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The Development of a Reversible and Finitely Variable Camber Windsurf Fin

Abstract

An investigation was undertaken to identify and develop a practical method for improving the

lift to drag ratio (L/D) of the contemporary windsurf fin.

It was established that the contemporary windsurf fin is at an advanced stage of evolution and
that a fundamental reworking of the design is required to attain significant L/D gains. In
particular the symmetrically foiled cross-section (required for equal performance on each

sailing tack) limits the performance potential of the device.

The benefits of using camber in the design of lifting sections for high lift and low drag are well
known. Traditional variable camber lifting surfaces utilise leading and trailing edge flap
technologies to vary the geometry (camber) of the cross-section. However, this method for
generating variable camber is not considered to be suitable or practical for the windsurf fin,
primarily due to the increases in drag associated with conventional flaps. An alternative

approach for developing a variable camber windsurf fin is therefore considered.

It is proposed to use hydroelastic tailoring techniques to realise a reversible and finitely
variable camber cross section for the fins used in the sport of windsurfing. The camber in the
cross-section is invoked by the pressure differential acting on the two surfaces of the fin when
it is at an incidence angle to the freestream. The magnitude of the camber is adaptive and

responds passively by design, material usage and sailor input.

As part of the preliminary investigation a computer based analysis tool was developed to
perform the two dimensional investigation into the coupling effect between the fluid flow and
the hydroelastically tailored cross section. Based on the outcome of this work a prototype

windsurf fin employing a hydroelastic cross section was fabricated and tested.

Results from this preliminary investigation establish the potential for using a hydroelastically
tailored cross-section to significantly increase the L/D performance of a windsurf fin of

nominal surface area (when compared with contemporary designs).
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THE SPORT OF WINDSURFING

1.0 Introduction

Windsurfing is a spectacular mass participant sport in which the energy of the wind is used
to propel the sailor over the surface of the water (Figure 1.1). The sport has grown rapidly
since its origins in the late 1960s as can be seen by the development of the Professional
Windsurfing Association (PWA) World Tour competition series and by the inclusion of the
sport in the Olympic Games.

The original windsurfers were cumbersome and slow, bearing little resemblance to the
modern equipment which is substantially lighter, more efficient and capable of propelling

the sailor to speeds in excess 80 km/h (45 knots).

1.1 The Equipment Used in the Sport of Windsurfing

The equipment used in the sport of windsurfing consists of a sail assembly which is joined
to the board by means of a flexible universal joint. The sail assembly comprises a mast,
boom and sail-cloth. The board is similar to a conventional surfboard and comprises a
hull, fin(s) on the underside of the hull and footstraps to enable the sailor stay in contact
with the equipment at high speeds. The sailor uses bodyweight and rig movements in

conjunction with footsteering techniques to control the speed and direction of the craft.

1.1.1 The Evolution of the Equipment

The search for effective high-speed marine, land and air vehicles has a long history. The
search for higher speeds and improved overall efficiency can be cited as the primary

driving forces behind the development of the windsurfing equipment '**! .

In the early days of the sport, the windsurfing equipment was very similar to dinghy craft

in that a ‘soft’ sail and displacement type hull were employed. A displacement hull of

nominally constant wetted length is however notoriously poor for high speed vessels
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THE SPORT OF WINDSURFING

because the magnitude of viscous resistance increases rapidly due to its dependence on

velocity squared (v?), where for a flat plate;

Drag ~ %pszCD (D

We should recognise that Cp will vary with Reynolds’s Number (i.e. especially whether
laminar or turbulent flow) and with pressure and induced drag. Cp cannot therefore be

regarded as a constant.

To limit the rate of increase in resistance with increasing forward speed there are three

philosophies that can be used for the design of the hull 61081271 143) [661 [142]

1. Use a planing hull design in which the hull is raised in the water, by the
application of a dynamic supporting force, thereby reducing the wetted surface

arca.

2. Use hydrofoils in which the hull is raised clear of the water by the dynamic force

of the immersed foils.
3. Use an air cushion (hovercraft) to raise the hull clear of the water.

1.1.1.1 The Planing Hull Windsurfer

The use of a planing hull design on windsurf boards was introduced in the late 1970s and
has proven to be effective in reducing the drag of the hull and elevating the attainable
speeds of the complete assembly. Windsurfers supported by dynamic forces such as

through the use of hydrofoils or air cushions have not been successfully developed.
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THE SPORT OF WINDSURFING

In conjunction with hull developments, advancements in sail and fin technology have had

an equally positive effect in improving the efficiency of the complete assembly and the

attainable speed [641 11441

Over the years the equipment has evolved through a process of ‘inspired trial and error’,
whereby feedback from the sailors is used as the primary source of information for the sail,
hull and fin designers. This is not as unconventional as it may first seem based on the fact
that until very recently the evolution and design of aircraft wings was similarly described
by Dillner et al B T asa process of, ‘enlightened cut and try’, relying almost exclusively on
the use of empirical data and information acquired by physical flow testing techniques.

Marchaj B9 expands on this point by stating,

‘unlike the airplane, whose development resulted from the close co-operation of
scientists and technologists, the modern racing yacht has been evolved almost
entirely by the concerted efforts of enthusiastic skippers, designers and
sailmakers with little direct reference to basic scientific principles. In fact,
yacht designing and particularly sailmaking , have been working to a rule of
thumb - a very good rule of thumb - based on hundreds of years of accumulated

experience.’

Garrett ' concludes that, 4 good measure of the state of development of a device is to
look at the variation in its design. Items that have reached an advanced stage of
evolutionary development are all very similar in design’. This scenario is particularly true
in the sport of windsurfing where the design of the fin has remained nominally the same for
many years. Burkett (1] points out, ‘modern race and wave fins are all fairly similar in
design and function....with the differences (between the various designs) being very subtle
indeed so that you should not expect a revolutionary surprise when changing between

these various modern fins’.
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From this it can be concluded that the contemporary windsurf fin is at an advanced stage of
evolution and that alternative design approaches are required to realise further significant

performance gains.

Significant performance gains in the ultimate speed of the windsurf assembly could be
realised through a reduction in the drag of the fin U2 Other land based and hard water
(ice) sail powered vehicles (land yachts, ice yachts and land surfers) are capable of speeds
well in excess of the windsurfer ! (greater than 160 km/h), with the same mode of
locomotion. The difference in speed between these craft is therefore attributable to the
larger magnitudes of parasitic drag associated with the fin and hull. A reduction in drag

will also enhance the acceleration potential of the equipment.

For this reason development work into the design of the hull and the fin is an ongoing
process of practical interest to competitive sailors. The fin is in fact one of the easiest

components to change and is capable of having the greatest effects on overall performance
[31]

Because the fins are at an advanced stage of development (in their current format) a radical
reworking of the design is required to see any noticeable performance gains Bl piltet '
even goes as far as to suggest that the fins of the future will need to become intelligent and

adaptive to meet this requirement.

1.1.2 Global Model of the Windsurfer Assembly

To enable a better understanding of the role of the fin as part of the complete windsurfer

assembly a mathematical model of the system needs to be developed.

In any discussion of the mechanics of marine vehicles great care must be taken to define a
model of the system and system boundaries accurately. Systems involving natural
phenomena such as that of the ocean, or atmosphere are notoriously difficult to investigate

(271 ' For this reason approximations and assumptions are often made, such as ignoring the
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influence of the surface waves and only considering parts of the problem in a two

dimensional sense.

The modeling of a dynamic system, such as the windsurfer, is particularly problematic due
to the interaction of the sailor and the equipment, as well as the natural environment of the
air, water and air/water interface. In particular the wave motions towards the surface of the
sea can greatly affect the loading and hence the performance of the fin. Although this type
of unsteady loading has been successfully modeled by Hugo and Jumper,”® it is felt that
the generation of such a dynamic model is beyond the scope of this work. Therefore, an

alternative simplified steady state model is employed 3]

These models indicate the primary interactions between the components of the windsurf
board (as shown in Figure 1.2) and the required balancing of forces for controlled and

steady navigation.

1.1.3 The Role of the Windsurf Fin

The primary role of the windsurf fin is to produce a lifting force to counteract the sideways
force of the sail, as well as providing directional control and

stability!' I 7I242EIEONBLBA9]  yyrithout the fin the complete assembly would be pushed

downwind under the action of the sail.

With the modern planing hull designs the wetted length is reduced to a minimum (as
compared with a displacement type hull), thereby elevating the role of the fin in generating

the required sideways force.

The magnitudes of the lifting force generated by the fin used on a modern planing hull
windsurfer vary between 300 N and 600 N [16l17]135]  The magnitudes of drag generated by
the fin typically vary between 20 N and 50 N (the drag from the fin accounts for
approximately one sixth of the total drag, - with the drag due to windage and the drag of

the hull accounting for the rest).
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Generally, the surface area of the fin is selected to match the surface area of the sail which
means that a larger sail will require the use of a larger fin for comfortable sailing. There
are however no set rules governing fin selection as this is very much down to personal

preference, sailing stance and the prevailing conditions.

1.2 The Disciplines in the Sport of Windsurfing

In most sports there exist specialised disciplines and events. In the sport of cycling a
multitude of separate and distinctive disciplines exist, such as mountain biking, speed
trialing and pursuit to name but a few. Each of these disciplines places a set of distinctive
requirements on the rider and the equipment such that the equipment is tailored to suit the
mode of use. Due to this tailoring of the equipment, a bicycle optimised for one discipline

is unlikely to perform well in another.

The same scenario exists in the sport of windsurfing where there are four distinctive

disciplines and types of competition sailing.

1. Wave Sailing
2. Course Racing
3. Slalom Racing
4. Speed Sailing

Generally, for the racing type disciplines the equipment is designed to be highly efficient,
which in the case of the fins means that high aspect ratio, ‘upright’ designs are used s41056]
In wave sailing, the equipment is ‘detuned’ through the introduction of rake and lower
aspect ratios, which although detrimental in terms of hydrodynamic efficiency does make

the fin more ‘user friendly’ and maneuverable.

Although the design details of the board, fin and sail can vary considerably for each

discipline, the fundamental principles governing the operation and interaction of the
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equipment components is the same for each discipline. Therefore it is possible to consider

the work as being applicable for each of the separate disciplines in the sport.

1.3 Design Aim

The overall aim of the research project is to establish a practical and realistic method (or
methods) for improving the hydrodynamic operational efficiency of the conventional

windsurf fin.
Improvements in the performance of the new design (or design feature) will be gauged in
terms of a net gain in the ratio of lift to drag (L/D) achieved in comparison with the

existing contemporary designs.

1.4 The Research Program

The program of research was as follows;

[

. To research the role and operation of contemporary windsurf fins.

2. To investigate the most suitable approaches for increasing the lift and/or reducing

the drag generated by a windsurf fin of a nominal surface area.

3. To propose a practical method for increasing the lift and/or reducing the drag

generated by a windsurf fin of a nominal surface area.

4. To investigate the effectiveness of the proposed design solution.

5. To fabricate a prototype windsurf fin for testing and evaluation of the proposed
design solution.
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Figure 1.1 planing Windsurf Board
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2.0 The Conventional Windsurf Fin

Literature specific to the design and operation of the windsurf fin is generally limited to
articles in the ‘Windsurfing Press’. Although these provide a good insight into the views
held by many within the sport they do not necessarily represent a thorough and scientific

examination of the subject area.

2.1 The Anatomy of the Conventional Windsurf Fin

The windsurf fin is located on the underside of hull of the board and is fully immersed in
the water under normal steady sailing conditions. If this immersion is not maintained, flow
separation and spinout (severe loss of lift also referred to as stall) due to ventilation will be
experienced by the fin as air is able to pass into the low pressure region of the fin thereby

destroying the integrity of the flow (21

The operation of the fin on a windsurfer can be considered as analogous to the operation of

the keel on a sailing boat, Two of the primary functions performed by the keel are [61][99];

1. To generate a hydrodynamic sideforce at minimum additional drag to balance the

opposite aerodynamic sideforce produced by the sails.
2. To secure good directional stability and balance in rough seas.

Function 1 is a commensurable quality which can be determined and measured
quantitatively in terms of lift and drag, whereas function 2 is about ‘feel’ and is therefore
subjective and incommensurable in nature, making it difficult to gage and compare

accurately.

Assessing the performance of a windsurf fin is problematic as the success of a design can

be as much about its ‘feel’ as about the actual hydrodynamic efficiency W71 1641,
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Determining the incommensurable nature and ‘feel’ of any item of sporting equipment
(such as a football, a racquet, a bat and particularly a fin) is beyond the scope of this work.
This project is therefore solely concerned with evaluating the commensurable quantities of

the lift and drag generated by the fin.

2.2 Flow Around the Windsurf Fin

The nature of the flow around an object immersed in a moving fluid (or an object moving
through a stationary fluid) is governed by the geometric shape, its orientation to and speed
in the flow, as well as other flow parameters such as depth of immersion [78], temperature,

viscosity, density and the localised pressure.

For a streamlined shape, the nature and pattern of the flow can be established through
experimental techniques and/or reference to empirical data. Following recent advances in
computer technology it is also possible to predict the nature of the flow using

Computational Fluid Dynamics (CFD) techniques e,

It has also been demonstrated that classical airfoil theory can be employed to predict the

lift and drag generated by a finite length windsurf fin 781013

2.3 The Format and Operation of the Conventional Windsurf Fin

The geometric features of a range of contemporary windsurf fins are shown in Figure 2.1,
clearly illustrating the diversity of planforms that have evolved for the disciplines within
the sport. Figure 2.2 shows the nomenclature used to describe the geometric features of a
windsurf fin. The non-dimensional planform of a hydrofoil can be uniquely defined in

terms of the following three parameters D81,

1. Aspect Ratio (AR) - ratio of mean span to chord.

2. Taper Ratio - Ratio of tip chord to root chord.
3. Rake Angle (or sweep angle).
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2.4 Two Dimensional Flow Characteristics of the Windsurf Fin

To simplify the analysis of a lifting surface it is convenient to consider the theoretical two
dimensional operation of the cross section in isolation from the three dimensional flow

effects due to the shape of the planform.

Due to the velocity changes in the flow around the cross section the localised pressure

values vary in accordance with Bernoulli’s equation;
1 2 1 2
p+ EPU =p,+ EPUO = CONSTANT 2.1)

By using the velocity fluctuations and Bernoulli’s equation a plot of the pressure field
around a foil section can be generated, as shown in Figure 2.3. This illustrates the pressure
differential between the upper and lower surfaces, as well as indicating the location of the
minimum and maximum pressure. The regions of favourable (decreasing) and adverse

(increasing) pressure gradients are also visible.

The lift and drag components of a two dimensional cross section can be provided in a non-

dimensional form as follows;

2.2)

2.3)

The lift and drag coefficients (C, and C;) vary with the incidence angle of the cross section
to the freestream. A plot of the C, and C; versus angle of incidence (Figure 2.4) is often

used to describe the aerodynamic characteristics of the cross section.
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The plot of C, versus angle of incidence rises linearly until it reaches a maximum when the
section stalls. The linear section of the C; versus angle of incidence plot is often referred to

as the lift slope of the section.

The C4 versus angle of incidence is approximately parabolic for angles of attack (below

stall) and has a minimum value at low values of C,.

The optimum operating angle of incidence for the cross section corresponds to the value of

maximum Lift to Drag (L/D) ratio.

A conventional windsurf fin uses a streamlined and symmetrical cross-section which is
designed to operate with equal efficiency on both sailing tacks (exceptions to this rule

139) as well as the

exist, such as the asymmetric sections used for one tack speed sailing
unconventional “Quattro” Fin by Gun Sails which features four alternately asymmetric

sections over the span).

A symmetrical section can only develop lift if it is oriented with an angle of incidence to
the freestream (whereas a cambered section will produce lift even at zero angle of
incidence; with its lift also being a function of increasing angle of incidence). Other lifting
surfaces which are designed to work in one direction only normally use a cambered section

(fixed and variable).

For a symmetrically foiled cross-section an approximation of the C; value as a function of

incidence angle (before the onset of flow separation ) is provided by the following formula
[99] .

b

C =011+ e 2.9)
C
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This approximation serves to show that the maximum thickness and angle of incidence to
the freestream are the governing parameters on the performance of a symmetrically foiled

profile.

The location of the maximum thickness has been shown to have a minimal effect on the lift

(1 There are however

curve slope, but will influence the point of stall and hence Cp i
practical limits in using the body thickness (t/c) and angle of incidence alone to increase

the value of Cp .

For a ‘general use’ symmetrical cross section this would seem to be when the t/c ratio is
approximately 12% and the angle of incidence is in the range of 6° - 9° ( (corresponding

with the maximum L/D value).

This establishes that the streamlining of the section has a minimal effect on the lift curve
slope (before stall). Therefore the primary function of streamlining is to reduce the
magnitudes of drag produced. It is therefore concluded that, ‘streamlining can be
considered as an enginegring problem of enormous practical consequences where every
effort to delay or avoid flow transition or separation can pay handsomely in terms of

reduced drag, power required or increased velocity’ ).

The drag generated by a streamlined cross section is referred to as profile drag and consists
of the viscous effects (friction drag) and pressure change effects (pressure or wake drag).
The primary reason for streamlining the cross section is to reduce the pressure drag
(frictional drag is governed by the surface area and Reynolds Number although this too is
influenced by the location of the transition point which in turn is determined by the shape

of the foil section).
Minimal pressure drag is attained by reducing the size of the wake behind the section by

ensuring that the flow remains attached to the foil surface as much as is possible. This is

achieved by avoiding excessive contour changes and adverse pressure gradients.
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The design of the cross section and hence the nature of the pressure gradients can also be
used to increase the region of laminar flow. By using a favourable pressure gradient the
transition to turbulent flow can be delayed, thereby reducing the magnitude of frictional
drag. Figure 2.5 shows a plot of the measured frictional drag values for a number of flat
plates. This indicates that based on Reynolds Number (R.) alone, transition normally

occurs between R, = 5 x 10° and 2 x 10° for a flow over a flat plate.

Based on a typical range of sailing speeds between 10 ms” and 20 ms” the Reynolds

number for a windsurf fin can be derived as follows;
R =— 2.5)

where;
1 is the length of the body (typically 0.1m at base of fin)

v is the kinematic viscosity of the fluid (1.19 x 10 m*s™ for salt water at 15°)

Giving;
‘R,=8.4x 10° (at a velocity of 10 ms’™)
R.=1.7x 10 (at a velocity of 20 ms'l)

This indicates that based on R, alone a typical windsurf fin operating at a speed of 10 ms”
would be likely to develop a partially turbulent flow. At a speed of 20 ms” the extent of
the region of turbulent flow is likely to increase substantially (although it must be
considered that for sailing at this elevated speed a fin with a smaller surface area and hence

chord length (1) would be employed, which would reduce the value of R,).
This assumption of transition from a laminar to turbulent flow is based on calculations for

a flat plate. In the case of the windsurf fin transition is more likely to be triggered by the

presence of the adverse pressure gradient.
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The start of an adverse pressure gradient normally coincides with the point of maximum
thickness and so this can be considered as the most likely point at which the flow will
change from a laminar to a turbulent flow. Contemporary windsurf fins typically have the
maximum thickness located between 30% to 50% of the chord distance from the nose. To
further increase the regions of laminar flow it is therefore preferable to move the point of
maximum thickness rearwards such that a favourable pressure gradient is maintained over
a larger region of the foil surface. Again there are limitations to moving the maximum
thickness rearwards as a sufficiently long region is required for the pressure recovery to

satisfy the Kutta-Jowkowski condition (equal velocity) at the trailing edge [44]

2.4.1 Stall

As the angle of incidence is increased for a foil section the streamlining effect diminishes
and eventually flow separation, or stall, occurs with a dramatic reduction in lift and

. . 107
increase in drag o7,

The mathematical theory of ideal fluids yields no information about the expected
separation for even the most simple cases. In addition the point at which the stall takes
place is sensitive to the Reynolds number, as well as the ambient turbulence of the fluid

and the roughness of the foil [1°7]

The prediction of the angle of incidence at which Cpp,, and stall occurs is therefore a
difficult task. Experimental techniques have established typical stalling angles of between

9° and 14° for a contemporary windsurf fins !11712610135],

2.4.2 Cavitation

In any discussion involving hydrofoils the phenomena of cavitation needs to be considered.
According to Dimotakis and Shen B8l the occurrence of cavitation produces undesirable
changes in hydrodynamic performance, noise generation and physical damage. Therefore

the ability to predict the occurrence of cavitation becomes an important engineering

29



THE CONVENTIONAL WINDSURF FIN

problem. Because the physical processes involved with cavitation inception are complex,
the prediction of cavitation performance has relied heavily on model experiments and

extrapolation of these results to other scales.

In theory, cavitation occurs when the local flow pressure drops to the vapour pressure of
water resulting in the formation of bubbles and cavities. This will occur if the velocity of
the windsurf fin is sufficiently high, since pressure is a decreasing function of fluid

velocity and incidence angle. In principle cavitation will commence when;

Do=p, (2.6)
or,
o= # <0 Q.7)
—"pU?
S P

Particles in the water and surface imperfections mean that the pressure at which cavitation

[32]

commences is higher than the theoretical value of zero For this reason the critical

cavitation number (o) is determined empirically. The critical velocity (U, ) at which

cavitation will occur on a hydrofoil section can then be determined as follows;

0.5

U, = IPLP_ (2.8)
EP(U ¢ =€)
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For a windsurf fin at the surface of the sea the following figures are taken;

po = 100 kPa at sea surface

py = 1.8 kPa for sea water of density (p) 1025 kgm'3

6, = 0 (although realistically a higher number would be expected for a
hydrofoil operating in a marine environment)

cp =-0.5 (From 12.66% (t/c) Eppler foil €836 at a. = 2° [6](2))
Giving;
U.,=19.6 ms”’ (approximately 37.8 knots)

This indicates that for high speed sailors the windsurf fin is currently operating well within
the domain of cavitation. Clayton and Bishop ! confirm this by stating that the maximum
operating speed of conventional sub-cavitating hydrofoils sections (as used on windsurf
fins) is in the region of 20 ms”’ (approximately 40 knots). However, they also describe
how the operational limits‘ of conventional foils can be extended to 30 ms™ (approximately
60 knots) through the use of delayed cavitation cross sections which have a more even

pressure distribution on the suction surface.

Rogers 1211 considers that the maximum attainable speed before cavitation for a
conventional windsurf fin will be in the region of 50 knots (approximately 25 ms'l) ifa

suitable cross section and planform is employed.

Crimi P4 supports this by demonstrating that the onset of cavitation can be delayed
through the use of leading edge sweep. It is shown that it is the flow component normal to
the leading edge that is the most influential factor in cavitation inception (as is the case in
forestalling the compressibility effects on high speed aircraft®). Therefore the speed for
cavitation inception on a finite length hydrofoil varies inversely as the cosine of the sweep
angle. There are however limitations with using sweep (to delay cavitation inception) due

to the associated increases in drag and reductions in wing lift effectiveness 0]
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Beyond a speed of 30 ms” a supercavitating type foil section is required. This is shown in
Figure 2.6 alongside typical sub-cavitating and delayed cavitation foil sections. At these

[83]

speeds special techniques, such as the use of intentional cavitation devices ", are then

required to optimise the performance.

2.5 Three Dimensional Flow Effects

In a 2D flow the lifting surface is considered to be infinite in length such that there are no
spawns components of velocity flow. However, with a finite length lifting surface
deviations from the two dimensional flow exist. Due to the pressure differential at the tip
of a finite length lifting surface the fluid tends to flow around from the region of high

pressure to low pressure as shown in Figure 2.7. The result of this is threefold (721,

1. The foil surface near the tip is much less efficient at producing lift

2. This decrease in lift is accompanied by an increase in drag

3. The additional disturbing fluid movement developing towards the tip(s)
modifies the direction of the oncoming flow near the foil, hence the effective

angle of incidence along the foil span changes, as do lift and drag.

The downwash induced by the three dimensional flow causes a downward flow
modification to the direction of the freestream, thus reducing the effectiveness of the lifting
section. Additionally, these three dimensional flow effects result in a tip vortex and an

additional drag referred to as induced drag.

For an elliptical wing the angle of incidence of the foil is reduced to a new effective value;

Ay =0,-a; 2.9)
o e ‘
substituting a; = AR (2.10)
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: C .
to give @, =0a,- 7rALR (Radians) (2.11)
or a,=a,—1824x C (Degrees) (2.12)
ef g - AR 44 °

The magnitude of the induced drag due to the three dimensional flow effects is given by;

2
c, =5

2.13
=R (2.13)

where Cp; is the induced drag to the 3D flow effects.

These equations for the effective incidence angle and induced drag show the crucial role
played by the planform in terms of lift and-drag performance. A plot of the lift coefficient
(Cy) as a function of AR is shown in Figure 2.8, with a similar plot of the drag coefficient
(Cy) shown in Figure 2.9. This illqstrates the reduction in lift effectiveness and increases in
drag associated with a reduction in AR. The benefits of increasing the aspect ratio to

reduce the influence of the 3D flow effects are thereby established.

2.6 Scope of the Investigation

The previous sections have established the fundamental features and operational
characteristics of the conventional windsurf fin. Determining the theoretical stalling and
cavitational characteristics of hydrofoils is complex and can be considered to be somewhat
specialist topic areas. For this reason it is not proposed to undertake a detailed
investigation into the cavitating and stalling characteristics of the contemporary windsurf
fin. Instead the work will be concerned with the pre-stall range of incidence angles

(nominally < 10°) and the sub-cavitatihg range of sailing speeds (nominally < 20 ms’l).
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Figure 2.1 A Range of Contemporary Windsurf Fins

34



THE CONVENTIONAL WINDSURF FIN

L N
]
G
=
<
Y
<
v
=
<
o
%
<T
& N
& v
C <
a
-
: =
v
O
T
O
—
.
O
v

Figure 2.2  Windsurf Fin Nomenclature

35



THE CONVENTIONAL WINDSURF FIN

3JUNSSaUd 3AIRISOd

ﬁ\ Rill.\.ﬁ..ﬂ .l
= \\\\\X\ A

(UOILDNS)
aunssaud anlxovban

Prcséure Field Around Foil Section

Figure 2.3

36



THE CONVENTIONAL WINDSURF FIN

0l 24

Cq
S 010 2.0 /
- / Ci
240 008 16 //\
(4% E "é
230 £0.06 8 1.2 my/an
5 % % \
220 90.04 S0.8
A « y/ R
310 50,02 = 0.4 (A ~\<D
0 00 0k
~0.4

-8 0 8 16 24
Angle of Attack

Figure2.4  Typical Section Characteristics

37



THE CONVENTIONAL WINDSURF FIN

1
m YIBWNN SCTONA3IY
01 oo_ so_ oo_ oo_ Qo.
. /m:_mq._n.zqz_zqa
.. . . > aad
(YY3HNIOHIS) LN INBENL Ingd— = —ris ../mw;mn_ £}
* ° P o . o cse
..._ozvo_ooa.lwv\( il LY AT g ~tet P — NZIPON N3
2v20 Dbl : L) o
. 2 e o .o
-~ ~—
4

L 4

[sT{s ¥

Measured Coefficient of Friction for a Number of Flat Plates

Figure 2.5

38



THE CONVENTIONAL WINDSURF FIN

-l I ———

Sub-cavitation: < 20 m S-1

- ——

’ -1
Deloyed cavitationt 20 — 30 m's

— ]

1

Supercavitation: > 30 m S

Figure 2.6  Hydrofoil Sections

39



THE CONVENTIONAL WINDSURF FIN

|

oo

......................... > LOW PI"eSSUf‘e F'low

High Pressure Flow

Tip
Vortex

Relatively Low Pressure

Relatively High Pressure

Figure 2.7  Three Dimensional Flow Effects

40



THE CONVENTIONAL WINDSURF FIN

Infinite

|
i

——

1

g

F——-1—

8 16 24
Angle of Attack

0

Effect of Aspect Ratio on Lift Curve Slope

Figure 2.8

41



THE CONVENTIONAL WINDSURF FIN

-||4 - ——
- — — b —— l_m m
: 9 s
.Illl_. C
.= (1)
O G- s
p—— — 4:[._ hm..g D
O o 8§
] — O 2
] ] o &
S 3
-—— -——~ a &
<
- - s
_ o k:
A () m
\D QU] <
i

}UBID133900 33

Figure 2.9

42



LITERATURE REVIEW

3.0 Literature Review

3.1 General Approaches for Optimising the Performance of Lifting Surfaces

The format and operation of the conventional windsurf fin has been established.
Consideration is now given to the approaches for realising further gains in the lift to drag

ratio (L/D) of the device.

A gain in L/D will be realised by employing geometrical features that optimise the two
dimensional performance characteristics of the cross section and/or minimise the

magnitude and influence of the three dimensional flow effects.

To improve the L/D ratio it will be necessary to adopt one or both of the following

approaches;
1. Increase the lift produced by a nominal surface area.
2. Reduce the drag pro&uced by a nominal surface area.

These two goals are however not mutually exclusive. Although a laminar flow is better for
low drag at low incidence angles, a turbulent boundary layer is more resistant to flow
separation at high lift, thereby increasing the value of maximum lift (Cy,,,) that can be

generated 59,

3.2 General Approaches for Increasing Lift

In terms of increasing the lift of a wing type device there are three main approaches [21];

1. Increase the camber of the section.

2. Increase the effective wing area.

3. Boundary layer Control.
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3.3 General Approaches for Reducing Drag

In terms of reducing the drag of a lifting surface the four main approaches are [138) ;

Skin friction reduction.
Pressure drag reduction.

Induced drag reduction.

& B b=

Interference drag reduction.

The suitability and effectiveness of these approaches to drag reduction will be a function of

the Reynolds number and hence the characteristics of the boundary layer flow.

For the following three ranges of Reynolds numbers the most suitable methods of frictional

drag reduction are 591,

1. For R, < 10°. Reduce the near wall momentum (assuming a laminar flow) by

boundary layer blowing)heating/cooling [118]

2. For10° <R, <4 x 10. Delay boundary layer transition.

3. For R, > 10". Reduce skin friction for turbulent boundary layers with riblets, Large
Eddy Break-up Devices (LEBUs), geometric modifications, relaminarisation,

introduction of foreign substance, synergism B

Typically the windsurf fin operates at Reynolds numbers varying between 8 x 10° and 1.6
x 10%. This indicates that the methods for reducing the frictional drag of the fin by

delaying boundary layer transition are the most relevant to this work.

The technologies, approaches and methods for achieving high lift and/or low drag can be

[129][130]

generally termed as active or passive . The distinction is that in an active system
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there is a requirement for some form of energy input and control, whereas in a passive

system the operation of the device is autonomous in nature.

For the current work it is a requirement that any of the high lift and/or low drag devices
will not require an auxiliary power source. This does not necessarily restrict the scope of
the study exclusively to passive devices as it may be possible to use the sailor to provide a
limited form ‘active’ input. It is however not considered appropriate to utilise an active

method which requires the inclusion of an auxiliary power source.

34 Optimising the Conventional Windsurf Fin

Assuming that the windsurf fin is to be restricted to its current format of fixed planform
and cross section, the approaches available for optimising the performance of the device

are limited to;
1. Modifications to the cross section geometry.
2. Modifications to the planform geometry.

3. Modifications to' the surface finish.

3.4.1 Design Variables for a Symmetrical Cross Section

The requirement for equal operation in two directions restricts changes in the design of the
cross sections to modifications to the nose shape and pressure distribution (thickness

distribution).

Eppler and Shen ! discuss various aspects of the design of symmetrical foil sections for
hydrofoils. They conclude that the symmetrical cross section most suitable for hydrofoil
applications, ‘is that shape which can be operated with the craft speed as high as possible
without cavitation, and which can tolerate velocity fluctuations as large as possible

imposed by rough waters or during manoeuvring’.
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At low incidence angles, a thin profile (<10% t/c) has the potential for a small wake with
an associated reduction in total drag. If the thickness is further reduced to that of a flat
plate the drag results almost exclusively from surface friction effects (at low incidence
angles). Although this is beneficial in terms of a reduction in wake drag at low incidence
angles, performance at higher incidence angles will be compromised. This is due to the
sharper leading edge profile (if the maximum thickness is located typically rearwards)
which at elevated incidence angles is prone to leading edge separation and stall. This

means that the attainable Cj ., is limited in comparison with a thicker profile.

In contrast, a thicker streamlined profile (>15% t/c) has the potential for maintaining an
attached flow at higher incidence angles (assuming a suitable nose profile is used). This
increases the potential for a higher Cy 1, and hence total lift, but this is at the expense of an

increase in wake drag at lower incidence angles.

A comprehensive collection of data on the experimental characteristics of symmetrical
cross sections is provided by Abbott and Doenhoff !, From this comes the conclusion that
a maximum thickness ratio of approximately 12% provides the best compromise in terms
of both lift and drag perfoﬁnance over a large range of incidence angles for symmetrical

[144]

sections. Venn corroborates this by stating that most windsurf fins feature a t/c of

between 10% and 12% of the chord length.

The position of maximum thickness normally governs the point of transition from a
laminar to a turbulent flow due to the adverse pressure gradient in this region. This is
highly significant as the skin friction associated with a turbulent flow is higher than that
associated with a laminar flow. To exploit the low skin friction drag associated with a
laminar flow a series of cross sections known as Natural Laminar Flow (NLF) profiles

have been developed.

A NLF profile uses passive techniques and geometric features to maintain extended regions

of laminar flow. The simplest technique for maintaining laminar flow over the foil surface
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is to capatilise on the stabilising effect that favourable pressure gradient has on laminar

boundary layers.

Research work on NLF profiles dates back to the 1930s when NACA developed the 6
series of airfoils %), These NACA 6 series airfoils are characterised by a more rearward
position of maximum thickness thereby promoting an extended region of favourable
pressure gradient in which a laminar flow can be maintained. This rearward movement of
maximum thickness reduces the pressure recovery region, resulting in large adverse
pressure gradients. One of the most suitable techniques for dealing with a large adverse
pressure is the Stratford type recovery [“](Stratford established the theoretical minimum

length required for a pressure recovery).

The drag polar for a NLF profile features a ‘bucket’ of low drag values corresponding with
the incidence angles at which long runs of laminar flow are maintained. Achieving these
flows on aircraft wings in the ‘real world’ can be problematic because the construction
techniques (riveted panels) and small imperfections on the leading edge (insect debris) tend

to upset the laminar flow.

Jones and Khalid " detail how the advent of composite material technology in the 1970s
led to resurgence of interest in NLF profiles for military aerospace applications, although

unfortunately the results of much of this work is classified.

Work by Somers 33 at Lockheed has confirmed the low drag advantages of NLF profiles
and how the success of a NLF profile is highly sensitive to the design and subsequent
fabrication method. A NLF profile developed by Somers (133] has been tested and shown to

have no detrimental performance characteristics even if the laminar flow is not maintained.
Eppler and Shen 1! detail the development of a series of symmetrical hydrofoils which

are designed for large regions of laminar flow. The operational efficiency and benefits of

the laminar flow are however limited to incidence angles up to approximately 4°.
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NLF profiles are therefore not suited for applications where high Cy s values are required.
This is primarily due to the early stall associated with the sharp nose shape. To obtain the
benefits of a NLF profile the incidence angles must therefore be constrained to those
corresponding to the low drag bucket, which is generally in the range of -4° < > 4° (for a

symmetrical section).

Based on the fact that the windsurf fin is typically sailed at an incidence angle of 6°
(upwards) it is unlikely that the low drag benefits of using a NLF profile will be realised.

The NLF profile is therefore not considered to be suitable for optimising the overall L/D

performance of the windsurf fin.

It is more common for the position of maximum thickness (for windsurf fins) to be located
at between 30% and 40% of the chord length % This seems to provide the best
compromise in terms of a short run of laminar flow and an attainable Cp . Garrett (st
supports this by stating, ‘the symmetrical sections most used in sailing are those whose

maximum thickness occurs at 30% the chord length’.

So far the discussion has been concerned with the general profile shape in terms of the
value and location of maximum thickness. However, the nose shape of the foil section is
also a design variable which can be used to tailor the performance of symmetrical cross

sections.

The leading edge shape affects the character of the flow, which in turn determines the
range of incidence angles in which separation and stall will occur. Any considerable
sharpening of the nose results in an increase in the local flow velocity, which encourages
leading edge separation and consequently stall and loss of lift. With a suitable shape of

nose such an eventuality might be delayed or even avoided.

Rogers !'?!) discusses the types of nose shape commonly found on windsurf fins. These are

shown in Figure 3.1 and are referred to as sharp, moderate and blunt nose shapes. The
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benefits at low incidence angles of a sharper leading edge shape have already been
established as have the stalling characteristics which make this feature unsuitable for

generating large C; o values at high incidence angles.

To avoid a leading edge stall a more rounded nose shape can be employed. This reduces
the flow velocities in the vicinity of the nose, thereby enabling the cross section to operate
satisfactorily over a larger range of incidence angles. A rounded nose shape is however
less efficient at lower incidence angles due to the region of high pressure that builds up in
front of the foil (due to the less efficient splitting of the freestream flow). Therefore the
selection of a suitable nose shape is highly dependent on the range of incidence angles over
which the cross section is to be employed. For low drag over a range of low incidence
angles a sharper nose profile can be used, whereas for a large range of incidence angles a
more rounded nose profile is preferred (at the expense of an increase in drag for low

incidence angles).

The ‘Boa Stick’ windsurf fin was designed in Canada and is claimed to have a novel cross
section profile which has been ‘extensively tank tested’ B3] (it has not been possible to
source this test data). The cross section itself is of a higher thickness chord ratio (14%)
than comparable fins produced by other manufacturers, with the position of maximum
thickness located in an unusually forward position (25%) and the nose shape is blunt,
probably to delay the onset of leading edge stall. The cross section also features a concave

trailing edge curve design which is presumably used to develop a Stratford type recovery.

A summary of the cross section design variables parameters is provided in Table 3.1.

49



LITERATURE REVIEW

PARAMETER INCREASING VALUES DECREASING VALUES
Thickness Ratio | ¢ Increases Stall Angle . |e Reduces Stall Angle
(t/c) ¢ Increases Form Drag e Reduce Drag at Zero
e Increases Volume Angle of Attack
Position of ¢ Reduces Drag at Zero|e Increases Lift to Drag
Maximum Angle of Attack Ratio
Thickness
Leading Edge |e Increases Lift to Drag|e Reduces Drag at Zero
Radius Ratio Angle of Attack
Trailing Edge | e Increases Lift e Minimum (knife edge)

Thickness e Decreases Lift to Drag Best
Ratio (max. trailing edge

thickness = 0.1t)

TABLE 3.1 Airfoil Design Parameters and their Effect‘on Performance

3.4.2 Design Variables for the Planshape of the Windsurf Fin

The planshape influences the magnitude and nature of the three dimensional flow effects.
In the sport of windsurfing a number of distinctive shapes of planform have ‘evolved’ to
satisfy the requirements of the different disciplines found within the sport (as shown in
Figure 2.1). This illustrates that the ultimate hydrodynamic efficiency is not always a
governing factor in determining the ‘overall performance’ of a fin. For some disciplines,
sea states and wind strengths it is often preferable to detune the fin by reducing the aspect
ratio and introducing sweep, thereby rendering the fin more ‘user-friendly’ and

controllable.

For the current work the aim is simply to optimise the efficiency of the planform by

reducing the detrimental 3D flow effects.
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Reconsideration is given to the formulae for induced drag (Cp;) and effective incidence
angle (o.s) (2.12 and 2.13) with the inclusion of a span efficiency constant (K) based on

the sweep angle, taper ratio and geometric twist.

Cp = Cy 3.1)
” mdRK '
Cy
Ay =a, —1824 x (Degrees) 3.2)

7ARK

This shows the dependence of Cp; and o..¢ on;

1. The coefficient of lift squared (C,2).
2. The efficiency of the planform (K).
3. The aspect ratio of the fin (AR).

Due to the increase in Cpy; as a function of CLZ it is beneficial to keep the angle of incidence

as low as possible to reduce the induced drag.

Garrett ! considers that for boats which are sailed upright, the keel should have deep high
aspect ratio with no sweepback (rake angle). Sweep is beneficial as it reduces the influence
of the free surface I’*! and improves stall characteristics, however there is a penalty to be
paid in that any amount of sweep entrains larger magnitudes of drag due to lift, as well as
reducing the lift curve slope. Normally when sweep is used on high performance windsurf
fins it is to compensate for the planing attitude of the board (normally 6° to 8°) and ‘to add

a modicum of control’ B1,

In terms of the efficiency of the planform, Munk %! establishes that a theoretical
minimum value of Cp; is obtained for a constant downwash across the span (K = 1). The

simplest method for achieving a constant downwash is with an elliptical lift distribution
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with no sweep. An elliptical lift distribution is readily obtained by using an elliptical
planform (with a constant chord and no geometric twist).

The use of elliptical planforms is already prevalent in the sport of windsurfing with most of
the manufacturers producing a range of fins to this general shape (Figure 2.1). This
indicates that in terms of hydrodynamic efficiency the optimum planshape is already being

employed.

The question has to be raised as to why the elliptical planform is seldom seen in nature?
Contrary to Munk’s theories for minimum induced drag, it is common for the most agile
and efficient birds and sea animals to employ crescent shaped lifting surfaces which can be
considered to be ‘sculpted by 100 million years of evolution’.

[19] investigated the performance of aft swept wing tips and claims that induced

Burkett
drag reductions of 4% are feasible for a suitable wing tip design on an otherwise planar
wing. This aft swept wing tip design was subsequently used by Dornier on one of their

medium size passenger aircraft.

Van Dam 1% has also investigated the crescent wing shape and claimed a theoretical 8%
reduction in Cp; for a crescent moon shape planform of AR = 7 when compared with
Munk’s theoretical minimum for an elliptical planform. He concludes that this results
from nonplanar shape due to the angle of attack of the wing and its wake.

[152]

Zimmer similarly predicts an 8% reduction in induced drag for crescent wings with his

vortex lattice method.

[132) sought to establish the accuracy and validity of

An investigation by Smith and Kroo
the previous theoretical work into the crescent shaped wing. A series of computational
models were generated in which the surface panel densities and model planforms were
varied. These tests established the sensitivity of the panel method to differing wing

planforms and panel densities. From this it was concluded that it is difficult to determine
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the magnitudes of induced drag from computational methods with sufficient accuracy to
assess the influence of wing tip modifications. This therefore questions the dramatic
induced drag reductions demonstrated by the computational methods of Van Dam (140 and

Zimmer 1,

Ashenburg and Weihs ! support Smith and Kroo (32 by demonstrating that the induced
drag of a crescent planform is equal but not less than an elliptical planform.

To further investigate the accuracy of the panel method, van Dam et al 1)
subsequently conducted a wind tunnel investigation of the crescent planform. In this
investigation an elliptical and crescent wing model were tested at R, = 1.7 x 108, For all
attached flows, the crescent wing exhibited less (3.9% reduction) induced drag for a given
lift force and wing span. This reduction in induced drag is believed to result from ‘the
Javourable influence of the trailing wake deformations on the pressure distribution of the

highly swept outboard region of the crescent wing’.

In conjunction with the general shape of the planform, the aspect ratio greatly influences
the performance of a lifting'surface. As the aspect ratio of a lifting surface increases, the
influence of the 3D flow effects diminish. This is shown in Figures 2.8 and 2.9 which
illustrate the non linear reduction in drag and increase in lift effectiveness as a function of
increasing aspect ratio. For hydrodynamic efficiency it is therefore beneficial to increase
the aspect ratio to a practical limit. In terms of the windsurf fin, this practical limit is
determined by the trade off between increasing hydrodynamic efficiency and limiting the
magnitude of the fin generated moment arm. The maximum aspect ratio is therefore a
function of two independent factors;
1. The ability of the fin to maintain structural integrity as the span increases (4]

2. The ability of the sailor to resist the larger turning moment associated with a

[127) A conventional displacement hull yacht

high aspect ratio windsurf fin
heels over due to the action of the sail and the keel. Excessive heeling is

however undesirable for a planing windsurf hull and so the sailor must

53



LITERATURE REVIEW

physically oppose and counteract the moment generated by the fin on the rear of
the board. There is obviously a finite limit to the magnitude (and duration) of

turning moment that the sailor can resist with muscular input alone.

The aspect ratio of the commercially available high performance windsurf fins has
remained at nominally the same value (10 > AR, > 13) for the past few years. This
indicates that the optimum aspect ratio in terms of structural integrity, hydrodynamic

performance and sailor controllability has already been established.
3.4.3 The Surface Finish

It has long been known that the surface roughness, especially near the leading edge, has a
large influence on the performance characteristics of wing sections . The C,, in

particular, is sensitive to leading-edge roughness.

Broers et al ' ¢onducted an investigation into the influence of the surface finish on the
performance of windsurf fins. It was found that windsurf fins featuring a gloss finish were
prone to leading edge aeration and stall at a lower incidence angle than the windsurf fins
featuring sanded or ‘Ribcoated’ finishes. The sanded and ‘Ribcoat’ fins demonstrated the
tendency to breé.k the air pockets into smaller ‘bubbles’ which were then discharged
downstream, thereby delaying separation. In general the sanded and Ribcoated fins stalled

later than the gloss finish fins and demonstrated an improvement in the lift to drag ratio.

3.4.4 The Design Triangle

The foregoing discussion identifies the potential methodologies for optimising the
conventional windsurf fin by means of modifications to the section, planshape and surface
finish. The optimisation of the fin is however dependent on the performance requirements
of the envisaged discipline or mode of use. Therefore a design ‘triangle’ is shown in

Figure 3.2 which indicates the three primary performance characteristics of the fin (control,
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speed, pointing ability) and the manner in which the design variables are tailored to

achieve these performance traits.

This ‘triangle’ serves to illustrate the contradictory requirements for optimising a

conventional windsurf fin for more than one performance criteria.

3.5 Alternative Approaches for Optimising the Lift/Drag Ratio of the Windsurf
Fin

It is concluded that through a process of continual development, refinement and evolution
over the past twenty years, the cross section, planshape and surface finishes of the

contemporary windsurf fin have evolved in to what may be termed near optimal formats.
This does not necessarily mean that further performance gains can not, and will not be
realised by further work into these individual parameters, rather that it may be more

profitable to investigate other methods for realising substantial performance improvements.

For this reason consideration is given to what may be termed ‘alternative’ methods for

enhancing the performance of the windsurf fin.

3.5.1 Boundary Laver Control Methods

The term ‘boundary layer control’ includes any mechanism or process through which the
boundary layer of a fluid is caused to behave differently than it normally would were the
flow developing naturally along a smooth straight surface ] The control device could be

passive, requiring no auxiliary power, or active requiring energy expenditure.

3.5.1.1 Compliant Surfaces

Research into the use of compliant surfaces to reduce frictional drag was triggered by the

[87][88][89] -

initial work by Kramer into the apparent swimming efficiency of dolphins and his
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belief that this resulted from the ‘low drag’ characteristics of their skin. The compliant
surface (Figure 3.3) was developed and is claimed at certain Reynolds numbers to reduce
the drag when compared with a rigid reference model. Kramer hypothesised that this
resulted from the damping of the fluid adjacent to the compliant surface thereby delaying

the transition from a laminar to a fully turbulent flow.

Benjamin ) conducted a theoretical study into the problem. He identified three possible
forms of flow instability and established that the suppression of one instability by the
flexible surface is likely to let in another. This theoretical study indicates that the success
of a compliant surface is critically dependent on the choice of properties for the flexible
medium and that it is only likely to operate in a limited freestream velocity. He also
concluded that a contradictory set of requirements were required for the flexible medium.
Landah] " expanded on this early theoretical work by Benjamin without an obvious or

further conclusion.

Fisher and Blick ® constructed a compliant surface with a flexible plastic skin over an
aluminium plate and found a reduction in the boundary layer turbulence intensities. They

did not however measure the effect of this on the skin friction drag.

Blick with Walters '"! found a reduction in the boundary layer turbulence intensities and
an apparent thickening of the laminar boundary layer on a subsequent compliant surface
model. There was however no change in the mixing length when compared with the rigid

reference model. No reductions in drag were found.

Hiroyuki and Taneda 7] investigated the effect of a flexible layer on the boundary layer
stabilisation by measuring the skin friction drag on flat plates with flexible surfaces. These
tests showed that the flexible surface plates always have the larger skin friction drag than
the rigid surface plates, both at the flow transition and where the boundary layer is fully
turbulent. It was concluded that the evidence for drag reduction with a flexible surface was

not found in their experiments.
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The basis of Kramer’s early work was the apparent efficiency of the dolphin based upon
his estimates of the muscular power and the ‘observed’ swimming speeds. These estimates

2] into the swimming

would seem to be highly erroneous based upon the work of Lang
speeds and power of dolphins. Through a series of swimming experiments with tamed
animals he has established that there is nothing unusual in the way of low drag associated

with the dolphin’s skin.

The potential benefits of using a compliant surface for a windsurf fin do need to be
considered carefully. In the first instance the total surface area of the fin is limited and as
such there are limited gains to be realised with an extended region of laminar flow. It
could be concluded that the optimum length of laminar flow is already being achieved by
virtue of the favourable pressure gradient on the forward part of the foil section. If the
assumption is made that a compliant surface could be successfully implemented into the
design of the fin, it would also be necessary to include some means for triggering the
change to a turbulent flow in advance of the adverse pressure region, if a laminar flow

seperation (stall) is to be avoided.

3.5.1.2 Drag Reducing Polymer Solutions and Surface Coatings

Bornhoft et al 3s] quantitatively tested the Sea Slide SB Drag Reducing Paint on a series of
windsurf board hulls. They report test data from the Ocean Engineering Department of
Rhode Island demonstrating drag reductions of between 8% and 14% for the paint. It was
found that in choppy sailing conditions there was no advantage from applying the paint to
the hull as board speed in these conditions is, ‘as much about skill and strength’ as
anything else. In smoother waters a performance advantage with the Sea Slide coated

board was noted.

The drag reducing properties of polysaccharides and other high polymers produced by

(4] provides a

bacteria, algae and other marine organisms has long been recognised. Hoyt
summary of the theoretical and experimental work into fish slimes which indicates a

reduction in the wall shear stresses and a delay in flow transition. Attempts at coating
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planks or fish shaped bodies with fish slimes have been unsuccessful due to the fact that
the friction reducing properties of these natural slimes rapidly deteriorates once removed

from the living animal.

Bragg et al 8] conducted a series of experiments on a number of plates and a dynamometer
coated with soluble polymeric coatings. Establishing the accuracy of these tests was
problematic due to the inherent dilution of the flow tank water with the polymeric
solutions. No drag reductions were shown for single side coated plates although the double
sided plate did show a 17% reduction at a Reynolds number of 4.1 x 106, leading to a drag
increase of 6% at Reynolds number of 12.3 x 10°. The rotating dynamometer provided a
more suitable means for testing the solutions. However, the best torque reduction with the
soluble polymeric solution was ‘30% less than half that obtained with pre-mixed

solutions’.

Kay ®¥ discusses how it has been known, for many years that the addition of certain
chemicals to water will considerably reduce the skin friction of any object moving therein
(Toms Effect, 1949). Some of these solutions have in fact been used in test tank to vary
the Reynolds number. Hoﬁ ) hrovides a summary of work into polymer drag reduction.
By the addition of a few parts per million of dissolved macromolecules the fluid friction
and hence drag can be considerably reduced (up to 65% by the addition of 30 parts per

million of ethylene oxide).

Alfredsson and Johansson ! and Marchaj 9] discuss the practical implications of using
polymer technology in an open sea environment. The solution to this problem is to secrete
small amounts of the polymer solution from small holes towards the leading edge of the
immersed body. This would require the provision of a storage tank as well as some form
of discharge or secretion system. This alone would make this technology unsuitable for the
sport of windsurfing, even before consideration is given to the phenomenal cost and

pollution resulting from the use of polymeric solutions.
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The change in fluid viscosity due to the use of polymeric solutions also has implications in
terms of the nature of the flow. A reduction in the frictional drag of the water will allow
the flow to move faster, which according to Bernoulli’s theorem results in an increase in
the negative pressure intensities. This increase in localised negative pressures in turn is
likely to result in premature flow separation and possibly an earlier inception of cavitation.
Hoyt [3] confirms this effect by describing the modifications to the pressure distribution
and fundamental changes in lift forces due to the injection of polymeric solutions from the
surface of a foil. Under suitable conditions the lift to drag ratio can be increased, although

this is highly dependent on the location of the ejection point.

A final consideration regarding polymeric solutions is that the governing body of yacht
racing and windsurfing (the IYRU) has banned the use of polymer solutions and soluble

polymeric coatings in Rule 63.

3.5.1.3 Active Boundary Layer Flow Control

The drag of a cross section can be determined by integrating the forces acting on the body
surfaces. These consist of the pressure drag due to the pressure (normal) forces and the

friction drag due to the shear (tangential) forces.
In a subsonic flow the pressure drag is originated mainly by boundary layer separation
resulting in an increase in the size of the wake. To suppress or avoid this phenomenon

boundary layer suction in the adverse pressure region can be employed.

In addition to suction techniques, blowing tangentially to the surface in the direction of the

freestream can reduce the wall shear stresses and hence surface friction.

By using a combination of suction and blowing techniques it is therefore possible to reduce

both the pressure and friction drag.
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1t
Poll et al [111] demonstrated the benefits of using suction techniques for boundary layer
stabilisation, It was found that transition could be moved to the minimum pressure

location by the application of suction in the vicinity of the transition point.

Due to the requirement for an auxiliary power source these active boundary layer control

systems are considered to be unsuitable for use on a windsurf fin.

3.5.1.4 Porous Wings

As an alternative to the active boundary layer control techniques, a passive boundary layer
control system involving a fully porous wing has shown the potential for higher values of
CLmax (1921 By allowing air to ‘bleed’ into the flow through holes in the skin surface the
magnitude of the leading edge suction peak is substantially reduced thereby delaying the
onset of leading edge stall. A wind tunnel investigation was performed to study the effects
of porosity on an NACA 0012 airfoil section. It was found that when compared with the
solid reference model, the porous version tended to exhibit multipoint adaptive techniques.
The leading edge pressure peak was reduced and the suction over the middle section of the
chord was increased. It was however found that the porosity reduced the lift curve slope as
well as increasing the drag at a given section normal force coefficient, resulting in poor
lift/drag performance at pre-stall incidence angles (when compared with a rigid reference

model).

Poll et al M describe how a porous surface needs to be as close to fully ‘porous’ as
possible to operate in the desired manner. This is achieved for aeronautical applications by
the use of specialised laser drilling techniques to develop the sufficiently small and

accurate spaced holes in the wing structure.

In a marine environment it is not clear as to how the size of the holes might need to be
changed, whether they would be susceptible to contamination or whether they would act as
the trigger point for cavitation (due to the localised high flow velocities through them and

the discontinuity on the surface). The porous system has so far only been developed for
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symmetrical (one flying direction) applications and as such the effect of a fully porous

surface on the two surfaces would need to be investigated.

Even though the porous wing technology offers the potential for an improved Cpma the
detrimental effect on L/D at pre-stall incidence angles means that it is not suitable for

achieving the aims of the project.

3.5.1.5 Electromagnetic Damping .

A novel approach to boundary layer stabilisation has been developed in which

09 The technique is

electromagnetic forces are used to suppress turbulence in a flow
based on the generation of a Lorentz Force in the flow from the interaction of an electrical
flow and magnetic field. This is achieved through the use of a permanent or
electromagnetic field across the flow and parallel to the surface which acts with the surface
electrodes to generate the Lorentz Force. The resulting Lorentz force acts perpendicular to
the surface and is claimed to ‘pin down the vortices, thus reducing the mean and
Sfluctuating turbulence’. A corresponding increase in turbulence is generated if the electric
field is reversed, thus providing the technology to steer or manoeuvre marine vehicles
without the need for conventional control surfaces. No figures are provided to quantify the
magnitudes of the changes in overall drag (the British Technology Group are currently
developing the concept for potential commercial applications and as such the result of their

work is proprietary) and so no firm conclusions can be made about the potential effect this

will have on the performance of the windsurf fin.

This electromagnetic damping technology is unsuitable for use in the scope of the current

work due to the requirement for an auxiliary power source.

3.5.1.6 Optimised Use Of Materials

By varying the material contents of the windsurf fin it is possible to vary the structural

integrity and elastic behaviour of the design. By making the fin more resistant to torsional
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bending and twisting, it is claimed that the hydrodynamic performance is enhanced,

although this is at the expense of user-friendliness and contro] 641

The ‘Voodoo Fin’ is novel due to the material combinations which are used to develop
twist over the span. The fin features a glass fibre and resin composite internal skeleton
over which a plastic covering of general airfoil shape is bonded. Although it appears
similar to many other fins on first visual inspection, the construction technique allows the
trailing edge to twist off significantly in use. This, it is claimed, improves the pointing
ability of the fin. A sailing test of the Voodoo Fin ! found that it continually outpointed
similar conventional rigid fins and that, ‘you can definitely feel the twist working,
particularly when approaching the point of stall’. Although this may be beneficial in
terms of ‘controllability’ the use of geometric twist will always result in an increment in

drag, which is undesirable within the realms of the current work.

Investigation into the influence of the material properties on the performance of a range of
windsurf fins have been conducted 17126, As part of this work a number of windsurf fins
were constructed in which the spanwise stiffness was tailored through the use of composite
materials such that the ﬁﬂs deformed and twisted in differing manners. Although
tentatively it was found that the fins with flexible tips performed better at angles below 4°
(when compared with the reference model) it was also established that these findings were
inconclusive and that no obvious conclusion could be found. This could be in part due to
the complex and combined interaction of the bending and twisting behaviour of the fins

when in use.

3.5.2 Tip Vortex Control and Suppression Devices

The existence of a tip vortex and its detrimental effects on the performance of a finite
length lifting surface was noted by Lanchester in 1897 when he filed his British Patent no.
3608 for “Capping Planes” to inhibit the flow of air around the tip from high pressure to
low pressure region. The tip vortex resulting from these 3D flow effects is a source of

energy loss and as such minimising its size and/or extracting some of this vortex energy is
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of particular interest. It has been demonstrated that, ‘even relatively small alterations on

J{152]

the tip geometry can have a distinct influence on the polar curve . The majority of the

work into tip devices has been concerned with;

1. Reducing the induced drag by modifying the tip vortex.

2. Extracting energy from the tip vortex core.

3. Reducing the roll-up characteristics of the vortex so as to minimise its effect on
following lifting surfaces (i.e. following aircraft and cascaded systems such as

helicopter blades).

A comprehensive evaluation of the methods used to modify the geometry and nature of the

11 ' 1t is established that these methods can be either

tip vortex is provided by Dunham
active or passive and include devices such as wing tip sails, disc flow spoilers, mass

injection systems, variable camber and twist wings as well as porous wing tip sections.

3.5.2.1 Reducing Induced Drag with Wing Tip Devices

The governing factor on the magnitude of Cp; is the distance between the vortex cores (in
the case of a lifting surface with two free ends). Therefore the shorter the distance between
the vortex cores of a lifting surface, the greater the downwash and hence the magnitude of

induced drag.

The logical method for reducing the induced drag of a windsurf fin is to move the vortex
core further away from the underside of the hull. An increase in span (tip extension) would
seem to be the most obvious solution for this, however it has been shown by Flechner et al
[57) that on an equal basis of even effects of wing bending moment coefficients and
increased wing weight, tip devices produce substantially greater reductions in drag
coefficients at near design conditions than simple extensions. However, Chen et al (23]
point out that at off design conditions the performance of a wing fitted with tip devices is

often worse than for the bare wing alone.
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An investigation into the use of wing tip strakes established that a dihedral angle is
required for successful operation and that they are beneficial for any aspect ratio and speed
BT These conclusions are however based upon a comparison with a bare wing and do not

take into account the increased aspect ratio resulting from the fitment of the strakes.

A typical wing tip sail configuration in Figure 3.4. When employed on modern aircraft tip
sails have shown near design reductions in induced drag of 17% for the KC-135 32 14%
for the Airbus ** and up to 29% for an experimental test aircraft using a cascade of sails
(34 " This indicates that even when consideration is given to the increase in wing weight

and frictional drag the benefit of these wing tip devices is still tangible.

The wing tip devices described so far are optimised for flight in one direction (and usually
optimised for one incidence angle) only. Due to their asymmetry they would not be able to
operate effectively in the other direction. This limits the applicability of these designs to
the windsurf fin, unless a process could be found to reverse the geometry of the tip devices
for each sailing tack. Additionally the off design performance is worse than the bare wing

alone.

In an attempt to overcome the limited operational range and poor off-design performance

of conventional tip devices, Colling (291

investigated an articulated winglet design. The
winglet features adjustable cant, yaw, toe-in/out and rudder angle. The goal of adjusting
the cant, toe and rudder for optimised performance over a greater range of flight conditions
was not realised. Only one optimum configuration was obtained. This indicates that an
adjustable winglet has no performance advantage over a rigid device. It is therefore
unlikely that a winglet can be made to adapt for optimised performance over a range of

flight conditions.

As an alternative to wing tip sails, Acosta et al ! and Duan et al 1 investigated the novel
Ring Wing Tip shown in Figure 3.5. A reduction in induced drag was demonstrated even
though the original project goal of reducing the far field tangential velocities was not

achieved with this design. It was found that at design conditions the increase in parasitic
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drag due to the extra surface area was offset by the associated reduction in induced drag.
The tests were performed on a low AR wing where the 3D flow effects are highly
influential. It is therefore concluded that the device works best at high angles of attack
(>8°), on low aspect ratio wings and that large aspect ratios would mitigate its use. Due to
the effective high aspect ratio of the windsurf fin it is unlikely that the use of a Ring Wing

Tip would result in any significant performance gains.

One of the simplest symmetrical tip devices is the end plate originally proposed by
Lanchester. The ‘Foiler’ windsurf fin (by Fins International, France) features a simple flat
plate tip device. The effectiveness of this tip device on the performance of the fin has not
been established, although Wadlin et al [203] only noted small gains in L/D due to the use
of an end plate on a hydrofoil (it was also established that the geometry of the end plate
needs to be adaptive (for optimal performance) in response to changing incidence angles
and flow velocities). The ‘Foiler Fin’ was introduced in 1994 but is no longer in
production. Derivatives of this design have not emerged. To the knowledge of the author,
the fin was not used by the professional ‘Team Riders’ in competitions (normally the
Windsurfing Press will publicise any innovations or new design features that are
introduced). This would séem to indicate that the concept was not successful (in its
format) at enhancing the performance of the windsurf fin. This conclusion is supported by

the low efficiency rating of the simple end plate when compared with other tip devices
[146][152]

Another windsurf fin featuring what could be considered as a tip device is the ‘Hobert Fin’
shown in Figure 3.6. This fin features three holes located in the tip which are described as
being able to “break up the tip vortex which causes increased drag” ®". The efficiency of
this fin is questionable due to the fact that the holes were implemented as a marketing
‘gimmick’ rather than as an established and proven concept '], This tip design feature

has not appeared on any subsequent fins.

As an alternative to using a fixed tip device Chen et al 23] propose the use of wing tip jets

to modify the flow field near the wing tip. A preliminary study demonstrated that the tip
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jet demonstrates performance gains similar to winglets. However, the requirement for an

additional power source makes this technology unsuitable for the sport of windsurfing.

The benefits of employing tip devices on the windsurf fin would therefore seem to be

limited due to;

1. The requirement for equal operation on both sailing tacks
(symmetrical tip device). .
2. The high effective aspect ratio of the windsurf fin.

3.5.2.2 Extracting Energy from the Tip Vortex

It is possible to consider the tip vortex as an energy source which can be exploited by a

BA4M] - Ope of the better known examples is Van Qossanen’s (143

suitable tip device
restricted draft winged keel used on the America’s Cup boat ‘Australia II’. The success of
this yacht and the performance gains attributed to the keel are well publicised but need to
be tempered by the fact that the winged keel was just part of the substantial development
work used to realise the final boat. This work included a new reverse tapered keel, reduced
hull length and increased sail area, as well as the winged keel itself. It is therefore
suggested that thé Australia II boat “worked due to a combination of factors and not simply

» [99]

by adding a winged keel to a conventional design . The applicability of the winged

keel technology to the windsurf fin can be further questioned by Van Oossanen himself

who states, ‘the winglet keel has very few advantages to offer over a deep fin keel 143]

3.5.2.3 Reducing Tangential Velocities in the Tip Vortex

In general the approaches for reducing the tangential far field velocities associated with

IS They can however be used to

wing tip vortices have not been very successful
modify the near field tangential velocities and show the potential for delaying vortex roll
up. The limited delay in vortex roll up is showing benefits for cascadgd lifting systems

such as helicopter blades. Dunham 1] describes how the impingement of the preceding
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blade vortex helps to alleviate the problem of ‘Blade Slap’. The BERP Helicopter Blade is
a successful example of this work into modifying the tip vortex characteristics to improve

. . 14
aerodynamic efficiency [47]

The primary aim of reducing the tangential velocities is to reduce the hazard this causes for
following aircraft. However, in the context of the windsurfer, the effect of the far field

tangential velocities are not considered to be relevant.
3.5.3 Slots and Multifoils

Slots and multi element foils are commonly employed as high lift devices on aircraft
wings. The interaction of the individual foil components raises the combined angle of
incidence at which the complete system can work, thereby improving the attainable value

of CLmax-

Slotted and multi element windsurf fins have been in existence for many years. These
design features are used to make the fin more ‘spinout’ (delay leading edge stall) resistant
and to aid with control 7], 'It is acknowledged that slots and multifoils are ‘noticeably’
slower due to the increase in drag ). For this reason their use is restricted to wave sailing

and recreational fins where control and spinout resistance is preferred to ultimate

hydrodynamic efficiency.

Slots and multi-element foils are therefore not suitable for improving the (pre-stall) lift to

drag ratio of windsurf fins.

3.5.4 Variable Geometry Approaches

Designing an airfoil for an optimum condition means that it performs less well at off
design conditions. The use of variable geometry (or adaptive wing) technology involves

the ability to change the geometry of the wing or lifting surface in response to changing lift
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and/or drag requirements. These changes in geometry can be applied to both the planform

and the cross section.

The mechanisms and control processes for variable geometry wings can be complex. For a
variable geometry system to be successful the additional complexity and weight of the
activating mechanism must not outweigh the gains in operational flexibility associated with

optimising the wing for a range of conditions.
3.5.4.1 Variable Geometry Lifting Surfaces in Nature

In nature there are a diverse range of creatures using variable geometry surfaces to fly and
swim. Insects use a combination of variable twist and camber in their highly flexible wing
structures to take to the air as do birds who have the capability to vary the camber and
planform of the wing through muscular movements B3] This allows birds to optimise the
performance of their wings for high and low speed flight. The same is true of flying
mammals such as bats which use flexible membrane wings. In the water fish, dolphins and
whales change the geometry of their bodies, fins, flippers and tails for propulsion and

manoeuvring.

3.5.4.2 Man Made Variable Geometry Wings Mechanical-Flexible Approach

Excluding the use of balloons, man’s initial attempts at flying were largely based on the
mimicking of nature, which would now seem to be a false economy based on the statement
that, ‘it is probable that no animal in the history of the world which has had to fly

professionally has ever weighed more than about 13 kg /149

Even in our modern world of computer logic and exotic composite materials man has not

been able to truly replicate the flapping wings of birds, insects and mammals.

Perhaps the closest man has come to flying naturally is with the aid of hang-gliders and

parapentes 30 The wings on these aircraft demonstrate a subtle form of variable geometry
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through the use of aeroelastic tailoring. The variable geometry is seen in the cross section
and the planform as a result of the dynamic surface pressure loads. This variation in
geometry is beneficial as it introduces camber into the wing. The amount of aeroelastic
deformation is carefully limited in the case of the hang-glider by control lines and
stiffening battens. Hang-glider and parapente wings are only capable of soaring flight and
are not capable of flapping in the same manner as insects, birds and bats. Instead they have

to exploit thermal currents and updrafts to ascend.

The technique of aeroelastic tailoring is also used for marine sails such as those found on
windsurfers. The sail can in fact be considered as one of the earliest examples of a man
made, variable geometry lifting surface. By using rigging tension and reefing techniques

the surface area and cross section of the sail can be controlled by the crew 61159,

The variable geometry devices on modern aircraft have evolved over many years into their
current highly effective formats and designs. The approaches to man made variable

geometry wings are well documented and can be grouped into the following classifications
[129][130],

Trailing edge devices (flaps)
Leading edge devices (leading edge flap, slots, droop nose)
Flexible surface technologies (parapentes, Mission Adaptive Wing (MAW))

Aeroelastic tailoring techniques (variable twist)

SN S SIS

Variable sweep and area wing technologies

All of these design features are used to allow the aircraft wing to be tailored or optimised
for more than one flight condition. Some of these techniques are passive whereas others

require the use of auxiliary power and control systems.
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3.5.4.3 Approaches to Vﬁriable Camber

Since the early history of manned flight the use of increasing camber to increase wing lift
has been recognised. In general the addition of camber is always beneficial for producing

lift and the benefit grows with increasing camber Bo]

The Wright brothers used variable geometry on their early aircraft by wing-warping,
coupled with rudder deflection to obtain lateral control. The Sopwith Baby featured
automatic trailing edge flaps restrained by bungee chords allowing the flaps to be

streamlined for high speeds and deployed at low speeds for take off and landing [1o4]

Historically aircraft designers have seen the use of variable camber to increase the

operational flexibility (and manoeuvre-performance-enhancing) of aircraft as an area

[128] [54]

worthy of investigation. According to Siewart and Whitehead and Ferris "' camber is

recognised as one of the most important parameters affecting the lifting characteristics of
wings. Increasing the camber of the wing to achieve increased lift has been common
practice since the 1920s [12] (although recently the variation of camber to improve the ‘off

design’ performance has also been the subject of much work).
The approaches to variable camber can be divided into two categories, namely;

1. The ‘Conventional Flap and Slat’ Systems
2. The ‘Flexible Surface’ Systems

Each approach to variable camber has its advantages and disadvantages and associated

effect on the design of the lifting surface.

According to Newman ['*”! the lift coefficient for a foil section can be written in the general

format;

C (@) =C,(0) +27a (3.3)
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This illustrates the decomposition of lift into terms of the lift due to the basic thickness
form at an angle of incidence and the contribution to lift due to the mean line. This

illustrates how camber can be used to increase the C; of a foil section (to certain limits).

The ideal angle of attack for a foil section corresponds to the situation where the forward
stagnation point of the foil coincides with the leading edge 197 This is normally achieved

by the use of a leading edge flap or droop nose feature.

With regards to the camber distribution, it has been shown that leading edge camber is
required to elevate the values of Cpna, Whereas trailing edge camber is effective at raising
the C value over a range of angles of attack [ The use of trailing edge flap alone will
reduce C; . (Figure 3.7) due to the increased circulation which increases the local flow
velocities at the nose leading to earlier stall. To increase the Cp 4y it is therefore necessary

to use a leading edge device in conjunction with a trailing edge flap.

3.5.4.4 The ‘Conventional Flap and Slat’ Systems

The most common approaches to conventional flap and slat systems can be grouped into

the following categories 1%L,

1. Trailing Edge Flap Systems
e The plain flap.
e The split flap.
e The zap flap.
e Slotted flaps (single and multiple).
e The Fowler flap.
e The Youngman flap
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2. Leading Edge Devices
e Leading edge flap.
e Fixed leading edge modification.
e Kreuger flap.
e ‘Slat without slot’

e Handley-Page slat

The relative effect of some of these high lift devices on lift and drag are shown in Figures
3.8 and 3.9. The favourable effect of curvature induced by the flaps is apparent, although
the corresponding increase in drag associated with these devices needs to be considered

carefully.

To deal with the conflicting requirements of wing lift coefficient during cruise condition
and field performance, aircraft have used camber inducing devices in the forms of various
flap and slat systems to increase Cyp,,. This.can be thought of as using wing camber in a
‘fixed’ way. That is, a certain flap and slat position is selected for a portion of the flight

and then the aircraft is changed in pitch to achieve any further increase or decrease in lift.

Recently, ways of using these ‘conventional’ camber devices have been looked at for flight
phases other than just take-off and landing. For example the use of variable camber for
improving the lift capability of fighter aircraft in manoeuvring conditions has led to the

development of ‘manoeuvre flaps’, such as those used on the Northrop F-5.

Increasing wing lift by deflection of the ailerons in the symmetrical sense, so that they
become flaperons, is another form of using conventional controls for variable camber
operation. On the F16 for example the ailerons are given a 20° downward bias when the
landing gear is lowered to improve field performance, thereafter operating up and down

about this new datum for roll control.

Rao 119 details the use and design of variable camber as a gust load alleviation system for

the Airbus A300. The system uses sensors to alter the camber of the wing in response to
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gust loadings, thereby reducing the acceleration and fatigue experienced by the aircraft and

passengers.

Levinsky and Palco 31 tested a Self Optimising Flexible Technology (SOFT) wing model
in a wind tunnel to see the effectiveness of this multi-element design. The wing itself
consisted of multiple leading and trailing edge flaps which in combination provide a
smoother form of camber than conventional mechanical devices. The shape of the wing is
continually monitored and updated by a computer to achieve optimum performance
characteristics at nominal flight conditions. Although there were problems with wing
shape repeatability in the early tests, these were largely resolved by a new software
algorithm.

341 performed a series of wind tunnel tests on a multi-segmented combined variable

Ferris
camber and twist wing. The wing incorporated movable leading and trailing-edge
segments whose swept hinge lines provided maximum camber variations at the outboard
leading edge and movable trailing-edge segments whose swept hinge lines provided
maximum camber variations near the inboard trailing edge. It was concluded that all forms
of leading edge camber weré successful at reducing drag at lift coefficients up to 0.4. The
maximum lift cpefﬁcient was increased by approximately 18% and at higher lift
coefficients the camber was effective in reducing the drag and the trailing edge camber

gave large increases in lift coefficient. The practicalities of producing a full scale wing

were not discussed.

Pendleton et al "% developed an Active Flexible Wing (AFW) model for an F-16
derivative wing. The AFW project is a joint NASA and Rockwell International effort to
demonstrate aeroelastic control through the application of digital active controls
technology. The AFW model features multi-segmented leading and trailing edge control
surfaces designed to improve the in-flight manoeuvre capability of the aircraft. Tests on
the 1/5th scale model wing successfully demonstrated the potential to increase the wing
generated control by the multi-segmented leading and trailing edge segments. The

segments also help to increase the overall stiffness of the wing and minimise the effects of
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aeroelasticity. Subsequent work by Cole et al ®® evaluated the potential of the AFW for

actively suppressing flutter and controlling manoeuvre loads.

Rao 118 proposes a variable camber system for the Airbus which ensures a smooth and
continuous profile throughout the range of camber shapes without requiring the use of
flexible surfaces. There were however no practical suggestions as to how this variable
camber system might be realised. An investigation was performed using rigid two
dimensional and three dimensional models in a wind tunnel. Lift gains comparable with a
conventional trailing edge flaps were demonstrated although the drag figures were largely

inconclusive due to fabrication problems with the models and inaccuracies with the

measuring equipment.

The use of flaps has been extended to the marine environment and used for hydrofoils and
rudders 1310 Kerwin and Mandel %! discuss that ‘although the beneficial effect of
flaps in enhancing the lifting characteristics of control surfaces has long been recognised
in aerodynamics, there appears to be very limited systematic experimental data available
on flapped control surfaces with proportions suitable for marine applications’. Following

a series of tests on flapped h);drofoils, they conclude;

1. Root gap, flap gap and type of root mounting have a significant effect on
hydrodynamic characteristics.

2. Large flaps in association with a fixed skeg can yield maximum lift coefficients
that are as large as those of zero flap all movable hydrofoils, but at the expense
of increased drag and hinge moment.

3. A doubly movable hydrofoil (i.e. droop nose and flap at rear) with even a small
flap has a much larger maximum lift coefficient than an all movable hydrofoil

with zero flap.

4. The size of the flap in the range between 20% and 50% of total hydrofoil area

has little influence on maximum lift.
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5. The 59% increase in maximum lift achieved by a 20% flap doubly all movable
hydrofoil compared with a zero flap hydrofoil is achieved at the expense of
about a 250% increase in drag.

6. Flap balance is detrimental to maximum lift.

7. Drag coefficient at zero lift increases with flap size.

8. Comparison at fixed values of lift coefficient indicate that a doubly all movable
hydrofoil with a 20% flap has less drag than a zero flap hydrofoil at lift
coefficients greater than 0.6 and comparable drag at lower lift coefficients. The
disadvantages of the doubly all movable hydrofoil are its increased hinge

moments, mechanical complexity and possible maintenance difficulties.

This indicates that for optimum performance from a flapped hydrofoil the forward region
needs to be drooped into the flow and the slot gap between the flap and the main foil needs

to be kept to a minimum.

Wilson "*%, Molland 1% and Eppler and Shen *! support these conclusions as they all
report a significant penalty in drag through the use of flaps on hydrofoils. It is also
confirmed that the hinge line generates a large negative pressure peak which can cause
premature flow seperation and the premature inception of cavitation. Since the surface
smoothness is normally defined in fractions of a millimetre it follows that no joint can be

considered as being smooth.

A flapped windsurf fin is proposed by Dugdale . The proposed system uses an
articulated pad on the deck of the board to drive a flap on the rear of the fin via a series of
linkages. A patent application has been submitted for the concept but a prototype
windsurfer is yet to be constructed. However, for this system to be fully effective would
require the incorporation of a leading edge flap. This would further add to the mechanical
complexity and weight of the proposed design. Other problems are envisaged for a flapped
windsurf fin such as the ability of the sailor to maintain smooth control of the flap at high
speeds over rough waters, as well as the ability of the sailor to set the optimum flap angle

for a given speed and incidence angle.
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3.5.4.5 The ‘Flexible Sllrface’ Approach

According to Rogallo et al 2] 4y, origins of flexible wings for aircraft applications can be
traced back to the late 1940s when the first completely flexible wing was created. The
shape of these flexible wings is maintained by the balance of airload forces on the surfaces
and the tension in the support lines and other localised stiffening devices. The continuation

of this pioneering work has led to the development of modern hang-gliders and paragliders.
Fink B investigated a flexible sailwing concept in a wind tunnel and concluded;

1. The fabric of the sail maintains a smooth airfoil contour over the unstalled
range of incidence angles.

2. The sailwing can achieve maximum lift to drag ratios comparable with similar
conventional hard wings.

3. The lift curve slope for a sailwing is unusually steep at low incidence angles
(indicating the contribution to lift of the induced camber).

4. Modifications to tile tautness of the sail with the rigging wires has a noticeable

effect on the aerodynamic characteristics.

Interest in flexible wings for other aircraft as an alternative to conventional flaps has
stemmed from the need to reduce the local flow velocities and other detrimental effects
associated with discontinuous aerodynamic surfaces. Theoretically this will result in a
smooth camber system with less drag than a comparable mechanical device. This has
resulted in a number of investigations into variable camber systems which are based on an

ability to physically deform a flexible skin on a rigid subframe.

The Beatty B-5 sailwing incorporated a flexible surface approach employing a deformable
Dural plate on the upper surface (first 75% of chord) in conjunction with a 20% rear flap.
The curvature of the Dural plate was increased by ‘pushing’ the trailing edge forwards with
battery driven (12V) mechanical linkages. The transition time from a thick high cambered
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section to a thin low cambered section was approximately 5 seconds. This transition time
means that the camber is not truly adaptive and as such is ‘set’ for a portion of the flight
regime (i.e. climb). The actual performance of this flexible surface approach was
disappointing due to breaks in the wings skin. This resulted in early transition of the flow
which had a profound effect as the cross section had been designed originally to support a
high degree of laminar flow. The use of a battery along with the complexity of the
mechanical system and the slow transition time limits the applicability of this system to the

windsurf fin.

For transport aircraft wings, the work of Redeker et al "' considered a theoretical
‘adaptive aerofoil’, equipped with a flexible uppersurface. This aerofoil could be adjusted
for different flow conditions such that a shock free pressure distribution could be obtained
at all conditions, resulting in an optimum aerofoil cruise performance. (This team did not
however offer any suggestions as to the design of a practical mechanism to produce this
uppersurface profile). Theoretical and experimental tests were carried out on a series of 3
aerofoils, having the same shape, with the exception of a certain portion of the
uppersurface. Each uppersurface region was designed to give a shock-free pressure
distribution at three different Mach numbers. The case for an adaptive aerofoil was
therefore inconclusive because shock-free pressure distributions could not be obtained
experimentally, and most of the advantages could be achieved by an aerofoil designed for a
single Mach number i.e. the particular aerofoil used as a basis for the work was too

sensitive to off-design conditions.

Flexible skins allowing modifications to the camber over the entire chord are not necessary
(nor practical) for most applications, although there are some notable and successful
exceptions, including the previously mentioned conventional marine sails, hang-glider and
parapente wings. However, most ‘flexible surface’ type variable camber systems limit the

area of flexing to the leading (drag reduction) and trailing edge (lift increment) regions.

Early examples of a ‘flexible surface’ approach in the world of aeronautics are the

RAEVAM and VARICAM systems developed by the Royal Aerospace Establishment and
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by British Aerospace Warton. These are simply a development of the manoeuvre flaps.
They both feature a flexible skin on the uppersurface which allows a more gentle change in

the curvature than conventional mechanical flaps.

Military aircraft are prime candidates for highly effective variable camber systems because
they spend a fair proportion of their time away from their design point. Two operational
examples of a truly ‘flexible surface’ type variable camber are the F-111 Mission Adaptive
Wing (MAW) fighter and the Grumman X-29 Forward Swept Wing (FSW) technology

demonstrator [MIISI10410124]

The F-111-MAW was designed to incorporate continuous hydraulically powered variable
camber on the leading and trailing edges. Dual digital computers controlled the flap
positions in either manual or automatic mode. The wing is built around a fixed wing box
structure with Glass Fibre Reinforced Plastic (GFRP) flexible leading and trailing edge
surfaces (as shown in Figure 3.10). The GFRP panels provide uppersurface continuity as
the camber changes, with sliding plates being used on the underside (i.e. the top panels

bending without extension and the lower ones sliding to accommodate the shortening).

The entire wing system is controlled by the on-board computer and can be set to a number
of different flight modes. Changing the flight mode instructs the computer to optimise

certain aspects of the wing configuration for cruise, manoeuvre or gust alleviation.

During cruise the camber is configured by the computer for minimum drag, or maximum
lift-to-drag (L/D) ratio by tailoring the profile until no further increase in forward velocity

is achieved.

During Manoeuvre, the wing camber configures itself for maximum L/D in the turn for a
sustained maneuver (without losing speed or height). As the aircraft reaches its maximum
‘g’ loading the trailing edge camber of the outboard section is reduced, and therefore so is
the lift in this region, thereby reducing the root bending moment. Manoeuyre enhancement

achieves a more rapid entry into turns as it uses a form of ‘Direct Lift’.
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Gust alleviation is used to reduce the effects of turbulence with the associated
improvements in weapon aiming capability. This feature helps to reduce the workload and

increase the effectiveness of the pilot.

The development work on the MAW finished in the early 1990s and it is not clear whether

the system is to be implemented in service aircraft.

The X-29 Technology Demonstrator combines a number of novel wing design features.
These include Forward Sweep Wings (FSW) that are aeroelastically tailored, full authority
canards, digital flight control system, relaxed static stability, as well as a flexible variable
camber system. The camber system extends over the rear 25% of the chord with a double
hinge, combination flaperon and lead-tab. At subsonic speeds the camber of the wing is
increased with increasing lift requirements. This raises the aerodynamic efficiency for
minimal drag. At supersonic speeds the camber is straightened. Due to the interaction of
the various technologies on the aircraft it is not possible to establish the effectiveness of the

variable camber system in isolation from the other novel features used in this wing ['2.

Wright 51 and Haddock 169) propose the variable camber foil sections shown in Figures
3.11 and 3.12 respectively. The mechanical complexity of these systems again limits their

applicability to the windsurf fin.

One problem associated with flexible wings is the limited maximum lift coefficient
(Cimax)- McRae [190] states that the Crmax for a ‘clean’ wing is approximately 1.8, whereas

the use of a simple split flap can increase this to 2.2, with even further gains possible from

other high lift flap systems.
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3.5.4.6 Aeroelastic and Hydroelastic Tailoring

‘Trees sway in the wind, sails and flags flutter, so may airplane wings’ 58]

Aeroelasticity is the study of the effect of aerodynamic forces on elastic bodies. The same

phenomenon exists in water and is termed hydroelasticity.

Aeroelastic and hydroelastic tailoring is the technique of using the dynamic loads
experienced in flight to modify the geometry of the lifting surface to realise beneficial
performance characteristics. These techniques can be used to induce camber, twist and

elongation in various lifting surfaces.

The phenomenon of aeroelastic tailoring has been addressed by industry, university and
government investigators through analyses, model tests and full scale flight programs
because it is acicnowledged that stability requirements are as important as strength for most
flight vehicles. In general the work into aeroelasticity has been concerned with flutter

suppression and twist induction/reduction.

Flutter occurs when the exciting forces acting on a body are equal to the restoring forces.
These exciting forces are generally unsteady aerodynamic loads and are counteracted by
the stiffness of the body. Flutter is characterised as a self excited, self sustained oscillation
that occurs at a specific dynamic pressure which can lead to control problems, fatigue and

structural damage.

Parametric studies by Popelka et al (') show that the gains from composite tailoring can
be limited because of the conflicting structural safety design requirements. It was found
that excessive reductions in weight can allow the structure to deform appreciably, leading

to stability problems and/or flutter.

Chiu and Van Den Bersselaar [26] and Broers et al ()17 investigated the performance of a

range of windsurf fins in which the spanwise twisting characteristics were varied by
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tailoring the composite materials used in the lay-up process. The result of these tests were
inconclusive and it is therefore not possible to establish the effectiveness of this technology
for the windsurf fin. This does not necessarily mean that the use of hydroelastic tailoring is

not suitable for the windsurf fins, rather that it has not yet been proven to be successful.

A common form of aeroelastic tailoring is in the conventional marine sail where the
dynamic loading of the wind is used to tailor the profile of the cross section from one side
of the mast to the other. The use of stiffening battens as well as rigging devices enables the
magnitude and nature of the camber to be regulated by the crew. The technology and
theory behind the use of aeroelastic tailoring for marine sails is not well established and
can in fact be considered to be more of a ‘skill based upon rules of thumb and many years

of accumulated experience’ ©°\.

Sail design is further complicated by wind gradients,
material characteristics and class rules. Although the sail is in effect a ‘snap-through’
variable camber device, Garrett ") describes how the magnitude of camber in the sail can
be governed by the slackness ratio, which is a measurement of the amount by which the

trailing edge can move as a ratio of the chord length.

Garrett ") also explores the ﬁerformance benefits of double surface sails, which are most
commonly used on hang-gliders. These sails are formed by wrapping the sail cloth around
a circular edge (the mast) and bringing the two sides together to form a sharp trailing edge
(SIN01I38] - A g with a conventional sail, the magnitude of camber in a double surface sail is
a function of the slackness ratio. A comparative test with double surface and single surface
sails of constant 10.6 % camber ratio at a Reynolds number of 1.5 x 10’ established that at
low incidence angles the drag is very similar. However at high incidence angles the single
sail has much more drag than the double skinned sails and is also prone to stall earlier (15°)
than the double surface sails (21°). The lift coefficient of the double surface sail is also
considerably better than the single surface sail. The main problem with the double surface

sail is the lack of structural integrity provided by the unstayed mast.

Gaide 7 has filed a United States Patent 4,537,143 for a variable camber windsurf fin as

shown in Figure 3.13. The design features two deformable side walls which are mounted

81



LITERATURE REVIEW

to a rigid and stiff centre wall exclusively at the leading edge. According to the inventor
‘an optimal hydrodynamic flow profile is automatically generated, depending on the
prevailing pressure situations between luff and leeward side’. To hold the side walls in
position and to regulate their shape, the design embodies a water vacuum pump to vary the
voidal pressures. There is however no explanation as to how this vacuum pump might be
incorporated on a windsurf board. Additionally the rigid central column will limit the
extent of the possible camber shapes and the sliding trailing edges form discontinuities
which are likely to result in an increase in drag. The patent was filed in 1982 but further
information has not come to light. This leads to the conclusion that the concept was not

successful in the described format.

Widnall et al ¥ filed a patent for a Flexible Tailored Elastic Airfoil Section as shown in
Figure 3.14. The device comprises an elastic streamlined structure with a stiffness
distribution along the chord and span tailored to provide a desirable cambered shape in
operation. The magnitude of the camber is limited by the design of the pivotal axes and a
sliding section at the rear. If employed on a windsurf fin these mechanical features could
be prone to contamination (saline deposits and sand) unless they are suitably enclosed.
Additionally the wear in thié type of pivotal axis is likely to be high unless a suitable form
of bearing is used. It has not been possible to source further information on this device due

to its proprietary nature.

Ehlers [ proposes an aeroelastically tailored lifting surface in which a feedback control
system is used to apply voltages to embedded piezoelectrics in direct proportion to the
wing root loads. This results in a lifting surface in which the torsional stiffness and section
geometry is adaptive in response to the surface loading. A theoretical investigation
indicates that the lift effectiveness of a wing can be increased or decreased by controlling
this feedback gain. Physical testing of the concept has not been performed. The

requirement for an auxiliary power source makes this technology unsuitable for the sport of

windsurfing.
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3.5.4.7 Variable Sweep and Surface Area

The contradictory requirements of high and low speed operation has led to the
development of variable sweep and area lifting surfaces. The concept for the variable-

sweep wing is generally attributed to Dr. Barnes Wallis (1944).

Traditionally the use of variable sweep and surface area in the aerospace industry is used

on supersonic aircraft to;

e Improve the low speed performance by increasing the span and reducing the
sweep angle.

e Improve the high speed manoeuvrability in transonic flight.

e Enhance the aerodynamic efficiency in supersonic flight.

e Postpone the onset of local supersonic flow to higher transonic speed.

Variable sweep can be similarly used on hydrofoils to delay the onset of cavitation as it is
the flow component normal to the leading edge which governs the cavitation number (321
(although because the current work is concerned with the sub-cavitating operational range

this approach is not required).

Along with the conventional approaches to variable sweep, Housh et al (73] describe a
Scissor Wing variable sweep wing. This configuration features two independently
sweeping-wing surfaces which are shown to have a higher total lift to drag ratio than a
conventional single-swept wing in the subsonic region. The drag of this configuration is
however higher than the single wing. Although this is beneficial for decreasing the landing

speeds of aircraft it is nonetheless unsatisfactory for the performance of a windsurf fin.
There are a number of documented approaches to variable geometry surface area and rake

windsurf fins. The most common of these is the daggerboard used on beginner and long

race boards. The daggerboard is normally pivoted so that the sweep angle and surface area
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can be varied by the sailor. The daggerboard can also be fully swept and retracted into the
hull of the board if required.

Van der Berg developed variable surface area fins for planing short boards in which the fin
is pushed and pulled through the deck of the board by the sailor 821 Problems with the
mechanical system (vibration and aeration of the fin through the slot gap) limited the
performance of this design. Further work on the mechanism failed to overcome these

problems and the idea was abandoned.

Kinnaird ® filed a patent application (GB 2 255 937 A) for a windsurf fin with a fulcrum
mechanism in which the inclination and extent of downward projection of the fin is
variable (as shown in Figure 3.15). As with the system used by Van der Berg, the extent of
the sweep and retraction of the fin is regulated by the sailor. The system was tested by

[62]

Gilmore who commented, ‘o say you feel the extra area is an understatement. The

additional lift you get from another four inches of carbon foil is extraordinary and the
board’s pointing ability is improved dramatically’. There were however a number of
problems associated with this system, including difficulties in operating the device at
sailing speeds, small particle 'contamination of the fulcrum and sliding mechanisms as well
as general wear and ‘freeplay’. The concept has not been a commercial success and has

not been adopted by other windsurf board manufacturers.

These documented approaches to variable surface and rake windsurf fins establish the
potential for optimising the lift and drag performance for a variety of sailing conditions. In
terms of ultimate hydrodynamic efficiency, the approach by Kinnaird is considered too
inappropriate for realising an increase in the lift to drag ratio due to the incorporation of
variable sweep (sweep will always entrain a penalty in terms of an increase in induced
drag). There are however a number of problems associated with these systems which has
resulted in the concepts being abandoned. In addition to the wear and clogging of the
sliding mechanisms, aeration of the fin and difficulty in operating the devices, the
requirement for a specially adapted board (to accept the variable geometry fin system) has

limited the operational and commercial success of these approaches.
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Figure 3.4 A Wing Tip Sail
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Figure 3.5  Ring Wing Tip
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Figure 3.10 The Mission Adaptive Wing
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Flexible Surface Wing Section

Figure 3.11
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Figure 3.14 Flexible Tailored Elastic Airfoil Section
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Figure 3.15 Variable Rake and Surface Area Windsurf Fin

929



THE DESIGN SOLUTION

4.0 The Design Solution

The previous sections discussed the design and role of contemporary windsurf fins as well
as investigating potential methodologies for increasing the L/D ratio of the device (for pre-

stall conditions). A summary of this work is provided below;

1. The windsurf fin requires multipoint operational capabilities to perform
satisfactorily over a wide range of incidence angles (on both sailing tacks) and

sailing speeds.

2. The windsurf fin is at an advanced stage of evolution within the constraints of a
fixed geometry device. Only minor gains in the L/D ratio will be attained by

further refinements to the planshape, symmetrical cross section and surface finish.

3. Active boundary layer control technologies offer the potential for increasing the
L/D ratio of the conventional windsurf fin at pre-stall incidence angles. These
technologies can also be employed to delay the onset of leading edge stall. The
implementation of active boundary layer control methods is impractical for the

windsurf fin primarily due to the requirement for an auxiliary power source.

4. Passive boundary layer control technologies offer limited Cj ¢ gains, but this is at

the expense of an increase in C4 and reduction in C; effectiveness for pre-stall

incidence angles.

5. Tip devices offer the potential for Cp; reductions at specific design conditions, but
are likely to be highly detrimental to performance (increaées in drag) at off design
conditions. The most effective tip devices are asymmetric and exhibit the highest
performance gains on low AR lifting surfaces where the 3D flow effeéts are
significant. The use of variable geometry tip devices to increase the operational
range of tip devices has not been shown to be successful. The high (effective) AR

of the windsurf fin and the requirement for equal operation on both tacks (requiring
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the use of a symmetrical tip device) limits the potential performance gains

associated with tip devices.

6. Variable rake and surface area technologies provide the means for fundamentally
altering the lift and drag characteristics of windsurf fins. Previous work in this area
has failed to develop a successful design (both commercially and operationally),

due to the impractical nature of the design solutions.

7. Variable camber technologies offer the potential for dramatically enhancing the C,
and C, characteristics of the fin. Although there are documented proposals for
variable camber windsurf fins it has not been possible to source the existence of a

functioning device.

From the foregoing discussion it is clear that a fundamental reworking of the windsurf fin

is needed to realise any significant gains in the lift to drag ratio.

To satisfy this requirement it can be argued that what is really needed is not a rigid and
symmetrical cross section windsurf fin for predetermined sailing speeds and course of
sailing, but a finitely adjustable and variable camber section which can be trimmed and
tuned effectively by the sailor to cope with a great variety of sailing speeds and course

directions.

An adjustable cross section will then satisfy the contradictory C; and C,4 requirements of
close hauled sailing (high C; ,) and of reaching (low C, and C;). This indicates that a

certain amount of ‘elasticity’ is required in the design of the cross section.

Although this may be considered a demanding design problem, a successful solution would
result in a windsurf fin which allows the sailor to intelligently trim and tune the camber in
the cross section for the course direction and speed in the same manner as is already used

on conventional marine sails.
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4.1 Approaches for a Variable Camber Windsurf Fin

The camber of a cross section is recognised as one of the most important characteristics of

a lifting surface. The obvious approach for developing a variable camber system for the

windsurf fin would be with conventional leading and trailing edge flaps, actuated and

controlled by mechanical linkages. This approach is proposed by Dugdale, but a fully

functioning windsurfer featuring a variable camber fin has not been fabricated.

There are however a number of problems associated with using conventional flaps in a

marine environment which in turn limits their applicability to the windsurf fin. These are

summarised as follows;

1.

The physical size of the conventional windsurf fin is highly restrictive. Typically a
maximum thickness of approximately 12 mm is found in the base region and this
decreases rapidly along the span.  The implementation of a control and linkage
mechanism within these constraints is likely to be problematic. This is supported
by Kerwin et al ¥ who discuss the problems of ‘mechanical complexity and
possible maintem;nce difficulties’ associated with a double flap hydrofoil.
Additionally, due to the density of the water the pressures (F/A) generated and
experienced by a lifting surface in a marine environment are considerably higher
than a comparable device operating in an airflow. This has obvious structural

implications.

The difficulty for the sailor in actively controlling the magnitude of the flap
displacement. It is unlikely that the sailor will be able to make finite adjustments to
the flap system with a deck operated system as proposed by Dugdale (it is more
likely that a ‘snap through’ approach will need to be adopted). Even if it is possible
to develop a finitely variable system, the ability of the sailor to determine and then

implement the optimum flap position for a given sailing condition has to be

questioned.
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3. Wear in the system and contamination by deposits. Continuous use in a marine
environment will lead to contamination by saline deposits and possibly by sand. It
is envisaged that suitable gaskets or similar devices will be required to avoid

damage to the internal mechanisms and contact surfaces.

4. The high velocity peaks associated with the sharp edges at the junction of
conventional flaps. The hinge line of the flap causes premature transition to a

turbulent flow and act as the trigger point for cavitation inception.

5. The high drag associated with conventional flapped systems. Most of the
conventional flap systems for acrospace applications are designed to produce high
levels of drag (when deployed) as this helps to reduce the landing speed of the

aircraft. Within the realms of the current work an increase in drag is undesirable.

These points indicate that even if the mechanical complexity of a flap system can be
addressed, the discontinuity between the flap and the main hydrofoil will result in a

significant increase in drag and could possibly lead to an earlier inception of cavitation.

To overcome these drag problems a mechanically driven flexible surface could be used.
However, the engineering complexity of the existing flexible surface approaches is an
order of magnitude greater than a conventional flap system, which would seem to make it

an even more inappropriate and impractical solution to the problem.

Another approach to variable camber is the passive ‘snap-through’ designs such as the
marine sail, which has an excess of material and assumes a curved shape under load.
When an angle of incidence is selected and a load generated, the sail snaps through to a
pre-determined fixed non-symmetric aerodynamic shape, providing some lift due to the
camber and some due to the incidence angle. Additional increments of lift are‘provided by
changes in the angle of incidence. The sail does however suffer from stability problems at

low incidence angles when the excess material is prone to flutter and vibration.
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The use of snap through camber devices again restricts the potential hydrodynamic
performance as it is acknowledged that there is, ‘no best camber for all sailing conditions.
The skill of the helmsman is shown by the way in which he modifies the sail flow to suit

particular demands’ ),

This therefore leads to the conclusion that a suitable camber system for the windsurf fin

needs to be;

1. Finitely variable, with a smooth surface contour.

2. Adjustable by the sailor whilst sailing.

4,2 The Hydroelastically Tailored Windsurf Fin (HTWF)

To meet the requirements of a finitely variable and adjustable camber system for the
windsurf fin, a novel concept (patent application FAGG, S. B. - GB 9600137.5) ¥9 jq
proposed.

The camber in the section of the Hydroelastically Tailored Windsurf Fin (HTWF) is
adaptive and responds passively by design and material usage, commonly known as
hydroelastic tailoring, in response to the dynamic surface loads. The design of the section

is such that increases in camber are associated with increases in lift.

In operation the HTWF section derives a proportion of the lift from the induced camber
shape, thereby delivering higher lift than a symmetrical foil at the same incidence angle. It
is also an aspect of the proposed design that the change in geometry is accomplished
passively, that is without employing an actuating mechanism, and that this change in
geometry occurs equally well for positive and negative load. This means that no
fundamental modifications to the hull of the windsurf board are required and that the
HTWF can be retrospectively fitted.
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The use of increasing camber to increase the lift generated at a nominal incidence angle has
the effect of increasing the lift curve slope. This means that nominal increases in lift will
result from smaller changes in incidence angle than would be required for a symmetrical or
fixed camber system. In general this will allow the windsurf board to be sailed at lower

leeway angles than with a comparable rigid and symmetrical foil.

In conjunction with the envisaged gains in lift it is also an aspect of the design to reduce
the section drag by rotating or ‘drooping’ the nose into the flow as this is more efficient for

splitting the freestream.

A cross-sectional view of the proposed HTWF configuration is shown in Figure 4.1. The

configuration is of general aerofoil shape and features;

1. Arigid internal framework, to be referred to as the skeleton.

2. An elastomer flexible covering.
The internal skeleton comprises two regions;

1. The rear support.
2. The mast.

The rear support is nominally rigid and immovable and provides structural integrity to the
cross section. The mast also provides structural integrity, as well as forming a pivotal axis

about which the flexible elastomer covering and hence the nose region rotates.

The flexible elastomer covering provides the streamlined outer profile shape as well as
filling the void (slot gap) between these two supporting members. Due to elastomer’s
material characteristics it is able to flex and deform in this region under the influence of the
surface pressure loads, resulting in a section with ‘floating’ geometric and hydrodynamic

characteristics.

105



THE DESIGN SOLUTION

The elastic properties of the elastomer ensures that it assumes a symmetrical profile when
at rest or under the influence of a symmetrical loading (when the incidence angle is zero).
The magnitude of deformation in the elastomer is proportional to the surface pressure

loading (to the linear limit of the elastomer material).

4.2.1 Method of Operation

The method of operation for the hydroelastically tailored fin is analogous to a conventional
marine sail in that the pressure differential between the two surfaces is used to induce
geometry changes in the cross section. It does however differ from the sail in that the
camber shape is finitely variable and is not predetermined and fixed (i.e. not a ‘snap
thfough’ design). Figure 4.2(a) shows the surface pressure loads on a symmetrical airfoil
(at an incidence angle to the freestream). These surface pressure loads will induce
structural deformations in the directions indicated by the arrows in Figure 4.2(b). The
cross-section will then take on the asymmetric shape shown in Figure 4.2(c). It is then
assumed that the asymmetric shape will be stabilised by the rearward movement of the
negative pressure peak (due to the camber shape). This demonstrates how the
deformations in the ﬂexible' elastomer and the rotation about the pivotal mast will be used

to;

1. Invoke camber in the cross section.

2. Rotate or ‘droop’ the nose into the flow.

The resulting section shape from these structural deformations will then satisfy the

requirements for high lift and low drag.

Marchaj 9] discusses how the use of a suitable nose shape and camber over the front part
of the section can be used to avoid increases in drag and flow seperation. Ideally the
curvature at the leading edge should be adjustable to achieve an ‘ideal’ or smooth entry

(tangential to the camber line at the nose) over a range of incidence angles. Smith (1291130}
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reinforces this by discussing how high lift is best achieved by keeping the nose angle of

attack low with a ‘droop’ nose design.

In addition to the reductions in drag and increments in lift, the drooping nose should delay
the onset of cavitation by reducing the magnitude of the negative pressure peak at the
leading edge. This feature will also help to delay leading edge seperation thereby

increasing the attainable Cy pay-

The magnitude and nature of the camber in the HTWF concept is a function of the cross

section design and the surface pressure loads which in turn are a function of;

1. The velocity of the section through the water.
2. The incidence angle of the section to the freestream.

3. The geometric features and material usage in the section.

The design of the section is such that the sailor will use conventional sailing techniques to
regulate the magnitude of the camber in the section. By sheeting the sail in and out the
speed of the complete assembly and hence the fin through the water can be varied. In
addition to this, conventional footsteering techniques will be used to vary the incidence

angle of the fin to the freestream.

4.2.2 The HTWF Design Variables

Variations in C, and C,4 are primarily dependent on the foil section geometry, its surface
contour and thickness at the leading edge. Changes or modifications to any of these
parameters will result in an associated and unique velocity and pressure distribution for
that specific profile shape. Determining an optimum or suitable velocity and pressure

distribution is therefore dependent upon the design variables for the HTWF cross section.
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It has been established that the sailor will use conventional footsteering techniques to vary
the surface pressure loads on the section. The resulting camber shape will therefore be a

function of;

1. The geometric features of the cross section.

2. The material usage in the cross section.

In theory an infinite number of configurations can be developed. However, for this

preliminary investigation the design variables (Figure 4.3) will be limited to changes in;

1. The initial outer profile geometry.
2. The position of the pivotal mast ( as a percentage of the chord length (p/c)).
3. The size of the slot gap (as a percentage of the chord length (s/c)).

4. The stiffness of the flexible elastomer covering.

The position of the rear support (r/c) is fixed at 80% of the chord length for all
configurations. This results in a gradual tapering out of the rear support towards the slot
gap (s/c) which will help to avoid discontinuities in the surface due to the gradual

‘tapering-in’ of the elastomer.
The radius of the pivotal mast is defined as 3 mm for all configurations, even though in
reality the radius will be enlarged for the thicker sections. This is primarily to reduce the

number of variables being considered.

4.2.3 Theoretical Performance Characteristics

With the format of the HTWF configuration established, consideration is given to the

potential performance characteristics of the proposed design solution.

To explain the performance potential of the HTWF section it is assumed that suitable

geometries and materials are used to enable the configuration to adopt ‘known’ outer
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profile geometries at specified incidence angles. Based on this assumption, it is
hypothesised that a HTWF configuration featuring a NACA 0012 section profile can be
designed to assume nominally the same outer profile as the NACA 23012 (moderate
camber) at an incidence angle of 5° and nominally the same outer profile as the NACA

4412 (large camber) at an incidence angle of 8° (as shown in Figure 4.4).

Figure 4.5 shows the lift curves of these three NACA sections and Figure 4.6 shows the
corresponding drag polars. If the assumption is made that the HTWF configuration is able
to smoothly vary the camber shape from one section to the other due to a changing
incidence angle, the lift curve and drag polar of the hypothetical HTWF section would

follow the loci shown.

This would result in a steepening of the lift curve slope and a reduction in the profile drag
at increasing incidence angles (when compared with a rigid NACA 0012 section). By
using this approach the lift to drag ratio of the fin will be optimised for the pre-stall range

of incidence angles.

4.3 Evaluating the HTWF concept

‘All the mathematical sciences are founded on relations between physical laws and laws of
numbers, so that the aim of exact science is to reduce the problems of nature to the

determination of quantities by operations with numbers’, James Clerk Maxwell, 1856.

The previous section outlined hypothetical performance characteristics for the HTWF cross
section. To assess the performance of the device, particularly the hydroelastic coupling
effect, a suitable analysis method is required. Due to the number of design variables, the
infancy of the concept and budgetary constraints, a computational based analytical method

was devised for this preliminary investigation by the author and Xavier Velay (SO N233)

To reduce the complexity of the analysis process the problem domain was modelled in 2D,

in which it is assumed that the section has infinite span such that there is no spanwise (3D)
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flow component. By addpting this approach the complexity of the computational model is
reduced considerably. It should however be realised that a 3D spanwise flow component

may in reality influence the sectional performance characteristics.

4.3.1 Coupled Fluid and Structural Analysis Tool (CFSAT)

The Coupled Fluid Structural Analysis Tool (CFSAT) is a 2D computer based analytical
method developed specifically for. this research project (sample listing provided in
Appendix D). The CFSAT consists of a computer code which automatically integrates and
runs two separate software packages (Flotran CFD and ANSYS FEA by Swanson Analysis
Systems) into a single iterative process. The structure of the CFSAT is shown in Figure
4.7, illustrating the four main stages of the analysis, namely;

1. Definition of initial geometry from the stored parametric data

2. Flow analysis

3. Structural analysis

4

. Convergence checks

Both the ANSYS and Floﬁm programs are Finite Element packages. The structural
analysis of the ANSYS program is based on the Stress-Strain relationships. The stress is
related to the strain by:

{o} =[D] {&} 4.1)
where: {c} = stress vector = [ o, 6,0,0,,G,,0y; ]

[D] = elasticity matrix

{e} = strain vector = [ €, €/ €,8,,€,, &y, ]
The strains may be related to the nodal displacements by:

{e} = [B] {u} ' “4.2)
where: [B] = strain-displacement matrix, based on the element shape functions

{u} = nodal displacement vector

To evaluate the structural strain and stress we compute the element integration point by

combining equations (4.1) and (4.2).
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The fluid analysis of the Flotran program is defined by the laws of conversation of mass,
momentum, and energy. These laws are expressed in terms of partial differential equations
which are discretized with a finite element based technique. Assumptions about the fluid
and the analysis are as follows:

1. The fluid is Newtonian.

2. There is only one phase.

3. The problem domain does not change.

4. The user must determine: (a) if the problem is laminar or turbulent; (b) if the

flow is incompressible or compressible.

From the law of conservation of mass comes the continuity equation:

a(pV. 4.3)
_ﬁ£+0’)(pVx)+ ('0 }’)+a(sz)=0
ot ox oy Oz
where: Vx, Vy and Vz = components of the velocity vector in the x, y and z

directions, respectively
p = density
X, ¥,z = global Cartesian coordinate

t = time

The Navier-Stokes equations are written in terms of a Newtonian fluid, where the shear

stress is a linear function of the velocity gradients.

A pu;) N 5’(,0141'”:') OP

o o, oy BT e | M, | | M

where: u;, u; = components of the velocity vector in the i and j directions,
respectively
p = density
Xj, Xj = global Cartesian coordinate
P = pressure
K = viscosity

g; = components of the acceleration due to gravity

110a



THE DESIGN SOLUTION

If internal effects are great enough with respect to viscous effects, the flow may be
turbulent. This means that the instantaneous velocity is fluctuating at every point in the
flow field. The velocity is thus expressed in terms of a mean value and a fluctuating
component:

Vo=Vt vy
where: V_x = mean component of velocity in x-direction

V,’= fluctuating component of velocity in x-direction

If an expression such as this is used for the instantaneous velocity in the Navier-Stokes

equations, the equations may then be time averaged.

For numerical accuracy reasons, the algorithm solves for a relative pressure rather than an
absolute pressure. Considering the possibility that the equations are solved in a rotating
coordinate system, the defining expression for the relative pressure is:

Pabs =Prer + Pre - p {8} . {1} +1/2 p ({00} x {0} x {r}) . {r}
where: P.ys = absolute pressure

P ¢ = reference pressure

P, = relative pressure

{g} = accelerétion vector due to gravity

{r} = position vector of the fluid particle with respect to the rotating

coordinate system

{®} = constant angular velocity vector of the coordinate system

For the derivation of the fluid flow matrices a segregated and sequential solution algorithm
is used. This means that element matrices are formed, assembled and the resulting system
solved for each degree of freedom separately. development of the matrices proceeds in two
parts. In the first, the form of the equations is achieved and an approach taken towards
evaluating all the terms. Next, the segregated solution algorithm is outlined and the

element matrices are developed from the equations.
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4.3.1.1 Computational Fluid Dynamics (CFD)

The field of theoretical fluid dynamics has been developing since the seventeenth century.
In support of this pure theory, the discipline of experimental fluid dynamics developed in
the twentieth century. Based on the data from these pure and experimental fields as well as
the advent of the modern high speed computer, the third approach of Computational Fluid
Dynamics (CFD) has developed.

The use of CFD in its current format is not a replacement for pure theory or applied
experiment, as there will always be a need for these other approaches. CFD does in fact

complement these other techniques in a synergistic manner “

CFD is therefore a computer based analytical tool with which it is possible to carry out

numerical experiments.

However, because the computations are mathematical assumptions and approximations
based on empirical test data, jche limitations of a computer based analysis need to be known
and the results interpreted carefully. The same considerations apply to wind tunnel tests
due to the effects of wall interferences, model accuracies and Reynolds Number,
particularly for simulated two dimensional flows ] The differences between a wing in
free flight and a low aspect ratio model in a flow tank are significant. These effects can
show the potential to increase at higher incidence angles. The differences between
individual flow tunnels also has an influence on the test data, as can the presence of a wake
rake measuring device 4. Baubeau and Latorre 8] describe how it can be difficult to
establish a baseline condition from experiments due to the following difficulties associated

with tank testing;

e Manufacturing an accurate profile
o Obtaining a smooth surface finish
¢ Generating two dimensional flow conditions

* Level of turbulence in incoming flow
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o Interpretation of the boundary layer conditions from oil film patterns or
holographic plates.

®1 who states, ‘One should realise that any

These findings are supported by Marchaj
performance prediction based on towing tank and wind tunnel results is subject to

inevitable error and uncertainty’.

Van Dam et al ! confirms the problem of erroneous data resulting from inaccuracies in
the model. He found different lift and drag values for a supposedly symmetrical wing test

model in the upside down and right side up positions.
Eppler therefore concludes [44];

e An airfoil should never be applied without a computer analysis.
e [t is more reliable to compare two different airfoils by data obtained from the same

computer program than by tests from different wind tunnels.

The basis of these conclusions are that with a computer based analysis;
e The effect of minor modifications to the airfoil can be studied easily and with
good reliability.
e The angle of incidence and fluid properties (Reynolds Number, Turbulence
model) can be changed rapidly.
e The tailoring of the airfoil can be accelerated considerably.
e The analysis is extremely cheap (comparatively) and always provides additional

information.

Anderson supports these conclusions by stating that CFD constitutes a new ‘third
approach’ to analysing fluid dynamic problems which is equal to pure theory and pure
experiment. This does not make it a replacement for either pure theory or pure experiment,
rather a synergistically complementary process. CFD results are directly analogous to

wind tunnel results obtained in a laboratory, representing sets of data for given flow
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conditions, configurations and Reynolds numbers. The computer based analysis is

therefore a too]l with which you can perform numerical experiments.

Housh et al ™ describe the nature of their computer based analysis of the scissor wing
geometry and conclude that, ‘the qualitative values may be suspect in some cases however,
the trends are not and when this code is used to compare two different geometries, firm

conclusions may be drawn’.

4.3.1.2 Finite Element Analysis (FEA)

According to Fagan (%] the finite element method is not a new technique but was first
introduced in the 1950s, and has been continually developed and improved since then. It is
now an extremely sophisticated tool for solving numerous engineering problems and is
widely used an accepted in many branches of the industry for the analysis of structures and
solids ", Many aircraft components and hence total machines are certified and given

airworthiness certificates through the results of finite element models 18]

4.3.1.3 Definition of the Initial Geometry

The program is structured such that the following variables are stored parametrically by the

operator;

e Cross section geometry (geometric features, material properties)
¢ Fluid properties (Velocity, density, angle of attack, turbulence model, pressure)

e Domain properties (model volume, line divisions, mesh refinement)

By using a parametric based programming language the cross section, fluid and domain
properties can be changed rapidly. The external geometry of the cross section is defined by
60 keypoints (29 uppersurface, 29 lowersurface, 1 leading edge and 1 trailing edge) which
are splined together. The internal features of the cross section are specified by 20

keypoints. The material properties of the cross section (Young’s modulus and Poisson
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ratio) are also stored as parameters. The outer limits of the flow domain are calculated as a
function of the chord length. This ensures that the recommended distance between the
cross section and the limits of the flow domain are set in accordance with a freestream type
simulation as shown in Figure 4.8 "'"*]. A mapped mesh is generated in the flow domain as
is shown in Figure 4.9. The concentration of the meshing is refined in the area adjacent to
the cross section in accordance with CFD recommendations. By using a mapped mesh the
analysis time and memory requirements are reduced considerably when compared with a

free mesh type analysis ™.

4.3.1.4 Flow Analysis

Prior to the flow analysis boundary conditions are applied to the mesh. The boundary

conditions are;

e Velocities at the outer limits of the flow domain (10
ms” at a user defined incidence angle)
* Boundary edges of outer profile (flow velocity 0 ms'l)

e Pressure values at the flow outlet (pressure =0) -

The flow analysis is performed when the boundary conditions and program controls have
been set. On completion of the analysis the calculated surface pressure integrals on the
cross section are used to derive the section lift and drag coefficients (C, and C;). The
pressure integrals are then stored and used as the load set for the subsequent structural
analysis. Figure 4.10 and Figure 4.11 show typical post processing plots from the CFD
method.

4.3.1.5 Structural Analysis

Following the flow analysis a finite element model of the cross section (Figure 4.9) is used
to predict the anticipated structural deformations in the cross section due to the flow

pressures. To do this the pressure forces from the flow analysis are loaded and applied to
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the corresponding elements on the FEA model. The other boundary conditions (zero
displacement on the skeleton) are also applied. The material properties of the cross section

are specified and the structural analysis invoked.

The FEA analysis calculates the anticipated nodal displacement in the model as a result of
the surface pressure loads. This data is used to determine the predicted change in the
section geometry. The modified geometry is stored and used in the subsequent flow

analysis to establish the changes in the flow resulting from the new geometry.

4.3.1.6 Convergence Checks

The convergence checks are used to determine if and when the shape of the cross section

has stabilised. The options available for determining the level of convergence are;

e Measuring the change in coefficient of lift and drag (6C, and/or 8C,) as
compared with the previous flow analysis.

e Measuring the change in structural deformation as compared with the previous

structural analysis.

Alternatively a pre-set number of looping commands can be used to terminate the analysis.

4.3.2 Accuracy and Validity

The validity of the model depends on how faithfully the physical problem is represented in
the computer, whilst the accuracy depends on how close the resulting values are to a

theoretically or experimentally derived value.
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5.0 Experimental Pr;)cedure

5.1 Assessment of the Computed CFD and FEA Data

5.1.1 The CFD Method

The CFD component of the CFSAT was run independently to compare the predicted result

data (lift and drag) with NACA experimental data !,

The first analysis was with the NACA 0012 section. This was selected as it is
representative of a typical windsurf fin cross-section. The Flotran tests were performed
with the turbulence model switched on (because R, > 5 x 105) at a flow velocity of 10 ms’

(R, = 8 x 10°). The incidence angle was varied between 0° and 8°.

Figure 5.1 shows the lift curve slopes for'the NACA 0012 wind tunnel test data, the Flotran
computed 0012 data and the theoretical lift curve slope of the NACA 0012 based on the

approximation;

C =01 1(1+5)a G.1)
C.

Figure 5.2 shows the percentage difference between the NACA experimental data (R, 6 x
106) and the Flotran computed lift data. The Flotran method demonstrates a reasonably

consistent overestimation (7% to 9%) of the lift coefficient.

Figure 5.3 shows the drag polars for the NACA 0012 wind tunnel drag data and the Flotran

computed drag data. The Flotran method consistently overestimates the drag coefficient.
Figure 5.4 shows the percentage difference between the NACA drag data (standard

roughness) and the Flotran computed drag data. A reasonably consistent overestimation

(nominally 15%) of the drag coefficient by ‘the Flotran method is demonstrated. The
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reason for this discrepancy can be directly attributed to the CFD method and the manner in

which the boundary condition is modelled !!*! (fully turbulent).

The total drag C, associated with a streamlined body is described by Newman [10(2)] as

being composed of the two components, skin friction and pressure drag.)
C'D (Re) = Cj (Re) + Cp (5'2)

The magnitudes of total drag Cy and frictional drag C; are highly dependent on the
Reynolds numbers (R,). This is illustrated by Figure 5.5 which shows the variation in drag
(Cp) for NACA foil sections over a similar range of Reynolds numbers. This figure
illustrates that flow transition occurs between R, = 10° and R, =2 x 10 and that as a result
of this it is problematic to accurately establish the magnitude of drag in this range. It is

therefore unfortunate that this region of flow transition corresponds with the Reynolds

numbers of interest in the current investigation.

In reality the NACA 0012 section could be expected to have regions of laminar and
turbulent flows at a Reynolds number of 8 x 10°. The Flotran CFD method however is
only able to model the boundary layer as either fully turbulent or fully laminar. Based on
the Reynolds number of the test (> 5 x 10°) the turbulence model must be switched on to
converge the solution. Therefore the drag data predicted by the Flotran method will be

(consistently) greater than expected.

For a second test the NACA 23012 profile was used (with the same flow conditions as
specified for the NACA 0012). Figure 5.6 shows the NACA experimental and Flotran
computed lift data. Figure 5.7 shows the percentage difference between the NACA
experimental and Flotran computed data. The Flotran method demonstrates a reasonably
consistent overestimation (1% to 3%) of the lift coefficient, leading to an underestimation

(-2%) at an incidence angle of 8°.
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Figure 5.8 shows the drag polars for the NACA 23012 wind tunnel drag data and the

Flotran computed drag data. It is clear again that the Flotran method consistently

overestimates the drag coefficient.

Figure 5.9 shows the percentage difference between the NACA drag data (standard
roughness) and the Flotran computed drag data. A reasonably consistent overestimation
(nominally 14%) of the drag coefficient by the Flotran method is demonstrated. The
reason for this discrepancy can again be attributed to the manner in which the boundary

condition is modelled as fully turbulent.

These tests have established that there is a consistent error associated with the CFD
computed lift and drag data. Although this makes the data unreliable for direct
comparisons with other sources of data, the consistency of the error does still enable the
data to be used in a standalone sense. It is then possible to qualitatively assess the effects
of changes in the configuration of the cross section, as ‘It is more reliable to compare two
different aerofoils by data obtained from the same computer program than by tests from

different wind tunnels’ F44].

The modelling of a fully turbulent may also have implications in terms of the prediction of
the deformed geometry in the FEA method. Following the CFD analysis the calculated
pressure loads are used as the load set for the subsequent structural analysis. The drag data
is applied as a tangential load and the lift data is applied as a normal load, to the surface of
the cross section. It is the normal (lift) forces that have the greatest influence on the
structural deformations, with the tangential forces having a minimal effect ( because they

act tangentially to the surface and that they are at least ten times less in magnitude than the

lift forces).

Because the calculated normal forces (lift data) and hence load set for the structural

analysis is overestimated by up to 10% the predicted elastomer deformations (in the FEA

method) are also likely to be overestimated (by up to 10%).
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The overestimation of the tangential forces are not considered to significantly affect the

accuracy of the predicted elastomer deformations.

5.1.1.1 Iteration Values

To establish the optimum number of CFD program iterations (in terms of computing time
versus satisfactory correlation of data) an investigation was performed to see the effect of
the global iteration number on the lift and drag data for the Eppler E472 profile (with the
same flow conditions as specified for the NACA 0012).

Figure 5.10 shows the C//C4 as a function of the iteration number. This indicates that
approximately 400 program iterations (40 minutes computing time) are required to provide

a consistent correlation of the data.

S.1.2 The FEA Method

To assess the accuracy of the FEA method a number of analyses were performed to
compare the ANSYS predicted data with experimental and theoretical data. For these
analyses a steady state or equilibrium is assumed opposed to a transient loading.
Obviously this does not fully represent the anticipated unsteady loadings that the HTWF

will experience in true sailing conditions, however this is believed to be sufficient for the

current investigation.

To compare the FEA method data with experimental data a sample of cold cure elastomer

was subjected to a tensile test, the plot of which is shown in Figure 5.11.

Based on the measured stress and strain values at a loading of 40N the Modulus of the
elastomer was calculated to be 5.226 x 10° Nm™ (quoted value is 5 x 10° Nm? at 0%

elongation o 14]).
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The FEA model (to the same dimensions as tensile test piece) is shown in Figure 5.12. The
bottom face of the test piece is constrained and the tensile loads (in the positive y direction)
are applied evenly over the upper surface. The loadings on the finite element model were

restricted to a maximum value of 50N.

Figure 5.13 shows the FEA predicted force extension data and the measured force
extension data for the test piece. Good agreement is demonstrated between the two sets of
data (shown in Table 5.1). The differences between the data can be attributed to the
modelling of a linear force extension curve by the FEA method, whereas the tensile test
demonstrates the non-linear characteristics of an elastomer. At the tensile load of 40 N (at
which the elastomer modulus was derived) the difference between the computed data and
the measured data is 0.5%. Ideally the tensile test data and the inherent non-linear force
extension behaviour could be modelled in the structural analysis. However this was not
implemented in the subsequent analysis work as the assumption of a linear force extension

curve provides a sufficient representation for the envisaged range of deformations.

The accuracy of the ANSYS FEA method has similarly been demonstrated by Shareef ¢t a!
[125] where good agreement between the predicted results data and experimentally measured

data is shown.

FORCE Measured Predicted Difference
(Newtons) | Extension Extension (mm)
(mm) (mm)

10 0.717 0.962 0.245
20 1.627 1.924 0.297
30 2.657 2.886 0.229
40 3.827 3.848 0.021
50 5.177 4.809 0.368

TABLE 5.1. Comparison between measured and predicted extension data.
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A second series of tests were performed with the FEA method to compare the results data

with classical beam theory data.

Two scenarios were devised (as shown in Figure 5.14). The first is where the beam is fully
constrained at both ends (Beam A) and the second is where the beam is constrained at one
end and subjected to a point contact at the other end (Beam B). Based on the assumption
of an even load across the span and a span to width ratio greater than 8, the maximum

displacement of the beams can be predicted by the following beam theory formulae;

PI’
ForBeam A Y = 384E] 5.3)
for Beam B at x =0.4215
P’
Y= .
b 185EI (5.4)
forBeam B atx = 3/8L.
_ P 55
® T 187EI +S)
h3
where = sz— (5.6)

P =Force over span

L = span length

The finite element model is shown in Figure 5.15 where the span (1) is set to 0.1m, the
height (h) to 0.01m and the thickness (b) to 0.0025m. The modulus of the material is
specified as 5.226 x 10 Nm and the load across the span is 5N.
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Figure 5.16 shows the predicted deformation of Beam A and Figure 5.17 shows the
predicted deformation of Beam B. This data is collated with the theoretical calculations
and shown in Table 5.2. Good agreement is demonstrated between the predicted data from

the ANSYS program and the classical beam equations (difference of 1.2% to 5%).

In support of the ANSYS FEA method, Neto et al 1% have demonstrated good agreement

between the calculated results data and the predictions from classical formulae.

Displacement at x | Displacement atx | DIFFERENCE
according to Beam | predicted by in mm
Theory in mm ANSYS in mm

BEAM A (x =0.5L) 11.96 12.56 0.60

BEAM B (x =0.4125L) ( 24.81 25.13 0.32

BEAM B (x =3/8L) 24.56 23.73 0.83

TABLE 5.2. Comparison of predicted deformations according to FEA method and beam
theory.

5.1.3 The CFSAT Tool

As has already been established, the accuracy of the CFSAT tool is a function of the
accuracy of its two constituent parts. To validate the program it was proposed to run the
complete analysis with the elastomer region specified as having a very large value of
Young’s Modulus, such that the surface pressure loads would be insufficient to invoke
structural deformations. In theory the CFSAT tool would converge on the first iteration
and calculate C; and C, values corresponding with the undeformed initial outer profile
geometry. However, a serious failure of the department’s computing facility coupled with
a loss of the system backup data resulted in a total loss of the CFSAT program. For this
reason a prediction of the accuracy of CFSAT is made based on the known data output

from the two constituent parts.
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The CFD method has shown an error in the predicted lift data of up to 10% when
compared with NACA experimental data. The FEA method has shown an error of up to
5% in comparison with classical beam theory. A worse case scenario is predicted in which
the data from the analysis is subject to a cumulative 15% (single global iteration) margin of
error. There is no further scope for cumulative errors in the analysis due to the program

structure employed.

This potential error margin is significant and as such it precludes the direct comparison of
the CFSAT computed results with other sources of data. However, because the margin of
error is consistent for each analysis performed with the tool, it is concluded that the
quantitative results data can be used in isolation to establish the effects of modifications to
the HTWF configuration. From this trends can be established from which firm conclusions
may be drawn. Similar work by Ulrich "*% demonstrated a good agreement between the
predicted results data from a coupled fluid-structural analysis (using the same software)

and the measured behaviour of a microvalve (for both static and transient load sets).

The correlation of the initial data from the preliminary experimental work with the CFSAT
demonstrates a consistency which indicates that the analytical process is functioning in a

satisfactory manner.

5.2 Two Dimensional Evaluation of HTWF Configurations

To assess the design variables of the HTWF a series of analyses were performed using the

CFSAT.

To establish the reference lift and drag coefficients a series of standalone CFD analyses
were performed on the rigid outer profile geometries (E472, NACA 0006, NACA 0008,
NACA 0010 and NACA 0012). The calculated data for these initial outer profiles is then
used as the reference by which the changes in the L/D ratio due to the hydroelastic tailoring

techniques can be gauged.
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The incidence angles for all the analysis work is restricted to the range between 0° and 10°,
primarily because a conventional windsurf fin typically stalls at an incidence angle equal to
10°. Extending the range of incidence angles beyond this value would be pointless as it is
not possible to determine the accuracy of the CFD code for predicting flow separation and

stall. In support of this Thain [*"! describes the difficulty in predicting the Cimey Of high

lift systems without physically tank testing them.

For each analysis the flow velocity was set to 10 ms” as this is representative of a
moderate sailing speed for a planing windsurf board. Due to the limitations imposed by
the CFD code the flow was defined as fully turbulent, even though in reality it could be
expected to be partly laminar and partly turbulent.

So that a representative and practical solution to the HTWF configuration can be reached,

realistic values were used to define the slot gap, elastomer modulus and outer profile

geometry.

In terms of the slot gap the primary concern is to ensure that there is sufficient material in
the supporting skeleton to retain the overall structural integrity of the fin. For this reason
the slot gap width was restricted to a maximum value equal to 70% of the chord length.
This is a nominal figure based on intuition and is not representative of a predetermined or
derived value. Further work is required to establish the minimum material bulk required to

provide satisfactory levels of structural integrity and support for a finite length fin.

The minimum thickness to chord (t/c) ratio was set at 6% due to the same concerns
regarding structural integrity. A maximum value of 15% was chosen as beyond this the

benefits of using camber become progressively ineffectual m,

The range of modulus values for the elastomer material was between 6 x 10 Nm? and 16
x 10® Nm™. These values correspond with a range of cold cure elastomers suitable for

fabricating test samples and prototypes (4
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The results data is presented as the percentage difference in performance of the HTWF
configuration as compared with the corresponding rigid outer profile. This method of
presentation enables the changes in performance due to the hydroelastic tailoring to be seen

more clearly than with traditional lift curve and drag polar plots.

5.2.1 Nomenclature

- —

The following nomenclature is used to designate the configuration of the hydroelastically

tailored cross sections;
o First group of digits define outer profile shape.
e Second two digits designate modulus of elastomer covering.
e Final digit defines the value of the slot gap.

For example

nl12_16_5 represents a NACA 0012 cross section with an elastomer of modulus

16 x 10° Nm™ and a slot gap of 50% chord.

e472_14_3  represents an Eppler €472 cross section with an elastomer of modulus

14 x 10° Nm™ and a slot gap of 30% chord.

5.2.2 Two Dimensional Analysis Results

The initial goal was to investigate the influence of the slot gap on the lift to drag ratio of a
nominal foil section and so consideration was given to the work of Liebeck “* into high

lift single element airfoils.

These foil sections feature a maximum thickness and position of camber towards the

leading edge. Additionally they feature a moderate nose radius to avoid flow separation at
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off design incidence angies. Based on these single element high lift airfoils, the Eppler
e472 foil was selected for the starting point for the investigation and analysis work as
visually it features a ‘base’ thickness distribution and nose radius roughly in accordance

with these high lift single element foils.

S.2.2.1 The Eppler e472 Profile

The first series of tests employed a configuration with an e472 outer profile, with fixed
elastomer modulus (11 x 10° Nm'z) and varying slot gap values (between 20% and 70% of
the chord length).

Figure 5.18 shows the percentage difference in C, for the €472 HTWF configurations as
compared with the rigid e472 section data.

Figure 5.19 shows the percentage difference in C, for the €472 HTWF configurations as

compared with the rigid e472 section data.

Figure 5.20 shows the pércentage difference in C,/Cy for the e472 HTWF configurations as
compared with the rigid e472 section data. The 70% slot gap configuration has inferior
Cy/C4 characteristics at all incidence angles (as compared with the rigid section). The 60%
slot gap configuration (€472 11 6) demonstrates a maximum improvement in performance
of 4.5% at an incidence angle of 1.8°, but this rapidly changes to a reduction in C/C after
2.5°. The e472_11_5 configuration shows the largest increase in C/Cy of 5% at an
incidence angle of 2°. This again changes to a reduction in performance after
approximately 3.5°. The €472 11 4 configuration (40% slot gap) shows an increase in
C/C,4 at incidence angles up to 5°, with a maximum gain of 4% at 2°. The other two
configurations with slot gaps of 20% and 30% perform less well than the 40%

configuration at all incidence angles.
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Due to the relative success of the 40% chord gap e472 configuration, a second series of
tests were performed in which the slot gap was fixed and the elastomer modulus varied

(between 6 x 10° Nm?and 12 x 106 Nm™).

Figure 5.21 which shows the percentage difference in C/Cy of the €472 hydroelastic
sections as compared with the rigid reference model. This indicates that the HTWF
configurations with an elastomer modulus of less than 9 x 10° Nm™ perform the least well.
A dependence between the elastomer modulus and the percentage gains in C/Cy is
demonstrated. In terms of the percentage gain in C,/C,, the €472 12 4 configuration
demonstrates an increase in lift to drag ratio up to an incidence angle of 5.5°, with a
maximum gain of 4% at an incidence angle of 2.3°. After 5.5° none of the HTWF

configurations perform as well as the rigid reference model.

The results from this initial work demonstrates that the C,/C,4 can be increased by the use of
hydroelastic tailoring techniques. These increases are however limited to low incidence
angles. Based on the fact that a conventional windsurf fin typically operates at an

incidence angle of 6° these low incidence angle performance gains are of limited benefit.

The overall C,/C, performance at moderate to high incidence angles is disappointing. This
indicates that even though the lift curve slope is being increased, the associated increases in

drag are proportionally greater.

It is concluded that these increases in drag result from the ‘blunt’ nose shape of the €472
profile. This nose shape has been designed to operate over a wide range of incidence
angles, for which a generous leading edge radius is employed to delay leading edge stall.
This shape is however less efficient at ‘splitting’ the oncoming flow at low incidence
angles. To realise the full benefits of the drooping nose a sharper nose shape is required
because, The increment in lift due to camber is least for sections with relatively large

radius leading edges and camber is more effective on thin sections than on thick sections’
[90]
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5.2.2.2 Evaluation of NACA 0006, 0008, 0010 and 0012 Profiles

For the next series of tests the four sections NACA 0006, 0008, 0010 and 0012 were
selected for the outer profile geometry as they feature a sharper nose radius. In addition,
by selecting sections from the same family of foil shapes the effect of the thickness ratio
could also be assessed. As with the previous work on the Eppler profiles the change in
hydrodynamic performance resulting from the HTWF configuration is gauged by the

percentage difference in the C; and C, data as compared with the calculated data for the

rigid initial outer profile geometry.

Based on the results from the first series of tests on the e472 profile, the slot gap values for
the NACA airfoils were restricted to 30%, 40% and 50% of the chord length and the

elastomer modulus values were restricted to the range between 10 x 105 Nm™ and 16 x 10°

Nm™.
5.2.2.2.1 Location of the Nose Pivot Point

It is desirable to move the mast rearwards as this allows its diameter to be increased,
thereby improving structural integrity. However, by moving the mast rearwards a

fundamental change will occur in the moment arms acting at this point.

Figure 5.22 shows the two moments acting at the nose. These moments result from the
forces acting either side of the mast on the slot gap and the forward part of the nose. Three

potential scenarios can be envisaged as a result of these moments;

1. The moment arm generated by the slot gap is greater than the moment arm

generated by the nose. This will ‘droop’ the nose into the flow in the desired

manner (Figure 5.22a).
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2. The moment arm generated by the nose is greater than the moment arm generated

by the slot gap. This will result in an upturned nose which is considered to be
highly undesirable (Figure 5.22b).

3. The moment arms generated by the slot gap and the nose are equal and opposite.
This situation of hydrodynamic equilibrium will result in a stagnant nose in which
the elastomer is compressed in the negative pressure region immediately next to the
mast and stretched on the positive pressure side of the mast (Figure 5.22¢). This
will raise the nose slightly and increase the curvature on the negative pressure

leading edge surface. It is unclear as to the effect that this will have on the

hydrodynamic performance of the section.

The magnitude of the moment arms is primarily a function of the position of the mast pivot
point. To investigate this phenomenon a NACA 0012 outer profile with a constant slot gap
of 30% and an elastomer modulus of 16 x 10° was used. The mast pivot point was varied

between 4% and 9% of the chord length.

The effect on the lift to drag ratio as a function of the variations to the pivotal mast location

is shown in Figure 5.23. This indicates an optimum location in the region of 5% of the

chord length for this configuration.

In support of this Figure 5.24 and Figure 5.25 show the predicted deformation in the nose
sections with the pivot point at 5% and 9% of the chord length. It is clear that for the 5%

configuration the nose is drooped into the flow in the desired manner, whereas the 9%

configuration has an upturned nose.

To maintain a realistic and practical configuration the position of the pivotal mast is

specified at 5% of the chord for all configurations used in the subsequent analysis work.
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5.2.2.2.2 Effect of Elastomer Modulus on NACA HTWF Configurations with a

50% of Chord Slot Gap

Figures 5.26 to 5.34 show the percentage change in C;, C4 and C;/C; as a function of the
elastomer modulus for NACA HTWF configurations with a slot gap equal to 50% of the
chord length. It was not possible to derive solutions for all of the configurations due to

excessive distortion in some of the finite element meshes.

Figures 5.26 to 5.28 show the performance characteristics of the HTWF configurations
featuring a NACA 0012 outer profile. The percentage change in C, is consistent for all
configurations, indicating stability in the structures. A reduction in C4 is demonstrated,
with the percentage reduction becoming progressively larger with increasing incidence
angles. This indicates that the drooping nose is functioning in the desired manner,
particularly at elevated incidence angles. The gain in C; and reduction in Cy results in a
significant overall gain in C,/Cy for these configurations (typically a 15% gain at 6°). A
dependence on the elastomer modulus is demonstrated with the best percentage gains in

Cy/C4 corresponding with the highest modulus values (for this foil shape and slot gap).

Figures 5.29 to 5.31 show the performance characteristics of the HTWF configurations
featuring a NACA 0010 outer profile. In comparison with the NACA 0012 configurations
there is less consistency in the C; and C; data. Although there is a consistent (and
comparatively larger) gain in the C, for these configurations, the corresponding increases in
C, are greater, resulting in inferior C,/C; performance. The two configurations featuring
the lowest values of elastomer modulus (n10_10_5 and n10_12_5) perform less well than a
rigid section over a large range of incidence angles. A dependence on the elastomer

modulus is shown with a continual increment in C/C; associated with increasing modulus

values. (for this foil shape and slot gap).

Figures 5.32 to 5.34 show the performance characteristics of the n08 16 5 HTWF
configuration (featuring a NACA 0008 outer profile). There is a large gain in C; for all
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incidence angles (8% at 10°). However the corresponding increases in Cy are highly

detrimental, resulting in inferior C/C4 performance most of the range of interest.

5.2.2.2.3 Effect of Elastomer Modulus on NACA HTWF Configurations with a
40% of Chord Slot Gap

Figures 5.35 to 5.46 show the percentage change in C;,, C;yand C,/C; as a function of the
elastomer modulus for NACA HTWF configurations with a slot gap equal to 40% of the
chord length. It was not possible to derive solutions for all of the configurations due to

excessive distortion in some of the finite element meshes.

Figures 5.35 to 5.37 show the performance characteristics of the HTWF configurations
featuring a NACA 0012 outer profile. The percentage change in C; is similar for all of
these configurations with a good correlation of the data shown. In comparison, the
reduction in Cy is less consistent. The irregular C4 performance results in a fluctuating
percentage change in the C,/C4. The most consistent percentage gain in C/Cy is achieved

by the configuration with the highest elastomer modulus (16 x 10° Nm'z).

Figures 5.38 to 5.40 show the performance characteristics of the HTWF configurations
featuring a NACA 0010 outer profile. The percentage change in C, is similar for all of
these configurations. The reduction in C, is less consistent. The irregular C4 performance
results in a fluctuating percentage change in the C/C4. There is no obvious dependency
between the elastomer modulus and the percentage change in C/Cy for these HTWF

configurations.

Figures 5.41 to 5.43 show the performance characteristics of the HTWF configurations
featuring a NACA 0008 outer profile. All configurations demonstrate similar percentage
gains in C; over the range of incidence angles. The percentage reduction in Cy is less
consistent with the lowest modulus configuration (n08 10 4) showing the smallest
reductions in drag. The C/C, is increased by all of the configurations with the n08 14 4

showing the most consistent percentage gains. There is no obvious dependency between
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the elastomer modulus and the percentage change in C//C,, although the configuration with
the lowest elastomer modulus (10 x 10 Nm'z) performs the least well (even though it

demonstrates a 28% gain in C,/C, at an incidence angle of 8°).

Figures 5.44 to 5.46 show the performance characteristics of the HTWF configurations
featuring a NACA 0006 outer profile. The percentage gain in C; for all of these
configurations is reasonably consistent up to an incidence angle of 8°. At an incidence
angle of 10° all of the configurations show a significant percentage gain in C;. This
indicates an increment in the magnitude of camber due to the increased surface pressure
loads at this high incidence angle. In terms of the percentage change in C4 a clear
dependency on the elastomer modulus is demonstrated, with the highest modulus values
achieving the largest performance increments. This is reflected in the percentage change in

C/Cy where a continual improvement in performance is associated with increasing

elastomer modulus values.

5.2.2.2.4 Effect of Elastomer Modulus on NACA HTWF Configurations with a
30% of Chord Slot Gap

Figures 5.47 to 5.58 show the percentage change in C,, C4and C/Cy as a function of the
elastomer modulus for NACA HTWF configurations with a slot gap equal to 30% of the
chord length.

Figures 5.47 to 5.49 show the performance characteristics of the HTWF configurations
featuring a NACA 0012 outer profile. The n12 10 3 configuration (lowest modulus value
10 x 10° Nm™) shows the highest (and most irregular) percentage gain in C, for all
incidence angles. This appears to be a result of an upturning of the nose which effectively
increases the curvature of the upper surface, resulting in the unusual C; gains. The
percentage gain in C; for the other configurations is consistent and correlated. The
percentage change in C; is dramatically inconsistent. The n12 10 3 shows an overall
increase in C4 which again indicates a flow problem at the leading ‘edge. All of the other

configurations demonstrate a consistent reduction in Cy with the n12_16_3 showing the
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greatest reductions overall. The configuration with the highest elastomer modulus (16 x
10 Nm'z) shows the greatest gains in C,/Cy whereas the configuration with the lowest
elastomer modulus (10 x 10° Nm'z) performs the least well. The performance of the other

two configurations is not obviously dependent on the elastomer modulus.

Figures 5.50 to 5.52 show the performance characteristics of the HTWF configurations
featuring a NACA 0010 outer profile. The two configurations with the highest elastomer
modulus values perform similarly with a reasonably consistent gain in C; at low to
moderate incidence angles (3% to 4% up to an incidence angle of 8°). The two other
configurations show irregular and large percentage gains in C; with the lowest elastomer
modulus (10 x 10 Nm'z) achieving the greatest gains in C,. These gains in C, seem to
indicate an upturning of the pivotal nose in the same manner as the nl2_10_3
configuration. A reduction in C4 is shown by the two configurations with the highest
modulus values. The other two configurations show a dramatic rise in drag over the range
of incidence angles which again indicates a flow problem emanating from the leading edge
region. The percentage change in C/C, indicates that the n10_16_3 and n10_14_3 perform
similarly and demonstrate a consistent gain in Cy/C, at all incidence angles. The other two
configurations generally perform less well than the rigid reference section. A dependence
on the elastomer modulus is demonstrated with an increase in performance resulting from
an increase in elastomer modulus. It can be hypothesised that the optimum elastomer

modulus value for this configuration is between 14 x 10° Nm? and 16 x 10° Nm™.

Figures 5.53 to 5.55 show the performance characteristics of the HTWF configurations
featuring a NACA 0008 outer profile. An increase in C; is demonstrated by all
configurations. There is no obvious dependency between the percentage gains in C; and
the elastomer modulus. Apart from the n08_16_3 conﬁguratién, a consistent and ever
increasing reduction in C,4 is demonstrated. This is once again reflected in the percentage
changes in C/C4 where the configuration with the highest elastomer modulus (16 x 10°
Nm'2) performs consistently worse than the others. The percentage gains in C,/Cy for the

other configurations is highly correlated, with no apparent dependency on the elastomer
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modulus. From this data it can be concluded that an elastomer modulus of 16 x 10% Nm™

is too high for this combination of outer profile geometry and slot gap.

Figures 5.56 to 5.58 show the performance characteristics of the HTWF configurations
featuring a NACA 0006 outer profile. The percentage gain in C; for all of these
configurations is irregular with no obvious dependency on elastomer modulus
demonstrated. The two configurations with the highest elastomer modulus values show a
consistent increase in Cy across the range of incidence angles. Only the n06_12_3 shows a
reduction in C4 and gain in C,/Cy for all incidence angles. This indicates an optimum
elastomer modulus value of approximately 10 x 10® Nm™ for this combination of outer

profile geometry and slot gap.

5.2.2.2.5 Effect of Foil Thickness on NACA HTWF Configurations

Figures 5.59 to 5.70 show the percentage change in C;/C; as a function of the foil thickness
for NACA HTWF configurations.

Figure 5.59 indicates that a thick foil (NACA 0012) is required for a HTWF configuration

with a 50% _slot gap and elastomer modulus of 10 x 10 Nm™>.

Figure 5.60 shows that the NACA 0008 section has the most consistent gains C,/C, for a
slot gap of 40% and an elastomer modulus 10 x 10 Nm?. Overall there is no obvious

dependency between the foil thickness and the percentage gains in C,/C.

Figure 5.61 shows the percentage change in C/C4 for HTWF configurations with a 30%
slot gap and elastomer modulus of 10 x 10 Nm? There is no obvious dependency
between the foil thickness and the percentage gains in C/C4. It can however be concluded
that a NACA 0008 foil provides the optimum thickness for this combination of slot gap

and elastomer modulus.
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Figure 5.62 indicates that a thick foil (NACA 0012) is required for a HTWF configuration

with a 50% slot gap and elastomer modulus of 12 x 10° Nm™.

Figure 5.63 shows the percentage change in C,/C,; for HTWF configurations with a 40%
slot gap and elastomer modulus of 12 x 10° Nm™>. There is no obvious dependency
between the foil thickness and the performance gains, although it can be concluded that a
NACA 0008 section offers the optimum foil thickness for this combination of slot gap and

elastomer modulus.

Figure 5.64 shows the percentage change in C/C, for HTWF configurations with a 30%
slot gap and elastomer modulus of 12 x 10° Nm. The HTWF configuration with a NACA
0010 section shows the worst performance characteristics with the NACA 008
configuration demonstrating the most consistent percentage gains in C/C4. There is no

obvious dependency between the foil thickness and the percentage changes in C/C,.

Figure 5.65 shows the percentage change in C,/Cy for HTWF configurations with a 50%
slot gap and elastomer modulus of 14 x 10° Nm™. Although both configurations
demonstrate gains in C,/C, the plot indicates that a thicker profile INACA 0012) is required

for this combination of slot gap and elastomer modulus.

Figure 5.66 shows the percentage change in C,/C4 for HTWF configurations with a 40%
slot gap and elastomer modulus of 14 x 10° Nm?>  There is no obvious dependency
between the foil thickness and the percentage gains in C;/C,, although it is apparent that the
NACA 0008 provides an optimum thickness for this combination of slot gap and elastomer

modulus.

Figure 5.67 shows the percentage change in C,/C,y for HTWF configurations with a 30%
slot gap and elastomer modulus of 14 x 10°Nm™. It is shown that the NACA 0008 section
provides an optimum thickness for this combination of slot gap and elastomer modulus and

that any deviation from the NACA 0008 foil thickness is detrimental in terms of C/Cy

performance.
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Figure 5.68 shows the percentage change in C;/C4 for HTWF configurations with a 50%
slot gap and elastomer modulus of 16 x 10° Nm?. In the range of incidence angles
between 4° and 8° a dependency between the foil thickness and percentage gain in C/C; is
shown. This indicates that a thicker foil profile achieves the greatest performance

increments (for this combination of slot gap and elastomer modulus).

Figure 5.69 shows the percentage change in C/Cy for HTWF configurations with a 40%
slot gap and elastomer modulus of 16 x 10° Nm™. Overall there is no obvious dependency
between the foil thickness and the changes in C,/C,. It is apparent that the NACA 0012

and NACA 0008 configurations demonstrate the most consistent percentage gains in C,/C,.

Figure 5.70 shows the percentage change in C,/Cy for HTWF configurations with a 30%
slot gap and elastomer modulus of 16 x 10° Nm?2. It is not possible to identify a
relationship between the foil thickness. and the percentage change in C,/C,, but it is clear
that the two thicker sections perform similarly, with reasonably consistent percentage gains

in C/C4. The two thinner profiles demonstrate inferior performance characteristics at all

incidence angles.

5.2.2.2.6 Effect of Slot Gap on NACA HTWF Configurations

Figures 5.71 to 5.85 show the percentage change in C/C4 as a function of the slot gap for
NACA HTWF configurations.

Figure 5.71 shows the percentage change in C;/C, for HTWF configurations with a NACA
0012 outer profile and an elastomer modulus of 10 x 10 Nm2. This indicates an optimum

slot gap of 40% for this combination of foil thickness and elastomer modulus.
Figure 5.72 shows the percentage change in C,/C,4 for HTWF configurations with a NACA

0012 outer profile and an elastomer modulus of 12 x 10° Nm™ There is a general

correlation of the data up to an incidence. angle of 6°, after which the 40% slot gap
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configuration outperforms the others. There is no obvious relationship between the slot
gap and the percentage changes in C/Cy. However, based on the post 8° performance
characteristics, a 40% slot gap would seem to be an optimum for this combination of foil

thickness and elastomer modulus.

Figure 5.73 shows the percentage change in C/C4 for HTWF configurations with a NACA
0012 outer profile and an elastomer modulus of 14 x 10° Nm>. Based on the pre 8°
performance of these configurations, there is a clear dependency between the slot gap and
the percentage change in C;/Cd. This plot therefore demonstrates an increase in
performance associated with an increase in the slot gap (for this combination of foil

thickness and elastomer modulus).

Figure 5.74 shows the percentage change in C/C; for HTWF configurations with a NACA
0012 outer profile and an elastomer modulus of 16 x 10® Nm™. Up to an incidence angle
of 4° the percentage gains in C/C; are shown to be a function of an increasing sfof gap.

After an incidence angle of 6° there is no obvious relationship between performance gains
and the size of slot gap. Based on overall performance in the range 0° to 10° a slot gap of

40% seems to be an opﬁmal value.

Figure 5.75 shows the percentage change in C;/C; for HTWF configurations with a NACA
0010 outer profile and an elastomer modulus of 10 x 10° Nm2 Only the configuration
with a 40% slot gap demonstrates consistent gains in C/C,. This therefore represents an

optimal slot gap value for this combination of foil thickness and elastomer modulus.

Figure 5.76 shows the percentage change in C,/C4 for HTWF configurations with a NACA
0010 outer profile and an elastomer modulus of 12 x 10° Nm™. All of these configurations
perform inconsistently, with only the n10_12_4 (40% slot gap) demonstrating a gain in
Cy/C, for all incidence angles. This must therefore be considered as an optimum slot gap

value for this combination of foil thickness and elastomer modulus.
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Figure 5.77 shows the percentage change in C;/C4 for HTWF configurations with a NACA
0010 outer profile and an elastomer modulus of 14 x 10® Nm>. A gain in C/C, is
demonstrated by all of these configurations, although the performance characteristics are
highly irregular. There is no obvious dependency between the slot gap value and the
percentage change in C/Cy. However, based on the consistency of percentage gain in
C/C4 over the range of incidence angles, the 40% slot is considered to perform the best (for

this combination of foil thickness and elastomer modulus).

Figure 5.78 shows the percentaée change in C,/C, for HTWF configurations with a NACA
0010 outer profile and an elastomer modulus of 16 x 10°Nm™. The irregular nature of the
data means that it is not possible to establish a relationship between the slot gap and the
percentage change in C//C,. The most consistent performance is demonstrated by the 30%

slot gap configuration.

Figure 5.79 shows the percentage change in C;/C4 for HTWF configurations with a NACA
0008 outer profile and an elastomer modulus of 10 x 10° Nm? The data in this plot
indicates that a 30% slot gap is preferable (to a 40% slot gap) for this combination of foil

thickness and elastomer'modulus.

Figure 5.80 éhows the percentage change in C,/C, for HTWF configurations with a NACA
0008 outer profile and an elastomer modulus of 12 x 10° Nm™ Apart from the
performance at 4°, the plot indicates that a 40% slot gap is preferable (to a 30% slot gap)
for this combination of foil thickness and elastomer modulus. However, on the basis of
overall consistency in the C/Cy gains, it could be argued that the 30% slot gap provides

superior performance characteristics.

Figure 5.81 shows the percentage change in C,/C4 for HTWF configurations with a NACA
0008 outer profile and an elastomer modulus of 14 x 10° Nm?2 The 40% slot gap
demonstrates the largest and most consistent gains in C,/Cy4, and hence offers an optimum

value for this combination of foil thickness and elastomer modulus.
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Figure 5.82 shows the percentage change in C,/C4 for HTWF configurations with a NACA
0008 outer profile and an elastomer modulus of 16 x 10° Nm? Only the 40% slot gap
configuration demonstrates an overall gain in C//Cy. From this plot it is not possible to
establish a dependency between the slot gap and the percentage gain in C/Cy. It is
however possible to establish that a 40% slot gap is an optimum value for this combination

of foil thickness and elastomer modulus.

Figure 5.83 shows the percentage change in C,/C, for HTWF configurations with a NACA
0006 outer profile and an elastomer modulus of 10 x 10® Nm? or 12 x 10® Nm™. This
indicates an optimum configuration featuring a 30% slot gap and elastomer modulus of 12

x 10® Nm™ for this foil thickness.

Figure 5.84 shows the percentage change in C,/C, for HTWF configurations with a NACA
0006 outer profile and an elastomer modulus of 14 x 10° Nm™. This plot indicates that a
40% slot gap is preferable to a 30% slot gap. It is clear that these configurations
demonstrate the greatest performance gains at high incidence angles (when a thin rigid foil

is normally starting to stall) probably due to the beneficial effect of the drooping nose.

Figure 5.85 shows the percentage change in C/C; for HTWF configurations with a NACA
0006 outer profile and an elastomer modulus of 16 x 10 Nm™. This plot indicates that a
slot gap of 40% is preferable to a 30% slot gap for this combination of foil thickness and

elastomer modulus.

5.3 Prototype Windsurf Fin Employing a HTWF Cross Section

The theory behind the HTWF has been outlined and investigated with the computer based
analysis tool (CFSAT). In support of this theoretical work a full scale prototype fin was
fabricated for applied testing.

The reasons for producing the prototype fin are threefold;
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1. To establish a practical method of fabrication.
2. To ensure that suitable structural integrity could be achieved.
3. To subjectively determine the ‘feel’ and performance of the fin when used on an

actual windsurf board.

5.3.1 The Design of the Fin

The prototype windsurf fin is designed to operate in light to moderate wind strengths (5
ms” to 8 ms™) based on the assumption that the sea state in these conditions would be
slight and not too choppy. By avoiding the more extreme types of sailing conditions the

sailor will be able to concentrate more on the characteristics and operational ‘feel’ of the

fin.

Figure 5.86 and Figure 5.87 show third angle projections of the prototype HTWF windsurf
fin. The span of this prototype is 0.29 m and the root chord is 0.1 m, giving a surface area
of approximately 0.022 m? and an effective AR of 7.4. The span and hence surface area of
this prototype is considerably less than would be normally used for these sailing conditions
(normally a contemporéry fin with span of at least 0.4 m would be employed for these

conditions).

The prototype fin features an unusual planshape with a straight leading edge and elliptical
trailing edge (the straight leading edge is used for structural reasons as it is easier to

reinforce with a carbon rod).

The nominal cross section employed for the prototype fin is the Eppler E472. This again
was selected for structural reasons opposed to purely hydrodynamic reasons. Although the
provisional analysis work indicates that the NACA sections with the thinner nose
geometries offer the best hydrodynamic performance, concerns about the structural
integrity of the pivotal ‘mast’ region led to the selection of a section with more fullness at

the leading edge
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5.3.2 Fabrication Procéss

A two stage moulding process was developed to fabricate the prototype HTWF fins, in

which;

1. The skeleton is fabricated.

2. The skeleton is covered with the elastomer.

For each of these steps a pair of matched moulds is required. These moulds were produced
by generating a three dimensional computer model of the fin (outer geometry and skeleton
geometry) on the SDRC I-deas Master Series package. This enabled a check to be made of
the tolerances between the elastomer covering and the internal skeleton. Following this,
the computer model data was sent to a tool maker for the fabrication of the matched

moulds.

5.3.2.1 Fabricating the Skeleton

To fabricate the skeleton, glass and carbon fibre reinforcing cloths are laid up in the first
mould with an epoxy resin matrix. This structure is further reinforced through the
inclusion of .stiffening carbon rods. Whilst the resin is still green, the two halves of the
mould are assembled and compressed in a heated press. After cure, the skeleton is hand
finished to remove the flash and then positioned in the second mould which defines the
outer profile of the elastomer covering. To ensure that the drooping nose is achieved a
release agent is applied to the pivotal mast of the skeleton to prevent the elastomer from

bonding (to this region only).

5.3.2.2 Fabricating the Elastomer Covering

To fabricate the elastomer covering, a vacuum forming process is used to eliminate voids,
thus ensuring a satisfactory surface finish. The second mould features inlet and outlet

holes so that the elastomer can be introduced to the void mould. Once the skeleton has
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been enclosed in this second mould, it is placed in the vacuum chamber and the elastomer
is introduced via an inlet feed pipe. The curing time is approximately 30 minutes, after

which the prototype fin can be released from the mould and the flash removed.

5.3.3 Sailing Performance

So that the performance of the prototype fin could be subjectively assessed, an additional
solid composite prototype fin was fabricated with the same external geometric features (i.e.
it was of a ‘conventional’ rigiﬂ and non-cambered configuration). Again, this is not as
unusual as it may first seem, as it is common practice in the sailing world to gauge the
performance differences between new design features and configurations by sailing the
equipment against a known reference model (i.e. America’s cup work U4l By doing this
it can be possible to determine the differences in performance, particularly pointing ability,

control characteristics and general feel.

For the preliminary investigation, the ;1uthor and a colleague sailed a prototype variable
camber fin and solid reference model (shown in Figure 5.88) on a pair of identical Mistral
Screamer II slalom boards with identical rigs of 6 m” in surface area. The wind speed in
this first test was approximately 8 ms” (Beaufort Force .4). The variable camber fin

featured a slot gap of 40% chord length and an elastomer modulus of 10 x 10° Nm™.

To assess the performance of the cambered fin in comparison with the rigid model, the
boards were interchanged periodically. The first impressions from sailing the prototypes
were that when a stall condition arose, it seemed to be more severe than would be expected
with a conventional type design. Also, the drag of the two prototypes seemed to be higher

than would be expected. This is likely to result from the ‘blunt’ cross section profile.
The increase in drag was particularly noticeable when sailing off the wind (i.e. the

incidence angle of the fin is very low). Otherwise there were no apparent detrimental

performance characteristics.
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The variable camber fin felt ‘solid’ and provided sufficient lift to sail to windward at a
good pointing angle. When sailing alongside the board with the rigid reference fin, the

HTWF equipped board was able to point higher to windward.

One of the main successes of this test was to prove that the structural integrity of the
HTWF could be maintained (even though 40% of the supporting structure had in effect
been ‘removed’). It also demonstrated that the configuration was stable and didn’t seem to

be experiencing flutter or a similar instability problems.

For an unbiased opinion on the performance of the prototype fins, they were dispatched to
Ken Black and Nigel Howell for further testing (Ken Black is a professional sail designer,
who produces his own brand of sails as well as designing for the UK’s leading sail
manufacturer, Tushingham Sails. Nigel Howell is a leading British windsurfer who has

been competing internationally on the professional world tour for over ten years).

Due to a lack of wind in the timeframe in which these two sailors could test the fins, only
one day of testing was performed. A transcribe of Ken Black’s test report [131(6)] is

provided on the following page.

It has not been possible to conduct further tests with the prototype fin due to severe damage

resulting from a collision with a submerged object.
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To: Roger Tushingham
From: Ken Black

24th June 1996
Re: Asymmetric Foil Fins from Simon Fagg

Not much wind of late but managed to try the softest of the three 29 cm fins in

comparison to a 40 cm Concrete Wave G10 race fin that I know is fast.

Conditions: 12-18 knots (est) slight chop. Using Nigel Howell on 295 course/slalom

with 1997 7.9 proto sail to test against.
My board: Critical Section 280 course/slalom. Sail 1997 7.4 course.

With Concrete Wave Fin. Upwind on both tacks, in gust I was similar in speed and
pointing to Nigel but lost out if the wind dropped at all.
Off wind speed was almost identical unless wind dropped, when I dropped back.

With Asyﬁmetric Test Fin. Upwind on starboard tack performance almost as good
as 40 cm Concrete Wave Fin, but did not point quite as high. Felt very solid. Able to
put all my weight on back foot. Off wind on starboard felt good, but comparison
with Nigel was not possible at the time. On port tack the fin did not have nearly as
much bite. It gripped then slid a little then gripped etc. Didn’t have anything like
the speed or pointing ability that it had on starboard. Off wind on port tack there

was serious turbulence slowing the board severely.

The wind dropped before I was able to try the other models. I'll try them as soon is

there is more wind.

Ken Black.
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Figure 5.12 FEA Model of Elastomer Test Piece
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Effect of Nose Pivot Location on Lift to Drag Ratio at an Incidence Angle of 6
Degrees
135
13
2 125 1
[}
[ 4
o
g E 6_3 Configuration
a 12 —~0—-n12_16_3 Config
8
£ 154
1+
10.5 ' + . ;
4% 5% 6% 7% 8% 9%
Location of Nose Pivot Point as a % of Chord Length
Figure 5.23
Effect of Location of Pivot Point e
L ————
2 e 112_16_3 Pivot at 5%
E Chord
O 0000 v momaceeremsneen s em oo sttt sttt t e ettt e
E N T e n12_16_3 Camber
Line
.0.006 ; + — " e ———
000 -001 001 002 002 003 003 004 004 005 005
Chord Length
Figure 5.24
Nose Behaviour as a Function of Pivot Position
[ "
H ———n12_16_3 Pivot at
R P 3 9%
|
E T SN e n12_16_3 Camber
Line
000 001 001 002 002 003 003 004 004 005 005
Chord Length
Figure 5.25

171




EXPERIMENTAL PROCEDURE

Predicted % Change in Cl as a Function of Modulus for a NACA 0012 Section with

0.5 Slot Gap

7%

6%

5% +
— —e—n12_10_5
g | —8—n12_12_5
g —A—n12_14_5
& —%—n12_16_5
S 3%+
2

2%

1% +

0% . . + :

] 2 4 6 8 10
Incidence Angile
Figure 5.26
Predicted % Change in Cd as a Function of Modulus for a NACA 0012 Section with
0.5 Slot Gap
——n12_10_5

B —.—n12_12.5
o —4—n12_14 5
= —%—n12_16_5
o
e
2
o
ES

-25%

Incidence Angle
Figure 5.27

172



EXPERIMENTAL PROCEDURE

% Difference in Lift to Drag Ratio as a Function of Elastomer Modulus for a NACA
0012 Foil Section
with a Constant 0.5 Siot Gap

40%
——n12_10_5
—8—n12_12.5
—4—n12_14.5
—%—n12_16_5

% Difference In Lift to Drag Ratio (Cl/Cd)

o 2 4 6 8 10
Incidence Angle (degrees)

Figure 5.28

Predicted % Change in Cl as a Function of Modulus for a NACA 0010 Section with
0.5 Slot Gap

9%

8% +

7% +

—e—n10_10_5
—~B—n10_12_5
—A—n10_14_5
—%—n10_16_5

6% +

5% 1

a% 1

% Change in Cl

3% +

2% +

1% 1

0% + + +
0 2 4 6 8 10

Incidence Angle

Figure 5.29

173



EXPERIMENTAL PROCEDURE
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Figure 5.86 The General Assembly of the Prototype HTWF
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Figure 5.87 Skeleton Detail for Prototype HTWF
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Figure 5.88 The Prototype Windsurf Fins
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6.0 Discussion

This chapter attempts to draw together the various ideas and results found to date and to

suggest the direction in which future work should be directed.

6.1 Summary of Test Results

6.1.1 Lift Data

A consistent increment in the C; was demonstrated at all incidence angles for the HTWF
configurations (with the exception of the n06_16_3) when compared with the rigid
reference sections. This is as anticipated and is a direct result of the hydroelastic tailoring

techniques employed to develop camber in a (normally) symmetrical cross section.

The increments in C, are seen to be dependent on the initial outer profile geometry (t/c) and
the magnitude of camber in the section. These in turn are a function of the flow

characteristics, the geometric features of the HTWF section and the material usage.

The largest increments in C, are demonstrated by what. may be considered the most
‘flexible’ cénﬁgurations. The ‘flexibility’ of the configurations can be seen to increase
with larger slot gaps, thinner outer profiles and lower elastomer modulus values.
Conversely, the ‘flexibility’ is reduced by smaller slot gaps, thicker profiles and higher

elastomer modulus values.

In general the more ‘flexible’ configurations (NACA 0006 with 40% slot gap) demonstrate
irregular percentage gains in C;. This indicates that the configuration is somewhat unstable
and ‘sensitive’ to the boundary conditions. It is considered that the more flexible
configurations will be able to operate satisfactorily over a very limited range of Reynolds
numbers and hence would not be suited to the unsteady loadings experienced in an open

sea environment.
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In comparison, the more ‘rigid’ or stable configurations (NACA 0012 with a 40% slot gap)
show a consistent and almost linear percentage increase in C; with increasing incidence
angle. The extra material bulk and hence structural integrity associated with these thicker
sections results in a more ‘tolerant’ design. The ‘tolerance’ of the thicker sections is
demonstrated by the similar performance characteristics exhibited for varying slot gaps and
elastomer modulus values. The thicker foils can therefore be considered to be more robust

and able to tolerate a wider range of Reynolds numbers.

Some erroneous C, increments are demonstrated by the configurations employing thick foil
sections, low elastomer values and small slot gaps (n12_10_3, n10_10_3 and n10_12 _3).
This unusual rise in C; results from the ‘upturning’ of the pivotal nose, which effectively
increases the curvature on the upper surface. This is confirmed by considering the

corresponding (substantial) increases in drag for these configurations.

Some of the largest percentage gains in C; occur at low incidence angles (although this is
slightly exaggerated by the smoothing of the graph curves). This behaviour is similar to
the performance of sailwings and double surface sails and is likely to be the result of the

significant contribution to the C, resulting from the initial deformation of the section.

Most of thé HTWF configurations demonstrate a large percentage gain in C, at high
incidence angles. This indicates that the drooping nose is operating in the prescribed
manner, thereby delaying the onset of leading edge flow instabilities through the
introduction of a suitable camber shape over the front of the section. Additionally, the
percentage gains in C; at these high incidence angles indicates that the camber in the

HTWEF configuration is still increasing in response to the surface pressure loads.

The effect of the camber system on the Cpn.c Was not determined although it can be
assumed that the drooping nose will have a beneficial effect in delaying the onset of

leading edge stall (a thorough investigation of the stalling characteristics of the HTWF
configuration would need to be performed in a flow tank at representative Reynolds

numbers).
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6.1.2 Drag Data

The percentage reductions in C4 for many of the HTWF configurations is significant
(typically 20% at high incidence angles) and can be attributed to the successful operation
of the drooping nose (the e472 configurations with the ‘blunt’ nose realised no
performance benefits from this feature). By successfully drooping the nose, the following

benefits are realised;

1. A more efficient splitting of the freestream at moderate to high incidence angles
(when compared with a rigid symmetrical section).

2. A reduction in the negative pressure peak towards the nose region.

3. A rearward movement of the negative pressure peak.

4. A delay in the onset of leading edge stall.

5. A smoother upper surface curvature.

However it is also possible to over-rotate the nose by employing geometries and elastomer

values which are too ‘ﬂexible’.

As with the gains in C,, the reductions in C4 are a function of the camber shape, which
again is principally governed by the ‘flexibility’ of the HTWF configuration (and the

successful operation of the drooping nose).

It is possible to see that ‘any’ amount of camber will have a beneficial effect on C,,
whereas the opposite may be true in terms of drag reduction. This is because any

modification to the outer geometry of a foil section can have a fundamental effect on the

flow pattern and hence the C,.

In general the least successful HTWF configurations, in terms of percentage reductions in

C, are the most flexible (or unstable) ones (low elastomer modulus values, thin foil
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sections and/or a large slot gap). A dependence between the elastomer deformation and the

percentage change in C, is therefore shown.

The greatest reductions in C4 at high incidence angles are associated with the thinnest
sections, thereby indicating a relationship between the foil thickness and the percentage
reduction in Cy (at high incidence angles). The pivotal nose can be seen to be having the
greatest effect on the thinner sections (which inherently have a sharper nose radius) and the
least effect on the thicker sections (with a ‘blunter’ nose radius). This is expected and is in

agreement with theory.

It is also shown that the thinner sections are less stable than the thicker sections and are
highly sensitive to the combination of slot gap and elastomer modulus. The thicker
sections on the otherhand seem to be more ‘tolerant’ to changes in the elastomer modulus

and slot gap.

The sudden improvements in C;/C, performance at high incidence angles for a number of
the thinner configurations suggests that the nose is over-rotated for low and moderate

incidence angles.

In terms of a consistent percentage reduction in C4 it is preferable to employ a
configuration in which there is sufficient elastomer ‘bulk’ to resist excessively large
deformations. Furthermore it is demonstrated that there is an optimum combination of
elastomer modulus and slot gap for a maximum ‘allowable’ value of camber for each foil

thickness and slot gap.
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A number of summary points can be made about the C; characteristics of the HTWF

configurations.

1. At an incidence angle of zero degrees the HTWF configurations had nominally the

same C; as the corresponding rigid reference sections.

2. The magnitudes of C4 reduction (for the successful configurations) increased with
increasing incidence angle, thereby indicating that the drooping nose is most

effective at high incidence angles.

3. The drooping nose is least effective on ‘blunt’ nose profiles (large nose radius) and

is most effective on ‘sharper’ nose profiles.

4. If the nose does not droop into the flow the detrimental effect on drag is

considerable.

5. It is possible to over rotate the nose region which is detrimental.

6.1.3 _Lift to Drag Ratio (C/Cy)

The overall percentage change in C/Cy is primarily a function of the C, characteristics.
This is because the percentage gains in C, are considerably less than the corresponding

percentage reductions in C,.

It is demonstrated that there are optimum combinations of slot gap and elastomer modulus
for a nominal foil thickness. Due to this it is not possible to establish general rules such as
‘an increasing elastomer modulus and slot gap of 40% is optimal for all foil thicknesses’.
Predetermining the optimum values of slot gap and elastomer modulus for a nominal foil

section is therefore not possible at the present time.
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In general the thicker profiles exhibit the most consistent overall gains in C,/Cy. They are
also less likely to demonstrate a reduction in performance (when compared with the

corresponding rigid section).

For the largest slot gap value (50%) the NACA 0012 configurations performed consistently
well and achieved significant percentage gains in C/Cy (typically between 10% and 20% at
6°). In comparison, the NACA 0010 configurations did not perform as well (or as
consistently) for this value of slot gap (-22% to 7% change in C/C, at 6°). Excessive
distortion in the finite element meshes precludes a comparison with the NACA 0006 and

0008 configurations.

For a slot gap of 40%, all of the configurations (apart from n06_12_4 and n06_14 4)
demonstrated significant percentage increases in C/C4. This indicates that the 40% slot
gap is able to perform well with (and is tolerant of) a wide variety of foil thicknesses and

elastomer modulus values.

The 30% slot gap will obviously be more restrictive in terms of the magnitudes of camber
that can be induced in the section. This slot gap will also restrict the position of maximum
camber to tl_le leading edge region of the configuration. The effect of this demonstrated by
the limited average percentage gains in C, of approximately 4% (for the configurations
which show an overall gain in C/C,). A dependency between the percentage gain C/Cy
and the foil thickness is demonstrated, with the thinner foils achieving the largest

increments.

6.1.4 Converged HTWF Outer Profile Geometries

For a number of the more notable HTWF configurations, the converged outer profile
geometries at an incidence angle of 6° are presented in Figures 6.1 to 6.7. The mean
camber line is shown as the mid-point between the two surfaces. For all of these
configurations the flow is emerging from the lower left corner of the page and travelling

towards the upper right corner of the page.
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Figure 6.1 shows the hydroelastically tailored n12_16_5 configuration, which exhibits the
best percentage gains in C/C, at an incidence angle of 6°. The effects of the hydroelastic
tailoring of this section are shown by the induced camber and the drooping pivotal nose.
These changes in geometry are subtle and yet significantly improve the C,/C4 performance

over the range of incidence angles.

Figure 6.2 shows the hydroelastically tailored n10_10_5 configuration, which exhibits a
substantial reduction in C,/C, performance at an incidence angle of 6°. It is clear that the
configuration is experiencing excessive distortions in the elastomer region. The result of
this is the formation of a concave region on the pressure surface, an over-rotation of the
pivotal nose and a the generation of discontinuities on both surfaces. This causes a

substantial rise in Cy4 and hence reduction in C,/C4 performance.

Figure 6.3 shows the hydroelastically tailored NACA 0008 sections with slot gaps of 40%.
The dependence between the magnitudes of camber and the elastomer modulus is shown

(larger magnitudes of camber with decreasing elastomer modulus).

Figure 6.4 shows the hydroelastically tailored n06_10_3 configuration. This illustrates that
even thougil the pivotal nose has upturned (opposed to drooping) the resulting effect on
C/C4 is beneficial. It is shown that the deformations in the elastomer result in an increase
in the curvature of the upper surface and nose region. The increased radius reduces the
local flow velocities and hence reduces Cy4. The induced camber is shown to extend to
40% of the chord length. This is due to the tapering of the rear support and the extension
and compression of the elastomer in these regions. Figure 6.8 shows the deformed mesh

corresponding to similar initial configuration as Figure 6.2.
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6.2  The Desien Variables

From the analysis data it is clear that the operation of the HTWF configuration is
dependent on the interaction of the separate design variables and not on one design feature
alone. This suggests that for a given outer profile shape there will be an optimum

combination of slot gap, elastomer modulus and pivotal mast location.

The successful configurations demonstrated the ability to raise the C; and lower the C,,

thereby increasing the overall C,/C,;.

An increase in the C, was seen for all configurations in which the elastomer region was

deformed. The increase in C, is therefore a function of the deformation in the elastomer

(induced camber).

The magnitudes of C; are also a function of the elastomer deformation, with excessive
geometry changes resulting in an increase in Cy4. An optimum ‘allowable’ deformation in
terms of increases in lift without an excessive increase in drag for a nominal foil thickness

has not been established.

The analysis data shows that there is a requirement for a minimum slot gap to ensure that
the HTWF configurations (in this format) operate in the desired manner and droop the nose

into the flow. Currently this minimum slot gap would seem to be between 30% and 40%

of the chord length.

The determining of this minim slot gap value is based on the limitations of a static analysis
in which the assumption of an instantaneous loading of the foil section at an incidence
angle of 6° and flow velocity of 10 ms” is made. In reality this loading would be transient
and would develop gradually as a result of increasing sailing speed and incidence angle.
The negative pressure peak calculated by the method at the leading edge is therefore
unlikely to be so intense and is hence less likely to generate a moment arm of sufficient

strength to stop the nose drooping into the flow. To suppress this phenomenon (in the
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analysis) it may be necessary to artificially modify the load data in the first global loop so

that the method is able to initiate the drooping movement of the nose.

Further work is required to establish the interaction of the design variables and how they

can be tailored to arrive at an ‘optimum configuration’.

6.3 Theoretical Three Dimensional Performance Gains

The data from the two dimensional analysis work is used to determine the theoretical
effectiveness of the hydroelastically tailored variable camber system on a finite length
windsurf fin. To simulate typical sailing conditions an incidence angle of 6° and a flow

velocity of 10 ms” is assumed.

A benchmark finite length fin (Reference Fin) is specified as having a semi-elliptical
planform of span 0.35m and raaot chard 8.08sm with a rigid NACA 06612 cross section. This
equates to a surface area of 2.199 x 102 m” and a geometric aspect ratio of 5.57 (AR =
11.14). The rake angle is 0° and there is no geometric twist such that a constant downwash

is anticipated across the span in accordance with Prandt]’s theory for elliptical wings (K =

1.

For comparative purposes a second fin (HTWF Fin) is specified as having an identical
semi-elliptical planform, but employing a cross section featuring the n12_16_4 HTWF
configuration. It is assumed that this hydroelastic cross section is incorporated across the

entire span, although this may not be possible in reality.
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6.3.1 Effective Incidence Angles of the Two Windsurf Fins

Due to the downwash the effective incidence angle of the two finite length fins will be less

than the geometric angle of incidence where;

Ay =a,-a; 6.1)
where
G
Ca = 6.2
! ”‘AR ( )

At an incidence angle of 6°;
C,;=0.6862 (reference fin)
C,=0.7137 (HTWF fin)
AR,=11.14

giving effective incidence angles of;

Q= 4.88° (reference fin)

a,r=4.83° (HTWF fin)
and new effective wing coefficient of lift values C; ;

C, = 0.5577 (reference fin)
C; = 0.5740 (HTWF fin)

This represents a 2.7% increase in the section lift coefficient for the HTWF configuration

as compared with the rigid reference fin.

The effect of this on total lift is given by;
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e 1 5
Lift = Epv SC, (6.3)
giving

Lift = 628.01 N (reference fin)
Lift = 646.36 N (HTWF fin)

6.3.2 Total Drag for the Two Windsurf Fins

The total drag for a finite length lifting surface is defined as;

C,=C,+Cy, 6.4)
C, = Gy (inRadians) 6.5
Di 7D4R ( . )

where
C,;=0.0315 (reference fin)
C,;=0.0271 (HTWF)

giving

Cp = 0.0409 (reference fin)
Cp = 0.0359 (HTWF fin)

Applying these figures to the equation for total drag;

DRAG = % pv’SC, (6.6)
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giving

Drag = 46.05 N (reference fin)
Drag = 40.42 N (HTWF fin)

This represents a 12.22 % reduction in the drag for the HTWF as compared with the rigid

reference fin.

6.3.3 Lift to Drag Ratio (I/D)

The L/D ratios of the two fins at an incidence angle of 6° are 13.64 for the Reference Fin
and 15.99 for the HTWF fin.

These figures represent an increase in the lift to drag ratio of approximately 17.23 % for the

HTWF configuration fin when compared with the rigid reference model.
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6.3.4 Optimising the Windsurf Fin for Varying Parameters

Two approaches can be adopted for the reversible and variable camber system.

The first of these is to produce a fin with nominally the same surface area as a comparable
conventional design. By employing the HTWF concept however, the lift produced at all
incidence angles will be greater and the drag will be lower. The sailor will therefore be
able to sail the fin at lower incidence angles, than with a conventional fin, to achieve the
same magnitudes of lift. By sailing at a lower incidence angle further reductions in the
magnitudes of drag (particularly induced due to the dependence on C,2) will be realised.

Additionally it can be assumed that the stalling incidence angle will be increased thereby

increasing the Cp pax-

Alternatively, if the assumption is made that the same magnitudes of lift are required at a
nominal incidence angle, a reduction in the surface area of the HTWF fin can be made due
to the corresponding increase in the section lift coefficient. A 2.7% gain in the C_ at an

incidence angle of 6°, will allow for a corresponding 2.7% reduction in the surface area.

6.4 Applicability of Data to Other Reynolds Numbers

The series of two dimensional tests were performed at a representative Reynolds number of
8.4 x 10° based on a sailing speed of 10 ms™ and a fin chord length of 0.1m. Assuming a
doubling of the sailing speed the Reynolds number will increase to 1.68 x 10° (although
this is unrealistic because a smaller fin with a shorter chord length would be used for these

sailing speeds, thus reducing the Reynolds number).

In terms of the flow characteristics, this magnitude of change in Reynolds number is
unlikely to have any noticeable effects apart from a modification to the transition point.
Baubeau and Latorre ®! observe the trend whéreby for a constant angle of attack, the
position of the boundary layer moves forward with increasing Reynolds number for two

dimensional hydrofoil sections. They also.conclude that at a constant Reynolds number,
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the changing angle of incidence can result in a large shift of the location of seperation and
transition. It can therefore be concluded that the transition point will move further
forwards with an increasing Reynolds number. The effect of this on the C,; and Cy would

need to be investigated experimentally.

In terms of the behaviour of the elastomer, this change in Reynolds number will have a
profound effect due to the dependence of the surface pressure forces on the velocity
squared (v®). A doubling of the Reynolds number will result in a fourfold increase in the
surface pressure loading. This is highly significant as any change in the surface pressure

loads has the potential to significantly alter the profile of the cross section.

It is however reasonable to expect that footsteering techniques will be used to moderate or
‘tune’ these forces through changes to the incidence angle as there is a finite limit to the fin

generated moment arm that the sailor can resist.

To deal with the varying surface loads at different flow speeds, three approaches for the

flexible elastomer are envisaged;

1. Optimise the HTWF concept for a specific or limited range of Reynolds number.

2. Investigate methods for making the stiffness of the elastomer adaptive over a range of
Reynolds numbers.

3. Incorporate some form of °‘limiter’ (mechanical or otherwise) to restrict the

deformations in the elastomer to an ‘allowable’ or finite value.

6.5 Structural and Mechanical Design Considerations

Although a detailed structural design was not carried out, the development of the prototype
windsurf fin (Section 5.3) has established that the concept can be fabricated and operated
successfully. Further work is required to investigate the limits of the HTWF geometries

and material properties.
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6.6 Summary of HTWF Investigation

This preliminary investigation into a variable and reversible camber system for the

windsurf fin has established the following points.

e Hydroelastic tailoring techniques can be used to develop a functioning reversible and

finitely variable cambered fin for the sport of windsurfing.

o It is possible to increase the C; and reduce the C, (thereby achieving a gain in C,/C,) at

all of the incidence angles considered.

e The pivotal mast design droops the nose into the flow. This is more efficient at splitting
the flow at moderate to high incidence angles (in comparison with a rigid symmetrical
section) resulting in a reduction in Cy. The drooping nose will also delay the onset of

stall thereby increasing the potential Cy . (although this has not been investigated in

the current study).

e The hydroelastically tailored windsurf fin has superior C;/Cy performance characteristics

at a nominal incidence angle than comparable rigid cross section windsurf fin.
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Hydroelastically Tailored Geometry for Configuration n12_16_5
(Incidence Angle 6 degrees)
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Figure 6.1
Hydroelastically Tailored Geometry for Configuration n10_10_5
(Incidence Angle 6 degrees)
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Hydroelastically Tailored Geometry for Configuration n08_16_4
(incidence Angle 6 degrees)
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Hydroelastically Tailored Geometry for Configuration n08_14_4
(Incidence Angle 6 degrees)
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Hydroelastically Tailored Geometry for Configuration n08_12_4
(Incidence Angle 6 degrees)
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Figure 6.5
Hydroelastically Tailored Geometry for Configuration n08_10_4
(Incidence Angle 6 degrees)
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Hydroelasticaily Tailored Geometry for Configuration n_06_10_3
(Incidence Angie 6 degrees)
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Figure 6.8 Deformed Cross Section Mesh
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7.0 Conclusions and Recommended Areas for Further Work

7.1 Conclusions

. Limited gains in the operational efficiency of the conventional windsurf fin are likely to
result from further refinements to the planshape, cross section, surface finish and

material usage.

. A radical reworking of the design of conventional windsurf fin is required to realise

significant operational performance gains.

. Although variable geometry technologies offer the potential for significant performance

gains to the windsurf fin, there has only been limited development work in this area.

. Conventional mechanical flaps are not suitable for developing a variable camber section

for the sport of windsurfing.

. Hydroelastic tailoring techniqﬁes offer a method for developing a reversible and finitely
variable cambered windsurf fin. The proposed hydroelastically tailored windsurf fin
concept features a supporting skeleton structure and a flexible elastomer material which
is able to deform under the influence of the surface pressure forces, thereby creating
camber in the cross-section. This technique may also lead to the development of
reversible supercritical type fins for the boards operating at the cavitational limits of

conventional windsurf fins.
. Test results (assuming a 2D flow) indicate that, for the successful configurations, the lift
coefficient at all incidence angles is increased and the drag coefficient at all incidence

angles is decreased. This results in a higher lift to drag ratio at all incidence angles.

. The preliminary investigation indicates that the use of a pivotal nose is more efficient at

splitting the flow and hence reducing the section drag coefficient. It can be tentatively
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concluded that this feature will also be successful at delaying the onset of leading edge

stall and hence elevating the value of Cy yax-

8. The pivotal nose is least effective on blunt nose shapes and most effective on the thinner

profiles with a sharper nose radius.

9. The introduction of camber can allow the nominal surface area of the fins to be reduced
whilst still producing the same magnitudes of lift for less drag. Perhaps more
importantly, the use of a variable and reversible cambered section with a drooping nose
will allow a wider raﬁge of performance possibilities within the existing envelope of fin
design. The hydroelastic tailoring thereby provides a means for optimising the

performance of the fin for multipoint operation.

10.The manner in which the slot gap, foil thickness, elastomer modulus and mast pivot

point interact is complex.

11.The production of a prototype fin has established that it is feasible to fabricate and
operate a functioning finite length windsurf fin featuring a hydroelastically tailored

cross section.

12. The hydroelastically tailored cross section evaluated in this study was deliberately kept
simple. More advanced approaches are envisaged to regulate the deformations in the
adaptive structure. This could be through the inclusion of additional materials and
stiffening structures to precisely regulate and limit the nature of the elastomer

deformations.
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7.2 Recommended Areas for Further Work

The current investigation has demonstrated the potential for producing a very effective
variable camber cross section for the fins used in the sport of windsurfing. There are

however many areas where further work is required.

1. The accuracy of the CFSAT (particularly the CFD method) and the results data needs
to be fully investigated. For this a series of comparative two dimensional model flow
tests at representative Reynolds numbers is recommended. Following on from this

three dimensional tank tests of finite length windsurf fins are required.

2. An investigation into alternative CFD methods is required. By using other methods it
may be possible to model the behaviour of the boundary layer more accurately (than

with the present method).

3. The dynamic performance, flutter and stability characteristics of the configuration
needs to be investigated. These phenomena are again likely to be revealed through the

use of tank testing techniques on both two dimensional and three dimensional models.

4. The effect of the variable camber system and particularly the pivotal nose on the

stalling angle and hence the Cy na N€eds to be investigated with tank testing techniques.

5. An investigation over a range of Reynolds numbers is required due to the dependence
of the surface pressure loads, and hence the elastomer deformations, on the velocity

squared.
6. Further work is required to establish the optimum position of the pivotal mast and to

determine the minimum allowable slot gap to ensure that the nose rotates properly into

the freestream.
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A detailed structural and mechanical design investigation is required.  This
investigation will establish the weight penalties (if any) associated with the system, as
well as establishing the limits to which the geometries of the skeleton can be taken and

yet still be able to provide sufficient structural integrity.

The gains resulting from the use of the variable camber system on a finite length
windsurf fin need to be carefully evaluated. An example of this is the trade off in terms

of reducing the surface area with the resulting increase in induced drag.

An investigation into the use of additional materials, geometries or devices to stabilise,
regulate or limit the nature of the elastomer deformations is required. In the current
system the elastomer is pretty much ‘free to find’ its own final deformed shape. It may
therefore be beneficial to control or regulate the elastomer deformations, particularly in
the pressure recovery region, so that the location and nature of the camber is
predetermined. This could lead to a reduction in the drag associated with some of the

more deformed configurations.

An investigation into how the configuration of the HTWF cross section might need to
be adapted or modified for the different disciplines and ability levels in the sport. This
problem exists with other equipment components whereby the more efficient articles of
equipment tend to require a certain ability level to be used effectively (for example a

fully battened race sail is not suitable for a beginner).

An investigation into the most suitable candidate materials and fabrication processes
needs to be performed. The prototype fin was fabricated using materials, technologies
and techniques that were readily available to the author. It is acknowledged that there

are likely to be more suitable materials and fabrication processes for both the elastomer

and the skeleton.

An investigation into the ‘feedback’ loop between the sailor and the hydroelastically

tailored windsurf fin needs to be performed.
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13. An investigation into the use of this technology to develop reversible lifting surfaces

for supercritical or cavitating flow conditions.

14. An investigation into an inverse method whereby the required final outer profile
geometry is specified first, from which the required geometries and material properties

(in the symmetrical shape) to achieve the shape are derived.
15. An investigation into the application of the concept to other lifting and control surfaces

such as the keels, fins and rudders on other marine vehicles, and wings and spoilers on

aircraft and land based vehicles.
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APPENDIX A

Hardware and Software Specifications

SILICON GRAPHICS Indy Workstation
R5000 ‘MIPS’ Processor @ 100 Mhz

64 M Byte RAM

4 G Byte Hard Drive

24 Bit Graphics

17” Colour Monitor

SILICON GRAPHICS Irix 6.2 Operating System with Indigo Magic Desktop

ANSYS Revision 5.2. SWANSON Analysis Systems, Houston, Pa.
Flotran Revision 2.1. SWANSON Analysis Systems, Houston, Pa.
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APPENDIX B

Airfoil Data

6.9 Airfoils for Acrobatic Aircraft g

Airfoll E 472

Airfoil € 472 satisfies the requirerments mentioned
in the Directory 6.1. It has, near 2ero-lift, short
laminar regions on both surfaces. At high €y the
lower surface becomes laminar up to the trailing
edge. The bubble warnings are, therefore, not

significant.
E 472 e
0 05 x/c i
Separation bubble warning T. = boundary layer transition
& upper surface S. = boundary layer separation
E l|-7 2 12.1% v lower surface U. = upper surface
Re = 2x10° L. = lower surface
———— Re=2x
q ~—————n kx10°
{ ———— 8x10°
14
Cp :
0.54
0 —T
1 5
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COUPLED FLUID FLOW AND NON-LINEAR ANALYSIS
OF AN ADVANCED HYDROFOIL

Simon Fagg
Department of Product Design and Manufacture
Boumemouth University
Boumemouth, UK

Xavier Velay
Department of Product Design and Manufacture
Bournemouth University
Boumemouth, UK

ABSTRACT

Small marine vehicles such as boats and particularly
windsurfers, employ winglike lifting surfaces, such as
daggerboards, rudders and fins, on the underside of the
huil to resist the sideways force of the sail, and also for
directional control. Due to the requirement for these
lifting surfaces to operate on both tacks, a geometrically
symmetrical cross-section is normally used, which inhibits
the maximum values of lift that can be generated by a
given surface area, To increase the maximum attainable
lift, it is necessary to employ a cross-section with camber,
although this presents a problem for a lifting surface which
has to operate on both tacks. This paper discusses the way
in which ANSYS 5.1 and FLOTRAN are being used as
design and analysis tool in the development of a reversible

cambered lifting surface for windsurfers and similar
marine vehicles.

NOMENCLATURE

0o

o~ 06 <cn
o un

Drag Cocflicicnt for cross-section
Lift Coefficient for cross-section
Surface Arca of lifting surface
Velocity of lifting surface in fluid
Chord lcngth of cross-scction
Thickness of cross-scction

Angle of attack

Density of Auid

-

INTRODUCTION

The sport of windsurfing started in the late 1960's and
has since evolved into a mass participant sport with
compelitions at regional, national and international levels.
The equipment used comprises a sail assembly and a board
assembly which are joined by a universal joint of a
mechanical or flexible elastomer design. The sail
assembly comprises a mast, sail and boom, and the board
assembly comprises the board, footstraps and, on the
underside one or more fins. The complete assembly is
controlled by the sailor through angulations of the sail
assembly, footsteering of the board, and changes in the
position of the bodyweight.

The continual evolution of the sport and particularly
the equipment has enabled the windsurfer to become one
of the fastest sail powered marine vehicles, with attainable
speeds approaching 50 knots. The ultimate performance
of the assembly is highly dependent on the individual
components and as such much attention is being focused
on the ways in which new technologics can be
incorporated into the design and fabrication of the
necessary equipment.

To consider the effect of the individual componeats on
the operation of the complcte windsurf assembly, a Global
Modcl has been developed. (as illustrated in Figure 1),
which shows the interaction of the various forces. From
this it can be scen that the power for the windsurfer is
provided by the sail assembly which generates a propulsive

2. 341
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force as a result of the air flow over its surfaces. This
propuisive force can be resolved into components, one of
which is useful and will drive the complete assembly in the
direction of travel. The second component of the force acts
at right angles and will normally push the assembly
sideways: the third resists forward motion, and is normally
referred to as drag. To avoid sideslip of the assembly, both
the hull and the fins are used to counteract the sideways
force generated by the sail. The modemn day windsurfer
will normally piane on only the last 30 cm or so of the hull
as shown in Figure 2, and so the role of the fin(s) in
counteracting the sideways forces of the sail is critical.
This has meant that in recent years, much atteation has
been focused on the ways in which this part of the
assembly can be made to operate with improved efficiency.

THE WINDSURF FIN

The lift and drag generated by a fin can be predicted
with Formulae (1) and (2).

LIFT

0.5(p.V2S.CL) m
DRAG

0.5(p.V2.5.Cp) Q@r

Because the windsurfer needs to sail on both tacks, the
fin normally employs a symmetrical cross-section which
limits the attainable Cy and associated Cp values. This can
be explained by giving consideration to the effect of
camber in the design of a lifting section.

Symmetrical Cross-Sections

At any distance from the leading edge to the tail of a
lifting section it is possible to mark a point midway
between the upper and lower surfaces (Figure 3a) and if a
locus of these points is generated along the length of the
lifting section, 2 median line is generated. If this median
line is straight (0% camber) then the section is
symmetrical, It is generally valid to assume that at low
incidence angles the lift generated by a symmetrical foil
section is the same as that given by a flat plate at the same
incidence angle, with a slight compensation for the effects
of foil thickness. Formula (3) takes account of the foil
thickness ratio (Uc) of the lifting section giving.

C=0.11(1+Vc)ax (3)

This serves to illustrate the point that the C, value for a
symmetrical section is governed primarily by the angle of
incidence, as well as the thickness ratio (Yc). This thereby
limits the scope for increasing the Cp valuc as it has been
shown that thc optimum thickness ratio (Vc) for

L.
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symmetrical lifting sections is in the region of 12% and
that the maximum valuc of C, normally occurs at a
stalling angle of approximately 1S degrees. Thercfore
another approach is needed to increase the C vaiue.

If the median line of a lifting section deviates from a
straight line (Figure 3c), then it is said to bc asymmetric
and indicates that the lifting section is cambered. This
median line (Figure 3b) is normally given a percentage
value to indicate the maximum value of deviation from the
straight line of a symmetrical section in relation to the
chord length. The general effect of camber is to move the
coefficient of lift versus angle of attack curve for a given
section to the left (as detailed in Figure 4), with the rise in
the Cg value being proportional to the camber percentage.
Therefore for a given range of angles of attack, a cambered
lifting section will have a larger coefficient of lift (Cp)
value than a comparabie symmetrical section.

To create a cambered section it is normal to use
variable geometry devices such as mechanically hinged
leading and trailing edge flaps. A design solution using
this approach for the windsurf fin has already been
developed whereby the sailor uses a hinged deck
mechanism on the board to activate the flaps on the fin.
As an alternative approach to 2 hinge and flap system a
new concept is proposed in which the pressure difference
between the two surfaces of the lifting section is used to
invoke and control the operation of the camber device,
thereby removing the requirement for an additional
activating mechanism. The functioning of this device is
analogous to that of a traditional fabric sail whereby the
cloth will billow to one side of the mast and form a
cambered section as a result of its angle of incidence to the
airflow and the induced pressure distribution over its
surfaces. However, for proprictary reasons it is not
possible to discuss the exact nature of the mechanism that
is under development.

To test the feasibility of the concept, a series of evaluation
prototypes have been produced. From the initial testing of
thesc prototypes, the location and value of the maximum
camber scems to have cruciat effect on the functioning of
the device. It is however difficult to fully appreciate the
exact manner in which the device operates when in use,
duc to the interaction between the fluid flow and the
structural dcformations of the -section. Thercfore an
additional design tool is required to assist in the design
and development process.
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ADVANCED FLUID ANALYSIS

Fluig-: led Analysi

The use of traditional tank testing techniques to
evaluate potential concepts for the camber device was
judged to be prohibitive and so it has been necessary to
develop an alternative computational based process to
consider the coupling effect between a fluid flow and a
structure immersed in the flow. This process needs to
combine Computational Fluid Dynamics (CFD) and Finite
Element Analysis (FEA) packages into an iterative
algorithm in which the effect of the pressure distribution
on the structure is calculated, in addition to considering
the effects of the induced changes in the structural
geometry and the flow regime. To do this an ASCII
program file has been created to control the operation of
the CFD (FLOTRAN) package and the FEA (ANSYS)
package. The program file has been written such that all
the data for the section, camber device and flow regime is
fully paramaterised as this minimises the required levets of
user interaction, which in tumn allows for rapid
modifications to the computer model and analysis process.

Coupled CFD/FEA.  The ASCII program file

essentially consists of a number of looping operations, as'is
shown in Figure 5. This illustrates the way in which the
two packages are made to interact and the manner in
which data is transferred from one part of the analysis to

another. In essence, the whole process can be broken

down into four distinctive parts:

(a) Definition of the initial geometry,
(b) Flow analysis,

(c) Structural analysis,

(d) Convergence of the coupled analysis.

Initially, the user needs to define the starting geometric
features of the foil section along with the associated
material properties and flow regime. From this data, the
program automatically generates the CFD and FEA
models with appropriate meshes. To avoid ambiguity, all
parameters, ordinates, data and results are in SI units
(meters, seconds, kilograms, Newtons and Pascals) except
for the angle of attack which is entered in degrees but is
converted into radians in the program.

To govern the accuracy and reliability of the final
solution, appropriate convergence checks arc used. These
convergence checks, as well as the number of loop
iterations are parameterised so that rapid modifications to
the operation of the program can be made with minimal
effort. In addition the gravitational acceleration effect is
sct to zero for the current scenario. After the CFD

&
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solution, a review of the results is provided on screen for
visual checking by the user.

To perform the structural analysis. the mesh
representing the flow space is deleted and the remaining
fluid elements are changed to structural solid clement
(PLANE42). Thus the program rcdefines thc material
properties of the elements representing the cross section of
the fin and its camber device. The pressure distribution
calculated by FLOTRAN is automatically transferred to
ANSYS and applied to the corresponding clements as the
load set for the subsequent structural analysis. When this
analysis is completed, a displacement and stress plot arc
displayed on the screen for visual checking before
continuation. Additionally, the positions of the nodes and
their respective displacements are stored in arrays so they
can be accessed in the next stagc of the analysis by the

program.

At this stage, the program returns to FLOTRAN to
perform another flow analysis, on the deformed shape
calculated by the previous structural analysis. To obtain
the deformed shape a new set of keypoints is generated in
FLOTRAN by using the array and splinc functions, as well
as the stored nodal data. It is then necessary to generate a
revised mesh, apply the boundary conditions and define
the flow regime before a further fluid analysis is
performed. Based on the assumption that the geometry of
the section is different from the previous flow analysis., a
change in the pressure distribution should be apparent.
The new pressure distribution is again stored so that it can
be used as the load set for the subsequent structural
analysis.

Due to the large scale deformations in the structure,
non-linear behaviour is expected in certain regions.
Currently the program uses a low Young's modulus and a
high Poisson’s coefficient to simulate this effect, although
a part of the program is being modified to use
experimental stress-strain data to derive a set of Mooney-
Rivlin hyperelastic material constants.

As has previously been discussed, the program operates
in a series of loops (IF/THEN/ELSE) which continue until
convergence checks are satisfied. The convergence check
in the global loop is based upon the change of the
coefficient of lift (ACy) between the current (j) and the
previous (j-1) loop as shown in Formula (4).
AC, = Cuj-Crju 4)

From the initial work with the program it is normal to
expect a satisfactorily converged solution within 10 global
iterations.
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User interaction and Parametric technology. The
program is essentially a list of commands and arguments
from the ANSYS and FLOTRAN software. The program
is written with an ASCII text editor and hence is casily
modified or customised for a particular application. All
the parameters used in the analysis are located at the
beginning of the program for easy access and are also fully
annotated for clarity. Furthermore, by using the ANSYS
Parametric Design Language (APDL) it has been possible
to reduce the size of the program and improve its structure
by locating commonly used routines in macros. The
benefits of this type of programming become apparent
when it is necessary 10 make major modifications to the
section and/or flow regime. An example of this is when 2
new section is to be evaluated which simply requires the
user to create a new macro or input file. In the near future
a user interface will be developed for the program in which
a windows type front end will be employed.

lidity an

The validity of a model depends on how faithfully the
physical problem is represented in the computer, whilst
the accuracy depends on how close the resulting solution
is to a theoretically derived value. Validity and accuracy
are dependent upon:

(a) how the model mathematically mirrors the
geometric and material properties of the
actual product,

(b) how the boundary condition assumptions
reflect the actual loading,

(c) how the method of discretization has been
impiemented,

(d) how the iteration method is controlled.

Geometric and Material properies. As a model
becomes more complex it is normal to make geometrical
approximations. At an element level, compiex shapes and
particularly small features in a model might not be
represented precisely by the elements, since even the most
advanced elements can only take up limited shapes. This
is due to emors which arc introduced into the
approximation when the elements are distorted. as a result
of skew, taper, wrapage and aspect ratio effects on the
faces and sides of the elements. According to M.J. Fagan,
some guidelines can be followed for distorted clements,
but. since allowabic limits for the angles and ratios depend
on the ficld variable distribution and the order of the
clements under consideration. it is difficult to perform a
check as this procedure becomes almost impossible when
the number of elements is important. For this rcason the
program is designed to map the mesh through specified
linc lengths and divisions thereby controlling the clement
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size and shape. These lines start from the fin profile and
finish at the boundary of the flow space, with the starting
point of the line corresponding with the point at which
there is a significant change in radius of the splines. With
this method most of the element distortion is controlied.
The outer shape of the fin is constructed with splines at
the modelling stage, resulting in a mesh consisting of
small and straight lines on the element faces (Figure 6).
However, due to the relatively small scale of this
geometric approximation the overall flow characteristics
around the fin are not adversely affected.

The fuid properties are accurately defined and can be
rapidly checked by listing the various parameters.
Normally the fm will be used in sea water at an ambicnt
temperature and a speed no greater than 50 knots.
Therefore with such a low mach number the fluid is
considered to be incompressible, with a constant density of
1024kg/m> and a constant dynamic viscosity of
0.001kg/m.s.

Boundary Conditions. The setting of the flow and
boundary conditions is critical in ensuring 2 meaningful
solution is derived. To ensure the flow and boundary
conditions are valid, the program automatically identifies
the appropriate nodes in the mesh by using the select
functions. Then for each node a parameterised velocity,
pressure or displacement value is assigned before the
solution is performed. To simulate an external flow in
FLOTRAN, the boundaries are located many muitiples of
chord length from the fin, the inlet is set to a
parameterised constant velocity, the outlet pressure is set
to zero and the external nodes of the fin are set to zero
velocity. In order to save computing time and disk space,
the angie of attack is defined by changing the direction of
the inlet velocity, as opposed to altering the attitude of the
fin within the mesh. The pressures calculated by the CFD
analysis are in terms of nodal pressure forces and, by
using an intelligent and consistent numbering system,
these forces can be transferred to the corresponding
structural model as surface loads. Finally, the
environment of use means that the flow is set to be
adiabatic and turbulent, and a steady state solution is used
because of the relatively instant operation of the camber
device.

Discretisation. The mesh quality plays a significant
role in the accuracy of the results. The percentage error of
the final solution can be reduced greatly by using three
techniques for refining the mesh. Firstly, the geometry
can be divided into smaller elements so the mesh density is
increased (h-refinement). Secondly, the accuracy of the
elements themselves can be improved by using higher-
order interpolation functions (p-refincment) and thirdly
the nodes can be relocated to reduce the size of the
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elements (r-refinement). Because the last two methods are
nol available for the fluid clements, h-refinement is used in
a parameterised format to control the mesh. By changing
the mesh divisions on specific lincs. the mesh density can
be adapted for the solution. In the fluid analysis it is
important to ensure a high quality mesh is used in regions
of rapidly changing velocity and pressure as this is where a
poor mesh will lead to large scale calculation errors or
solution divergence. For the current analysis this means
that the mesh is made very finc in and around the fin
whereas larger meshing is used towards the external limits
of the flow regime. Itis acceptable to use meshing with an
aspect ratio of up to 1/100 as iong as the longer element
face is in the direction of the flow. although this is not so
crucial for the elements towards the external limits of the
flow. This controlling of the mesh density and the mesh
division ensures the solution is valid.

lterations. The number of itcrations in the program is
critical for obtaining an accurate solution. The iteration
value is stored as a parameter so the operation of the
program can be altered with case. By using this approach
the best compromise between accuracy, computing time
and memory space can be determined. Within the
FLOTRAN package it has been found that approximately
350 iterations are required for a converged solution. This
is however criticalily effected by the size and quality of the
mesh, as a poor mesh can cause the solution to diverge.

CASE STUDY

CFD/FEA

The creation of a successful variable camber lifting
section relies heavily upon the shape of the camber line
(Figure 3b) as this influences the following:

(a) Chordwise load distribution,
(b) Angle of zero lift,
(c) The pitching moment coefficient.

In general, the leading edge camber helps to reduce the
magnitudes of Cp whercas the trailing cdge camber
increases the Cp value with the preferred position of
maximum camber being in the forward third of the
section. If the maximum camber is too far torward
however it can cause a scvere stall due to leading edge
separation, Bascd upon these and other design
considerations for cambcred lifting sections, potential
mechanisms can be proposcd and evaluated with the
design tool. To demonstrate the functioning of the design
and analysis tool. a sample run using a lifting section with
an unsuccessful concept lor the mechanism is provided

APPENDICES

(the internal mechanism is not shown for proprietary
reasons).

Figure 7 shows the undeformed external geometry in
the initial flow condition, with the expected pressure
distribution for a symmetrical section on the upper and
lower surface.

This pressure distribution is then used as the load
condition for a structural analysis (as shown in Figure 8).
As a result of the loading, the foil section experiences
structural deformations (as shown in Figure 9).

The result of this deformation is that the foil section
becomes asymmetric with camber. However, due to the
changes in the external foil geometry, it is necessary to run
a subsequent flow analysis to see the effect that this has on
the flow regime and pressure distribution. This process of
toggling between FLOTRAN and ANSYS is repeated until
a satisfactorily stabilised solution is determined. Figure 10
shows the pressure distribution on the deformed foil shape
for a final iteration which clearly illustrates the
modification to the pressure distribution with the negative
pressure peak reducing in intensity and moving rearwards
in the expected manner. From this final solution the nodal
pressure forces are summated and used in formulae (1) and
(2) to determine the C_ and Cp values for the deformed
shape.

Table 1 shows 2 comparison of the Ci and Cp values
calculated at the end of the first and eighth CFD loops in
which it can be seen that the C, value for the section has
increased as a result of the modifications to the section

geometry.
Validit

To check the validity of the program, a cross-
section has been analysed at varying angles of attack for a
direct comparison with the available empirical data. Each
Cy value at a certain angle of attack has been calculated by
summating the (x) and (y) components of the surface nodal
forces and then collated in Table 2 along with the known
Cy values for the section. By comparing these figures the
relative accuracy of the process can be determined. This
shows that the C, valuc is gencrally overestimated and
would seem to indicate that the accuracy of the FLOTRAN
process improves with an increasing angle of attack.

CONCLUSION

ANSYS and FLOTRAN arc being used to aid in the
design, development and analysis of a novel variable
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camber lifting section. The selection of these packages has
been due to the case with which they can be tailored to the
problem in hand enabling the development of a coupled
fluid flow and structural analysis. Based upon the results
of an analysis, modifications to the section geometry and
camber mechanism can be made prior to a subsequent
evaluation. By using this process a clear understanding of
the operation of this type of device will be developed, with
the aim of creating a commercially viable product for the
sport of windsurfing and other related marine applications.

Although the initial variable cambered lifting sections
are intended for use in the small marine vehicle market,
additional application areas are being investigated. The
described design tool may also be applied to similar design
problems, in which the coupling effect between a fluid
flow and a structure is of interest, such as the foil systems
on racing cars, rudders for small marine vehicles and the
lifting surfaces of light aircraft.

2.
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FIGURES
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a) Symmetrical fairing
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FIGURE 3. SYMMETRICAL AND CAMBERED LIFTING SECTION
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TABLES
Ce Co
Symmetrical Section 0.767 0.033
(1st loop)
Cambered Section 0.870 0.046
(8th loop)
TABLE 1. SYMMETRICAL AND CAMBER SECTION COMPARISON
Incidence Angle Empirical Data FLOTRAN Error %
. {Ce) €y
3 0.315 0.336 6.67%
) 0.530 0.564 6.42 %
6 0.625 0.670 7.20%
7 0.750 0.767 227%
8 0.850 0.841 1.06 %
TABLE 2. RESULTS COMPARISON OF THE C, VALUE.
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Abstract—Small marine vehicles such as boats
and particularly windsurfers, employ winglike
lifting surfaces, such as daggerboards, rudders
and fins, on the underside of the hull to resist
the sideways force of the sail and also for
directional control. Because these lifting
surfaces must operate on both tacks, a
geometrically symmetrical cross-section is
normally used, which inhibits the maximum
values of lift that can be generated by 2 given
surface area. To improve the performance it is
proposed to develop a cross-section with
camber, even though this presents a problem
for a lifting surface which has to operate on
both tacks. This paper discusses the process
and reasoning behind the development of a
cambered lifting section for marine vehicles
and the way in which aerodynamic data, theory
and computational techniques are being
applied in this process.
TABLE OF CONTENTS
1. INTRODUCTION
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1. INTRODUCTION

. The sport of windsurfing started in the late

1960’s and has since evolved into a mass
participant sport, with competitions at
regional, national and international levels. The
equipment used comprises a sail assembly and
a board assembly which are joined by means of
a universal joint. The sail assembly is a mast,
sail and boom and the board assembly is the
board, footstraps and fin(s) on the underside,
with the universal joint being of a mechanical
or rubber type. The complete assembly is
controlled by the sailor through angulations of
the sail assembly, footsteering of the board and
changes in the position of bodyweight. The
equipment itself has so dramatically improved
over the last twenty-five years that the board
has developed from a displacement type huil
into a highly efficient planing hull and the
original floppy triangular cloth sails have
evolved through the use of modern materials
and design techniques into rigid foil structures.
This has enabled the windsurfer to become one
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of the fastest sail powered marine vehicles,
with top speeds approaching 50 knots.

The power for the windsurfer is provided by
the sail assembly, which generates a propulsive
force from the air flow over its surfaces. This
propulsive force can be resolved into three
components, one of which is useful and will
drive the complete assembly in the direction of
travel, a second which acts at right angles and
will normally push the assembly sideways, and
a third which resists forward motion and is
normally referred to as drag. To avoid
sideslip, both the hull and the fins are designed
to counteract the sideways force generated by
the sail. In the early days of the sport when a
displacemnent type hull was used for the board,
the speeds were limited and the forces
experienced by the fin(s) were low, as the large
waterline of the hull served to counteract most
of the sideways force of the sail. However, the
modemn day windsurfer will normally plane on
only the last 30 cm or so of the hull (as shown
in Figure 1), and the role of the fin(s) in
counteracting the sideways forces of the sail
has therefore been elevated. The result is that
in recent years much attention has been
focused on the ways in which this part of the
assembly can be made to operate with
improved efficiency, both through the use of
new design techniques and through the use of
new materials. .

The designing of fins for windsurfers is not as
simple as may be first anticipated due to the
different disciplines found within the sport.
This scenario is similar to the world of cycling
where a pursuit bike would be unsuitabie for
off-road use and vice versa and also in the
world of skiing where the varying disciplines
govern the characteristics of the skis that are
used {1]. In the sport of windsurfing there are
three distinct disciplines, each of which require
specific types of equipment to optimise
performance. These disciplines are described
as follows.

264

Figure 1. Planing windsurf board

Racing

With this discipline, the sailor is looking to
complete a course in the quickest time
possible. The course is normally triangular and
requires the sailor to perform on all points of
sailing, which means that on the upwind leg
the fin needs to generate large values of lift,
whilst on the downwind leg excessive lift will
cause control and handling problems. To
overcome these requirements the variable
geometry fin has been developed by Dan
Kinnaird [2], although this device has not been
widely used in the sport.

Wave Sailing

Wave sailing requires the sailor to perform
surfing type manoeuvres on the wave face, as
well as using the wave as a Jaunch ramp for
jomping tricks. Ultimate performance and
efficiency is therefore less of an issue and
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manoeuvrability and user-friendliness taking
precedence.

Recreational Sailing

The recreational sailor is looking for a
compromise between high performance and
manoeuvrability. For simplicity this paper will
only discuss the development of fins for the
high performance racing discipline.

2. AERO/HYDRODYNAMICS OF THE
BOARD ASSEMBLY

As has already been discussed the fin of the
windsurf board serves to counteract the
sideways forces of the sail and to provide
directionally stability. This is achieved by
sailing the board at a leeway angle which in
tum means that the fin is set at an incidence
angle to the water. To develop a better
understanding of the forces acting on the fin it
is convenient to start by considering the forces
acting on the complete assembly. Figure 2
shows a schematic representation of the
complete windsurf assembly with the major
forces clearly identified.

This global model has been used to develop a
steady state program [3] based upon typical
sailing conditions in which parameters such as
the wind velocity, board speed, sail size, sailor
weight and leeway angle are input and used to
determine a state of equilibium. Assuming a
steady state and the necessity for equilibrium,
the program generates values for the lift and
drag of the fin in a specific scenario, the values
of which show satisfactory correlation with
empirically derived values [4]. Typically the
fin accounts for approximately 25% of the
drag of the complete assembly. Therefore any
performance improvements to the fin will need
to be significant if a noticeable effect on the
overall performance of the complete assembly
is to be found, although at the highest
competitive level of the sport minor
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improvements to the equipment can have a
large influence.

sailor weight
board lift
—=fin lift

1 board and rig weight

sail side force

Tig I"zke

board trim

fin and board drag

Figure 2. Forces on the complete assembly
3. THE WINDSURF FIN

The windsurf fin and its key geometric features
as shown in Figure 3 can be directly compared
with the wing of an aircraft, except that it
works in a different orientation and in a fluid
with a higher density.

It has therefore been possible to apply the
knowledge as well as the computational and
design techniques of the subsonic aircraft
industry to the design of the windsurf fin.
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In the first instance it is desirable to ascertain
the manner in which specific geometric
features and/or combinations of features
influence the hydrodynamic performance of the
fin and then to establish the methods that can
be employed to optimise specific performance
characteristics. The easiest method for doing
this is to consider the formulae (1) and (2) for
predicting the magnitudes of lift and drag
produced by a nominal lifting surface;

LIFT = 0.5(p.V.S.C)
DRAG =0.5(p.V2.5.Cp)

1
@

Where:

C. = Lift Coefficient based on three
dimensional flow effects,

Co = Drag Coefficient based on three
dimensional flow effects,

S = Surface Area of lifting surface,

V = Velocity of lifting surface in fluid,

p = Density of fluid.

From these two formulae it is possible to
identify the parameters that can be altered in
the pursuit of improved performance and those
parameters over which there is little scope for
control.

‘[ rake angle
root .
chord AREA up
| J chord
¥
span
. span?
Aspect Ratio =A REA
Figure 3. Geometry of the fin
Fluid Density

The initial limiting factor for the design of the
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fin is the density of the water in which it will
be used. The water will have a nominal
density value between 1000kg/m® for fresh
water, to 1025 kg/m’ for water with a saline
content.

Velocity

The velocity at which the fin travels through
the water is governed by a number of factors,
the most important of which is the ability level
of the sailor. In addition to this factors, the
wind strength and sea state will also govern
the speed at which the sailor can navigate the
assembly. Therefore an assumption has to be
made based upon the anticipated conditions of
usage, which then relies upon the ability of the
sailor to attain these operational speeds.

Surface Area

The surface area of the fin has a direct
influence on the magnitude of lift and drag that
is produced. In general, the size of the fin is
matched to the size of the sail on the premise
that a smaller sail will generate a smaller
sideways force and as such will require smaller
fin. This again causes a problem as the size of
sail that is used by a sailor will again be
govemned by sailor weight and ability, wind
strength, sea state and envisaged discipline of
use. To overcome this problem it is normal to
have a range of sized fins wherein the emphasis
is on the sailor to select the correct size for the
sail that is being used. This is similar to the
way in which a bike rider will select a frame, or
a skier will select a ski length based upon their
ability level and anatomical dimensions.

. Coefficients of Lift and Drag

These coefficient values are governed by the
lifting cross-section and planshape of the fin.
The lifting section most suitable for hydrofoil
applications is that which can be operated with
the maximum craft speed without cavitation
and which can tolerate the wide velocity



fluctuations imposed by rough waters or
during manoeuvring [5]. The windsurf fin
normally employs a symmetrical cross-section
due to the requirement for the fin to operate
on both tacks, which limits the attainable Cp
and associated Cp values. Due to the finite
length of the fin, three dimensional flow effects
will further reduce the theoretical two
dimensional C value, as well as increasing the
Co value [6]. Therefore the planshape is
normally optimised to minimise the three
dimensional flow effects by increasing the
aspect ratio (AR), reducing the rake angle and
by ensuring a semi-elliptical type loading in
keeping with the theories of Lanchester and
Prandtl for constant downwash across the
span. Due to the plating action of the board,
the effecive AR for
approximately double that of its geometric
value [6}, which means that performance fins
normally have an effective AR of 8. When
considering the effect of AR on C. it can be
seen that beyond an AR value of 6, the
improvements in efficiency with increasing AR
show decreasing returns [6]. In addition, an
increasing AR serves to increase the span of
the fin which in turn makes it more difficuit to
sail, as well as increasing the stresses in the
structure and at the board/fin interface.

From the factors that govern the magnitude of
lift and drag generated by a fin the most critical
are the surface area and the section Cy and Cp
values. Based on the assumption that a sized
range of fins is normally provided to cater for
varying sailor sizes, the focus of the work has
been to establish the ways in which the section
Cr and Cp values can be optimised. This work
is only considering the two dimensional
operation of the lifting section and therefore is
not at the present time concerned with
minimnising the three dimensional flow effects
of a finite length lifting surface.

a windsurf is-

4. LIFTING SECTION
CHARACTERISTICS

At any distance from the leading edge to the
tail of a lifting section it is possible to mark a
point midway between the upper and lower
surfaces and if a locus of these points is
generated along the length of the lifting
section, a median line is generated. If this
median line is straight (0% camber) then the
section is symmetrical (Figure 4a). Based on
the fact that a symmetrical section is normally
employed in the design of windsurf fins,
consideration is initially given to this type of
design.

a) Symmetrical fairing

c) Cambered lifting section

Figure 4. Symmetrical and cambered lifting
sections

It is generally valid to assume that at low
incidence angles the lift generated by a
symmetrical foil section is the same as that
given by a flat plate at the same incidence
angle.  Formula (3) gives a reasonable
approximation for the performance of a flat
plate at low incidence angles.

C|_ =0.la
o = angle of attack

3)
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For a symmetrical foil type section Formuia (3)
is modified to take account of the thickness
ratio (t/c) of the lifting section giving Formula

@.
CL=0.11(1+Vc)e )]

Formula (4) serves to illustrate the point that
the C_ value for a symmetrical section is
governed primarily by angle of incidence, as
well as by the thickness ratio. This thereby
limits the scope for increasing the C_ value as
it has been shown that the optimum thickness
ratio for symmetrical lifting sections is in the
region of 12% and that stall normally occurs at
approximately 15 degrees. Therefore another
approach is needed to increase the Cp. value.

If the median line of a lifting section deviates
from a straight line (Figure 4b), then it is said
to be asymmetric and indicates that the lifting
section is cambered as is shown in Figure 4c.
The general effect of camber is to move the
coefficient of lift versus angle of attack curve
for a given section to the left as shown in
Figure 5, with the rise in the coefficient of lift
value being proportional to the camber
percentage. Figure 6 illustrates the point that
the total C, value can be considered as being
composed of two components, namely the lift
due to camber and the lift due to incidence
alone. This means that for a given range of
angles of attack, a cambered lifting section will
have a larger coefficient of lift value than a
comparable symmetrical section, which would
seem to offer a solution to the design problem.
Formula (5) takes account of the effects of
camber.

CL = 0.11(1+v/c)(-00) 5)
0, = angle of zero lift .
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In addition to increasing the attainable C.
value, camber can have a beneficial influence
on the Cp as shown in Figure 7. This is
attributed to the effects of leading edge camber
in promoting a favourable flow regime with a
reduced low pressure suction peak[7].

Drag coefficient Cp flate plate
008 . R
0.06
0.04 :
0.02 ‘
2 0 2 4 6 8 10
Angle of incidence & (degrees)
Figure 7, Effects of camber on Cp

5. VARIABLE CAMBER DEVICES

The drawback with most lifting sections is that
they have to overcome the conflict of varying
environmental conditions and will only operate
optimally at a specific angle of attack. To
overcome this, it is normal to use variable
geometry devices. Based upon the fact that
the use of camber in the lifting section is the
only realistic method for improving the C,. and
Cu/Cp ratio, methods for incorporating camber
in the design are investigated.

The most commonly used approach in the
world of aeronautics is that of the mechanically
hinged leading and trailing edge devices. A
design solution using this approach for the
windsurf fin is cited [8] whereby the sailor uses
a hinged deck mechanism on the board to
activate the flaps on the fin. This system
requires a specially modified board and has not
been developed into a commercial product at
the present time. Similar flapped systems have
been incorporated in the design of rudders for
larger sailing craft [6) although the

International Yacht Racing Union (IYRU) has
outlawed their use in most forms of racing.
Alternative approaches to this problem are also
cited [91&[10] although they all rely upon the
use of an activating mechanism and are
therefore not regarded as suitable for
incorporation in a windsurf fin, as this would
require modifications to the board.

As an altemative approach to the current
variable camber lifting sections, a new concept
is proposed, in which the pressure difference
between the two surfaces of the lifting section
is used to invoke and control the operation of
the device, thereby removing the requirement
for an activating mechanism. The operation of
this device is analogous to the operation of a
traditional fabric sail whereby the cloth will
billow to one side of the mast and form a
cambered section as a result of the airflow and
induced pressure distribution over its surfaces.
Initial prototypes have been produced to
evaluate the potential for this concept, with
varying success and it is now necessary to
develop an analytical process for the design,
development and evaluation of subsequent
.concepts.

6. ANALYTICAL SOLUTION

The development of the analytical process is
required so that the operation and functioning
of potential concepts for a variable camber
lifting section can be evaluated without the
need for expensive empirical test methods. It
is however a complex problem to determine
the manner in which this type of device will
behave because as the structural geometry
changes so too does the pressure distribution
over the two surfaces and hence the load
distribution on the lifting section. Therefore,
to create a successful device it is necessary to
consider the coupling effects between the fluid
flow and structural changes in normal
operating conditions.
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The Program

For this design tool a Computational Fluid
Dynamics (CFD) and Finite Element Analysis
(FEA) have been combined to create an
analytical iterative process. By integrating
FLOTRAN (CFD) and ANSYS (FEA) a
design tool has been developed specifically for
the problem inhand, although it is also possible
to evaluate the performance of related coupled
analysises. The development of this design
tool is described, although for proprietary
reasons the nature and operation of the camber
device is not described.

To integrate ANSYS and FLOTRAN an
ASCII program file has been created. The
program is a list of commands and arguments
from the ANSYS and FLOTRAN software.
The program is written with an ASCII editor
and hence can be easily modified or
customised for the application. The program
algorithm has four distinct parts {11].

(1) Definition of the initial geometry,

(2) Flow analysis,

(3) Structural analysis,

(4) Convergence of the coupled analysis.

Definition of the Initial Geometry—In the first
instance, the user needs to define the initial
geometric features of the foil section, along
with the material properties and flow regime.
From this initial data, the program
automatically generates the CFD and FEA
models. To avoid ambiguity, all parameters,
ordinates, data and results, are in SI units
(meters, seconds, kilograms, Newtons and
Pascals) except for the angle of attack which is
entered in degrees.

Flow Analysis—Some solution controls are
added to control the convergence, the
reliability and the accuracy of the solution.
The number of iterations and its criteria are
parameterised and the gravitational
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acceleration effect is set to zero. Because the
fluid problem is non-linear and convergence is
not guaranteed, a relaxation technique is used
to slow down and stabilise the solution.

After the CFD solution, a quick review of the
results is performed in the postprocessor for
visual checking. A few lines of programming
allows the user to see the wamings (or errors)
printed during the solution, the pressure
distribution of the overall flow region and a
2oomed view of the distribution around the foil
section.

Structural Analysis—The structural analysis is
performed using the ANSYS FEA software.
The program redefines the material properties
of the elements representing the cross section
of the fin. The camber device is composed of
a number of parts which are nominally rigid,
with moveable sections and a flexible covering
of an elastomer-type material. Due to the
large scale deformations in the structure, non-
linear behaviour is expected. At the present
moment the program uses a low Young’s
modulus and a high Poisson’s coefficient. To
simulate an hyperelastic behaviour, a part of
the program is being modified to use
experimental stress-strain data to derive a set
of Mooney-Riviin hyperelastic  material
constants.

When the structural analysis is completed a
displacement and stress plot are displayed on
the screen for visual checking before
continuation of the analysis.

Convergence of the Coupled Analysis—At this
point of the analysis, the deformed shape is
imported to FLOTRAN for a new flow
analysis, with the modifications to the foil
geometry being updated automatically.

A new flow analysis is started in which a
revised mesh is generated. The boundary
conditions are again applied along with the
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flow characteristics, before the next solution is
performed. The coupled analysis is then
continued by transferring the new pressure
distribution to the current deformed geometry
of the fin for a subsequent structural analysis.

The loop between the fluid and the structural
analysises is controlled by looping commands
(such as IF/THEN/ELSE) and a convergence
check, based upon the change in deflections
(Au) between the current (j) and the previous
(j-1) loop as shown in Formula (6).

Au = yj- ujq (6)
Sample Analysis

The creation of a successful variable camber
lifting section relies heavily upon the shape of
the camber line as this influences the following
[12]:

(1) Chordwise load distribution,
(2) Angle of zero lift,
(3) The pitching moment coefficient.

In general the leading edge camber helps to
reduce the magnitudes of Cp whereas the
trailing edge camber increases the Cp value
[13] with the preferred position of maximum
camber being in the forward third of the
section [6]. If the maximum camber is too far
forward however, it can cause a severe stall
due to leading edge separation [12). Based
upon these and other design considerations for
cambered lifting sections potential mechanisms
can be proposed and evaluated with the design
tool.

To demonstrate the functioning of the design
and analysis tool, a sample run using a lifting
section with an unsuccessful concept for the
mechanism is provided (the intemnal mechanism
is not shown for proprietary reasons). Figure
8 shows the undeformed external geometry in
the initial flow condition, with the expected
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pressure distribution for a symmetrical section
on the upper and lower surface.

Figure 8. Pressure distribution on the
undeformed geometry

This pressure distribution is then used as the
load condition for a structural analysis, as
shown in Figure 9.

Figure 9. Pressure distribution for the FEA

As a result of the loading, the foil section
experiences structural deformations, as shown
in Figure 10.

Figure 10. Structural deformations
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The result of this deformation is that the foil
section becomes asymmetric with camber.
However, due to the changes in the foil
geometry, it is necessary to run a subsequent
flow analysis to see the effect that this has on
the pressure distribution. Figure 11 shows the
pressure distribution on the deformed foil
shape, which clearly illustrates the modification
to the pressure distribution, with the negative
pressure peak reducing in magnitude and
moving rearwards in the expected manner.
This iterative process is continued unti a
successfully converged result is found and the
C. and Cp values calculated by summating the
(x) and (y) components of the surface nodal
forces.

Ve

Figure 11. Pressure distribution on the
deformed geometry

Based upon the results of an analysis,
modifications to the section geometry and
camber mechanism can be made prior to a
subsequent evaluation. By using this process a
clear understanding of the operation of this
type of device will be developed, with the aim
of creating a commercially viable product for
the sport of windsurfing and other related
marine applications.

272

APPENDICES

7. CONCLUSION

ANSYS and FLOTRAN have been used to aid
in the design, development and analysis of a
novel variable camber lifting section. This has
been due to the ease with which the packages
can be linked to develop a coupled fluid flow
and structural analysis. Although the initial
variable cambered lifting sections are intended
for use in the small marine vehicle market,
additional application areas are being
investigated. The described design tool may
also be applied to similar design problems, in
which the coupling effect between a fluid flow
and a structure is of interest, such as the foil
systems on racing cars, rudders for small
marine vehicles and the lifting surfaces of light
aircraft.
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APPENDIX D

Program Listings

FLOW-1ST.PRO

R S s R s s R s RS e S SR s s s
'#

I# ANSYS INPUT #
L# #
I# Filemane: flow04 #
L #
'# Purpose: Coupled Fluid-Non linear Structural Analysis #
1§ of an Advanced Airfoil Design #
1# #
'# Created By: Simon Fagg & Xavier Velay #
t# School of Design Engineering & Computing #
t# Departement of Product Design & Manufacture #
t# Bounrnemouth University #
'# Bournemouth BH1 3NA #
1 United Kingdom #
'# #
4 Tel: +44 1202 503750 #
# Fax: +44 1202 503751 #
1% Email: sfagg@bmth.ac.uk #
'# xvelay@bmth.ac.uk #
t# http: www.bournemouth.ac.uk #
1# #
'# Input runs at: Revision 5.1 ) #
14 #
'# Other files: flow-1lst.pro stru-1lst.pro #
4 flow-2nd.pro stru-2nd.pro #
t# runflow.mac newshape.mac mesh-fin.mac #
'# 1lst.par 2nd.par #
14 #
'# Comments: This program is under a UK Patent #
t# This program may be used or copied only in #
[¥:3 ’ accordance with the authors #
1# #
'# Last Modified: 20/12/95 By: SF & XV(mod fin geometry) #
'# #
LSS H R HH S H R R R A R R R R S R S R
/FILNAM, flol tSet filename to prol.db

velocity=10 !Velocity of the fluid

alpha=7 tangle of attaque

outpre=0.0 !Pressure on the outlet

height=2 !Height of the flowspace

length=2 !Length of the flowspace

divi=30 !Mesh division

densi=3000 !{Density parameter

!

*DIM, xkpt, ARRAY, 31 !X coordinate of the airfoil E236 12.66%

xkpt (1)=0.1,0.099636,0.098576,0.09634,0.094634,0.091838,0.088551,0.084843,0.080789,0.076465
xkpt (11)=0.071945,0.067277,0.062490,0.057615,0.052684,0.047730,0.042784,0.037891,0.033106,0.028
480
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xkpt (21)=0.024064,0.019906,0.016049,0.012535,0.009397,0.006669,0.004376,0.002539,0.001176,0.000
307

xkpt (31) =0

1

*DIM, ykpt, ARRAY, 31 'Y coordinate of the airfoil E236 12.66%
ykpt(1)=0,0.000022,0.000118,0.000312,0.000593,0.000956,0.001413,0.001966,0.002599,0.003286

ykpt (11)=0.003983,0.004633,0.005200,0.005662,0.006006,0.006223,0.006320,0.006310,0.006205,0.006
009

ykpt(21)=0.005727,0.00550,0.00525,0.00505,0.00470,0.00436,0.00408,0.00372,0.00282,0.00155

ykpt (31) =0

/PREP7 !Enter the Pre-Processing
*p0,I,1,31 !Generate keypoint 1 to 31
K, I,xkpt(I),ykpt(I) lusing the array xkpt() and ykpt()
*ENDDO
*D0O,I,32,60 !Generate keypoint 32 to 60
K,I,xkpt(I-(2*(I-31))),-ykpt(I-(2*(I-31)))
*ENDDO
RUNFLOW !1See the runflow.mac macro
/POST1 !Enter the Post-Processing
ESEL, S,MAT, ,1 !Select only the flow space (Material Nol)
/200M, 1,RECT,-0.8,0.6,0.7,-0.6 !1Zoom around the X-section
/EDGE,1,0,0 !Select the edges
/GLINE, 1, -1 {Turn the line off
SET, LAST tSelect the last results set
PLNSOL, PRES, {Plot the pressure distribution
FINISH {Leave the Post-Processing

tfind a solution to stop process/print a plot

/PREP7 ’ {Enter the Pre-Processing
!{ACLEAR,1,16,1 IClear the meshes in areas 1 to 16

{ETCHG |Change elements of area 17 to Plane42
| SAVE !Save the database

{FINISH ' !Leave the Pre-Processing

*MSG, NOTE, !Note message

You must QUIT FLOTRAN and ENTER ANSYS %/ with the input file: STRU-1ST.PRO

RUNFLOW.MAC
!This is a MACRO for STRU-1ST.PRO, STRU-2ND.PRO, etc...

l---u- Create spline for the hydrofoil Xsection -----

/PREP?7 'Enter the Pre-Processing
BSPLIN,1,2,3,4,5,6 !{Create linel between kpt 1 to 8
*REPEAT,5,5,5,5,5,5,5 IRepeat 5 times, increment 5
BSPLIN, 26,27,28,29 ICreate line6é between kpt 26 to 29
BSPLIN,29,30,31 !Create line7 between kpt 29 to 31
BSPLIN, 31,32,33 !Create line8 between kpt 31 to 33
BSPLIN,33,34,35,36 !Create line9 between kpt 33 to 36
BSPLIN,36,37,38,39,40,41 !Create linel0 between kpt 36 to 41
*REPEAT,4,5,5,5,5,5,5 !'Repeat 4 times, increment 5
BSPLIN,56,57,58,59,60,1 !Create linel4 between kpt 1 to 8

IEEEEE Generate flowspace keypoints -----
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K,131,-length/2,0

K,129, -length/2,height/4
K,126, -length/2,height/2
K,121, -1length/4,height/2
K,116,0,height/2
K,111,length/10,height/2
K,106,length/5, height/2
K,101,length/4,height/2
K, 96,length/2,height/2
K,91,1length/2,0

K,133, -length/2, -height/4
K,136,-length/2,-height/2
K,141, -length/4, -height/2
K,146,0,-height/2
K,151,length/10, -height/2
K,156,1length/5, ~-height/2
K,161,length/4,-height/2
K,166,1length/2, -height/2

lemom- Generate flowspace lines -
LSTR, 1,101 :
*REPEAT, 6,5,5

LSTR, 29,129

*REPEAT, 3,2, 2

LSTR, 36,136

LSTR, 41,141

*REPEAT, 4,5,5

LSTR, 1,161

LSTR, 1,91

LSTR, 91,96

*REPEAT, 7,5,5

LSTR, 126,129

LSTR, 129,131

LSTR, 131,133

LSTR, 133,136

LSTR, 136,141

*REPEAT,6,5,5

LSTR, 91,166

lewee- Generate flowspace areas -
AL,30,31,32,15

AL,1,15,33,16

*REPEAT, 14,1,1,1,1
AL,30,29,47,48

I Define mesh division -----
*DO, I, 15,29
LESIZE,I,,,divi,densi
*ENDDO
LEgIZE, 31,,,divi,densi
LESIZE, 48,,,divi,densi
LESIZE, 30,,,length*8,10
LESIZE, 32,,,length*s
LESIZE,47,,,length*8
*DO,I,1,12
LESIZE, 1+I,,.6
LESIZE, 33+4I,,,6
*ENDDO
LEgIZE,1,,,3
LESIZE, 33,,,3
LESIZE, 14,,,3
LESIZE, 46,,,3

lecmna Mesh all areas -----

!Create keypoint
!Create keypoint
!Create keypoint
!Create keypoint
!Create keypoint
!Create keypoint
!Create keypoint
!Create keypoint
|Create keypoint
!{Create keypoint
!Create keypoint
!Create keypoint
!Create keypoint
!Create keypoint
!Create keypoint
!Create keypoint
!Create keypoint
!Create keypoint

|Create

!Repeat 6 times,

!Create

!Repeat 3 times,

ICreate
!Create

!Repeat 4 times,

{Create
!Create
ICreate

{Repeat 7 times,

!{Create line38 from kpt 126
!Create line39 from kpt 129
!{Create line40 from kpt 131
!Create line4l from kpt 133
!Create line42 from kpt 136

!Repeat 6 times,

{Create

!Create
!Create

!{Repeat 14 times,

{Create

line2l1 from kpt 29

line24 from kpt 36
line25 from kpt 41

131
129
126
121
116
111
106
101
96

91

133
136
141
146
151
156
161
166

increment 5

increment 2

increment 5

increment S

R R R

increment 5

areal from lines
area2 from lines

increment 1

arealé from lines

{For line 15 to 29

!do 30 divisions with a density of 3000

{Line
!Line
Line
!Line
!Line

!For line 2 to 13 and line 34 to 45

tdo 6

{Line
{Line
{Line
1Line

31, divi 30, densi 3000
48, divi 30, densi 3000
30, divi 30, densi 3000
32, divi 30, densi 3000
47, divi 30, densi 3000

divisions

1, divi 3

33, divi 3
14, divi 3
46, divi 3
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linelS from kpt 1 & 101
& 129

& 136
& 141

line29 from kpt 1 & 161
line30 from kpt 1 & 91
line31l from kpt 91 & 96

129
131
133
136
141

line48 from kpt 91 & 166
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ESHAPE, 2,0
ET,1,141
AMESH, ALL

! Mesh of the X-section
ESHAPE, 0,0

LSEL, S,LINE,,1,14,1,0
AL,ALL

ALLSEL

I{LSTR, 26,36
'AL,6,7,8,9,49
!LSTR, 11,51
\AL,1,2,50,13,14

K,500,0.004,0,0
K,501,0.065,0,0

CIRCLE,500,0.003,,,,,
AL,49,50,51,52

LSTR, 11,501
LSTR, 501,51
AL,1,2,53,54,13,14

AOVLAP,17,18,19
LESIZE, 49, , ,4,1,
LESIZE,So, , ,4,1,

K,502,0.011,-0.002,0
K,503,0.011,0.002,0
K,504,0.030,0.002,0
K,505,0.030,-0.002,0

LSTR, 502,503
LSTR, 503,504
LSTR, 504,505
LSTR, 505,502
AL,55,56,57,58

ASBA,20,17,,KEEP, DELETE

ET, 1,141
MAT, 2

AMESH, 18,19,1
MAT, 3
AMESH, 20, ,1

LSEL, S,L0OC, X, -length/2,,,1
D,ALL, VX, velocity*COS (alpha* (3
D,ALL,VY,velocity*SIN (alpha* (3
LSEL, S,LOC, Y, height/2,,,1
D,ALL, VX, velocity*CO0S (alpha* (3
D,ALL,VY,velocity*SIN (alpha* (3
LSEL, S,LOC,Y, -height/2,,,1
D,ALL, VX, velocity*COS (alpha* (3
D,ALL,VY,velocity*SIN(alpha* (3
LSEL, S,LOC, X, length/2,,,1
D,ALL, PRES, outpre

LSEL, S,LINE, ,1,14,1,0
NSLL,S,1

D,ALL,VX,0

Apply the boundary conditions

.1415/180))
.1415/180))

.1415/180))
.1415/180))

.1415/180))
.1415/180))

APPENDICES

!Set elements to BRICKS only
!Element type 1 Fluidl41l
!Mesh all the flow space

tSelect the fin X-section
{Create area 17
!Select all

!Create line 49
!Create areals$
!Create line 50
ICreate area 19

{CENTRE OF CIRCLE
{CENTRE OF REAR AREA

{CIRCLE AT FRONT OF SECTION
!CREATE AREA FROM CIRCLE

ICREATE NEW LINE AT REAR
!CREATE SECOND LINE AT REAR
!CREATE AREA AT REAR

!Overlap and create area 18,19,20
!Division on line 49
!Division on line 50

!Take away space from body

{Element type 1 Fluidil4l

!{Material No2

{Mesh area 18, 19
!Change material type
{Mesh area 20

tSelect the inlet
tVelocity in X
{Velocity in Y
!Select the top
{Velocity in X
{Velocity in Y
{Select the bottom
!Velocity in X
!Velocity in Y
!Select the outlet
!Pressure = 0
!Select the fin X-section
!Select nodes attached to lines
|Velocity in X
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D,ALL,VY,0 ) {Velocity in Y
ALLSEL {Select all

locen- flotran conditions -----

FLDA, SOLU, TRAN, 0 !Steady state

FLDA, SOLU, FLOW, 1 !Solve flow equations

FLDA, SOLU, TEMP, O !Adiabatic

FLDA, SOLU, TURB, 1 !'Turbulent

FLDA, SOLU, COMP, 0 !Incompressible

FLDA, SOLU, SWRL, 0 INO swirl

FLDA, SOLU, SPEC, 0 122222727

FLDA, ITER, EXEC, 200, {Global iterations 30

FLDA, ITER,CHEC, 0, INo overwrite of .rfl file
FLDA, ITER,APPE, 0, INo append of .rfl file
FLDA, TERM, PRES, 1e-08, !Pressure termination criteria
FLDA, OUTP, SUMF, 50, !Output summary frequency 50

FLDA, PROP, DENS, 0

FLDA, VARY,DENS, 0

FLDA, PROT, DENS, CONSTANT ) 1Set the density constant
FLDA,NOMI,DENS, 1024, llO24kg/mA3

FLDA, PROP,VISC, 0

FLDA,VARY,VISC, 0

FLDA, PROT,VISC, CONSTANT !Set the viscosity constante
FLDA,NOMI,VISC,0.001, 10.001 kg/m.s

FINISH !Leave the Pre-Processing

/SOLU !Enter the Solution

SOLVE 'Run the Solution of the CFD analysis
SAVE tSave the database

FINISH ILeave the Solution

STRU-1ST.PRO

!This program is an ANSYS input after the run of FLOW-1ST.PRO
/FILNAM, strul
RESUME, flol,db, ,0

/PREP7 !Enter the Pre-Processing

ALLSEL !Select everything

UIMP,2,EX, , ,5000000, !Young's Modulus for material No2

UIMP, 2,NUXY, , ,0.49, 'Poisson's Coefficient for material No2
UIMP,3,EX, , ,5000000, !Young's Modulus for material No3

UIMP, 3,NUXY, , ,0.49, 'Poisson's Coefficient for material No3
FINISH !Leave the Pre-Processing

/SOLU {Enter the Solution

DDELE, ALL,ALL IDelete all BC fron the previous CFD
LDREAD, PRES, last,, , ,flol,rfl, !Import the pressure from the CFD

CLAMPING tCall proceedure for applying boundary conditions
/STAT, SOLU

SOLVE {Run the Solution of the structural analysis
FINISH {Leave the Solution

/POST1 'Enter the Post-Processing

PLDISP, 2 !Plot the displacement
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FINISH !Leave the Post-Processing

NEWSHAPE !See the newshape.mac macro

*DIM, xkparray,ARRAY,60,1,1 {Create an array for the 60 X coordinate
*VGET, xkparray (1) ,KP,1,LOC,X,,,,2!of the keypoints

*DIM, ykparray,ARRAY,60,1,1 !Create an array for the 60 Y coordinate
*VGET, ykparray(1) ,KP,1,L0C,Y,,,,2!0f the keypoints

PARSAV,ALL, first,par,, !Save parameter & array on file: 1lst.par
SAVE 1Save the database

*MSG, NOTE, !Note message

You must QUIT ANSYS and ENTER FLOTRAN %/ with the input file: FLOW-2ND.PRO

NODECATCHER

*DIM, xnode, ARRAY, 10000,1,1,

*VGET, xnode (1) ,NODE, 1,L0C,X, , , ,2
*DIM, ynode, ARRAY, 10000,1,1,

*VGET, ynode (1) ,NODE, 1,L0C, Y, , , ,2
ACLEAR, ALL

ADELE,ALL, , ,1

KPX1=1

KPY1l=1

KPX6=(((length*8) +1) * (divi+1))+1
KPY6=(((length*8) +1) * (divi+l))+1

KPX11=KPX6+ (3* (divi+1)})

KPY11=KPY6+ (3* (divi+l)) .

K,1,xnode (1) ,ynode (1)
k, 6,xnode (KPX6) , ynode (KPY6)
k,11,xnode (KPX11) , ynode (KPY11)

NEWSHAPE .MAC )
IThis is a MACRO for STRU-1ST.PRO, STRU-2ND.PRO, etc...

/PREP7 |Enter the Pre-Processing

*DIM, xnode, ARRAY, 10000,1,1, {Create an array for the X coordinate
*VGET, xnode (1) ,NODE, 1,L0C,X,,,,2 !of each nodes

*DIM, ynode, ARRAY,10000,1,1, !Create an array for the Y coordinate
*YGET, ynode (1) ,NODE, 1,L0C,Y,,,,2 !of each nodes

*DIM, dispX,ARRAY, 10000,1,1, !{Create an array for the displacement
*VGET,dispX (1) ,NODE,1,U,X,,,,2 1in X of each nodes

*DIM, dispY, ARRAY,10000,1,1, !Create an array for the displacement
*VGET,dispY(1),NODE,1,U,Y,,,,2 1in Y of each nodes

ACLEAR,ALL {Clear all meshes

ADELE,ALL, , ,1 !1Clear all areas and lines

KDELE, ALL !Clear all keypoints

KPl=1 !Create parameters to find the node
KP6=(((length*8)+1) * (divi+1))+1 !number of the nodes related to the
KP11=KP6+ (3* (divi+l)) Iprevious keypoints 1, 6, 11, etc
KP16=KP11l+ (6* (divi+1)) {The node number is dependant of the
KP21=KP16+ (6* (divi+1)) Imesh division and the first keypoint
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KP26=KP21+ (6* (divi+1))
KP29=KP26+ (6* (divi+1))
KP31=KP29+ (6* (divi+1))
KP33=KP31+(6* (divi+l))
KP36=KP33+ (6% (divi+1))
KP41=KP36+ (6* (divi+1))
KP46=KP41+ (6* (divi+1))
KP51=KP46+ (6* (divi+1l))
KP56=KP51+(6* (divi+1))

K,1,xnode (KP1) +dispX (KP1) , ynode (KP1) +disp¥ (KP1)
K, 6,xnode (KP6) +dispX (KP6) , ynode (KP6) +dispY (KP6)
K,11,xnode (KP11) +dispX (KP11) , ynode (KP11) +dispY (KP11)
K,16,xnode (KP16) +dispX (KP16) , ynode (KP16) +dispY (KP16)
K, 21, xnode (KP21) +dispX (KP21) , ynode (KP21) +dispY (KP21)
K, 26,xnode (KP26) +dispX (KP26) , ynode (KP26) +dispY (KP26)

APPENDICES

'to be mesh (here kpl = nodel)

K,29,xnode (KP29) +dispX (KP29) , ynode (KP29) +dispY (KP29)
K,31,xnode (KP31) +dispX (KP31) , ynode (KP31) +dispY (KP31)
K, 33,xnode (KP33) +dispX (KP33) , ynode (KP33) +dispY (KP33)
K, 36,xnode (KP36) +dispX (KP36) , ynode (KP36) +dispY (KP36)
K, 41,xnode (KP41) +dispX (KP41) ,ynode (KP41) +dispY (KP41)
K, 46,xnode (KP46) +dispX (KP46) , ynode (KP46) +dispY (KP46)
K, 51,xnode (KP51) +dispX (KP51) , ynode (KP51) +dispY (KPS1)
K, 56,xnode (KP56) +dispX (KP56) , ynode (KP56) +dispY (KP56)

BSPLINE,1,6,11,16
BSPLINE, 16, 21, 26
BSPLINE, 26,29,31
BSPLINE, 31,33, 36
BSPLINE, 36, 41, 46
BSPLINE, 46,51,56,1

KDELE, 6

KDELE, 11
KDELE, 21
KDELE, 29
KDELE, 33
KDELE, 41
KDELE, 51
KDELE, 56

*DO,I,1,14

KL,1, (1/15) *I,I+1

*ENDDO

*DO,I,1,9

KL,2, (1/10)*I,I+16
*ENDDO

*D0,I,1,4

KL,3, (1/5) *I,I+26

*ENDDO

*DO,I,1,4

KL, 4, (1/5)*I,I+31

*ENDDO

*DO,I,1,9

KL,S, (1/10)*I,I+36
*ENDDO

*D0O,I,1,14

KL,6, (1/15)*I,I+46
*ENDDO

LDELE, 1,6

!Create
ICreate
ICreate
{Create
ICreate
{Create

IDelete
IDelete
!Delete
{Delete
!Delete
!Delete
{Delete
IDelete

ICreate

ICreate the
tkeypoints by
tadditioning the
Inode position
land the node
!displacement

spline between kpt 1,6,11,16
spline between kpt 16,21,26

spline between kpt 31,33,36
spline between kpt 36,41,46

a
a
a spline between kpt 26,29,31
a
a
a

spline between kpt 46,51,56,1

keypoint 6

keypoint 11
keypoint 21
keypoint 29
keypoint 33
keypoint 41
keypoint 51
keypoint 56

14 keypoints (kpt2

ton linel, with a space of

ICreate

9 keypoints (kptl7

lon line2, with a space of

{Create

4 keypoints (kpt27

fon line3, with a space of

ICreate

4 keypoints (kpt32

ton line4, with a space of

ICreate

9 keypoints (kpt37

lon lineS5, with a space of

to kptis)
1/15

to kpt25)
1/10

to kpt30)
1/5

to kpt35)
1/5

to kpt45)
1/10

ICreate 14 keypoints (kpt47 to kpté60)
lon line6, with a space of 1/1S

{Delete

line 1 to 6
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