript is the ActionScript language, which is used in the

scripting system found in Adobe's Flash multimedia authoring system, which

can also be used for game development [Baba et al. 2007].

The Tcl/Tk scripting system is one of the oldest embeddable scripting sys-

tems. The "Tool Command Language" at its core is possibly one of the easiest

to learn scripting languages. One of its greatest strengths is the high-level of

functionality provided by the Tcl API for embedding Tcl in applications which

is why Tcl has also been used to add scripting to game engines.

Ruby is an interpreted object oriented scripting language which is slowly gain-

ing a following among a number of game development teams. Ruby is a relatively

new scripting language but it already has a fairly large user community. The com-

mercial quality OpenSource game engine "Nebula Device" has Ruby support (as

well as support for Tcl/Tk, Lua, Python and even Java).

2http: //www. ecmascript. org/

83

6.3 Scripting Tools for Game Designers

6.3 Scripting Tools for Game Designers

As more and more developers add scripting systems to their games, the need
for tools to aid in the development of these scripts has become apparent. Conse-

quently many game developers have created utility programs to answer this need.
These tools range from simple text editors that have been extended to provide
syntax highlighting for the scripting language to complex CASE (computer aided
software engineering) applications that allow an intuitive design approach to the

generation of scripts.

6.3.1 Scripting Tools in Popular Computer Games

I. c Er. -, r,,, ý &-0,, lculý Vcy'l, leir

v--- I 111. & 40" 1
king_MOve_h
lung_mcivej
king_mov

-fI

%CIS WOMI s (499AS Im

light
- conticil Pl,, Y. &. i"g

mwterhb
mwteint

1 void waino

openstofe
2'

outoforder
3 objecr. oPCLeaving = GetPCSpeakero;

ý-f14

- lepi xf

-101 X1
Fille,

Functions IF -Variables

iloPCLeaving

5 if (oPCLeaving == GetLocalObject(OBJECT SELF, "OlUhitePlayer"))
p_en_Li 6
p_moye t-1

'7 SetLocalInt(OBJECT SELF, "nWhiceAssigned", 0);
P-move t_2

8 SetLocalOb3ectiOBJiECT_SELF, "oWhitePlayer", OBJECT INVALID);
ptake-f 19

ptake fr
10 if (oPCLeaving == GetLocalObject(OBJECT SELF, "oBlackPlayer"))

playerleaywg 11
pmmoebýhop 12 getLocallnt(OBJECT SELF, "nBlackAssigned", 0);
pomteký. ght 13 SetLocalObject(OBJiCT SELF, "oBlackPlayer", OBJECT_INVALID);
promdequeen 14
promotetook 15
fook-move-1 16 SerLocalInt(OBJECT SELF, "Ganie5rate", 2);
iook-moye_2 17
rook-move_3
rook-move-4
rook-moye_5
rook-move-6
rook_move-7
setmove_bý_bl
setmove_bjr
setmove_bjl
setmove b ft

setmove rb
setmove rf
setmove-r-1
setmoveýj_r
sit

CONDOM Help
E8

Ok-1k,:.
r S. --h Resufts

startbeam

Ek

-1

Figure 6.4: BloWare's Aurora Toolkit.

Computer games that can be modified by their user community enjoy great

popularity. As a result some of the most advanced script development aids for

84

6.3 Scripting Tools for Game Designers

extending games can be found in exactly those computer games. These tools are
now included in many game releases, effectively making them additional game
content [Kane 2007]. One of the largest development communities exists for the
Unreal game engine. Not only has this engine been used in a large number of
commercially successful games, but the extensibility of these games has resulted
in the production of many additional modifications to these games by the play-
ers. This has been made possible to a large extent through UnrealEd, the main
content generation application for games using the Unreal engine. UnrealEd is

not only used for designing the virtual environment of the game worlds but it

also contains an IDE (integrated development environment) for UnrealScript, the

scripting language used by the Unreal engine [BinSubaih et al. 2007]. A simi-
lar tool to UnrealEd is the Aurora Toolkit which is the game editing toolkit of
the RPG "Neverwinter Nights". It not only provides methods for building the

game environment and placing objects and NPCs for game extensions but also
the means for defining the actions of NPCs and the conversations that a player
can have with the NPCs using various scripting tools which are embedded within
the toolkit (see Figure 6.4). While both of these systems considerably simplify
the creation of scripts for their respective games, their use still requires some
knowledge of programming.

6.3.2 Dedicated Al Definition Systems for NPCs

We have now reached a point in the trend towards the use of data-driven definition

of the artificially intelligent behaviour displayed by game characters where the

major part of NPCs in currently available computer games is no longer hard-coded

into the game program itself. One reason for this is that developers have realized
that enabling players to modify the games themselves adds value to a game and
dramatically adds to its shelf-life (see Figures 6.1 and 6.5). Now the question

arises how this extensibility can be achieved which is especially important if it

comes to the modification of the NPC behaviour in those extensible games.
If a hard-coded AI description is undesirable, one solution to the generation of

NPC behaviour from a data-driven behaviour definition is the creation of project-

specific proprietary software tools that provide features such as automated FSM

85

6.3 Scripting Tools for Game Designers

Should players be allowed to modify a game's AR

m 60, b

038,

028%

0 Absolutely notl

m Mostly noll.
020%

0 Limited yes.

o Qualified yes.

m Absolutely yesl

Figure 6.5: Computer game Al extensibility poll (source: GameAi. com)

(Finite State Machine) generation [Jacobs 2005]. While most of these applica-
tions are created in-house, a number of 3rd party developers have attempted to

create more generic systems which are not bound to specific projects. Games

can settle for these commercially available middleware systems [Dybsand 2003;
Kruzewski 2006] or alternatively they can use a scripting language of some sort
(established or proprietary). A scripting system might seem an ideal solution for

the complexity of the problem but there is not one single method by which the
behaviour of artificially intelligent characters is created and therefore a solution
found for one game is not easily transferable to other computer game productions.
This is especially true when it comes to the scripting of NPC behaviour as some

of the different kinds of scripting systems which are used in conjunction with Al

in games are quite generic and are not exclusively used for scripting the Al, but

also for other tasks within the game.
There are some dedicated Al scripting systems that have been used in a

number of games and animation systems. In most cases they have been highly

speciallsed for specific genres of computer games or kinds of behaviour that is

86

6.3 Scripting Tools for Game Designers

generated by the system. This greatly restricts the reusability of such systems
and they are usually proprietary to a spec, fic product or range of products.

6.3.3 Programming Solutions that Modify NPC
Behaviour

The design of a proprietary behaviour definition (scripting) language and run-time
system for the definition of artificial behaviour as ail extension to a specific game
or genre of computer games (for example FPS games) is relatively straightforward
and simple if only deterministic behaviour is involved. To illustrate this one can
take the first prototype for the ZFX bot language (ZBL/O - see Chapter 7, Section
7.2) which was developed by the author of this thesis to demonstrate syntactic
NPC behaviour definition, and which was completed over a period of little more
than a fortnight (from conception to first use) [Spirig et al. 2003].

In effect such a language can take the form of a DSL which needs to do

little more than provide a function binding interface to a game engine, allowing
the creation of simple rule based systems. In situations like this the game engine
itself does all the work while the script only ties together the different game engine

components that provide the NPCs with functionality. This is especially true in

simple cases where the sole use of scripts is the initial configuration of otherwise
hard-coded NPC behaviours using initialisation scripts of type STI (see Section

6.1.2) [Tapper 2003]. The most complex scripting solutions are programs that

use high-level abstract descriptions to define complex behaviours. Languages of
types ST2 or ST3 are a lot better suited to the definition of complex behaviours

than scripting languages of type STI. The development of this type of system
from scratch can take considerably longer, so a good solution might be to base

this behaviour definition language on an existing Al language (see Chapter 5,

Section 5.1-1) or to use a generic embeddable scripting language.

6.3.4 Visual Script and NPC Generation

Although non-programmers can cope perfectly with writing programs in a script-

ing language, one approach to simplifying script generation for designers is the

87

6.3 Scripting Tools for Game Designers

Figure 6.6: Stottler Henke's SimBionic middlewarc.

use of tools with a graphical user interface (GUI) that provides designers with an
intuitive tool for designing NPC behaviour [Snavely 2006] and presents a visual

representation of the script that will be generated [Houlette et al. 2001]. A WYSI-

WYG paradigm is especially useful for taking a complex behaviour description

in natural language, such as one found in a design document, and transferring

it into a form that can be visualised and interpreted by a run-time system for

controlling NPCs [Houlette et al. 2003]. Through the provision of a small set

of hierarchically connectable graphical elements the rapid construction of expert

systems for this task by an expert of the domain who needs no understanding of

programming becomes possible. Carlisle [2002] proposed the implementation of

a GUI-based design tool for the definition of state machines. Gill [20041 uses the

88

6.3 Scripting Tools for Game Designers

diagramming software Visio to design state machines, storing the results using
the XiML (extensible) mark-up language which is then used as input in a game
engine. Jacobs [2005] describes a similar system which allows the use of a UML
(Unified Modelling Language) design tool to create the visual representation of
a state machine which is then translated into code useable in the game engine.
Snavely [Snavely 2004] proposes to use a spreadsheet program, such as the office
application Excel to define a fuzzy state machine to create intelligent behaviour
that can be translated into a useable form for a game engine. While the reduc-
tion in development time achieved through the use of these tools is already a
significant improvement, the greatest benefit to the game development process is
the fact that non-programmers are able to create significant parts of the game,
allowing for parallel development [Fu et al. 2003].

The challenge for any system that allows for the creation of Al entities is the

suitability of the resulting NPCs for commercial computer games. Whereas only
a few years ago many game developers would have considered such systems to be

impossible to create, a number of products - some academic and some commer-

cial - have proven the doubters wrong. To tackle the creation of Al scripts in the
RPG "Neverwinter Nights" researchers at the University of Alberta developed the

tool ScriptEase [McNaughton et al. 2003]. ScriptEase is a visual programming

application that specializes in generating scripts for RPGs. Unlike the more com-
fortable to use "point &click" 3 graphical front-ends that generate the NPC code
from flow diagrams, ScriptEase provides a inenu and dialog-based user interface

for the definition of NPC behaviours. A similar dialog-based scripting method

using context-sensitive menus is used in the educational system Alice [Kelleher

2006] to simplify script programming. A different approach to the development

of Al characters for "Neverwinter Nights" was taken by the developers of the

freely available BrainFrameNWN Editor, which is a specialised version of the vi-

sual authoring tool used in the commercial Al middleware system SimBionic (see

Figure 6.6). The BrainFrame Editor is used to graphically create flow diagrams

of a hierarchical representation of NPC behaviours [Fu and Houlette 20021. This

3, ýpoint &click" describes a type of user interface which is mouse-driven, i. e. the mouse

pointer is used to select objects, while clicking the mouse buttons manipulates the selected

objects.

89

6.4 Systems for Syntactic Behaviour Definition

representation is then used to generate the necessary data for the run-time sys-
tem used by the game engine or in the case of the BrainFrameNWN for the code
generation in NWScript. Finally, the concepts of iconic programming [Calloni

and Bagert 19951 need to be mentioned as they could be used to create a hybrid

representation of the two approaches described above, combining a visual con-
trol flow representation with a graphical representation of programming language
instructions.

6.4 Systems for Syntactic Behaviour Definition

We are not aware of any existing single, common method for the implementation

of a game character Al. Existing solutions usually require the combined use of

several techniques. A better solution would instead provide a smooth integra-

tion of the behaviour definition system into game applications within a unified

architecture that provides a combination of all of the different components for

creating NPCs. Further improvements in the quality of computer games are likely

to have to adopt a syntactic approach for the creation of the artificially intelligent

characters that populate the virtual worlds of computer games. This is likely to

take the form of a high-level programmable system for defining NPC behaviours.

We have defined the term "Behaviour Definition Language" (BDL) to describe

such a high-level programming language and we have set out the criteria that

need to be met by a syntactic behaviour definition system to be a BDL. We have

also described several systems for NPC behaviour definition, many of which fulfil

several of the criteria for BDLs, but to our knowledge so far there exists no sys-

tem that fulfils all of them. The first step towards a unified software package for

creating life-like NPCs in computer games is the creation of a BDL as a system

for syntactic behaviour definition, the development of which is the subject of the

following chapters of this thesis.

90

Chapter 7

The Development of Three
Behaviour Definition Languages

The previous chapter provided an overview of scripting systems and scripting
languages with a special focus on the use of generic embeddable scripting lan-

guages in computer games. In this chapter we discuss three behaviour definition
languages that we have created in the course of our work.

7.1 GP Asteroids Script

GP Asteroids Script is the result of a series of experiments for using evolutionary

computing techniques for evolving an artificial player, capable of competing in

the popular arcade game "Asteroids"'. A detailed description of our experiments

'The classic arcade game Asteroids is based on attack and evasion which is a concept that
is common to most action oriented video games. In Asteroids the player's spacecraft flies

through a two-dimensional field of moving asteroids. The player has to avoid colliding with
the "asteroids" to prevent his space ship's destruction. At the same time he has to destroy

the asteroids to win and progress to the next level of the game. To achieve this, the player

can shoot at asteroids. If hit, a large asteroid will break up into two medium sized asteroids

which in turn can each be split into two small asteroids. Shooting down an asteroid increases

the player's score. The player has a. pre-defined number of lives. A collision with an asteroid
destroys his spacecraft. In our implementation of the game the players only means of defence

is to use a protective shield, which protects the player from destruction during collisions with

asteroids by granting temporary invulnerability while it is active. Using shields or firing the

gun will drain the player's energy which is replenished over time. The game ends when the

91

7.1 GP Asteroids Script

and results using this system is presented in [Anderson 2002]. In our version of
Asteroids the player indirectly interfaces with the game through a Lisp [McCarthy
1959] like behaviour definition (scripting) language which implements a number
of sensors and controls, which are identical to a human player's controls if he
were directly interacting with the space ship (see Appendix B for a description
of the language). The script program which controls the player entity is created
through off-line evolution, based on the agent's proficiency at playing the game.
The space ship's controls are used as output of the evolved program, whereas
the space ship's sensors, which reflect the current state of the game, are used
as input to the evolved program. GP Asteroids Script is a scripting language of
the Looping Script type (ST3a - see Chapter 6, Section 6.1.2)

1.
i. e. the complete

script is evaluated as a whole for every update cycle of the game, i. e. once every
frame.

The run-time system used to evolve GP Asteroids Script programs, as well as
execute them, is a version of Sarafopoulos's "gp interface" library [Sarafopoulos
2001], extended with the player specific instructions for controlling the space
ship. Of these instructions most are used to set and query the player entity's
states (in the game) which are implemented through an FSM. Only a few of the
instructions can be used to immediately trigger actions for execution during the
current update cycle of the game.

7.1.1 The GP Asteroids Script Programming Language

GP Asteroids Script is a small functional programming language with only 23

unique instructions (excluding operators and constants - see Table 7.1). The
language was designed for a variation of genetic programming (GP) [Koza 19921

that is "strongly typed", as introduced by Montana [1995], which allows for the

use of different data types. The language has two data types, one for Boolean

values which can take on the truth values 'TRUE' or 'FALSE', and a typeless
data type which is used for procedures that do not return any data. For this three

player has lost all of his lives. The aim of the game is to stay alive as long as possible and to

gain the highest score during that period.

92

7.1 GP Asteroids Script

constants (two Boolean: 'TRUE', 'FALSE' and one typeless: 'void') are defined.

which can be used with the language's control structures.
These program flow control structures are implemented as non-terminal func-

tions for:

9a dyadic (if-else) selection

9a comparison (if-equals)

9a sequence of two instructions

This small set of control structures is augmented by four simple Boolean operators
(AND, OR, XOR and NOT) which are implemented as non-terminal functions

of the language.

The player entity's sensors and controls make up the terminal set of the lan-

guage's functions. The former, i. e. the sensor queries for the space ship, are
implemented as a set of Boolean functions, whereas the latter, i. e. the controls
for the space ship, are implemented as a set of action procedures which enable
the player entity to switch its current state. The functions available to retrieve
the space ship's sensor states return information regarding

9 the current level of the space ship's energy

9 the state of the ship's movement (forward and turning motion)

9 the approximate positions of targets (asteroids) in relation to the player's

position

The actions available to the player are

9 setting a state for turning (left, right, not)

setting acceleration (on, off) or deceleration (automatically reset for each

frame)

9 setting the state of the shields (on, off)

9 firing a single bullet

These functions give sufficient control to scripts, allowing the construction of

simple player entities that can play the game.

93

7.1 GP Asteroids Script

sensor functions

(targetAhead)
(targetLocked)
(proximityAlert)
(impactAlert)
(hasEnergy)
(plentyEnergy)
(hasShields)
(lookingAhead)
(isMoving)
(accelerating)
(isTýirning)

action functions

(setThrust)
(noThrust)
(decelerate)
(setShields)
(noShields)
(rightTurn)
(leftTurn)
(norDirn)
(fire)

control structures
(if-true)
(if-equal)
(sequence)

Table 7.1: CP Asteroids Script functions.

94

7.1 GP Asteroids Script

7.1.1.1 Automatically Defined Functions and Super-Actions

In a separate set of experiments we used a modified version of CP Asteroids Script
that allows the use of up to three so-called automatically defined functions (ADFs)

with some additional syntactic constraints to the structure of script programs.
All of the ADFs are defined as terminal functions that return void and take no
parameters, each of which is allowed to contain all of the available functions,

procedures and control structures. The constraint to the program structure is
that the result-producing branch (RPB) which contains the main program script
only allows the use of the control structures (see Table 7.1) and the three ADFs.

This modified version of the GP Asteroids Script language is tailored to fit the

requirements of the game at the expense of choice of instructions for the program-
mer of the player program. The goal of the game Asteroids is to maximise the

player's score, usually by destroying all asteroids as quickly as possible, and a pre-
condition for the destruction of all asteroids is the player's survival. This analysis
of the problem-space leads to the identification of three distinctive, yet partially
conflicting objectives from which separate behaviours can be extrapolated:

destroying a target which is in the player's range and line of fire - aggressive
behaviour

9 seeking out and finding targets in the shortest possible time - hunting be-

haviour

9 avoiding collisions with asteroids - defensive/ evasive behaviour

This leads to the identification of the three possible ADFs - 'Aggression' for

aggressive behaviour, 'Defence' for defensive behaviour and 'Target Acquisition'

for hunting behaviour. Each of the three objectives is associated with a different

ADF. The use of segregated branches of the parse tree for achieving multiple

objectives as described by Reynolds [1994] was the inspiration for the use of ADFs

to find a solution that successfully completes the three conflicting objectives of

the Asteroids game. To ensure that each of these three ADFs evolves in a way

that will satisfy its assigned objective, the fitness evaluation of individual players

is distributed using task specific fitness functions during program evolution, i. e.

95

7.1 GP Asteroids Script

the GP system uses a separate fitness function for each ADF which evaluates
the fitness of that ADF for its assigned task. It was necessary to impose the
syntactic constraint of only allowing ADFs and program flow control structures
in the RPB, as early experiments showed that allowing the use of all instructions
in the RPB can lead to functions and procedures in the RPB cancelling out the
results generated by the ADFs.

For testing purposes an additional set of three super-actions, each equivalent
to one of the three ADFs ('fireAtWill' for aggressive behaviour, 'seek' for hunting
behaviour and 'autoprotect' for defensive behaviour) were added to the instruc-
tion set of the language, to be used instead of the ADFs. A successful player
using a GP Asteroids Script program written with these super-actions would be
the following:

(sequence

fireAtWill
(sequence

autoprotect

seek))

This program executes the three possible super-actions in sequence. Each

of the actions includes a conditional evaluation of the current game state which
determines if the super-action is executed, making the super-actions a kind of

state and the whole program some kind of finite state machine description.

7.1.2 Designing Artificial Players Using GP Asteroids
Script

To illustrate the usage of GP Asteroids Script the program below shows how

a player script would look. The version of the language used here is the one

using automatically defined functions (see Section 7.1.1.1 above). This means

that from the top-level function, player scripts are only allowed to use the pro-

grani flow control structures and to call the three automatically defined functions

('ADF-l', 'ADF-2' and 'ADF-3') for aggressive, defensive and hunting behaviour.

96

7.1 GP Asteroids Script

The main function for a successful player would call all of the ADFs in sequence:

(sequence

ADF-1

(sequence

ADF-2

ADF-3))

Assuming, that the first ADF defines aggressive behaviour (equivalent to the

'fireAtWill' super-action), the controlled entity should fire its weapon if it has

sufficient energy to power its gun and if it has a target in its sights. A possible

'ADF-I' description could therefore be written as shown below:

(if-true
(AND

plentyEnergy
targetLocked)

fire

void)

The second ADF (assumed to be equivalent to the 'autoprotect' super-action)

should prevent the player entity from being hit by asteroids. This can be achieved

by activating the player entity's shields if an asteroid is about to impact with the

space ship and deactivating the shields to conserve energy if there is no immi-

nent danger. As an additional defensive measure the player entity should also

move away from its current position. The resulting 'ADF-2' would look as follows:

(if-true
impactAlert
(sequence

setShields
setThrust)

97

7.1 GP Asteroids Script

noShields)

The most complicated function (equivalent to the 'seek' super-action) is the

third ADF IADF_3', displaying hunting behaviour:

(if-true

proximityAlert
(sequence

(if-true

isMoving
(if-true

impactAlert

(sequence

noTurn
decelerate)

(sequence

decelerate

noThrust))

void)
(sequence

(if-true
(AND

(NOT

targetLocked)
(NOT

impactAlert))

rightl'urn

noTurn)
(if-true

impactAlert))

(if-true

plentyEnergy
fire

98

7.1 GP Asteroids Script

void)
void)))

(sequence

(if-true
targetLocked

void
leftT'urn)

setThrust))

The listing above shows a possible method for target acquisition in the hunting
behaviour. Here the first action of the player entity is to check if an asteroid is

close by ('proximityAlert'). If not, the player entity either accelerates towards

a target, if one is in front of it, or it rotates to the left, if there is no target in

sight. If an asteroid is close by and the player entity is moving, it stops turning

and slows down, if there is a threat of impact or just decelerates if the space ship
is not directly threatened. lf there is no asteroid in sight at this point, the space
ship rotates to the right, however if an asteroid is within the player entity's sights
and it has enough energy, it, will open fire.

7.1.3 Concluding Remarks on GP Asteroids Script

While the experiments to automatically generate an artificial player capable of

playing asteroids were successful [Anderson 2002], the usefulness of this system for

creating NPCs as such is questionable. From a game development standpoint, the

system is very restrictive, i. e. not easily extensible, as all extensions would have

to be added directly to the source code of the system. The absence of a looping

control structure works only because the whole of the program is evaluated for

every update cycle, but as a behaviour definition language GP Asteroids Script is

effectively incomplete. Furthermore, the language's existing instruction set limits

the system to use in games of a small sub-genre of arcade action games, namely

2D space shooters with 360 degree of freedom of movement, i. e. games such as

Asteroids, "Computer Space" or "Space War".

99

7.2 FPS NPC Behaviour Definition Language ZBL/O

\Vc do not believe that systems of this type, using a Lisp-based scripting
language, scale well. While it is easy to write programs using GP Asteroids Script,
they quickly reach a state in which they are too complex to be easily deciphered
(see code listings in Section 7.1.2). This is due to the recursive syntax of the Lisp-
like language, and while it would be possible to add additional instructions for
sensor inputs and actions to make the language more versatile, script programs
themselves could easily grow to a point where they are unmaintainable, due to a
lack of visually recognisable structure.

7.2 FPS NPC Behaviour Definition Language
ZBL/O

The embedded Regular Script type (ST3b -see Chapter 6, Section 6.1.2) be-
haviour definition (scripting) language ZBL/0' (effectively pronounced -'Sybil-
Zero" 3) is a problem- oriented third generation programming language. ZBL/O is
a simple to learn, simple to understand and simple to embed scripting language
for defining the behaviour of NPCs in real-time FPS computer games, which are
sometimes also referred to as bots or game-bots. As such, we developed ZBL/O

as the scripting system for the creation of computer controlled opponents for the
FPS game Pandora's Legacy [Zerbst et al. 2003]. The ZBL/O scripting system
consists of a compiler for game-bot programs (NPCs) that have been written in
the ZBL/O language and a robust virtual machine that can be integrated into

any game engine.
ZBL/O is much smaller, more restrictive and far less extensible than many

other scripting systems, i. e. the language is dedicated to only one genre of com-
puter games and the virtual entities that populate them. Following the example
of mini-languages found in computer science education [Brusilovsky et al. 19971,

the ZBL/O language is based on a traditional programming language which has

been reduced to the simplest features to make the system easily accessible for

2 http: //zblO. zfx. info
3 The acronym ZBL/O is pronounced using American English pronunciation of the letters Z

(zi) B (bi) and L (1) and the number 0 (zero). The resulting word is pronounced similarly to

the female first name Sybil.

100

7.2 FPS NPC Behaviour Definition Language ZBL/O

programmers and non-programmers alike. The syntax of the ZBL/O language
is influenced mainly by the PL/O model language [Wirth 1986] and therefore
bears some resemblance to the high-level procedural programming language Pas-

cal [Wirth 19931 with some additional influences for syntactical constructs that

resemble the programming language C [Kerninghan and Ritchie 1988]. Unlike C,

however. ZBL/O is case- insensitive , i. e. the differences between lower-case and

capital letters are ignored and all instructions and identifiers can be written in

lower-case, upper-case or a combination thereof. Comments used in ZBL/O are
line-comments, similar to those found in C++, rather than the block comments
found in languages such as C or Pascal.

7.2.1 The Design and Development of ZBL/O

ZBL/0, the ZFX' Bot Language, was developed towards the goal of creating

a simple method for adding NPCs for computer games and provides an open

standard for that aforementioned purpose. The design of the ZBL/O language and

system was guided by the aim to create a tool for learning how to syntactically
define NPC behaviour in FPS (First Person Shooter) games which we used as a

reference system to illustrate the development of game-bots in the context of a
book on computer game development [Zerbst et al. 2003].

The requirements for the ZBL/O scripting system were straightforward:

9 The system was to be used to define NPC behaviour as an extension to

computer games of the FPS genre written in C++.

9 The NPCs defined by the language only needed to support deterministic

behaviour.

No complex data types or control structures needed to be implemented as

the system was supposed to be used to demonstrate general concepts of

NPC behaviour scripting.

4 "ZFX -- 3D Entertainment" (http: //www. zfx. info) is a German language on-line commu-

nity dedicated to the development of computer games.

101

7.2 FPS NPC Behaviour Definition Language ZBL/O

Consequently the development of the system from conception to first use was
achieved in a very short period of time: The first fully working prototype for
the ZBL/O system for example was completed over a period of little more than a
fortnight [Anderson 20041.

The starting point for the definition of NPC functionality that the system
was supposed to be able to describe were the NPC control functions found in GP
Asteroids Script (see above). The choice of functions was furthermore informed
by an examination of common player controls in FPS games in order to mirror
the functionality exposed to human players in FPS games within the scripting
language's set of functions. This instruction set was refined during the develop-

ment, reflecting discussions with Spirig et al. [2003', (personal communication).
To simplify the structure of the ZBL/O system the instructions for NPCs were
added to the language as intrinsic functions. The function identifiers themselves

were selected to be self explanatory for easy understanding. The core language

was augmented with additional syntactical elements similar to those found in
C/C++, such as the use of parentheses to encapsulate conditional expressions
in selection statements and loops, to simplify the process of writing ZBL/O pro-

grams for programmers that are experienced in C/C++ [Spirig et al. 2003]. The

use of these additional syntactical elements was made optional, i. e. they can be

used in programs but they can also be safely omitted from programs.
One of the goals was to find a simple way of embedding the ZBL/O system

into game engines written in the C++ programming language, currently the most

common choice of language for computer game development. An important part

of the embedding process is the binding of script functionality to functions defined

in the host application, i. e. the game engine. If the programming language for

the system had been C, the obvious choice for this would have been the use of
function-pointers (pointer variables that can hold the address of a function) to

create callback functionS5 for the function bindings. The method chosen, however,

was to make use of the object oriented features of C++ and to achieve the function

5Callback functions are functions which are not explicitly called but instead are invoked

implicitly by the program, i. e. control over the sequence of functions called is removed from the

control of the user (the programmer). Callback functions are usually used as event handlers

that need to be "registered" with the calling application so it knows which callbacks to use.

102

7.2 FPS NPC Behaviour Definition Language ZBL/O

bindings through polymorphism. Game-bot objects are derived from an abstract
base class (through inheritance) which can then be passed to the virtual machine.
User errors caused by the omission of methods that need to be implemented are
prevented by the rigid structure of this function binding interface which only
provides declarations and places the burden of the implementation onto the host

application. The virtual machine knows the game-bot functions in the abstract
base class which are equivalent to the functions of the ZBL/O language and can

call them if they are invoked by a ZBL/O program, so all that is required of
the programmer is to realise the NPC's functionality in the game engine is to

implement the methods in the game-bot class that was derived from the abstract
base class described above.

The first stcp towards the implementation of the ZBL/O system was the cre-

ation of a first detailed specification of the ZBL/O language which was followed

with the creation of a series of prototypes for the language's compiler and virtual

machine which then underwent a series of step-wise refinements. ZBL/O is defined

using an LL(I) grammar (see Appendix Q. Programs that are compiled with the

ZBL/O toolkit are parsed using a recursive descent parser followed by generation

of bytecode for the system's virtual machine. The compiler and the virtual ma-

chine were progressively refined until their capabilities and the specification of the

language appeared to be suitable for the task at hand, i. e. simple enough to use

for novice users, but powerful enough to be deployable in real-world applications.

7.2.2 The ZBL/O Programming Language

As a behaviour definition language that resembles educational mini-languages,
ZBL/O provides a task specific set of instructions and queries which allow the

programmer to take control of virtual entities acting within a micro world. In the

case of ZBL/O the virtual entities are NPCs and the micro worlds they inhabit

are the virtual environments of FPS games which is reflected in the functions and

procedures of the language (see Section 7.2.1 above).
The current version of the ZBL/O language only supports a limited set of

control structures (simple iteration, condition/ alternative and sequence) and the

103

7.2 FPS NPC Behaviour Definition Language ZBL/O

alive
blocked
duck

f ront
j ump
i ump-up
object-ahead
right
step
target-ahead
turn

armour

crawl
f ace
health
jump-back
lef t

obstacle
rnd
strafe-left
target-alive
turn-left

back

danger

f ind

idle

jump-lef t

memorize

owns
spawn
strafe-right
target-armour
turn-right

backstep

die

fire

initialize

jump-right

object

respawn

spawned
target

target-health

using
use

Table 7.2: ZBL/O intrinsic functions.

definition of simple procedures and functions, however in those user-defined func-

tions there is no language support for function parameters. 1nstead function

parameters have to be emulated through the use of global variables in the be-
haviour definition program. Every user-defined function in ZBL/O can have local

sub-routines, i. e. functions with local scope. There is only one variable data type
in ZBL/O which can be used to store numerical values (integer as well as floating

point), which is automatically used as the return type for functions. User-defined

functions always implicitly return the value '1', unless a different value is explic-
itly returned.

The function set for controlling game-bots is intrinsic to the ZBL/O scripting
language, i. e. built into the language (see Table 7.2). As a result the use of func-

tions does not have to be enabled by means of inclusion of a library of functions.

This intrinsic function set consists of 45 functions representing actions and sensor

queries that can be performed by an NPC in FPS games, such as turning towards

an opponent, moving in a specified direction or firing a weapon (see Appendix

C for a detailed description). The functions of ZBL/O can be sorted into three

distinct categories:

1. housekeeping (game-bot management) functions

104

7.2 FPS NPC Behaviour Definition Language ZBL/O

'),

sensor query functions

3. action control functions

Of these, the housekeeping functions of ZBL/O include those that govern the ini-
tialisation of game-bots as well as any functions that directly impact the existence
of NPCs in the virtual game world, such as the querying of world state informa-
tion that is not sensor information but might prompt a game-bot to change its
behaviour.

The ZBL/O sensor query functions provide a behaviour definition program
with the information an NPC perceives about itself and its environment. This
data allows the game-bot to orient itself in that virtual environment.

The final set of ZBL/O functions includes the action control functions. These
include the functions to control a game-bot, allowing it to interact with its envi-
ronment within the virtual game world.

7.2.3 ZBL/O Virtual Machine

The ZBL/O virtual machine is a kind of parallel stack-oriented machine, written in

platform independent ANSI C++. It allows the creation of several simultaneously

running processes with each game-bot process running in its own, self-contained,

micro-thread [Dawson 20011, each of which has its own stack to keep different

programs separate. In addition to the stacks themselves the registers for each

process (program counter, program instruction register, base address register and

stack register) are encapsulated with each stack to provide a separate entity. The

virtual machine uses pre-emptive multi-tasking with round-robin 6 scheduling to

execute loaded processes during its run cycle. This means that whereas game-bot

processes are executed sequentially in the embedded virtual machine, from the

outside, i. e. the host application, the virtual machine appears to execute several

programs in parallel. The ZBL/O virtual machine is a self-contained module and

6 Round-robin is one of the oldest and simplest scheduling algorithms [Tanenbaum 2001],

used in many multi-tasking systems. All of the running processes are held in a circular queue
(the end of the queue loops back to its start), which is executed sequentially by the processor.

Each process receives a slice of the processor's execution cycle after which control will be

switched to the next process in the queue.

105

7.2 FPS NPC Behaviour Definition Language ZBL/O

accessible from the host application solely through a fixed library interface, the
ZBL-AP1. It has a fault tolerant design, i. e. run-time errors caused by programs

running on the virtual machine, such as stack overflows or stack underflows. are

recognised and result in the graceful degradation of the virtual machine. In effect
this means that as soon as an error occurs, the game-bot program is terminated

without affecting the execution of the virtual machine within its host application
itself.

7.2.3.1 ZBL/O Virtual Machine Instruction Set

The instruction set of the ZBL/O virtual machine is that of a typical stack machine

and not dissimilar from of P-code [Pemberton and Daniels 19821 (itself not too far

removed from commercially available stack-based microprocessors). The original

public release version of the ZBL/O virtual machine (version 1.1, including a

toolkit consisting of compiler, assembler and disassembler) [Zerbst et al. 20031

has a total of 33 instructions, although only 25 of these can actually be found

in the bytecode generated by the ZBL/O compiler, whereas the others allow for

the creation of hand-optimised game-bot programs with higher code density. Of

these 33 instructions, 5 are data instructions, 15 are arithmetic instructions, 4

are logic instructions and 9 are program flow control instructions (see Appendix

C).
The intrinsic functions of ZBL/0, while implemented in the virtual machine,

are not treated as virtual machine instruction but invoked as operands of a 'call'

flow control instruction for executing a user-defined function.

An extended version of the virtual machine (version 1.2) used in our research

[Anderson 2004] has added two additional instructions (one ffow control instruc-

tion and one data instruction), allowing the extension of the system through

plug-ins (see Section 7.2.5).

7.2.4 Extending a Game Engine with ZBL/O

If a virtual game world is to be populated with NPCs controlled by ZBL/O pro-

grams, this requires the ZBL/O virtual machine to be embedded in the game

106

7.2 FPS NPC Behaviour Definition Language ZBL/O

engine, as well as the definition of a game-bot object that implements the intrin-

sic functions of ZBL/O (and the provision of a suitable ZBL/O game-bot program
for the NPC). NPCs developed using ZBL/O are purely reactive, i. e. their actions
are direct reactions to an external stimulus such as a change in their perceived
environment. In order to define the behaviour of an NPC, its domain knowledge,

consisting of available sensor data and any information provided by the program-
mer within the behaviour definition program, needs to be combined with the

controls that are available to the NPC, the latter being the ZBL/O functions that

execute game-bot actions. The behaviour of the game-bots that is perceived as
intelligent therefore emerges from the combination of ZBL/O command sequences
in the ZBL/O programs and the implementation of the functions of ZBL/O within
the host application.

The ZBL/O virtual machine itself uses a predefined set of functions as an
interface for communication with its host application. This allows it to execute
the ZBL/O functions that have been implemented within the host. The interface

between the host application and the ZBL/O virtual machine is the ZBL-AP1

(see Section 7.2.4.1). The AP1 takes the shape of a C++ interface for simple
integration of the ZBL/O system into other applications.

This interface to the ZBL/O virtual machine provides game engines with the

ability to associate NPC functionality with in-game functions for actions which

would be expected to be performed by a player of these games, therefore allowing

NPCs to compete with human players on a level playing field. Once a ZBL/O

program has been loaded into the virtual machine only a single function-call to

the AP1 is required in every execution cycle (usually a graphical frame) of the

host application to execute the game-bot programs. The simplicity of the system

lies in the fact that none of the game-bot functions are provided by the ZBL/O

system as such. Instead they need to be implemented within the game engine

the host application - and mapped to the corresponding intrinsic function

identifier in ZBL/O. The game engine itself does all the work while the script

only ties together the different game engine components that provide the NPCs

with functionality.

107

7.2 FPS NPC Behaviour Definition Language ZBL/O

Figure -,. I: The interface between ZBL/O virtual machine and host application.

7.2.4.1 The ZBL-API

The ZBL-API consists of two components (see Figure 7.1):

the gaine-bot interface for defining the functionality of the game-bots within
the virtual game world

2. the virtual machine interface for the execution of ZBL/O bot programs

within the game engine

The core of the ZBL-API is part of the game-bot interface for the definition

of gaine-bots, which is defined as an abstract base class (zblbot) which greatly

simplifies the implementation of game-bots within Cý-+ based game engines.

The function bindings between the host application and game-bots running on the

ZBL/O virtual machine are realised using the multiple-inheritance functionality of

108

7.2 FPS NPC Behaviour Definition Language ZBL/O

int zb-checkBlocked(int); void zb-doCrawl(void);
int zb-checkDanger(void); void zb-doDie (void) ;

void zb-doDuck(void); int zb-doFace(int);

void zb-doFind(int); void zb-doFire (void)

int zb-mdfFront(void); double zb-checkHealth(void);
int zb-checkIdle(void); void zb-doInitialize(double,

double, double);

void zb-doJump(void); void zb-doJumpBack(void);

void zb-doJumpLeft(void); void zb-doJumpRight(void);

void zb-doJumpUp(void); int zb-mdf Left (void) ;

void zb-doMemorize(int); int zb-mdf Obj e ct (void);

int zb-checkObjectAhead(void); int zb-checkObstacle(void);

int zb-checkOwns(int); void zb-doRespawn(void);

int zb-mdfRight(void); void zb-doSpawn(void);

int zb-checkSpawned(void); void zb-doStep(void);

void zb-doStrafeLeft(void); void zb-doStrafeRight(void);

int zb-mdfTarget(void); int zb-checkTargetAhead(void);

int zb-checkTargetAlive(void); double zb-checkTargetArmour(void);

double zb-checkTargetHealth(void); void zb-doTurn(double);

void zb-doTurnLeft(void); void zb-doTurnRight(void);

void zb-doUse(int); int zb-checkUsing(void);

Table 7.3: Game-bot interface methods of the ZBL-API (class zblbot).

the C++ programming language [Stroustrup 1997]. A game-bot class from which

NPCs can be instantiated is created by inheriting player functionality from the

game-bot interface of the ZBL-API and a player-class in the application which

should provide game-bots with the same level of control that a human player

would have. An implementation of the abstract functions from the game-bot

interface then allows ZBL/O programs in the virtual machine to control a game-

bot character in the application. The game-bot interface of the ZBL-API consists

of 44 methods (for prototypes see Table 7.3). These methods map directly to the

standard functions of the ZBL/O scripting language. The exact implementation

of these methods depends on the host application into which the game-bots are

supposed to be integrated. Consequently the implementation will vary from game

engine to game engine.

109

7.2 FPS NPC Behaviour Definition Language ZBL/O

Apart from these methods, the abstract game-bot interface class contains a
number of additional attributes and methods which themselves are not part of
the bot interface but which are nevertheless important for the correct execution of
game-bot programs. They are used in the implementation of the methods of the
game-bot interface that map to ZBL/O functions whenever that function causes
a game-bot to begin an action which may take some time (more than a single
virtual machine execution cycle) to finish and if the execution of subsequent in-
structions to the game-bot should be suspended while the action has not finished,
such as an animated movement that may be executed over several frames. This
blocking of processes in the virtual machine is similar to the yield operation for

coroutines found in the language Lua jerusalemschy et al. 2007]. This is achieved
through the zblbot class attribute 'zb-busy' which holds the blocked state of a
game-bot and determines if a bot process is active or suspended within the vir-
tual machine while it is waiting for an earlier action to finish. To prevent errors
caused by unintended manipulation of the 'zb-busy' flag. direct access to this

attribute of the zblbot class should be avoided, which is why the class provides
three methods for this task. The current blocked state of a game-bot can be

queried using the 'zb-getBusy' method. The 'zb-setBusy" method suspends the

execution of a bot program by setting the blocked state of an active game-bot
to be true. To continue program execution and to reactivate a blocked game-bot
the -zb-unSetBusy" method must be called, i. e. it is essential to unblock the bot

process to end the suspension of the execution of the bot program once the game-
bot no longer needs to be blocked. Usuallythis would be done when an action
that required the blocked state of the game-bot to be set to true has finished. If

the programmer implementing the game-bot fails to do so, this omission will not

only retain the suspension of the bot process. effectively breaking the program,
but it may also lead to a time wasting overhead within the virtual machine due

to unnecessary switching between game-bot processes. If that should happen and

a suspended game-bot has not been reactivated for some considerable time, sug-

gesting that there is a problem with the implementation of the NPC functionality,

the ZBL/O virtual machine will handle this situation as a run-time error and the

offending bot process will be stopped.

110

7.2 FPS NPC Behaviour Definition Language ZBL/O

double zbl-getVersion(void);

char *zbl-getVersionString(void);
int zbl-addProcess(char *filename, zblbot *bot);

void zbl-removeProcess(int pID);
int zbl-replaceProcess(int pID, char *filename);

void zbl-resetProcess(int pID);
int zbl-replaceBot(int pID, zblbot *bot);

void zbl-setPriority(int pID, int pr);
int zbl-run(void);
int zbl-getErrors(void);

zbl-error-t zbl-nextError(void);

zbl-error-t zbl-peekError(void);

Table 7.4: Virtual machine interface methods of the ZBL-API (class zbl-vm).

The second component of the ZBL-API is the virtual machine interface that

provides 12 methods (for prototypes see Table 7.4) that allow the loading and ex-

ecution of ZBL/O programs in the virtual machine. Embedding the ZBL/O virtual

machine into a game engine using the methods of the virtual machine interface is

relatively simple. Apart from the instantiation of the virtual machine by creating

an object of the virtual machine class (zbl-vm), all a minimum implementation

for a game-bot requires is the creation of a "process" for the virtual entity on the

virtual machine (using the method 'zbl-addProcess'), as well as an invocation of

the scheduler for every update cycle (by calling the scheduling method 'zbl-run').

7.2.4.2 Using the ZBL-API

Given a game-bot class as defined below (gameBot), inheriting from the ZBL-

API's bot interface as well as a player class (gamePlayer), providing the game-bot

with the functionality available to a human player, any object that is created as

an instance of this derived class is an NPC that can be used by the ZBL/O virtual

machine.

III

7.2 FPS NPC Behaviour Definition Language ZBL/O

#include <zblbot. h>

class gameBot : public gamePlayer, public zblbot
I

1;

For an instance of this game-bot to be controlled by a ZBL/O program, the
ZBL/O virtual machine needs to be instantiated:

#include <zblvm. h>

I

zbl-vm myVirtualMachine; znstance of the ZBLIO VM

gameBot myGameBot; instance of a game-bot

The ZBL/O game-bot program that is to be executed by the virtual machine
has to be loaded into the virtual machine and must be mapped to the game-bot

object for the NPC (using the 'zbl-addProcess - method of the virtual machine).

myVirtualMachine. zbl-addProcess ("botprogram. zbp",
&myGameBot);

Once this set-up of the virtual machine has been completed, the 'zbl-run'

method of the virtual machine should be called once during every update-cycle
(once per rendered frame) of the host game engine. This method processes the

process list within the virtual machine and executes the ZBL/O game-bot pro-

grams.

112

7.2 FPS NPC Behaviour Definition Language ZBL/O

myVirtualMachine - zbl-run () ;

I

Figure 7.2: A ZBL/O gamc-bot patrolling a warehouse.

This is all that would be required for embedding the ZBL/O virtual machine
into a game engine. Any additional operations, such as querying of virtual ma-

chine run-time errors or more complex process management are optional, i. e. not

required for adding ZBL/O to a game engine.

113

7.2 FPS NPC Behaviour Definition Language ZBL/O

7.2-4.3 Designing a Simple ZBL/O Game-Bot

To demonstrate the usage of ZBL/O we can look at the development through
step-wis, e refinement, of a simple -NPC that patrols a warehouse (see Figure 71-2).
Written in ZBL/O a simple version of the program would look as follows:

while alive do

if blocked front then

180 degree htrn
turn-left;
turn-left;

else
step;

The above is a short, simple program, storing the whole of the NPC behaviour
definition within a single routine. If it were any more complex, a bot-program

written like this would quickly grow to a size that would make it unmaintainable.
To prevent this it makes sense to provide the script with some structure and to
break the program up into separate functions as shown in the next iteration of
the program:

function turn180;

180 degree turn

turn-left;

turn-left;

114

7.2 FPS NPC Behaviour Definition Language ZBL/O

function patrol;

if blocked front =0 then # if path in front is blocked
turn180;

else
step;

while alive do

patrol;

turn around
turn around

otherwise

This version of the program shows the use of functions in ZBL/0, the names
of which (turnI80, patrol) were chosen to be self-explanatory. An NPC controlled
by the above script will patrol the area of the virtual game world in which it has
been placed. If it encounters an obstacle it will turn around using a left turn

and return to its starting point on the same path. While this behaviour might
be acceptable for an incidental that paces an area up and down, it would make
little sense for a game-bot that is supposed to hold watch and guard an area. In

the latter situation the NPC should ensure that its back is always covered and
turned away from any danger, i. e. preferably it should keep its back to a wall

when turning to prevent being ambushed from behind.

An improvement to the turnI80 function, solving this problem, should ensure
that a scripted NPC only turns in a given direction if it does not expose its back

in the process:

function turnl80;

f
if ! blocked left then # if no wall to the left

f
turn-left;

turn around left

115

7.2 FPS NPC Behaviour Definition Language ZBL/O

turn-left;
I;

else # otherwise
I

turn-right;
turn-right;

1;
1;

turn around rtght

The resulting NPC will patrol an area in the game world as long as it is
ccalive" , however it will mostly ignore its environment, except for obstacles in its

path. It would be unable to sense an opponent and therefore unable to defend

itself against attack. To rectify this, the behaviour definition program needs to
be extended by a conditional selection in the main program that only allows the
NPC to continue its patrol if there is no danger nearby. For the final iteration of
this program the game-bot should switch from patrol into skirmish mode in the

case of looming danger:

main programfor the combat bot
f

while alive do

f
if ! danger front then # if no enemy in stght

patrol; # patrol the pertmeter

else # if enemy nearby

skirmish; # attack!

1;
I.

The above listing shows the modified main function of the behaviour defini-

tion script. lf there is no danger, the game-bot follows its patrolling behaviour

by calling the function 'patrol", however if there is danger, the NPC enters com-

bat behaviour by calling the 'skirmish' function which executes a simple attack

116

7.2 FPS NPC Behaviour Definition Language ZBL/O

pattern:

function skirmish;
JuTictl*on ski't-wash. - azm, at target and attack

if target-ahead then # if clear sight of target

fire; # fire salvo I
fire; # fire salvo . 0
fire; # fire salvo 3

step; # advance

else # otherwise

if ! blocked front then # if the path is clear

face-target; # turn towards / aim at target
if target-alive then # still breathing?

fire; # fire once

step; # advance
fire; #fire another shot.

else # otherwise

step; # step forward

1;
else # if no clear shot

backstep; # retreat one step
};

}'

Once this script has been compiled using the ZBL/O compiler, the resulting

game-bot is a fully functional NPC, able to defend itself against approaching

117

7.2 FPS NPC Behaviour Definition Language ZBL/O

enemies, that could be used as a "guard" character in a computer game.

7.2.5 ZBL/O Extensions

We have used the ZBL/O system as a test-bed for interfacing behaviour-definition

systems with computer games. The primary development was that of a plug-
in architecture that was implemented to deliver a partial solution to problems
caused by the lack of extensibility of the core ZBL/O system. This plug-in system
provides the mechanisms for adding additional functions and constants to the

virtual machine, which could be extended to add additional operators as well.
Plug-ins are loaded into the ZBL/O compiler, as well as the virtual machine. To

use plug-ins, the ZBL/O language has been expanded by an additional statement
for loading a specific plug-in for use. If this statement is used in a ZBL/O program,
the compiler loads the plug-in and queries it for a list of the identifiers of functions

and constants contained within, so they are known to the compiler and can be

used in the ZBL/O program. Any calls to the plug-in's functions are then stored
in the program's bytecode as some sort of position independent code, relative
to the plug-in used. For this the bytecode representation has been extended
to optionally store information on used plug-ins. This information is then used

when the program is loaded by the ZBL/O virtual machine which then loads these

plug-ins into the virtual machine. When called from the game-bot program, the

virtual machine passes control of the stack of the game-bot process to the plug-in

with a request to execute the appropriate function in the plug-in. We believe that

this method for extending the ZBL/O virtual machine is a feature that provides

a useful mechanism for adding extensibility to any behaviour definition system.

Apart from the additional virtual machine instructions for using the plug-

ins, the main change to ZBL/O system was the extension of the functionality of

the virtual machine and consequently additions to the virtual machine interface,

adding not only methods for dealing with the plug-in extensions, but also utility

functions to help with debugging ZBL/O programs, such as the facility to create a

pretty printed stack dump for running bot processes. Other changes have involved

a modification of the scheduler to achieve dynamic load balancing of the virtual

machine.

118

7.2 FPS NPC Behaviour Definition Language ZBL/O

7.2.6 Concluding Remarks on ZBL/O

Figure 7.3: ZBL/O game-bots in a "light-cycle race"

ZBL/O [Anderson 2003b] is a very simple scripting language for the definition

of NPCs (tactical opponents, incidentals, team-mates and even observers - see
Chapter 2, Section 2.2) in the virtual worlds of FPS or possibly third person

perspective action games. The ZBL/O system consists of a compiler for game-bot

programs (the very NPCs) written in the ZBL/O language and a robust virtual

machine that can be embedded into any C++ based game engine.
While its purpose is that of a behaviour definition language. the ZBL/O script-

ing language does not really conform to the requirements for behaviour definition

languages that we have identified (see Chapter 5, Section 5.2.1). ZBL/O does

not have any Al specific data types or operators and it is a strictly procedural

119

7.2 FPS NPC Behaviour Definition Language ZBL/O

programming language without any object orientation. The syntax and structure
of ZBL/0, however, allow for the creation of state machines in a similar manner
to those, defined in any generic programming language, such as C. Nevertheless,
the ZBL/O virtual machine matches several of the requirements for a behaviour
definition run-time system, i. e. it provides a platform independent embeddable
module (so far implemented under Windows and Linux), a small execution over-
head and a high degree of run-time stability.

If the ZBL/O system is used, the seemingly intelligent behaviour of NPCs is
not generated by ZBL/O as such: the functionality of ZBL/O is not implemented
within the ZBL/O scripting engine. The simplicity of the system lies in the fact
that none of the language's functions are provided by the language as such but
must instead be implemented within the game engine and mapped to the corre-
sponding function identifier (name) in ZBL/O. This means that the functionality

of ZBL/O is entirely dependent on the implementation of the host application. A

positive side effect to this is the ability of the system to transcend its limitations
by allowing it to be adapted to games of different game genres (see Figure 7-3),
however therein lies also the weakest point of the ZBL/O system as any NPC

script, no matter how well designed, cannot perform well if the NPC related
functions of the game engine do not work well. On the other hand, this system
allows the designer to create effective NPCs through the combination of a range
of relatively simple functions.

As such, we have used the ZBL/O system to explore various system archi-
tectures for integrating virtual machines into applications - simple games and
more complex game engines - that allow scripts to be executed and interpreted
in real-time.

We have identified several other parts of the ZBL/O system that have shown

weaknesses in the original design concept which we intend to address with our

current and future work. For instance the lack of extensibility provided by the

method in which function bindings are implemented in ZBL/O has convinced us
that a different approach will have to be used for more generic behaviour definition

systems. While the method used makes it very easy for the virtual machine to

execute functions within the host application it also limits the extensibility of

the ZBL/O system and the use of intrinsic functions results in the main cause of

120

7.3 Educational Programming Language
C-Sheep

inflexibility of the ZBL/O system, as the type and number of the functions that
can be registered with the virtual machine is fixed by the ZBL-API. Related to
that we believe that an implementation using external libraries to provide the core
language with functionality would have made the system much more extensible
and flexible.

7.3 Educational Programming Language
C-Sheep

C-Sheep
program

vm

source

ý C-Sheep
ýCompilei

Byte-
code

Companion
Library

vC'.
4

ompiler

Executable

Figure 7.4: Components of the C-Sheep system.

Inspired in part by existing educational mini-languages (toy languages) used in

teaching [Brusilovsky et al. 1997], as well as our own ZBL/O behaviour definition

language (see Section 7.2 above), we have developed C-Sheep, a Regular Script

type (ST3b - see Chapter 6, Section 6.1-2) behaviour definition language, as

a teaching tool for computer science education and the introductory computer

programming sequence, using a state of the art rendering engine, usually found

121

7.3 Educational Programming Language
C-Sheep

in entertainment systems, to motivate students to spend more time programming
(see Figure 7.4) [Anderson and McLoughlin 2007].

Most traditional mini-languages are now severely outdated [Anderson and
McLoughlin 20061 and consequently fail to maintain the interest of students. The
C-Sheep system aims to address this issue by enhancing the teaching tool with
the visual gimmickry of modern computer games, which allows programs to pro-
vide instant visualisation of algorithms in a visually appealing, game-like virtual
environment. This environment, called "The Meadow", provides a game world
inhabited by an NPC-like virtual entity, namely a sheep that can be controlled
by C-Sheep programs. The system as such consists of a compiler for entity pro-
grams written in the C-Sheep programming language which are translated into
bytecode for a virtual machine that has been embedded in "The Meadow" virtual
world. The C-Sheep programming language was closely modelled on the proce-
dural language C [Kerninghan and Ritchie 1988], making the C-Sheep system an

educational tool for teaching the basics of the C programming language as well

as the basic computer science principles encountered in structured programming.
Its instructions allow users to control the actions performed by the sheep entity

and to query changes in the virtual world. The system itself is still very much

work in progress and an integrated development environment with an on-the fly

compiler is being implemented at the time of writing.

7.3.1 The C-Sheep Programming Language

With only eight reserved words and about half of the operators available in ANSI

C, the C-Sheep programming language is a small, yet fully compatible subset of

the ANSI C programming language (see Figure 7-5), i. e. programs written in C-

Sheep should be compilable on any ANSI C compiler. Through the provision of a

"companion library" that mirrors the C-Sheep instructions for the sheep entity in

the virtual machine, it is even possible to compile frozen executables of C-Sheep

programs using an off-the-shelf ANSI C compiler.
The design of the C-Sheep subset of C was guided by some of the introduc-

tory language design principles proposed by [McIver and Conway 1996], with

122

7.3 Educational Programming Language
C-Sheep

the provision of a set of non-overlapping language features to prevent "informa-
tion overload" among programming novices considered as especially important.
C-Sheep implements the C control structures that are required for teaching the
basic computer science principles encountered in structured programming, these
being the (unconditional) sequence, conditional statements and loops [B61im and
Jacopini 1966]. 1n terms of syntax, these control structures are the block, if and
if-else alternatives, as well as while and do-while loops. Additional control struc-
tures such as the counting for-loop, the multiple-selection switch-statement or
the ternary selection operator ý?: ' were omitted from the language's syntax to
minimise any confusion that these overlapping control structures could cause for

a novice programmer.
In addition to the predefined sheep control instructions in the standard li-

braries (see Section 7.3.1.1 below), C-Sheep also allows the definition of sub-
routines - like functions in C, first level order functions - which can be called
recursively. As is the case with C functions, functions in C-Sheep can return
values of the available variable data types (unless declared as 'void', i. e. typeless)

and receive parameters.
C-Sheep variables are strongly typed and can either be integers of the type

cint' or real numbers of the type 'float'. These can be declared globally within
the body of a C-Sheep program or locally at the start of functions and blocks

of C-Sheep code. Constant values in C-Sheep programs can be defined using
the *define' directive as used in C programming language preprocessors, but

unlike the text-substituted symbolic constants this would create in C, constants
in C-Sheep are real constant values, with the benefit of type-safety. The language

allows the definition of C-style constant strings (characters between opening and

closing quotation marks) for printing, whose contents are not variable and cannot
be changed during program run-time, however they can be used as format strings
that can be used to create variable output.

The C-Sheep Standard Libraries

The C-Sheep standard libraries (see Table 7.5) provide a number of general pur-

pose functions and sheep-specific functions (functions for controlling sheep entities

123

7.3 Educational Programming Language
C-Sheep

void abort(void);
int rand(void);

f loat sqrt (f loat) ;

void printf(char*,...);

void pause(void);

void step(void);

void turn-left(void);
int blocked(int);

float query(void);

void exit(int);

void initialise(int, int);

void backstep(void);

void turn-right (void);

int found(int)

Table 7.5: C-Sheep standard functions.

in the virtual environment). The latter are reminiscent of the intrinsic functions

of the ZBL/O scripting language, but whereas in the case of ZBL/O the program-

ming language was designed specifically as an educational tool with the definition

of NPC (Non-Player Character) behaviour in First Person Shooter (FPS) games
in mind [Zerbst et al. 20031, the C-Sheep language only required basic control

of the virtual entity's movements. This is why only a few of ZBL/0s functions

and procedures remain present in some form in the C-Sheep language. The in-

structions of C-Sheep reflect those available in other educational languages, such

as "Karel the Robot" [Pattis 1981], i. e. "sheep functions" for controlling the

sheep (by exposing sensor information and instructions for the sheep entity) in

the virtual world, declared in the language's 'sheep. h' header file. Some of these

sheep-specific instructions allow the querying of states in the virtual world, such

as the current state of the weather. These world states can be altered interactively

by the user (while C-Sheep programs are running in "The Meadow"), adding a

separate layer of interactivity to the learning game. By instigating a state change

in the virtual environment, the user can cause different sections of C-Sheep pro-

grams to be executed, allowing experimentation with different behaviours of the

sheep entity from within the same C-Sheep program.

The general purpose function set implemented in the C-Sheep system provides

several general purpose functions and associated symbolic constants found in the

124

7.3 Educational Programming Language
C-Sheep

ANSI C standard libraries, declared in the 'stdlib. h" standard header file. In a
similar manner, C-Shcep's maths function 'sqrt" for calculating the square root
of a given value is taken from the -'lnath. h' standard header file of the ANSI C
standard libraries and the string output function *printf* which behaves similar
to the one defined in the 'stdio. h' standard header file of the ANSI C standard
libraries, i. e. taking a (format) string as its first paraineter, followed by a list of
optional values for printing.

To access the C-Sheep library functions, C-Sheep programs must include the
headers containing the function prototypes. This is done only to introduce novice
programmers to the concept of code modularisation and libraries, i. e. all of the
functions are disguised as library functions and C-Sheep programs must contain
an include statement to (supposedly) parse the function prototypes in order to
be able to call the functions, while internally these functions are actually intrinsic
to the virtual machine.

7.3.2 The C-Sheep Virtual Machine

The virtual machine used in the engine is an improvement on the latest version

of the ZBL/O virtual machine [Anderson 2004] (see Section 7.2 above) without
the experimental plug-in architecture, i. e. the virtual machine uses a parallel

stack-based architecture and allows more than one program to run simultaneously
through multi-tasking, although in the current implementation of the system usu-

ally only one virtual entity inhabits the game world. The virtual machine retains
full backwards compatibility to bytecode compiled from programs created using

the ZBL/O core language, i. e. all of the instructions of the ZBL/O virtual machine

exist in the virtual machine for C-Sheep programs. This can easily be demon-

strated with ZBL/O programs that can be executed within the virtual machine,

in which case the NPC controlled by the ZBL/O program in "The Nleadow" is the

sheep entity (see Table 7.6). Character strings for output (see 'printf" function

in Section 7.3.1.1 above) are located at the end of bytecode executable files. To

allow for their output, the virtual machine stores them in constant sized memory

segments that are separate from the code segments and the stacks of processes,

from where the programs can access them.

125

7.3 Educational Programming Language
C-Sheep

ZBL/O

var
f

Y=J;

while y=1 do
I

if blocked front =0 then
I

step;
I;

else
I

turn-right;

1;
1;

I.

C-Sheep

#include<sheep. h>

maino
I

while(l)
f

if (! blocked (FRONT))

step 0;

else
turn-right

return 0;

Table 7.6: A simple C-Sheep program in comparison to an equivalent program
written in ZBL/O: if the path of the sheep entity is blocked, it will turn right,
otherwise it will take a step forward.

The virtual machine of the C-Sheep system provides additional intrinsic func-

tions mirroring the C-Sheep standard libraries' general purpose functions, maths
functions and those sheep-specific functions that have no equivalent in ZBL/O.

The intrinsic functions of the ZBL/O language that do not have an equivalent to

the functions found in the C-Sheep standard library are present in the virtual

machine, but do not have any functionality associated with them, i. e. calling
them will have no effect on the sheep entity inhabiting -The Meadow".

126

7.3 Educational Programming Language
C-Sheep

program call:

preprocessor Id nt
directive

variable

NEWLINE

declaration

function alternative:
declarabon I

II::: ýI I:: kx II I'll'' ý17
QJI ý2,

preprocessor-directive:

#include Filename loop:

#define Ident Number
while rond"--

variable-declaration:

int Ident conditlon:

float

parameters:

reladon:

block:

statement variable
dtamUon

return
statement

statement

retum-staternent

call

expression:

term

term:

factor

factor.

ca

-f Ident

Number

NJ NJ
NEWLINE terminal symbol: the operating system's newline symbol (typically a combination of

line-feed and carriage-return control characters)

Ident standard identifer (first character inust be a letter, followed by a sequence of characters

that may be letters, digits or the '-' symbol, ending with a whitespace)

Number numerical value that can be any integer or the decimal representation of a real number

Rename constant string encoding a C-st. vlu header file filenaille (*. h)

Figure 7.5: C-Sheep Syntax.

127

7.3 Educational Programming Language
C-Sheep

7.3.2.1 C-Sheep Virtual Machine Instruction Set

While the C-Sheep virtual machine's ZBL/O subset is identical to the 33 in-
structions of the ZBL/O virtual machine"s instruction set, some of the subset's
instructions can take additional parameters that are C-Sheep specific and that
are currently only generated by the C-Sheep compiler. This becomes obvious in
instruction sequences that deal with function parameters for user-defined func-
tions which needed to be integrated into the virtual machine while still allowing
ZBL/O programs to run, although function parameters did not exist in ZBL/O.
The virtual machine as such has a total of 41 instructions, providing major im-

provements over ZBL/O as the instruction set of the virtual machine includes
instructions related to the use of constant character strings, as well as facilities
for the use of pointers and for the creation of aggregate data types (arrays and
record structures). While much of this is unused as it exceeds the requirements
of the C-Sheep C language subset, the provision of this rich feature set provides

upwards compatibility to possible future revisions of the system, as well as source
language independence.

The C-Sheep language contains several data types for numerical values, how-

ever, this is not reflected in the virtual machine's instructions, but rather emulated
by the compiler, whereas internally actually only one type is used, as is the case

with ZBL/O.

7.3.3 Concluding Remarks on C-Sheep

While not strictly speaking a behaviour definition language according to our
definition (see Chapter 5, Section 5.1), because despite its presence in a game-like

environment the virtual entity controlled by C-Sheep programs is not a classical

NPC (see Chapter 2, Section 2.2), C-Sheep nevertheless has a lot in common with

other behaviour definition languages. This is mainly due to the C-Sheep run-time

system, which is shared to a large extent with our ZBL/O behaviour definition

system (see Section 7.2 above) -
C-Sheep is a mini-language- like programming language for computer science

education with a run-time system embedded within a state-of the art 3D computer

game-like virtual environment.

128

7.3 Educational Programming Language
C-Sheep

A feature in which C-Sheep differs from other educational systems that aim to
provide an environment with minimal complexity, is that C-Sheep allows the dec-
laration and use of variables, which some educators might consider undesirable,
as this increases the complexity of the language. There are, however, problems
with variable free languages that can occur at the moment of transition to a
real-world system, as identified by Uiitch [1990]. If an educational programming
language has variables, the migration to a real-world language can be delayed and
the transition to the real-world system will come as less of a shock to students,
or as Untch says, "the students always add to their stock of knowledge and never
need to relearn (or unlearn) something" [Untch 1990]. Other possible benefits
to the inclusion of variables in an educational language are that they allow the
learner to track object's histories (as non-visual states), i. e. as counters [Dann

et al. 20001.
The C-Sheep system, including the C-Sheep programming language and "The

Meadow" virtual environment are ongoing projects, and continue to be developed
further. In its current implementation, the language's compiler is kept separate
from the run-time system (although an integrated on-the-fly compiler is in devel-

opment). This is where the system differs from the more integrated development

environments of other educational systems. While this use of an external compiler
slightly complicates the use of the system it also creates greater flexibility by free-

ing "The Meadow" from being bound to the C-Sheep language (source language

independence), making it targetable by compilers for different languages, i. e. a
Java based J-Sheep or Pascal based P-Sheep could be created with relatively little

effort.

129

Part III

A Behaviour Definition Language

130

Chapter 8

NPC Behaviour Definition
Language AvDL

The main body of our work consists of the development of a behaviour definition
(programming) language for the creation of believable NPC intelligence [Anderson

2005a]. This Avatar Description Language (AvDL) provides the core of a generic,

modular and easily extendable system for the definition of believable intelligent

game character behaviour. Since its original conception, the language specifica-
tion for AvDL has undergone a series of step-wise refinements, some of which

are detailed in the discussion of language features and syntactical elements below

(see Section 8.2), whereas some are discussed later in this thesis (see Chapters 9

and 11).
This embeddable Regular Script type (ST3b) scripting language, a substan-

tial subset of which we have already implemented (see Chapter 9), provides for

the definition of deterministic, as well as goal-directed behaviours, allowing the

system to be used for different purposes and with a wide range of computer game

related applications.
Like most currently available scripting systems, the AvDL run-time environ-

ment employs a stack-based architecture (see Chapter 10) and while the AvDL's

primary purpose is the definition of NPC behaviour, the system's large degree of

flexibility and extensibility does not necessarily limit it to this task.

131

8.1 Towards a Better System for Defining Computer Game Al - Rationale for the AvDL Scripting Language

8.1 Towards a Better System for Defining Com-

puter Game Al - Rationale for the AvDL
Scripting Language

Over the past decade we have seen that the development of sophisticated 3D
modelling and animation programs have given rise to new methods and increased

realism in film, animation and computer games. This and more powerful hardware
have led computer games to evolve from existing in two dimensions only into the
third dimension, spawning a range of new computer game genres.

However, whereas computers get faster, unfortunately programmers them-

selves do not. The use of a generic system for the definition of NPC behaviour

would speed up the development of computer controlled NPCs, simplifying the

game development process and resulting in a reduction of the workload of game
programmers. Additionally, the improvement of the game development process
through close integration of this system with the tools and libraries that are
already used for creating computer games, such as level editors or 3D content

creation applications, would be highly desirable. While making it easier for a

game production team to meet its budgetary constraints, such a system would

also make game development more cost effective by allowing parallel development,

i. e. the creation of NPCs independent from the main game source code.
We believe that the introduction of this type of generic behaviour definition

system would be able to contribute to the continuing evolution of computer games

and open up new avenues for greater realism within the virtual game worlds.
The development of the AvDL behaviour definition system has been guided

through the understanding of current computer game Al techniques (see Chapters

2 and 4) and their application to modern computer games. The insights that we
have gained during our review of the available literature and the design of our

experimental ZBL/O scripting system (see Chapter 7, Section 7.2) have greatly

influenced our design approach towards our system for defining NPC behaviour.

Compared to existing Al middleware systems our solution should allow for a much

si-noother integration of the behaviour definition system into game applications as

it provides a combination of all of the different components for creating NPCs (see

132

8.2 The AvDL Programming Language

also Chapter 4, Section 4.1) within a unified architecture that binds these modules
together. Consequently the need for users to change between different APIs and
applications to achieve their goals will be greatly reduced. This also means that
there should be considerably fewer restrictions imposed by compatibility problems
between different systems.

8.2 The AvDL Programming Language

AvDL is a universally applicable extension programming language for the defi-

nition of artificial behaviour for virtual entities, i. e. creatures and characters, in

computer games and potentially in computer animation. AvDL is defined using
an LL(1) grammar (see Appendix D). AvDL programs are executed in a virtual
machine that can be integrated into any game engine.

AvDL is not bound to a single genre of computer game or NPC. To maximise
the language's potential for NPC behaviour definition it allows for different pro-
gramming styles, i. e. AvDL supports the object oriented programming paradigm
but also allows the creation of procedural programs as well as event based pro-
gramming (see also Chapter 6, Section 6.1.2).

For this. the language provides various means for defining NPC program flow

and some NPC Al related data types and operators.
The system's flexible structure allows for high extensibility, therefore making

AvDL usable for a wide variety of different tasks. This makes AvDL a lot more

similar to an implementation language than to what is often considered a scripting
language (see also Chapter 6) which will become more apparent when the exact
features of AvDL are examined in detail.

The syntax and semantics of AvDL inherit much from the C [Kerninghan and
Ritchie 1988] family of programming languages and are largely based on those

of the C++ programming language as described by Stroustrup [19971. As such,
AvDL program source code largely resembles programs written in the C/C++

family of languages. It has to be noted, however, that some fundamental elements

of the core language (detailed below in Section 8.2.1) are different from their

counterparts in CIC++:

133

8.2 The AvDL Programming Language

9 The language only includes a single numeric data type, the scalar data type.

9 The language has three different kinds of array types.

9 There are a number of additional game Al related data types.

9 AvDL does not use unions and enumerated data types.

9 In AvDL pointers are not used and addresses cannot be accessed, i. e. there
is no direct memory access mechanism.

* Classes provide the only means to create record structures in AvDL, i. e.
there are no 'struct' records.

9 There is no data hiding in AvDL classes.

9 In AvDL there is no multiple inheritance of classes.

9 The language does not support function inlining.

9 All function parameters in AvDL are passed by reference unless specified

otherwise.

9 The AvDL specification adds several (program flow) control structures to

the common C/C++ control structures.

The AvDL system provides mechanisms that allow NPC behaviour definition

through the creation of an annotated world (see Chapter 2, Section 2.3.4.4).

This feature is described in detail in the discussion of the SEAL (Simple Entity

Annotation Language) subset of AvDL which uses entity annotation as its main

method of behaviour definition (see Chapter 9).

Despite the danger of leading to confusion, AvDL retains most of the more ab-

stract elements of CIC++, such as C/C++-style iterations and selection, which

may not be easy to understand by novice programmers. Some additional macro-

like syntactic synonyms (aliases) which can be substituted either by a prepro-

cessor or by the compiler itself are integrated into the language specification as

alternative means for expressing NPC programs. This should present novice pro-

grammers with several simpler and easier to read alternative notations without

134

8.2 The AvDL Programming Language

the language having to sacrifice its similarity to its C/C++-Iike syntax. All vari-
able data types in AvDL are auto- initialising. This means that a variable that
is declared will initially be provided with a default value unless otherwise speci-
fied by the AvDL program. This not only simplifies the declaration process but

also removes one of the major shortfalls of common implementation languages as
errors caused by uninitialised values are often hard to identify and debug. The

presence of auto-initialisation helps to avoid this type of error within AvDL pro-
grams. Furthermore, inspired by the CIC++ programming languages, variables
in AvDL are strongly typed, a feature in which the language differs from many
other scripting languages.

AvDL handles object orientation in a manner that is similar to C++, how-

ever, there are a number of notable differences, especially the introduction of
implicit classes (see Section 8.2.1.1). In addition to its handling of object orien-
tation, AvDL also differs from languages such as C and C++ through its data

types. The definition of AvDL includes a number of specialised data types (see

below) that do not exist in the definition of the C/C++ family of programming
languages. Furthermore, in addition to these data types, AvDL also provides

several control structures that have no equivalent in the C/C++ family of lan-

guages but which have proven useful in other programming languages, such as

a conditional alternative that allows the specification of an additional separate

condition ('elsif').

8.2.1 The Syntax of AvDL

AvDL programs are meant to encode complete NPCs and as such each program

needs to be declared as an 'entity' (see Figure 8.1) in which the NPC's program

is encapsulated (in a similar manner to C++ namespaces). The identifier used to

name the entity is then used to mark the AvDL program's entry point from which

execution will commence using a syntactical notation inspired by the C++ class

constructor. This provides a more consistent approach to defining the program

entry point than found in CIC++ which use a function called "main", as here

there is no need to use reserved identifiers. Apart from this, as mentioned before,

the syntax of AvDL is very similar to the syntax of the C++ programming

135

8.2 The AvDL Programming Language

entity-declaration:

entityH Ident
function ýf -block

declaration

class
declaration

state
declaration

goal
declaration

action
declaration

even
declaratiton

variable
declaration

entity ýýýýbloýck
Ident

Figure 8.1: Syntax for declaring an 'entity' object.

language. This influence of the C++ programming language on AvDL is not
only visible in AvDL's implementation of classes and inheritance (see Section

8.2.1.1), but is also evident in the definition of functions in AvDL programs

which is very similar to that of functions written in the ANSI C++ programming
language. As is the case in C++, the forward declaration of functions in AvDL

also uses prototypes in the form of function heads. A function has a name (its

identifier), a return data type and a list of formal parameters. If the return data

type is omitted during function declaration (or definition), the AvDL compiler

will assume that the return data type is the typeless 'void'. Similarly, the omission

of parameters in a function declaration will default to an empty parameter list

presumption which is equivalent to declaring a 'void' parameter list.

Scoping in AvDL, defining where within a program's source code it is legal

for the program to access data or to call a function and where these are visible, is

136

8.2 The AvDL Programming Language

array-declaration:

type type variable
qualifier H primitive H Ident

-ý&

inte
va

Pueer

I Ident I

Figure 8.2: Declaration and use of arrays in AvDL.

handled in a manner that is very similar to C/C++, i. e. constants and variables
that are defined globally can be accessed from anywhere in an AvDL program,
while constants and variables that are defined locally within a block can only be

accessed from inside this block. The scope of a function in AvDL extends from
directly below the place of the function declaration within the current module
(NPC program source code file) until the end of the file. While in the C program-
ming language it is possible to declare a function locally by placing its prototype
within the body (the definition) of another function, it is not possible to do this
in AvDL. The reason for this restriction is that the (prototype) declaration of a
function within a different function, which would be disjunct from its definition,

as this would have to be located below the function it was declared in, would
break not only the consistency, but also the simplicity design principles for BDLs
(see Chapter 5, Section 5.3.1). The AvDL specification also does not allow the

nesting of function definitions as would be possible in programming languages

related to Pascal, such as ZBL/O (see Chapter 7, Section 7.2).

There is only one non-specific numeric data type in the AvDL that can take
floating point values as well as integer values, which is the 'scalar' data type. This

means that there is no differentiation in the way that AvDL handles the 'short',

'int', 'long', 'float' or 'double' data types found in C/C++. Instead, a number of

aliases, implemented as synonyms in the preprocessor of the AvDL compiler, will

allow for variables to be declared using the familiar CIC++ numerical data types,

thus eliminating the need for a specific casting operator for type conversions.

137

8.2 The AvDL Programming Language

Nevertheless, variables in AvDL are strongly-typed as type-safety is impor-
tant to prevent programming errors when it comes to user-defined functions with
formal parameters.

Unless explicitly initialised to a different value. the AvDL virtual machine
auto-initialisation will default all numeric variables to the value '0" (zero) while
some of the game AI specific data types (discussed below) are auto-initialised to
the value 'NULL'.

There is a separate data type for Boolean values only, the 'bool' data type.
Variables of this type can take the values 'true', implemented as a preprocessor
alias mapped to the value 'I', or 'false", a preprocessor alias mapped to the value
, 01.

Variables of the 'scalar' data type may also hold Boolean values which can be

achieved if the data held in a scalar variable is assigned to a Boolean variable.
In this case the data is automatically downcast and all non-zero values are inter-

preted as 'true'. Boolean variables are auto- initialised to the value 'false' by the
AvDL virtual machine.

AvDL programs allow for groups of variables of the same type to be stored
in variables of an aggregate data type. For this AvDL provides three different

kinds of arrays (see Figure 8.2): static (fixed-size) arrays, dynamic arrays and

associative arrays.
Some of the differences between these data structures are transparent to the

user, i. e. syntactically there is little difference iii their usage, as access to array

elements is always granted by using the subscript operator. The usage of these

data structures manly differs in the declaration of the data structures and in

the method by which array elements are addressed, i. e. through a numerical

index (starting at index '0' for the first element as is the case in the C/C++

programming languages) or an associative value:

9 Static arrays in AvDL are variables of any AvDL data type that have been

declared using the 11 subscript operator with a size (of array) indicator as

their suffix. As such they are almost identical to arrays in C, however,

unless the elements of an AvDL static array are manually initialised during

the array's declaration, they will be auto-initialised to the value '0' (zero).

138

8.2 The AvDL Programming Language

Dynamic arrays in AvDL are variables of any AvDL data type that have
been declared using the [] subscript operator without a size (of array) indi-
cator which are subsequently given a size using the 'new' operator. After its
declaration, a dynamic array is by default pre-initialised to the empty value
'NULL'. The memory that has been allocated for dynamic arrays using the
cnewl operator must be released eventually, using the 'delete' operator. Un-
like in C++ the 'delete' operator in AvDL does not need to be succeeded
by the subscript [] symbol as a requirement for freeing memory that has
been allocated to arrays of data. The use of the 'new' and 'delete' operators
in AvDL is restricted to dynamic arrays.

Associative arrays, inspired by Perl [Schwartz 19921, are variables of any
AvDL data type that have been declared using the [] subscript operator
without a size (of array) indicator. Associations are created dynamically as
soon as they are used for the first time. Internally each new association is

given an increasing index value.

The specification of AvDL does not include pointers, i. e. it is not possible to
directly access memory blocks within the address space of AvDL programs or the

addresses to data held in the memory of the AvDL virtual machine. There are

several reasons for this omission of pointers, first among which is the observation
that the understanding of pointers (or rather a lack thereof) frequently provides

one of the main stumbling blocks for novice programmers and therefore would

unnecessarily complicate the language. Another reason, which is possibly more
important, stems from the system's mechanism for object annotation (see Chap-

ters 9 and 10). This allows access to program segments of entities controlled by

AvDL programs other than the currently executing one, and if direct memory

access were allowed, its effects could seriously disrupt program flow and desta-

bilise the run-time environment. Consequently, and thus unlike the C or C++

programming languages, AvDL provides no mechanisms for pointer arithmetic or

access to data held in arrays without the use of the subscript operator.

AvDL retains the (program flow) control structures of the C/C++ family of

languages, i. e. all of the familiar iterations and selections work in an identical

manner to their CIC++ equivalents. The conditional 'if, 'if'-'else" and 'switch'

139

8.2 The AvDL Programming Language

statements are not the only selections available in AvDL. These control structures
are complemented by an additional type of conditional alternative that allows
the specification of a second, separate condition ('if '-'elsif '-'else' and 'if'-'elsif'),

as well as two further multiple alternatives, 'select' statements, the first of which
is almost identical to 'switch' statements except for the fact that its cases do

not contain fall-troughs. The second 'select' statement allows the selection of
not only single alternatives but also ranges of values to identify the statement
that is to be executed. ln addition to the 'while', 'do'-'while' and 'for' loops, the
AvDL specification also implements three further iterations, i. e. a foot controlled
6 repeat'-'until" loop (as found in Pascal), a 'do'-'forever' continuous loop and a
looping control structure for accessing array elements ('foreach'-'of') that cycles
through arrays (static, dynamic and associative), allowing each array element to

be processed in turn.

Object Orientation in AvDL

Object orientation (00) in AvDL resembles 00 in C++ and Java with some
features being closer to Java than C++ and several features different to both C++

and Java. The data structure that allows 00 in AvDL is the 'class' compound
data structure which is identical to the above two languages. Classes in AvDL

are used to describe objects (in the sense of object orientation) as well as record

structures (in the ANSI C 'struct' sense). AvDL's equivalent to the top-level

class found in Java programs is the 'entity' object (see Section 8.2.1).

Unlike classes in C++, classes in AvDL do not support mechanisms of data

hiding that would restrict access to their attributes (data members) and methods
(member functions). This means that all methods and all attributes of a class are

public (in the C++ sense). There is no equivalent to protected or private class

components as found in C++. Within the scope of an instance of an AvDL class,

the AvDL program has full access to all attributes and methods defined by the

class. By default all classes in AvDL have one implicit attribute -a reference to

the current instance of the class - that can be accessed through the 'this' object.

The 'this' object reference is also a hidden parameter which is implicitly passed

to all methods of the class as the first parameter of the method.

140

8.2 The AvDL Programming Language

There is no function inlining in AvDL, i. e. unlike in the C++ programming
language there is no support for inline functions in AvDL. The main implication
of this is that although the methods of a class are declared within the class
description, the methods themselves must be defined below the class definition
itself. The decision to omit function inlining was made for reasons of language
simplicity, i. e. to avoid confusion through allowing too many different methods
for defining an object's methods and to impose a strict distinction between class
declaration and definition of its functionality.

AvDL implements the concept of implicit class definitions that allows for class
definitions to be stored within external files. We believe this will benefit AvDL
program modularity and encourage the use of parallel development.

The file containing an implicit class definition inust either be a valid AvDL

source code file containing only the class definition (any other code will be ig-

nored) in source code form or alternatively a pre-compiled class definition (similar

to pre-compiled classes in the Java programming language) as bytecode for the

virtual machine. The name of this file must be stated at the declaration of the
implicit class. Like Java, AvDL does not support multiple inheritance. As a

consequence of this an object's class in AvDL can only be derived from a single

class using Java's 'extends' statement (also allowing the ": public" notation from

C++ as an alternative). Currently there are no plans to allow inheritance from

implicitly defined classes that have been pre-compiled.
The current specification of AvDL does not support function overloading or

function overriding. While these features provide very powerful mechanisms in

the languages that include them, we believe that they would be beyond the scope

of AvDL which is only supposed to provide a behaviour definition extension
language to computer game applications, adding an additional layer of complexity

that would outweigh any benefits gained by the inclusion of these features in the

language specification.

8.2.1.2 M-iggers and Event Based Programming in AvDL

The language specification includes an 'event' data type (see Figure 8.3) to allow

NPC programs to react to named events (using the given identifier) i. e. AvDL

141

8.2 The AvDL Programming Language

event-declaration:

ev! ýý Ident instruction
- Wý No list [-BIC;

i nstructi on- list:

block I

Figure 8.3: Syntax for declaring an event with event-handler (instruction list).

is effectively useable as a Trigger-Only Induced Script type (M) scripting lan-

guage. if the situation demands this. For events defined in the host application
the event registration is exposed (made accessible) through the run-time API (see
Chapter 10, Section 10.4). The declaration of the 'event' requires the definition

of an AvDL instruction list, i. e. an event handler that will be triggered once an
event occurs.

In addition to the event handler, a second mechanism to enable NPC programs
to react to events exists in the form of scalar and Boolean AvDL variables that
have been declared using the 'triggered' type qualifier for a given event which will
be set to the value 'I' or 'true' when that event occurs.

Filially, the current specification of the language introduces a 'trigger' operator
for spawning events from within NPC programs. Events that have been triggered

this way are spawned globally throughout the run-time environment unless they

are addressed directly towards a specific entity. The operator returns a Boolean

value to report success ('true') or failure ('false') of triggering the event. This

functionality could have been exposed through a function from a standard library

or alternatively through a special statement for program flow control, similar to

142

8.2 The AvDL Programming Language

statements such as 'break' or 'return', but the use of an operator for this purpose
is much more consistent with the structure and makeup of the AvDL.

8.2.1.3 A Data Type for State Machines

tsm-declaration:

Figure 8A Syntax for FSM declaration.

As we have already stated (see Chapter 2, Section 2.3.1.1), FSMs provide a
tried and tested mechanism which has proved suitable for many kinds of com-
puter game AI which makes them by far the most used Al technology in modern

computer games [Anderson 2003a] as they allow for the simple definition of deter-

ministic behaviour. For this the AvDL specification provides a 'state' data type

that allows the definition of state machines (finite as well as fuzzy) which can also
be used to express the structure of hierarchical state machines [Fu and Houlette

2004], i. e. each state can also be a complete state machine. Each state can only
have a single instance which is automatically created when a state is declared, i. e.

any variables that are declared of a state are references to this state instance. Of

these two 'state' types the finite state machine type (the default state machine

type) is included in the specification of the SEAL subset of the AvDL scripting

143

8.2 The AvDL Programming Language

language (see Chapter 9, Section 9.3). The implementation of this type within
the virtual machine of the AvDL system is described in detail later in this thesis
(see Chapter 10, Section 10.2.3).

8.2.1.3.1 Finite State Machines inAvDL The 'state" data structure defin-
ing a state machine bears some similarities to the 'union' data type found in the
C programming language, as at any one time only one state within it will be fully

active. It also shares elements with the definition of a 'class' data structure, as
its members are declared within the structure similar to an object's methods and
defined outside of the structure itself. It is the default 'state' data type in AvDL,

so it can be declared with or without the presence of the 'finite' type qualifier.
Members of the state structure can be used as identifiers for states in a similar

manner to the named constants of C enumerated data types (also addressable as

members of their parent state structure in case of name conflicts). Each state

within a state construct, i. e. each state structure member, needs to be provided

with a follow-up (next) state to declare which state the current state will change
into during an automatic state transition (see Figure 8.4), i. e. a state transition

that occurs when all of the instructions for the current state have been executed.
If the value 'NULL' is used as a transition target, the state machine will terminate

automatically when this transition occurs.
These state structure members can be of different types:

1. A reference to an instance of another state machine structure (referenced

through its identifier), effectively providing an alias for addressing that state

and allowing that state's transition target to be overridden.

2. An action (see Section 8.2.1.5), i. e. a function in the host application, which

in this case should not return any data and be parameterless, as this would

be ignored by the FSM-

3. An AvDL function (similar to a method in a class), which must be a typeless

function with an empty parameter list.

4. A labelled AvDL expression, addressable through the label.

144

8.2 The AvDL Programming Language

Independent of their actual types, these structure members will always be treated
as states by the FSM.

Inspired by the syntax for the 'entity' object's entry point as well as the
C++ constructor, the instructions associated with the state of the 'state' data
type itself need to be placed within a special method (member function) of the
state structure, the state's body, marked by the identifier used to name the state
structure. The declaration of this method includes the state's transition target
(follow-up state), which defaults to the value 'NULL' if this transition target is
omitted. The 'state' structure in AvDL allows for the definition of two further

specialised methods, 'onentry' and 'onexit", the former of which will be executed
before the state"s body is entered, whereas the latter is executed when a state's
body is exited due to a state transition. These two functions are not unlike the

constructor (method which is invoked when an object is created) and destructor
(method which is executed when an object is destroyed) of an object oriented
class. If these functions are not explicitly declared within a state structure and
defined among the state's members, default methods (defined within the AvDL

run-time system) will automatically be used instead.
Until an initial state within a state machine has been set, it will hold the

empty value 'NULL", so before a state machine starts its execution it needs to
be initialised and set to an initial state. This is done using the unary 'setstate'

operator which returns a reference to the state instance that is set or to the
instance of the parent state structure if the set state is not a state data structure.
The 'setstate' operator can be used to set any state or state member to be the

currently active state. In case of name conflicts. state members can be addressed

as members of their parent state. The status of an FSM structure or structure

member can be queried and is always a Boolean value, showing if a state is

currently active ('true') or inactive ('false').

Once the initial state has been set, the state machine will start its execution,
diverting program flow to the state machine until it terminates, i. e. until it takes

on the empty value 'NULL'. While a state machine is running, the 'setstate'

operator can be employed from within the state machine to force a transition to

any state (or state member) that has been declared in the program or to terminate

the state machine by using 'NULL' as its operand. Finally, the currently set

145

8.2 The AvDL Programming Language

state can be queried using the 'getstate' operator which returns a reference to the
currently active state (or state member), or 'NULL' if no state machine is active.

fusm-declaration:

Figure 8.5: Syntax for FuSM declaration.

8.2.1.3.2 Fuzzy State Machines in AvDL The finite state machine type

was one the first special types to be included in the AvDL specification and its

makeup and functionality have changed little since this first specification, whereas
in the case of the fuzzy state machine (FuSM) type the data type described here
is still untried and tentative, however, syntactically it is the most likely candidate
for inclusion in the system (see Figure 8.5).

Structures of the FuSM 'state' data type in AvDL are declared with the 'fuzzy'

type qualifier. For the declaration of state structure members for a fuzzy state

machine, instead of a transition target an optional weight value for the (member)

state (capped between the scalar values '0.0', the default value for weight decla-

rations, and '1.0') can be provided. They, too, can be used as identifiers for states
in a similar manner to the named constants of C enumerated data types, but the

data types of members in FuSMs are restricted to being a reference to an instance

of another fuzzy state machine structure (referenced through its identifier), or a
data member (variable) of the scalar data type (capped between the values '0.0'

and '1.0'), i. e. FuSM structures in AvDL do not have member functions, such as

the methods in the FSM data structure.
Until an initial state within a fuzzy state machine has been set, just like its

FSM equivalent it will hold the empty value 'NULL". An FuSM is activated using

146

8.2 The AvDL Programming Language

the unary 'setstate' operator which returns a reference to the state instance, and
which in case of a fuzzy state structure member optionally allows the specification
of a weight value for the state (capped between the scalar values '0.0' and '1.0,
the default value in 'setstate' operations). Here, too, the 'setstate' operator will
return a reference to the instance of the parent state structure if the set state is

not a state data structure.
The status of an FuSM structure or structure member can be queried and is

always a scalar value, showing the degree of activity of the state. If queried, by
default a fuzzy state structure will return the accumulated value of its members
as a scalar value (that may be larger than the value '1.0'). This is also true if the

queried state structure is a member of another structure, however, it will return
the value that it has been set to in its parent structure if it is addressed through
this parent state structure, as it may be a member of several state structures in

each of which it may have been given a different fuzzy weight value.
The 'setstate' operator can be used to modify the value of a state member"s

weight relative to its existing value by augmenting the specification of the weight

with a sign. If this is the case, the modified weight of the state member will
be automatically capped between the scalar values '0.0' and '1.0', i. e. no state

member can grow or shrink to a weight value smaller than '0.0' or larger than

'1.0'. For FuSMs the AvDL specification provides no equivalent to the 'getstate'

operator used with FSMs, as more than one state can be active at any one time.

This shows that, while having a large degree of syntactic similarity with the

FSM type, the FuSM type works entirely different from the FSM, i. e. FuSMs

exist as a sort of record data structure but they do not hold code that executes.
The main difficulty when it comes to the definition of an FuSM is that in game

development there appears to be little consensus as to what a fuzzy state machine

is and how it works with definitions varying between the formal computer science

understanding of the term to methods involving probability and random selection

between states [Champandard 2004]. The semantics for the FuSM data type

have not been finalised in the current specification of the language, however, the

semantics of the different FuSM definitions are all expressible through the FuSM

syntax described here. These different possible approaches are further discussed

later in this thesis (see Chapter 11, Section 11.2-3).

147

8.2 The AvDL Programming Language

8.2-1.4 A Data Type for Goal- Orientation

goal-declaration:

goal)--ol Ident

priority ý_r. (: Dý goal definition

i expression I

goal-definition:

label H expression

label
Ident

-_)4-jx--pression

Figure 8.6: Syntax for declaring a goal.

Goal-directed behaviour is one of the simplest forms of nondeterministic be-
haviour. A goal is the end-state of a set of goal-directed actions. The path that
the system needs to take to reach this end-state is generated by using a planning
heuristic on a set of known values which need to be conveyed to the Al module
beforehand. The generation of this sequence of actions that will lead to the de-

sired goal is called goal-oriented action planning [Orkin 2004a] (see also Chapter

2, Section 2.3-2.2).

In AvDL goal-directed behaviour can be attained through the use of the lan-

guage's 'goal" data type (see Figure 8.6). Unlike the 'state' data type, this data

structure does not form a part of the SEAL subset of AvDL, i. e. the current

system prototype does not yet incorporate all of the data structures that goal

orientation would require for it to be fully implemented for use in the system's

run-time environment (see Chapter 10, Section 10.3). The makeup and function-

ality of this 'goal' data type has been inspired by the planning mechanisms of

the behaviour definition language CML (Funge 19991 (see also Chapter 5, Section

5.1.1-3), as well as Orkin's description of GOAP [Orkin 2004a].

148

8.2 The AvDL Programming Language

The combined set of goals that have been declared within an NPC program
make up the search space from which action plans can be generated. An instance
of a goal data structure holds implicit data members which contain an action plan
and a reference to the current state of the goal (in relation to that action plan).
Until an action plan for a goal exists, the goal state will have the queryable value
'NULL'. Once an appropriate action plan has been generated, the goal's status
will be set to the Boolean value 'false' until the goal state has been reached,
resulting in the goal's status being set to the Boolean value 'true'.

In its simplest form, a goal is defined as a single variable of the 'goal' data
type, optionally at a set priority or weight for the planner (by default set to
'Iff), which has been assigned an expression defining the exact preconditions
that have to be satisfied for the goal itself to be reached. Priorities (weights)

are given higher values as their importance shrinks, e. g. a value of 'I. 0' has a
higher priority than a value of '3.5'. The reason for assigning lower values to
higher priorities is that informed search methods, which are commonly employed
to generate plans in goal-oriented systems, "typically use some estimated measure

... and try to minimize it" [Russel and Norvig 1995].
The second method of using the 'goal' type requires the declaration of the

goal as a compound data structure with optional priority (default value 'Iff),

simplifying the declaration of goals with several preconditions. Each of the struc-
ture's members is a precondition (or sub-goal) which needs to be satisfied for the

goal to be reached, allowing AvDL programs to use composite tasks as described

by Dybsand [2004].
All 'goal' structure members can be used as identifiers in a similar manner to

the named constants created in C enumerated data types. They take the form

of labelled AvDL expressions which can optionally be supplied with a priority or

weight (by default set to '1.0') which will be taken into account by the planner

and which must evaluate as true for the goal to be reached.
An alternative interpretation of the goal structure would have been to use

priorities to convey preference knowledge during planning, providing a weighting

only to sub-goals contained within the structure instead of the goal itself, with

only the reachable condition with the highest possible priority required to be sat-

isfied while its sibling goals (precondit ions) would have been considered optional.

149

8.2 The AvDL Programming Language

However, the employment of this alternative goal structure would unnecessarily
complicate the plan generation in the run-time environment, e. g. it could prevent
the use of a standard planning algorithm, such as A*, for the planning process.

The AvDL specification defines a number of specialized operators for goal-
oriented action planning. The operator for the creation of the action plan itself
is the 'plan' operator which directly operates on goals, generating a plan from
all valid goals in the NPC program. The syntax of this unary operator is similar
to the 'new - operator in the C++ and Java programming languages, and as such
also similar to the 'new' operator of AvDL. If the generation of a plan has been
successful, the operator will return an instance of the goal as its result. If the
planner is unable to find a suitable plan for this goal, the empty value 'NULL'
is returned. By default the plan operator in the AvDL virtual machine will be
expected to use A* planning (see Chapter 4, Section 4.3.3) as the underlying
planner, thus implementing the GOAP technique suggested by Orkin [20061. To

allow for greater custornisation, the run-time AP1 will provide a planner interface
to enable different planning methods to be implemented by the NPC program
developer.

As soon as a plan for a goal has been generated the goal variable's status, as
well as the status for all of the nodes in the plan's action sequence will be set to
hold the Boolean value 'false' and the plan will start executing. The expressions
that define a goal's preconditions may contain any function calls or actions (see

Section 8.2-1-5) that may need to be executed to meet the precondition. These will

automatically be evaluated while the action plan executes. The unary operator
'reached' can then be used for testing a goal for completion (i. e. testing the goal

state). This operator is required for querying the status of a goal's plan, as strong
typing of data types prevents direct access to variables of the goal data type.

While the action plan is still being executed, the 'reached' operator will continue
to return the value 'false'. If a goal has been reached (by all preconditions or

sub-goals having been fulfilled), its status will change and the 'reached' operator

will return the Boolean value 'true' as its result. If the situation in the NPC's

virtual environment changes in a way that an action plan becomes invalid, i. e. if

it is no longer possible for the NPC to reach its goal, the goals status will change

150

8.2 The AvDL Programming Language

and the 'reached' operator will result in the value 'NULL', usually requiring a
new plan to be generated.

8.2.1.5 Mechanisms for Accessing the Host Application from AvDL

NPC programs can be enabled to directly call functions that are defined within the
run-time environment's host application. These function bindings are created by
using the AvDL data type 'action', not to be confused with actions in GOAP (see
Section 8.2.1.4), which maps AvDL actions to functions in the host application.
Functions that are mapped to actions within AvDL programs need to be declared
to the AvDL virtual machine by the host application through API calls to the
run-time environment (see Chapter 10, Section 10.4). By default, functions that
have been registered in this way are then bound to the action whose identifier
corresponds with the name of the function. Alternatively the name of the function

can be associated with the action through a string which is given as a parameter.
If the mapped function in the host application expects parameters, these can be
declared similarly to the declaration of formal parameters in a function prototype.

Actions are auto-initialised to the value 'NULL' which they will hold until the
first time the action is executed. Any data returned by the function in the host

application is stored within the action data type for retrieval in the NPC program.
If the function in the host program does not return any data to the action it will
default to the value 'true'. Actions that are needed within an AvDL object only
(see Section 8.2.1-1) must be declared as members of that object. Actions that
have been declared in an AvDL object are bound to the corresponding functions

as soon as the constructor for that object is called during program execution. All

of these function bindings are released when the destructor for the last instance of
this class is called during program execution. Actions that have been declared in

an FSM structure are bound to the corresponding functions as soon as the state

machine is initialised for the first time. These function bindings are released when
the NPC program terminates.

Actions that execute functions in the host application are not the only mech-

anism by which NPC programs can interact with their host. Data in the host

application can be bound to scalar and Boolean AvDL variables in NPC programs

151

8.3 Using AvDL to Create NPCs

by using the 'volatile" variable attribute. The 'volatile' attribute is used in the C
and C++ programming languages to mark data that is influenced by processes
which are external to the current program. Similarly by making a variable in an
AvDL program 'volatile' it can be mapped to a variable in the host application
through the API of the run-time environment by using the identifier given to the
variable when it was registered with the API.

8.3 Using AvDL to Create NPCs

The use of AvDL for defining the behaviour of a virtual entity is quite straight-
forward. The NPC as a whole is encapsulated within an 'entity' object that

explicitly provides ail entry point for code execution, effectively the main NPC

program. This entity object contains the various data structures that define the
behaviour of the virtual entity.

This can be through the use of popular game Al methods, such as the defi-

nition of finite state machines that will control the NPC, or the use of a trigger

system that defines a reactive, event based NPC. Alternatively, newer techniques,

such as GOAP can be used to create an NPC with nondeterministic behaviour.

8.3.1 An AvDL FSM Example

The earlier example for a typical FSM in games (see Chapter 4, Section 4.2.1)

described an NPC on patrol, carrying out guard duty. The FSM in the example

consisted of the states 'patrolling", 'challenging intruder' and 'attacking intruder'

(see Figure 4.2). Assuming that the sensor inputs for that program were im-

plemented through sensor variables of the NPC in the host application that are

mapped through the 'volatile' type qualifier, the structure of a possible version

of this program would look as follows in AvDL:

entity guard
f

volatile bool intruder-detected;

volatile bool intruder-hostile;

152

8.3 Using AvDL to Create NPCs

volatile bool intruder-f riendly;
volatile bool intruder-dead;

state patrolling
I

patrollingo, chal 1 eng ing-int ruder;
1;

patrolling: : patrollingo

do

f
if (intruder-detected)

setstate chal 1 eng ing-int ruder;
/* execute 'patroffing' behav? *Iour */

I forever;
I

state chal 1 eng ing-int ruder
f

challengine-int ruder(), patrollingo;

1;

chal 1 eng i ng-int ruder: : chal 1 eng ing-int ruder
I

while(! intruder-f ri endly)
f

if (intruder-hostile)

setstate attacking-intruder;
/* execute 'challenpng-Mtruder' behaviour

I

153

8.3 Using AvDL to Create NPCs

I

state attacking-intruder
f

attacking-int ruder(), patrolling;

1;

attacking-intruder: : attacking -intruder
I

while(! intruder-dead)
f

/* execute 'attack intruder' behaviour */

I

I

state fsm

fSm

f sm: : fsm

setstate patrolling;

guard

setstate fsm;

154

8.3 Using AvDL to Create NPCs

In this example, each state, including the FSM itself, is represented by its

own state data structure. The makeup of the state structure in AvDL allows an

alternative expression of the same NPC program in which all states are stored

within the same state machine structure:

entity guard
I

volatile bool intruder
-det e ct ed;

volatile bool intruder-hostile;

volatile bool intruder -f ri endly;

volatile bool intruder-dead;

state fsm
f

patrollingo, chal 1 eng ing -intruder;
challenging-intrudero, patrollingo;

attacking-intrudero, patrolling;
fsm () , NULL;

1;

f sm: : patrolling
I

do
I

if (intruder
-det e ct ed)

setstate chal 1 eng ing-int ruder;
/* execute 'patrolling' behaviour */

I forever;
I

f sm: : chal 1 eng ing-int ruder

f

155

8.3 Using AvDL to Create NPCs

while(! intruder-f riendly)
f

if Unt ruder -ho st i1 e)

setstate at tack ing-int ruder;
/* execute 'challenging-tntruder' behamour

I

I

f sm: : at tack ing-int ruder
f

while(! intruder-dead)
f

/* execute 'attack intruder' behaviour */

f sm: fsm

setstate patrolling;

guard

setstate fsm;

156

8.3 Using AvDL to Create NPCs

8.3.2 An AvDL Trigger System Example

If AvDL is used as a Trigger-Only Induced Script type (M) scripting language

using an event based programming style that same scenario could be represented

as shown below:

entity guard
I

scalar behaviour =

event intruder-detected behaviour = 1; 1;

event intruder-hostile behaviour = 2;

event intruder-friendly behaviour = 0;

event intruder-dead I behaviour = 0; 1;

guard

do
I

select (behaviour)

f

case 0:
/* execute 'patrolling' behaviour

case 1:
/* execute 'challenging-Intruder' behamour

case 2:
/* execute 'attack intruder' behaviour

I

forever;
I

157

8.3 Using AvDL to Create NPCs

1;

8.3.3 A Nondeterministic NPC Example

A similar program can be expressed using GOAP. Again, assuming that the
NPC's sensor inputs are variables that have been mapped through the 'volatile'
type qualifier, a nondeterministic solution for this scenario could look as follows:

entity guard
I

volatile bool intruder-detected;

volatile bool intruder-hostile;

volatile bool intruder
-f ri endly;

volatile bool intruder-dead;

bool attack -intruder()
f

while(! intruder-dead)
I

/* execute 'attack intruder' behamour

I

return true
I

goal enemy-killed = attack-intrudero;

bool challengeo
I

enemy-killed defended;

while (! int ruder _f ri endly)

158

8.3 Using AvDL to Create NPCs

I

if Untruder-ho st 1 le)
f

while (reached (def ended) ==NULL)
I

defended = plan enemy-killed;
I

return true;
I

/* execute 'challengZng-Zntruder' behavilour

I

return true;
I

goal handle-intruder = challengeo;

goal protect = reached (handle
-intruder);

guard
I

protect defend-objective;

do
f

if (intruder-detected)

I

while (reached (def end-objective) ==NULL)
I

def end-objective = plan protect;

/* execute 'patrolling' behamour

159

8.3 Using AvDL to Create NPCs

I forever;

160

Chapter 9

The Simple EntitY Annotation
Language

SEAL, the Simple Entity Annotation Language [Anderson 2005b] is part of the
AvDL system (see Chapter 8) for the definition of believably intelligent game
character behaviour. As a BDL coupled with the concept of "Smart Terrain", as
described by Forbus and Wright [20011, SEAL presents a promising combination
of _NPC behaviour definition techniques. Combining rule-based systems with
affordance theory, the embeddable Regular Script type (ST3b) scripting language
SEAL provides a unified approach to the definition of virtual entities within one
behaviour definition language for virtual entities as well as the "smart", objects
that the entities can interact with.

9.1 SEAL within AvDL

SEAL is a 100% compatible subset of the AvDL scripting language, effectively

making SEAL a module of the AvDL system. This means that SEAL programs

are source code compatible with AvDL, i. e. valid SEAL source code is automat-
ically valid AvDL source code and should compile on an AvDL compiler.

The language's syntax is defined as a reduced version of the AvDL syntax, also

using an LL(I) grammar (see appendix E). The language is kept much simpler

than AvDL through the omission of some of the more complex features of AvDL

161

9.2 Entity Annotation for NPC Behaviour
Definition

(see Section 9.3 below), but remains sufficient for the creation of rich virtual
environments, populated by virtual entities that interact with the game world.

If an NPC program that encodes a virtual entity in an annotated world re-
quires the use of features that are not incorporated within SEAL, the more com-
plex AvDL should be used to express the NPC program.

9.2 Entity Annotation for NPC Behaviour
Definition

SEAL is a BDL that is dedicated to the creation of NPCs that inhabit an an-
notated world. The mechanism for creating annotated worlds (see Chapter 2,
Section 2.3-4.4) that we refer to using the term "Annotated Entities" has been
described using various names, such as "Smart Terrain" [Cass 2002], "Smart
Objects" [Peters et al. 2003; Orkin 2006] and "Annotated Environment" [Doyle
2002], all of which are generally interchangeable and mostly used with very sim-
ilar meanings, although slight differences in their exact interpretation sometimes
remain. A common aspect to all of the implementations that utilise this mech-
anism is the indirect approach to the creation of believable intelligent entities.
Such intelligent entities that inhabit the virtual world do not have the knowl-

edge that would enable them to interact with other objects of the world that

can be interacted with, but these objects themselves have the knowledge as to
how other virtual entities can interact with them. These objects broadcast in-
formation about themselves (including the instructions on how to use them) to
NPCs in their vicinity, which can then use this information for interaction with
those objects, making the objects "smart". NPCs only passively interact with

objects, meaning that effectively the objects interact with themselves through

the mediation of the entities that appear to use them. It is possible to provide

extensive domain knowledge to NPCs by annotating not only objects but also
the environment itself, literally using "Smart Terrain", and passing information

to the NPCs about the virtual world in which they exist.
A beneficial side effect of this is that the complexity of the entities is neutral

to the extent of the domain knowledge that is available for the NPCs' use, i. e.

162

9.2 Entity Annotation for NPC Behaviour
Definition

the virtual entities themselves can not only be kept relatively simple. but they do
not need to be changed at all to be able to make use of additional knowledge. If
all annotated objects use the same interface to provide knowledge to NPCs then
there is no limit to the scalability of the system, i. e. the abilities of NPCs can
practically be extended indefinitely despite a very low impact on the system's
overall performance.

9.2.1 Affordance and Annotations

Affordance theory Cornwell et al. 2003] has its roots in psychology and the study
of (visual) perception (see also Chapter 2, Section 2.3.4.4). Affordance itself is

an abstract concept, the implementation of which is greatly simplified by anno-
tations that work like labels containing instructions which provide an explicit
interpretation of affordances. The relationship between affordance and annota-
tion becomes clear when one examines the following example of a button that

needs to be pressed to activate some sort of device: affordance in this case is the

shape of the pressable button that -affords" to be pushed, whereas an appropriate

annotation in this scenario would be a label on the button reading "press here",

explicitly inviting a user to push the button.

9.2.2 Implementing Smart Environments

Annotations have been employed in several different types of applications in order
to achieve different effects. Annotations have proven popular for the animation of

virtual actors in computer animation, facilitating animation selection [Lee et al.
2006], i. e. the choice of appropriate animation sequences that fit the environ-

ment. Other uses of annotations include the storage of tactical information in

the environment for war games and military simulations [Darken 2007], which is

implemented as sensory annotations to direct the virtual entities' perception of

their environment.
Probably the most common form of annotations found in computer games

affects behaviour selection. often in combination with animation selection [Orkin

20061, i. e. the NPC's behaviour and its visual representation (animation) are

influenced by the annotated objects that it uses. Here the annotated objects

163

9.3 The Syntax of SEAL

actually have embedded instructions that are executed by the NPCs that attempt
to use these objects. If this type of annotation is used, then annotations of the
environment itself are implemented through invisible objects that the NPCs can
interact with.

The NPCs that inhabit these annotated worlds can be built utilising a rule-
based system often based on simple FSMs in combination with a knowledge
interface based on a trigger system that allows the NPCs to "use" knowledge
(instructions) for handling the annotated objects. The interaction protocol em-
ployed to facilitate the communication between an NPC and a "smart" object
needs to enable the object to "advertise" its features to the NPCs and then al-
low the NPCs to request from the object relevant instructions (annotations) on
its usage [Macedonia 2000]. This communication between annotated object and
NPC can be achieved using techniques related to messaging [Harmon 20041.

In the extremely popular computer game "The Sims" [Kornrumpf 2005] a very
similar method to the one described above is used to enable NPCs to interact

with objects in the game world. Object annotations are implemented as scripts in
the proprietary SimAntics programming language [Macedonia 2000]. In addition
to this, Forbus and Wright [2001] state that in "The Sims" all game entities,
objects as well as NPCs, are implemented as scripts that are executed in their

own threads within a multitasking virtual machine. They explain that once an
NPC's decision making tasks it to "use" an object which advertises a feature

that will satisfy the NPCs needs, the NPC will execute the appropriate function

provided by the object within its own thread. This is a similar mechanism for

implementing entity annotations to the one that is available in the SEAL scripting

system.

9.3 The Syntax of SEAL

The SEAL subset of AvDL is restricted to the syntactic features of AvDL that

are considered essential and useful for the creation of virtual entities existing in

annotated environments, i. e. the SEAL specifications only incorporate a fraction

of the data types and data structures found in AvDL.

164

9.3 The Syntax of SEAL

entity-declaration:

entity Y-1 Ident
function ý[-block

declaration

state
declaration

action
declaration

event
declaration

variable
declaration

entity ýo(ý-ý-ock
Ident

Figure 9.1: Syntax for declaring an 'entity' object.

As is the case with AvDL programs, a SEAL program is meant to encode a
complete virtual entity and as such needs to declare itself as an 'entity' (see Figure
9.1). The handling of functions in SEAL is almost identical to the handling of
functions in AvDL with the exception that the language specification for SEAL

does not include forward declaration, i. e. there are no function prototypes for the
forward declaration of functions in SEAL. The only primitive data type in SEAL

is the scalar type which encodes any (binary) logical or numerical value. SEAL

does not incorporate a separate Boolean data type or support type aliases or the

traditional aggregate data types found in AvDL, i. e. arrays, structures or classes.
SEAL therefore does not support object orientation, making the structure of
SEAL programs more closely resemble the programming language C [Kerninghan

and Ritchie 1988] than C++ [Stroustrup 1997]. The absence of a Boolean data

type means that any values in SEAL that would be Boolean values in AvDL are

scalar values set to either '1' for true or '0' for false values.
The most complex of AvDL`s types remaining in SEAL is the 'state' structure,

limited to the creation of finite state machines (see Figure 9.2), i. e. SEAL does not

165

9.3 The Syntax of SEAL

fsm-declaration:

Figure 9.2: Syntax for FSM declaration.

support fuzzy state machines and therefore does not recognise the type qualifiers
'finite' or 'fuzzy', as all state machines are assumed to be FSMs. For use with
6 state' data structures the operators 'getstatc' for retrieving the currently set state

and 'setstate" for setting the current state are also present in the specification for

SEAL (see Figure 9-3), the latter operator reduced to the syntax required by

FSMs, i. e. without allowing the specification of a weight value for the state.
SEAL uses AvDL's 'action' type (see Figure 9.4) to enable programs to di-

rectly call functions that are defined within the host application. The working

of this type in SEAL is unchanged to that in AvDL, i. e. variables of the action
type provide function bindings that map SEAL actions to functions in the host

application, enabling NPC programs to directly call functions that are defined

within the run-time environment's host application. As with AvDL actions, by

default, mapped functions are bound to the action whose identifier corresponds

with the name of the function used in its registration with the virtual machine,

using the run-time environment's API (see Chapter 10, Section 10.4).

Finally, the SEAL specification also includes AvDL's 'event' type, which is

used to define event handlers that can be triggered by events that occur in the

166

9.3 The Syntax of SEAL

seal-operators:

setstatDte -Td state
Ident

member
-
Dý

Ident

member
Ident

getstate

trigger event
Ident

scalar

variable
Ident

Figure 9.3: SEAL specific operators.

host application. These events can be registered with the run-time environment
through the run-time API, allowing NPC programs to react to named events
using the identifier provided at the registration of the event. SEAL also allows
the use of AvDL's 'triggered' type qualifier for binding scalar variables to events,

and also inherits AvDL's 'trigger' operator (see Figure 9.3) for spawning events
f-- trom within NPC programs.

9.3.1 Entity Annotation with SEAL

All of the entities in the game world, i. e. NPCs as well as inanimate objects that

can be interacted with, are defined as scripts. These are SEAL programs that

are executed by a virtual machine (the system's run-time environment) which
interfaces with the game engine that hosts the virtual world. The use of the

167

9.3 The Syntax of SEAL

action-declarallon:

action)--r*l Idenl

I datatype I

i StdngLiteral I

d

Figure 9.4: Syntax for 'action' declaration.

SEAL system provides annotations of objects with an identical representation
to that of knowledge encoded within an NPCs rules, i. e. within the same type

of program and using the same scripting language. In SEAL the environment
itself can be annotated using intangible objects, i. e. objects that are invisible

and cannot be directly interacted with but which are located within the virtual
world and thus accessible to NPCs.

The system's interaction protocol needs to allow objects to advertise their

capabilities, followed by NPCs then initiating contact with objects that they
intend to use and the objects finally to provide access to the desired features by

exposing the relevant procedures to the NPCs for execution.
SEAL's interaction protocol for annotated entities is implemented through a

combination of system events in the run-time environment and a set of data type

qualifiers that are part of the language specification, as well as several standard
functions of the language (see Table 9.1). An annotated object is required to ad-

vertise all of the functions that it provides for the use by other entities that share
its virtual environment. In SEAL this is achieved through the use of the 'global"

type qualifier at the definition of functions, which then marks these functions as
"exported" for use by other entities. By default any SEAL entity that includes

such exported functions will advertise the availability of these functions to all

entities within the virtual world that it can interact with. The use of the SEAL

standard function 'setSilent' within an entity causes advertising of the entity's

168

9.3 The Syntax of SEAL

Return Type Function Parameters Description
Name

scalar getEntity scalar This function takes the unique ID

of an exported function as its pa-
rameter and returns the ID of the

entity that exported the function.
scalar getGlobal constant This function takes the name of

string an exported function as its pa-
rameter and returns the ID of
a matching exported function if
it exists or 'NULL' if it cannot
find a match. If called from an
event handler, only the entity that

caused the event to be spawned
will be searched for a matching
exported function.

void setBroadcast This function asks the run-time
environment to advertise an en-
tity's exported functions.

void setSilent This function asks the run-time
environment to stop advertising
an entity's exported functions.

Table 9.1: SEAL standard functions for use with annotated entities.

exported functions within the run-time environment to be suspended. This sus-

pension can be revoked through the use of the 'setBroadcast' standard function

which requests the run-time system to resume the advertisement of the entity's

exported functions.

NPCs are notified about objects that export functions through a system event

that the host application must define in the run-time environment through API

calls. The SEAL system is kept as generic as possible and the run-time envi-

ronment does not provide a pre-defined event identifier for this purpose, as not

every identifier may be appropriate for every host application, consequently an

169

9.4 Using SEAL to Create NPCs

acceptable identifier must be provided to the run-tinie environment. All NPC
that is intended to use annotated objects needs to define an event handler for the
event that alerts it to the presence of a suitable object. The event is triggered
as soon as an annotated entity broadcasts its availability to the NPC. It makes
little sense to trigger this event for all annotated entities at all times, so the host

application needs to determine if an object is eligible for consideration by an
NPCI i. e. to decide if an NPC is able to "read" an object's advertisements. To

enable this, an appropriate condition, such as the Euclidean distance between the
NPC and the annotated entity, associated with the event needs to be declared
to the SEAL virtual machine by the host application, which is achieved through
API calls to the run-time environment (see Chapter 10, Section 10.4). The sys-
tein allows separate events with different conditions to be declared, providing a
versatile environment for complex interaction between annotated entities.

Once an NPC has been notified of the availability of annotated objects, it

needs to retrieve references to the object"s exported functions that it requires to

use. The use of a regular scalar variable as a function's identifier in a function call
is always assumed to be a request to execute an exported function. For this, the
SEAL standard function 'getClobal', which takes a string naming the exported
function as its only parameter, returns a scalar value that identifies the exported
function from the entity that triggered the notification event. If no corresponding
function is found in this annotated entity, the 'getGlobal' function returns the

empty value 'NULL' instead.
A method that allows some limited communication between entities is the

targeted use of the 'trigger' operator for spawning events in other entities. To

directly address the annotated entity that contains an exported function, its

identity within the run-time environment can be queried using the 'getEntity'

standard function, the result of which can then be used to message the entity.

9.4 Using SEAL to Create NPCs

To demonstrate the usage of SEAL we can look at a typical scenario found in

many computer games that includes the use of an object in the virtual world by

an NPC, from which the workings of the system should become apparent.

170

9.4 Using SEAL to Create NPCs

This scenario is a combat simulation where an NPC has been assigned a
base defence role to prevent an enemy from overrunning a friendly base. The

defences of this base include turret-like gun emplacements that are implemented

as annotated entities and which can be manned by human players or NPCs.

The approach of an enemy could be signalled to the NPC through an event
'enemy-detected', which would have to be registered with the host application and
for which the NPC would need to provide an event handler. Assuming that the

runtime-system event notifying NPCs about unmanned emplacements is named
'unused' and associated with the notification condition that the NPC is posi-

tioned next to the gun-turret, the structure of a program describing a defender

NPC could look as follows in SEAL:

entity defender
I

scalar manGun = NULL;

event unused f manGun = getGlobal("usell); 1;

state fsm
I

patrolling NULL;

defending patrolling
fsm () , NULL;

1;

event enemy-detected I setstate f sm: : defending; 1;

f sm: : patrolling
f

while(l)

/* execute 'patroffing' behamour

171

9.4 Using SEAL to Create NPCs

}
}

fsm:: defending
f

if (manGun NULL) /* if gun-turret avatlable
I

manGun /* man gun turret

I

else
I

/* execute default defence behaviour

}
}

f sm: : fsm

f
setstate patrolling;

I

defender

setstate fsm;

The above program shows the sections of the NPC behaviour definition that

are relevant to the use of annotated gun emplacement entities. If the

ýenemy_detected' event is triggered, the defender NPC is set to execute the 'de-

fending' state. If an available gun emplacement has been found beforehand, i. e.

if the 'manGun' variable has been successfully mapped to the gun-turret's 'use'

172

9.4 Using SEAL to Create NPCs

function and does not hold the empty value 'NULL', the NPC will call the ex-
ported 'manGun' function to use the gun emplacement. In this example, the
script defining the gun-turret exports its 'use' function for use by other entities,
which includes the declaration of an action 'fire' that maps the function to fire
the turret's gun and allows it to be fired from within the exported function:

entity turret
I

global void useo
I

action fireo ; /* achon to fire the gun */

fireO

turret 0

If the above entity scripts were used, there could be conflicts between several

NPC programs that could compete to simultaneously use the same gun emplace-

ment. To prevent this it makes sense to provide the NPCs with a means to lock

the gun-turret entity while it is being used, which can be accomplished by request-

ing the annotated object to stop advertising its functions. This communication

with the gun emplacement can be implemented by triggering events within the

annotated objects, which requires the events 'lock' and 'unlock' to be registered

with the host application. The refined NPC program could then be written as

follows:

173

9.4 Using SEAL to Create NPCs

entity defender
I

scalar manGun;
scalar turret;

scalar gunAvailable = 0;

event unused

manGun. = getGlobal(Ifusell);
if(manGun! =NULL)

turret=getEntity (manGun)

gunAvailable 1;

trigger lock turret;

fsm:: defending
I

if (gunAvailable) /* if gun-turret avatlable
f

manGuno; /* man gun turret

trigger unlock @ turret;

gunAvailable = 0;

I

else
I

/* execute default defence behamour

I

174

9.4 Using SEAL to Create NPCs

I

1;

To make use of these improvements the turret entity needs to define event
handlers for the 'lock' and 'unlock' events, as shown below:

entity turret
I

event lock t setSilent () ; 1; /* suspend adverhStng */

event unlock I setBroadcast(); 1; /* resume adverNSMg */

1;

175

Chapter 10

ImPlementation of NPC
Programs on the System's
Run-Time Environment

The previous two chapters provided an overview of the AvDL scripting language
(see Chapter 8) and its SEAL subset (see Chapter 9) and discussed the features

of these two languages. This chapter presents the design of the SEAL/AvDL run-
time environment, i. e. the virtual machine for executing programs that encode
virtual entities, as well as the implementation of the system prototype and the
interface to the virtual machine that allows it to be embedded within a host

application.
The virtual machine of the system prototype, while based on the SEAL spec-

ification, makes provision for a large proportion of the features described in the
AvDL specification, such as the implementation of the system's extension archi-
tecture which itself is not part of the SEAL specification.

The current prototype system includes an assembler that is capable of gen-

erating bytecode programs that utilise all of the features that have been imple-

mented in the virtual machine, allowing the use of "hand-translated" programs
in the absence of a working compiler for the system. Some details regarding the

translation of features of the SEAL and AvDL into instructions for the run-time

environment are presented below.

176

10.1 Virtual Machine Architecture

Figure 10.1: Organisation of the system prototype's virtual machine.

10.1 Virtual Machine Architecture

The architecture of the system is based on our ZBL/O [Anderson 2004] and C-

Sheep [Anderson and McLoughlin 2006] virtual machines (see Figure 10.1). At its

core the system's virtual machine has a parallel stack machine, which, with the

exception of the extension architecture, is written in platform independent ANSI

C++. Similar to its predecessors the system's prototype allows the creation of

several simultaneously running processes, but unlike the earlier virtual machines

that held all data within a single object, here each process is a separate object,
keeping different programs separate from each other.

The virtual machine object provides the API for integrating the system in its

177

10.1 Virtual Machine Architecture

Figure 10.2: Organisation of an entity's process in the system prototype.

host application, as well as the system's virtual processor and an architecture for

managing extensions to the system and communication between processes, but

all data required by the processes themselves is kept safely encapsulated within

the process objects.
A process object provides a separate entity, embedding its own stack, registers

(program counter, program instruction register, base address register and stack

register) and code segments, resulting in each entity effectively providing a self-

contained micro-thread [Dawson 2001] in the virtual machine (see Figure 10.2).

Inspired by the architecture of the 8Ox86 processor family [Link 1995], data

entries on a process's stack can be split into a high-segment and a low-segment

that can be addressed separately, each of which has half of the bit-width of a

data entry. This allows each data entry to hold not only single values but also

178

10.1 Virtual Machine Architecture

value pairs, a side effect of which is that NPC programs require fewer stack access
operations. These value pairs are mainly used as parameters and return values for
intrinsic functions of the virtual machine. A further use of this mechanism is the
implementation of the value 'NULL' which utilises a value pair, placing the value
'-l' in the high-segment as well as the low-segment of variables to distinguish the
empty value 'NULL' from the numeric value V.

Each process can hold several code segments, allowing functions that can
be exported for use by other entities to reside within segregated areas of their
parent entity's process, i. e. in a separate code segment. Furthermore, a stack of
references to code segments, the top of which is used as the currently active code
segment, is maintained by each process. These references are not restricted to
the process in which they are stored, allowing code segments to be shared among
and to be accessed simultaneously by several NPC programs. As they are stored
in separate code segments, a simple overriding mechanism allows functions to be

replaced by different functions while the system is running, provided that the
function is not being called at the time. The system prototype contains hooks for

the future integration of an AOT (ahead-of-time) compiler which will allow NPC

programs to be compiled just before they are loaded into the virtual machine.
This will eventually also allow functions within these programs to be replaced
interactively during run-time by utilising parts of this compiler as a type of OTF

(on-the-fly) compiler.
The system's virtual machine is a self-contained module and accessible by a

host application solely through AP1 calls (see Section 10.4). From the outside,
i. e. to the host application, several processes appear to run simultaneously on

the virtual machine, whereas actually NPC programs are executed sequentially.
The mechanism that allows the virtual machine to execute several NPC programs

that are seemingly running in parallel is pre-emptive multi-tasking combined with

round-robin scheduling. The virtual machine's execution cycle itself proceeds in

two stages, the first of which is the event handling cycle. During this stage all

events from previous execution cycles that have not been handled, as well as

those that have been triggered during the preceding execution cycle of the vir-

tual machine, are acted upon and the event handlers within each of the loaded

processes are executed (see Section 10.2.2). To prevent synchronisation conflicts,

179

10.1 Virtual Machine Architecture

if any events for a process remain unhandled during the virtual machine's execu-
tion cycle, the corresponding process will be blocked until all events have been

processed in a subsequent execution cycle of the virtual machine.
Once all events have been processed, then the second stage of the virtual

machine's execution cycle (i. e. its regular run cycle) commences. This executes
the instructions found in the currently active code segment which is referenced
at the top of the process's code segment stack.

Following the example of its predecessor systems, the design of the virtual
machine is inherently fault tolerant. Run-time errors, resulting from illegal mem-
ory access operations within NPC programs or program instabilities caused by
faulty interactions between NPC programs, will only result in the termination of
the offending processes without affecting other programs running on the virtual

machine or the operation (i. e. functioning) of the virtual machine itself. Thus ,
like its predecessor system, the virtual machine should degrade gracefully.

10.1.1 Virtual Machine Instruction Set

The instruction set of the system's virtual machine is an extended version of the

C-Sheep virtual machine's instruction set (see Chapter 7, Section 7.3.2.1). Similar

to the way in which the C-Sheep system works, all numerical data values that are
handled by the prototype system are of the same data type, leaving distinctions

between types and the maintenance of type-safety aside as an issue to be dealt

with by a compiler.
The instructions of the prototype system fall into several categories (see also

Appendix F). The first of these is process control, including instructions that

direct program flow and memory management, which also forms part of the tasks

of the second category that includes instructions for data handling, i. e. access to

variables and memory addresses. The third category is made up of instructions

for the use of functions, including intrinsic system functions, extension functions

(see Section 10.1.2) and user-defined functions. The penultimate two categories

are comparisons and operators, facilitating the processing and manipulation of

data on the process's stack. In addition to these categories, op-codes for memory

manipulation instructions to access a heap for dynamic allocation of data storage

180

10.1 Virtual Machine Architecture

Function Name Description

executeCallback System function that executes a callback function.
getExported System function that retrieves a reference to an exported func-

tion whose location is unknown.
getFuncAddr System function that retrieves a reference to an exported func-

tion from a known entity process.
retrievePID System function that retrieves the process ID of the current

entity process.
setBroadcast System function that asks the virtual machine to advertise the

process's exported functions.

setSilent System function that asks the virtual machine to stop advertis-
ing the process's exported functions.

spawnEvent System function that allows an entity process to trigger an event
in the virtual machine.

stateM-ansition System function that sets a process flag to trigger a state tran-

sition at the execution of the next instruction.

Table 10.1: lntrinsic system functions of the prototype's virtual machine.

have been reserved within the system, but have not been implemented for the

current prototype (see Chapter 12, Section 12.3), as they are not required for

programs that adhere to the SEAL specification.
Other than virtual machine instructions, the system prototype also provides

several low-level system functions that are directives to the virtual machine which

are implemented as intrinsic functions of the system (see Table 10.1).

10.1.2 Extension Architecture

The extension architecture of the AvDL system is directly based on the extension

architecture of the ZBL/O virtual machine (version 1.2) that allows the extension

of the system through plug-ins [Anderson 20041 (see also Chapter 7, Section 7.2.5).

These plug-ins (extension libraries) themselves are implemented as shared objects

(libraries) that can be dynamically loaded during program run-time.

181

10.1 Virtual Machine Architecture

Each plug-in contains the definition of a class for the extension which it in-
herits from an extension class that is part of the system's API. The derived class
that makes up the plug-in must implement a set of interface methods that allow
the virtual machine or other system components, such as a compiler, access to
the extension library. The first of these methods returns the number of useable
functions contained in the extension library. Analogous to this method, there are
also methods for retrieving the number of constant values and operators, pro-
vided by the plug-in, for use in NPC programs. Other methods can be used to
obtain the signatures (return type, identifier and formal parameters) of functions

provided by the plug-in, as well as the identifiers and values of constants. New

operators that are provided by plug-ins are treated very much like a special case
of an extension function.

10.1.2.1 Extending the Language at Compile-Time

The process that enables a compiler to process programs that utilise extension
libraries is straightforward. When compiling NPC programs, the compiler first

needs to load in any extension libraries that are requested by the program that is
being compiled, which the program can achieve by using the languages 'import'

statement. Each extension library is then assigned an ID by the compiler which
identifies the plug-in within the NPC program. This value is stored within the

compiled bytecode of the NPC program with a reference to the file-name of the

plug-in. The next step that a compiler then takes is to determine the number of
functions provided by the plug-in, after which it can query and then add each of
these functions to its identifier table, allowing the compiler to verify the syntax

of function calls to extension functions. This step is then repeated for constants

and operators that are contained in the extension library.

During code generation, function calls to functions in the plug-in are stored

in the NPC program bytecode with a reference to the extension library ID value

and the index value that identifies the extension function itself within the plug-in.

182

10.2 Implementation of the System Prototype's Features

10.1.2.2 Extending the System at Run-Time

Plug-ins are managed centrally within the system's virtual machine. When a
compiled NPC program is loaded into the virtual machine, the virtual machine
also dynamically loads in all previously unloaded extension libraries that are
required by the NPC process (plug-ins that are referenced in the program). If

the virtual machine fails to find and load all of the plug-ins that a program
requests, then the NPC program itself will not load and the NPC process will

not be created. If the virtual machine succeeds in loading the plug-ins or finds

them among already loaded plug-ins, then the plug-in ID values that were stored

within the NPC program's bytecode are mapped to the actual plug-in ID values
that are used within the virtual machine.

During the NPC program execution all extension library calls are then redi-

rected to the plug-in whose mapped value corresponds to the ID from the compiled
bytecode program. This is achieved by executing the 'call extension function'

instruction, which grants the extension library access to the process's stack, ref-

erencing the plug-in ID as well as the index value that identifies the extension
function inside the plug-in.

10.2 Implementation of the System Prototype's

Features

The system prototype and its virtual machine described here implement the fea-

tures described in the specification of the SEAL BDL (see Appendix E). The

implementation of data types and data structures that are not commonly repre-

sented in implementation programming languages, i. e. features that are specific

to SEAL and AvDL, is detailed below.

10.2.1 Implementation of Actions

Actions, i. e. functions that exist within the host application that can be invoked

from within NPC programs, are effectively callback functions which in the current

version of the system prototype are implemented in the system's AP1 through the

183

10.2 Implementation of the System Prototype's Features

use of an abstract base class (callback) from which classes can be derived that
contain the actual functions that the actions are supposed to be mapped to.

The definition of callback functions that are placed within these derived classes
must be accompanied with tile definition of tile derived object's method 'execute',
which is used to redirect action callbacks to the relevant functions in the host
application. While this mechanism imposes some restrictions on the creation of
callback functions, it is an improvement on the realisation of interaction between
scripts running in the virtual machine with the system's host application that
was employed in the ZBL/O system [Zerbst et al. 2003). In the ZBL/O system,
extensibility was limited by the necessity to use intrinsic functions. The type and
number of intrinsic functions that could be registered with the virtual machine
had been established by the system's API (see Chapter 7, Section 7.3.6), leaving

no room for the introduction of additional functions.
The system prototype provides API functions for the registration of these

callback functions with the virtual machine, allowing the association of the names
of actions with the corresponding object that was derived from the 'callback'

class. For this, the virtual machine provides two levels of access to actions that

are maintained in separate lists of callback functions. The lower level of access
to callbacks is managed by the virtual entities' processes themselves, allowing
actions to be registered directly with a specific process. The higher level resides

within the virtual machine itself, allowing callbacks to be registered globally with
the run-time environment and providing a fall-back to "default" actions if no

appropriate callback has been registered with a process.
The invocation of actions is translated to a call to the intrinsic system function

'executeCallback' that first attempts to find a corresponding callback within the

list of callbacks, which are registered with the current process. If no appropriate

callback can be selected, a callback that fits the action will be sought from the

virtual machine itself, resulting in a run-time error if the virtual machine fails to

find a callback associated with the action. If a callback is correctly identified, an

intermediate call-stack data record is created and filled with the action's parame-

ters (retrieved from the process's stack) using the signature (i. e. return type and

formal parameters) that the callback function was registered with. The callback

function is then executed and if the action is expected to return data to its caller,

184

10.2 Implementation of the System Prototype's Features

then the call-stack record is augmented with the action's return value which is
subsequently placed onto the process's stack.

10.2.2 Implementation of Events

Events are registered globally within the virtual machine through the run-time
environment's AP1 that provides a unique ID for every event that is added to
the virtual machine. Each NPC process also maintains a list of events that it

can handle or spawn, which is automatically generated when an NPC program
is loaded. This event list maps the process's internal representation of events to
the unique IDs of events that are registered with the virtual machine. Within the
NPC process, a variable data entry of global scope is created at the bottom of
the process's stack for every event handler or event that the process can trigger,

allowing the use of the event name as a variable identifier in NPC programs. This

data entry holds a value pair. In its high-segment it holds the unique event ID

within the virtual machine and in its low-segment the process ID that caused the

triggering of the event or alternatively the value '-I', if the event was spawned by

the system.

10.2.2.1 Event Handlers

In a similar manner to exported functions (see Section 10.1), an NPC program's

event handlers are stored in code segments that are separate from the rest of the

program. This is reflected in the NPC program bytecode, where event handlers

are enclosed with the 'mark handler start' and 'mark handler end' virtual machine

instructions. The former of these instructions is never interpreted by the virtual

machine while a loaded NPC process is running, as it is only used while the

program is loaded to instruct the virtual machine to provide a separate code

segment for the event handler.

The data held within each NPC process includes a queue data structure for all

events that the process can handle which have occurred and that have not yet been

handled. During the event handling cycle of the virtual machine's execution cycle,

each data entry of this queue is retrieved and processed (i. e. the event handler

that each event is associated with is invoked, handling the event). For this the

185

10.2 Implementation of the System Prototype's Features

virtual machine pushes a reference to the code segment, which corresponds to the
event handler, onto the top of the process's code segment stack. This operation
makes the event handler the currently active code segment for execution. An NPC
program's event handlers are executed asynchronously, i. e. separate from the rest
of the program, making them similar to coroutines. As such, the first instruction
in every event handler creates a block activation record on the process's stack
before any other instructions are processed. The 'mark handler end' virtual
inachine instruction, which is the final instruction of every event handler, cleans
up the stack and if there is an unhandled event left in the event queue it replaces
the code segment of the current event handler on the code segment stack with
the event handler of the next unhandled event. If no more events remain in the

event queue, the code segment stack is reset to the last active code segment used
by the NPC program, allowing the process to resume its execution during the

regular run cycle of the virtual machine's execution cycle.

10-2.2.2 Event 'trigger' Operator

The -trigger' operator for setting off events is implemented as a sequence of data

handling instructions that load the event data entry and optionally the ID of the

event's target process onto the current process's stack, followed by the invocation

of the 'spawnEvent' intrinsic system function.

10.2.2.3 'triggered' Variables

Like the event data entries themselves, and similarly to variables that have been

declared using the 'volatile' type qualifier, variables that are declared as 'trig-

gered" by an event have their memory allocated at the start of the program's

execution. Consequently they are also stored at the bottom of the stack, so that

the run-time environment is aware of their location on the stack, allowing it to

update them when an associated event occurs. Reading data from this type of

variable will alter the variable's content to the value '0' or 'false', as once the vari-

able has been read the event will be considered as having been handled, requiring

the variable to be reset.

186

10.2 Implementation of the System Prototype's Features

10-2.3 Implementation of FSMs

The most popular data structure used for the creation of intelligent NPCs is the
finite state machine (see Chapter 8, Section 8.2.1-3.1), which is part of the SEAL

specification, as well as the AvDL specification. NPC programs that include
FSMs require the creation of two data entries at the bottom of the process stack
at program start. The first of these data entries, which is given an initial value
of 'NULL', references the current state that the program's state machine finds
itself in, whereas the second data entry holds a reference to the next state that
the program's state machine is expected to transition into.

The data entry for the current state is used for querying the status of FSM

structures or structure members, i. e. for determining if a state is currently active
or inactive. This type of query operation is not implemented using any special
operators or system functions, but instead it is translated to a sequence of regular
virtual machine instructions that simply compares the current state to the state
that is being queried.

10.2.3.1 FSM Specific Operators

A call to the 'setstate' operator is mapped to an implicit function call to an

unnamed function, which holds a sequence of virtual machine instructions that
first change the next state data entry to the new transition target and then call
the 'stateTransition' intrinsic system function that will trigger the state transition

at the start of the execution of the next instruction during the regular run cycle

of the process. In the implementation of our prototype virtual machine, the

data returned by this unnamed function (the 'setstate' operator's return value)

is simply a constant value referencing the state that is being set.
Querying the currently active state, by using the 'getstate' operator, is trans-

lated to a simple data handling instruction that loads the content of the data

entry which references the current state of the FSM.

10.2.3.2 Program Flow in FSM Structures

The result of the translation of FSMs to the system's virtual machine instructions

(see Appendix F) bears some similarity to the structure of a sub-program or

187

10.2 Implementation of the System Prototype's Features

subroutine that has been translated into instructions for the virtual machine.
As program flow is diverted to the state machine until it terminates, all state
structures within an entity program are handled as if they were part of a single
function, i. e. program flow between states is not nested (as would be the case with
functions), but sequential (i. e. states are executed one after the other and a new
state is only entered after the previous state has finished execution). Furthermore,

whereas in the SEAL or AvDL source code a state structure's special methods
(entry, exit and state body methods) have the appearance of functions (in terms
of virtual machine instructions), they actually translate into regular branching of
program flow using jump instructions (inspired by code expansion results of the
macro-based state machine language proposed by Rabin [2002b]).

Every SEAL or AvDL program that utiliscs FSMs includes a sequence of
instructions to which program flow is diverted after a state transition has been
triggered. In this case, if the current state data entry holds the value 'NULL'
(1-e. if there is no active state), then before the program flow diversion occurs
a block activation record (which is similar to that found in functions) is created
on the process's stack to ensure that the process can be restored to its original
state when the execution of the FSM finishes. After the block activation record
has been created, the program will jump to the first instruction of the newly set

state's entry method. If there is an active state, however (i. e. if the current state
data entry holds a reference to a state that has been set), the program will jump

to the first instruction of the current state's exit method to start the transition

to the newly set state.
If the transition target of a state holds the value 'NULL', a sequence of in-

structions that are an implicit part of every state's exit method will remove the

state machine's block activation record. As a result, the virtual entity's process

program flow will return to the statement that was being executed just before

the state machine was first initialised (i. e. when the 'setstate' operator was first

used to activate the FSM). If a different target state has been set, then program

flow will branch to the next state's entry method instead.

Once an entry method has been entered, first the current state and the next

state data entries are set to the new current state (i. e. the previous state's transi-

tion target) and the new current state's pre-defined transition target respectively,

188

10.2 Implementation of the System Prototype's Features

before an), other instructions of an explicitly defined entry method are processed.
The last instruction of every entry method will always be a jump to the first
instruction of the state's main method, i. e. the state's body.

The final instruction of every state's body calls the 'stateTrallsition' intrinsic
system function, triggering the FSM's transition to the state referenced in the
next state data entry at the start of the execution of the next instruction.

Within a state machine structure, the structure's members are treated sim-
ilarly to state structures and are mapped to sequences of instructions that re-
flect those encoding the state structures themselves, Member functions of state
structures are translated to a regular function call embedded within the implicit
entry and exit methods. That same mechanism, of using implicit entry and exit
methods, is used for a state's labelled expressions and 'action' members of state
structures.

10.2.4 Implementation of Entity Annotation

Like event handlers that need to be executed separate from the rest of the entity
programs that they are defined in (see Section 10-2.2), exported functions are
stored in separate code segments within an entity's process. This separation
allows other entity programs to access them (see Chapter 9, Section 9.3.1). Within

entity program bytecode, functions that are marked as exported with the 'global'

type qualifier are enclosed with the 'mark exported start' and 'mark exported end'
virtual machine instructions. The 'mark exported start' instruction is only used
when a program is loaded to direct the virtual machine to provide a separate code

segment for the function and therefore it is an instruction that is never interpreted

by the virtual machine while a loaded NPC process is running. Whereas most of
the instructions used in exported functions are identical to the instructions used

elsewhere in entity programs, exported functions use the 'return from exported"
instruction when returning to their caller instead of the regular return instruction.

The 'mark exported end' instruction is the last instruction in every exported
function and will return program flow to its caller if the function does not include

a separate return instruction.

189

10.2 Implementation of the System Prototype's Features

Most of the standard functions that are used for entity annotation are mapped
to intrinsic functions of our prototype system as they are directly interacting with
the run-time environment, while a few standard functions are implemented as se-
quences of regular virtual machine instructions. Within the NPC program that
uses an entity's exported functions, the SEAL/AvDL standard function 'get-
Global' is used to obtain a reference to an exported function.

This process is implemented by first loading the exported function's name (as
a constant string) and the 1D of the process that exports the function onto the
stack and then by calling the 'getFuncAddr' intrinsic system function that returns
either a value pair of process ID and code segment index, which references the
exported function, or the value NULL if no such function exists. This resulting
value can then be stored in a scalar variable that can subsequently be used as an
identifier for the exported function.

The 'getEntity' standard function that retrieves the ID of a process that ad-
vertises an exported function, however, is not mapped to an intrinsic function.
Instead, it is translated into a simple data handling instruction that retrieves the
low-segment containing the process 1D from the scalar value that references the

exported function.

The system also makes provision for using an exported function whose parent
process is unknown -a mechanism that is used for the 'getGlobal' standard
function of the AvDL or SEAL systems if the function is invoked within the

main program code, rather than an event handler. In that case the 'getExported'

intrinsic system function is called. This function will search all exported functions

that are known to the system for the first function that matches the requested
identifier and returns a reference to the function as a scalar value, optionally

allowing the specification of the requested function's signature (i. e. its return
type and formal parameters)-

Once a reference to an exported function is available, it can be used to execute

the exported function. For this to happen, if the exported function expects

parameters. then first all of the function's parameters need to be loaded onto

the stack, after which the variable that references the exported function must

be loaded onto the stack. Subsequently the instruction to execute an exported

function is invoked, which will push a reference to the code segment that holds

190

10.3 Considerations for Extension to Full AvDL Specification

the exported function onto the process's code segment stack. This will make the

exported function's code segment the currently active code segment for execution
which will direct program flow to the instructions of the exported function. If

during the execution of the instructions of the exported function no invocation of
the 'return from exported' instruction is encountered, then eventually the 'mark

exported end' instruction, which is the last instruction in the code segment of

every exported function, will be executed. Like the 'return from exported' virtual

machine instruction it will remove the exported function's code segment from the

code segment stack and restore the last active code segment used by the NPC

program at the top of the process's code segment stack, allowing the process to

resume its regular execution.

10.3 Considerations for Extension to Full AvDL

Specification

The system prototype presented here was designed to implement the features

described in the SEAL specification. Consequently the prototype does not make

explicit provision for object orientation, which is mainly a compiler issue ýsee

Chapter 12, Section 12.3), as the virtual machine's instruction set should already

be capable of handling programs that utilise features that are beyond the SEAL

specification and that are actually part of the AvDL specification, such as object

oriented AvDL programs (see Table 10.2).

The same is mostly true for the implementation of arrays, i. e. statically

allocated arrays could already be implemented on the existing prototype. Dy-

namically allocated arrays, including associative arrays, however, would require

the implementation of the memory manipulation instructions for which op-codes

have already been reserved (see Section 10.1.1).

191

10.3 Considerations for Extension to Full AvDL SpecificatioD

AvDL source code instructions

class object
I

scalar datal;

scalar data2;

objecto;

scalar method(void);

1;

object: : object() // cop, structor
f

datal=5;

dat a2=2.5
I

scalar object:: method (void)

scalar retval;

retval = datal+data2;

return retval;

Constructor:

isa 3
ldc 5
ldc 0
lod 0 -1
add
sta
ldc 2.5
ldc 1
lod 0 -1
add
sta
ret

Method "method":

isa 4

ldc 0
lod 0 -1
add
lf a
ldc 0

lod 0 -1
add
lfa

add
str 0 3

lod 0 3

ret 1 $1

load value for datal
load offset for datal
retrieve "this" pointer

add offset to address
store data to address
load value for data2
// load offset for data2
retrieve "this" pointer
add offset to address
store data to address

// load offset for datal
retrieve "this" pointer
add offset to address
load datal
// load offset for data2
retrZeve "this" pointer
add offset to address
load data2
add datal and data2

store in retval
load retval
return retval

Table 10.2: Translation example for an AvDL class.

192

10.3 Considerations for Extension to Full AvDL Specification

10-3.1 Considerations for FuSM Implementation

An implementation of the tentative FuSM type described in the AvDL specifica-
tion (see Chapter 8, Section 8.2.1.3.2) could take the form of a sort of globally
accessible record data structure on a process's stack. This data structure could
hold as its first entry a reference to the state itself (i. e. the weight value of the
fuzzy state structure itself), followed by entries for the data members of the state
structure.

The -setstate' operator for defining the degree of activity of fuzzy states would
be translated to simple data handling instructions, capping the state values be-

tween '0.0' and '1.0' and storing the result within the data entries that correspond
to the states that are set on the process's stack.

Similar to the querying of states in FSMs, the querying of a state's value in
FuSMs is not implemented using any special operators or system functions but

instead it is translated to the simple retrieval of the data stored in the state

record's data entry on the process's stack.
As the mapping of these data entries to their corresponding states is a trans-

lation issue that would need to be addressed by a compiler for AvDL programs,
the implementation of this type of FuSM would not require the extension of the

virtual machine with additional instructions or intrinsic system functions, but

could be realised with the features of the current system prototype.

10.3.2 Considerations for Goal Implementation

The implementation of goal-oriented action planning using the method described

by Orkin [2004a] would require the extension of the system's process data struc-

ture to include a list of goal nodes that would need to contain the goal's priority

(weight) value as well as a means for storing links to other goal nodes.

During the loading of an entity program, each goal defined in the process's

entity program would then be added to this list of goals, defining the search space

for a planner that would be invoked by the use of AvDL's 'plan' operator. This

planner itself would be implemented as a dedicated search method, provided to

the virtual machine and utilising the A* algorithm as presented earlier in this

193

10.4 Interfacing a Host Application with the
System

thesis (see Chapter 4, Section 4.3.3). complemented with a different cost function
based on the priority values assigned to each goal.

In addition to the implementation of the planner itself, the run-time environ-
ment"s AP1 could also be provided with a means to allow the registration of an
alternative search function with the virtual machine, i. e. a planner interface to

allow for greater custornisation by enabling the host application's developer to
implement a custom planning method.

This could be achieved by using a mechanism based on the implementation

of callback functions (see Section 10.2.1) for this planner interface, similar to the

way in which comparisons in search and sort functions are implemented in the C

programming language's standard library [Prinz and Crawford 2006].

10.4 Interfacing a Host Application with the

System

The prototype's run-time system can be integrated into a host application that

creates a virtual world that can be inhabited by virtual entities, i. e. typically a

game engine. For this the system's virtual machine, which manages entities that

have been defined by programs written in AvDL or SEAL, provides an API that

allows the host application to access the run-time environment.

10.4.1 The System API

calFback
+ <<Ab&act>> asajeo: bod

ý+<Za "__ vm"
+ tct>>>

entity callswcý_t

- oo: irt=-1 + geftands (irdw: ccnat irt) d3be

+ gstFID(): irt + qdPj*xr4, A uB: ocrat doudO Wd

+ mp[)(FID : ocnd kt) : Wd + sdpAomXx4 us: ccnst icat) : Wd
+ md; avXxd us: ccnst irt) : vdd
+ qdRdixrýWua: caW dw): %dd

Figure 10.3: The classes of the run-time environment's API.

194

10.4 Interfacing a Host Application with the
System

The API of the prototype system's run-time environment is made up from
several classes (see Figure 10.3) that provide methods for loading, executing and
influencing virtual entity programs in the virtual machine.

The purpose of some of these classes is to facilitate the definition of callback
functions and the binding of virtual entities in the virtual world of the host
application to their corresponding entity processes that are running on the virtual
machine, using the multiple-inheritance functionality of the C++ programming
language [Stroustrup 1997]. A virtual entity class from which the entities that
populate the host application can be instantiated and that is to be associated with
a SEAL or AvDL program must be derived from the API's 'entity' base class. Any

class that includes functions that are supposed to be used as callback functions for
the virtual machine needs to inherit from the API's abstract 'callback' class and
must implement the derived class's 'execute' method. Within this method, the

callback's call-stack can be accessed through methods of the API's 'callstack-t'

class.
Other classes of the API provide the management architecture for extension

libraries, as well as templates for the creation of extensions (see Section 10.1.2).

The API's main point of access, however, is the virtual machine object itself,

as it contains the functions that are essential for the operation of the run-time

environment. This object is an instance to a class that employs the singleton
(design) pattern [Boer 2000], i. e. an object of which only a single instance can

exist and which is accessible solely through the method 'Instance'.

The API contains different types of interface methods (see Appendix F) that

allow the host application to interact with the system prototype's run-time envi-

ronment. First of these are the methods that allow the initialisation of the virtual

machine and the setting up of virtual entities, including the loading of entity pro-

grams, the registration of events and the registration of callback functions. This

also includes the registration of special events, such as the export notification

event and its associated callback function that is used to determine if a process is

eligible to be notified about the availability of another entity's exported functions.

This type of method also includes the main scheduling method (named 'run) that

should be invoked for every update cycle of the host application, which is usually

once for every rendered frame.

195

10.4 Interfacing a Host Application with the
System

Another type of method are the virtual machine's housekeeping functions that
provide non-essential functionality, which are limited to the identification of the
system's version in the current prototype.

Then there are API methods that allow the host application to influence

running entity processes, including among others the triggering of events in the

virtual machine, which can be achieved by using the 'spawnEvent' method, as
well as methods for altering a process's priority in the virtual machine, which
can be useful if the host application attempts to implement some sort of entity
level-of-detail (LOD) operations [Brockington 20021.

This last type of API method also includes the API method 'setValue', which
is used to alter the content of variables that have been marked with the 'volatile'

type qualifier in SEAL and AvDL programs. Within the run-time environment
these variables are stored in data entries on the bottom of a process's stack,

similar to global variables, despite the fact that their scope, which is managed by

the language's translator, is not global. This provides the host application with

a mechanism to directly affect the execution of running NPC programs.
Embedding the system prototype's virtual machine into a host application

using the methods of the run-time environment's AP1 is uncomplicated and just

as simple as the integration of the ZBL/O virtual machine into a game engine
(see Chapter 7, Section 7.2.4.2). After the instantiation of the virtual machine
by retrieving an instance of the virtual machine object, the minimum requirement
for the creation of a virtual entity is the creation of an entity process on the virtual

machine, the association of that process with an object that resides in the virtual

world and the invocation of the scheduler for every update cycle.

10.4.2 Using the System API

The integration of the prototype system into a host application requires the cre-

ation of virtual entities and the instantiation of the virtual machine with which

these entities can then be registered, as shown in the following example.

lf an entity process is supposed to be associated with an entity object that

resides in the host environment, then that object's class must be inherited from

the system API's 'entity' class. Any object that is created as an instance of

196

10.4 Interfacing a Host Application with the
System

this derived class is a virtual entity that can be used by the system prototype's
virtual machine. If this class requires an entity program to access some of its
functionality, the class describing the virtual entity must also inherit from the
APF's 'callback' class, as shown in the class given below (npc).

#include "entity. h"
#include "callback. h"

class npc : public svm:: entity, public svm:: callback
f

public:
bool execute Unt method, svm: : callstack-t &callstack)

1;

For an instance of this virtual entity to be associated with an NPC process,
the system's virtual machine needs to be instantiated.

#include "vm. h"

svm: : vm *virtualMachine = NULL; // pomter to the virtual machine

I

// retrieve an instance of the virtual machine

virtualMachine = svm: : vm: : Instanceo;

After the creation of an instance of the virtual machine, the next step is the

registration of any events that entity programs need to be notified about.

197

10.4 Interfacing a Host Application with the
System

// repster the event 7' event"
virtualMachine->registerEvent ("event");

If there are callback functions that need to be accessible to all entity pro-

cesses, such as default actions that act as fall-backs (see Section 10.2.1), they

should be registered with the virtual machine after the registration of the events.
If not, then the next step is to load in the entity programs to create the entities'

processes on the virtual machine and then to associate these processes with the

entity objects in the host application.

// create an entity object "'gameBot" based on the npc class

npc gameBot;

// create a process that runs the "entity. sbp" program
int proc=virtualMachine->addProgram ("entity. sbp");

// associate the entity object with the entity process

virtualMachine- >registerEntity (pro c, &gameBot)

Afterwards, any process-specific callback functions, such as those included in

the definition of the entity object, need to be registered for the entity process.

register the first callback function "cbI

(no parameters or return value)

virtualMachine ->registerCallback (pro c, &gameBot, 1, %bl"Jalse, O);

regtster the second callback function "cb2"

(three parameters and a return value)

virtualMachine->registerCallback
(pro c, &gameBot, 2, "cb2", true, 3);

198

10.4 Interfacing a Host Application with the
System

I

Once the set-up of the entity programs and the virtual machine has been

completed, the 'run' method of the run-time environment's API should be called
once during every update-cycle of the host application, which is usually once per
rendered frame. This method then performs the execution cycle of the virtual
machine, first handling all events that have occurred and then executing the en-
tity programs themselves.

virtualMachine->run () ;

The API makes provision for additional operations, such as querying and
handling of virtual machine run-time errors, however these are not essential for

integrating the system prototype's virtual machine into a host application.

199

Chapter 11

Analysis of the System

AvDL is a comprehensive scripting language for the definition of virtual entities
that populate the virtual worlds of computer games, i. e. NPCs (tactical oppo-
nents, incidentals, team-mates and even observers - see Chapter 2, Section 2.2)

as well as objects that the NPCs can interact with. The AvDL system pro-

vides a synthesis of the functionality of a wide range of different technologies

that are used in the development of virtual entities in modern computer games.
The system supports different concepts, such as deterministic behaviour as well

as goal-oriented behaviour and the means for the creation of annotated entities.
All of these are exposed through a consistent language and combined within a

single unified system that is generic, i. e. not limited to a single type or genre of

computer game. The syntax and structure of AvDL attempts to accommodate

novice programmers as well as those who already have some experience with the

programming languages CIC++ or Java. Furthermore, in all likelihood due to

its similarity to these popular production languages, the system also provides the

means for much wider use of AvDL, possibly even in a more generic scripting

role.

11.1 Meeting of Criteria

The design of AvDL and its SEAL subset was directed and informed by the

requirements that we believe have to be met by a BDL for virtual entities in

computer games (see Chapter 5, Section 5.2). In contrast to the ZBL/O scripting

200

Meeting of Criteria

language (see Chapter 7, Section 7.2) that was our first attempt to create a
(procedural) BDL, which does not fully conform to all of these demands, we
believe that the requirements that we identified earlier are met by AvDL, and in
part also by AvDL's SEAL subset.

11.1.1 Language Requirements

To be useful as a BDL for the creation of virtual entities in computer games
of different genres. the language needs to satisfy several criteria (see Chapter 5,
Section 5.2.1). One of the requirements for the specification of a BDL was to
keep the language generic, a possible solution to which is to base the BDL on an
existing production language. Being based on the C++ [Stroustrup 19971 and C
[Kerninghan and Ritchie 1988] programming languages, both scripting languages
(AvDL and SEAL) fulfil this requirement.

A simple examination of the types of virtual entities found in modern com-
puter games shows that while the generation of simple deterministic behaviour for
NPCs is sufficient for some games, other games attempt to increase the believabil-
ity of their entities by making them display goal-directed behaviour. A generic
BDL for use in games will therefore have to accommodate both of these game Al

methods. This directly leads to the demand for the inclusion of a state machine
data type, as FSMs are one of the most frequently used game Al techniques.
AvDL and SEAL both include a state type that allows for simple state machines
to be defined using basic instructions and data structures of the language itself

without the need for any libraries to extend the capabilities of the system. The

provision of goal-orientation specific data types and operators is another BDL

requirement that has been met by the AvDL specification.
A further requirement was to keep the BDL simple, i. e. to avoid overload-

ing the language with too many features. This can be achieved by refraining
from the use of intrinsic functions that are hard-coded into the BDL's run-time

system, and by allowing additional functionality to be provided through an ex-

ternal library of functions. After all, "a language cannot support everything, but

conceivably, a large set of libraries could" [Stroustrup 2005]. Unlike the ZBL/O

behaviour definition system, AvDL and SEAL have reduced the system's reliance

201

11.1 Meeting of Criteria

on intrinsic functions to a bare minimum, with only a handful of intrinsic func-

tions being integrated with the virtual machine. These functions do not provide
any complex operations but are low-level system functions that allow entity pro-
grams to directly access the run-time environment. Entity programs can acquire
additional functionality through callbacks of the 'action' type, and in the case of
AvDL through plug-ins for the system's extension architecture.

A BDL for modern computer games needs to support entity annotation and

smart environments, as a behaviour definition system which implements this

promising technique provides a powerful means for simplifying the creation of
intelligent NPC behaviour. The facilities for this are included with AvDL as

well as its SEAL subset and, as its name implies, the SEAL subset of AvDL was

especially designed with the creation of annotated virtual entities in mind.
The creation of programs for the definition of virtual entities would benefit

from the additional level of abstraction offered by an object oriented approach,

which is why simple object orientation is another requirement for the specification

of BDLs. AvDL satisfies this demand for object orientation with the inclusion of

its 'class' data type, which makes AvDL a language that has all of the features

of a BDL, conforming to the requirements that we identified in chapter 5.

The SEAL subset of AvDL may only be a procedural programming language

that does not have any object oriented data structures, however, through its FSM

and event types it does have game Al specific data types, as well as the operators

associated with these types. SEAL can be used to define virtual entities and to

annotate them for deployment in smart environments. So, while it is not strictly

speaking a BDL according to our definition, as it does not fulfil all criteria, SEAL

should still be classified as a BDL, as it satisfies most of them.

11.1.2 Run-Time System Requirements

As the purpose of run-time system's virtual machine is to form the core of a

behaviour definition system, it also needs to fulfil certain criteria (see Chapter

5, Section 5.2-2). To allow a host application to be extended with the behaviour

definition system, it should be implemented as a separate module that is either

embeddable or that can be accessed as a plug-in. By being implemented as a

202

11.1 Meeting of Criteria

library that is accessible solely through its AP1, i. e. an embeddable module, our
system prototype does exactly that.

This separation into its own module is a precondition for the requirement to
keep the execution of BDL programs apart from the rest of the application. It
would be highly undesirable if any mistakes in an entity program, which would
result in run-time errors on the virtual machine, could destabilise the host ap-
plication itself and thus lead to program failure. However, a sufficient degree
of run-time stability can be attained by monitoring the execution of entity pro-
grams and pre-emptively terminating these if errors that could cause run-time
instabilities occur.

The architecture of our prototype's virtual machine maintains the indepen-
dence of BDL programs from the run-time system's host application. Running

entity programs are stopped by the virtual machine when they fail, leading to the

graceful degradation of the run-time environment without aff(-,, ctiiig the running
of the host application.

The run-time environment should have as small an overhead as possible for
the execution of BDL programs. One way that this aim can be achieved is for

the virtual machine to use pre-compiled bytecode rather than to interpret the
BDL itself at run-time. This is the exact strategy used in our system prototype's
virtual machine that is based on the ZBL/O virtual machine (see Chapter 7,
Section 7.2.3), which has what we believe is a small execution overhead.

The final criterion for the BDL's run-time environment is platform indepen-

dence, as many games are now simultaneously published for several platforms.
This criterion is met by our prototype system, which provides a portable virtual

machine that has so far been implemented for the Microsoft Windows operating

system.
As a platform independent and robust virtual machine that can be embedded

into any C++ based host application, our system prototype fulfils all of the

identified requirements for a behaviour definition system's run-time environment.

203

11.2 Features of the Avatar Description
Language

11.2 Features of the Avatar Description
Language

AvDL was developed with the goal of providing a unified method for defining the
behaviour of virtual entities in computer games and provides a simple syntac-
tic mechanism for the aforementioned purpose. The design of the language was
guided by the aim to make this mechanism accessible to programmers, as well as
game designers who may only have a limited knowledge of computer program-
ming. The language is in itself consistent, with different features of the language
being exposed to the programmer using similar syntactical elements, e. g. the use
of the '(V (at) symbol to precede the definition of weight values for fuzzy states
as well as goals (see Chapter 8, Section 8.2.1).

The starting point for the specification of the language was the C++ program-
ming language. A significant modification to C++ was the introduction of the

entity type that encapsulates AvDL and SEAL programs, which also provides
the BDL program's entry point. This was inspired by the structure of Pascal

programs [Wirth 1993] that are encapsulated by the 'program' keyword and the

definition of the program's main routine. "A Pascal program has the form of a

procedure declaration" [Wirth 1973] that allows the declaration and definition

of subroutines, data structures and variables which are used by the program in-

between the declaration of the program and the definition of its entry function.

This seemed to be a more logical solution for providing the program's entry point

than those used by C/C++ and Java, i. e. the requirement to define an entry
function with a pre-determilied (reserved) identifier, such as "main".

11.2.1 Object Orientation

Object orientation was integrated into the AvDL specification from the very

beginning, however, it has been considered less important than several other of

the language's features and thus not been given as much attention as the game

Al specific data types. The definition of object oriented classes in AvDL is a

simplification of object orientation in C++, based on C++ 'struct' records.

204

11.2 Features of the Avatar Description
Language

Object orientation as such is independent of the virtual machine, i. e. it im-
poses no special requirements regarding architecture and make-up on the run-time
environment. Instead the implementation of object orientation is a compiler issue,
as object oriented classes can be broken down into a procedural code represen-
tation [Blunden 2002], which in turn can be targeted at the system prototype's
instruction set.

11-2.2 FSM Type

The finite state machine type found in AvDL., as well as in SEAL., is probably
the most important data type of these languages. FSMs are the cornerstone of
most game Al implementations and no BDL would be complete without a means
for defining FSMs.

FSMs could have been implemented as a special data structure within the

process objects of the system prototype's virtual machine, accompanied by a set of
dedicated virtual machine instructions and intrinsic system functions. However,

this sort of integration of features would have unnecessarily bloated the virtual

machine. Instead, FSMs in AvDL and SEAL work through a combination of the
FSM structure's decomposition into basic instructions of the virtual machine and
the addition of a switch within each process object that is activated when a state
transition is triggered. We believe that this is a more elegant solution than the

addition of a separate state data structure to the virtual machine.

11.2.3 FuSM Type

Although the exact makeup and functionality of this data type is not finalised in

the AvDL specification, the data type and the semantics described in this thesis

(see Chapter 8, Section 8.2.1.3.2) are the most likely candidate for inclusion

in the final system. This is a minimalist approach in which the FuSM is only

used to maintain the fuzzy states and to manage access to their values. Unlike

the system's FSMs, the FuSMs do not have program flow diverted to the state

machine. On the one hand the management effort for an FuSM is smaller than

that of an FSM, as there are no transitions, which in turn means that for the

state machine itself, fewer instructions are needed in the virtual machine. On the,

205

11.2 Features of the Avatar Description
Language

other hand, the burden of providing an interpretation of the FuSM is put on the
programmer, which may result in more complex entity programs.

A different fuzzy state interpretation from the above, and one that is fre-
quently applied in game Al development, is that of behaviour competition, which
results in the choice of the state that has the highest value or a random selection
if that value is simultaneously held by several fuzzy states. Despite the differ-
ent semantics, the syntax of the above type of FuSM could be utilised virtually
unchanged for the behaviour competition FuSM, if an FuSM equivalent to the
FSM's 'getstate' operator were added to the language specification. Currently
no decision has been reached regarding the final semantics of the FuSM data
structure; however, this issue will have to be addressed for the extension of the
systein towards the implementation of the full AvDL specification (see Chapter
12, Section 12.3).

11.2.4 Goal Data Type

Of all of AvDL's data types the goal data type did evolve the most during the
development of the language specification, being the last data type to be finalised

apart from the tentative fuzzy state machine type (see Section 11.2-3). Goal-

orientation is increasingly employed for the definition of the behaviour of virtual
entities in computer games. Earlier versions of the goal type were a lot more
deterministic, requiring the programmer to provide each goal with the instructions

that would need to be executed to reach the goal, making this type appear like

an inverted FSM. This goal type also did not include the provision of weights
for goals. This type, which could hardly be called a goal type, would have been

far more restrictive than the data structure that is described in this thesis. We

believe that the approach presented by Orkin [2004a] provides the most promising

solution to goal-orientation in games and the final specification of the goal data

type was influenced by this method.

11.2.5 Entity Annotation

Our system prototype provides a working mechanism and interaction protocol

that allows entities to be annotated and other entities to utilise these annota-

206

11.3 Concluding Remarks on AvDL and its
SEAL Subset

tions (exported functions), However, the specifications of AvDL and SEAL do
not include contingencies for synchronisation problems that may arise if several
processes attempt to simultaneously access the same annotated entity. In entity
programs this potential problem has been partially addressed by switching off
the advertising of exported functions as soon as one process initiates the entity
annotation interaction protocol (see Chapter 9, Section 9.3.1), effectively locking
access to the annotated entity's exported functions. Depending on the implemen-
tation of the entity program this can serve as a simple mechanism for deadlock
[Tanenbaum 2001] prevention, as once an entity stops advertising its exported
functions no other entity can query the code segments of these functions, effec-
tively denying access to all entities except the one that requested the annotated
entity's "silence".

The languages' specifications also do not consider situations in which an ex-
ported function attempts to change data in its parent process's memory while
being executed from a different process, which could seriously disrupt the work-
ing of the system if this occurred in combination with several processes accessing
the exported function, as mentioned above.

A solution to these potential problems could take the form of additional safety
features that are built into the system's virtual machine, modifications to the lan-

guage specification or a combination thereof. This issue will have to be addressed
by future implementations of the system (see Chapter 12, Section 12.3).

11.3 Concluding Remarks on AvDL and its

SEAL Subset

AvDL and SEAL provide a framework for the definition of the behaviour of virtual

entities, and while both languages provide data structures that greatly simplify
the construction of these virtual entities, their seemingly intelligent behaviour

is not generated by the BDLs as such. The purpose of the BDLs is to manage

and tie together the functionality of the virtual entities, which is provided to

the behaviour definition system by the host application. This means that the

207

11.3 Concluding Remarks on AvDL and its
SEAL Subset

functionality of AvDL and SEAL programs is entirely dependent on the imple-

mentation of the virtual entities that they control within their host application.
The resulting system is compact and highly extensible. It is our firm belief that

the AvDL system matches the requirements for a behaviour definition run-time

system, making it sufficient for defining and controlling the majority of artificial

entity types that can be found in current computer games.

208

Chapter 12

Conclusion

12.1 Summary of Contributions

Our exploration of behaviour definition for virtual entities in computer games has

yielded several contributions to knowledge.

12.1.1 Syntactic Behaviour Definition for Virtual Entities

The principal contribution of this thesis is the definition of Behaviour Definition

Languages (BDLs), illustrated with the design of the AvDL behaviour definition

scripting language. AvDL is a new extensible behaviour definition language for

virtual entities, developed to conforin to our definition of BDLs, which we believe

to be suitable for application to NPCs in computer games. Its design was aided
by the creation of several other BDLs for virtual entities, namely ZBL/O and
AvDL's SEAL subset, and to a certain degree the GP Asteroids Script language

and the C-Sheep mini-language, the development and implementation of which
involved an evaluation of different approaches and implementations.

12.1.2 Classification of BDLs and Scripting Systems in

Computer Games

Secondary contributions include a comprehensive investigation of scripting lan-

guages in computer game development, which led to the proposal of a simple

209

12.2 Discussion

classification of scripting systems in games. as well as a detailed examination
of programming language requirements and design principles in support of our
definition of the term behaviour definition language (BDL). For this we also car-
ried out a comprehensive survey of the use of artificial intelligence techniques
currently used in computer games [Anderson 2003a] (see also Chapters 2 and 4).

12.1.3 Implementation of a Prototype Behaviour Defini-
tion System

In order to test a number of hypotheses relating to the AvDL behaviour defi-
nition language we designed and implemented the ZBL/O scripting system. In

particular. we used this system as a test bed for different approaches to the im-

plementation of the interface that enables the exposure of behaviour definition

capability to computer game engines, to make the creation of reusable behaviours
for virtual entities possible. Progressive refinement of this system's virtual ma-
chine has led to the implementation of our system prototype for AvDL's SEAL

subset which allows deterministic behaviour definition using FSMs as well as the

more einergent behaviour definition that is the result of the use of smart terrain

and annotated objects, the procedural definition of which Doyle [2004] in the con-
clusion of his thesis suggests to be a promising avenue for future investigation.

Our game-genre independent embeddable behaviour definition system exposes
different methods of behaviour definition, including the definition of virtual enti-
ties, as well as elements of their environment that they can interact with, through

a single software interface providing a framework for the creation of NPCs in vir-
tual (game) worlds.

12.2 Discussion

language is what gives humans enormous leverage over the universe" [Wilcox

20071. Analogous to this, scripting languages in games, which provide control over

the behaviour of the application, give the programmer "enormous leverage" over

the game's virtual reality, and in the case of BDLs, over the virtual entities that

inhabit the game world. The aim of our research has been to create a generic

210

12.2 Discussion

Al behaviour definition system for computer games. which employs a syntactic
solution to the problem of behaviour definition. The focus of our work has been
to gain a sufficient understanding of the game development process and the use of
artificial intelligence techniques in computer games to bring us closer to achieving
this goal.

Fuelled by the improvements to graphical realism in games and the growing
demand for content to enrich the virtual worlds, the games industry has recently
experienced a drive towards automated content generation [Nareyek 2007], which
is usually approached using procedural techniques. Syntactic behaviour defini-
tion, i. e. the use of a (scripting) language to procedurally program the behaviour

of virtual entities, is consequently a step in the right direction. While we are con-
vinced of the usefulness of the BDLs that we created in the course of our work,
programming language evaluation is not a trivial task and "often, the choice
of programming language comes down to aesthetic issues, which are necessarily
subjective", as Horswill [2000] poignantly states.

Our behaviour definition (scripting) system design builds oil our understand-
ing of the evolution of scripting languages from the early command-line inter-

preters to modern embedded systems, as well as common game AI techniques.
A common denominator of many of these systems is the need to balance perfor-

iiiance (execution speed) and flexibility, which are conflicting objectives. Judging

from the performance of its predecessors (ZBL/O and C-Sheep), which used very

similar virtual machines, we believe the execution speed of our system to be ade-

quate for most situations. Furthermore, thanks to the language's extensible and

mostly generic nature, which grants it a lot of flexibility, programs that are writ-

ten in the AvDL behaviour definition scripting language should scale well to the

demands of game developers.

"Onc characterization of progress in programming languages and tools

has been regular increases in abstraction level - or the conceptual size

of software designers building blocks" [Garlan and Shaw 1994].

This is reflected in the data structures of AvDL and SEAL, such as the goal

and state types that provide bigger "building blocks" for operations that could

be decomposed into simpler instructions and constructs of the scripting language,

211

12.2 Discussion

Nvhich would acliie\-e the saine effect but require a lot more effort by the program-
mer and result in a lot more source code. It should be noted that the instruction
set of the system prototype's virtual machine was finalised after these language
features had been decided upon, however, not all of these features were made
accessible through dedicated instructions or intrinsic system functions. Instead,
during the design of our prototype system the virtual machine instructions that
encode these more abstract data structures were generated by adapting results
of the compilation of sequences of the language's regular types and instructions
emulating the abstract types. This is achieved by using a modified version of the
C-Sheep compiler [Anderson and McLoughlin 2006], which targets a predeces-
sor of the system prototype's virtual machine that shares a large proportion of
its instruction set with the system prototype's virtual machine. This means that
various game Al specific data structures of the language are effectively mapped to
the existing instruction set of the virtual machine. In hindsight, the decision not
to implement AvDL's features by simply adding appropriate data structures to
the virtual machine and exposing access to them through special virtual machine
instructions was arguably the most important choice regarding the architecture
of the virtual machine. Many of the instructions incorporated into the virtual
machine closely mirror machine instructions that are built into existing hardware,

which means that in the future it may be possible to compile AvDL programs into

native code using a true OTF compiler (see Section 12.3.2), which in turn could
boost the performance of the behaviour definition system. This. however, would

not be a possibility if a different approach to the design of the virtual machine

and its instruction set had been followed.

We believe that our system prototype has all of the characteristics of a modern

scripting system for game development and that, although not yet complete, it

is already usable. However, ultimately a field trial may need to be conducted

when the first full prototype that completely implements the AvDL specification
is ready for deployment to verify the suitability of the language for computer

game development.

212

12.3 Future Work

12.3 Future Work

A by-product of our exploration of behaviour definition systems is the C-Sbeep
project, a system for the teaching of introductory computer science and program-
ming which is work in progress and continues to evolve. Future versions of the
C-Sheep system should benefit from some of the conclusions arrived at during
the course of our research and the work presented in this thesis. This work itself
is continually evolving and we endeavour to improve the system's prototype, as
we believe that additional work is necessary before the system is mature enough
for being incorporated into a game engine.

An obvious starting point is the extension of our system prototype to imple-

inent the full AvDL specification. In addition to this we have already begun to
implement a recursive descent compiler for AvDL`s SEAL subset which we plan to
integrate with the system and which will eventually lead to the provision of a full

compiler for AvDL programs that implements all features of the AvDL specifica-
tion. The integration of this compiler into the run-time system first as an AOT

compiler for the compilation of entity programs at process initialisation within
the virtual machine, and then as a type of OTF compiler for the replacement

of existing functions during program run-time, possibly allowing the creation of

self-modifying virtual entities, would bring the system closer to completion and
increase its usefulness for game development.

In addition to the completion of the system we have also identified several
lines of investigation which we intend to follow.

12.3.1 Language Additions

While the AvDL language includes all of the features that we consider necessary
for BDLs, the system could benefit from the exploration of the integration of

additional features, such as history- augmented inputs as described by Blow [2002],

which would allow AvDL programs to provide virtual entities with a memory of

their actions. These would be very useful for implementing machine learning

functionality, greatly increasing the flexibility of the system.

A further useful technique for game Al behaviour definition, which we plan to

evaluate for possible inclusion into the AvDL system, is messaging [Rabin 2000b].

213

12.3 Future Work

This would allow communication between virtual entities beyond the capabilities
of the current system which relies on the triggering of simple events as its only
means of communication.

We are also considering to investigate the feasibility of an expansion of the
AvDL specification to support "plot scripts" (as opposed to conventional pro-
grams) to allow for the better application of our system to story-driven computer
games. This kind of script is often found in interactive drama [Magerko 20061 -
a new genre of digital entertainment - where it is used to author the plot of the
game.

In addition to the possible introduction of these new language features, we
also plan to review the effectiveness of the current specification of the language.
Whereas a certain degree of redundancy in the definition of a programming lan-

guage undoubtedly increases the flexibility of the language by allowing various
tasks to be carried out using different methods, as is the case with AvDL (see

appendix D), an unwanted side effect can be that this may make it a lot more

complicated to read and to understand programs that have been written in this
language. Consequently it would be prudent to re-evaluate some of AvDL's dupli-

cate features after field trials of the system have been conducted and to stream-
line the language specification by removing or redesigning features that cause

unnecessary confusion.
Finally, we plan to complete the language specification with an expansion of

the standard function library for the AvDL scripting language, possibly through

the use of a plug-in for the system's extension architecture. In addition to the

functions for the use of annotated entities, this AvDL standard library should

provide standard functions and define appropriate compound data types for solv-

ing a variety of game Al tasks. These functions should ideally adhere to the

standards suggested by the IGDA Al Interface Standards Committee [Narcyck

et al. 2004]. This should then allow the generation of Al entities for a wide range

of different computer games, making AvDL a truly generic behaviour definition

system for NPCS.

214

12.3 Future Work

12-3.2 Run-Time System

Apart from general optimisation of the system's virtual machine, a useful ex-
tension to the run-time system would be the addition of support for run-time
debugging.

A further direction that should be explored is the virtual machine architecture
itself. While stack architectures are the most common virtual machine architec-
ture [Davis et al. 2003], a register based approach may be more efficient [Shi et al.
2005] and also provide more opportunities for bytecode optimisation. While this

would also have implications on code generation for the system's compiler, those

would be minor, as code generation for stack architectures can be adapted for

register allocation with relatively little effort [Wirth 1996].
As the prototype system's instruction set resembles the instructions found

in real microprocessors, the virtual machine could also be enhanced by the in-

tegration of an OTF compiler for translating virtual machine instructions into

native machine code, which should provide a significant increase to the run-time

system's performance.

12.3.3 System API

Linked to the improvements to the run-time system are enhancements to the

system's AP1. The AvDL API is an integral part of the AvDL virtual machine

as it provides the interface that allows host applications to access the virtual

machine and in turn provides AvDL programs running on the virtual machine

with access to data and functions that are defined within the host application.
The versatility of the behaviour definition system could be substantially im-

proved by allowing access to plug-ins of the system's virtual machine through

the API. As a side effect, this could provide a partial solution to the definition

of a plug-in based standard library for the AvDL system, considering that the

host application would probably require a means for providing information to this

library.

A final avenue for exploration is the implementation of the BDL's 'action'

type for which our system prototype employs callback objects, an approach that

may be too inflexible for computer game development. An alternative function

215

12.3 Future Work

binding method could involve the use of functors or possibly a template-based

approach.

216

Appendices

217

Appendix A

A* Sample Implementation

Chapter 4 examined common approaches to the implementation of Al in computer
games. This appendix presents an implementation of the A* algorithm, which
is the most frequently used path planning algorithm in game development (see
Chapter 2, Section 2.3.2.1 and Chapter 4, Section 4.3). Here it is implemented

as a C++ function, utilising the C++ STL (Standard Template Library).

A. 1 Dependencies

The presented implementation depends on the definition of several data structures

and functions. These are a node structure, containing positional information

(see Chapter 4, Section 4.3.2), a pathnode structure, extending the node by

heuristic information used by A* (see Chapter 4, Section 4.3.3), and a function

for estimating the cost of travel (see Chapter 4, Section 4.3.2). For the reader's

convenience these dependencies are repeated below:

A. 1.1 Node

struct node

double x;

double y;

double z;

218

A-1 Dependencies

double

struct node **neighbours;

1;

A. 1.2 Pathnode

struct pathnode
I

node *mapnode; node withm the graph
double fitness; sum of the goal and heurtshc values
double goal; cost of travel up to current node
double heuristic; eshmated cost of travel to destMation

pathnode *parent; parent node within the path

1;

A. 1.3 Cost of Tý-avel

double cost(node *s, node *d)
I

double h=1.0;

double x= (d->x - s->x)*(d->x - s->x);

double y= (d->y - s->y)*(d->y - s->y);

double z= (d->z - s->z)*(d->z - s->z);

double c= sqrt(x+y+z);

c *= (s->p+d->p)/2.0;

h += (d->y - s->y) / (5.0*fabs(d->y - s->y));

c *= h

return c;
I

219

A-2 A* Function

A. 2 A* Function

Given the above node data structures and cost function (see Section A-1 above),
a function implementing A* path planning could be written as shown below:

std: : list<node*> aStar(node *start, node *goal)
f

std: : list<pathnode*> open-list;

std: : list<pathnode*> closed-list;

pathnode *P=new pathnode; // start node
P->mapnode=start;

P->goal=O;

P->heuristic= cost (start, goal);
P->f itness=P. goal+P. heuristic;

P->parent=NULL;

open-list. push-back(P) add start node to open Itst

while(! open-list -empty())
f

std: : list <pathnode*>: : iterator n=open-list. begino;

Pathnode *B=n; // best node Zn open hSt

for(int i=O; i<(int)open-list. sizeo; i++, n++)
f

if (n->f itness<B->f itness) B=n; // select best node
I

open-list. remove (B) rernove best node froTn open hst

if (B->mapnode==goal) success - path discovered

f

std: : list <node*>path;

while (B! =NULL) // construct path by retractng to start

I

path. push-front (B->mapnode)

B=B->parent;
I

220

A. 2 A* Function

while(! open-list emptyo) //clean, up
I

pathnode *temp=open-list. front();

delete temp;

open-l ist. pop-front ();
I

while(! closed-list. emptyo) //cleanup

f

pathnode *temp=closed-list. front();

delete temp;

closed-list. pop-front () ;
I

return path;

now process all of the best node's ltnks

for (int i=O; B->mapnode->neighbours [i] ! =NULL; i++)

f

node *Cmapnode=B->mapnode->neighbours [i]

double g=B->goal+cost(B->mapnode, Cmapnode);

double h=cost(Cmapnode, goal);
double f=g+h;

bool f oundC=false;

n=Open-list. begino;

for(int j=O; j< (int)open-list. sizeo; j++, n++)

f

if (n->mapnode==Cmapnode) //if in open ltst

I

foundC=true;

if (g<n->goal) // better path found

f

n->goal=g;
n->heuristic=h;

n->f itness=f ;

221

A. 2 A* Function

n->parent=B;

if (! f oundC)
I

n=closed-list. begin();
for(int j=O; j< Unt) closed-list. sizeO ; j++, n++)
f

if (n->mapnode==Cmapnode) // if in open. list

f

foundC=true;

if (g<n->goal) // better path found

I

n->goal=g;

n->heuristic=h;
n->f itness=f

n->parent=B;
I

I

if (! f oundC) // C has never been processed
f

pathnode *C=new pathnode;

C. mapnode=Cmapnode;
C. goal=g;
C. heuristic=h;

C. fitness=f;

C. parent=B;

open-list. push-back(C); // add C to open list

I

I

222

A. 2 A* Function

closed-list . push-back (B) ; // add node B to closed 1W
I

while(! closed-list. emptyo) //cleanup
I

pathnode *temp=closed-list. front();

delete temp;

closed-list. pop-fronto;
I

return std: : list<node*> no path could be found
I

The data returned by the above function is a (C++ STL) list storing the

nodes of the path from start node to destination node for use by the NPC-

223

Appendix B

GP Asteroids Script

This appendix presents the syntax and functions of the GP Asteroids Script lan-
gua, ge discussed in Chapter 7 (Section 7.1) of this thesis, which we developed in
our investigation of genetic programming for NPC behaviour definition [Anderson
2002].

Ink -=. ýj SCORE: 765 CNERGY: 35
000

0
(1) GD (h7

(3D
0

. cr

0

0

0

0

0

SCOREt 515

0

0

-=U. F
ENERGY: 31 000

000

000

ý90 0c

0

00

OODO

0
0

GP Asteroids Script is a LISP like scripting language for the definition of
player behaviour for virtual entities competing in the classic arcade game Aster-

oids.

There are three versions of the scripting language.

1. A basic version.

2. A version with additional "aut oinatic ally defined functions" (ADFs) that

224

B. 1 Original Language Definition

also incorporates several syntactic constraints on the program's "result pro-
ducing branch" (RPB).

3. A version that adds several "super actions" to the basic version of the
language.

B. 1 Original Language Definition

program:

statement:

statement

-E-condition

-sequence

action

void

t: =

boolean:

operator

-ý(TRUE)-

operator:

condition:

rue if t -12! boolean statement statement

if equal boolean boolean statement

sequence:

query:

ýtargetAheadý

targetLocked

accellerating

-(haSEnergýor)-

ChasSchields)

ismoving), -

4ýýlpaCtýAlert

proximityAlert

action:

emergencyStop

225

B-2 GP Asteroids Script with ADFs

B. 2 GP Asteroids Script with ADFs
program- rpb condibon:

rpb statement if crue bool--- ment

ifequal boolean boolean rpbstatement

rpb statement:

- -0-j rpb_statement

=rpco, =nditon

=rpse. =quence

adf action:

I
B-

adt

boolean:

query

operator:

AND boolean boolean

queryi

tarcietAhead

sequence:

conditon:

if- r-ýe statement t. tem. nt

if equal boolean boolean statement

statement:

rpb_sequence:

,
LargetLocked

accelleratinc

-(-hasEne-rgy-ý-

h -as-S
C-h-1

-el ds

lcck-naA-eaj

CV1fl9J_

sTurn i

acA1 art

cr, Dx--- :,. "Aler-

action:

note: "ADF-1", -'ADF-2" and --ADF-3" are identifiers for calling each of the three possible

automatically defined functions in GP Asteroids Script, programs.

226

B-3 GP Asteroids Script with Super Actions

B-3 GP Asteroids Script with Super Actions
program:

-F--sta-te-me-nt

statement:

statement

condition

I sequence I
L ------

-a-c t -io n-

super
action

sequence:

boolean:

operator

query

TR5i)

operator:

AND)- ý boolean boolean

DR ýbooleaýn

Eo: ýýýboý=olean

NOT boolean

condition:

if true -1
2! boolean statement statement

if equal boolean boolean statement

query:

targetAheadj-

targetLocked)

accellerating,

-P(hasEnergy -

ChasSchields)-

lookingAhead)

-(-, Sm-ol--l. -g)-

-(i: -s

(impactAle rt)-

? roximityAlert

action:

-(setThrustý-

--*(noThrust

Shields,

-noS-h -2--ý
eld3

-(rightTurn)-

----irn. T. rn)-

emergencyStop

f ire

super-action:

f ireAtWill

227

BA GP Asteroids Script Functions

BA GP Asteroids Script Functions

B. 4-1 Sensor Functions

The language's sensor functions all return a Boolean value.

(targetAhead)
TRUE if an asteroid is within the player's field of view, else FALSE.

(targetLocked)

TRUE if an asteroid is in the player's direct line of fire, else FALSE.

(proximityAlert)

TRUE if an asteroid is in the player's proximity (within 12 units from the player),

else FALSE.

OmpactAlert)

TRUE if the player is about to collide with an asteroid (asteroid is within 3 units
from the player), else FALSE.

(hasEnergy)

TRUE if the player has energy left, else FALSE.

(plentyEnergy)

TRUE if the player has enough energy for firing more than four shots, else FALSE.

(hasShields)
TRUE if the player's shields are raised, else FALSE.

GookingAhead)
TRUE if the player's direction of movement is identical to the player's heading,

else FALSE

228

BA GP Asteroids Script Functions

(isMoving)

TRUE if the player is moving, else FALSE.

(accelerating)

TRUE if the player has active thrusters, else FALSE.

(isl'urning)

TRUE if the player is turning, else FALSE.

B. 4.2 Action Functions

Action functions are commands (procedures) that do not return a value.

(setThrust)
Activates the player entity .s thrusters.

(noThrust)
Deactivates the player entity's thrusters.

(decelerate)
Reduces the player entity's speed.

(setShields)
Raises the player entity's shields.

(noShields)
Lowers the player entity"s shields.

(rightTurn)
Sets the player entity to turn clockwise.

229

BA GP Asteroids Script Functions

Oeftlýirn)
Sets the player entity to turn anti-clockwise.

(nol'urn)
Sets the player entity to stop turning.

(fire)
Fires a single projectile.

B. 4.2.1 Super Actions

(autoprotect)

Automatically raises the player entity's shields and activates its thrusters if an

asteroid gets too close.

(seek)
Moves the player entity across the screen in search of a target.

(fireAtWill)
Makes the player entity automatically fire projectiles at asteroids that are in its

line of fire.

B. 4.3 Control Structures

The language's control structures direct prograin flow.

(if-true b v1 v2)

If the Boolean function b returns TRUE the void procedure vI is executed, else

if b returns FALSE the void procedure v2 is executed.

(if-equal bl b2 v)

lf the return values of the Boolean functions bI and b2 are identical the void

230

BA GP Asteroids Script Functions

procedure c is exccuted.

(sequence vl v2)
Executes the two void (action) functions vl and v2 one after the other.

231

Appendix C

The ZBL/O Programming
Language

This appendix describes in detail the ZBL/O behaviour definition system that we
developed for the game engine described in Zerbst et al [2003], as discussed in
Chapter 7 (Section 71.2) of this thesis.

CA Game-Bot Scripting Language

ZBL/O is a simple scripting language for the definition of artificial behaviour

for virtual entities in computer games (game-bots). There is only one variable
data type in ZBL/O which can be used to store integer values as well as floating

point values. The functions for controlling game-bots are intrinsic to the ZBL/O

scripting language, i. e. they are built into the language and do not have to be

activated by means of inclusion of a standard library of functions. Functions

can be user-defined, but function parameters in user-defined functions are not

supported by the language and have to be emulated through the use of global

variables. The command syntax of ZBL/O is similar to that of related procedural

languages such as C by Kernighan and Ritchie [1988], Pascal by Wirth [1993] or

PL/O by Wirth [19861. Each instruction in ZBL/O is terminated with a semicolon
('; '). Programs in ZBL/O are terminated with a full stop The ZBL/O

language is not case-sensitive.

232

CA Game-Bot Scripting Language

C. 1.1 Core Functionality

const do else function if

return then uses var while

Table C. I: ZBL/O reserved words.

ZBL/O has a very small set of core instructions for implementing structural
program elements and functions (see Table C-1).

LOADING OF EXTENSIONS:

Extension libraries are loaded at the start of the program above all declara-

tions using the 'uses' keyword, followed by one or more identifiers (separated by

commas) that must match the name of the extension(s).
uses <identifier>

or
uses <identifier>, <identifier>

Example:

uses printLib;

COMMENTS:

The ZBL/O scripting language has only line-comments, i. e. there are no block-

comments. Line-comments are marked with the'#' (hash) character (ASCII 35).

Any character following the line-comment symbol until the next new line (sym-

bol) will be ignored by the compiler.

OPERATORS:

The operators available in ZBL/O are standard arithmetic and logical opera-

tors (see Table C. 2).

233

CA Game-Bot Scripting Language

Priority Symbol Description

1 1 logical negation
2 raise to power
3 division

multiplication
% modulo

4 + addition
subtraction

5 equality comparison
<> non-equality comparison
< less-than comparison
<= less-or-equal comparison
> more-than comarison
>= more-or-equal comparison

6 & logical AND
logical OR

7 value assignment

Table C. 2: ZBL/O operator precedence.

BLOCKS:

Blocks of statements can be created by inserting statements between opening
braces and closing braces (J'). For blocks that enclose functions, constants,

variables and functions with a local scope can be defined above the block. Blocks

themselves are treated like statements and must be followed by a semicolon.

Example:
f

statementl;
statement2;
statement3;

1;

234

CA Game-Bot Scripting Language

CO'NSTANT DEFINITION:

Constants are defined above a block or globally using the 'const' keyword,
followed by one or more constants (separated by commas).
const <identifier> = <value>;
or
const <identifier> = <value>, <identifier> = <value>;

Example:

const false = 0, true = 1;

VARIABLE DECLARATION AND DEFINITION:

Variables are declared (and can be defined) above a block or globally using
the -var' keyword, followed by one or more variables (separated by commas).
var <identifier>;

or
var <identifier> = <value>;

or
var <identifier>, <identifier>;

or

var <identifier> = <value>, <identifier> = <value>;

Example:

var x= 10, Y;

FUNCTION DEFINITION:

Functions are defined as a block of statements following the 'function" key-

word.
function <identifier>; <block>;

Example:

function turn-away;
f

turn-left;
turn-left;

235

C-1 Game-Bot Scripting Language

1;

By default the value returned by functions is I (one). If any other value is
to be returned this has to be done using the 'return' statement.
return;
or
return <value>;

Example:

function false;

return 0;

Using the 'return ' statement will exit the function. If no return value is pro-
vided. the default return value I (one) will be returned.

Example:

function true;
I

return;

1;

Functions are called by using the function's identifier (name) followed by a semi-
colon. Recursions are possible. Functions can be nested, so the definition of local
functions with a limited scope is possible.

CONDITIONAL STATEMENTS:

There is one conditional statement in the ZBL/O scripting language which
allows for one optional alternative. The statement consists of the 'if' keyword

followed by a conditional expression and the 'then' keyword followed by a state-

ment. Alternatives can be expressed by following the above with the 'else*' key-

word followed by the alternative statement.
if <expression> then <statement>;

236

CA Game-Bot Scripting Language

or
if <expression> then <statement> else <statement>;

ITERATIONS (Loops):

The only iterative construct in the ZBL/O scripting language is the head-
controlled loop. The statement consists of the 'while' keyword followed by a
conditional expression and the 'do' keyword followed by a block.
while <expression> do <block>;

Example:

#a simulated for loop
i=O;

while i<10 do
f

i=i+l;

1;

C. 1.2 ZBL/O Function Set

ZBL/O has a very small set of powerful (partially context-sensitive) core instruc-

tions. This section describes these ZBL/O standard functions and their usage.
Each ZBL/O function is presented together with the corresponding function pro-
totype of the ZBL-API's game-bot interface.

HOUSEKEEPING FUNCTIONS:

The language's housekeeping functions include instructions that directly con-
trol the existence of a game-bot within the virtual world, as well as receptors
that provide world-state information that cannot be perceived by the game-bot's

regular sensors.

ZBL/O: danger
ZBL-API: int zb-checkDanger (void);

Returns the value I if an enemy entity is close to the game-bot (sets an internal

game-bot state)-

237

CA Game-Bot Scripting Language

ZBL/O: die
ZBL-API: void zb-doDie(void);
Kills the game-bot.

ZBL/O: find <object>
ZBL-API: void zb-doFind(int);
Nlakes the game-bot follow a path to the memorized location of <object> (see
'memorize') - should set an internal "path-following" game-bot state.

ZBL/O: idle
ZBL-API: int zb-checkIdle (void);
Returns the value I if no path is being followed and there is no danger (sets an
internal game-bot state).

ZBL/O: initialize <xpos>, <ypos> E, <zpos>l
ZBL-API: void zb-do Initialize (double, double, double);
Initialises the game-bot at the given coordinates (in 2D or optionally 3D) in the

virtual world (dependent on the implementation of the host application). This

function should be the first function invoked by a game-bot after program start
(see also function 'spawn')-

ZBL/O: memorize <object>
ZBL-AP1: void zb-doMeinorize(int);
Mernorises the location of an <object> (should be stored in a location list) - for

use with the 'find' function.

ZBL/O: respawn
ZBL-APl: void zb-doRe spawn (void);

Resets the game-bot program and restarts it from its beginning.

ZBL/O: spawn
ZBL-API: void zb-doSpawn (void);

1nitialises the game-bot at random level co-ordinates (implementation depen-

dent). Can be used as an alternative to the function 'initialize'.

238

CA Game-Bot Scripting Language

ZBL/O: spawned
ZBL-API: int zb-checkSpawned (void);
Returns the number of respawns of the game-bot.

MODIFIER FUNCTIONS:

The invocation of several ZBL/O functions requires the provision of additional
information to direct their run-time behaviour. This is achieved using so-called
modifiers, which are functions that alter the behaviour of other functions that
they are combined with.

ZBL/O: back
ZBL-AP1: int zb-mdf Back (void);
For use with the 'blocked" function - returns the value I if true (path blocked to
the back)

, or 0 if false.

ZBL/O: f ront
ZBL-API: int zb-mdf Front (void);
For use with the 'blocked' function - returns the value I if true (path blocked to
the front), or 0 if false.

ZBL/O: lef t
ZBL-API: int zb-mdf Left (void);
For use with the 'blocked' function - returns the value I if true (path blocked to
the left)

, or 0 if false.

ZBL/O: obj ect
ZBL-API: int zb-mdf Object (void);

For use with the 'face' function - selects the closest object to the game-bot and

returns the object's ID.

ZBL/O: right
ZBL-API: int zb-mdf Right (void);

For use with the 'blocked' function - returns the value I if true (path blocked to

the right) , or 0 if false.

239

C-1 Game-Bot Scripting Language

ZBL/O: target
ZBL-API: int zb-mdf Target (void);
For use with the 'face' function - selects the closest target entity to the game-bot
and returns the target*s ID.

C ONTROL- FUNCTIONS:

Control functions allow the game-bot to navigate the virtual world and to
interact with its environment. As some of these actions might not execute im-

inediately, such as animations that are performed over a specific duration, the

execution of the game-bot process may have to be halted for that duration. This

is achieved by calling the game-bot interface's 'zb-setBusy" method within the
implementation of the game-bot in the host application. It is imperative that
busy processes are resunied after the execution of the action has finished. This

is done using the method 'zb-unSetBusy.

ZBL/O: backstep
ZBL-API: void zb-doBackstep (void);

Makes the game-bot move I unit backward.

ZBL/O: crawl
ZBL-API: void zb-doCrawl (void);

Makes the game-bot move 1 unit forward while ducked.

ZBL/O: duck
ZBL-API: void zb-doDuck (void);

Makes the game-bot duck down.

ZBL/O: face <modifier>

ZBL-API: int zb-doFace(int);
Turns the game-bot towards the selected <inodifier> (target or object) - returns

the ID returned by the i-nodifier function.

ZBL/O: f ire
ZBL-API: void zb-doFire (void);

240

C-1 Game-Bot Scripting Language

'Makes the gaine-bot fire the currently selected weapon,

ZBL/O: j UMP
ZBL-API: void zb-doJump (void);
Makes the game-bot jump I unit forward.

ZBL/O: jump-back
ZBL-API: void zb-doJumpBack (void);
Makes the game-bot jump I unit back.

ZBL/O: j ump-lef t
ZBL-API: void zb-doJumpLef t (void);
Nlakes the game-bot jump I unit to the left.

ZBL/O: jump-right
ZBL-API: void zb-doJumpRight (void);
Makes the game-bot jump I unit to the right.

ZBL/O: j UMP -up
ZBL-API: void zb-doJumpUp (void);

Makes the game-bot jump up on the spot.

ZBL/O: step
ZBL-API: void zb-doStep (void);

Makes the game-bot move 1 unit forward.

ZBL/O: strafe-left
ZBL-API: void zb-doStraf eLef t (void);

Makes the game-bot move I unit to the left.

ZBL/O: strafe-right
ZBL-API: void zb-doStraf eRight (void);

Makes the game-bot move 1 unit to the right.

241

CA Game-Bot Scripting Language

ZBL/O: turn <angle>
ZBL-API: void zb-doTurn (double);
Turn the game-bot by <angle> degrees.

ZBL/O: turn-left
ZBL-API: void zb-doTurnLef t (void);
Turns the game-bot by 90 degrees to the left (counter-clockwise).

ZBL/O: turn-right
ZBL-API: void zb-doTurnRight (void);
Turn the game-bot by 90 degrees to the right (clockwise).

ZBL/O: use <object>
ZBL-API: void zb-doUse(int);
Make <object> the currently selected object of the game-bot.

SE. NSOR-F]U--N'CTIONS:

Sensor functions are used to provide a game-bot with information about itself

and its environment. This information allows the game-bots to navigate and act
in the virtual world.

ZBL/O: alive
ZBL-API: int zb-checkAlive (void);

Returns the value 1 if the game-bot is alive.

ZBL/O: armour
ZBL-AP1: double zb-checkArmour (void);

Returns the armour of the game-bot.

ZBL/O: blocked <modifier>

ZBL-API: int zb-checkBlocked(int);
Returns the return value of the <modifier> function.

ZBL/O: health

242

C. 1 Game-Bot Scripting Language

ZBL-API: double zb-checkHealth (void);
Returns the health of the game-bot.

ZBL/O: obj ect-ahead
ZBL-API: int zb-checkObj ectAhead (void);
Returns the value I if the game-bot is facing an object.

ZBL/O: obstacle
ZBL-API: int zb-checkObstacle (void);
Returns the ID of an obstacle directly in front of the game-bot or the value 0 if

no obstacle is directly in front of the game-bot.

ZBL/O: owns <object>
ZBL-API: int zb-checkOwns(int);
Returns the value I if the game-bot has <object> in its inventory.

ZBL/O: target-ahead
ZBL-API: int zb-checkTargetAhead (void);

Returns the value I if the game-bot is facing a target entity.

ZBL/O: target-alive
ZBL-API: int zb-checkTargetAlive (void);

Returns the value I if the nearest detectable target entity is alive.

ZBL/O: target-armour
ZBL-API: double zb-checkTargetArmour (void);

Returns the armour (value) of the nearest target entity.

ZBL/O: target-health
ZBL-API: double zb-checkTargetHealth (void);

Returns the health (value) of the nearest target entity.

ZBL/O: using
ZBL-API: int zb-checkUsing (void);

243

C. 2 Virtual Machine Interface of the ZBL-API

Returns the ID of the object currently used by the game-bot.

OTHER FUNCTIONS:

ZBL/O: rnd <limit>
This function is defined within the virtual machine itself, so there is no cor-
responding function for the game-bot interface of the ZBL-API. The function
returns a random number between the values 0 and the given <limit>.

C. 2 Virtual Machine Interface of the ZBL-API
The integration of game-bots into host applications is enabled by the ZBL/O vir-
tual machine which is controlled by the methods of the virtual machine interface

of the ZBL-API.

double zbl-getVersion(void);

char *zbl-getVersionString(void);
These methods return version information about the virtual machine as a version

number or a string (that holds the version number) respectively. This can be

used to verify compatibility between the virtual machine and compiled ZBL/O

programs.

int zbl-addProcess(char *filename, zblbot *bot);

This method adds a game-bot to the ZBL/O virtual machine. For this it receives
two parameters, the first of which is the file name of a compiled game-bot pro-

gram and the second is the memory address of the game-bot object (derived from

the game-bot interface class) representing the entity that is to be controlled by

the program. The 'zbl-addProcess' method returns the process ID of the newly

added game-bot process.

void zbl-removeProcess(int pID);

This method removes the game-bot process with the given process ID from the

virtual machine.

244

C. 2 Virtual Machine Interface of the ZBL-API

void zbl-replaceProcess(int pID, char *filename);
This method replaces the program running in the game-bot process with the
given process ID with the compiled game-bot program whose filename is given
(see also method 'zbl-addProcess').

void zbl-replaceBot(int pID, zblbot *bot);
This method replaces the game-bot object associated with the given game-bot
process ID with the given game-bot object (see also method 'zbl-addProcess").

void zbl-resetProcess(int pID);
This method resets the game-bot process with the given ID to its initial state
and restarts the game-bot program. The method's effect is similar to that of an
invocation of the ZBL/O function 'respawn'.

void zbl-setPriority(int pID, int priority);
This method sets the execution priority for the game-bot process with the given

process ID to the given value.

int zbl-getPriority(int pID);
This method returns the execution priority of the game-bot process with the

given process ID.

void zbl-getExtensions(int pID);
This method returns the number of extensions loaded by the game-bot process

with the given process 1D.

int zbl-getActiveProcesses(int pID);

This method returns the number of active game-bot processes in the virtual ma-

chine.

int zbl-run(void);

This method is the most important method of the ZBL-APFs virtual machine

interface. It incorporates the virtual machine's scheduling mechanism for the ex-

245

C. 2 Virtual Machine Interface of the ZBL-API

ecution of game-bot processes. The 'zbl-run' method must be invoked once for
every update-cycle of the host application (usually once per frame)

-

C. 2.1 Error Handling

Attribute Description

int error; The error's ID.

int process; Process ID of game-bot that experienced the error.

address-t instruction; The index of instruction that caused the error.

address-t stack; The stack address that experienced the error.

char description [1281 Character string that holds a description of the error.

Table C. 3: Public attributes of the 'zbl-crror-t' type.

The virtual machine interface of the ZBL-API also includes the definition of
the record structure 'zbl-error-t' (see Table C. 3) that can be used for reporting

run-time errors that occur in game-bot processes of the virtual machine. In addi-
tion to this data structure, the ZBL-API also includes a set of functions for error

handling that can be used with this data structure.

int zbl-getErrors(void);
This method returns the number of unqueried run-time errors that have been

recorded in the virtual machine's error list.

void zbl-resetOnError(int pID);

This method toggles a flag in the game-bot process with the given process ID

that will trigger the process's reset on the occurrence of a run-time error (see also

method 'zbl-rcsct Process').

zbl-error-t zbl-nextError (void);

zbl-error-t zbl-peekError (void);

These methods allow querying of run-time errors in the virtual machine. For this

they retrieve the next error from the virtual machine's error list and return them

246

C. 3 ZBL/O Syntax

as ýi structure of the 'zbl-crror-t" record type. While 'zbl-nextError' then removes
the error from the virtual machine's error list, lzbl-pcekError' leaves the error list
untouched.

C. 3 ZBL/O Syntax

C-3.1 Core Functionality

program:

ock

usage
declaration

usage-ded a ration:

dentifier;

block:

constant
r0 deccolarattaions

variable
declarations

functiop
declarat on

-4 statement

constant-decla rations:

Identifier

0'-
va ria ble-decla rations:

var Identifier
Number

fun ctio n -ded a ration:

247

C. 3 ZBL/O Syntax

statement:

assignment
statement

-14Q

-j compo-u-n-d-ý
L statement F

-[;;
Q

_J--w-hil-e--l I tatement F

-EAQ

cornrnanTý
function

assignment-statement:

identif ier expression

face
ret

function

call-statement:

le:::: : i: r::: ý Identifier

expression

I

compound-statement:

statement return
statement

if-statement:

conditional
................

_Tý 1111" then s atement
expression I ill,

248

C. 3 ZBL/O Syntax

while-statement:

io
conditional statemen expr! s ion ýssion

-st at

for-statement:

for EEH
expression

H-(ý--T-ýýýýstýatement

downto

for-expression:

Numb r LýýIdentifier=

2xpreisssio :: n:::

ý

conditional-expression:

boolean
expression

boolean-expression:

relational
eI xpression

& relational
expressý

relation al-expression:

I expression I

I expression I

249

C. 3 ZBL/O Syntax

expression: top-level:

i Identifier I

I Number I

boolean
expression

call
statement

term:

factor:

primary

primary:

top
level

rnd
function

identifier:

Number:

Digit

Letter any of the 26 letters of the alphabet (capital or lower case)

Digit any digit from '0' to '9'

250

C. 3 ZBL/O Syntax

C. 3.2 Intrinsic Functions
command-function:

unction

_j
find

fý. nction

initialize
function

function

----L F-respawn
function

----I spawn
function

backstep
function

F crawl -1
I function

r-d uc 77
'I function I

function

function

F-ju--P1 function

step
function

function

F-tu-rr--ý
I function

f--Us-e-l
1 function I

die-function:

find-function:

object

-Cf--, -D--DI ý

spawn-function:

memorize-function:

bject
--Cme-worize "ý D 10

respawn-function:

backstep-function:

crawl-function:

duck-function:

face-function:

-(EEE)TCobjEeEcE)-F

fire-function:

jump-function:

step-function:

strafe-function:

strafeleft

strafe right

turn-function:

rn. primary

turn-left

turn_Eriqht

use-function:

bject CUSDe-[ý
ID

initialize-function:

initialize expression
expression

251

C. 3 ZBL/O Syntax

state-function: object-funcbon:

-*(Zýb-]ect
-ahead)--

function

function

alive
function

function

blocked
function

function

object
function

function

F-ow-n-s-ý
function

T-Tý-19---t -7
function

ng
fuunscition

danger-function:

idle-function:

spawned-function:

alive-funcbon:

armour-function:

blocked-fumfion:

blocked back

health-function:

obstacle-funcbon:

-(-o-bstac-leý-

owns-function:

ýF----L
object

ID

target-function:

targetahea

t -arg-et-a-1 i-ve-)-

-(Tta-rget -armo-ur-ý-

'-(-tar-g -et-he-a 1-t Th)-

using-funcbon:

md-function:

-(---d
top D-f Xlevj-

object-ID:

top
-4 'i

ýý
evel

252

Appendix D

The AvDL Scripting Language

In Chapter 8 of this thesis we introduced the Avatar Description Language
(AvDL) which we developed in our investigation of behaviour definition lan-

guages. AvDL is a scripting language that provides mechanisms for behaviour
definition for virtual entities in computer games. This appendix presents a de-

tailed description and reference of the syntax and functions of AvDL.

import ...
// loading of extensions

entity <name>
f

...
// declaration of types and variables

// definition of functions and methods

<name>() // program entry function
I

1;
1;

Table D. I: Basic structure of an AvDL program.

253

D. 1 Programming in AvDL

D. 1 Programming in AvDL
Every AvDL entity program must declare itself as an 'entity' object which en-
capsulates the program (in a similar manner to C++ namespaces). The entry
point of an AvDL program from which it will begin program execution is the
entity object's main method, which is always the final function defined within
an entity object (unlike other functions it is terminated with a semicolon). The

entity's, main method is calways given the same identifier as, the entity object itself
(see Table D. 1).

Core Functionality

action bool break byte case class const

continue default delete do double else elsif

entity event exit extends finite float for

foreach forever from fuzzy getstate global goal

if import int long new of onentry

onexit plan public reached repeat return scalar

select setstate short state switch to trigger

triggered typedef unsigned until uses while void

volatile

Table D. 2: AvDL reserved words.

The command syntax of AvDL is based on the C [Kerninghan and Ritchie

1988] and C++ [Stroustrup 1997] programming languages (see Table D. 2). All

statements in AvDL need to be terminated with a semicolon (; ").

LOADING OF EXTENSIONS:

Extension libraries are loaded at the start of the program above the entity's

definition using the 'import' keyword (or its 'uses" synonym), followed by one

or more identifiers (separated by commas) that must match the name(s) of the

extension(s).
import <identifier> f, <identifier>l

254

D. 1 Programming in AvDL

COMMENTS:

Comments can be considered a basic component of modern programming lan-
guages. The AvDL scripting language allows the use of line-comments, as well as
block-comments. Line-comments are marked with the'//' (double forward slash)
character sequence that is also used for line comments in the C++ programming
language. Any character following the line-comment character sequence until the
next new line will be ignored.

Example:
// this is a line comment

or
scalar x=1; // and so is this

Block-comments are marked with the two character sequences '/*' to open a
comment and '*/' to close a comment. The text encapsulated between these two

symbols will be ignored by the compiler. These block-comments can span across
more than a single line of source code, i. e. if a comment is opened in one line of

code and closed in another line of code, all text in between will be commented out.

Example:
/* a simple block comment

or
/* a block comment spanning

across three lines of

source code */

D. 1.2 AvDL Data Types

All variable data types in AvDL are auto-initialising, i. e. unless variables are

initialised explicitly when they are declared, variables will be given a default

value. For numerical data types that default value is '0*' (zero), while other types

will automatically be initialised to the empty value 'NULL.

Variables that use AvDL's types can be declared (and defined) at the top

255

D. 1 Programming in AvDL

of a block or globally using the desired type, followed by one or more variable identifiers (separated by commas).

AN-DL allows users to declare their own data type, effectively an alias type,
using the 'typedef' statement.

Example:

typedef scalar real; // make "real" an alias for "scalar"

Scope in AvDL is handled similar to CIC++: constants and variables that
are defined globally (outside of a class or function) can be accessed from anywhere
in the AvDL program, whereas constants and variables that are defined locally
within a block can only be accessed from inside that block.

TYPELESs DATA:

AvDL provides a typeless data type 'void' which is identical to the typeless
'void' found in C/C++. It is an "empty" (non numeric) data type which requires
no storage. The main use of this type is as the return type for functions that do

not return any values (procedures), as well as the definition of empty parameter
lists for functions.

Atomic Data Types

Variables of the atomic data types can be supplied with additional information

in the form of type qualifiers that determine the access mode of the variables.

If the 'const' type qualifier is used when a variable is declared, that variable
must be initialised, after which its value can no longer be altered, effectively inak-
ing this variable a constant value.

Example:

const scalar five=5; // create a constant named "five"

The use of the 'global' type qualifier for the definition of a function return

256

D. 1 Programming in AvDL

type marks the function as "exported" for use by other entities. This is the means
by which an entity's functions are advertised, making it an annotated entity.

Example:

global void exported(void) // advertise "exported"

statemento; // execute "statement"

1;

The 'triggered" (-'of') type qualifier is used for binding scalar and Boolean

variables to events. AvDL variables that have been declared using the 'triggered'
type qualifier for a given event will be set to the value * I' or 'true' when that

event occurs.

Example:

triggered ev of scalar trg; // "trg" is bound to event "ev"

The 'volatile' type qualifier is used in the C and C++ programming lan-

guages to mark data that is influenced by processes which are external to the

current program. In AvDL the 'volatile' variable attribute is used to bind data

in the host application to scalar and Boolean AvDL variables in entity programs.
Variables that are 'volatile' in AvDL can be mapped to variables in the host

application.

Example:

volatile scalar var; // I'var" is externally accessible

NUMERICAL VALUES:

AvDL has a single numeric data type that can take floating point values as

well as integer values, which is the 'scalar' data type. A number of aliases for

the 'scalar' type allow the use of the more commonly known ordinal and floating

point data types found in C/C++.

257

D. 1 Programming in AvDL

Example:

scalar var; create variable I'var" Unitialised to 0)
scalar o=S, r=0.5; two variables, one ordinal and one real
int ordinal=5; 'lint" alias for "scalar"
float real=0.5; "float" alias for "scalar"

BOOLEAN VALUES:

AvDL has a data type for Boolean values. Variables of the *bool" data type
can take the values 'true" (mapped to the value T) or 'false' (mapped to the
value '0*). Boolean values are by default auto-initialised to the value 'false'.

REFERENCES:

In AvDL there are no pointers to variables. Instead one can create references

- like references in C++ - to address a variable. A reference to a variable is

similar to having a second identifier for the same variable. References are de-

clared by preceding the variable identifier with the '&' (ampersand) symbol. A

reference must be initialised during its declaration (if it is not used as a function

parameter) and cannot be changed (redirected to a different variable) during the
lifetime of its identifier.

Example:

scalar var = 1;

scalar &ref = var; // "ref " is a reference to I'var"

FUNCTION BINDINGS:

Functions that are defined within the host application can be mapped to the

AvDL 'action* data type. If an 'action' is declared with an identifier only, the

AvDL virtual machine will expect the same identifier to be used for the func-

tion in the host application which is mapped to the AvDL action. If a name is

explicitly provided during the action declaration, that "name" is expected to be

the identifier used for the function in the host application. If the function in the

host application expects parameters, the action can be declared using an optional

parameter list.

action <identifier>U<parameters>)1;

258

D. 1 Programming in AvDL

or
action <identifier> (<name> [, <parameters>]);

Example:

action func; // bind function "func"

D. I. 2.2 Data Structures

Apart from the basic data types that are part of the A-vDL scripting language,
AvDL allows users to use more complex data structures, some of which are de-
rived from the atomic data types.

ARRAYS:

Arrays are the simplest form of aggregate data type, able to hold a number
of data elements of the type that they are derived from (all array elements have
the same data type). In the current AvDL specification, all types of arrays are
restricted to a single dimension. There are three types of arrays in AvDL: static
arrays, dynamic arrays and associative arrays.

The index value for the first field in static and dynamic A-'-DL arrays is V.
Fields in associative arrays are not usually addressed using numbers. but use
named indices (associations) instead.

Static arrays in AvDL are defined in a similar manner to arrays in C. These

arrays are variables of any AvDL data type that have been declared using the

subscript operator ('[]') with a size (of array) indicator as their suffix. The ele-

ments stored in an array's fields are by default auto-initialised to the value V.

Example:

scalar array [51 a static array with 5 fields

Dynamic arrays in AvDL are variables of any AvDL data type that have been

declared using the subscript operator (ý [I") without a size indicator and which are

then given a size using the 'new' operator (see section C. 1.3). Dynamic arrays are

by default auto-initialised to the empty value 'NULL' when they are first created.

259

D. 1 Programming in AvDL

Example:

scalar dynamicArray // dynamic array, pre-initialised to "NULL"
dynamicArray new scalar[51; // allocate 5 fields

The memory that has been allocated for dynamic arrays using the 'new' op-
erator must be freed again, using AvDL's 'delete" operator. Unlike the 'delete'
operator in C++, the AvDL operator does not require the use of the subscript
operator to free dynamically allocated arrays.

Example:

delete dynamicArray; // delete and reset to "NULL"

Associative arrays in AvDL are variables of any AvDL data type that have
been declared using the subscript operator (ý[]*'), i. e. their declaration is identical
to that of regular dynamic arrays in AvDL. Associations are created dynamically

as soon as they are used in the source code for the first time. Externally associa-
tions are identifiers that are used as indices for array fields. Internally each new
association is given an increasing index value. Associative arrays are by default

auto- initialised to the empty value -NULL' when they are first created. Fields in

associative arrays that are created but not assigned an element to hold are by

default auto- initialised to the value '0.

Example:

scalar associativeArray[I pre-initialised to "NULL"

associativeArray[first] = 5; first field set to 5

associativeArray[second]; second field created

associativeArray[second] = 3; // second field set to 3

CLASS STRUCTURE:

In AvDL data structures of the type 'class' are used for the definition of

objects (in the sense of object orientation) as well as records. A class definition

defines a new data type, instances of which can be used as variables.
Class structures have two different types of members, attributes and meth-

ods. Attributes are member variables of a class, whereas methods are member

260

D. 1 Programming in AvDL

functions of the class. Like classes in C++, AvDL classes allow the definition of
a class constructor and a class destructor, both of which are special methods that
are invoked respectively when an object is instantiated or destroyed.

There are no inline functions, i. e. although methods are declared within the
class definition they have to be defined below the class definition itself.
class <identifier>
I

<type> <attribute>; // declare a data member
<type> <method>(<parameters>); // function member

<class ID>(); // constructor declaration
- <class ID>(); // destructor declaration

1;

All classes have one implicit attribute, which is a reference to the current
instance of itself, which can be accessed through the use of the 'this' object. The
-this' object is also a hidden parameter which is implicitly passed to all methods
of the class.

Classes are also AvDL`s implementation of the record aggregate data struc-
ture, if they only define attributes but no methods. In that case classes are used
to group variables consisting of a combination of types together in a single en-
tity which can then be referred to through a single identifier, i. e. the class's name.

Finally, AvDL also allows the use of an implicit class, i. e. a class definition

that is stored within ail external file. The file containing an implicit class defini-

tion must either be an AvDL source code file containing only the class definition

or alternatively a pre-compiled class definition as bytecode for the virtual ma-

chine. Once loaded the implicit class can be used like any other class.
class <identifier> = "<filename>";

EVENT TYPE:

The 'event' data structure is linked to events occurring in the AvDL system's

virtual machine. It provides an event handler for the current entity program and

261

D. 1 Programming in AvDL

cis such requires the definition of an AvDL instruction list (in a block of instruc-
tions) that will be executed once the event it has been defined for occurs.
event <identifier> <block>;

Example:

event X // event handler f or event "X"
f

statementl(); // execute "statementl"
statement2(); // execute "statement2"

1;

FINITE STATE MACHINE STRUCTURE:

State machines are a tried and tested Al technology which has been proven
suitable for many kinds of computer games. They are the most used Al technology

in computer games as they allow for simple definition of deterministic behaviour.
The AvDL 'state' data structure allows the definition of state machines in

A-, -DL entity programs. To create a finite state machine it should be declared with
the 'finite' state qualifier, but this may be omitted as finite state machines are
the default state machine type in AvDL. The declaration of finite state machines
in AvDL shares elements with the definition of a 'class" data structure, as its

members are declared within the structure similar to an object's methods and
then defined outside of the structure itself.

A finite state structure has up to three specialised function members. These

methods are an entry function ('onentry), an exit function ('onexit") and the

state's body (sharing its identifier with the state structure itself). Of these meth-

ods only the state's body must be defined. while the entry and exit functions are

optional. The state's body should be provided with a transition target, marking

the current state structures follow state. If no transition target is provided, the

value 'NULL' will be used by default, which will terminate the execution of the

state machine when the state transition occurs.
Other members of a state structure will always be treated as states by the

FSM (independent of their actual types).

Each state in a state structure needs to be provided with a "next" state (tran-

sition target) to declare which state the currently active state will change into

262

D. 1 Programming in AvDL

-when it finishes.
[finite] state <identifier>
f

<type> <identifier>[()], <transition>; // state

<onentry>(); entry function
<onexit>(); exit function
<identifier> [, <transition>]; // state body

1;

The finite ýstate' structure is similar to unions in C, as at any one time only
one state within it will be fully active. Its members can also can be used as
identifiers for states in a similar nianner to the named constants of C enumerated
data types.

FUZZY STATE MACHINE STRUCTURE:

Structures of the fuzzy 'state' data type in AvDL are declared with the
'fuzzy' type qualifier. The fuzzy state structure is similar to a record data struc-
ture, as it holds several data members. These members can either be scalar values
or references to other fuzzy state structures, each of which can be provided with

an optional weight. Like the data members of a finite state structure the members

of fuzzy state structures can be used as identifiers for states in a similar manner
to the named constants of C enumerated data types.
fuzzy state <identif ier>
I

<type> <identifier> [@<weight>]; // state

1;

GOALDATATYPE:

AvDL provides the data type 'goal' for goal-oriented behaviour. There are

two ways in which this data type can be used. In its simplest form, a goal is de-

fined as a single variable of the -goal" type that has been assigned an expression

defining the preconditions that have to be satisfied for the goal to be reached.

263

D. 1 Programming in AvDL

goal <identifier> = <expression>;

Optionally a priority (weight value) for the planner can be set for the goal. If
no priority is explicitly set, it will by default be set to the value TO".

goal <identifier> @ <priority> = <expression>;
Example:

goal trueX = (x==true);

or
goal trueX @ 1.0 = (x==true);

The second method uses the 'goal' type as a compound data structure group-
ing several data members, each being a separate named precondition for the

satisfaction of the goal. These named preconditions are effectively sub-goals of
the goal structure.
goal <identifier>
f

<precondition>: <expression>;
<precondition>: <expression>;

1;

The 'goal' structure as well as each of its member preconditions can optionally
be supplied with a priority for the planner (by default set to '1.0').

goal <identifier> 0 <priority>
I

<precondition> @ <priority>:

<precondition> @ <priority>:

<expression>;
<expression>;

1;

264

D. 1 Programming in AvDL

Priority Symbol Description

1 subscript

member access
2 plan plan generation

reached goal state query
setstate state access
getstate state query
trigger event trigger

3 logical negation
+ positive

begative

length/size

++ increment

decrement

new allocate memory
delete free memory

4 division

multiplication
% modulo

5 + addition

subtraction
6 equality comparison

I= non-equality comparison

< less-than comparison

<= less-or-equal compar ison

> more-than comarison

>= more-or-equal compar ison

7 && logical AND

logical OR

8 value assignment

compound assignment (division)

compound assignment (multiplication)

compound assignment (modulo)

+= compound assignment (addition)

compound assignment (subtraction)

9 concatenation

Table D. 3: AvDL operator precedence.

265

D. 1 Programming in AvDL

D. 1.3 Operators

Other than the standard arithmetic and logical operators (see Table D. 3), AvDL
also provides a number of special operators for use with its game Al data struc-
tures.

o new
The operator 'new' is used for allocating memory for dynamic arrays.

o delete
The operator 'delete' is used for freeing allocated memory from dynamic

arrays.

9 setstate
For FSMs the 'setstate' operator is used to set any state or state member
to be the currently active state, triggering a state transition. ln FuSMs it is

used to set state members, optionally allowing the specification of a weight
value for the state member.

getstate
The operator 'getstate' returns a reference to the currently active FSM

state, effectively allowing the currently set state to be queried.

* trigger
The operator 'trigger' is used for spawning events from within entity pro-

grams. Events can optionally be addressed directly towards a specific entity.

9 reached
The operator 'reached' is used for testing a goal for completion, i. e. for

testing the goal state.

plan
The operator 'plan' directly operates on goals, generating a plan from all

valid goals in an entity program.

D. 1.4 Control Structures

Blocks containing sequences of statements in AvDL are similar to blocks in the

CIC++ programming languages. They can be created by inserting the statement

266

D. 1 Programming in AvDL

sequence between opening braces ('f') and closing braces ('I').

Example:
f

statementl();
statement2();
statement3();

I

Selections

AvDL contains all of the conditional statements found in the C/C++ program-
ming languages, as well as a number of additional selection methods. Within any
expression in a selection, a value of '0*' (zero) will be interpreted as 'false' (condi-

tion not satisfied), while any other value will be interpreted as 'true' (condition

satisfied).

SIMPLE SELECTIONS:

The if statement is used to determine whether or not a particular func-

tion, expression or control structure is to be executed. It can be used to express

monadic (one-alternative) or dyadic selections. In the latter case an else clause

can be used in combination with the 'if' to provide two alternatives.
if(<expression>) <block/statement; >

or
if(<exPression>)

<block/statement; >

else
<block/statement; >

Example:

if(b==true) statementl();

or
if(b==true)

st at ement 1 () ;

else

267

D. 1 Programming in AvDL

statement2();

MULTIPLE SELECTIONS:

AN, -DL includes a more complex if statement in the form of the elsif state-
ment which provides a further condition, allowing the expression of selections
with up to three alternatives (if used with 'else').
if(<exPression>)

<block/statement; >

elsif(<expression>)

<block/statement; >

or
if(<expression>)

<block/statement; >

elsif(<expression>)
<block/statement; >

else
<block/statement; >

Example:

if(b==true)

st at ement 1

elsif(b==false)

st at ement2

or
if(X<S)

st at ement 1

elsif(x>S)

statement2();

else

statement3();

For multiple condition switching the switch statement with case clauses

is used. A 'default' clause can be added to address conditions which are not

268

D. 1 Programming in AvDL

explicitly covered by a 'case'.
The values marking a 'case' must be constant values, i. e. they must not

be variables. If a value and the selection expression in the 'switch' statement
match, all instructions following that particular case clause will be executed un-
til the end of the structure is reached, i. e. there is a fall-through after every
case. If no values match any of the given cases then any instruction following the
'default' keyword will be executed. If no values match the given cases and there
is no default given inside the switch structure, the whole switch structure will be
ignored and program execution will resume below the structure.
switch(<expression>)
I

case <constant>: <statement>;

[def ault: <statement>j
I

An alternative multiple condition that does not have fall-throughs is the select
statement if it is used with case clauses. This 'select' statement is identical

to the switch statement in all aspects except that instructions following a case
clause will be executed only until the start of the next case clause, i. e. there is

no fall-through after every case.
select(<expression>)

case <constant>: <statement>;

[default: <statement>j
I

AvDL includes a second type of 'select' statement that allows the multiple

selection of ranges of values to identify the statement that is to be executed.

select <variable> from
f

<constant> [to <constant>] : <statement>;

269

D. 1 Programming in AvDL

I

D. 1.4.2 Iterations

AvDL provides several alternative loop statements, several of which are head-

controlled loops, while others are fo ot- controlled. Within any expression in a
loop, a value of '0' (zero) will be interpreted as 'false', while any other value will
be interpreted as 'true'.

HEAD-CONTROLLED Loops:

The simplest form of iteration in AvDL programs is the basic while loop as
found in C. It consists of the 'while' keyword followed by a conditional expression

and a block or a single statement.
while(<expression>) <block/statement; >

Example:
// a simple counter
i=O;

while(i<10)

or
i=O;

while(i<10)
i++;

A bounded iteration - effectively a more complex version of the while loop -
for use in operations that require a known number of iterative steps is the for

loop. This loop is controlled by three expressions, the second of which is the

termination condition of the loop, controlling the iteration. The first and third

expressions are optional, providing a means for loop initialisation and adjustment

respectively.
for(<exprl> ; <expr2> ; <expr3>) <block/statement; >

270

D. 1 Programming in AvDL

Example:
// a simple counter
for(i=O; i<10; i++)

The final head-controlled loop is the foreach loop for use with arrays. This
loop iterates through all fields of ail array ý, which is especially useful for associa-
tive arrays that inay have ail unknown nuinber of fields.
foreach(<variable> of <array>) <block/statement; >

Example:

scalar aArray[]; // associative aray
scalar i; // counter variable

foreach(i of aArray)
// iterate through "aArray"

aArray[il=l;

FoOT-CONTROLLED Loops:

The repetitive do-while loop in AvDL is identical to the foot-controlled loop
in C/C++. This loop checks its exit condition at the end of the structure. The

contained instructions are executed at least once and a new cycle is only entered
if the exit condition evaluates as true. Only if the exit condition evaluates as
false will the loop be exited. The exit condition must be terminated (using the

terminator symbol '; ').

do <block/statement; > while(<expression>);

Example:
// a simple foot-controlled counter
i=O;

do

271

D. 1 Programming in AvDL

I while(i<10);

AvDL provides a second repetitive loop, the foot-controlled repeat-until
loop. This loop also checks its exit condition at the end of the structure. The
contained instructions are executed at least once and a new cycle is only entered
if the exit condition evaluates as false. Only if the exit condition evaluates as
true will the loop be exited, i. e. it repeats until the exit condition is met. The

exit condition must be terminated (using the terminator symbol '; ").

repeat <block/statement; > until(<expression>);

Example:
// a simple foot-controlled counter
i=O;

repeat
I

i=i+l;
I until(i==10);

AvDL also includes a continuous (never ending) loop, the do-forever loop.

This has an entrance but no exit and thus does not check for any exit conditions.
It keeps cycling through all the instructions contained within until the program
is terminated.
do <block/statement; > forever;

Example:

do
f

statemento;
forever;

The use of this iterative structure is equivalent to the use of a while loop

whose conditional expression always evaluates as true.

Example:

272

D. 1 Programming in AvDL

while (1)
f

st at ement () ;
I

D. 1.5 Commands & Functions

In some instances it may be necessary to jump out of one of the program flow

control structures or to ignore some of the statements within a control structure.
For this AvDL provides several special statements.

The 'break" statement is used if one wants to completely jump out of a
loop or a switch/select construct.

Example:

salar i=O;
do // loop for 10 iterations
I

i=i+l;

if(i==10) break;

I forever;

The 'continue' statement is used if one wants jump to the next execution

of a loop without executing the following instructions within the loop first.

Invoking the 'continue' statement effectively jumps straight into the next
iteration of the loop.

Example:

salar i=O;

while(i<=10) // loop for 10 iterations

continue; // next iteration

i=i-1; //never executed
I

273

D. 1 Programming in AvDL

Programs can be terminated at any time using the 'exit' statement. Invok-
ing 'exit' ends program execution and returns the program's exit status to
the AvDL virtual machine. This exit status can be given explicitly as an
expression. If it is omitted., a successful exit status is returned by default.
exit;

or
exit <expression>;

Example:

void function(void)
f

exit;
I

FUNCTIONS & METHODS:

Functions in AvDL programs are defined much like functions in C programs.
A function has a name (its identifier) a return data type and (optionally) a list

of parameters. The function identifier must not start with a digit. Like C, AvDL

allows the forward declaration of functions using prototypes. 1n function proto-
types only the return data type of the function and the data types of parameters

need to be stated - identifiers for the parameters only have to be used in the

actual function definitions.

It is not possible to declare a function locally, i. e. within the definition of

another function.
The forward declaration of the methods of compound data structures is the

declaration of the methods within their parent data structure. The definition of
the methods usually happens below the definition of the parent data structure
but is otherwise nearly identical to the definition of a regular function.

The scope of a function is anywhere below the declaration of the function

within the program source code file in which the function has been declared.

Functions do not have to be forward declared, i. e. the declaration and defini-

tion of a function can be carried out in a single step.

<return type> <identifier>(<parameters>) <block>

274

D. 1 Programming in AvDL

Example:

void function(void)
f

I

The scope of local variables that are declared inside of a function is restricted
to that function, i. e. they are known to the AvDL run-time system exclusively
within that function. Outside the function they are invalid.

Functions can be jumped out of and values can be returned from within a
function to the next higher level using the 'return" statement.
return;

or
return <expression>;

Example:

void function(void)
f

return;
I

Returned values or variables have to be of the same type as the return data

type of the function. Variables that receive a return value from a function have

to be of the same data type as the function's return data type.

Example:

scalar function(void)

return 1;

275

D. 1 Programming in AvDL

D. 1.6 Object Orientation
Object orientation in AvDL is similar but not identical to object orientation
in programming languages like C++ and Java. The data structure for object
orientation in AvDL is the 'class' data structure. Unlike classes in C++, classes
in AvDL have no mechanism for data hiding, i. e. all methods (member functions)

and attributes (data members) of a class are publicly accessible.

D. 1.7 AvDL Standard Functions

The current Version of AvDL has a very small number of standard functions

which are used in conjunction with the annotation of virtual entities.

scalar getEntity (scalar)

This function takes the unique ID of an exported function as its parameter and

returns the ID of the entity that exported the function.

scalar getGlobal (constant string)
This function takes the name of an exported function as its parameter and re-

turns the ID of a matching exported function if it exists or 'NULL' if it cannot
find a match. If called from an event handler, only the entity that caused the

event to be spawned will be searched for a matching exported function.

void setBroadcast (void)
This function asks the run-time environment to advertise an entity's exported

functions.

void setSilent (void)
This function asks the run-time environment to stop advertising an entity's ex-

ported functions.

276

D. 2 AvDL Syntax

D-2 AvDL Syntax
Ident:

I Letter I
I Letter I

I Digit I

program:

I extensions I

forward
declaration

I declaration I

E Iden type ýýedef ::]ý
primitive

entity
declaration-ýD-

extensions:

forward-decla ration:

class Ident

function
prototype

T! w T--*,

en tity-decla ration:

entity)-ý Ident
declaration

program
entry

Letter any of the 26 letters of the alphabet (capital or lower case)

277

D. 2 AvDL Syntax

declaration:

program-entry:

............ b Iderili block

function-prototype:

returntype H Ident

clatatype
list

function-declaration:

returntype 1, q Ident

parameter functio list
IdenF -

class method
Ident Ident

define
de

I

constructor

I

define-de-constructor:

278

D. 2 AvDL Syntax

datatype-list:

datatype I

datatype

--
ýIent

datatype -1

parameter-list:

at

class-declaration:

class ýý Ident class
definition

class
ýen d. s Ident

p pub ublic

I StringLiteral I

class-definition:

variable
declaration

function
prototype

class
constructorý

class
destructor

class-constructor:

9 class
Ident

1_0ýýý

class-destructor:

1: 5
IcE rit

279

state-decla ration:

fsm
declaration

fuzzy fusm
declaration

fsm-declaration:

fusm-decla ration:

state)-H Ident
Ident ý-ý scalar

numb ir
state
It

ý

detnt

state-constructor:

ry()

state-destructor:

t()

D. 2 AvDL Syntax

280

D. 2 AvDL Syntax

state-body:

state
Ident

ý0-0-

goal-decla ration:

goal H Ident

ýT. Oý goal
definition

I expression I

goal-definition:

action-declaration:

actj. Q

action-list:

event-declaration:

G event Ident instruct
EHD-ý ý0-

instruction-list:

281

D. 2 AvDL Syntax

variable-decla ration:

datatyp -- variabl ,II listý-ý&-

returntype:

void

globalj)-ý (--- T 4 tTpe
p rimitive rimitive

UserType I

datatype:

type-qualifier:

volati

; v-e T-ýC.
f triggered list list

global

event-list:

-, ýýeýnýlý Hldentýý

type-primitive:

scalar

AliasType

bool

282

D. 2 AvDL Syntax

AliasType:

byte

unsigned ýo, (-s-hort

ýin

Cl
(Ln

j

f1
.
Loat

double

UserType:

variable:

array:

I DecLiteral I

I HexLiteral I

association I

variable-list:

abI

283

D. 2 AvDL Syntax

statement:

if
statement

label

vaTria_b_Ie___j_ H
declaration

normal
statement it

normal-statement:

E loop
control

alternatives

block

expression

s ci
tmt
pecial

xpr sio

I

!

stsapt ement

special-statement:

block:

'°TemeEI°

loop-control:

head
controlled

I

loop

I

foot
controlled

i

loop

I

284

D. 2 AvDL Syntax

head-controlled-loop:

while expression

expression

expression

foreach variable
Ident

HCO

foot-controlled-loop:

S do statement forever

do statement while

rep7eatstatemeFntunt i1

ff-statement:

elsif-construct:

--m esif

then-statement:

alternatives:

I expression I

expression -1 statement j

then
else statement statement

elsif

ýtemenl expression -m-Lstýa
then

else tm
t en

ý-ýstathýement

expression
then I then F-01

statement
ý(jHDý

statement

normal
I Statement

4

then
statement

variable
Ident

285

D. 2 AvDL Syntax

cases:

case) , o- Ident I. ý:)--ý statement

I DecLiteral I

default ýý(: ýý statement

selections:

I statement I I number I

number I*-(to

expression:

assignment

op

assignment-op:

logOR-op:

logAND
op TII

logAND-op:

equals
op T

&&

286

D. 2 AvDL Syntax

equals-op:

relation-op:

addsub-op:

muldiv
op

I

muldiv-op:

287

D. 2 AvDL Syntax

other-ops:

memory-ops:

new
type

primitive

sign:

17

avdl-ops:

288

D. 2 AvDL Syntax

rval:

expression

function
call

j action
call

association

-F -Iva-I--I

initial-val:

expression

number

Ival

function-call:

function
Ident

I

variable method
Ident

ý-f--O---Tý
Ident

expression I

aftribute
Ident

I

action-call:

action

variable
[dent

-exp-ression
Ident

j

attribute
Ident

Ival:

Ident

priority:

--*ýnum-be-r

289

D. 2 AvDL Syntax

number:

ecLiteral

HexLiteral TM
=Ioat=Literal

ý-ýBool =Literal

label:

E abel
I den -0- den]t

association:

entity-ldent:

attribute-ldent:

class-Ident:

function-ldent:

action-Ident:

goal-ldent:

290

D. 2 AvDL Syntax

state-ldent:

event-Ident:

label-Ident:

-F- I
-de n7t

member-Ident:

-1dent

method-ldent:

transition-Ident:

-f- -Id-en-t-ýý

variable-ldent:

--*F-lde-nt

StringLiteral:

-(D-ýýý
BoolLiteral:

Tw, ---",
DecLiteral:

-Tý
Any any printable ASCII character except

291

D. 2 AvDL Syntax

HexLiteral:

FloatLiteral:

Digit Dig it

Digit any digit from '0' to '9'

292

Appendix E

The SEAL Scripting Language

This appendix presents the syntax of the SEAL scripting language that was de-
scribed in Chapter 9 of this thesis. SEAL (Simple Entity Annotation Language)

is a procedural scripting language for the definition of behaviour for virtual en-
tities in computer games and the annotation of objects for use by these virtual
entities. The language is a subset of AvDL (see Appendix D) that implements a
substantial number of AvDL's features, the most significant of which are:

1. A finite state machine (FSM) data structure.

2. An event (trigger) data type.

3. Entity annotation.

The command syntax of SEAL is loosely based oil the procedural production
language C [Kerninghan and Ritchie 1988] (see Table E. 1).

action break case
default do else

exit for getstate

of onentry onexit

scalar setstate state

triggered until while

const continue

entity event

global if

repeat return

switch trigger

void volatile

Table E. 1: SEAL reserved words.

293

E. 1 SEAL Syntax

E. 1 SEAL Syntax

program:

entiýý -declar-ati-on

entity-declaration:

entity Ident
declaration

program
entry

declaration:

program-entry:

.............

I(block Ident
I

f unction-ded aration:

ý _j
function I

ataýpe It Ident
parameter

tt
state member list
dent Ident

parameter-list:

-1, -!

294

state-ded a ration:

state-constructor:

state-destructor:

state-body:

...........

action-decla ration:

aciýon
iction list 1-0-

E. 1 SEAL Syntax

295

E. 1 SEAL Syntax

action-list:

event-declaration:

event Ident instruction
list

instruction-list:

-1IH
vadable-declaration:

datatype -F-varia-ble--] list

datatype:

type type
qualifier primitive

void

event-list:

Ident

I

296

type-qualifier:

E. 1 SEAL Syntax

type-primitive:

variable:

-, =den: t:

variable-list:

statement:

statement

variable
declaration

normal
statement

normal-statement:

special-statement:

297

E. 1 SEAL Syntax

block:

-1ý1 1ý 1ý1--

loop-control:

head-controlled-loop:

while

f 'Ir

expression F--

expres!! ýý

)--F-expression

I expression I

foot-controlled -loop:

do statement while

reýp]t statement until

if-statement:

then-statement:

expression I

then
statement

j expression I

then stat=ement statement

j th then <ý, hen expression tm nt
_lstateme

statement

normai
I statement

alternatives:

switch --- r-e

298

E-1 SEAL Syntax

cases:

expression:

assignment
OP

assignment-op:

logOR-op:

logAND
op T
11

F

logAND-op:

equals
op

equals-op:

relation
op

299

E. 1 SEAL Syntax

relation-op:

addsub-op:

muldiv-op:

other-ops:

300

E. 1 SEAL Syntax

seal-ops:

! Ets:, ýtate state
Ident

member D-ý
Ident

member
Ident

I

getstate

ýri
gg
ýer event

Ident

num !b ýr

variable
Ident

I rval I

rval:

expression

r

function
call

j action
I call

-*F -Iva-71

initial-val:

expression

number

function-call:

function (-Cýýexpression Ident
D-0

action-call:

t
ý on: c":
Iden

301

E. 1 SEAL Syntax

Ival:

number:

DecLiteral

HexLiteral

FloatELiteral

'Lit r

Ident:

label:

labell
Ident L

label-ldent:

member-ldent:

entity-ldent:

--or-
-Ide-nt --ý-

function-ldent:

action-ldent:

-Ident

302

E. 1 SEAL Syntax

event-Ident:

-[- Ide-n-týý

state-Ident:

transition-Ident:

-1- 1 -de, -n

variable-Ident:

-[- -ld -en-t-1---e

StringLiteral:

DecLiteral:

lg, t

HexLiteral:

FloatLiteral:

Digit

-ti-'°--r1
Diijj

Letter any of the 26 letters of the alphabet (capital or lower case)
Digit any digit from '0' to '9'
Any any printable ASCII character except

303

Appendix F

SEAL/AvDL System Prototype

Chapter 10 provided a discussion of the system prototype that implements the
functionality of the SEAL subset of AvDL (see Chapter 9), as well as several
additional features of AvDL that are not part of SEAL, such as AvDL's extension
architecture. This appendix lists the system prototype's instruction set, several
translation examples to demonstrate how the system is supposed to work, and
a selection of API functions that show how the system can be integrated into a
game engine.

F. 1 Virtual Machine Instructions

The system prototype's virtual machine instructions, listed by their mnemonics.

F. 1.1 Process Control Instructions

NOP - no operation
Placeholder instruction that does nothing.

SRT - start
Marks the entry point of the program.

STP - stoP
Ends program execution.

304

F. 1 Virtual Machine Instructions

XIT - exit
Exit command that reads the program's exit status from the process's stack.

HLD - hold process
Suspends the process until it is explicitly (re-)started by the virtual machine.

RST - reset
Resets the process to its initial state.

ISA - increment stack address
Increments the stack address register.

CLT - clear TOS (top of stack)
Removes the topmost element from the process's stack.

DSA - decrement stack address
Decrements the stack address register.

JMP - jump
Unconditional jump to a different instruction.

JPF - jump (if) false

Conditional jump to a different instruction.

ADM - allocate dynamic memory
Not yet implemented, reserved for future use.

FDM - free dynamic memory
Not yet implemented, reserved for future use.

F. 1.2 Data Handling Instructions

LDC - load constant value
Loads a constant value onto the process's stack.

305

F-1 Virtual Machine Instructions

LOD - load variable
Loads the contents of a variable onto the process's stack.

LEX - load external (variable)
Not yet implemented.

STR - store variable
Stores the contents of the topmost entry on the process's stack into a variable.

LVA - load variable address
Retrieves a "pointer" to a variable.

LFA - load (data) from address
Dereference "pointer" and load data from the address onto the process's stack.

STA - store (data) to address
Dereference "pointer" and store data from the stack to the address.

LCS - load constant string
Loads a constant string into the process's memory.

LPA - load function address
Get a function "pointer". Not yet implemented - reserved for future use.

LDH - load high (segment)

Load high-segment value from variable onto the process's stack.

LDL - load low (segment)

Load low-segment value from variable onto the process's stack.

SRH - store high (segment)

Stores the contents of the topmost entry on the process's stack into the high-

segment of a variable.

306

F. 1 Virtual Machine Instructions

SRL - store low (segment)
Stores the contents of the topmost entry on the process's stack into the low-
segment of a variable.

F. 1.3 Function Handling Instructions

MES - mark exported (function) start
M7 arks the start of an exported function code segment.

MEE - mark exported (function) end
Marks the end of an exported function code segment.

CSF - call system function
Execute an intrinsic system function.

CUF - call user function
Calls a user-defined function.

CLX - call locally exported (function)

Calls a user-defined exported function within the current process.

CRX - call remote exported (function)

Calls a user-defined exported function that resides in a different process.

CEF - call extension function
Calls a function in an extension library.

BAR - block activation record
Creates a block activation record on the current process's stack.

RET - return
Returns prograin flow to the caller of the current function.

307

F-1 Virtual Machine Instructions

RFE - return from exported (function)
Returns program flow to the caller of the current exported function.

MHS - mark (event) handler start
Marks the start of an event handler code segment.

NIHE - mark (event) handler end
Marks the end of an event handler code segment.

F. 1.4 Comparisons

All comparisons compare the two topmost values on the stack and replace them

with the result of the comparison.

EQU - equal
Compare if two values are equal.

NEQ - not equal
Compare if two values are not equal.

LES - less
Compare if the first value is less than the second value.

LEQ - less (or) equal
Compare if the first value is less than or equal to the second value.

GTR - greater
Compare if the first value is greater than the second value.

GEQ - greater (or) equal
Compare if the first value is greater than or equal to the second value.

308

F-1 Virtual Machine Instructions

F-1.5 Operators

All operations remove the operands from the stack and store the result on the
stack.

NEG - negation
Unary arithmetic negation.

POW - power
Raises the first operand to the power of the second operand.

DIV - division
Arithmetic division.

MUL - multiplication
Arithmetic multiplication.

MOD - modulo
Results in the remainder of an arithmetic division (modulo).

ADD - add
Arithmetic addition.

SUB - subtract
Arithmetic subtraction.

INC - increment
Unary arithmetic increment by 1.0.

DEC - decrement
Unary arithmetic decrement by 1.0.

XOR - exclusive or
Logical exclusive "or"

309

F. 1 Virtual Machine Instructions

IOR - inclusive or
Logical inclusive "or"

AND - and
Logical "and"

NOT - not
Unary logical negation.

PEQ - plus equals
Increment of a data value by the operand.

TEQ - times equals
Multiplication of a data value by the operand.

MEQ - minus equals
Decrement of a data value by the operand.

DEQ - div equals
Division of a data value by the operand.

REQ - remainder equals
Modulo of a data value divided by the operand.

ODD - odd
Unary test if a value is odd (or even).

XOP - extension operator
Apply extension operator. Not yet implemented - reserved for future use.

310

F. 2 Intrinsic System Functions

F. I. 6 Heap Operations

These are not yet implemented, but reserved for future use.

LFH - load from heap
Loads the contents of a data entry from the heap onto the process's stack.

STH - store to heap
Stores the contents of the topmost entry on the process's stack into data entry
on the heap.

LHA - load heap address
Load a "pointer" to an address on the heap.

LAH - load (from) address (on) heap
Dereference "pointer" and load data from the address on the heap onto the pro-
cess's stack.

SAH - store (to) address (on) heap
Dereference "pointer" and store data from the stack to the address on the heap.

F. 2 Intrinsic System Functions

executeCallback
System function that executes a callback function.

getExported
System function that retrieves a reference to an exported function whose location

is unknown.

geffuncAddr
System function that retrieves a reference to an exported function from a known

entity process.

311

F. 3 FSM Translation Example

retrievePID
System function that retrieves the process 1D of the current entity process.

setBroadcast
System function that asks the virtual machine to advertise the process's exported
functions.

setSilent
System function that asks the virtual machine to stop advertising the process's

exported functions.

spawnEvent
System function that allows an entity process to trigger an event in the virtual

machine.

stateM-ansition
System function that sets a process flag to trigger a state transition at the exe-

cution of the next instruction.

F-3 FSM Translation Example

AvDL/SEAL source code

action armo;

virtual machine instructions

setstate operator:
isa 3# Zmplicit set state function

lod 0 -1 # get parameter (next state)

action unarmo;

action attacko;

triggered scalar of enemyDetected;

str 14# set next state

csf stateTransition # system function

lod 0 -1 # get parameter (next state)

ret 1 $1 # end function, return value

312

F-3 FSM Translation Example

state guarding
I

guarding () ;

1;

state defending

I

onentryo;

onexito;
defendingo, guarding;

guarding: : guarding

do

I

if(enemyDetected)

setstate defending;

I forever;
I

finite state machine:

initialisation

ldc 1# onentry

str 03 // flow target

ldc NULL

lod 13# current state

neq # true (NULL) if FSM initialisation

jpf +10 # else run
ldc 100 # guarding

lod 14# next state

neq

jpf +10 # initialise to "guarding"

ldc 200 # defending

lod 14# next state

neq

jpf +49 # initialtse to "defending"

jmp +88

FSM structure
ldc 100 # guarding

lod 13# current state

equ

jpf +40 # current state %s not "guarding"

state "guarding"
ldc 1# onentry

lod 03 // flow taT-get

equ

jpf +9

entry function (guarding)

lod 14# next state

str 13# current state

ldc NULL # transition target

313

F. 3 FSM Translation Example

str 1 4# oext state

ldc 2 # next: "guarding" body

str 0 3# flow tar9ct

j mp -14 # continue

j mp +27 # never happens

ldc 2 # "guarding" body?

lod 0 3 // flow target

equ

jpf +12

state body (guarding)

ldc 1# whZle(l)

jPf +6 # never happens

lod 18# "enemyDetected"

jPf +3

ldc 200

Cuf 12 $1 # call set state function

j mp -6 # loop back (while)

ldc 3# onexit

str 03# set next event

j mp -29 # continue

j mp +12 #never happens

ldc 3# onexit?

lod 03 // flow target

equ

j pf +8

exit function (guarding)

lod 14# next state

ldc NULL

neq

jpf +3

lod 14# next state

Cuf 12 $1 # call set state function

j mp +46

j mp +43

314

F. 3 FSM Tý-anslation Example

ldc 200 # defending

lod 13# current state

defending:: onentryo
I

arm () ;
I

def ending: : defending

I

attacko;
I

equ

jpf +39 # current state is not "defending"

state "defending"
ldc 1# onentry

lod 03# flow target

equ

jpf +11

entry function (defending)
lod 14# next state

str 13# current state

ldc 100 # transition target

str 14# next state

lcs "arm"

csf executeCallback # system function

ldc 2# next: "defending" body

str 03 // flow target

jMP -59 # continue

jMP +25 # never happens

ldc 2# "defending"' body?

lod 03 #flow target

equ

pf +7

state body (defending)

lcs "attack"

csf executeCallback #system, function

ldc 3# onextt

str 03 // flow target

jmp -69 # continue

jmp +15 # never happens

ldc 3# onexit

315

FA API Functions (Selection)

lod 03 // flow target

defending:: onexito
I

unarmo;
I

equ

jpf +11

exit function (defending)
lcs "unarm"

csf executeCallback # system function

lod 14# next state

ldc NULL

neq

j pf +3

lod 14# next state

cuf 12 $1 # call set state function

jmp +3

cleanup
jmp +2 # terminate FSM

jmp -86 # loop back

ret # return to main program

FA API Functions (Selection)

The AP1 of the system prototype's run-time environment (selection).

FAI Virtual Machine Control Rinctions

vm* Instance(void);
Returns a reference to the virtual machine.

int addProgram(std:: string name);

Loads a SEAL bytecode program into a new entity process. Returns the ID of

the new process.

bool registerEntity(int pID, entity *ve);

316

FA API Functions (Selection)

Register an object that was derived from the entity type with a process of the
given ID.

bool registerCallback(<4 variations>);
Register a callback function that may be part of an entity object with the virtual
machine or a given process, stating the name and ID of the callback function,

whether it returns a value and the number of its formal parameters.

bool registerEvent(std:: string name);
Register an event with the given name with the virtual machine. Returns the ID

of the event.

bool run(void);
Execute the virtual machine's execution cycle.

F. 4.2 Process Interaction Functions

int getActiveProcesses(void);
Returns the number of currently active entity processes.

int getPriority(int pID);
Returns the priority of the process with the given 1D.

void setPriority(int pID, int pr);
Sets the priority of the process with the given ID to the stated value.

bool isSuspended(int pID);
Determines if the process with the given ID has been suspended.

void spawnEvent (<several variations>);

Triggers the event with the given ID or name. Optionally allows the specification

of a target process.

bool setValue (<several variations>);

317

F. 4 API Functions (Selection

Set a named variable in an entity process to the given value. Optionally allows
the specification of a target process.

F. 4.3 Housekeeping Functions

double getVersion(void);
Return the version (number) of the virtual machine.

double getRevisionNo(void);
Return the revision (build) number of the virtual machine.

318

Glossary

AOT An AOT or Ahead-Of-Time compiler in a virtual machine is a compiler that
first compiles a whole program into an intermediate form before it is executed
by the virtual machine.

API An API or Application Programming Interface provides the programmer with an
interface to a group of related functions that are usually located within a library

of functions. The interface in this case is the description of data types, return
types and formal parameters to functions and methods (if object orientation is

used).
BDL A BDL or Bchaviour Definitlon Language is a programming language used for

the definition of game character behaviour. It facilitates the application oriented
creation of believable virtual entities that inhabit game worlds.

DSL A DSL or Domain Specific Language is a, programming language specia, lised for

the purpose of solving problems in a specific application domain.

FPS An FPS or First Person Shooter game is an action video game in which the

player experiences the gameplay from the viewpoint of the protagonist. This

type of game usually involves the exploration of some sort of building complex

and frequent skirmishes with other players or NPCs. Falise [2000] presents a

study of the FPS game genre, providing an overview of its history.

FSM An FSM or Finite State Machine is a data structure that provides the most

commonly used means for creating game Al [Fu and Houlette 20041. In games,
FSNIs allow the definition of Boolean states of which only one will be active at

any one time. Each state may have several possible follow states.

FuSM An FuSM or Fuzzy State Machine is a permutation of an FSM which uses fuzzy

logic instead of Boolean logic [McCusky 2000].

319

GOAP GOAP or Goal-Oriented Action Planning is a goal oriented Al technique [Orkin
2004a] for use with virtual entities in which the sequence of actions that the
system needs to perform to reach its end-state or goal is generated in real-time
by using a planning heuristic on a set of known values which need to exist within
the virtual entitys domain knowledge.

GP GP or Genetic Programming is an automated technique which produces algo-
rithms by using a process that parallels evolution through natural selection, i. e.
a simulation of life [Koza 1992].

GPU A GPU or Graphics Processing Unit is a co-processor with dedicated instructions
for computer graphics operations. GPUs provide the functionality for modern
computer graphics cards.

NPC An NPC or Non-Player Character is a virtual entity inhabiting the game world,
whose perception and actions within the game are controlled by a computer
program. The behaviour displayed by an NPCs is usually generated with the
aid of "artificial intelligence" algorithms and techniques.

OTF An OTF or On-The-Fly compiler in a virtual machine is a compiler that compiles
each instruction of a program immediately before it is executed by the virtual
machine. The compilation target can be an intermediate form for use by the

virtual machine or native machine code of the host platform.
RPG An RPG or Role Playing Game belongs to a computer game genre that has been

derived from traditional paper-based games and board games like the popular
"Dungeons and Dragons". In these games the player usually controls a hero

character or a party of hero characters and needs to solve a series of quests

within a fantasy setting.
RTS An RTS or Real-Time Strategy game is a strategy game which is not played

round-based but in real-time, i. e. all of a player's units and his opponents have to

be directed/make choices on the fly, while all action takes place simultaneously.

SDK An SDK or Softwaxe Development Kit is a comprehensive set of domain specific

programs, libraries and manuals that provides a software developer with all the

required data and information for developing programs in the SDK's domain.

VM A VM or Virtual Machine is a program that emulates the functionality of a whole

computer system. It provides applications with a level of abstraction above the

actual hardware (and the operating system) of the computer.

320

List of Publications

ANDERSON, E. F. 2002. Off-Line Evolution of Behaviour for Autonomous Agents
in Real-Time Computer Games. In Proceedings of Parallel Problem Solving from
Nature - PPSN V11, vol. 2439 of LNCS, 689--699.
ANDERSON, E. F. 2003. Playing Smart - Artificial Intelligence in Computer Games.
In Proceedings of zfxCON03 Conference on Game Development.
ZERBST, S., DiýVEL, 0. AND ANDERSON, E. 2003.3D-Spieleprogrammierung.
Markt + Technik.

ANDERSON, E. F. 2004. KI-nder der Zukunft - Ein kurzer Über- und Ausblick
auf die Entwicklung von künstlicher Intelligenz in Computerspielen. Available from
http: //ýww. games-net. de.

ANDERSON, E. F. 2004. A NPC Behaviour Definition System for Use by Program-

mers and Designers. In Proceedings of CGAIDE 2004 5th Game-On International
Conference on Computer Gantes: Artifictal Intelligence, Design and Education, 203-
207.

ANDERSON, E. F. 2005. Scripting Behaviour - Towards a New Language for
Making NPCs Act Intelligently. In Proccedings of zfxCON05 2nd Conference on
Game Development, 46-56.
ANDERSON, E. F. 2005. SEAL -A Simple Entity Annotation Language. In

Proccedings of zfxCON05 2nd Conference on Game Development, 70-73.

ANDERSON, E. F. AND MUOUGHLIN, L. 2006. C-Sheep: Controlling Entities in a
3D Virtual World as a Tool for Computer Science Education. Poster in Proceedings

of Future Play 2006

MUOUGHLIN, L AND ANDERSON, E. F. 2006.1 See Sheep: A Practical Appli-

cation of Game Rendering Techniques for Computer Science Education. Poster in

Proceedings of Future Play 2006

ANDERSON, E. F. AND McLOUGHLIN, L. 2006. Do robots dream of virtual

sheep: Rediscovering the karel the robot paradigm for the plug&play generation. In

Proceedings of the Fourth Game Deszgn and Technology Workshop and Conference

(GDTW 2006), 92-96.

ANDERSON, E. F. AND McLOUGHLIN, L. 2007. Critters in the classroom: A 3D

computer- game- like tool for teaching programming to computer animation students.

In A CM SIGGRAPH 2007 Educators Program.

ý Publications relevant to this thesis.

321

REFERENCES

References
AHOI A. V.

ý
KERNIGHAN, B. W. AND WEINBERGER, P. J. 1979. Awk -a Pattern Scaning and Processing Language (Second Edition). Software: PrachCe

& Expertence 9(4), pp. 267-280.

ANDERSON, E. F. AND MUOUGHLIN, L. 2006. Do Robots Dream of Virtual
Sheep: Rediscovering the Karel the Robot Paradigm for the Plug&Play Gen-
eration. In Proceedings of the Fourth Game Deszgn and Technology Workshop
and Conference (GDTW 2006), pp. 92-96.

ANDERSON, E. F. AND MUOUGHLIN, L. 2007. Critters In The Classroom: A
3D Computer- G ame- Like Tool for Teaching Programming to Computer Ani-

mation Students. In A CM SIGGRAPH 2007 Educators Program.

ANDERSON, E. F. 2002. Off-Line Evolution of Behaviour for Autonomous

Agents in Real-Time Computer Games. In Proceedings of Parallel Problem
SolvMg from Nature - PPSN V11, vol. 2439 of LNCS, pp. 689-699.

ANDERSON, E. F. 2003a. Playing Smart - Artificial Intelligence in Computer

Games. In Proceedings of zfxCON03 Conference on Game Development.

ANDERSON, E. F. 2003b. ZBL/O - the ZFX Bot Language - Specification.
Available from: http: //zblO. zfx. info. [Accessed 29/02/20081.

ANDERSON, E. F. 2004. A NPC Behaviour Definition System for Use by Pro-

grammers and Designers. In Proceedings of CGAIDE 2004 5th Game-On Inter-

national Conference on Computer Games: Artifi6al Inteffigence, Destgn and

Education, pp. 203-207.

ANDERSON, E. F. 2005a. Scripting Behaviour - Towards a New Language for

Making NPCs Act Intelligently. In Proccedings of zfxCON05 2nd Conference

on Game Development, pp. 46-56.

ANDERSON, E. F. 2005b. SEAL -a Simple Entity Annotation Language. In

Proccedings of zfxCON05 2nd Conference on Game Development, pp. 70-73.

322

REFEREINTCES

ATKIN, M. S., WESTBROOK, D. L. AND COHEN, P. 1999. Capture the Flag:
'Military Simulation Mects Computer Games. In Proceedzngs of AAAI Sprzng
Sympostum Series on AI and Computer Games 1999, pp. 1-5.

BABA, S. A., HuSSAIN, H. AND EMBI, Z. C. 2007. An Overview of Parame-
ters of Game Engine. IEEE Multidisciplinary Engineering Education Magazine
2(3), pp. 10-12.

BEAUBOUEF, T. AND MASON, J. 2005. Why the High Attrition Rate for
Computer Science Students: Some Thoughts and Observations. A CM SIGCSE
Bullehn 37(2), pp. 103-106.

BERTRAND, F. AND AuGERAUD, M. 1999. BDL: A Specialized Language
for Per-Object Reactive Control. IEEE Transactions on SOftware-Enyineermg
25(3), pp. 34-1-362.

BEZROUKOV, N. 2006. Scripting Languages as a Step in Evolution of Very

High Level Languages. Available from: http: //www. softpanorama. org/People/
Script ing-giants/scripting-languages-as-vhll. shtml [Accessed 29/02/2008].

BILAS, S. 2002. Dungeon Siege Technical Manual. Available from:

http: //www. drizzle. com/ scottb/ds/skrit. htm [Accessed 29/02/20081.

BINSUBAIH, A., MADDOCK, S. AND ROMANO, D. 2007. A Survey of 'Came'

Portability. Tech. Rep. CS-07-05, University of Sheffield. Department of Com-

puter Science.

BLOW, J. 2002. Toward Better Scripting. Game Developer 9(10).

BLUNDEN, B. 2002. Virtual Machine Design and Implementation. Wordware.

BOERI J. 2000. Object-Oriented Programming and Design Techniques. In Game

Programmtng Gems. Charles River Media, pp. 8-19.

B6HM7 C. AND JACOPINI, G. 1966. Flow Diagrams, Turing Machines and

Languages with only Two Formation Rules. Communications of the ACM

9(5), pp. 366-371.

323

REFERENCES

BOSELLI, L. 2004. GUN-TACTYX - Historical Background. Available from:
http: //guntactyx. ganieprog. it/. [Accessed 29/02/2008].

BROCKINGTON, M. AND DARRAH, M. 2002. How Not to Implement a Basic
Scripting Language. In Al Game ProgrammMg Wisdom. Charles River Media,
pp. 548-544.

BROCKINGTON, M. 2002. Level-Of-Detail Al for a Large Role-Playing Game.
In Al Game ProgrammMg Wisdom. Charles River Media, pp. 419-425.

BROW C., GEMROT, J., BDA, M., BURKERT, 0., PARTINGTON, S. J. AND
BRYSON, J. J. 2006. POSH Tools for Game Agent Development by Stu-
dents and Non-Programmers. In Proceedings of the 9th International Computer
Games Conference: AL Mobile, Educational and Serious Games (CGAMES

2006), pp. 126-133.

BRUSILOVSKY, P., CALABRESE, E., HVORECKY, J., KoUCHNIRENKo, A. AND

MILLER, P. 1997. Mini-languages: A Way to Learn Programming Principles.
Educatton and Informahon TechnOlOgZC8 2(l), pp. 65-83.

CALLONI, B. A. AND BAGERT, D. J. 1995. Iconic Programming for Teach-

ing the First Year Programming Sequence. In IEEE FIE '95: Proceedings

of the Frontiers M Education Conference on 1995. Proceedings, 1995 vol I.,

pp. 2a5.10-2a5-13.

CAMPBELL, B. 2006. Swiss Army Chainsaw: A Common Sense Approach to

Tool Development. Available from: http: //www. gamasutra. com. [Accessed

29/02/2008].

CARLISLE, P. 2002. Designing a GUI Tool to Aid in the Development of Finite-

State Machines. In AI Game Programmtng Wisdom. Charles River Media,

pp. 71-77.

CASS, S. 2002. Mind Games. IEEE Spectrum 39(12), pp. 40-44.

CHAMPANDARD, A. J. 2004. AI Game Development. New Riders.

324

REFERENCES

COHEN, M. A., RITTER, F. E. AND HAYNES, S. R. 2005. Herbal: A High-Level
Language and Development Environment for Developing Cognitive Models in
Soar. In In Proceedings of the 14th Conference on Behaviour Representation
in Modeling and Simulation, pp. 133-140.

COLLINS. 2001a. Artificial Intelligence. Collins English Dictionary. fifth ed.
HarperCollins.

COLLINS. 2001b. Avatar. Collins English Dictionary, fifth ed. HarperCollins.

COLMERAUER, A. AND RoUSSEL, P. 1993. The Birth of Prolog. In HOPL-II:
The second ACM SIGPLAN conference on History of programming languages,
pp. 37-52.

COMBS, N. AND ARDOINT, J. 2004. Declarative versus Imperative Paradigms
in Games Al. Available from: http: //www. red3d. com/cwr/games/. [Accessed
29/02/2008].

CORADESCHT, S. AND SAFFIOTTI, A. 1999. Symbolic Object Descriptions to

Sensor Data. Problem Statement. Lmk6pMg Electronic Articles in Computer

and Informatton Suence 4(9).

CORNWELL, J., O'BRIEN, K., SILVERMAN, B. AND TOTH, J. 2003. Affordance

Theory for Improving the Rapid Generation, Composability, and Reusability

of Synthetic Agents and Objects. In BRIMS 2003: Proceedings of the Twelfth

Conference on Behavtor Representations in Modeling and Simulation.

CUTIMITSU, M., SZAFRON, D., SCHAEFFER, J., MCNAUGHTON, M., ROY,

T., ONUCZKO, C. AND CARBONARO, M. 2006. Generating Ambient Be-

haviors in Computer Role-Playing Games. IEEE Intelligent Systems 21(5),

pp. 19-27.

DANC. 2006. Managing Game Design Risk: Part 11 - Data Driven Develop-

ment. Blog Entry, available from: http: //www. lostgarden. com. [Accessed

29/02/2008].

325

REFERENCES

DANN, W.
I COOPER, S. AND PAUSCH, R. 2000. Making the Connection:

Programming with Animated Small World. In MCSE '00: Proceeding-s of the
5th annual SIGCSEISIGCUE ITiCSEconference on Innovahon and technology
zn computer scZence educahon, pp. 41-44.

DARKEN, C. J. 2007. Level Annotation and Test by Autonomous Exploration.
In Proceedings of the Third AT'tifiCwl Intelligence and Interactive Digital En-
tertainment Conference (AIIDE 2007).

DAvis, B., BEATTY, A., CASEY, K., GREGG, D. AND WALDRON, J. 2003.
The Case for Virtual Register Machines. In IVME '03: Proceedings of the 2003

workshop on Interpreters, virtual machines and emulators, pp. 41-49.

DAwsON, B. 2001. Micro-Threads for Came Objects Al. In Game Programming
Gems 2. Charles River Media, pp. 258-264.

DAWSON, B. 2002. Game Scripting in Python. In Proceedings of the 2002 Game
Developers Conference.

DECHTER, R. AND PEARL, J. 1985. Generalised Best-First Search Strategies

and the Optimality of A*. Journal of the ACM 32(3), pp. 505-536.

DELOACH, S. 1999. Multiagent Systems Engineering: A Methodology And

Language for Designing Agent Systems. In Proceedings of Agent-Oriented In-

formahon Systems (AOIS) '99, pp. 45-57.

DIJKSTRA, E. W. 1959. A Note on Two Problems in Connexion with Graphs.

Numertsche Mathernahk 1, pp. 269-271.

DOYLE, P. 1999. Virtual Intelligence from Artificial Reality: Building Stupid

Agents in Smart Environments. In AAA1 '99 SprZng Symposium on Artifictal

Intelligence and Computer Games.

DOYLE, P. 2002. Believability through Context. In Proceedings of the First

International Joint Conference on Autonomous Agents and Multzagent Systems

(AAMAS '02), pp. 342-349.

326

REFERENCES

DOYLE, P. 0.2004. Annotated Worlds for Animate Characters. PhD thesis,
Stanford University.

DYBSAND, E. 2003. Al Middleware: Getting into Character. Game Developer
pp. 6-10.

DYBSAND, E. 2004. Goal-Directed Behaviour Using Composite Tasks. In Al
Game Programming Wisdom 2. Charles River Media, pp. 237-245.

ERRA, U., DE CHIARA, R., SCARANO, V. AND TATAFIORE, M. 2004. Massive

Simulation Using GPU of a Distributed Behavioral Model of a Flock with
Obstacle Avoidance.
2004 (VMV).

EVANS, R. 2001

In Proceedings of Vision, Modeling and Visualization

Al in Computer Games: The Use of Al
Techniques in Black & White. Seminar Notes, available from:
http: //www. dcs. qmul. ac. uk/research/logic/seminars/abstract/EvansRO1. html.
[Accessed 29/02/2008].

FAiRCLOUGH, C., FAGAN, M., MAc NAMEE, B. AND CUNNINGHAM, P. 2001.

Research Directions for Al in Computer Games. Tech. Rep. TCD-CS-2001-29,

Trinity College, Dublin.

FALISE, S. 2000. Bots Behamng Badly (Makzng bots behave more human). Mas-

ter's thesis, Utrecht School of the Arts.

FLEMING, J. 2007. Down the Hyper-Spatial Tube: Spacewar and the Birth of
Digital Game Culture. Available from: http: //www. gamasutra. com. [Accessed

29/02/20081.

FORBUS, K. D. AND HINRICHS, T. R. 2006. Companion Cognitive Systems: A

step towards human-level Al. AI Magazine 27(2), pp. 83-95.

FORBUS, K. D. AND WRIGHT, W. 2001. Some notes on pro-

gramming objects in The SimsTM. Class Notes, available from:

http: //qrg. northwestern. edu/papers/papers. html. [Accessed 29/02/2008].

327

REFERENCES

Fu, D. AND HOULETTE, R. 2002. Putting Al in Entertainment: An Al Author-
ing Tool for Simulation and Games. IEEE Intelligent Systerns 17(4), pp. 81-84.

Fu, D. AND HOULETTE, R. 2004. The Ultimate Guide to FSMs in Games. In
Al Game Programmtng Wisdom 2. Charles River Media, pp. 283-302.

Fu, D., HOULETTE, R. AND JENSEN, R. 2003. A Visual Environment for Rapid
Behavior Definition. In BRIMS 2003: Proceedings of the Twelfth Conference
on Behamor Representations in Modeling and Simulation.

FUNGE, J. D. 1998. Making Them Behave: Cognitive Models for Computer
Animation. PhD thesis, University of Toronto.

FUNGE, J. D. 1999. AI for Games and Animation: A Cognitive Modeling
Approach. AK Peters.

GARCES, D. 2006. Scripting Language Survey. In Game ProgrammMg Gems 6.
Charles River Media, pp. 323-340.

GARLAN, D. AND SHAW, M. 1994. An Introduction to Software Architecture.

Tech. Rep. CMU/SEI-94-TR-21, ESC-TR-94-21, Carnegie Mellon University,

Pittsburgh, PA. CMU Software Engineering Institute.

GELFOND, M. AND LIFSCHITZ, V. 1998. Action Languages. Link6ping Elec-
tromc Articles in Computer and Information Suence 3(16).

GILL, S. 2004. Visual Finite State Machine Al Systems. Available from:

http: //www. gamasutra. com. [Accessed 29/02/2008].

GIUNCHIGLIA, E. AND LIFSCHITZ, V. 1999. Action Languages, Temporal Action

Logics and the Situation Calculus. Link6ptng Electrow Arhcles in Computer

and Information Science 4(40).

GIVEN7 D. 2002. The inComplete SCUMM Reference Guide. Available from:

http: //www. scummvm. org. [Accessed 29/02/2008].

GLASSER) J. A. AND SOH, L. 2004. Al in Computer Games: From the Player's

Goal to Al's Role. Tech. rep., University of Nebraska, Lincoln.

328

REFERENCES

GOULD, D. 2002. Complete Maya Programmzng: An Extensive Guide to MEL

and the C++ APT Morgan Kaufmann.

GRAEPEL, T., HERBRICH, R. AND COLD, J. 2004. Learning to Fight. In
Proceedings of CGAIDE 2004 5th Game- On International Conference on Com-

puter Games: AdifiCial Intelligence, Design and Education, pp. 193-200.

H, ýHNEL, D., BURGARD, W. AND LAKEMEYER, G. 1998. GOLEX - Bridging
the Gap between Logic (GOLOG) and a Real Robot. In KI '98: Proceedings
ofthe 2And Annual Gei,, tnan Confemnce on A7-tificzal Inteffigence, vol. 1505 of
LNAI, pp. 165-176.

HARMON, 1\L 2004. A System for Managing Came Entities. In Game Program-

mtng Gems 4. Charles River Media, pp. 69-83.

HARMON, M. 2005. Building Lua into Games. In Game Programmtng Gems 5.
Charles River Media, pp. 115-128.

HAYWARD, D. 2007. Uncanny AI: Artificial Intelligence in the Uncanny Valley.
Available from: http: //www. gamasutra. com. [Accessed 29/02/20081.

HEGDE, M. 2005. Physics, Gameplay and the Physics Processing Unit. White

Paper, available from http: //www. ageia. com/. [Accessed 29/02/20081.

HERRIOT, R. G- 1977. Towards the Ideal Programming Language. In Proceedings

of the A CM conference on language deszgn for rehable software 1977, pp. 56-62.

HIGGINS, D. 2002a. Generic A* Pathfinding. In AI Game ProgrammMg Wisdom.

Charles River Media, pp. 114-121.

HIGGINS, D. 2002b. Terrain Analysis in an RTS - The Hidden Giant. 1n Game

ProgrammMg Gems 3. Charles River Media, pp. 268-284.

HORSWILL, 1. D. 2000. Functional Programming of Behaviour-Based Systems.

Autonomous Robots 9(l), pp. 83-93.

329

REFERENCES

HOULETTE, R., Fu, D. AND Ross, D- 2001. Towards an Al Behavior Toolkit for
Games. In Proceedings of AAAl Spring Symposmm Sertes on AI and Interactive
Entertainment 2001, pp. 50-53.

HOULETTE, R., Fu, D. AND JENSEN, R. 2003. Creating an Al Modeling
Application for Designers and Developers. In Proceedings of AcroSense-2003,
vol. 5091 of SPIE, pp. 164-171.

HUEBNER, R. 1997. Adding Languages to Came Engines. Game Developer 4(9).

HUGET, M. -P. 2002. Desiderata for Agent Oriented Programming Languages.
Tech. Rep. ULCS-02-009, University of Liverpool.

IERUSALEMSCHY, R., DE FIGUEIREDO, L. H. AND CELES, W. 1996. Lua -
an Extensible Extension Language. Software: Practice & Experience 26(6),

pp. 635-652.

IERUSALEMSCHY, R., DE FIGUEIREDO, L. H. AND CELES, W. 2005. The

Implementation of Lua 5.0. Journal of Unmersal Computer Sczence 11(7),

pp. 1159-1176.

IERUSALEMSCHY, R., DE FIGUEIREDO, L. H. AND CELES, W. 2007. The

Evolution of Lua. In HOPL HL Proceedings of the third ACM SIGPLAN

conference on History of programming languages, pp. 2-1-2-26.

JACOBS, S. 2005. Visual Design of State Machines. In Game ProgrammZng Gems

5. Charles River Media, pp. 169-175.

JOHNSON, D. AND WILES, J. 2001. Computer Games with Intelligence. Aus-

traltan Journal of Inteffigent Informatton ProcessMg Systems 7, pp. 61-68.

KANE, B. 2007. SIGGRAPH: EA's Entis on Derailing the 'Com-

moditization Treadmill'. Gamasutra Industry News, available from:

http: //www. gamasutra. com. [Accessed 29/02/2008].

KELLEHER, C. 2006. Alice: Using 3D Gaming Technology to Draw Students into

Computer Science. In Proceedýngs of the Fourth Game Destgn and Technology

Workshop and Conference (GDTW 2006), pp. 16-20.

330

REFERENCES

KERNIGHAN, B. W. AND PIKE, R. 1999. Using Macros to Generate Code. In
The Practice of Programming. Addison-Wesley, ch. 9.6.

KERNINGHAN, B. W. AND RITCHIE, D. M. 1988. The C Programmzng Lan-
guage, seconded. Prentice Hall.

IN'ý_ERNINGHAN, B. W. AND VAN WYK C-J 1998. Timing Trials, or the
Trials of Timing: Experiments with Scripting and User-Interface Languages.
Software: Prachce & Experience 28(8), pp. 819-843.

KHARKAR, S. 2004. A Modular Camera Architecture for Intelligent Control. In
AI Game ProgrammMg Wisdom 2. Charles River Media, pp. 549-554.

KHOO, A. AND ZUBEK, R. 2002. Applying Inexpensive Al Techniques to
Computer Games. IEEE Intelligent Systems 17(4), pp. 48-53.

KHOO, A., DUNHAM, G., TRIENENS, N. AND SOOD, S. 2002. Efficient. Real-
istic NPC Control Systems using Behavior-Based Techniques. In Proceedings

of AAAI SprZng Sympostum Sertes on Al and Interachve Entertainment 2002.

Ki'NG, G. W., ATKIN, M. S. AND WESTBROOK, D. L. 2002. Tapir: the

Evolution of an Agent Control Language. ln Computers and Games 2002.

KORN. D. G. 1994. ksh - An Extensible High Level Language. In Very High

Level Languages Sympostum (VHLL), pp. 129-146.

KORNRUMPF, A. 2005. Warum "Die Sims" sdmtliche Rekorde der Spieleindustrie

brach. In Proccedings of zfxCON05 2nd Conference on Game Development,

pp. 38-45.

KoZA, J. R. 1992. Genetic Programming: on the ProgrammMg of Computers

by Means of Natural Selection. M1T Press.

KoZA, I R. 1994. Genetic Programming II: Automahc Dzscovery of Reusable

Programs. MIT Press.

KRUZEWSKI, P. 2006. Real-Time Crowd Simulation Using Al. implant. In AI

Game Programming Wisdom 3. Charles River Media, pp. 233-248.

331

REFERENCES

KUSHNER, D. 2002. The Mod Squad. Popular Scwnce 260(8).

LAIRDý J. E. AND DUCHI, J. C. 2001. Creating Human-like Synthetic Char-
acters with Multiple Skill Levels: A Case Study using the Soar Quakebot. In
Proceedings of AAAI Spring Symposium Series on AI and Interactive Enter-
tainment 2001, pp. 54-58.

LAIRD, J. E. AND VAN LENT, M. 2000. Human-level Al's Killer Application:
Interactive Computer Games. In Proceedings of the 17th National Conference
on Artificial Intelligence, pp. 1171-1178.

LAIRD, J. E. AND VAN LENT, M. 2001. The Role of Al in Computer Came
Genres. [book chapter] http: //ai. eecs. umich. edu/people/laird/papers/book-
chapter. htm.

LAIRD, J. E. 2001. It Knows What You Are Going To Do: Adding Anticipation
to a Quakebot. In Proceedings of the Agents-2001 Internatzonal Conference on
Autonomous Agents, pp. 385-392.

LEE, K. H., CHOI, M. G. AND LEE, J. 2006. Motion Patches: Building Blocks
for Virtual Environments Annotated with Motion Data. In SIGGRAPH '06:
A CM SIGGRAPH 2006 Papers, pp. 898-906.

LEVESQUE, H. J., REITER, R., LESPERANCE, Y., LIN, F. AND SCHERL,

R. B. 1997. GOLOG: A Logic Programming Language for Dynamic Domains.

Journal of Lopc ProgrammZng 31(1-3), pp. 59-83.

LEVESQUEý H. , PIRRI , F. AND REITER, R. 1998. Foundations for the Situation

Calculus. Link6ping Electronic Article8 in Computer and Information Science

3(18).

Li, S. 2002. Rock 'em, sock 'em Robocode! IBM developerWorks: Java tech-

nology - http: //www-106. ibm. com/developerworks/library/j-robocode/. [Ac-

cessed 29/02/2008].

LIFSCHITZ, V. 1997. Two Components of An Action Language. Annals of
Mathematics and Artificial Intelligence 21(2), pp. 305-320.

332

REFERENCES

LINDHOLM, E., KILGARD, M. J. AND MORETON, H. 2001. A User-
Programmable Vertex Engine. In SJGGRAPH '01: Proceedzngs of the 28th
annual conference on Computer graphics and interactive techniques, pp. 149-
158.

LINK, W. 1995. Assembler-Programmicrung. Franzis.

Loui, R. P. 1996. Why GAWK for Al. ACM SIGPLAN NotZces 31(8), pp. 8-9.

LUI,,: E, S., HOHN, C., FARRIS, J.
,

JACKSON, G. AND HENDLER, J. A. 1998.
Co-Evolving Soccer Softbot Team Coordination with Genetic Programming.
1n RoboCup-97. - Robot Soccer World Cup 1, vol. 1395 of LNCS, pp. 398-411.

LUKE, S. 1998. Genetic Programming Produced Competitive Soccer Softbot
Teams for RoboCup97. In Genehc ProgrammMg 1998: Proceedings of the
Third Annual Conference, pp. 214-222.

MAcDORMAN, K. F. 2005. Androids as an Eperimental Apparatus: Why is

there an Uncanny Valley and can we Exploit it? In Proceedings of CogSci-2005

Workshop: Toward So6al Mechanisms of Andrmd Science, pp. 106-118.

MACEDONIA, M. 2000. Using Technology and Innovation to Simulate Daily Life.

IEEE Computer 33(4), pp. 110-112.

MAGERKO, B. 2006. Intelligent Story Direction in the Interactive Drama Archi-

tecture. In AI Game Programming Wisdom 3. Charles River Media, pp. 583-

596.

MARKý W. R., GLANVILLE, R. S., AKELEY, K. AND KILGARD, M. J. 2003.

Cg: a System for Programming Graphics Hardware in a C-like Language. In

SIGGRAPH '03: A CM SIGGRAPH 2003 Papers, pp. 896-907.

MATTHEWS, J. 2002. Basic A* Pathfinding Made Simple. In AI Game Pro-

grammZng Wisdom. Charles River Media, pp. 105- 113.

MCCARTHY, J. 1955. A Proposal for the Summer Research Project on Artificial

Intelligence. Available from: http: //www-formal. stanford. edu/jmc/history/.

[Accessed 29/02/2008].

333

REFERENCES

MCCARTHY, J. 1959. Programs with Common Sense. In Mechanisatzon of
Thought Proce88eS, Proceedings of the SYMP08ZUM of the National Physics Lab-

oratory, pp. 77-84.

MCCARTHY, J. 2007. What is Artificial Intelligence. Available
from: http: //NN-,, N-NN, -formal. stanford. edu/jmc/whatisai/whatisai. html. [Ac-

cessed 29/02/20081.

MCCUSKY, M. 2000. Fuzzy Logic for Video Games. In Game Programming
Gems. Charles River Media, pp. 319-329.

MCIVER, L. AND CONWAY, D. 1996. Seven Deadly Sins of Introductory Pro-

gramming Language Design. In Proceedings of Software Engineen'ng: Educa-

hon and Practice (SE: E&P'96), pp. 309-316.

McNAUGHTON, M., REDFORD, J., SCHAEFFER, J. AND SZAFRON, D. 2003.

Pattern-Based Al Scripting using ScriptEase. In Proceedtngs of the 16th Cana-

dian Conýference on Artificial Intelligence (AI
A2003), pp. 35-49.

MOGILEFSKY, B. 1999. Lua in Grim Fandango. Available from:

http: //www. grimfandango. net- [Accessed 29/02/2008].

MONTANA, D. 1 1995. Strongly Typed Genetic Programming. Evolutionary

Computahon 3(2), pp. 199-230.

NAREYEK, A., KARLSSON, B. F. F., WILSON, I., CHADY, M., MESDAGHI,

S., AXELROD, R., PORCINO, N., COMBS, N., EL RHALIBI, A., WETZEL, B.

AND ORKIN, J. 2004. The 2004 Report of the IGDA's Artificial Intelligence In-

terface Standards Committee. Available from: http: //www. igda. org/ai/. [Ac-

cessed 29/02/2008].

NAREYEK, A., COMBS, N., KARLSSON, B. F. F., MESDAGHI, S. AND WIL-

SON, 1.2005. The 2005 Report of the IGDA's Artificial Intelligence Interface

Standards Committee. Available from: http: //www. igda. org/ai/. [Accessed

29/02/2008].

334

REFERENCES

NAREYEK, A. 2000. Intelligent Agents for Computer Games. In Proceedings
of the Second Internattonal Conference on Computers and Games (CG2000),
pp. 414-422.

NAREYEK, A. 2007. Game Al is Dead, Long Live Game Al. IEEE Intelligent
Systems 22(l), pp. 9-11.

OLSEN, J. R. 1991. The Visionary Programmer's Handbook or Quffling the
Great Adventure. Oxxi.

ORKIN, J. 2002.12 Tips from the Trenches. In AI Game ProgrammZng Wisdom.
Charles River Media, pp. 29-35.

ORKIN, J. 2004a. Applying Goal-Oriented Action Planning to Games. ln AI
Game ProgrammZng Wisdom 2. Charles River Media, pp. 217-228.

ORKINý J. 2004b. Symbolic Representation of Game World State: Toward Real-
Time Planning in Games. In AAAI-04 Workshop on Challenges Zn Game AI,

pp. 26-30.

ORKIN) J. 2006. Three States and a Plan: The A. 1. of F. E. A. R. In Proceedings

of the 2006 Game Developers Conference.

OUP. 2002. Scripting Language. A Dictionary of Computing. Oxford University

Press.

OUSTERHOUT, J. K. 1998. Scripting: Higher Level Programming for the 21st

Century. IEEE Computer 31(3), pp. 23-30.

PATTIS, R. E. 1981. Karel the Robot, a Gentle Introduchon to the Art of
Programming. John Wiley and Sons.

PEMBERTON, S. AND DANIELS, M. 1982. Pascal Implementahon: The P4

Comptler and Interpreter. Ellis Horwood.

PETERS, C., DOBBYN, S., MAc NAMEE 1
B. AND O'SULLIVAN, C. 2003. Smart

Objects for Attentive Agents. In Proceedings of the International Conference

in Central Europe on Computer Graphics, Visualization and Computer Vision.

335

REFERENCES

POIKER, F. 2002. Creating Scripting Languages for Nonprograrnmers. In Al
Game ProgrammMg Wisdom. Charles River Media, pp. 520-529.

PRECHELT, L. 2003. Are Scripting Languages Any Good? A Validation of Perl,
Python, Rexx, and Tcl against C, C++, and Java. Advances M Computers
57, pp. 205-270.

PRINZ, P. AND CRAWFORD, T. 2006. C in a Nutshell. O'Reilly.

RABIN, S. 2000a. A* Aesthetic Optimizations. In Game Programming Gems.
Charles River 'Media, pp. 264-271.

RABEN, S. 2000b. Designing a General Robust Al Engine. In Game Programming
Gems. Charles River Media, pp. 221-236.

RABIN, S. 2000c. The Magic of Data-Driven Design. In Game Programming
Gems. Charles River Media, pp. 3-7.

RABIN, S. 2002a. Finding Redeeming Value in C-Style Macros. In Game Pro-

grammMg Gems 3. Charles River Media, pp. 26-37.

RABIN, S. 2002b. Implementing a State Machine Language. In AI Game Pro-

, pp. 314 grammZng Wisdom. Charles River Media. -320.

RABIN, S. 2004. Promising Game Al Techniques. In Al Game Programming

Wisdom 2. Charles River Media, pp. 15-27.

RELic ENTERTAINMENT. 2003. SCAR - Scrzphng at Relic.

REYNOLDS, C. W. 1987. Flocks, Herds and Schools: A Distributed Behavioral

Model. Computer Graphics 21(4), pp. 25-34.

I REYNOLDS, C. W. 1994. Competition, Coevolution and the Game of Tag. In

Proceedings of the Fourth International Workshop on the Synthesis and Simu-

lahon of Living Systems, pp. 59-69.

REYNOLDS, C. W. 1999. Steering Behaviors for Autonomous Agents. In Pro-

ceedings of the 1999 Game Developers Conference.

336

REFERENCES

REYNOLDS, C. W. 2006. Big Fat Crowds on PS3. In Sandbox '06: Proceedings

of the 2006 ACM SIGGRAPH Symposium on Videogames.

RITTER, F. E., HAYNES, S. R., COHEN, M., HOWES, A., JOHN, B. ý
BEST, B., LEBIERE, C., JONES, R. M., CROSSMAN, J., LEWIS, R. L.,
ST. AMANT, R., McBRIDE, S. P., URBAS, L., LEUCHTER, S. AND VERA,

A. 2006. High-level Behavior Representation Languages Revisited. In Proceed-

ings of ICCM - 2006- Seventh International Conference on Cognitive Modeling,

pp. 404-407.

ROBERTS, M. B. V. 1971. Biology: A Functional Approach. Nelson.

RuSSEL, S. J. AND NORVIG, P. 1995. Artificial Inteffigence: A Modern Ap-

proach. Prentice Hall.

SARAFOPOULOS, A. 2001. GP Interface. [function library]. NCCA, Bournemouth

University.

SCHAFFER, E. AND WOLF, M. 1991. The UNIX Shell as a Fourth Gen-

eration Language. Tech. rep., Revolutionary Software. Available from:

http: //www. rdb. com.

SCHNEIDER, J. G. AND NIERSTRASZ, 0.1999. Components, Scripts and Glue.

In Software Architectures - Advances and Applications. Springer-Verlag, pp. 13-

25.

SCHWARTZý R. L. 1992. Learning Perl. O'Reilly.

SCOTT, B. 2002a. Architecting an RTS Al. In AI Game ProgrammMg Wisdom.

Charles River Media, pp. 397-401.

SCOTT, B. 2002b. The Illusion of Intelligence. In AI Game Programming

Wisdom. Charles River Media, pp. 16-20.

SEARLE, J. R. 1980. Minds, Brains, and Programs. Behavioral and Brain

Suences 3(3), pp. 417-457.

337

REFERENCES

SHAY, X. 2004. Polymorphism in Angelscript. Available from:
http: //www. gamedev. net. [Accessed 29/02/2008].

SHERROD, A. 2007. Ultimate 3D Game Engine Design & Architecture. Charles
River Media.

SHI, Y., GREGG, D., BEATTY, A. AND ERTL, M. A. 2005. Virtual Ma-

chine Showdown: Stack versus Registers. In VEE '05: Proceedings of the Ist
ACMIUSENIX Mternational conference on Virtual execution enmronments,
pp. 153-163.

SIEGEL, E. V. AND CHAFFEE, A. D. 1996. Genetically Optimizing the Speed

of Programs Evolved to Play Tetris. In Advances in Genetic Programmmg,
Volume 2. MIT Press, pp. 279-298.

SIEM, K. V. 2006. Artificial Intelligence in Computer Games. Project Report,

available from http: //www. unl. csi. cuny. edu/-siem/. [Accessed 29/02/20081.

SIMPSON, C. 2002. Past, Present and Future of AvP2 Modifications. Avail-

able from http: //www. planetavp. com/features/articles/sub-editorial-13. shtml-
[Accessed 29/02/2008].

SKIBAK) S. AND STAHL, M. 2002. KI - State of the Art. Available from

http: //www. uni-ulm. de/-s-hdamme/. [Accessed 05/04/2004].

SNAVELY, P. J. 2004. Empowering Designers: Defining Fuzzy Logic Behaviour

through Excel-Based Spreadsheets. In AI Game Programming Wisdom 2.

Charles River Media, pp. 541-548.

SNAVELY, P. J. 2006. Custom Tool Design for Game Al. In Al Game Program-

MZng Wi8dom 3. Charles River Media, pp. 3-12.

SNOOK, G. 2000. Simplified 3D Movement and Pathfinding Using Navigation

Meshes. In Game Programming Gems. Charles River Media, pp. 288-304.

SPIRIG, M., ZERBSTý S., ANDERSON, E. F., PECH, S., ENGEL, S. AND

DiýVEL, 0.2003. ZFX Bot Contest. [Private on-line discussion 18/03/2003-

19/05/2003].

338

REFERENCES

STEELE, G. L. ANDGABRIEL, R. P. 1993. The Evolution of Lisp. In HOPL-II. -
The second ACM SIGPLAN conference on History of programming languages,
pp. 231-270.

STOUT, B. 2000. The Basics of A* for Path Planning. 1n Game Programmmg
Gems. Charles River Media, pp. 254-263.

STROUSTRUP, B. 1991. What is "Obj ect- Oriented Programming"? In Proceed-
ings of the lst European Software Feshval.

STROUSTRUP, B. 1997. The C++ Programming Language, third ed. Addison
Wesley.

STROUSTRUP, B. 2005. The Design of C++Ox. CIC++ Users Journal 23(5).

SWEETSER, P. AND WILES, J. 2005. Scripting versus Emergence: Issues for
Game Developers and Players in Game Environment Design. Internattonal

Journal of Inteffigent Games and Simulatzons 4(l), pp. 1-9.

SWEETSER, P. 2003. Current Al in Games: A Review. Tech. rep., University of
Queensland, Brisbane.

TANENBAUM, A. S. 2001. Modern Operating Systems, second ed. Prentice Hall.

TAPPER, P. 2003. Personality Parameters: Flexibly and Extensi-

bly Providing a Variety of Al Opponents' Behaviors. Available from:

http: //www. gamasutra. com. [Accessed 29/02/2008).

TOMLINSON, S. L. 2004. The Long and Short of Steering in Computer Games.

International Journal of Simulation: Systems, Science & Technology 5(1-2).

TozouR, P. 2001. Influence Mapping

River Media, pp. 287-297.

In Game ProgrammMg Gems 2. Charles

ToZOUR, P. 2002a. Building a Near-Optimal Navigation Mesh. In AI Game

Programming W18dom. Charles River Media, pp. 171-185.

ToZOUP,, P. 2002b. The Evolution of Came Al. In AI Game Programming

Wisdom. Charles River Media, pp. 3-15.

339

REFERENCES

TOZOUR, P. 2002c. The Perils of Al Scripting. In AI Game Programming
Wisdom. Charles River Media, pp. 541-547.

TURING, A. M. 1950. Computing Machinery and Intelligence. Mind 59.

UNTCH, R. H. 1990. Teaching Programming Using the Karel the
Robot Paradigm Realized with a Conventional Language. Available from:
http: //www. mtsu. cdu/-untch/karel/karel90. pdf. [Accessed 29/02/2008].

VAN DEURSEN, A., KLINT, P. AND VISSER, J. 2000. Domain-Specific Lan-

guages: An Annotated Bibliography. A CM SIGPLAN Notices 35(6), pp. 26-36.

VAN LENT, M. AND LAIRD, J. E. 1999. Developing an Artificial Intelligence

Engine. In Proceedings of the 1999 Game Developers Conference.

VAN LENT, M., LAIRD, J., BUCKMAN, J., HARTFORD, J., HOUCHARD, S.,

STEINKRAUS, K. AND TEDRAKE, R. 1999. Intelligent Agents in Computer

Games. In PTOCeedings of the 16th National Conference on ATlificial Intelli-

gence, pp. 929-930.

VARANESE, A. 2003. Game Scrzptz'ng Mastery. Premier Press.

WALLISý A. 2007. Is Modding Useful? In Game Carreer Guide 2007. CMP

Media, pp. 25-28.

WARREN, P. 2001. Teaching Programming Using Scripting Languages. Journal

of Computing ScZences in Colleges 17(2), pp. 205-216.

WELSH, S. AND PISAN, Y. 2005. Information- Oriented Design and Game Al.

ln Proceedings of the Second Australasian Conference on Interactive Entertain-

ment, pp. 227-234.

WEST, M. 2007. Doinain-Specific Languages. Game Developer 14(7), pp. 33-36.

WILCOX, B. 2007. Reflections on Building Three Scripting Languages. Available

from: http: //www. gamasutra. com. [Accessed 29/02/2008].

WILSON, K. 2002. Data-Driven Design. Blog entry, available from:

http: //www. GameArchitect. net, May. [Accessed 29/02/2008].

340

REFERENCES

WIRTH, N. 1973. The Programming Language Pascal (Revised Report). Tech.
Rep. 5, Eidgenössische Technische Hochschule Zürich. Institut für Informatik.

WIRTH, N. 1986. Compi'lerbau. Teubner.

WIRTH, N. 1993. Recollections about the Development of Pascal. ACM SIG-
PLAN Notices 28(3), pp. 333-342.

WIRTH, N. 1996. Compiler Construction. Addison-Wesley.

WIRTH, N. 2006. Good Ideas, through the Looking Glass. IEEE Computer

39(l), pp. 28-39.

WOODCOCK, S. 2001. Al Roundtable Report. In Proceedings of the 2001 Game
Developers Conference.

WRIGHT, 1. AND MARSHALL, J. 2000. More Al in less Processor Time: 'Egocen-

tric' Al. Available from: http: //www. gamasutra. com. [Accessed 29/02/20081.

YOBI G. 1975. Hunt the Wumpus. Creative Computing.

YUE, B. AND DE BYL, P. 2006. The State of the Art in Game Al Standardis-

ation. In Proceedings of the 2006 international Conference on Game Research

and Development, pp. 41-46.

ZERBSTý S., DÜVEL, 0. AND ANDERSON, E. 2003.3D-Spieleprogrammierung.

Markt + Technik.

341

