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ABSTRACT

Magmas undergoing shear are prime examples of flows that involve the transport of solids and gases
by a separate (silicate melt) carrier phase. Such flows are called multiphase, and have attracted much
attention due to their important range of engineering applications. Where the volume fraction of the
dispersed phase (crystals) is large, the influence of particles on the fluid motion becomes significant
and must be taken into account in any explanation of the bulk behaviour of the mixture. For congested
magma deforming well in excess of the dilute limit (particle concentrations >40% by volume), sudden
changes in the effective or relative viscosity can be expected. The picture is complicated further by the
fact that the melt phase is temperature- and shear-rate-dependent. In the absence of a constitutive law
for the flow of congested magma under an applied force, it is far from clear which of the many
hundreds of empirical formulae devised to predict the rheology of suspensions as the particle fraction
increases with time are best suited. Some of the more commonly used expressions in geology and
engineering are reviewed with an aim to home in on those variables key to an improved understanding
of magma rheology. These include a temperature, compositional and shear-rate dependency of viscosity
of the melt phase with the shear-rate dependency of the crystal (particle) packing arrangement.
Building on previous formulations, a new expression for the effective (relative) viscosity of magma is
proposed that gives users the option to define a packing fraction range as a function of shear stress.
Comparison is drawn between processes (segregation, clustering, jamming), common in industrial
slurries, and structures seen preserved in igneous rocks. An equivalence is made such that congested
magma, viewed in purely mechanical terms as a high-temperature slurry, is an inherently non-
equilibrium material where flow at large Péclet numbers may result in shear thinning and spontaneous
development of layering.
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Introduction

WHILE significant progress has been made in

quantifying the flow properties of silicate melt in

terms of viscosity and density over a wide

compositional range (see Shaw, 1965; Giordano

et al., 2008 amongst many others), a fundamental

treatment that captures simultaneously the

rheology and flow behaviour of magma as a

fluid-particle suspension remains elusive. This

lack of understanding of what may appear at first

glance a relatively trivial problem arises from the

fact that magmas are complex multiphase flows

with time- and rate-dependent properties (Fig. 1).

Especially problematic is that factors that govern

the flow of magma, including heat transfer, phase

transitions, coupled deformation of both solid and

fluid phases, seepage phenomena and chemical

processes, occur simultaneously and interdepen-

dently. Of critical importance is that for multi-

phase materials, the viscosity is not a single-

valued function nor necessarily isotropic, but is

instead a macroscopic property derived from the

suspens ion mic ros t ruc tu re . I t i s th i s

microstructure-viscosity connection that defines

the complex rheological properties of magma,

which in turn controls its rate and style of

emplacement, both within and on the surface of

the earth and other planets (e.g. Dingwell and
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Webb, 1990; Kargel et al., 1991; Melnik and

Sparks, 2005; Reese and Solomatov, 2006; Hale

et al., 2007; Cordonnier et al., 2008; Whittington

et al., 2009).

More generally, a better understanding of the

motion of particle-fluid mixtures is important for a

large number of applications in chemical engi-

neering, polymer science and biophysics, where

the complexity of phenomena has attracted much

attention. A crude classification of the subject is

carried out by the specification of: (1) the solids

volume content of the suspension, magmatic or

otherwise, defined as the volume occupied by the

particles as a fraction or percentage of the total

volume of the suspension; (2) the hydrodynamics

of particle-particle interactions; (3) the mean shear

rate of the flow; and (4) the mean particle size. As

to (1), this review is concerned primarily with

estimates of flow rheology where the magma

crystal content (solidosity) is equal to or exceeds

40% by volume. Such materials are referred to in

the micromechanics literature as ‘congested’ or as

‘dense slurries’, and magmas during flow where

cooling and crystallization dominate, provide

excellent natural examples (e.g. Marsh, 1996).

With respect to (2), neutral (non-colloidal)

particles in Newtonian fluids are envisaged, and

(3) the shear rate is sufficiently small so that no

turbulent effects, associated with fluid inertia, take

place. Finally, (4) the particles (crystals in

suspension) are sufficiently large (>0.1 mm) that

Brownian motion can be ignored. Despite these

restrictions, which correspond to the high-Péclet,

low-Reynolds number limit, there is potential to

gain insight into a wide range of classical

magmatic-emplacement phenomena by treating

the problem as one would a dense suspension.

This review is split broadly into two parts � a

background introduction to the rheology and flow

of both dilute and dense suspensions that includes

a survey of some of the better known empirical

expressions put forward to capture the important

effect of increasing viscosity due to particle

loading, and a second, more discursive section

that looks afresh at the origin of layering and

other structures preserved in igneous rocks using

concepts informed by fluid-mechanical studies of

dense slurries. The first part in particular draws

heavily on previous but highly relevant treatments

of suspension flow by Zapryanov and Tabakova

(1999) and Stickel and Powell (2005). Interested

readers should look to these works and references

therein for further in-depth analysis (see also

Jeffrey and Acrivos, 1996). Other relevant studies

dealing explicitly with magma rheology include

McBirney and Murase, 1984; Ryerson et al. 1988;

Pinkerton and Stevenson, 1992; Lejeune and

Richet, 1995; Lavalleé et al., 2007. Finally, this

review deals exclusively with two-phase flow and

ignores the complicating effects of gas bubbles on

magma rheology known to provide an additional

degree of freedom on microstructre evolution

(e.g. Rust and Manga, 2002; Pal, 2003).

Background

Stickel and Powell (2005) provide a highly

accessible introduction to dense-suspension

rheology based on dimensional analysis and the

conservation of linear momentum. For complete-

ness, some of their analysis is reproduced here.

The viscosity of a suspension, magmatic or

otherwise, is a function of a range of variables

including particle diameter (d), dynamic melt

viscosity (Z0), deformation rate (expressed either
as shear rate or shear stress), thermal energy and

time (see Table 1 for a list of symbols and

meaning). In general, these terms can be brought

together such that the suspension viscosity, also

referred to as the effective viscosity, Ze, is a

function of:

Ze = f[(f,d,r)(Z0,r0,kT,t _gg,t)] (1)

where all the terms inside the first bracket relate

to properties of the suspension, and those in the

second the fluid phase. Conveniently the variables

in equation 1 can be arranged into the following

dimensionless groups: Zr = Z/Z0, f = (4p/3)fd3,

rr = r/r0 and tr = tkT/Z0d
3. Note that fluid

deformation can be defined either in terms of

shear stress (t) or shear rate, the latter defined as
the time rate of shear strain ( _gg) with units 1/s.
Strain (e) is defined non-dimensionally as e = t _gg.
In this study, both shear rate and shear stress are

used as the deformation term. A further

simplification can be made by assuming that the

dense suspension is neutrally buoyant (settling

due to mass density is inhibited to some extent by

particle interactions), and is steady state, such that

Ze = f(f, Pe,Re) (2)

Two important dimensionless numbers with

bearing on the suspension rheology during shear

are the particle Reynolds (Re _gg) and Péclet (Pe _gg)

numbers

Re _gg ¼
r0d

2 _gg
Z0

ð3Þ
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and

Pe _gg ¼
6pZ0d

3 _gg
kT

ð4Þ

The ratio of the Péclet and Reynolds numbers is

the Schmidt number Pe _gg/Re _gg. For a given rate of

shear, Sc >>1 tends to indicate Newtonian

behaviour. Together, these dimensionless

numbers provide insight into the rheology and

kinds of structures that may form in dense magma

slurries undergoing shear.

T|me dependency

Suspensions with volume concentrations in excess

of ~40% are candidate examples of non-

Newtonian fluids (e.g. Zapryanov and Tabakova,

1999). The degree of non-linearity can be related

to the degree of hydrodynamic diffusion (diffu-

sion due to interaction with other particles as

opposed to thermal motion), to advection of

particles in the flow through the Pe number,

which must be of O(1) for flow to disrupt

significantly the suspension microstructure and

TABLE 1. Selected list of symbols and units used in text.

Symbol Meaning Unit

A0 pre exponential factor in equation 8
A parameter in equation 9 Pa
A kinetic parameter in equations 14 and 15 Pam

B parameter in equation 9
d mean particle radius m
Bg Bagnold number
C parameter in equation 9
c proportionality constant for the particle pressure
g acceleration due to gravity m s�2

E activation energy J mole�1

h mean gap width between neighbouring grains m
k Boltzmann constant JK�1

n particle number density
y position m
m exponent in equations 14 and 15 1�3
T temperature ºC or K
f solidosity (particle volume fraction)
t time s
R packing factor = 1/fmax
p̃, p̄ particle pressure Pa
R gas constant J mole�1 K�1

fmax maximum packing fraction
fm0 packing limit at low shear
fm? packing limit at high shear
fM maximum obtainable value of f
u fluid velocity m s�1

Pe particle Péclet number
Re particle Reynolds number
r solid or melt phase density kg m�3

Z0 melt viscosity (dynamic) Pa s
Ze effective viscosity
Zr relative viscosity = Ze/Z0
t shear stress Pa
_gg shear strain rate s�1

sij stress tensor Pa

WHICH EFFECTIVE VISCOSITY?
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bring about time-dependent rheology. Time-

dependent deviation from simple Newtonian

flow in congested slurries is referred to generally

as power-law flow and results in two broad kinds

of behaviour (Fig. 1), pseudoplastic (shear-thin-

ning) or dilatant (shear thickening). An approx-

imate mathematical description of power-law

fluids is captured by the Ostwald de Waele

relationship which links shear stress with shear

strain rate (t ~ _ggn) via an exponent n where n < 1

= pseudoplastic, n = 1 (Newtonian) and n >1 =

dilatant (e.g. Bird et al. 1960). Pseudoplastic, or

shear-thinning fluids that also show reversible

behaviour, meaning they thicken when shear is

removed, are known as thixotropic (e.g. Barnes,

1997). Other words used to describe time-

dependency include shear rejuvenation (viscosity

decrease), and aging (viscosity increase). This

latter case where the viscosity increases with

shear strain rate (n >1) appears to be less common

(at least in industrial materials so far tested) and

the thickening effect, also reversible, is referred to

as negative thixotropy or rheopexy (Chhabra and

Richardson, 1999). There is textural evidence that

some crystal-rich magmas may behave as shear-

thickening fluids (Smith, 2000). While the

terminology can be confusing, it is important to

grasp the essential feature that both shear thinning

and dilatant fluids reflect the underlying control of

microstructure � defined as the spatial and

temporal distribution of the particles � on the

effective viscosity in congested suspensions. Both

underscore the importance of kinematic history in

influencing the mixture rheology and ultimately

emplacement style and structures formation (e.g.

segregation effects) during shear. We will return

to this point from a magmatic perspective in the

discussion section.

Y|eld strength

Finally, note that the relationship between yield

strength materials (Bingham fluids), which appear

to support a shear stress without flowing, and

power-law fluids remains murky. At the risk of

adding yet more confusing terminology, unlike

Bingham fluids, their power-law counterparts

appear to show no inherent yield strength (see

Fig. 1), yet crystal-rich magmas are often

regarded by petrologists as Bingham materials.

While this may (or may not) be true (see

McBirney and Murase, 1984; Kerr and Lister,

1991; Lejeune and Richet, 1995 for points for and

against), it is worth noting that laboratory

measurements on suspension yield strengths

have long proved challenging, often resulting in

a wide range of values for the same material

(Nguyen and Boger, 1992). Some of this

discrepancy may be due to shear localization

(i.e. deforming a non-homogeneous material), but

FIG. 1. Summary plot showing variations in rheological

behaviour relevant to congested magma around the

limiting (ideal) case of Newtonian flow where the shear

stress (t) is proportional to rate of shear strain (du/dy).

The plot shows two variants of Ostwald de Waele flow,

pseudoplastic (shear thinning), and dilatant (shear

thickening). Both classes show reversible (thixotropic

and rheopectic) behaviour defined by hysteresis loops.

Bingham fluids possess an apparent inherent yield

strength (t0).
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also that the material is thixotropic. Indeed, there

is growing evidence of an underlying physics

linking yield strength and shear-thinning fluids as

different manifestations of the same time-

dependent process (Møllera et al. 2006).

Conceptual model of flowing magma

Bearing in mind the points made about particle

microstructure and shear history and the

complexity therein, Fig. 2 shows a simple

illustration of the set-up. A key feature of

dense-slurry flow (dense in this context refers to

particle number density not mass density), is that

particles in shear cannot move in straight lines.

Instead, they need fluctuational motion in order to

overtake one another. The idea of particle

fluctuations is a very important one, governing

both the local microstructure and through this the

macroscopic flow properties of sheared suspen-

sions. It is a topic we shall return to later on.

Intuitively from Fig. 2 it is clear that as more

particles are added, the more difficult it will be for

the fluid phase to move in anything close to a

straight line, while at the same time the increased

volume concentration of particles will lead to

interactions that include a greater likelihood of

collisions. Adding more particles in this way

results in an increase in the bulk viscosity (Z) of
the suspension. If we assume that there exists

some maximum packing of the particles (fmax)
above which no further loading can take place,

then we can express this relat ionship

mathematically as:

lim
f!fmax

Z ¼ 1 ð5Þ

The concept of maximum packing fraction

determines when the effective viscosity of a

suspension becomes infinite, i.e. the curves

FIG. 2. Component materials and scaling relationships in a congested magma suspension undergoing shear. (A) The

microstructure (orientation and relative position of grains) plays a governing role in the larger-scale (macroscopic)

rheology of the flow. Suspensions are regarded as ‘dense’ when particle-particle interactions are significant when the

gap width (h) between grains is equal to or less than the mean particle size (d). The particles are carried in a fluid

with a viscosity Z0. For magma this fluid is a silicate melt (B). The macroscopic properties of the flow during shear
are a function of the upscaled microstructure. In congested slurries, melt streamlines (red arrows) cannot flow in

straight lines and these become more tortuous as the particle number increases. The cumulative effect of adding

more particles is to increase the effective viscosity of the flow up to a critical maximum packing fraction (Table 2).

WHICH EFFECTIVE VISCOSITY?
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describing the effective viscosity become asymp-

totic at fmax. The various kinds of packing

arrangements for spheres are listed in Table 2.

For reference, the maximum theoretical packing

of spherical particles of equal size in a contained

volume is p/3H2 &74%, while for dense,

disorderd packing of hard spheres the critical

density is ~0.64 (Anikeenko and Medvedev,

2007). While particle geometry is clearly

important, experimental rheologists like spheres,

and most published analogue models, and the

empirical formulae on which they are based, are

constructed using monodisperse assemblages,

meaning spherical particles of equal size. This is

clearly a convenience and in no way a true

reflection of the shapes or particle-size distribu-

tions in natural magmas (Fig. 3). However, it is a

necessary first-stage simplification. Some experi-

mental work has been done on non-spherical

particles (rods, oblate and prolate spheroids) and

this is discussed later. The reduction in effective

viscosity at fixed particle concentration with

increasing shear rate is shown schematically in

Fig. 4.

What the (petrology) textbooks say

Most igneous petrology textbooks now have a

standard section on the physical properties of

magmas that provide an overview on the viscosity

and density of silicate melts, and the role of

crystals and dissolved gas in governing magma

transport (e.g. Best and Christiansen, 2001). In

essence, when dealing with suspensions,

magmatic or otherwise, three viscosity terms

come into play: the fluid (melt) phase, the

effective or apparent viscosity of the suspension

and the relative viscosity (Zr). In dealing with the

role of suspended crystals, the impression given

generally is that the effect of increasing solids

content can be modelled straightforwardly using

an expression commonly referred to as the

FIG. 3. A frozen-in magmatic slurry. Wide angle (61)
thin-section view of a granite porphyry showing

euhedral to subhedral feldspar and quartz phenocrysts

set in a fine-grained groundmass. Rapid quenching has

preserved the near original grain size distribution which

does not equate well to a monodisperse particle-rich

fluid, the general basis for most effective viscosity

formulations (e.g. Table 3).

TABLE 2. Summary of the relationship between packing variables (monodisperse spheres), maximum packing
fraction (fmax) and the constant R in the Einstein-Roscoe equation 6.

Packing Expression fmax R (= 1/fmax)

Loose – 0.0555 18.2

Tetrahedral lattice
p

ffiffiffi
3

p

16
0.3401 2.94

Cubic lattice
p
6 0.5236 1.90

Hexagonal lattice
p

3
ffiffiffi
3

p 0.6046 1.65

Disordered dense packing – 0.6400 1.56
Body-centred cubic packing – 0.6800 1.47

Hexagonal close packing
p

3
ffiffiffi
2

p 0.7405 1.35
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Einstein-Roscoe (ER) equation relating the

change in relative viscosity Zr to increasing

particle concentration via:

Zr = Z0 (1�fR)�2.5 (6)

where R is a constant that defines the packing

ratio of the particles in the suspension (see

Table 2). Since its introduction into the geolo-

gical literature (Shaw, 1965; Marsh, 1981), ER

has been used routinely by petrologists to assess

changes in effective viscosity due to crystal-

lization in both the plutonic and volcanic realm

(e.g. Wickham, 1987; Vigneresse, 2008). What is

generally less well known is that this and other

similar expressions (see Table 3) are derived for

dilute or semi-dilute systems where particles

generally comprise <20% of the total suspension

volume, and where single or two-particle interac-

tions dominate. There are in fact several hundred

empirically-derived expressions in the literature

that show through extrapolation from low

concentrations how the relative or effective

viscosity of a suspension might change with

increasing particle (volume or number) content

(Table 3). All seem valid for the case in hand so

why choose one over any other? Is one clearly

better than the rest? Why has ER become the

main choice for geologists who want to model

magmatic processes? Indeed, are any of them any

good when applied to a material as complex as

magma? You know now where the title for this

review came from.

The essence of the problem is this. Suspensions

contain two independent but mutually coupled

parts � the liquid (or melt) phase, also referred to

in engineering treatments of two-phase flow as the

carrier phase, continuous phase, single phase or

solvent, and the solid particles themselves. In a

magma, these will be predominantly crystals of

various size and shape, either precipitated directly

form the melt due to cooling or decompression

effects (Blundy and Cashman, 2001), or entrained

xenocrysts from elsewhere. More often than not it

is a mixture of the two.

Although the types of primary crystals

contained in magma clearly depend on the

initial melt composition, crystal chemistry does

not have a significant effect on overall magma

rheology as the particles themselves are generally

hard (meaning they are essentially undeformable

on short timescales). Crystal shape is important

however, as it impacts directly on the micro-

structure (see below) of the suspension. Other

complicating factors likely to be of local

consequence in the magmatic realm include

surface-tension effects, Van der Waals forces,

the elasticity of particles during collision, grain-

boundary roughness and the presence of thin

thermal or chemical boundary layers surrounding

growing crystals where average melt properties

are likely to differ. Only the effect of particle

roughness on magma rheology will be considered

further. An additional point to bear in mind when

examining different effective viscosity formulae

is that for good reason they are often normalized

to a theoretical maximum packing fraction fmax
(Table 2). However, where magma or lower-

temperature materials such as concrete are

flowing, and particles start to interact with each

other via clumping, jamming or dilation in a non-

constant shear field, the idea of R in equation 6 as

a constant is not well justified. Indeed, this is seen

by some as a serious flaw in predictive models of

suspension rheology (Wildemuth and Williams,

1984).

Finally, we may well ask why it is so important

to pin down as precisely as possible the effective

or relative viscosity of magmas? One practical

reason is to do with the rate of magma transport in

dykes and sills. It is well known that the speed of a

fluid moving in a conduit of half-width w is

inversely proportional to the fluid viscosity. As an

illustration, Table 4 summarizes the range in

FIG. 4. Generalized plot showing the effect of shear

strain rate on suspension (effective) viscosity in a

congested flow. The reduction in viscosity (Z) from an

initial maximum value with increasing shear is a

common characteristic of particle-rich fluids that show

shear-thinning (pseudoplastic, Fig. 1) behaviour. With

increasing shear the viscosity increases to an assumed

steady-state far-field value (Z?).
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relative viscosity predicted from a random

selection expressions listed in Table 3 as a

function of increasing degree of congestion. The

effect of increasing particle loading is clear

(viscosity increases) and the mean flow velocity

will reduce accordingly. However, growing

uncertainty in the value of Z at high particle

concentrations means that calculated flow velo-

cities are highly variable (all else being equal).

Using the median relative flow velocity for each

value of f, an estimate of the overall percentage
drop in velocity from the initial value can be

made. The estimated drop-off in flow velocity is

striking (although not unexpected), as is the large

variation at fixed f. Even if we stick with just ER,
the relative viscosity, and hence the estimated

magma velocity, is rather sensitive to the choice of

(monodisperse) packing fraction used (Table 5).

Effective viscosity and suspension
microstructure

The problem of how to treat the effect of particle

loading on the viscosity of a suspension is not

unique to geology. In the first theoretical investiga-

tion of its kind, Einstein (1906) showed that for

dilute mixtures (f < 0.03) consisting of individual,
smooth, equal-sized particles where the grain

packing is so remote that their motion is effectively

that of a single particle in an infinite fluid, the

effective viscosity (Ze) of the suspension is:

Ze ¼ Z0 1þ 5
2
f

� 	
ð7Þ

This insightful relationship linking particle

content and effective viscosity forms the refer-

ence point from which most subsequent studies of

suspension rheology, both experimental and more

latterly numerical, are based. Many second-order

extensions to equation 7 have been proposed

subsequently as refinements (see for example

Batchelor and Green 1972a,b), and the coefficient

5/2 turns up frequently as an exponent (2.5) in

treatments of concentrated suspensions. However,

for the latter case, simple extrapolation of dilute

systems to model the macroscopic properties of a

suspension as the volume fraction or particle

number density expands is problematic for several

reasons. One is that for dilute systems, second-

order (and higher) refinements fail to capture the

true nature of congested suspensions because the

inevitable interactions between particles during

flow are not accounted for. This is particularly

acute in narrow channels, where dispersed

particles are forced to come very close together

so that particle-particle interactions become

dominant, pointing again to the microstructure

as a fundamental property of congested

suspensions.

In igneous rocks, the suspension microstructure

during flow is preserved (to some degree) in the

final rock texture. Here, good progress has been

made in imaging igneous textures in two- and

three dimensions (e.g. Higgins, 2000; Mock and

Jerram, 2005). The challenge now is to back out

from these geometric data information that can be

used either to model quantitatively the flow of

magma directly, or to cross-check theoretical

models and simulations where the suspension

microstructure can be predicted.

Melt viscosity

A significant difference between modelling

magma as a suspension as opposed to other

geological materials such as sediments or

pyroclastic flows relates to the viscosity of the

suspending liquid or carrier phase (melt). Silicate

melts are complex solutions in their own right

TABLE 5. The effect of a single-valued maximum
packing value on relative viscosity calculated
using ER for a melt viscosity of 1 Pa s.

f Zr (fmax = 0.52) Zr (fmax = 0.74)

0.4 39 6.98
0.45 150 10.4
0.51 19,500 18.6
0.60 ? 64.2
0.73 ? 47,100

TABLE 4. Effect of variable predictions of suspension
viscosity (from Table 3) on percentage reduction in
mean magma flow velocity (constant melt viscos-
ity) in a 1 m wide dyke.

f Z % reduction in relative velocity

0.4 1�18 (0) 80 (94)
0.5 1�35 (0) 94 (96)
0.6 3�40 (70) 95 (97)
0.7 15�1000 (93) 98 (99)
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whose viscosities are strongly dependent on

chemical composition, temperature changes on

cooling (Webb and Dingwell, 1990; Giordano et

al., 2008), and deformation rate which also

induces thermal effects due to viscous dissipation

(Tuffen and Dingwell, 2005; Hess et al. 2008).

Thus, unlike sediments transported in water or air,

where the fluid phase can be treated as a simple

isoviscous fluid, the physical properties of the

melt phase may exert a strong influence on overall

suspension rheology that requires careful consid-

eration. Indeed, for magmas, the melt phase itself

may be non-Newtonian due to polymerization at

high silica contents and/or local gradients in the

concentration of dissolved volatiles. This is just

one reason why magma may rightly be called the

mother of all multiphase problems.

All fluids, irrespective of composition, deform

continuously in response to an applied shearing

stress, some more quickly than others. Thus,

where a large shearing stress is applied to a fluid

and the rate of deformation is rapid, that fluid is

said to have a low dynamic viscosity (sometimes

expressed as the kinematic viscosity which is the

product of the dynamic viscosity divided by the

fluid density). Where the dynamic viscosity of the

fluid is proportional to shear stress divided by the

rate of shear strain, the material is referred to as

Newtonian. This is the most likely general case

for silicate melts at low (dilute) crystal factions

and low gas contents. Another important influen-

cing factor, especially relevant in the volcanic

realm, is the strain rate (Lavallée et al. 2008).

Here, in a further complication, as melt deforma-

tion approaches the melt relaxation timescale,

non-Newtonian behaviour is observed (Dingwell,

1995).

As the viscosities of silicate melts have been

studied extensively over the last four decades, we

will not dwell here in any detail other than to note

one important recent development that has

challenged a long-held notion relating to temp-

erature effects. It is well known that silicate melt

viscosity is temperature dependent and this

behaviour follows a general Arrhenian relation-

ship of the form:

log Z = log A0 + E/(2.0303RT) (8)

(Shaw, 1972). Indeed, until very recently, most

melt viscosity models used this approximation

exclusively (e.g. Scarfe and Cronin, 1986,

Dingwell et al. 1993). However, using datasets

that span a large compositional range, Giordano et

al. (2008) have shown that silicate melts do not

always follow simple Arrhenian behaviour and

that their temperature-dependent viscosity is

better modelled using the Vogel-Tammann-

Fulcher (VTF) viscosity equation:

log Z0 = A + (B/T � C) (9)

where A is a constant independent of composition

and B and C are compositionally adjustable

parameters comprising linear combinations of

oxide components.

Along with temperature, dissolved volatiles

(mostly H2O but also CO2 and other minor

dissolved gas species) can play a significant role

in reducing melt viscosity at fixed temperature and

crystal content. The relationship between melt

viscosity, temperature and H2O is shown in Fig. 5

for a magma (SiO2 56 wt.%), calculated using

equation 9. As expected, both plots show melt

viscosity increasing with decreasing temperature

(Fig. 5a) and H2O content (Fig. 5b). The

combined effects of co-variation in T � X � f
are shown in Fig. 6 where the relative viscosity is

calculated using ER and melt viscosity from

equation 9. Changes in melt viscosity due to

increasing H2O content (Fig. 6a) and temperature

(Fig. 6b) are relatively small compared to the

three orders of magnitude increase in relative

viscosity with particle number, clearly the single

most important determinant in governing overall

viscosity in congested magmas based on predic-

tions using ER.

Congested suspensions

As the concentration of suspended particles

(crystals) is raised above some critical point,

magma rheology may deviate markedly and

abruptly from a simple linear response to

applied stress and strain rate. It then enters a far

more interesting and complex rheology space

where small changes in stress or strain rate can

inflict large changes in flow behaviour. In this

non-Newtonian state, magma is susceptible to a

range of threshold-type behaviours that include

development of a yield strength, particle

jamming, dilatancy and structures formation

including bifurcation, clumping and layering.

We are now in a position to consider how best

to model the complex rheology of congested

magmas. Rather than attempt third-order (and

higher) corrections to the viscosity term as

extrapolated from dilute suspensions, a more

sensible way to proceed might be to tackle the

problem by deriving formulations for the effective

176

N. PETFORD



viscosity of densely packed suspensions directly.

An example of a formula derived explicitly for

concentrated suspensions (04 f 4 fmax is from
Thomas (1965) which contains an exponential

term:

Z = 1 + 2.5f + 10.05f2 +
2.73610�3 exp(16.6f) (10)

but does not include explicit reference to the

viscosity of the fluid phase and as such lacks

utility with respect to the dilute case. For magmas,

where melt viscosity is a key parameter, neglect

of this term renders the formula incomplete.

While this may be acceptable in some engineering

applications, it is not so for magmas. Costa (2005)

proposed a modified form of ER that attempts to

deal explicitly with high particle concentrations.

While successful in capturing some aspects of the

FIG. 6. Contour plots showing co-variation between melt

viscosity, particle concentration (f) and relative viscos-
ity calculated using equation 6. Relative viscosity is

shown as contours, with hottest colours corresponding to

the highest values. Melt composition as in Fig. 5. Read

the plots by matching the change in colour (relative

viscosity) vertically at a given interval of f. (a) Melt
viscosity (equation 9) as a function of T (1 wt. % H2O)

over the interval 900 <TºC<1200. (b) Melt viscosity as a

function of H2O (1�7 wt.%) at fixed T = 1000ºC. The

effect of both temperature and H2O seen through

changes in melt viscosity are minimal in comparison

with the extreme effect of increased crystal loading at

values of f > 0.6.

FIG. 5. Plots showing the relationship between melt

viscosity (Z0), temperature and H2O content calculated

from equation 9 for a basaltic andesite sill from Mt

Theron, Antarctica (data from Leat, 2008). (a) The melt

viscosity drops from ~6 to 2 log Pa s over a temperature

interval of 400ºC (H2O fixed at 1 wt.%). (b) Increasing

the melt water content from 1 to 5 wt.% results in a fall

in melt viscosity from 3.4 to 2.3 Pa s (after Giordano et

al., 2008) http://www.eos.ubc.ca/~krussell/VISCOSITY/

grdViscosity.html.
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relationship between solids fraction and viscosity,

in its original form the Costa (2005) equation

suffered several weaknesses including a tendency

to saturate at high values of f (the result of a non-
linear term in the error function), meaning that the

predicted effective viscosity at high particle

contents reached a plateau value that was

unrealistic. A more recent form, reported in

Caricchi et al. (2007), is:

Z ¼
1þ f

f�

� �d

1� aerf
ffiffi
p

p
f

2af� 1þ f
f�

� �gh in o� �bf� ð11Þ

However, like many other empirically-derived

formulae based on incremental refinements, it is

non-unique. Note that four key variables in the

parameterization, a (range 0�1), d (a track of
increasing effective viscosity with increasing

concentration), f* (equivalent to the maximum
packing fraction) and g a measure of the speed of
rheological transition due to particle loading (not

to be confused with the shear rate) are unknowns

and need to be supplied by experiment. B is the

Einstein coefficient 5/2. In practice, this means

simply that equation 11 can be tuned to fit any

experimental data where the required variables

have been measured, but cannot predict these

values from first principles (see Fig. 8). That is, it

says nothing fundamental about the physics of the

problem.

From engineering, a different approach to

modelling congested mixtures has been proposed

by Torquato et al. (2000), based on the lubrication

limit concept of particle interactions. This limit

dominates when the surface contact distance

between two particles (h) is much less than their

diameter (d) (see Fig. 2). An approximate

expression linking the ratio h/d to the solidosity is:

h
d
¼ ð1� fÞ3

12fð2� fÞ ð12Þ

From equation 12 it is possible to derive an

expression for the effective viscosity of a

suspension based on lubrication theory where:

Z ¼ 3Z0fNc

40
d
h

ð13Þ

and Nc is the number of nearest neighbours in a

‘cell’ of clusterd particles (Davis et al. 2008).

While Nc is the only modelling parameter in the

theory, which was derived for oscillated slurries

(see also discussion section), and it includes

specific reference to fluid viscosity, the ratio d/h is

a major unknown, and in magma is likely to

fluctuate with time not only because of shear

effects but also with crystallization.

Which effective viscosity?

Figure 7 shows mixture viscosity as a function of

particle concentration for both initially dilute and

congested suspensions. Curves (taken from

Table 3) include the popular ER equation and

several others especially relevant to congested

mixtures including those of Thomas (1965) and

Krieger and Dougherty (1959). Similar compar-

isons already exist in the literature (e.g. Rutgers,

1962; Thomas, 1965; Stickel and Powell, 2005)

where the common factor is always the striking

variation and scatter seen in the data at higher

values of f. It is this simple fact � the large

differences between the values of suspension

viscosities at high particle contents � that

makes it difficult to select one single relationship

that best describes the increasing viscosity of a

suspension, magmatic or otherwise. Theoretical

approaches may help, but they again suffer from

several problems, the most fundamental of which

is the determination of the microstructure during

shear. This requires solution to the hydrodynamic

equation for many-body interactions and other

forces such as particle lubrication. Perhaps the

FIG. 7. Compilation plot of selected effective viscosity

equations. Individual curves show a similar rapid

increase in viscosity with increasing volume fraction

of suspended solids (0 < f < 0.3) but collectively

diverge where f > 0.4.
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biggest hurdle to developing a complete (quanti-

tative) description of suspension flow is that the

microstructure cannot be specified a priori and

must instead be recovered directly from the

analysis. As the microstructure determines the

macroscopic flow behaviour, could this be done

then the effective viscosity (and other relevant

parameters including permeability, etc.) would be

known for certain. Numerical simulation of the

many-particle problem holds most promise here

(e.g periodic lattice models) and Stokesian

dynamics simulations (Brady and Bossis, 1988).

Interestingly, these authors found that a bimodal

microstructure comprising a random distribution

of larger and smaller particle sizes resulted in

lower effective viscosities at large particle

concentrations when compared to monodisperse

systems. This situation is more comparable with

magmas (Fig. 3) where a range in crystal size

distributions is the norm. One tantalizing conse-

quence is that the effective viscosities of magmas

as bimodal suspensions may be lower than those

estimates based on monodisperse spheres (see

also Spera, 2000). If so, then crystal-rich magmas

may actually be more fluid at higher crystal

contents (where the fluidity is expressed as 1/Ze)

than the curves in Fig. 7 would suggest. Clearly,

more work is needed on the rheology of bimodal

suspensions to make sure the viscosity values as

applied to magma are not overestimates. Also, by

recourse to Table 3 and Fig. 7, an approach that

attempts to optimize the problem through a

systematic analysis of the key variables control-

ling magma viscosity and their co-relationships

(melt viscosity, volatile content, temperature,

shear-rate and particle concentration and size

distribution) may also shed light on which

effective viscosity model, ER or otherwise, best

captures the rheology of deforming magma where

variables are constrained by experiment (Picard et

al. 2008).

In summary, it appears that even those

expressions derived directly from initially

congested mixtures appear to lack the sophistica-

tion required to capture fully the rheology of

magma during shear, either because they cannot

account for gradients in melt viscosity, shear

dependency, or both. One is drawn to the

conclusion that an empirical, ‘top down’ approach

to the problem will only ever result in incremental

refinements and that a new approach that tackles

the problem at a fundamental ‘bottom-up’ level is

needed.

Towards a temperature- and shear-dependent
magma viscosity

As a first step towards deriving a more complete

description of the temperature- and shear-rate-

dependent viscosity of magma, the following

analysis is offered. It is fully acknowledged that,

by default, its empirical base renders it approx-

imate at best. We begin with ER as an initial start

point as it incorporates the necessary reference to

melt viscosity (Z0). As shown in Fig. 5, this term
can be approximated independently as a function

of T and X using equation 9. The next step is to

accommodate the effects of an evolving micro-

structure as shear commences, i.e. to move away

from a single valued maximum packing fraction

(R) and derive an expression where the relative

viscosity is itself a function of shear stress. To this

end, Wildemuth and Williams (1984) proposed

the following relationship for a shear-dependent

maximum packing fraction:

FIG. 8. Graph showing the effects of shear stress (t, Pa)
on relative viscosity where the maximum packing

fraction (fmax) is shear-rate dependent, predicted from
equation 15. In this example, increasing the shear stress

allows the suspension viscosity to remain finite between

the limiting values fm0 = 0.55 and fm? = 0.7. Within

these limits, shear stress only exerts an influence at low

values (up to 500 Pa), above which the suspension

viscosity becomes insensitive to this parameter. Other

variables in the model are Z0 = 1 Pa s, A = 1, m = 1. Also
shown for comparison is a modified Costa (2005) curve

(see equation 11) using experimentally-derived values

for low-melt-fraction rocks (from van der Molen and

Paterson, 1979) where a = 0.999918, f = 0.673, g =
98937, d = 16.9386; B = 2.5.
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fmax ¼
1

fm0
� 1

fm0
� 1
fm1

� 	
1

1þ At�m

� 	� ��1

ð14Þ

where fm0 and fm? are limiting values relating to

the maximum packing value and t is the shear
stress. The final step is to combine these

descriptions to form a single equation such that

Zr = f(f,Z0,Dfmax,t or _gg). This has been done by
substituting equation 14 into equation 6 to give

the following expression of relative viscosity:

Zr ¼ Z0 1� f
fm0 þ At�mfm1

fm0fm1ð1þ At�mÞ

� 	�2:5

ð15Þ

that retains the original ER melt viscosity term

but where R in equation 6 is now replaced by

fmax that is shear-dependent. At this time, the
values of A and m are unknown for magmas and

require validation by experiment, but from work

on low-temperature suspensions m > 0 and 0.6 <

A < 33 Pa (Wildmeuth and Williams, 1984). An

example of how equation 15 works is shown in

Fig. 8. Here, the effect of increasing shear stress

(0�500 Pa) on relative viscosity where the

packing fraction fmax is now an interval

between the low and high shear limits fm0 and

fm? respectively, is seen. By allowing for limited

changes in particle microstructure during shear,

the suspension continues to flow until a terminal

packing volume fM is reached. It also points to

the existence of a gradient in effective viscosity in

magmas flowing in parallel-sided conduits. It is

noteworthy that from the parameters used in the

formulation, the greatest effect is where the shear

stress is relatively low (<500 Pa), after which the

shear-dependency effect becomes insensitive to

further deformation. In simple conduit flow, shear

stress is highest at the walls and tends to zero in

the centre of the flow. From Fig. 8 it would thus

appear that the mid-part of the flow, away from

the walls where the magnitude of the shear stress

is finite but non-zero, would contain those regions

of magma most sensitive to shear-induced

changes in maximum packing fraction.

Discussion: magmas as high-temperature
slurries

This section of the review is more open ended and

speculative. Its purpose is simply to raise

awareness of ideas arising from the study of

congested suspensions (dense slurries) that are

beginning to make headway in the granular and

micromechanics literature. Despite their potential

relevance, the concepts of particle pressure and

migration, jamming, force chains and clustering

have yet to make a significant impact in the field

of magma rheology. It may be that these ideas are

not considered widely relevant, or that their

technical nature, of which a flavour is given

below, is off-putting. However, for those like me

who view magmas as exotic, high-temperature

slurries, they have much to offer. One potential

obstacle in thinking about magma as dynamic,

multiphase fluid is that petrologists have, with

good reason, stuck close to the rules of

equilibrium thermodynamics of phase equilibria

and nucleation in seeking to explain the origin of

complex and sometimes contradictory field

relationships preserved in igneous rocks.

However, from a purely mechanical perspective,

non-equilibrium behaviour during flow and

transport of congested magma is not only

expected, it provides an internal constraint with

potential to reveal new and unexpected insight.

Magmatic layering in the Basement Sill,
Antarctica

The Basement Sill is a ~300 m thick intrusion that

forms part of the Ferrar dolerite Large Igneous

Province exposed in spectacular detail in the

McMurdo Dry Valleys, Antarctica. The system

comprises a vertical stack of four interconnected

sills linked to surface flows of the Kirkpatrick

flood basalts. The lowermost intrusion, the

Basement Sill, offers unprecedented exposure

through a remnant magmatic slurry consisting of

abundant orthopyroxene (opx) phenocrysts

(Fig. 9) and showing well developed mesoscale

rhythmic layers of plagioclase. The overall

geometry of the axially confined slurry is

tongue-like, with the sill margins relatively

aphyric (Marsh, 2004). Critically, the nature and

degree of exposure allows petrographical and

structural observations to be made that have

bearing upon flow rheology and emplacement.

These include those variables set out in equation 1

(grain size, grain roughness, number density,

particle mass density and estimated fluid proper-

ties of the carrier phase), in this case basaltic

silicate melt preserved in the chilled margin of the

sill. We thus have all the ingredients needed to

apply some key aspects of the theory of dense

suspension flow to the transport and deformation

of congested magma.
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The particle Reynolds and Péclet numbers

(equations 3 and 4) provide an entry point (e.g.

Sumita and Manga, 2008). By supplying

appropriate values for crystal size (d = 1 mm),

melt viscosity (Z0 = 1 Pa s), temperature (1500
K), melt density (r0 = 2700 kg/m

3) and shear rate

( _gg = 0.1 s�1) obtained from a numerical model

for the emplacement of the Basement Sill

(Petford and Marsh, 2008), both the dimension-

less particle Reyonlds (Re _gg) and Péclet (Pe _gg)

numbers can be obtained. For the above

parameters we get Re _gg ~3610
�4 and Pe _gg =

961010. For comparison, using the same

variables but with water as the liquid phase and

a particle size of 0.1 mm, gives Re _gg ~10
�3 and

Pe _gg ~105. These large differences in the

numerical value of the dimensionless numbers

reflect the important role of particle size and

carrier phase viscosity in their formulation.

Critically, for suspensions to behave as non-

Newtonian fluids and exhibit time-dependent

behaviour (e.g. shear thinning or shear thick-

ening) � important flow transitions that govern

the onset of macroscopic structure development

� shearing forces must be capable of deforming

the particle microstructure. This happens where

Re _gg O(1) (Zapryanov and Tabakova, 1999).

Based purely on dimensional analysis, suspen-

sions are also generally shear-thinning where Pe _gg
>> 1. Shear thinning comes about in congested

slurries where the particles arrange themselves

into layers generally parallel with the mean flow

direction. This phenomenon has been observed

both experimentally and in computer simulations

(Stickel and Powell, 2005). Shear thinning

comes about in the suspension due to changes

in the microstructure, which evolves progres-

sively to a more ordered state with increasing

shear rate. This disorder�order transition is

manifest as layering, aligned generally in the

flow direction (Foss and Brady, 2000). The

relationship between Re _gg, Pe _gg and melt viscosity

FIG. 9. Photo montage from the central region of the Basement Sill, Antarctica showing the nature of the densely

packed, granular OPX tongue (insert) and rhythmic layering defined by thin bands of plagioclase (main picture). The

layering may reflect particle-fluid segregation during shear thinning accompanying high particle Péclet number flow.

If so, the layering is a primary feature related to magma emplacement as opposed to post-emplacement

crystallization processes.
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appropriate for a wide range of magma

compositions is shown in Fig. 10.

By extension, the large Péclet numbers derived

for the Basement Sill imply that during flow, the

opx tongue magma slurry was, for part of its

history just prior to cooling, flowing as a shear-

thinning fluid characterized by the development of

layering (Fig. 9). The origin of igneous layering

and the controversies surrounding it need no

introduction (e.g. Wager and Brown, 1968), but

whether formed by magmatic sedimentation or

fluid processes, most commentators agree that its

development depends on protracted cooling, slow

crystallization and the action of gravity on the

component parts (e.g. Wadsworth, 1985).

However, once magma in the Basement Sill had

stopped flowing it would have cooled below its

solidus in ~1 y (Marsh, 2004). Yet it still displays

many of the classical features seen in much larger

layered igneous intrusions (see Parsons, 1987).

Perhaps then the observed layering is a direct

manifestation of the shear-thinning effect in high

Pe number fluids? The reduction in effective

viscosity brought about by a disorder�order
transition in the opx grains comprising the particle

microstructure (Foss and Brady, 2000) would

allow the congested magma to continue to move

freely, providing a critical shear rate was

maintained. The link between grain-scale segrega-

tion effects and macroscopic structures formation

in the flow can now be made. Based on the

analysis presented above and the short timescales

to solidification, the tentative conclusion drawn is

that the plagioclase-rich layers are a primary

segregation feature that formed due to flow and

shear of the magma and then frozen in during

cooling. A similar explanation could apply equally

well to other layered intrusions.

Shear-aided particle migration

A common observation from field studies of sills

and dykes is the concentration of crystals towards

the centre of the intrusion (e.g. Philpotts, 1990).

This is generally referred to in petrology literature

as flow differentiation or flow segregation (e.g.

Komar, 1972; Best and Christiansen, 2001) and is

widely recognized as a consequence of emplace-

ment of crystal-rich magma. However, the

physical process responsible for the phenomena

has remained unclear. A similar effect is seen in

industrial slurries. For example, it has been

observed in both physical (Happel and Brenner,

1965) and numerical experiments on pipe flow

(Nott and Brady, 1994), that the particles migrate

towards the centre of the pipe, that is, the region

where the shear rate is least (e.g. Koh et al. 1994;

Krishnan et al. 1996). In continuum theories of

migration dense suspensions either a diffusive

formulation (Leighton and Acrivos, 1987), or a

particle-pressure formulation, McTigue and

Jenkins (1992), may be used. The latter theory

employs a particle pressure derived from the so-

called granular ‘temperature’, a scalar quantity

that is a measure for the fluctuational motion of

the particles in the flowing mixture. The necessity

FIG. 10. Plots showing the relationship between melt viscosity, ranging over eight orders of magnitude, log shear

strain rate ( _gg) and the dimensionless particle Reynolds (Re _gg) and Péclet (Pe _gg) numbers as defined in equations 3 and

4 with d = 1 mm, r0 = 2700 kg/m
3, and T = 1500 K. (a) Re _gg decreases with increasing shear strain rate and

increasing melt viscosity. Colour bar shows changing Pe _gg number. (b) Pe _gg increases with increasing shear strain rate

and melt viscosity. Colour bar shows changing Pe _gg.
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of fluctuations is obvious in dense flowing

mixtures in shear as no interacting particle pair

can persist in a linear path; they need to avoid one

another (see Fig. 2).

The theory requires a balance equation for the

fluctuational energy. This balance equation is

coupled to a Fourier-type ‘granular heat’ equa-

tion. The physical concepts behind the theory are

therefore quite similar to those of a dense gas, see

Chapman and Cowling (1990) and also to those of

dry dense granular flow (Jenkins and Mancini,

1989; Gidaspov, 1994). The key particle stress

parameter is obtained from a presumed asym-

metry in the approach and departure of particle

pairs; the particle pressure is then proportional to

the root of the granular temperature. The bulk

fluid motion is not considered, but may be added

by phenomenological means as a refinement.

Boundary conditions for the slip velocity of

particles and the granular heat flux at the solid

boundary are also required. The latter have been

derived for a smooth boundary (McTigue and

Jenkins, 1992), but not for rough boundaries, a

more realistic natural situation where magma is

flowing in dykes and sills with irregular walls. A

solution to this problem was obtained for the first

time by Petford and Koenders (1998) for granitic

magmas flowing vertically in a dyke. They

showed that the accompanying fluctuation in

velocity intensity resulted in a granular velocity

fluctuation intensity that was greatest closest to

the dyke walls, as expected from theory. The

outcome supports the notion that high granular

‘temperatures’ are obtained near the dyke walls,

while low ones appear at the centre, thus allowing

diffusion of suspended crystals towards the axis of

the conduit (see also Petford, 2003). Specimen

results are shown in Fig. 11 for three initial

solidosities (f) of 10, 20 and 25%. While various
aspects of the theory need further investigation,

verification and refinement (as shown by Shapley

et al. (2002), a key assumption is the isotropy of

the granular temperature), the final position-

dependent solidosity is greatest at y = 0 (the

dyke centre). A further measure of the ability of

the flow to settle into a solidosity distribution is

given by the Bagnold number (Bg), defined

experimentally (Bagnold, 1954) as:

Bg ¼ rd2 ffiffiffiffi
f

p

Z0
_gg ð16Þ

The Bagnold number gives an impression of the

ratio of collisional to viscous forces in a sheared

suspension and is useful in distinguishing between

macroviscous and grain inertia domains, with the

caveat that in the original experiments, only a

single particle size was used.

Table 6 shows the order of magnitude vales of

the Bagnold number for three different types of

magma, defined by their dynamic viscosity and

flowing at a constant shear rate of 0.01 s�1. The
small values (<<1) even at high packing contents

imply that viscous forces dominate. According to

Iverson (1997), Bg < ~40 defines the macro-

viscous regime while Bg > ~450 indicates

collision-dominated flow. In comparison with

more classical inertial-type theories for dry

granular flows, the low Bg number approxima-

tions point to viscous forces (interstitial fluid

viscosity) playing a dominant role in governing

inertial effects in magmas, reflecting the lubrica-

tion theory scaling factor Z0d/h (McTigue and

Jenkins, 1992).

Particle pressure

The particle migration effects described above are

associated with some form of partial stress in the

FIG. 11. Simulation plot showing the final position-

dependent concentration of particles (f) in the cross-
stream direction (y) of a flow with three initial average

particle concentrations of 10, 20 and 25%. Maximum

concentrations in the centre of the flow (y = 0) range

from 45 to 80%, indicating that particle migration (flow

differentiation) has occurred in the simulation (from

Petford and Koenders, 1998).
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solid suspension phase. The concept of a particle

pressure in a dense slurry was introduced by

McTigue and Jenkins (1992). It arises when there

is the possibility of net momentum transfer due to

an asymmetry in the particle-particle interaction,

in other words if approaching particles and

departing particles do not sense equal-magnitude

(opposite sign) forces. The nature of this

symmetry-breaking effect relates to particle

roughness (see p. 185). The total stress in a

dense slurry (sij) is a function of the intergranular
stress and the fluid stress (t̄ij):

sij = �p̃ijd + t̄ij (17)

where p̃ is the particle pressure:

p̃ = a4Z0
d (fx)HT (18)

It is the particle pressure that makes a dense slurry

different from a fluid (e.g. He et al., 2001). The

particle pressure can lead to a fluctuating effective

viscosity through a time-dependent microstruc-

ture, governed overall by the rate of shear. It has

been shown recently that for densely packed

suspensions, in addition to collisions, the stiffness

is solidosity and stress-dependent and in an

oscillated slurry the fluctuations in the strain and

the fluctuations in the solidosity correlate in such

a way as to give a non-vanishing mean value. This

is a quadratic effect, proportional to the square of

the solids’ velocity fluctuations, but the coupling

constant to the quadratic term is large, so that

even for small fluctuations (corresponding to

strain amplitudes of less than say 0.1) a

substantial effect may be expected (e.g. Davis

and Koenders, 2006).

Oscillating suspensions

Even if the particles experience enduring solid

contacts during the agitation the intergranular

forces are asymmetric due to frictional effects

(Santra et al. 1996; Rosato et al. 2002). Therefore,

in densely packed assemblies at low isotropic

stress there will also be a particle pressure

associated with oscillation. In a recent paper by

Davis and Koenders (2006), these mechanisms

are described; a mechanism including the making

and breaking of contacts in the granular matrix is

also included.

The collisional effect contributes to the

intergranular stress particle pressure that can be

written with a different formulation from that of

equation 18 such that the particle pressure is

proportional to the magnitude of the velocity

gradient amplitude |qṽ/qy|. In this case p̄ has the

form:

�pp ¼ cZ0
@~vv
@y

����
���� dh ð19Þ

where c is a coefficient of order of magnitude

0.1�0.8. Details of this theory are described in
Jeffrey and Onishi (1984). Recently, Davis et al.

(2008) applied the concept of particle pressure in

oscillating slurries to the magmatic realm. Here it

was shown that magma excited by earthquake

activity would respond by partially fluidizing a

dense crystal mush at base of a magma chamber

on a timescale of seconds. A corresponding

instantaneous decrease in pressure in the melt

phase would result in in situ bubble formation and

potential large-scale destabilization of the mush.

The excess pressure due to new bubble formation

in the magma after the earthquake provides a

mechanism for promoting chamber-wide

instability through over-pressurization of the

magma. If the mush represents a cumulate layer,

then large-scale disruption of the layer might be

expected, similar to the deformation of wet

sediments during seismic loading (e.g. Sumita

and Manga, 2008). The resulting structures could

include melt pipes and channels, disrupted

layering and synmagmatic microfaulting. All

these features have been described in some form

from layered igneous intrusions around the globe

(Parsons, 1987). Perhaps more significantly,

segregation in oscillated slurries is near-instanta-

neous, providing a novel mechanism for

extracting trapped intercumulus melt from the

crystalline matrix.

TABLE 6. Bagnold number (Bg) for selected magmas,
terrestrial and planetary with a grain size = 1 mm
flowing in a channel 1 m wide. The low values of
Bg imply that viscous forces dominate during flow.

Basalt (Z0 = 10
1 Pa s) Bg

f = 0.0555 5.9610�7

f = 0.7405 2.1610�6

Rhyolite (Z0 = 10
5 Pa s)

f = 0.0555 5.9610�11

f = 0.0745 2.1610�10

Cryomagma (Z0 = 10
�1 Pa s)

f = 0.0555 3.5610�5

f = 0.7405 1.29610�4
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Rough particles and cluster formation

In papers by, amongst others, Davis (1992), Zeng

et al. (1996), Da Cunha and Hinch (1996) and

Patir and Cheng (1978), it has been shown that the

particle-particle interaction in a Newtonian fluid

for rough particles (that is, spherical particles with

asperities) is such that the particles may touch.

The lubrication force is therefore finite as h ? 0.

In the real world, crystals in magmas often have

asperities; therefore, in order to describe realistic

flow, some way of accommodating particle

roughness and their hydrodynamic interactions is

required (see Jenkins and Koenders, 2005). When

particles touch they come together at a finite

relative velocity; on impact a collision takes place,

necessitating the consideration of two solid bodies

in interaction. The latter introduces an asymmetry

between incoming and outgoing force between a

particle pair, which leads to the transfer of

momentum during an interaction that produces

particle stress. One consequence of an interactive

force that is finite is that clusters of groups of

particles can be created that move together like a

‘super particle’. The implications of ‘super-

particle’ formation on the macroscopic flow

properties and rheology of magma remain to be

explored. However, the idea is not so different

from that proposed to account for layering in

crystallizing magma chambers where clusters of

crystals, as opposed to individuals, overcome

density constraints and sink or float accordingly

(Wager and Brown, 1968).

Jamming

Recent work by Cates et al. (1998) on sheared

granular materials has shown that the close

packing of congested particles can result in a

local increase in rigidity referred to as jamming.

However, sheared suspensions cannot become

permanently jammed, and sudden changes in

shear stress can produce non-equilibrium transi-

tions from solid to fluid-like states. Suspensions

showing this kind of behaviour are referred to as

fragile, and it is tempting to conjecture that highly

congested (locally rigid) magmas undergoing

shear behave in an analogous fashion. Again,

such transitional behaviour introduces new levels

of time-dependent complexity that are extremely

difficult to deal with quantitatively in macro-

scopic treatments of suspension flow. Ultimately,

all natural magmas will ‘jam’ due to cooling and

crystallization. But the fact that during flow, the

packing density of the microstructure may

fluctuate rapidly and unpredictably between

solid- and fluid-dominated states may help

explain often contradictory field relations

observed for example during magma mingling

(e.g. Fernandez and Gasguet, 1994; Hallot et al.,

1996) where ductile and brittle behaviour appears

to have occurred simultaneously on small

lengthscales (Fig. 12).

Reynolds dilatancy

Dilatancy in granular materials (Reynolds, 1885)

can be thought of as the reverse of jamming.

Instead of particles clustering closer together

during shear, they move apart from each other.

The resulting volume expansion (Reynolds

dilatancy) is a curious and still poorly understood

effect that is nonetheless an intrinsic feature of

congested suspensions that reasonably include

magmas (e.g. Mead, 1925; Petford and Koenders,

2003). Note that Reynolds dilatancy is not the

same as the reversible shear-thickening behaviour

shown in Fig. 1 and the situation envisaged here

is one where magma is now mostly at rest and has

started to develop a rheology typical of solidifica-

tion fronts in cooling intrusions (Marsh, 1996).

The role of Reynolds dilatancy is to make new

pore space available for the pore fluid, in this case

viscous silicate melt. In deforming magma, the

FIG. 12. Triangular-shaped microdioritic enclave in pink

granophyre host showing apparent simultaneous brittle

and ductile rheology, with knife sharp left and right side

margins (brittle failure) and a cuspate ‘base’ indicative

of viscous mingling. This large rheological contrast on a

small spatial scale may reflect abrupt changes in rigidity

around a critical particle-melt threshold (jamming) in

both enclave and host magma in response to an applied

strain (Elizabeth Castle, Jersey, Channel Islands, UK).

WHICH EFFECTIVE VISCOSITY?
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effect of dilatancy is to reduce the intergranular

pressure so that fresh melt is sucked into the

expanding microstructure. In static magma under-

going cooling and crystallization, dilatancy will

draw melt from the surroundings into the

solidification front (for rheological definitions of

static magma see Marsh, 1996). For essentially

static magma this idea is not new. Emmons

(1940) recognized that dilatant rifting of a dense

crustal mush would draw melt into the voids in a

process later referred to by Carmichael et al.

(1974) as ‘autointrusion’. A comprehensive

analysis of Reynolds dilatancy and its implica-

tions for magma chamber processes is given in

Petford and Koenders (2003), Koenders and

Petford (2005) and Koenders and Petford (2007)

for both pure and simple shear, based on an exact

analytical solution to Biot’s equations, modified

to include dilatancy. The dilatancy phenomena at

high temperatures has been observed experimen-

tally in sheared metal alloys (Gourlay and Dahle,

2007) and more tentatively in high-PT deforma-

tion studies of silicate-FeS mixtures (Fig. 13).

Other petrological consequences of shear-induced

dilatancy in magmas with well-developed solidi-

fication fronts include the local suspension of

non-buoyant crystals due to melt flow, particle

rotation (fabric alignment), melt segregation pods

comprising evolved liquid (Marsh, 2004) and

local resorbtion and irregular zoning in crystals

(Petford and Koenders, 2003).

Cryomagmas

Thus far we have focused exclusively on high-

temperature silicate systems. However, low-temp-

erature forms also exist, and despite their exotic

nature, this class of materials should behave in an

analogous fashion during shear. While little is

known at present about the rheology and flow

properties of cryomagmas (Lewis, 1972; Kargel et

al., 1991; Mitchell et al. 2008), there is growing

evidence that the icy satellites of Jupiter, Saturn and

Neptune (Europa, Ganymede, Enceladus, Titan,

Triton) have undergone periods of resurfacing in

the recent geological past and may be cryomagma-

tically active today (Manga and Wang, 2007; Mitri

et al. 2008). Table 6 suggests that despite the low

viscosity of the carrier phase (a mixture of water Z

ammonia), shear of particle-rich cryomagmas will

be dominated by viscous forces (Petford, 2005). It

is thus not unreasonable to suspect that many, if not

all, of the processes and structures seen preserved in

silicate rocks � including magma mixing � will

also be present in volcanic and plutonic cryo-

magmas. That said, field verification may not be

immediately forthcoming.

Summary

This review has addressed some of the problems

currently hindering a more complete development

of the physics underpinning magma rheology.

While much progress has been made in under-

standing the viscosity of the carrier (melt phase),

uncertainty still remains about how best to

characterize the effective viscosity of highly

concentrated suspensions, magmatic or otherwise.

Numerical techniques for simulating multiphase

flows that require computation of particle and

fluid trajectories simultaneously and iteratively,

are still in a relatively unadvanced state. The

majority of empirical expressions that predict

changes in the effective or relative viscosity of

suspensions with increasing particle content have

been developed by engineers on systems where

the liquid viscosity is small (generally water or

oil) and the particle size is also small (microns)

and monodisperse. While deeply instructive, it is

not yet clear how well their predictive, ‘top-down’

power holds up when translated into the realm of

igneous geology where the viscosity of the melt

FIG. 13. Reynolds dilation. Section from a melting-

deformation experiment (D-DIA, strain rate

6610�4 s�1, T = 1250ºC, P = 3 GPa) showing FeS

melt (light grey) frozen into polycrystalline alumina

pistons used to shear the sample (powdered olivine-FeS

mix) located at the bottom of the picture. The texture is

interpreted to show liquid FeS sucked out of the

deforming sample and into the partially dilating piston.

Similar textures preserved in igneous rocks may have an

equivalent origin.
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phase is temperature and rate dependent and the

crystalline phase is non-uniform in size.

Using the well known Einstein Roscoe equa-

tion, a new expression for predicting the relative

viscosity of magma has been derived that makes

some allowance for changes in the particle

microstructure during shear. Initial results

suggest that the analysis has predictive power

where limiting values of particle packing fraction

at low and high shear are known or can be

approximated. Shear strain and its influence on

microstructure development is also a key para-

meter in controlling high permeability pathways

during the ascent of bubble-rich magma in

volcanic conduits (e.g. Gonnermann and Manga,

2003; Okumura et al. 2008). A key future goal in

developing a more complete understanding of

magma rheology will be to link the development

of particle microstructure in a temperature

dependent carrier phase with the macroscopic

flow behaviour. This upscaling will require a

much better understanding of particle-particle

interactions at the grain and cluster scale and

how potential feedback mechanisms are asso-

ciated with processes of jamming and dilatancy.

Further complications arising due to interactions

between particles and walls, and when phase

changes take place in the carrier fluid, also require

attention.

From a field perspective it may be useful to

think of magma as a class of high-temperature

slurry. At high crystal loads (0.4 < f < 0.7), a

migration effect is expected during shear arising

from fluctuations in particle velocity, resulting in

flow differentiation. A further consequence of

shear in dense magmatic suspensions at high

particle Reynolds numbers is a processes of

structures formation (alternating particle-rich

and melt-rich bands) that have the potential to

be preserved as igneous layering. Other mechan-

ical instabilities, including clumping, jamming

and dilatancy, can also be expected to influence

the macroscopic flow properties that translate into

fluctuations in velocity and associated thermal

effects. Despite all this, conclusions drawn from

uncritical application of fluid dynamical equations

for suspension flow are unlikely to tell the full

story. Indeed, for magmas, where the carrier

phase viscosity is high (Z0 >>1 Pa s) and particle
diameter large (d > 1 mm), the high Schmidt

numbers (Sc > 107) indicate by recourse to

conventional theory that flow may remain

Newtonian over a larger window of shear rates

that would be the case for low-temperature, low-

viscosity suspensions. A move from incremental

refinements of phenomenological effective visc-

osity models to one that deals with the problem

from first principles is needed. Computer simula-

tions that take a ‘bottom-up’ approach using ab

initio molecular dynamics simulations first

proposed by Heyes et al. (1980) may show the

way.
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