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Abstract

Time series forecasting has a long track record in many application areas. In forecas-
ting research, it has been illustrated that finding an individual algorithm that works
best for all possible scenarios is hopeless. Therefore, instead of striving to design
a single superior algorithm, current research efforts have shifted towards gaining a
deeper understanding of the reasons a forecasting method may perform well in some
conditions whilst it may fail in others. This thesis provides a number of contribu-
tions to this matter. Traditional empirical evaluations are discussed from a novel
point of view, questioning the benefit of using sophisticated forecasting methods
without domain knowledge. An own empirical study focusing on relevant off-the-
shelf forecasting and forecast combination methods underlines the competitiveness
of relatively simple methods in practical applications. Furthermore, meta-features of
time series are extracted to automatically find and exploit a link between application
specific data characteristics and forecasting performance using meta-learning. Fi-
nally, the approach of extending the set of input forecasts by diversifying functional
approaches, parameter sets and data aggregation level used for learning is discussed,
relating characteristics of the resulting forecasts to different error decompositions for
both individual methods and combinations. Advanced combination structures are
investigated in order to take advantage of the knowledge on the forecast generation
processes.

Forecasting is a crucial factor in airline revenue management; forecasting of the
anticipated booking, cancellation and no-show numbers has a direct impact on gene-
ral planning of routes and schedules, capacity control for fareclasses and overbooking
limits. In a collaboration with Lufthansa Systems in Berlin, experiments in the the-
sis are conducted on an airline data set with the objective of improving the current
net booking forecast by modifying one of its components, the cancellation forecast.
To also compare results achieved of the methods investigated here with the current
state-of-the-art in forecasting research, some experiments also use data sets of two
recent forecasting competitions, thus being able to provide a link between academic
research and industrial practice.
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Introduction

Going beyond the well-known daily weather forecast, forecasts can be found in a wide
variety of scenarios. Forecasting stock prices and exchange rates is common practice
in finance as, for example, investigated in Gyorfi et al. (2006) and Kodogiannis &
Lolis (2002). Forecasting variables like gross national product or unemployment is
crucial for macroeconomics, for a recent example see Marcellino et al. (2006). As
demonstrated in Weatherford & Kimes (2003) and Koutroumanidis et al. (2009),
companies of all sizes use forecasts to predict demand for their products to support
planning and decision-making. The lead time for decisions can vary significantly
depending on the application; electrical load applications as described in Hippert
et al. (2005) may require forecasts every few seconds while a few days are usually
sufficient for transportation and production schedules as, for example, investigated
in Cox Jr & Popken (2002). In the case of long-term investments based on macroe-
conomic data as used by Stock & Watson (2002), lead time can even amount to
several years.

In general, forecasting describes a broad research area concerned with estimation
of future events or conditions. According to Makridakis et al. (1998), forecasting
approaches can be roughly divided into qualitative and quantitative models. Qua-
litative models assume sufficient knowledge of an underlying process and are often
experts’ judgements. Experts usually base their opinion on different sources of in-
formation, their intuition and subjective beliefs that cannot be easily quantified.
The focus of this thesis however lies on quantitative forecasting, which mainly in-
volves automatic prediction of numerical data. The data examined here consists of
univariate sequences of data points, so called time series, that are investigated for
regularities and patterns in their past to extract knowledge that can help to predict
the future. In addition to looking at data sets publicly available from forecasting
competitions, data has been provided by Lufthansa Systems Berlin GmbH (LSB),
allowing an investigation of forecasting approaches in the industrial setting of the
airline industry.

This chapter will give background information and motivations for this work.
It will start to set the scene for the airline-specific part of the thesis by describing
the importance of forecasting in the context of airline revenue management. It
will continue to introduce the area of time series forecasting in general, including
a brief look at forecast combinations and meta-learning, which are major topics in
this thesis. The definition of aims and objectives as well as a description of the
organisation of the thesis follow in the next sections. An overview of the original
contributions and a list of publications conclude the chapter.




CHAPTER 1. INTRODUCTION

1.1 Background and motivation

A considerable part of the work presented in this thesis has been carried out in
collaboration with Lufthansa Systems Berlin GmbH, a company providing revenue
management software for airline carriers. The products the airline industry offers are
seats on a plane which, contrary to the perception on first sight, do not only differ in
being in the physically separated first or second class. Pak & Piersma (2002) rather
describe it as a complex system of fareclasses that differ in various conditions, like
refund availabilities, cancellation options or stopover arrangements. Customers can
roughly be separated in two groups according to Zeni (2001): business and leisure
passengers. While business passengers usually seek to make travel arrangements
shortly before departure with little flexibility, leisure passengers tend to book their
tickets well in advance while being more flexible with dates and booking conditions.
In addition, business passengers are usually willing to pay a higher price for their
tickets, thus contributing to more revenue than a leisure customer. The key to
efficient capacity control is the determination of the point in time when it is beneficial
to restrict bookings in a lower-fare class to leave space for later booking high-fare
customers. This is of both economical and ecological interest, producing a higher
revenue for a high demand flight and fewer unoccupied seats in a low demand one.

Accurate forecasting of anticipated booking, cancellation and no-show numbers
is vital for revenue management. If the demand forecast of high-fare passengers
is too high, seats go empty that could have been sold to low-fare passengers. On
the other hand, if it is too low, passengers willing to pay a higher fare have to be
turned away. Revenue management and forecasting do however not only support
the decisions that have to be made on a daily basis, but also provide key information
for strategic long-term decisions such as which itineraries to offer or how to change
the size of the maintained fleet, see Zaki (2000).

Historic booking and cancellation numbers constitute time series, which might
include valuable information for forecasting the future. Time series forecasting has
been a very active area of research since the 1950’s, and a variety of forecasting
approaches have been introduced in the scientific literature and were used in many
practical applications. Available forecasting algorithms can be roughly divided into
a few groups: simple approaches are often surprisingly robust and popular, for
example those based on exponential smoothing. Statisticians and econometricians
tend to rely on complex ARIMA models and their derivatives, while the machine
learning community mainly looks at neural networks. A review can be found in
Gooijer & Hyndman (2006).

A few years after the first publications in the area of time series forecasting,
research on combinations of forecasts became popular as well, with the seminal pa-
per having been published by Bates & Granger (1969). It divided the community
into researchers who believe that combinations are a great approach to decrease
the risk of selecting the wrong individual model and better approximating a real
world time series, and others who think that if a combination outperforms indi-
vidual methods, it is only an indication of an individual method requiring better
specification. However, especially in machine learning, combinations of methods
have proven successful. As summarised in the review of Timmermann (2006), the
choice of combination methods is extensive. Very simple methods average available
individual forecasts with or without a certain degree of trimming, others take past
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performance into account in different ways for calculating linear weights. Nonlinear
forecast combination methods do exist, but literature seems comparatively sparse.

During the years, more focus has been put on the question of when a particular
forecasting method works well. Promising work has been published on linking cha-
racteristics of time series to the performance of a forecasting algorithm, first mostly
in the context of rule based systems as, for example, in Adya et al. (2001). More
recently, the term “meta-learning” was adopted from the machine learning commu-
nity, accommodating a wider range of learning methods as described in Prudencio
& Ludermir (2004a) and Wang et al. (2009).

In a previous collaboration project resulting in the thesis of Riedel (2007), diver-
sification procedures to extend the number of available individual forecasts similar
to the ones introduced in Granger & Jeon (2004) have been investigated and applied
to demand forecasting for airline data. The success of the work led to the belief that
higher overall forecast accuracy can also be achieved by modifying the cancellation
forecast, which is another important component in airline revenue management fore-
casting and which will be investigated in this thesis. Aims and objectives of this
thesis in general and for the airline application in particular are described in the
next section.

1.2 Aims and objectives

The main aim of the thesis is contributing to a better understanding of forecast model
selection and combination approaches. On a general level, the following questions
will be investigated:

e To what extent are expert contributions beneficial in empirical forecasting
applications? Can adequate performance be achieved by combining simple
individual predictors?

e How can a pool of individual methods be extended, and what characteristics
are necessary to increase combination accuracy?

e Can situations in which a particular method works well be automatically iden-
tified and domain knowledge exploited for improved forecasting performance?

A major practical goal of this thesis is the improvement of the net booking forecast
in the airline revenue management application of Lufthansa Systems by looking at
modifications for one of its components, the cancellation forecast. To achieve this,
several objectives are pursued:

e The design and implementation of a new forecast based on cancellation prob-
abilities, enhancing the diversity of the individual forecasts available for com-
bination.

e Investigation of the benefit of forecast combination for airline data and the ex-
tent of possible improvements while meeting application-specific requirements
like time restrictions and coping with noisy data.

e Automatically generating and exploiting domain knowledge for method selec-
tion and more effective combination of individual predictors.
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e Evaluation of diversification procedures for generating additional individual
forecasts, by considering different functional approaches, different parametri-
sations and different aggregation levels of the data used for learning.

To achieve these contributions, relevant literature will be reviewed and discussed
before conducting and analysing empirical investigations. Two different kinds of
data sets will be used for increased value of the results: publicly available data sets
obtained from forecasting competitions will allow comparison of the results given in
this thesis to results obtained by experts in the field of time series forecasting and
facilitate replication. The application of the investigated approaches to real-world
airline data will give insights to the applicability of latest research results to an
industry, in which accurate time series forecasting has a big impact on generated
revenue.

1.3 Methodology and organisation of the thesis

Background knowledge in three different areas are relevant for this thesis: airline
revenue management, time series forecasting and forecast combination. The intro-
ductory information will be extended in Chapter 2, providing a literature review and
discussion of most important contributions and algorithms for each of the areas.

Chapter 3 investigates the question of how well off-the-shelf time series fore-
casting methods perform in empirical studies with the goal to assess the benefit of
applying complex forecasting algorithms that usually have to be identified and fitted
by experts. In the same context, the benefit of combinations of these simple fore-
casts, promising to provide a convenient way out of the dilemma of having to find
and parametrise a suitable method for each forecasting problem is evaluated. After
reviewing evidence from other empirical studies, an experiment designed for this
specific point of view is presented and analysed, using publicly available datasets
from forecasting competitions to allow comparison with contributions of different
experts in the field. Chapter 4 then looks at forecasting methods currently used
in the airline application and compares results obtained to those from the previous
chapter.

Having provided the background and first empirical results of time series forecas-
ting and combination approaches, the focus of this thesis shifts from investigating
which methods work best to why some methods work well, and in which situations.
Chapter 5 considers the forecasting problem from a higher level point of view. It
investigates the automatic generation of domain knowledge to guide method selec-
tion and combination in the forecasting process, which can be summarised with the
term of “meta-learning”. Following an extensive review of work done in this parti-
cular area, different machine learning approaches are tested in an empirical study
to evaluate possible performance improvements on all the data sets available.

Chapter 6 provides a thorough investigation of opportunities to increase forecast
accuracy in the airline application. It looks at characteristics of individual forecasts
that are necessary to contribute to an improved combination result, investigating
the concept of diversity in the context of pools of time series forecasts. The benefits
of functional, parameter and data aggregation level diversification is empirically
evaluated and analysed using the airline data set.

Chapter 7 concludes by summarising results and findings and evaluating how
the analysis of diversity and meta-learning has contributed to the understanding of
forecast combination in general. An outlook on future work ends the thesis.
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1.4 Original contributions

A comprehensive treatment of time series forecasting in airline revenue management
is given in Chapters 4 and 6 and parts of Chapters 2 and 5, a treatment which has
not been yet available in comparable detail. Data used for related empirical studies
was kindly provided by Lufthansa Systems, and with airline revenue management
applications being an extremely successful practical application area for time series
forecasting algorithms, the thesis provides unique insights to the practical relevance
of forecasting methods in this area. It complements the thesis of Riedel (2007),
which resulted from the same collaboration in a previous project. A new algorithm
for the prediction of airline cancellation rates is presented in Chapter 2.

A new perspective on empirical studies and the necessity of expert contribu-
tions in practical forecasting applications is given in Chapter 3, parts of which were
published in Lemke & Gabrys (2007), Lemke & Gabrys (2008a) and Ruta et al.
(2009).

The meta-learning discussion and empirical study in Chapter 5 is one of the
most extensive works in this area to date, extending the features and method pool in
comparison to previous work and reviewing a wider range of algorithms. Noteworthy
is the use of diversity measures as inputs to the meta-learning algorithms, an original
extension to meta-learning in a time series context. Some results have been published
in Lemke & Gabrys (2009). The concept of meta-learning is furthermore applied to
airline data for the first time.

Diversity is a concept that has its origin in the machine learning community
and has not yet to the same extent been applied to time series forecast combina-
tion. Chapter 6 looks at the benefit of generating additional individual forecasts by
diversifying procedures with the goal to improve the overall accuracy of a forecast
combination. Parameter and functional diversifications are most common in the li-
terature, this thesis additionally considers individual forecasts generated by building
models on different data aggregation levels. Results on a smaller data set have been
published in Lemke et al. (2009).

Overall, this thesis does not aim at adding just another method to the already
large pool of available forecast and forecast combination approaches, thus increa-
sing confusion of which method to chose in which situation. It is rather aimed at
providing a deeper understanding of the dynamics of a combination of individual
forecasts and of the value of domain knowledge and its automatic generation, which
will contribute to knowledge on forecasting in general and facilitate improvements
of forecast accuracy.
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below:

e Lemke, C. & Gabrys, B. (2007), Review of nature-inspired forecast combina-
tion techniques, in ‘NiSIS 2007 Symposium’

e Lemke, C. & Gabrys, B. (2008a), Do we need experts for time series forecas-
ting?, in ‘Proceedings of the 16th European Symposium on Artificial Neural
Networks’, pp. 253-258
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Lemke, C. & Gabrys, B. (2008b), On the benefit of using time series features
for choosing a forecasting method, in ‘Proceedings of the European Symposium
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Lemke, C. & Gabrys, B. (2009), ‘Meta-learning for time series forecasting and
forecast combination’, accepted to a special issue of Neurocomputing

Lemke, C., Riedel, S. & Gabrys, B. (2009), Dynamic combination of forecasts
generated by diversification procedures applied to forecasting of airline can-
cellations, in ‘Proceedings of the IEEE Symposium Series on Computational
Intelligence’, pp. 85-91

Ruta, D., Gabrys, B. & Lemke, C. (2009), ‘A generic multilevel architecture
for time series prediction’, accepted to IEEE Transactions on Knowledge and
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Airline revenue management and forecasting

The introduction presented forecasting as an important topic in both research and
industrial applications. However, the state-of-the art in industry and research of-
ten differ quite significantly for several reasons: sometimes research findings are
purely academical and cannot easily be applied in real-world applications; or the
requirement for robust and reliable systems in industry causes a certain reluctance
to implement latest research outcomes. Furthermore, there is never a guarantee that
approaches working well or badly on scientific data sets will perform similarly on
data sets in industrial applications, especially since industrial data sets are usually
hard to come by in the public domain for reasons of commercial sensitivity. This
chapter provides an overview of the state-of-the art in forecasting algorithms from
both a scientific perspective as well as from the point of view of the industry partner
of this work.

Following an introduction to revenue management, the first section of this chap-
ter highlights the importance of forecasting in the airline industry in particular and
introduces forecasting algorithms used at Lufthansa Systems Berlin GmbH (LSB).
The next sections take a step away from the specific application and provide a look
at time series forecasting and forecast combination in general. A presentation of the
most important algorithms is followed by an outlook on future work.

2.1 Airline revenue management

Revenue management has become a mainstream business practice with a growing
importance in academic and industrial research and an increasing number of users in
many key industries according to Talluri & van Ryzin (2005). Its goal is to maximise
profits generated from limited perishable resources by optimising demand-related
decisions, thus selling the right product to the right customer at the right time for
the right price. Perishable resources can be as diverse as food, hotel rooms or train
tickets.

This section extends the introductory information given on revenue management.
Its significance particularly for the airline industry is emphasised in a brief historical
overview showing that airlines were the first and remain one of most successful users
of these systems till today. A look at the role of forecasting in revenue management
then provides the connection to the presentation of forecasting methods currently
used.

2.1.1 Background

The basic concept of revenue management is very old. However, Talluri & van
Ryzin (2005) mention two factors that have considerably boosted its potential in
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the last 50 years: scientific advances that facilitate more accurate models of real-
world conditions and advances in information technology, that allow use of very
complex algorithms on a very detailed level if necessary. This made way for modern
automated revenue management on a very high scale and complexity. Revenue
management is concerned with four major components: pricing, capacity control,
overbooking and forecasting:

Pricing investigates the time-varying calculation of prices for a product. Usually,
there is not only one product for one group of customers, but a portfolio of products
targeting different customer groups. According to McGill & van Ryzin (1999), pri-
cing is generally the most important and natural factor affecting customer demand
behaviour and can be used to manipulate demand in the short run. For example,
sufficiently raising the price of one product class will result in sales of this product
approaching zero. A review of research done in the area of dynamic pricing policies
in the context of revenue management can be found in Bitran & Caldentey (2003).

Capacity control manages the allocation of capacities within the bundle of pro-
ducts. It commonly distinguishes single-resource problems, where the goal is to
optimally allocate capacities for a single resource to different classes of demand, and
multiple-resource problems, where customers require a combination of resources,
for example in a stay in a hotel lasting several days. If one product in the pro-
duct bundle is not available, the sales of the whole bundle is affected, creating the
need of jointly managing resources. Talluri & van Ryzin (2005) state that although
multiple-resource problems are much more common in the industrial practice of reve-
nue management, they are still often solved as a number of single-resource problems,
treating the resources independently and ignoring network effects that might occur.
Usual means for capacity control are limits, specifying how many products from
a product class may be sold at most, or protection levels, reserving an amount of
capacity for a particular class.

Overbooking is the oldest practice in revenue management and can only be ap-
plied in reservation-based systems. Its goal is to compensate for cancellations and
no-shows by accepting more reservations than the capacity allows, hoping that the
number of customers actually claiming the service or product will be within the
capacity. An obvious danger in this respect is the chance of more customers turning
up than anticipated, which means that additional revenue generated by overbooking
is to be traded off against the risk and compensation of having to deny a service or
product. According to Talluri & van Ryzin (2005), overbooking seems to be regarded
as a quite mature research area and receives less attention in more recent revenue
management research than capacity control or pricing, however, some examples of
recent research are summarised in Chiang et al. (2007).

Forecasting quantities such as demand, cancellations, capacity limits and price
sensitivity has a critical influence on the performance of a revenue management sys-
tem. The other three revenue management areas all depend on accurate forecasts.
Talluri & van Ryzin (2005) state that forecasting is a “high-profile task” of reve-
nue management, requiring the majority of the development, implementation and
maintenance effort. As a guideline, Poelt (1998) estimated that 20% reduction of
forecast error in a revenue management system can translate into a 1% increase in
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generated revenue. Although it is of course difficult to generalise this number, the
importance of forecasting is generally recognised.

Examples of industries in which revenue management is successfully applied are:

e Hospitality industry (for example in hotels, restaurants and at conferences)
e Transportation industry (for example airlines, rental cars, cargo and freight)
e Subscription services (for example internet services)

e Miscellaneous industries (for example retail and manufacturing)

This work investigates forecasting and its application to airline revenue management,
a history of which will be summarised in the next section before proceeding to
investigate the problem of forecasting in more detail.

2.1.2 History

Airline companies were the first branch of industry applying revenue management
according to Talluri & van Ryzin (2005). In the beginning of the 1970’s, some air-
lines started offering restricted discount fares, for example for early bookings. This
potentially reduced the number of empty seats on a flight, but introduced a central
problem of airline revenue management: how many seats should be protected in the
full fareclass so that no passenger willing to pay the full fare has to be turned away?
McGill & van Ryzin (1999) state that no simple rule like reserving a fixed percentage
could be applied as booking and cancellation behaviour varied considerably across
the different flights, days of the week and other factors. Littlewood (1972) intro-
duced a first simple formalism for a single-resource two-class problem, also called
Littlewood’s rule: bookings in a discount fareclass should be accepted as long as the
resulting revenue value exceeds the revenue value of future expected bookings.

The potential influence of revenue management was boosted in the late 1970’s,
following a trend towards global airline liberalisation, which was for example illus-
trated by the 1978 Airline Deregulation Act in the United States, removing govern-
ment control over fares, routes and services from commercial aviation.

Early airline revenue management was based on single-resource seat inventory
control, meaning that only the capacity of one scheduled leg of a flight was con-
sidered at a time. Talluri & van Ryzin (2005) state that even though approaches
to computing optimal booking limits do exist, it is mainly the heuristic approaches
that are of great practical importance today, Belobaba (1987) providing an early,
but still very popular example. A great number of itineraries however involve con-
necting flights, which can be booked as one entity at most larger airlines. Capacity
control measures on one leg of the flight can thus have unforeseen effects on other
flights in the respective itinerary. Modern revenue management systems therefore
moved on to multiple-resource systems, which are also called origin-destination sys-
tems in the airline industry, considering multiple stops and accounting for network
effects. A number of methods have been developed to address the needs of these
multiple-resource systems; a review can be found in Chiang et al. (2007).
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2.1.3 The role of forecasting

The importance of forecasting for general revenue management has been emphasised
in Section 2.1.1. Airline revenue management is no exception to the general rule,
on the contrary, forecasting is particularly critical in this area because forecasts
directly influence booking limits that determine airline revenue. General revenue
management forecasting may include demand forecasting, capacity forecasting and
price forecasting, each of which has its specific requirements. The airline-specific
part of this work investigates ways to improve the net booking forecast, which is
the number of bookings remaining at departure reduced by the cancellations that
occurred, by increasing the accuracy of the cancellation forecast.

Booking and cancellation forecasting and its interaction with optimisation as
used by Lufthansa Systems are depicted in Figure 2.1. Normally, this revenue man-
agement cycle starts with the collection of relevant historic data. A history building
process then estimates models and parameters that are necessary for forecasting.
Forecasting generates numbers that guide optimisation decisions, like allocations,
discounts and overbooking limits. These controls influence the actual booking num-
bers by closing and opening fareclasses. Once a flight has departed, past observations
are again used to build and adjust models for the forecasting in the adaptive history
building process.

Forecasting

History Building Optimisation

Booking numbers

Figure 2.1: Interaction of forecasting with optimisation and past booking numbers

Talluri & van Ryzin (2005) mention that revenue management is mainly a profes-
sional practice, which unfortunately makes a lot of available knowledge inaccessi-
ble to the general research community. McGill & van Ryzin (1999) support that,
adding that airlines are particularly reluctant to share knowledge of their forecasting
methodologies due to commercial sensitivity. They also state that most forecas-
ting systems employed by airlines depend on relatively simple moving average and
smoothing techniques. Knowledge on critical market changes or anticipated struc-
tural breaks have to be realised by manual intervention to the system. Forecasting
practice at Lufthansa Systems generally corresponds with these statements and will
be described in the remainder of this section.

2.1.4 Lufthansa Systems forecasting basics

Forecasting at LSB involves several steps of preprocessing, postprocessing and ac-
tual calculations. Two forecast components are needed for a final booking forecast:
the demand forecast and the cancellations forecast. After looking at the data, re-
ference curves and preprocessing algorithms, this section describes current demand
forecasting at LSB. The aim of this work however is the improvement of cancellation
forecasting, which is why this area will be covered in an extra section.

10
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2.1.4.1 Data and issues

At LSB, data is collected and forecasts are calculated at 23 data collection points
(DCPs) atwith fixed distances prior to the departure date of a flight. The number
of days to departure assigned to each of the DCPs is shown in table 2.1. At each of
these points, booking and cancellation numbers are recorded.

pep || o 1| 2| 3| al 5| 6] 7] 8| 9]w|n
days to departure || 350 | 182 | 140 | 126 | 98 | 70 | 56 | 49 | 42 | 35 | 28 | 21

DCP 12‘13‘14‘15‘16‘17‘18‘19‘20‘21‘22
days to departure 14‘12‘10‘8‘6‘5‘4‘3‘2‘1‘0

Table 2.1: Days to departure for each data collection point (DCP).

Booking and cancellation data are furthermore collected for different dimensions:

e ODO - the origin-destination opportunity. One ODO holds past and present
data of flights on the same routing with similar departure times, thus creating
a stable history pool for a flight that is unaffected by flight number changes
or minor time adjustments to the schedule.

e F - the fareclass (booking class). LSB distinguishes 20 fareclasses differing in
price and booking conditions.

e DOW - the day of the week. Data is collected separately for each day of the
week.

e POS - the point of sale. This indicates where a ticked was sold, it can be either
the 'country of origin’, the ’country of destination’, or ’other’.

For capacity control, forecasts are generated on the finest possible level (for each
ODO, F, DOW and POS combination), but are frequently aggregated to higher
levels, for example for visualisation purposes or to support management decisions.
The historical numbers for demand and cancellations are treated as univariate time
series.

The airline industry environment comes with a few application-specific characte-
ristics that have to be taken into account in the forecasting process: the fine level at
which the forecasts are calculated causes a so called ‘small number problem’, which
occurs due to the fact that for some combinations of ODO, F, DOW and POS, there
might be only very few bookings, or no bookings at all. This means that small
changes in the values lead to wide variances, so that the data is likely to be unstable
and it becomes hard to build a model.

The fine level data is furthermore very noisy and susceptible to structural breaks,
which are more or less abrupt changes in customer behaviour caused by seasonal ef-
fects, events or other unforeseen circumstances. A constantly changing environment
requires the forecasts to have adaptation capabilities. In many cases, choices made
when building a model (for example parameter values, predictive model or aggre-
gation level used) can lead to deteriorating performance as time passes and the
decisions become suboptimal very quickly. In the live application, strong time re-
strictions are another important factor, as a large number of forecasts needs to be
generated in a limited amount of time.

11
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This structure and quality of the existing data leads to the situation that in prac-
tice, only a few methods could be identified to produce fairly accurate forecasts for
the LSB application investigated here. A number of LSB internal and commissioned
studies on this topic have shown that simple and robust time series forecasting mod-
els such as simple average, different versions of exponential smoothing or regression
models, which will be explained in more detail later, perform significantly better
than a number of well known more sophisticated methods. This is not an obser-
vation specific to LSB, as a survey involving several other industries performed by
Jain (2008) reveals. In the survey, most of the participants report using either sim-
ple trend/simple average models (57%) or models based on exponential smoothing
(29%). The reason lies in the ability of the simple methods to make adequate fore-
casts even on limited historical data by reducing the danger of overfitting on the
training data, because the number of parameters to be estimated is small.

The next section describes algorithms currently used along with alternative ap-
proaches implemented for the experiments presented at the end of this chapter.

2.1.4.2 Reference curves

In general, forecasting at LSB makes use of reference curves for modelling the typical
booking and cancellation behaviour of customers. They are learnt on the finest
possible level for each DCP and are periodically updated with actual bookings and
cancellation rates. Figure 2.2 shows examples of aggregated booking and cancellation
reference curves. Cancellation information is usually represented as cancellation
rates by dividing cancellation numbers by bookings.

o
[

45r

4
©
T

IS
o
©

351

o
3
T

o
o
T

251

Number of bookings
o
IS

Cancellation rate
=}
«

151

o
w

-
o
N

—

. . . . . . .
0 5 10 15 20 10 15 20
Data collection point Data collection point

051

o
e

o
o
o

Figure 2.2: Example of reference curves, bookings (left) and cancellation rate
(right), values given for each of the 23 DCPs prior to departure.

Reference curves are periodically updated in a history building step. If a new flight
is introduced, an initial reference curve is generated using similar flights. The ba-
sic calculation uses an exponential smoothing approach to calculate the new value
refpew (dep), taking into account both the previous value of the reference curve at the
same DCP ref,)q(dep) and the current observation cr(dep), weighted by a smoothing
factor a;, which controls how much the curve adapts to newly available data. This
is described in Equation 2.1.

refpew (dep) = ac- er(dep) + (1 — ) - refoq(dep) (2.1)

12
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One of the problems arising in this context is the update of early parts of the
cancellation rate reference curves, which only happens rarely: as long as booking
numbers are zero and no rate can be obtained, the value of the old reference curve
stays unchanged. To overcome this issue, changes in the reference curve at later
data collections points are to a certain extent also used for updating the previous
ones.

2.1.4.3 Unconstraining

As mentioned in the introduction, fareclasses are closed and opened during the op-
timisation process. This influences booking numbers, as bookings are not registered
for a closed fareclass even though the demand may exist. Accepted bookings and
cancellations are thus constrained, however, “unconstrained” numbers are needed for
forecasting. Unconstraining is the process of eliminating the influence of capacity
control from the data by approximating complete demand and cancellations. For
bookings, unconstraining uses the reference curve in a simple additive manner to
estimate demand that occurs during the time a fareclass is closed. For cancellations,
a rate is calculated as a weighted sum of the actual cancellation rate applied to the
actual bookings and the reference rate applied to the approximated rejected book-
ings. Consequently, for fareclasses that have at some point been closed before flight
departure, the data used for evaluation and forecasting purposes is not real data,
but an approximation.

2.1.4.4 Booking forecast

The central question of booking forecasting is how many people would make a book-
ing if it was accepted. An important concept for forecasting the booking time series
is decomposition. It is based on the assumption that time series are aggregates of
a number of components, which can be modelled independently as separate time
series. This approach is widely used in airline revenue management applications. In
the most popular version, a time series is decomposed into a basic level, a trend and
a seasonal component. The splitting of a series according to different factors allows
separate treatment of each of the sub-series, with model and parameter choices being
simpler and more adequate to the specific characteristics of a component.

At LSB, two major components are distinguished for bookings: the attractiveness
represents a stable base component, subject only to general long term influences like
demographic and economic conditions or time slot of the flight. Other influences
only have a short term effect, some of which cannot be predicted using historic
data, for example if they occur due to special events like a football world champi-
onship. However, other short term influences like seasonal behaviour can very well
be modelled by examining the past. A previous project by Riedel (2007) provides
a more detailed look at demand forecasting, with the focus on improving seasona-
lity predictions as a big impact factor for final forecast accuracy. Overall accuracy
improvements of 11% have been achieved.

2.1.5 Lufthansa Systems cancellation forecasting

Accurate cancellation predictions are vital for obtaining an accurate final net book-
ing forecast, which is given by the difference of the booking and cancellation fore-
casts. In general, calculations concerning cancellations are carried out using can-
cellation rates, i.e. the number of cancellations divided by the number of bookings,

13



CHAPTER 2. AIRLINE REVENUE MANAGEMENT AND FORECASTING

which has been shown to lead to more stable results in comparison to dealing with
absolute cancellation numbers. This section first introduces the important concept
of confidence limits for cancellation rates before moving on to the description of
three traditional, rate-based algorithms.

2.1.5.1 Confidence limits

The small number issue described earlier introduces the problem of instability of
cancellation rates. If, for example, only one booking exists in a specific fareclass,
cancellation rates can be as extreme as zero or one, depending on whether or not
the booking is cancelled. To prevent unstable cancellation rates especially at early
data collection points where booking numbers are usually low, confidence limits?
are introduced and used to constrain the currently observed cancellation rate for
both history building and forecasting to a certain range around the reference curve.
Figure 2.3 shows the concept: an upper limit restricts cancellation rates that are
much higher than the reference curve, a lower limit does the same for cancellation
rates that are too low in comparison to the historically learnt behaviour. For the
calculation, the following guidelines apply:

The confidence limits get wider (less restrictive) with

e an increasing number of bookings, as more bookings lead to a more stable
cancellation rate,

e an increasing DCP, as data from DCPs closer to departure is more trustworthy
and

e decreasing difference between expected bookings and already accepted book-
ings.

reference curve
09 — — — confidence limits |
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Figure 2.3: Reference curve and confidence limits

2.1.5.2 Forecasting based on cancellation rate reference curves

Based on the current cancellation rate cry and reference curve refy, ¢ being the time
index, two approaches exist for calculating the forecast. An additive approach is
employed when

!Confidence limits are not to be confused with confidence intervals, which have a completely
different meaning.
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e cry < ref; and ref; is ascending or

e cr; > ref; and ref; is descending

and a multiplicative approach is used in case
e cr; > ref; and ref; is ascending or
e cr; < ref; and ref; is descending.

The additive approach following Equation 2.2 enforces a bigger adjustment by just
adding or subtracting the appropriate values of the reference curve, while the multi-
plicative approach ensures that the results are not below zero or above one by more
gentle adjustments given in Equations 2.3 and 2.4, with index ¢+ h being the current
time t plus the forecasting horizon h.

Crepn = cry + (refypp — refy) (2.2)
1 — ref
Cryp = 1-— 1_r7€r;;‘:l (1 —cry)| for cry > refy (2.3)
f,
Cryip = rigfth - cry for cry < refy (2.4)

Default cancellation rates that are used to initialise reference curves are generated
from similar flights and have been provided by LSB. Three ways of updating them
are currently implemented:

e A model based on single exponential smoothing, where a new forecast is gene-
rated by adjusting the previous one by the error it produced. Reference curves
are updated using Equation 2.1.

e A model based on Brown’s double exponential smoothing according to Brown
et al. (1961). The updated value ref; is calculated using the equations below,
with L being the value (level) of the series, T the trend component and «
again the constant smoothing factor.

reft = Lt +T;5
Lt = «a-cr;+ (1 - Oé) : (Lt—l + Tt—l) (25)
T, = a-(Li—Li1)+(1-a) (Tr)

e A regression model that uses a regression line fitted to past observations of the
same DCP. The new value for the reference curve is calculated by extrapolating
the regression line into the future, a value for the trend curve is obtained from
its slope.

Similar to the current algorithm used for the booking forecast, the current cancella-
tion forecast is a mixture of some of these algorithms, with details being confidential.
The forecasts of the currently used method will however be used as a baseline for
comparison in the empirical experiments and will furthermore be referred to as the
LSB cancellation forecast.
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2.1.5.3 Probability forecast

In meetings with LSB, it was brought up that another cancellation forecast based
on probabilities might be able to produce accurate results while still being simple
and robust. As a reaction, a fourth forecast has been implemented in the scope of
this work to add a functionally different approach to the method pool. The central
question here is: for a booking at a certain DCP, what is the probability that the
booking is cancelled at following DCPs if it has not been cancelled before?

The algorithm is based on the assumption that bookings occurring at different
DCPs will have different probabilities of being cancelled prior to departure of the
flight. It was, for example, previously observed, that bookings from early DCPs
tend to be cancelled more often than the bookings from later ones. Similarly to
the previously introduced approaches, reference curves are generated in the history
building step. In the probability reference curve, each booking is assigned to a DCP,
and the probability that it will be cancelled on a later DCP is given. A simplified
example in form of a table is shown in Table 2.2. It says, for example, that a booking
made at DCPO will be cancelled at DCP1 with a probability of 0.15, if it has not
been cancelled before. A booking from DCP2 obviously does not have probabilities
for cancellation at DCPO and 1, as it only occurred at a later DCP.

P(Canc. at DCPO0)

P(Canc. at DCP1)

P(Canc. at DCP2)

Booking at DCP0O
Booking at DCP1
Booking at DCP2

0.1

0.15
0.2

0.1
0.1
0.15

Table 2.2: Simplified example of a cancellation probability reference curve.

Apart from a few special cases where booking numbers are extremely small, it is not
possible to tell which occurring cancellation belongs to which booking. This is why
the previously generated probabilities P(j,t), giving the probability that a booking
from DCP j will be cancelled at DCP ¢, j < t, are used to distribute cancellations
to previous bookings as demonstrated in Equations 2.6 and 2.7. Assume a number
of cancellations ¢; occur at DCP t. All remaining bookings b; at the previous DCPs
0 < ¢ < t are then adjusted according to Equation 2.6 in case that the number
of cancellations is greater than the sum of the product of relevant bookings and
probabilities (Z;‘:O bjPj; > ¢;) and according to Equation 2.7 otherwise.

Ct
S im0 biPis
Zz':o bj—a
> o bi(1— Pjy)

The cancellation probability that is eventually used for updating the probability
reference curves is then obtained by dividing the new value of remaining bookings
bi** by the old value b; and subtracting it from 1. Initial probability reference curves
are generated in a history building period, where cancellations are evenly distributed
on previous bookings.

The forecasting process then consists of two steps: for each DCP, the current
cancellations are first distributed to past bookings with the same algorithms as

new
bi

= bi—Ab;i-Py), A= (2.6)

A\ =

B = b — by(1— (1 —

Pit)), (2.7)
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used in the history building. Secondly, the booking reference curve estimates the
development of the bookings for the future DCPs. Applying the probabilities from
the reference curves and summing up the remaining bookings creates the final net
booking forecast.

In summary, it can be said that demand and cancellation forecasting methods
used at LSB have been heavily tuned to account for application-specific characteris-
tics and requirements. The basis of the presented algorithms are simple averages and
exponential smoothing approaches. However, many more methods have been inves-
tigated in the scientific literature, which will be reviewed in the remaining sections
of this chapter.

2.2 Time series forecasting

This section looks at forecasting from a more general point of view and investigates
traditional time series forecasting to provide the basis for the remainder of the thesis,
aiming at organising and highlighting the most important methods and results of
half a century’s research done in this area.

The most basic time series forecasting method is called the naive forecast and
sets the forecast to the last time series observation. Another simple method is the
moving average, where the forecast is the arithmetic mean of the most recent values
of the time series, discarding old and potentially inapplicable observations. Beyond
these, the first more sophisticated methods date back to the 1950’s and 1960’s, with
new approaches and extensions constantly being investigated until today. This sec-
tion provides a literature review of the most important and popular approaches to
time series forecasting. The choice of publications to cite has been difficult, as a
vast majority of contributions are smaller case studies applied to a specific appli-
cation area, which mostly provide results that contradict each other. As individual
forecasting algorithms are not the primary focus of this thesis, the literature review
will be confined to five big groups of forecasting algorithms, discussing the seminal
contributions, publications on genuinely new forecasting algorithms and extensive
review papers. Only a selection of the approaches mentioned here are actually im-
plemented for the empirical studies in this thesis, which is why equations and more
detailed descriptions of only these will be given along with the methodology of the
experiments in Section 3.2.2.

2.2.1 Exponential smoothing

Exponential smoothing methods apply weights that decay exponentially with time
and thus also rely on the assumption that more recent observations are likely to
be more important for a forecast than those lying further in the past. Smoothing
methods originated in the 1950’s and 1960’s, with the methods of Brown, Holt and
Winter still being of considerable importance today as summarised and referenced
in Makridakis et al. (1998). The seemingly only originally new smoothing method
since the classic approaches was introduced by Taylor (2003), who suggested using
a damped multiplicative trend; details are given in Section 3.2.2.1. A taxonomy of
exponential smoothing methods has first been presented by Pegels (1969), distin-
guishing between nine models with different seasonal effects and trends, which can be
additive, multiplicative or non-existent. Gardner (1985) extended this classification
by including damped trends, increasing the number of models to twelve.
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Abraham & Ledolter (1986) showed that some exponential smoothing methods
arise as special cases of ARIMA models. Apart from this, these methods have been
lacking a sound statistical foundation for a long time, which prevented a uniform
approach to calculation of prediction intervals, likelihood and model selection cri-
teria. Hence, many publications were concerned with investigating the stochastical
framework of the exponential smoothing methods. The most thorough and recent
work in this context has been published by Hyndman et al. (2002), who fitted all
of the twelve models of Gardner (1985) into a state space framework, giving state
space equations for each of them using both an additive and a multiplicative error
approach. They furthermore fit a model selection strategy to the framework in order
to allow for automatic forecasting.

A recent variation drawing some attention is the Theta-model proposed by As-
simakopoulos & Nikolopoulos (2000). It decomposes seasonally adjusted series into
short and long term components by applying a coefficient # to the second order
differences of the time series, thus modifying its curvature as described in Section
3.2.2.1. Hyndman & Billah (2003) show that this method is equivalent to single
exponential smoothing with drift.

Extensive state-of-the art reports on exponential smoothing can be found in
Gardner (1985) and Gardner (2006), citing over 100 and 200 relevant papers, re-
spectively.

Exponential smoothing methods have a reputation of performing remarkably
well for their simplicity as summarised in Gooijer & Hyndman (2006). In an exten-
sive competition conducted by Makridakis & Hibon (2000), the authors recommend
Taylor’s exponential smoothing method with dampened trend as a method that is
very easy to implement and gives robust performance. Chatfield et al. (2001) ar-
gue that the robust nature of these models is due to the fact that they are the
best choice for a large class of problems. Hyndman (2001) picks up on that and
adds that more complex models are subject to performance instabilities caused by a
more complex model selection and parameter estimation process, which exponential
smoothing models do not suffer from to this extent.

2.2.2 ARIMA models

One of the most influential publications in the area of time series forecasting is Box
& Jenkins (1970), having an extraordinary impact on forecasting theory and practice
until today. The authors introduced the group of autoregressive integrated moving
average (ARIMA) models, which can simulate the behaviour of diverse types of time
series. An ARIMA model consists of an autoregressive and a moving average part
whose orders have to be estimated and involves a certain degree of differencing;
general equations are given in Section 3.2.2.2.

Selection of an appropriate model can be done judgementally. A strategy mainly
based on examining (partial) autocorrelation values can be found in Makridakis et al.
(1998). Alternatives have been suggested, for example using information criteria
like Akaike’s information criterion (AIC)? introduced in Akaike (1973) and Bayes
information criterion (BIC)? introduced in Raftery (1986). More recent publications
mostly apply ARIMA models in a hybrid approach, for example in combination

2AIC = 2k—2-In(L), with k being the number of parameters in the model and L the maximized
value of the likelihood function for the estimated model.

SBIC = —2-In(L) + k - In(n), where k and L are the same as for the AIC and n denotes the
number of observations available.
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with neural networks as in Zhang (2004) and Koutroumanidis et al. (2009) or as an
individual method as part of a more general combination approach as in Anastasakis
& Mort (2009).

The performance and benefits of ARIMA models has been fiercely discussed in
the aftermath of the M3-competition, whose results have been published in Makri-
dakis & Hibon (2000). In this publication, the organisers criticise the approach of
building statistically complex models like the ARIMA model, disregarding all empi-
rical evidence that simpler ones predict the future just as well or even better in real
life situations, for example provided by their competition. Makridakis et al. (1998)
furthermore add that the only advantage a sophisticated model has compared to
a simple one is the ability to better fit historical data, which is no guarantee for
a better out-of-sample performance. Results of the M3 competition are discussed
from a more general point of view in the next chapter.

2.2.3 State-space models

State space models provide a framework that can accommodate any linear time
series model. The seminal work in this area was published by Kalman (1960),
giving a recursive procedure for computing forecasts known as the Kalman filter.
Originally mainly used in control and engineering applications, its usage for time
series forecasting only started in the 1980’s according to Gooijer & Hyndman (2006).
Generally, two equations are part of a state space model: the observation and the
state equation. While the state equation models the dependency of the current
to the previous state, the observation equation provides the observed variables as
a function of the state variables. A state-space model was implemented for the
empirical experiments of this thesis as described in Section 3.2.2.3.

Gooijer & Hyndman (2006) mention that publications from practitioners con-
cerning the use of the state space framework for time series forecasting applications
are surprisingly rare, even though some books do exist, for example Durbin & Koop-
man (2001). Two significant contributions can however be mentioned: Harvey (2006)
provides a comprehensive review and introduction to treating “structural models”,
i.e. time series given in terms of components such as trends and season, with the
help of the state space concept. As already cited above, Hyndman et al. (2002) fit
exponential smoothing methods into state space framework, providing them with a
statistical foundation.

Comparing the performance of state-space models is not straightforward by look-
ing at available literature, as they do not seem to appear in the major forecasting
competitions. Since a large number of models have state-space formulations, the
performance will naturally vary according to the model used. However, the benefits
related to their statistical theory, e.g. well-defined strategies for model selection,
likelihood estimation and prediction interval calculation are bound to make them
attractive for forecasting researchers and practitioners.

2.2.4 Regime switching

Regime switching models are a class of model-driven forecasting methods originally
introduced by Tong (1990). Most of them belong to the class of so-called self-exciting
threshold autoregressive models (SETAR) and their variants, where a number of
regimes consists of one autoregressive model each. The order and coefficients of
the autoregressions vary for each regime. Which set of equations to apply for a
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forecasting situation is then determined by trying to identify the regime or state the
system is likely to be in, which is normally done by looking at past values of the time
series, hence the term “self-exciting”. Some SETAR models have been compared in
Clements & Smith (1997).

As abruptly changing regimes are not always desirable, smooth switching of
regimes is promoted in smooth transition autoregressive (STAR) models, where
switching can, for example, be done with a logistic function. A publication by van
Dijk & Franses (2000) gives a survey of developments in this area at this time. More
recent work was published in Fok et al. (2005), where a STAR model is complemented
with a meta-model linking parameters of the logistic switching functions to state
characteristics and other regressors.

FEmpirical evaluation of regime switching models has mainly been conducted
in comparison to neural networks and linear models and produced mixed results.
In Stock & Watson (2001), STAR models generally performed worse than neural
networks and did not outperform linear models either. Terédsvirta et al. (2004)
however question results of this study, stating that nonlinear forecasting methods
should only be considered at all if the data shows nonlinear characteristics. A re-
examination of the performances of linear, STAR and neural network approaches on
time series that rejected the statistical test for linearity has consequently been carried
out. By a small margin, the STAR model had the best performance. Marcellino
(2005) finds that STAR models generally outperform linear models, performance
evaluation comparing them to neural networks however remains undecided.

2.2.5 Artificial neural networks

Looking at the area of computational intelligence models, it is neural networks that
have most frequently and successfully been used for time series forecasting purposes.
Neural networks represent a nonlinear data-driven technique and can, as universal
approximators, approximate any continuous function to any required accuracy with-
out the need of extensive knowledge on the underlying data generation process or
modelling relationships explicitly. They do however come with the well-known risks
of over-parametrisation, overfitting and the issue of choosing an optimal topology.

An extensive summary of work done in the area of multilayer perceptrons can be
found in Zhang et al. (1998), which is somewhat outdated but still frequently cited
and very relevant in terms of guidelines given. Not only reviewing a large number
of related publications, the authors also make recommendations concerning network
architecture (number of hidden/input and output nodes and their interconnection),
activation functions, training algorithms, data normalisation, training/testing sam-
ple size and performance measures. Another comprehensive literature survey, albeit
limited to the application area of electrical load forecasting, can be found in Hippert
et al. (2001), who motivated more rigorous research in the area by stating that many
publications present seemingly misspecified models that have not been sufficiently
tested.

Work on other types of neural networks for time series forecasting seems sparse,
although existent. The main focus lies on employing evolutionary algorithms for
various purposes, for example for training a recurrent Elman network as described
in Cai et al. (2007). Rivas et al. (2004) suggest evolving the number of hidden nodes,
centres and radii for a radial basis function network. For the empirical study in this
thesis, two neural networks have been implemented, with further information given
in Section 3.2.2.4.
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Following the initial enthusiasm about applying neural networks to time series
forecasting, more critical voices like Chatfield (1995) soon began pointing out that
results of empirical studies have always been both discouraging and encouraging,
which applies till today. One important issue has been pointed out by Zhao et al.
(2003): due to many parameters and architectural choices involved in an application
of neural networks, it is hard to replicate results of important studies, especially if
the description of the methodology does not provide sufficient details. Despite con-
siderable effort and using the same data sets and the same setup, the authors failed
to even come close to obtaining similar results to one of the most cited publications
in this area written by Hill et al. (1996). Since the examined work represented one
of the many studies where neural networks performed extremely well, the need for
a transparent methodology and a critical evaluation of empirical studies becomes
obvious, even more so because of the black-box nature of neural networks. Zhang
(2007) looks at common mistakes in the design of experiments with neural networks
from a general perspective, but frequently mentions issues specific to time series
forecasting. The number of empirical studies on neural networks with varying de-
grees of success remains large till today, a big percentage of which seem to deal
with electricity load forecasting as, for example, in Hippert et al. (2005). No general
implications can be given on their performance apart from that there seem to be
many open questions regarding their use and implementation.

2.3 Forecast combinations

More than one forecast for the same variable is often available, leading to the ques-
tion if one should choose one single model or try to combine several to obtain a
forecast with more accuracy. In the 30 years that passed since the seminal paper on
forecast combination by Bates & Granger (1969), an impressive amount of work has
been done in this area. Extensive reviews and summaries can be found in Clemen
(1989), Granger (1989) and Timmermann (2006).

The value of a target variable y at time ¢ is to be predicted®. Let {91, 92, ..., Um}
be m individual forecasts for that variable. The linear combination forecast §¢ can
then be given by their weighted linear sum

m
9= wil;. (2:8)
i=1

Linear models were the first proposed combination models in the 1960’s and 70’s and
remain very popular until today. More recent related publications do generally not
propose new linear models, but address adaptivity of the models and parameters
and the situations in which a particular model should or should not be applied,
which are issues addressed later in this thesis.

Potentially nonlinear relationships among forecasts are not considered in linear
forecast combination, providing the main argument for usage of nonlinear combina-
tion methods. A nonlinear approach combines individual forecasts by a nonlinear
function W:

:’-}c - qj(:l)lv Z)Q, ,'gm) (29)

4The considerations can be applied to the more general case of predicting the target variable
Yith,t for time t + h at time ¢. The time indices have been omitted for notational convenience.
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Many ways to calculate the linear combination weights w; (or the weight vector w in
case of vector notation), or to design function ¥ have been proposed in the scientific
literature. This section provides a literature review on linear and nonlinear forecast
combination to complete the background information necessary for the main part of
this thesis.

2.3.1 Nonparametric methods

The simplest way to compute linear combination weights w; is by taking the simple
average of all m available individual forecasts, giving each of them the weight

w; = — (2.10)

m
This is particularly attractive if the length of the time series is short in comparison
to the number of individual forecasts, because combination weights derived from
these short samples tend to be unstable as last shown by Smith & Wallis (2009).

Techniques based on ranks of the individual forecasts have first been proposed
by Bunn (1975) who expressed combination weights as probabilities for a model pro-
ducing the lowest loss in his outperformance model. The probabilities are estimated
using the proportion of times a method has performed best up to the current time.
This approach has for example been adopted by Aiolfi & Timmermann (2006), using
the equation

_ R
Z?L:1 R; '

where R; is the rank of model ¢ based on its past performance.

Ranking-based approaches are comparatively robust to outliers in forecast per-
formance and promise a stable combination performance especially if data is sparse,
unstable or nonstationary and approaches based on the statistical moments of the
error distribution provide unreliable results. However, they ignore correlations bet-
ween forecasts and the extent of the differences in the relative performance, which
are aspects considered in the next group of approaches.

wi (2.11)

2.3.2 Variance-covariance based methods

As originally suggested by Bates & Granger (1969), a combination approach can
calculate weights in order to minimize the combination error variance using the
(m x m) covariance matrix of forecast errors > according to the equation
-1

E /27716 (2.12)
ed> e
where w is the combination weight vector and e denotes the (m x 1) unit vector. In
this so-called “optimal model”, the results will be optimal with regard to the error
measure used if each individual forecast is unbiased. The drawback is the difficulty
to reliably calculate a covariance matrix: it can of course be estimated based on past
error variances, which leads to high estimation errors if the data sample is changing
or not stationary, or if the time series is short and many individual forecasts are to be
combined. Many authors, most recently Smith & Wallis (2009), hence suggested to
disregard correlations among forecast errors and only take individual error variances
into account. In Stock & Watson (2001), this idea was implemented using the mean
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squared error (M SFE) which is calculated for each model i by taking the average of
the sum of the past squared forecast errors over a certain period of time with the
length v:

1
MSE; = = 2 2.1
SEi=— > ¢ (2.13)

The forecast error € is given by the difference between forecast and realisation of the
corresponding target variable ¢; = ¢j; —y;. Past MSE performance is raised to various
powers of a parameter k, with m again being the number of individual forecasting
models:

MSE;*
Z?:l (MSEj)_k

Wi = (2.14)
In this approach, setting & = 0 produces an equally weighted combination, &k = 1
weights forecast by the inverse of their MSE. With increasing k, an increasing weight
is assigned to models that performed well.

Forecasts of the historically best performing cluster are then averaged to obtain
a final forecast. A relatively recent approach to the combination of forecasts was
introduced by Aiolfi & Timmermann (2006). Following empirical results saying
that a good or bad performing forecast is more likely to keep performing well or
badly instead of changing its performance, they group a number of forecasts that
are diversified in functional approach and model parameters in two or three clusters
using a k-means algorithm on their past error variance. Forecasts are then pooled
within the groups before combining them with one of the following strategies:

e selecting the previously best performing cluster and averaging the forecasts
contained in it,

e excluding the cluster that performs worse and averaging forecasts from the
other clusters,

e combining forecast averages of each of the clusters using least squares regres-
sion or

e doing the same as in the previous bullet point but shrinking weights towards
equal weights.

2.3.3 Regression

In regressing realizations of the target variable on forecasts over past periods, linear
combination weights can be estimated by least squares approaches. Let y; be the
m x 1 column vector of forecasts from the m different models and y; the observation
at time j. The least squares estimator for the m x 1 weight vector w is given by

t—1

t—1
we=(D_ 9907 D v (2.15)

j=t—v j=t—v

A linear regression has the general form

9 =wo+wy+e (2.16)
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where wq is an intercept value, € the error term and y again the column vector of
forecasts. Granger & Ramanathan (1984) first evaluated three different versions of
the regression approach: a standard regression with an intercept, a standard regres-
sion without an intercept and a restricted regression without intercept where the
combination weights sum to one. The authors suggest to use unrestricted combi-
nation weights and to include an intercept term because in that case, any bias in
the individual forecasts can be compensated for with the intercept term. Further-
more, the authors of the same publication showed that the optimal model presented
in the previous section is analogous to a least squares regression with weights con-
strained to sum to one, proposing to discard the optimal approach favouring the
simpler and more flexible regression method. In de Menezes et al. (2000) the usage
of unrestricted weights is challenged quoting Diebold (1988), who states that the
resulting combination errors are likely to be serially correlated, indicating inefficient
combination weights.

2.3.4 Nonlinear combinations

Although nonlinear models are widely known and popular for individual forecasting
techniques, literature on nonlinear forecast combination seems sparse, a fact that
has also been mentioned by Timmermann (2006). One reason can be found in the
error potential related to parameter estimation, which is already large for linear
models and which is even larger for nonlinear ones that usually come with higher
degrees of freedom and more parameters to estimate. This section provides a review
of the few publications identified on combination techniques using neural networks,
self-organising algorithms, fuzzy systems and genetic programming approaches. A
more extensive review has been previously published in Lemke & Gabrys (2007).

2.3.4.1 Neural Networks

The general idea of neural network forecast combinations is straightforward: an
instance of the training set consists of forecasts of the individual models at a certain
time in the past. The output is the observed value of the variable to be forecasted
at the time. The neural network (regression type) then approximates the nonlinear
function V¥ in the training period and can be used for obtaining a combined forecast
afterwards.

The first use of neural networks for combining forecasts appears in Shi & Liu
(1993). The authors use a four layer feedforward network trained with the back-
propagation algorithm using only one time series with 120 values. Three individual
forecasts obtained using one exponential smoothing, one trend analysis and one
ARIMA model are combined. Diagrams imply that the neural network has been
trained well and shows a good out-of-sample performance. Numerical results of the
same experiment can be found in Shi et al. (1999), showing that the neural network
performs extremely well. Details on the architecture have however been omitted in
the publications.

Less favourable results can be found in more extensive studies. In Donaldson &
Kamstra (1996), a data set consisting of four macroeconomic series over almost 18
years is used. T'wo individual forecasts are combined in a neural network with one
hidden layer that consists of four nodes using one linear and three nonlinear logistic
transfer functions. Furthermore, two linear combinations are used for comparison.
Looking at a squared error measure, the neural network combinations perform at
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least as well as individual forecasts and similar to the linear combinations. This is
however not the case for an absolute error measure. On another note, the authors
point out that neural networks are the only model in the evaluation that was not
encompassed® by at least one other forecast. The same experimental setup with
similar results is used in Harrald & Kamstra (1997), with the difference that some
parameters of the neural network are determined using evolutionary programming.

Another empirical study can be found in Hu & Tsoukalas (1999). Four individual
forecasts are combined with a one layered neural network with four nodes, using a
data set of one and a half years of financial data including a crisis period. The neural
network performs particularly well in the crisis period, but, in contrast to the results
described in the previous paragraph, a simple average of individual forecasts or
individual models themselves always outperform this approach if squared prediction
errors are used for comparison. If the performance of the neural network is assessed
by absolute error values, it gets significantly better, but it is still not always superior.

In Donaldson & Kamstra (1999), the authors explain potential benefits of the
neural network approach graphically, plotting surfaces of the combining functions in
relation to two input forecasts. While linear approaches create a flat surface with
a constant response to changing input forecasts, a neural network shows a highly
flexible response function where the impact of a change in one of the individual fore-
casts is influenced by the value the other forecast assumes at the same time. Neural
network combination models can thus account for interactions between individual
forecasts which would be omitted when using linear combination schemes.

More recent work can be found in Liu (2005) and Ozun & Cifter (2007), which
successfully apply neural networks trained with genetic algorithms for forecast com-
binations in the application area of predicting market risk.

2.3.4.2 Self-organising algorithms

Research on a popular inductive self-organising method called the Group Method
of Data Handling (GMDH) was started by Ivakhnenko (1970). This algorithm aims
at finding the structure of a model by generating candidates in an iterative process,
sorting out possible solutions according to an external criterion in each step.

An application of this concept to forecast combination can be found in He &
Xu (2005). A so-called statistical learning network is built, starting with individual
forecasts as input variables. A transfer function, usually a polynomial, is used to
generate a first layer consisting of a set of model candidates. Parameter estimation
for the models takes place on training data, for example using regression. The
resulting candidates are ranked according to an external criterion, which could be
the mean squared forecast error on unseen test data. Only models that are able to
improve the value of the external criterion are selected as inputs for the subsequent
layer, where the generation, estimation and selection process starts again. The value
of the external criterion will pass through a minimum, which is when the optimal
model has been found.

Only a very small empirical experiment is presented to evaluate the performance
of the self-organising approach, just one macroeconomic series over 20 months is
used. Compared to a neural network combining approach, all individual models and

SIf a forecast encompasses rival forecasts, it includes all the information other models give and
dominates them, making them redundant for a forecast combination. Section 5.3.1.4 gives more
details of the encompassing concept.
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a linear least squares combination, the proposed algorithm outperforms every single
one of them.

In comparison to neural networks, the self-organising approach has several ad-
vantages. It does not require time-consuming training and gives an explicit model
of the system. Furthermore, the topology of the network does not need to be deter-
mined in advance, which is still an issue of ongoing research in the area of neural
networks.

2.3.4.3 Fuzzy systems

Fuzzy systems account for vagueness in knowledge and situations by using member-
ship functions that translate values of input variables into values representing their
degree of truth for belonging to a concept. Based on these, the degree of applicabil-
ity of each rule in an expert system is calculated before a defuzzification procedure
translates these applicabilities back to a crisp output value.

Fuzzy systems for forecast combination can be found following two different
paradigms. Fiordaliso (1998) use fuzzy systems similar to regime models, with the
difference that two or more different forecasting models can be active at one time.
They apply a first order Takagi-Sugeno fuzzy system, which represents conclusions
in the rules by linear functions of the input variables. Parameters in the system
are estimated using the gradient descent algorithm to minimise its squared forecast
error. Tests are carried out using three time series with 200 to 312 values, combining
one ARIMA and one k-nearest neighbours model. Looking at four different error
measures, the fuzzy system almost always outperforms or draws level with the indi-
vidual forecasts and linear forecast combination methods. The authors furthermore
suggest using a linear mixture of models, which is simpler than one working with
neural networks, however, they do admit at the same time that the computational
complexity of building their system is very high and suggest simplifications.

Two more publications emphasise a different aspect of fuzzy systems - the pos-
sibility of modelling linguistic and subjective knowledge. A case study favouring a
fuzzy logic combination system for forecasting the demand for signal transmission
products is presented in Frantti & M&honen (2001). A similar hierarchical rule base
combining subjective forecasts from experts with time series forecasts is presented
in Petrovic et al. (2006), the individual time series forecasts being provided by an
ARMA and a decomposition forecasting model. Only a hypothetical example is
used for evaluation, significantly improving the individual time series forecast error.
Noteworthy about the presented system is its periodically adapting rule base, which
adjusts confidence in rules according to their past performance.

2.3.4.4 Genetic Programming

Riedel & Gabrys (2005) look at forecast combination for airline ticket demand data.
In this area, forecasts are available on different levels because of the complex network
of flights, routings and itineraries which contain different fareclasses or points of sale.
A large number of predictions can thus be generated on these various levels with
different forecasting models. To avoid the drawbacks that arise from using too many
input forecasts without taking the risk of choosing among them, the authors propose
hierarchical structures for forecast combination. Genetic programming is used to
evolve the tree-like combination structures where individual forecasts are represented
by leafs, different combination methods by nodes and the final combined forecast
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is obtained at the root. As the fitness function, i.e. the criterion to optimize, the
mean absolute deviation forecasting error on a previously unseen test data set has
been chosen. The initial population is either a random subset or selected by experts;
the standard operators for genetic programming are applied in the following way:
crossover exchanges two subtrees and mutation exchanges a node or leaf. Variations
of this algorithm are assessed on demand rates for airline tickets, leading to consistent
improvements compared to the simple average combination.

2.3.5 Adaptivity

A constantly changing environment is a typical characteristic for an area in which
forecasts are applied. Changes can be of different nature; one type of change is
structural breaks in the data generation process, caused by events like macroeco-
nomic shocks or an alteration of the political situation. Other changes are smoother
and can for example be a function of the state of the economy. Assuming that no
individual model can be a perfect model of the true data generation process and
considering that each individual model has a different speed to adapt to changes,
there is a reason to believe that forecast combination will perform well whenever
adaptivity is needed. Hendry & Clements (2002) support this hypothesis for simple
combination methods in the presence of structural breaks, considering a number of
designs for the breaks that occur in a simulation. Terui & van Dijk (2002) contrast
an individual autoregressive forecast with time varying weights with time varying
forecast combinations, coming to the conclusion that the latter are always superior.

2.3.5.1 Time-Varying Combination Weights

Motivated by the fact that the performance of individual forecasts changes over
time as, for example, shown in Aiolfi & Timmermann (2006), many publications
investigate time varying combination weights. One of the initial papers on that
matter by Diebold & Pauly (1986) proposes modelling a bigger impact of more recent
observations and letting the combination weights be a function of time. Results
of a simulation study shows significantly decreasing error values compared to an
ordinary least squares regression based combination approach, but no further work
with studies on real data has been found though announced in the conclusions.

One plausible method in the context of regression and variance-covariance based
methods is using a moving window of fixed size to determine the number of latest
data collection points to include in the calculation, as first thought of by Bates &
Granger (1969) and Granger & Ramanathan (1984). Structural breaks can degrade
the performance of these approaches; Pesaran & Timmermann (2007) proposed a
varying window size following a known structural break by minimizing the expected
mean forecast error in an iterative procedure. The approach is presented for fore-
casting a single autoregressive time series, but could be extended to guide forecast
combination weights.

Deutsch et al. (1994) apply regime switching models to combine forecasts for
the US and UK inflation rates. Two sets of combination weights for two forecasts
are estimated, establishing two different regimes. The regime the economy might be
in is then determined dependent on different functions of the lagged forecast error
of the alternative model. The best performing method is reported to be related to
the relative size of one of the forecast errors and reduces the out-of-sample MSE
compared to the results obtained by linear combination of the models. The indi-
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vidual forecasts are always outperformed. The more extensive empirical evaluation
of Elliott & Timmermann (2005) gives contradictory results for the same approach.
Out of six macroeconomic series investigated, this method only outperforms both of
the individual forecasts in 2 out of 6 cases.

A different approach with even less promising results is followed by Terui & van
Dijk (2002) and Stock & Watson (2004). Both use a state-space approach with
a regression using time-varying weights in the measurement equation and evolve
the weights using a random walk in the state equation. State and weights are then
computed using the Kalman Filter using an expanding window of observations. Terui
& van Dijk (2002) report results of an empirical study based on two data sets for
natural sciences and 16 macroeconomic series, where the time varying model fails
to consistently outperform the individual forecasts out-of-sample. However, the
authors remark that the combined forecasts work well for highly nonlinear series.
Stock & Watson (2004) report that too much adaptivity in the parameters worsens
performance and stability of the combined forecasts, while least possible adaptivity
only yields small improvements compared to simple averaging.

Elliott & Timmermann (2005) compare several time-varying and static forecast
combinations, including the method by Deutsch et al. (1994), a rolling regression
and a state-space approach similar to the one described in the previous paragraph.
A new approach to regime switching is introduced by a latent state variable that
governs the estimation weights. The empirical results for six macroeconomic time
series are ambiguous; the proposed approach only outperforms the individual fore-
casts in three out of the six cases. It does though perform better comparing it only
to the other time-varying methods in most of the cases. Furthermore, Elliott & Tim-
mermann (2005) generate six data series by Monte Carlo simulations with different
characteristics to find out for which series combination methods are successful. In
the presence of persistent structural breaks, regime switching methods are reported
to have the best performance for bigger sample sizes.

2.3.5.2 Adaptive Intelligent Models

Two of the presented fuzzy systems include a learning mechanism: Petrovic et al.
(2006) periodically adapt the rule bases of their proposed fuzzy system by calcu-
lating the confidence of an individual forecast based on their past performance.
In the hypothetical experiment, the learning mechanism lowers the forecast error
compared to the system with learning turned off. In Frantti & M&ahonen (2001),
membership functions are automatically generated by processing incoming data,
and thus adapted if new data arrives. No comparison between the adaptive and a
non-adaptive system is given.

2.3.6 Combining or not combining?

Although empirical studies usually favoured forecast combinations over individual
approaches, the question of whether or not to combine a pool of available forecasts
remains controversial till today. Supporters of the combining approach give a num-
ber of reasons for the benefits of this approach. One of the first arguments was
given in Bates & Granger (1969), based on the fact that some forecasts might come
from closed, unobserved or private sources, where underlying variables, assumptions
and models are not available. If one was to construct one single “super-model”,
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the hidden knowledge will be a major obstacle. A forecast combination offers a
straightforward solution for taking the forecast into account.

A second reason is the presence of structural breaks in real-world data generation
processes, which can be caused by institutional change, economic crises and many
other factors. These breaks are very hard to detect in real-time. Some models will
adapt quickly to the change, while others need longer to adjust their parameters. A
combination of methods with different adaptation capabilities and adaptation speed
is likely to outperform individual models as confirmed by Pesaran & Timmermann
(2007).

Another argument is related to the fact that in practice, it is usually simply im-
possible to be able to correctly model a data generation process in only one model,
it is furthermore highly unlikely that one single model will dominate others for all
points in time. Single models are most likely to be simplifications of a much more
complex reality, so different models might be complementary to each other and be
able to approximate the real process better. This is also connected to the concern
about model risk: even if a single best model might be available, it will usually
require specialist knowledge to find the right model and its parameters. Forecast
combinations decreases this model-risk by diversification and can help to achieve
good results without in-depth knowledge about the application and time consuming
computationally complex fine-tuning of a single model. Based on the same diversifi-
cation argument, Newbold & Harvey (2006) describe the intuitive appeal of forecast
combination as analogous to the investment in a portfolio of securities rather than
a single stock. Hibon & Evgeniou (2005) reported that combining forecasts does
not always give the best accuracy, but is far less risky in terms of performance out-
liers than choosing just one method and provides an alternative in cases where it is
not feasible or the expertise is missing to reliably identify and design a single best
forecasting model.

The first publication questioning the general approach of forecast combination
were the discussions following Newbold & Granger (1974). More recently, Tim-
mermann (2006) summarises reasons for and against the combination approach.
Opponents of forecast combination argue that most combination algorithms are im-
provised and lack a sound statistical background. Instabilities and errors in estimat-
ing the combination weights can compromise performance, which is a danger that
increases with increasing complexity of the forecast combination model. Another
argument states that it is preferable to collect all the information the individual
forecasts are built on and construct a single super-model which will provide the
optimal forecast. Huang & Lee (2007) recently discussed this question under the
title “To combine forecasts or to combine information?” and concluded that the
super-model approach (combining information) is superior for in-sample evaluation.
Circumstances of when the forecast combination work better than information com-
bination for out-of-sample evaluation are analytically identified, and an empirical
evaluation shows general superiority of the forecast combination approach in real-
time forecasting.

2.4 Chapter summary and future work

This chapter provided a literature review in the areas of revenue management, time
series forecasting and forecast combination, looking at both nonlinear and linear

29



CHAPTER 2. AIRLINE REVENUE MANAGEMENT AND FORECASTING

models with a special section on adaptivity of the combination models. The publi-
cations mentioned in this chapter highlight a number of future research directions.

Chiang et al. (2007) identify possible future research in the area of applying reve-
nue management systems to industries that do not traditionally use them, relaxing
assumptions and requirements of the original approaches. They also see potential in
the integration with relatively new technologies as the internet. A very promising
research topic also pursued by Lufthansa Systems is concepts of competition and
alliances - for example, one could model the impact of a competing company offering
a similar portfolio on the demand of a product.

Gooijer & Hyndman (2006) and Clive Granger in Ord (2001) mention multivari-
ate forecasting models: despite theoretical advances in the last two decades, they are
still not widely applied in practice or in empirical studies, and the authors expect
that this will change in the future. Makridakis & Hibon (2000) advocate putting
more emphasis on real-life behaviour of data when studying ways to improve forecas-
ting accuracy. Nonlinear methods deserve more attention and need more thorough
research concerning their design, parametrisation, applicability and performance
compared to linear methods as agreed upon by both Gooijer & Hyndman (2006)
and Terésvirta et al. (2004). Gooijer & Hyndman (2006) furthermore expect to see
more research in the areas of density forecasting and improved forecasting intervals.

One conclusion motivating the line of research for this thesis is consistent for
both forecasting and forecast combinations: there is no single method consistently
providing more accuracy than another looking at empirical studies. Fred Collopy in
Ord (2001) states, that the times where forecasting researchers are mainly looking
for a better general method are over. The article of Robert J. Hyndman in the
same publication has the same notion, one of his conclusions being: “Makridakis €
Hibon (2000) show us what works well and what does not. Now it is time to identify
why some methods work well and others do not.” This is a question still extremely
relevant to time series forecasting, forecasting combination and their application to
airline industry and one of the central questions in this thesis.
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Do we need experts for time series forecasting?

Forecasting practitioners are faced with a tricky question: which approach is the
best for the problem they need to solve? The number of available methods and
parametrisations can be confusing and there appears to be no general guideline on
when to pick which. In the 50 years of time series forecasting research, the question
has naturally been addressed in a number of comparative empirical studies and other
publications, some of which will be discussed in the first part of this chapter.
Motivated by the results of this discussion, this chapter will proceed to present
an empirical study examining a selection of off-the-shelf forecasting and forecast
combination algorithms with a focus on assessing their practical relevance by drawing
conclusions for non-expert users. Considering the advances in forecasting techniques,
this analysis addresses the question whether we need human expertise for practical
forecasting applications or whether the investigated methods provide comparable
performance. Parts of the results have been published in Lemke & Gabrys (2008a).

3.1 Choosing a forecasting approach

Forecasting and forecast combination has been extensively researched in the last
decades and a large number of empirical studies have been conducted to compare
out-of-sample accuracy of various methods. Many of these studies have been very
limited in terms of the methods examined and the number and nature of time se-
ries used. However, there are a few exceptions that gained considerable reputation
and provided the basis of many discussions of forecasting experts. This first section
discusses influential empirical studies conducted in the last decade before Section 2
looks more closely at combinations of forecasts, summarising guidelines and recom-
mendations on their usage given in literature.

3.1.1 Empirical studies

The three so called M-competitions consist of the M-competition (Makridakis et al.
(1982)), the M2-competition (Makridakis et al. (1993)) and the M3-competition
Makridakis & Hibon (2000). Competitions have a few advantages in comparison to
ordinary empirical studies: the conclusions are not solely based on the forecasting
skills of a small number of individuals, but on many experts in the field with different
research expertise who are willing to take part. Furthermore, the same data set
is used to compare methods using the same methodology and accuracy measures,
facilitating more objective conclusions that cannot usually be drawn from a number
of independent small empirical studies. Results of the latest M-competition have
been published in Makridakis & Hibon (2000). The data set consisted of 3003
mainly yearly, quarterly or monthly business and economic time series with different
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numbers of available observations and required forecasting horizons. 24 competing
methods grouped into the six categories naive, smoothing, decomposition, ARIMA,
expert systems and neural networks have been evaluated. The competition came to
four major conclusions that have also been confirmed by the previous M1 and M2
competitions:

1. Statistically complex models do not necessarily outperform less sophisticated
ones.

2. Forecasting performance depends on the accuracy measure used.
3. Forecasting performance depends on the length of the forecasting horizon.

4. Combinations of forecasts do outperform the individual methods involved on
average.

Conclusion number four has already been discussed in Section 2.3.6. The second and
third conclusion were largely undisputedly accepted by the forecasting community.
Conclusion number one however has been subject to fierce discussions in the com-
mentaries to the competition published in Ord (2001). In the introduction, Keith
Ord mentions that more complex methods like ARIMA need at least 50 observa-
tions to build a model that produces good forecasting results, which was not given
for many of the series in the data set and is the reason for simple methods seeming
advantageous. The same reason is given by Sandy D. Balkin as an explanation for
the mediocre performance of the only neural network in the competition. In addi-
tion, Mr Balkin criticises the choice of the M3-competition data set as consisting of
financial and economic time series only, and thus being too limited to come to any
general conclusions. Clive W.J. Granger points out that looking at individual series,
the proportion of times that a simple method will be the best is a lot smaller than
for a complex method, indicating that although their average performance seems
promising, simple methods are not the best choice for the majority of the series.

Looking into the M3 competition in more detail, the authors recommend the
dampened trend exponential smoothing method by Taylor (2003) as a method that is
very easy to implement and still gives good performance. Among the best performing
methods was also the Theta-model by Assimakopoulos & Nikolopoulos (2000).

Another frequently cited extensive empirical study has been carried out by Stock
& Watson (2001) and has already been mentioned in Section 2.2.4. This contribution
is still being discussed and of significance in the forecasting literature. The authors
compared 49 linear and nonlinear forecasting methods using a data set consisting
of 215 U.S. macroeconomic series. In general, they came to a similar conclusion as
Makridakis & Hibon (2000): compared to simple methods, in their case represented
by an autoregressive model of order four, there are very few times where a complex
method clearly and consistently performs better. The authors furthermore aimed
to compare linear with nonlinear methods, where no clear-cut winner could be iden-
tified: the forecasting accuracy differed significantly across forecast horizons and
series, confirming two more of the M3 competition conclusions. The re-examination
of Terdsvirta et al. (2004) using similar models as Stock & Watson (2001) was based
on a data set of 47 time series and put considerably more effort into defining a
suitable architecture and parametrisation of the nonlinear models, however, results
still did not overly favour nonlinear models and the question of which class generally
performs better remains undecided.
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Summarising, it can be said that the results of the enormous amount of empirical
studies on time series forecasting have been mixed and sometimes contradictory.
Although the three big sample studies mentioned here come to the same very general
conclusions, no best overall method could be clearly identified. A rough guideline
which method to choose in which situation has been given in Ord (2001). Generally, a
small number of observations, very erratic process behaviour and no or weak seasonal
pattern for a given time series are strong indicators that simple methods should be
used. As the number of observations grows and the series exhibit a stable stochastic
and a strong seasonal pattern, statistical criteria and contextual information should
be used to identify an appropriate, possibly sophisticated and more complex model.

3.1.2 Evidence on using combinations of forecasts

Although there is a vast amount of literature available about linear forecast combina-
tion, no straightforward method of choosing the right approach can be determined.
The relative performance of the models depends on the error variance of the in-
dividual forecasts, the correlation between forecast errors and the sample size for
estimation according to de Menezes et al. (2000). Timmermann (2006) summarises
a number of general outcomes that tend to be consistent in the majority of empirical
studies:

e Simple combination schemes are hard to beat. Stock & Watson (2004)
coined the term “the forecast combination puzzle”, referring to the fact that
simple combinations repeatedly outperform more sophisticated ones in empi-
rical experiments, although in theory, a combination which puts more weight
on a well-performing forecast should be superior. Smith & Wallis (2009) re-
cently re-visited this issue, mainly blaming it on parameter estimation errors
in the more complex combination strategies and stating that it is error-prone
to assess forecast accuracy for estimating combination weights on limited past
and possibly noisy data. Especially when combining a large number of fore-
casts, the simple average provides a trade-off between a small bias and a larger
estimation variance.

e Trimming often improves performance. Trimming refers to discarding
the individual models that performed worst in the past before combining the
others and has been recommended by many authors, among which are Jose
& Winkler (2008), Stock & Watson (2004) and Granger & Jeon (2004) with

recommendations of trimming percentages usually ranging from 5-30%.

e Shrinkage often improves performance. The idea of shrinkage is to trade
off weight estimation errors against biased weights and has been found benefi-
cial by, for example, Aiolfi & Timmermann (2006) and Stock & Watson (2004).
A simple and popular approach is shrinking combination weights w; towards
equal weights, proposed by, amongst others, Stock & Watson (2004) as shown
in the following equation:

. 1
wi:/\-wi—i—(l—/\)-a, (3.1)
where m is the number of methods involved, A controls the extent of shrinkage

and w; is the linear combination weight of model ¢ as in the previous chapter.
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Parameter A depends on the size of the estimation window in relation to the
number of models; with increasing window size, the estimated weights become
more important.

e Limited time-variation in the combination weights may be helpful.
Empirical results reported on time varying parameters are at best ambigu-
ous, if not discouraging. Among the authors acknowledging a small positive
impact of time varying parameters are Stock & Watson (2004) and Elliott
& Timmermann (2005), both of which however stress that the extent of the
time-variation should be limited.

Concerning linear forecast combination methods, de Menezes et al. (2000) give prac-
tical guidelines of which linear model to choose in which situation. According
to these, rank-based approaches work well for small sample sizes, while variance-
covariance and regression methods are more suitable for longer time series. Similar
error variances of individual forecasts indicate that simple averages might be a good
choice. Concerning regression, there seems to be a general disagreement on whether
or not to use the unrestricted version, and on whether or not to favour regression
models over variance-covariance based methods.

Compared to literature on linear forecast combination, the number of publica-
tions about nonlinear methods appears small. Empirical results are mostly smaller
case studies; the majority only use one time series like, for example, He & Xu
(2005), See & Openshaw (2000) and Li & Tkacz (2001), some of them with less than
300 observations for assessment of algorithms. The choice of individual forecasts
used for combination is different in each study, making it difficult to compare re-
sults. Evaluations across methods have only been found in one publication by Palit
& Popovic (2000) with no clear result given. The most investigated of these me-
thods is clearly forecast combination with neural networks. While two publications
with smaller empirical evaluations report a significant improvement over individual
forecasting and linear forecast combination models, others find that performance is
mixed dependent on forecasting horizons or the error measure used. Indications also
exist that neural networks perform better than other methods if there are structural
breaks in the data generation process. The mixed results and the traditional draw-
backs of neural networks might favour self-organising approaches, although only one
publication mentioned them in the context of forecast combination. Fuzzy systems
are the method to use if subjective or linguistic forecasts have to be included in
the combination. If this is not the case, the computationally complex process of
generating and applying a fuzzy system can provide a reason against it. However,
some publications on fuzzy systems, namely Frantti & Mahonen (2001) and Petrovic
et al. (2006) also consider adaptivity to a changing environment thoroughly, which
has not been done for any of the other nonlinear methods yet.

3.1.3 Conclusions

In the studies presented and summarised in the previous section, forecasting experts
spent time and used accumulated knowledge designing and tuning methods with
different degrees of complexity only to come to the same conclusion: no single best
method that works well on all time series can be identified. Consequently, in practical
applications, one would need forecasting experts to investigate specific time series
and suggest a forecasting model. However, the fact that experts with sufficient
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application-specific and forecasting expertise are mostly rare and expensive leads to
the question of how much loss in forecast accuracy, if any, one might expect from
failing to consult experts, but using off-the-shelf methods instead. The importance of
this question is furthermore enforced by the well-known finding that simple methods
like exponential smoothing for forecasting and simple average for combinations tend
to work just as well as the more complex competing methods in practice.

3.2 Empirical study

Based on the conclusions of the previous section, an empirical study using a number
of well-known and easily accessible forecasting and combination methods has been
conducted. Data sets have been obtained from two recent forecasting competitions,
to provide a good basis for comparison of results achieved here to results of inde-
pendent researchers from diverse backgrounds. This study gives a contribution to
answering the question if complex methods are of practical relevance by looking at
the following issues:

e Do the more complex methods used outperform the simple models?

e Can forecast combination increase the accuracy of the simple individual pre-
dictors?

e Can the performance of expert contributions to the competitions be matched
with off-the-shelf methods?

The initial presentation and justification of data set and methodology used will be
followed by the analysis of the results.

3.2.1 Data sets

Data sets have been obtained from the NN3 and NN5 neural network forecasting
competitions Crone (2006/2007) and Crone (2008). These competitions took place
fairly recently and included 111 time series of varying lengths and forecasting hori-
zons each, which will allow analysis of the results regarding these different aspects.
Submissions had been invited for methods from computational intelligence area and
performances of well-known statistical benchmarks were provided for comparison.
To the best of the author’s knowledge, there is no publication analysing the results,
but rankings, performances and descriptions of the various contestants are given on
the cited websites. The choice of the NN3/NN5 data over data from the M3 compe-
tition has another advantage: M3 data was often criticised for including series that
are too short (some of the series including as few as 14 observations) with too few
complex characteristics for being a suitable data set for both linear and nonlinear or
simple and complex model. NN3/NN5 data seemed more promising and balanced
in this respect.

Figure 3.1 shows one sample series for each of the data set. NN3 data includes
monthly empirical business time series with 52 to 126 observations, while the NN5
series consist of daily time series from cash machine withdrawals with 735 obser-
vations each. The competition task was to predict the next 18 or 56 observations,
respectively. While NN3 data did not need specific preprocessing, NN5 data in-
cluded some missing values, which were substituted by taking the mean of the value
of the corresponding weekday of the previous and the following week.
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Figure 3.1: Examples of time series, left: NN3 competition, right: NN5
competition.

3.2.2 Methodology

The experiments will be conducted in a single-step-ahead and a multiple-steps-ahead
version. The multi-step approach allows comparison to the results of the competi-
tions. Many empirical studies are however based on single-step-ahead predictions,
and results might vary to the multi-step approach because of the missing accu-
mulation of errors and an increased influence of chance. In each of the cases, the
last 18 or 56 values of each series were not used for training the models to enable
pseudo-out-of-sample error evaluation.

Forecasts will be evaluated using two error measures of a forecast ¢ forecasting
the target variable y on a test set with n observations. The first one is the symmetric
mean absolute percentage error (SMAPE), which is given by

L~ lyi — il
SMAPE = — ; AT 100, (3.2)
and has been used for evaluating a wide variety of methods, which allows compari-
sons between series on different scales. As the SMAPE was the error measure used
for the NN3/NN5 competitions, this was an obvious choice for this study. Anne
Koehler in Ord (2001) however shows that the SMAPE is asymmetric, punishing
methods giving low forecasts more than methods that produce high forecasts. Con-

sequently, an additional error measure, the square root of the mean squared error
(RMSE) given by

1 n
RMSE = — Yi — Ql 2 3.3
PMURE (33)
is also calculated. The RMSE is a widely used error measure in many empirical
forecast evaluations and, as an absolute measure, depends on the scale of the time
series. Because errors are squared before they are averaged, more weight is put on
large errors than on small ones, which is a useful characteristic whenever large errors

are particularly undesirable.

It was aimed to create a functionally diverse pool of automatic individual fore-
casting algorithms, representing both the basic simple and complex, linear and non-
linear models with at least one model from each of the groups presented in the
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literature review Section 2.2. The forecasting and combination algorithms imple-
mented are explained in the remainder of this section. As not all of the individual
algorithms provide native multi-step-ahead forecasting, some of them are imple-
mented using two approaches: an iterative approach, where the last prediction is
fed back to the model to obtain the next forecast, or a direct approach, where n
different predictors are trained for each of the 1 to n steps ahead problem. In the
equations given, ¢;41 will denote the one-step-ahead prediction with current time ¢
and y; the observation of the time series at time 1.

3.2.2.1 Simple forecasting models

The power and popularity of simple forecasting algorithms has been discussed in
Section 3.1.1. Five algorithms that can be considered “simple” have been imple-
mented

e For the moving average according to, for example, Makridakis et al. (1998),
the arithmetic mean of the last v observations according to Equation 3.4 is
calculated. An appropriate time window is found by grid-searching v-values
from 1 to 20 and choosing the v with the lowest error on a validation set prior
to the test set.

t
N 1
= Z Yi (3.4)
i=t—v+1

e Single exponential smoothing, which is also described in Makridakis et al.
(1998), is the simplest representative of smoothing methods. According to one
interpretation, it is calculated by adjusting the previous forecast by the error
it produced. The parameter « controls the extent of the adjustment and is
determined again by minimising pseudo-out-of-sample forecast errors.

Gir1 = ayr + (1 — )y (3.5)

e Taylor’s exponential smoothing is an exponential smoothing algorithm
more recently introduced by Taylor (2003). Here, a multiplicative growth rate
r is applied to the current level L; of the time series to obtain the one-step-
ahead forecast, t being the time index. Furthermore, Taylor uses a factor ¢
that takes values between 0 and 1 and dampens the growth rate with ascending
periods ahead to be forecast by raising it to the power of the forecast horizon
in each step. Equation 3.6 provides the details, with A being the number
of periods ahead to be predicted. The parameters o and (§ are smoothing
constants taking values between zero and one, which are again determined by
grid search.

ho i
Gtrn = Lerg=! ¢ )
Ly = ay+(1—a) (L)) (3.6)
e = B(Le/Lea) + (1= Py
e Polynomial regression fits a polynomial to the time series by regressing time

series indices against time series values. In this experiment, a suitable order of
the polynomial between two and six is grid-searched and the resulting curve
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extrapolated into the future; Equation 3.7 shows the example of a regression
of order three, where w; are parameters estimated using the training set and ¢
is the current time index.

U = wo + wit + (,UQt2 + u)gtg (37)

e The Theta-model according to Assimakopoulos & Nikolopoulos (2000) works
on the curvature of a time series. If {y1,...,y,} again constitutes the observed
univariate time series, a new series {z1(6),...,2,(0)} called theta-line is con-
structed by applying a coefficient 6 to the second order differences of the
original time series so that

% (0) = 0y, (3.8)

where

y;/ =Yt — 2Yt—1 + Yt—2 (3.9)

with ¢ once more being the time index. This is a second order difference
equation which, according to e.g. Box & Jenkins (1970) pp.114-119, has the
solution

2(0) = g + bo(t — 1) + Oy, (3.10)

with ag and by being constants that can be determined according to Hyndman
& Billah (2003) who derived their equations by finding the values z1(6) and
29(0) — z1(0) that minimise the sum of squared differences between the original
series and the theta-lines.

In the original setup in Assimakopoulos & Nikolopoulos (2000), forecasts of
two theta-lines are calculated and averaged. The first forecast uses 6 = 0
which, looking at Equation 3.10, results in a linear regression problem. The
forecast for a theta-line with § = 2 is obtained by single exponential smoothing
on the theta-line as shown in Equation 3.5.

Hyndman & Billah (2003) remark that this model is equivalent to a special
case of single exponential smoothing with drift.

3.2.2.2 Automatic Box-Jenkins Models

Box-Jenkins models are given by the notation ARIMA (p,d,q) and consist of the
following three parts:

e AR(p) denotes the autoregressive part of order p. Autoregression defines a
regression y; = wo + w1Yi—1 + ...wpYi—p + € where the target variable depends
on p time-lagged values of itself weighted by w;.

e I(d) defines the degree of differencing involved. Differencing is a method of
removing non-stationarity in a time series by calculating the change between
each observation. The first difference of a time series is thus given by y; =

Yt — Yt—1-
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e MA(q) indicates the order of the moving average part of the model, which is
given as a moving average of the error series. It can be described as a regression
against the past error values of the series y; = wo + wi€i—1 + .. wWe€—q + €.

The identification of an appropriate ARIMA model for a specific time series is not
straightforward as discussed in Makridakis et al. (1998) and usually involves expert
knowledge and intervention. T'wo automatic approaches have been implemented for
this study:

e The original time series as well as two series representing its first and sec-
ond differences are submitted to the automatic ARMA selection process of a
MATLAB toolbox published in Delft Center for Systems and Control (2007),
subsequently choosing the approach that produced the lowest pseudo-out-of-
sample error. The maximum number of time lags used is an input parameter
of the toolbox and has been set to two, which is sufficient in practice according
to Makridakis et al. (1998). Furthermore, the same authors state, that it is
almost never necessary to generate more than second-order differences of a
time series, because data usually only involves nonstationarity of the first or
second level.

e An alternative automatic approach for ARMA-modelling is included in the
State-Space-Models Toolbox as described in Peng & Aston (2007). In this case,
an appropriate order for p and ¢ was chosen using the Akaike’s Information
criterion (AIC)!, while a suitable order of differencing was determined by the
log-likelihood of a model given the corresponding differenced series.

3.2.2.3 State space model

The State-Space-Models Toolbox by Peng & Aston (2007) has been used for estima-
tion and implementation of a local level model with a dummy seasonal component
of either twelve for the monthly NN3 data or seven for the weekly NN5 data. A
basic local level consists of a random walk with noise as described by the following
equations:

A (3.11)
e = He—1t+ M (3.12)

where €; and 7; are normally and independently distributed error terms. Variable p;
represents a stochastic trend component in the more general structural time series
definition, for the random walk it simply denotes last time series observations.

3.2.2.4 Neural networks

According to the widely accepted guidelines given by Zhang et al. (1998), a feed-
forward neural network was designed. The authors stated that a backpropagation
algorithm with momentum is successfully used by the majority of empirical studies,
which is also implemented here. One hidden layer is generally considered sufficient
for forecasting purposes. It is furthermore suggested to use as many hidden neurons

YAIC = 2k—2-In(L), with k being the number of parameters in the model and L the maximized
value of the likelihood function for the estimated model.
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as input variables, with input variables being chosen with regard to the application.
In the experiments presented here, the number of lagged input variables and thus
the number of hidden neurons has been set to 12 for NN3 data and 14 to NN5 data,
to capture the yearly or fortnightly seasonality, if present. Ten neural networks
have been trained and their predictions averaged to obtain the final prediction and
protect it from outliers. Since overfitting seems to be a problem according to, for
example, Zhang (2007), a number of rules for early stopping were used in order to
prevent overtraining on the test set and loss of generalisation performance: training
will stop, if

e the maximum number of training epochs (500) is reached,
e performance is minimized to the goal of 0.1,
e the performance gradient falls below 10710 or

e since its last decrease, validation performance error has increased more than
5 times.

Mainly, the parameters of the model have been left at their default values from the
Matlab neural network toolbox, with a few exceptions: the maximum number of
training epochs was raised from ten to 500 due to a small number of observations
in some of the time series. However, it is assumed that the other early stopping
mechanisms prevent the network to always be trained for this maximum number.
The performance goal was increased from 0 to 0.1 to allow for early stopping even
if performance is not perfect. The value for the momentum and the learning rate
of the training algorithm has been kept at default values 0.9 and 0.1, respectively,
as preliminary experiments provided no reason to change them. Sigmoid activation
functions for the neurons have been used, along with a linear function for the output
layer.

Furthermore, a recurrent neural network of the Elman-type has been employed.
There seem to be no general guidelines in literature about the architecture of a re-
current network for time series forecasting, but one thing seems to be a common
agreement: they need more hidden nodes than the feedforward neural network be-
cause the temporal relationship has to be modelled as well. In these experiments,
the number of hidden nodes was set to 24, thus doubling the amount of hidden nodes
for the feedforward network, otherwise, parameter values remain the same.

3.2.2.5 Forecast combinations

Concerning the choice of forecast combination approaches, only linear models are
considered here for reasons given in Section 2.3. Considering all groups of linear
combination approaches presented in the previous chapter, the following methods
have been implemented:

¢ Using simple average, all available forecasts are averaged according to Equa-
tion 2.10.

e The simple average with trimming averages individual forecasts as well,
but without taking the worst performing 20% of the models into account. This
is in accordance with guidelines given in Jose & Winkler (2008), where 10-30%
of trimming are recommended.
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e In the variance-based model, weights for a linear combination of forecasts
are determined using past forecasting performance according to Equation 2.14.

e The outperformance method is implemented using Equation 2.11 and de-
termines weights based on the number of times a method performed best in
the past.

e Two regression approaches following Equation 2.16 were implemented, one
version with convex weights, meaning the weights are non-negative and sum to
one, the other with unrestricted weights. Both approaches include an intercept
to compensate for biases in the individual forecasts.

e The idea of variance-based pooling was introduced by Aiolfi & Timmer-
mann (2006) and described in Section 2.3.2. In the experiments here, past
performance is used to group forecasts into two or three clusters by a k-means
algorithm. Forecasts of the historically best performing cluster are then aver-
aged to obtain a final forecast.

For the multi-step-ahead forecast, combination weights are determined using a vali-
dation period prior to the test set wherever applicable, with the size of the forecas-
ting horizon. In the single-step case, a rolling validation window of the same size is
applied.

3.2.3 Results (single-step-ahead)

A general difference in the performances of the single-step-ahead predictions can be
observed when comparing results for the NN3 and NN5 data set in Table 3.1: the
very simple methods (moving average, smoothing approaches and the Theta model)
perform extremely well for the NN3 data set, while the ARIMA models, the neural
networks and the structural model work much better on the NN5 data set containing
longer and less erratic time series. The worst performing individual method is the
regression approach, suffering from a number of outliers in both data sets.

A look at the combinations of forecasts shows that the convex regression and
the variance-based pooling approaches outperform the best individual predictors
consistently on the SMAPE error measure, and in most of the cases also for the
RMSE. Comparing combinations methods in general, it becomes obvious that the
unrestricted regression suffers from parameter instabilities, especially on the NN3
data set. The outperformance model performs very well only on the NN5 data
set, where relative forecast performance seems to be of lesser importance than in
the NN3 data set, where it is the second worst performing combination. Trimming
improves the performance of the simple average, but both average approaches are
outperformed by other models giving different weights to methods according to their
past performance.

3.2.4 Results (multi-step-ahead)

As only a few of the algorithms provide native multi-step-ahead forecasting (the
ARIMA models, the state space model and polynomial regression), some of them are
implemented using two approaches: an iterative approach, where the last prediction
is fed back to the model to obtain the next forecast, or a direct approach, where
n different predictors are trained for each of the 1 to n steps ahead problem. The
selection of models used in this work is presented in the next paragraphs.
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Individual methods

| SMAPE | o(SMAPE) || RMSE | o(RMSE)

1. Last observation 17.4 14.1 1 0
2. Moving average 14.7 12.3 0.86 0.13
3. Single exponential smoothing 14.7 12.0 0.87 0.12
4. Taylor smoothing 14.7 12.9 0.86 0.12
5. Polynomial regression 22.8 19.0 2.05 4.39
6. Theta-model 14.7 12.1 0.86 0.12
7. ARIMA v1 16.0 12.5 0.94 0.24
8. ARIMA v2 15.0 12.4 0.87 0.16
9. State space structural model 16.6 21.6 0.89 0.34
10. Feedforward neural network 15.3 12.0 1.01 0.95
11. Elman neural network 15.8 12.6 1.05 1.09
Combinations SMAPE | ¢(SMAPE) || RMSE | ¢(RMSE)
1. Simple average 14.2 11.6 0.87 0.40
2. Simple average with trimming 13.7 11.4 0.80 0.12
3. Variance-based 13.2 10.8 0.78 0.15
4. Outperformance 15.5 11.7 1.86 5.85
5. Regression (unrestricted) 31.3 64.6 1.38 0.70
6. Regression (convex weights) 13.2 11.5 0.78 0.20
7. Variance-based pooling 2 clusters 13.4 11.0 0.79 0.16
8. Variance-based pooling 3 clusters 13.4 11.3 0.78 0.18

Individual methods

| SMAPE | 5(SMAPE) || RMSE | o(RMSE)

1. Last observation 37.4 8.9 1 0
2. Moving average 34.6 7.7 0.72 0.13
3. Single exponential smoothing 35.8 8.1 0.78 0.15
4. Taylor smoothing 36.4 7.7 0.91 0.12
5. Polynomial regression 39.5 25.1 0.91 0.61
6. Theta-model 35.8 8.1 0.79 0.15
7. ARIMA v1 31.1 7.4 0.61 0.08
8. ARIMA v2 30.9 7.5 0.60 0.08
9. State space structural model 28.2 12.1 0.39 0.16
10. Feedforward neural network 32.3 7.6 0.69 0.24
11. Elman neural network 32.3 7.1 0.69 0.24
Combinations SMAPE | ¢(SMAPE) || RMSE | ¢(RMSE)
1. Simple average 30.3 6.9 0.57 0.09
2. Simple average with trimming 29.7 6.8 0.54 0.10
3. Variance-based 28.3 6.6 0.47 0.11
4. Outperformance 25.8 6.2 0.39 0.11
5. Regression (unrestricted) 27.9 9.3 0.40 0.17
6. Regression (convex weights) 24.0 6.2 0.33 0.13
7. Variance-based pooling 2 clusters 26.9 7.0 0.43 0.13
8. Variance-based pooling 3 clusters 26.5 8.3 0.38 0.14

Table 3.1: Forecast performances and standard deviation on NN3 data (top) and

NN5 data (bottom), single-step-ahead
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Tables 3.2 and 3.3 show the error values and standard deviations for the different
models. There is one clearly best performing methods for the NN5 data set: the
state space structural model. For the NN3 data set, the ranking is less defined, a
few methods like the structural model, the iterated neural networks and the direct
moving average perform similarly well, with small differences across the two error
measures. The ARIMA models do not provide convincing performance, suffering
from performance outliers from a few series. This is not surprising regarding the
NN3 data set, since most of the series are too short to properly fit a model, but
unexpected for NN5 data. Most of the simple smoothing and averaging methods
perform reasonably well for NN3 data, but considerably worse than the other models
on NNb data, which can be attributed to the longer forecast horizon, where errors
can accumulate quickly.

Individual methods | SMAPE | -(SMAPE) || RMSE | ¢(RMSE)
1. Iterated moving average 19.2 18.8 0.92 0.28
2. Iterated single exponential smoothing 19.0 15.3 0.95 0.43
3. Iterated Taylor smoothing 23.3 20.5 1.17 0.86
4. Polynomial regression 27.1 23.1 1.79 2.31
5. Iterated Theta 20.6 16.7 1.01 0.64
6. Direct Theta 20.3 16.0 1.04 0.55
7. ARIMA v1 20.9 18.6 1.05 0.70
8. ARIMA v2 28.5 78.6 1.05 0.45
9. State Space structural model 18.0 17.7 0.86 0.34
10. Iterated feedforward neural network 17.0 12.6 0.93 0.56
11. Iterated elman network 17.3 13.3 0.93 0.56
12. Direct moving average 17.2 12.9 0.88 0.28
13. Direct single exponential smoothing 19.0 14.6 0.95 0.25
14. Direct Taylor 18.0 14.4 0.88 0.22
15. Direct feedforward neural network 18.0 14.9 0.96 0.54
Combinations SMAPE | ¢(SMAPE) | RMSE | ¢(RMSE)
1. Simple average 17.4 13.8 0.87 0.31
2. Simple average with trimming 17.3 13.5 0.88 0.29
3. Variance-based 16.5 12.3 0.86 0.36
4. Outperformance 17.8 13.2 0.99 0.75
5. Regression (unrestricted) 315 397 2546 18485
6. Regression (convex weights) 18.9 17.0 1.01 0.77
7. Variance-based pooling 2 clusters 16.4 12.0 0.86 0.31
8. Variance-based pooling 3 clusters 16.7 12.2 0.97 1.07

Table 3.2: Forecast performances and standard deviation on NN3 data (SMAPE),
multi-step-ahead

For the multi-step-ahead case, the unrestricted regression combination is completely
unsuitable, producing large weights that fail to generalise the behaviour of the fore-
casts. The restricted regression produces much better results. The best combination
approaches on NN3 data are the variance-based ones, both in the pooling and the
conventional version. On NNb5 data, variance-based pooling and the outperformance
model perform best. Again, some combinations are able to outperform even the best
individual predictors, although this is not as often the case as for the single-step-
ahead problem.
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Individual methods | SMAPE | ¢(SMAPE) || RMSE | ¢(RMSE)
1. Iterated moving average 35.8 8.4 0.92 0.14
2. Iterated single exponential smoothing 35.3 7.6 0.95 0.14
3. Iterated Taylor smoothing 41.1 12.0 1.17 0.14
4. Polynomial regression 49.4 108 1.79 0.24
5. Iterated Theta 35.4 7.8 1.01 0.13
6. Direct Theta 34.4 7.6 1.04 0.13
7. ARIMA v1 36.8 8.3 1.05 0.15
8. ARIMA v2 40.3 10.4 1.05 0.18
9. State space structural model 26.5 13.1 0.86 0.16
10. Iterated feedforward neural network 34.2 6.9 0.93 0.15
11. Tterated elman network 34.6 7.2 0.93 0.14
12. Direct moving average 33.4 7.3 0.88 0.14
13. Direct single exponential smoothing 34.3 7.1 0.95 0.14
14. Direct Taylor 33.5 7.6 0.88 0.14
15. Direct feedforward neural network 29.1 6.3 0.96 0.15
Combinations SMAPE | ¢(SMAPE) || RMSE | ¢(RMSE)
1. Simple average 32.2 7.3 0.73 0.13
2. Simple average with trimming 31.8 7.2 0.72 0.13
3. Variance-based 29.5 6.9 0.78 0.13
4. Outperformance 26.5 6.8 0.61 0.14
5. Regression (unrestricted) 299 555 6545 22053
6. Regression (convex weights) 27.5 12.3 0.64 0.25
7. Variance-based pooling 2 clusters 28.4 8.6 0.65 0.16
8. Variance-based pooling 3 clusters 25.9 9.9 0.60 0.17

Table 3.3: Forecast performances and standard deviation on NN5 data,
multi-step-ahead

A look at the histograms of the best performing individual methods in Figure 3.2
show additional interesting aspects: While the number of times an individual method
performed best for a series is quite well spread across the methods on the NN3 data
set, it is almost only the structural model and the direct neural network that perform
best for NN5. Even the very simple methods have a number of series for which they
perform best within the NN3 data set, which can be either a matter of luck, a matter
of robustness due to a small number of available observations or, as mentioned above,
a matter of the differing forecasting horizons.

The combination histograms in Figure 3.3 reveal another fact: although the
regression combination with convex weights is outperformed by two or more methods
regarding the average SMAPE, it performs best or second best in terms of the
number of series for which it produces the most accurate forecasts.

3.2.5 Outcomes

The following general statements can be made:

e The conclusions two and three of the M3 competition have been revalidated -
forecasting performances differed across error measures and for different fore-
casting horizons in this study as well.
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Figure 3.2: Histogram showing number of series for which a method performed
best, left: NN3 competition, right: NN5 competition.
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Figure 3.3: Histogram showing number of series for which a combination method
performed best (SMAPE), left: NN3 competition, right: NN5 competition.

e The automatic approaches to ARIMA modelling, representing the statistically
most complex individual predictors in this study, did not provide convincing
performance on any of the data sets.

e Very simple methods only performed very well on the NN3 data set for single-
step-ahead predictions. With longer series to forecast and a bigger forecasting
horizon, their performance deteriorated.

e For individual models, the state space model performs best in the studies,
dominating the majority of the given error values. As the basic algorithm
corresponds to an exponential smoothing method, it shows that the state space
framework with its defined parameter and model estimation algorithms is very
beneficial even for simple methods.

e Combinations have proven their potential to outperform individual predictors.
However, they do so less consistently on longer time series and the multi-step-
ahead case.

There were 25 competitors in the NN3 competition and 19 in NN5, with SMAPEs
ranging from 15.2 to 27.5 and 20.4 to 53.5, respectively. Taking the results of the
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variance-based pooling with three clusters from this study, which performed well
on average, participation in the competitions would have obtained rank 6 for NN3,
and rank 12 for NN5. This illustrates how the relatively simple, out-of-the box
automatic methods used here perform comparatively well on the data set with the
shorter, more erratic and diverse time series of the NN3 data set, but can also still
compete with the submissions to the NN5 competition.

3.3 Chapter summary

This chapter empirically investigated a diverse set of off-the-shelf approaches for
forecasting time series. Answering the questions asked in the beginning of the sec-
tion, it can be said that the results of previous studies have generally been confirmed:
complex methods do not necessarily outperform simple ones and performance of me-
thods differs according to error measures and forecasting horizons used. Especially
in the single-step-ahead case for the short and erratic time series of the NN3 data,
extremely simple methods such as single exponential smoothing and moving average
performed very well.

Regarding combination methods, the superiority of the simple average combina-
tion approach could not be confirmed in this study. Combinations giving weights
according to past performance produce better forecasts in this study, which can
probably be attributed to the relatively big pool of individual predictors, where
chances of some negative performance outliers are high. Some of the combinations
were able to outperform even the best individual predictor.

Comparing results achieved in this study to the performance of the competition
submissions, the off-the-shelf algorithms seem to provide a forecast accuracy that
compares well with the performance of methods the contestants used in the NN3
and NNb5 forecasting competitions, with some combinations increasing performance
even further. This study hence illustrates the point that automatic off-the-shelf
forecasting methods can compete well with contributions of experts in practical
applications. In the next chapter, similar experiments will be conducted for the
airline application. Although the setup and choice of individual predictors is quite
different, results regarding forecast combinations can be compared between the two
chapters. Investigating if some of the outcomes of this chapter are applicable in this
particular industrial application.

According to the no-free-lunch theorem of Wolpert (1996), there is no guarantee
that any method, however complex it may be, performs better for a bigger number
of series than another method, which renders results of traditional empirical studies
useless regarding general applicability of the outcomes, as they will only be valid
for the specific data set used. So how can it at all be possible to reliably choose a
well-performing method or combination? One approach is to identify and describe
groups of time series within the set of all time series, generating domain knowledge
and finding situations in which one method consistently performs better than others.
Chapter 5 will investigate the automatic generation of such knowledge in a meta-
learning context.

46



Forecast combination for airline data

The question asked in the title of the previous chapter can be answered with “yes”
when it comes to the airline application investigated in this thesis, because the
data does no longer only consist of univariate time series with very limited addi-
tional information, but comes with multiple dimensions, several known components
that have to be modelled and strong restrictions regarding the choice of forecasting
method imposed by the structure of the data and requirements regarding computa-
tional complexity. A number of applicable individual forecasting methods has been
introduced in Section 2.1.4. This chapter provides an evaluation of their perfor-
mance, giving details on the data set and the methodology used throughout this
thesis when investigating airline data. The connection between the cancellation and
the net booking forecast is examined, which will be an aspect investigated in the
discussions in Chapter 6. Consistent with the previous chapter, a number of li-
near combination approaches is evaluated to provide first insights into the benefit
of combinations for this specific application.

4.1 Data set and methodology

Evaluation of the methods for airline cancellation forecasting will take place on a
data set provided by Lufthansa Systems. For this purpose, the research software
“Avanti” described in Riedel (2007) was extended to allow for cancellation forecas-
ting, which was previously not considered. Figure 4.1 shows an overview of the
steps and components involved together with their inputs and outputs. A thorough
description of the software modifications and components additionally developed is
provided in the Appendix A.

The airline data set includes 155 weeks of booking and cancellation data and
consists of

e 5 European Origin and Destination pairs (O&D),
e 1 intercontinental O&D from Asia to America,

e 1 intercontinental O&D from Europe to Asia.

Each of the origin and destination pairs includes up to three origin and destination
opportunities, which represent actual scheduled flights going from the origin to the
destination. The whole data set consists of 14 of these origin-destination opportu-
nities, all selected with the objective of obtaining a data set that represents the real
composition of flights as well as possible.

Data is available for 20 fareclasses, the seven days of the week and three points
of sale (“country of origin”, “country of destination”, “rest of the world”). The
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bookings

CALCULATE CANCELLATION RATE

if bookings > 0, rate = cancellations/bookings
otherwise rate = default cancellation rate

cancellation rate default cancellation rate

BUILD HISTORY

initialise reference curve with default cancellation
rate, update reference curves with current rates

bookings reference curve cancellations

CALCULATE CANCELLATION RATE
if bookings > 0, rate = cancellations/bookings
otherwise rate = reference curve

cancellation rate

UNCONSTRAINING
rate = weighted sum of rate*constrained bookings
and reference Curve*rejected bookings

cancellations  default cancellation rate

unconstrained cancellation rate

unconstrained bookings

RATE TO ABSOLUTE

absolute cancellations = rate * bookings

r default cancellation rate

CORRECT
ensure that there are always more
bookings than cancellations

BUILD HISTORY

initialise reference curve with default rate,
update reference curves with unconstrained rates

unconstrained cancellation rate

LIMIT

apply confidence limits

unconstrained cancellation rate

reference curve

FORECAST

Add-up multiply-down method

cancellation rate forecast

RATE TO ABSOLUTE
forecast absolute cancellations =
rate forecast* booking forecast

forecast unconstrained absolute cancellations

forecast unconstrained bookings —

GET DIFFERENCE
net booking forecast =
booking forecast - cancellation forecast

forecast unconstrained net bookings —— >

(all unconstrained)

unconstrained absolute cancellations

GET DIFFERENCE

net bookings = bookings - cancellations
(all unconstrained)

unconstrained net bookings

CALCULATE ERROR

Figure 4.1: Steps and components of the cancellation forecasting procedure.
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data has been cleared from extraordinary influences like long term changes of the
base component or additional demand occurring due to special events, which would
normally be forecasted with other approaches.

The first 52 weeks of the available data was used as an initial period for obtaining
stable reference curves. This was decided because of the need for at least a year’s
data to calculate seasonal factors for the modified booking forecast presented in
previous work, which will be combined with the new cancellation forecasts later in
this thesis in order to assess overall performance gain. Forecasts are then generated
for the weeks 53 to 155, with the last 31 weeks (20% of the available data) being
used for an out-of-sample error estimation. The error measure used is the mean
absolute deviation MAD.

Results are given for each DCP and for two different aggregation levels: the low
level, which is the finest possible level on which the forecasts are normally generated,
and the high level, which is an aggregation of the error values over fareclasses and
points of sale that is frequently used by analysts for visualisation purposes and
strategic decision making. Aggregating results on a higher level allows drawing
conclusions on the bias and variance error components of the individual predictors,
which will be further explored in Chapter 5.

4.2 Individual forecasting methods

Performance results for the three cancellation forecasting methods based on refe-
rence curves introduced in Section 2.1.5.2 and the probability forecast described
in Section 2.1.5.3 are presented in this section, providing a baseline for the airline-
application related selection and combination approaches discussed in the remainder
of this thesis. Table 4.1 shows a comparison of net booking forecast performance
(unconstrained bookings minus cancellations) of the exponential smoothing (exp),
Brown’s smoothing (brown), regression (regr) and probability forecast (prob) next to
the LSB-reference-forecast (Isb) on the given data set. Performance of the reference
forecast is given as mean absolute deviation, while the other methods are assessed
by the percentage of improvement relative to it, meaning that positive values denote
a better performance while negative indicate performance deterioration. The best
method per level and DCP is printed in bold.

The first remarkable result is the similarity of the LSB and the exponential
smoothing based method, differing only marginally at later decimal points. The
values for these two methods outperform the other original methods for most of the
DCPs. It can furthermore be noted that the newly introduced probability forecast
performs well in comparison, on average outperforming all other methods for all
DCPs apart from the last three DCPs at the low level.

Table 4.2 shows performance for forecasts of absolute cancellations. The new
probability forecast again performs well in comparison, but not as well as for the
net booking forecast, which is not surprising as the probability forecast works with
net booking values and has to be converted to cancellation numbers for comparison,
introducing an additional error source by dividing it by the current booking forecast.

Another issue that should be addressed is the general relationship between can-
cellation and net booking forecast. Intuitively, one would assume that an improved
cancellation forecast leads to a better net booking forecast, but this is not always the
case, in our example especially not at the later DCPs. When calculating absolute
cancellations in the traditional way by multiplying the rate with the corresponding
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high level low level

DCP Isb ‘ exp ‘ brown ‘ regr ‘ prob || Isb ‘ exp ‘ brown ‘ regr ‘ prob
0 || 21.0 | -0.16 -1.88 | -0.26 7.30 1.2 | -0.04 -7.75 -1.79 | 3.91
1|l 19.0 | -0.06 -0.12 | 1.70 8.94 1.1 | -0.01 -4.19 -3.65 | 1.94
2 || 172 | -0.04 -8.71 | -0.39 7.28 1.1 | -0.01 -5.86 -4.98 | 1.04
3 || 16.3 | -0.04 -10.17 | -1.31 6.26 1.0 | -0.01 -7.04 -5.27 | 1.01
4 || 15.2 | -0.02 -9.06 | -3.21 5.04 || 0.9 | -0.01 -9.55 -6.12 | 1.20
5 || 14.6 | -0.02 -7.10 | -3.30 5.26 0.9 | -0.01 -10.85 -5.96 | 1.60
6 || 13.5 | -0.02 -8.81 | -4.72 3.42 0.9 | -0.01 -11.64 -6.04 | 1.95
7| 123 | -0.01 -10.23 | -4.23 0.01 0.8 | -0.01 -11.93 -5.57 | 1.77
8 || 11.2 | -0.01 -11.91 | -3.97 -2.17 || 0.7 | -0.01 -12.43 -5.62 | 1.43
9 || 10.5 | -0.01 -13.19 | -3.40 -2.47 || 0.7 | -0.01 -12.66 -5.43 | 1.88
10 9.5 | -0.00 -15.65 | -2.43 -5.69 0.6 | -0.01 -12.80 -5.55 | 1.60
11 8.4 | -0.01 -16.05 | -3.21 -8.54 || 0.6 | -0.01 -12.53 -5.67 | 1.90
12 7.7 | 0.00 -15.79 | -2.98 -8.96 0.6 | -0.01 -12.28 -5.48 | 1.86
13 7.3 | -0.01 -13.00 | -2.18 -6.81 0.5 | -0.01 -11.91 -5.78 | 1.69
14 6.4 | -0.02 -14.84 | -3.70 -8.65 0.5 | -0.01 -13.09 -5.97 | 1.16
15 5.9 | -0.01 -15.24 | -3.04 -8.75 0.4 | -0.01 -13.78 -6.04 | 0.72
16 5.1 | -0.01 -10.92 | -7.55 -9.28 0.3 | -0.01 -10.17 | -11.26 | -1.14
17 4.7 | -0.00 -10.39 | -7.98 -9.73 0.3 | -0.01 -10.51 | -11.47 | -1.60
18 4.4 | 0.00 -9.17 | -8.57 -8.56 0.3 | -0.01 -10.97 | -11.66 | -2.23
19 3.9 | 0.00 -7.57 | -8.32 -7.70 || 0.2 | -0.00 -11.67 | -11.94 | -3.12
20 3.3 | -0.01 -7.66 | -8.47 -7.24 || 0.2 | -0.00 -13.56 | -12.94 | -4.83
21 2.2 | -0.00 -8.33 | -7.70 | -10.21 0.1 | -0.01 -16.16 | -14.36 | -9.06
avg - | -0.02 -10.26 | -4.06 -2.78 - | -0.01 -11.06 -7.21 | 0.21

Table 4.1: Mean absolute deviation of reference net booking forecast and
percentage of relative improvement of four individual forecasting algorithms for
each DCP. Left: high aggregation level, right: low aggregation level.

bookings, the resulting absolute cancellations will generally be strongly correlated
with the bookings, as they are a factor in the equation. When absolute cancellations
are subtracted from the bookings to obtain net booking values, errors hence always
compensate each other to a certain extent. This effect is weaker, if existing at all,
when directly working on net bookings as done in the probability forecast. However,
if there is a considerable booking error, an accurate cancellation forecast will not
lead to a better net booking performance than a cancellation forecast with an error
positively correlated with the booking error which would lead to a compensation
effect.

Figure 4.2 illustrates this: forecast errors are plotted on the finest possible level
for a fareclass/point of sale/day of week configuration in a calendar week with zero
bookings. Naturally, the booking forecast overestimates the bookings, indicated
by a positive booking error that is drawing closer to zero with ascending DCPs,
the cancellation error does the same. If the cancellation forecast is quite accurate
as in the right part of the figure, the overestimation of the booking forecast is
not compensated as well as if the cancellation forecast is less accurate with higher
overestimation. This relationship will be further investigated in Section 6.3.1.
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high level low level

DCP Isb exp | brown regr | prob Isb exp | brown regr | prob
0 || 30.3 | -0.03 -3.71 -9.76 | -4.36 || 1.47 | -0.01 -6.87 -6.68 -2.94
1|l 28.0 | 0.01 -7.18 -2.83 | -4.70 || 1.43 | 0.00 -10.26 -1.16 -2.02
2 || 26.3 | -0.00 -3.46 -0.64 | -4.10 || 1.38 | -0.00 -9.31 0.26 -1.73
3 || 25.1 0.00 -1.77 -0.18 | -3.91 || 1.34 | -0.00 -8.57 0.13 -1.79
4 || 23.8 | -0.00 -1.98 0.34 | -3.44 || 1.27 | -0.00 -6.88 0.04 -2.15
5 || 22.7 0.00 -2.80 0.14 | -3.53 || 1.20 | -0.00 -5.07 0.03 -2.19
6 || 21.2 | -0.00 -2.11 -0.16 | -2.57 || 1.13 | -0.00 -4.88 -0.24 -2.27
7| 19.1 | -0.00 -1.77 -0.82 | -1.88 || 1.03 | -0.00 -5.49 -0.73 -2.43
8 || 16.5 | -0.00 -2.36 -1.32 | -3.43 || 0.91 | -0.00 -6.28 -1.11 -2.82
9 || 149 | -0.00 -2.51 -1.28 | -3.78 || 0.83 | -0.00 -6.54 -1.49 -2.62
10 || 13.2 | -0.00 -2.15 -1.67 | -4.07 || 0.74 | -0.01 -7.21 -1.70 -2.75
11 || 11.2 | -0.01 -2.26 -1.89 | -4.60 || 0.63 | -0.01 -8.31 -2.59 -2.76
12 9.8 | -0.01 -2.58 -2.48 -5.52 0.56 | -0.01 -8.44 -3.01 -2.50
13 8.7 | -0.01 -3.52 -3.14 | -5.28 || 0.50 | -0.01 -8.80 -3.45 -1.99
14 6.9 | -0.01 -6.54 -4.10 | -8.70 || 0.41 | -0.01 -11.22 -4.39 -2.59
15 5.9 | -0.02 -9.20 -4.40 | -9.94 || 0.35 | -0.01 -12.89 -5.09 -2.24
16 4.7 | -0.02 -6.64 -8.65 | -9.57 || 0.28 | -0.01 -10.88 | -10.88 -2.20
17 4.2 | -0.02 -6.18 -9.19 | -9.23 || 0.24 | -0.01 -11.83 | -12.07 -1.16
18 3.6 | -0.01 -7.57 -9.91 | -8.63 || 0.21 | -0.01 -13.50 | -13.05 0.16
19 2.9 | -0.02 -8.93 | -10.61 | -7.53 || 0.16 | -0.00 -15.32 | -14.68 2.76
20 2.3 | -0.02 -12.09 | -10.56 | -3.55 || 0.12 0.00 -19.66 | -17.22 7.38
21 1.3 | -0.03 -16.13 -9.52 | 7.95 || 0.06 | -0.01 -26.81 | -20.42 | 26.55
avg - | -0.01 -5.16 -4.21 -4.74 - | -0.00 -10.23 -5.43 -0.20

Table 4.2: Mean absolute deviation of reference cancellation forecast and
percentage of relative improvement of four individual forecasting algorithms for
each DCP. Left: high aggregation level, right: low aggregation level.
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Figure 4.2: Example of the relation between booking, cancellation and net booking

errors, left: a cancellation forecast with a higher error leading to a better net
booking forecast because it compensates the booking error, right: a cancellation
forecast with a lower error leading to worse net booking forecast because
compensation does not have the same extent.
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The number of net bookings are however the value of interest at Lufthansa Systems,
which is why results for the following experiments will be given for net booking
prediction accuracy.

4.3 Combinations

The four available individual predictors have been combined using similar approaches
as used in the experiments presented in the previous chapter: the simple average
(avg) averages all available forecast, the simple average with trimming (sat) does the
same but trims the worst method. The outperformance model (outp), the variance
based approach (var) and the optimal model (opt) have been explained in Section
2.3, as well as the regression with convex weights (regr). Results for the high and
low aggregation level are given in the Tables 4.3 and 4.4.

On the low level, the combinations clearly fail to outperform the best indivi-
dual predictor, while on the high level, all of the combination methods apart from
the optimal model and the unrestricted regression beat the best individual forecast
on average. The two methods with the bad performance are the approaches that
require the most preferably stable training data for robust estimation of the pa-
rameters, which apparently cannot be guaranteed in this experimental setup. The

DCP H avg ‘ sat ‘ outp ‘ var ‘ opt ‘ regr

0 5.48 5.40 6.17 5.50 7.36 | 6.13
1 5.47 5.68 | 7.18 5.69 5.95 | 6.11
2 2.11 3.84 3.25 2.82 1.77 | 217
3 1.55 3.62 2.60 2.33 0.74 | 1.60
4 1.41 2.88 2.39 2.14 -0.81 1.56
5 2.04 299 | 3.20 2.65 -0.38 1.83
6 1.28 2.71 2.44 1.89 -2.10 1.20
7 0.84 2.06 1.69 1.52 -2.15 | 0.83
8 0.68 1.78 1.18 1.33 -4.54 | 0.45
9 0.73 1.90 0.97 1.31 -4.26 | 0.77
10 || -0.09 1.18 0.07 0.60 -4.32 | -0.19
11 || -0.40 1.35 | -0.45 0.32 -6.43 | -0.51
12 0.08 1.33 | -0.19 0.70 -6.78 | 0.02
13 1.47 2.22 1.12 1.93 -6.04 1.39
14 0.27 1.27 | -0.20 0.74 -6.99 | 0.09
15 0.27 1.46 | -0.14 0.66 -6.28 | 0.18
16 || -0.24 | -0.32 | -0.76 | -0.03 -8.49 | -0.28
17 || -048 | -0.21 | -0.85 | -0.25 -9.70 | -0.54
18 || -0.87 | -0.47 | -1.08 | -0.67 -8.54 | -0.92
19 || -0.73 | -0.18 | -0.70 | -0.44 -8.74 | -0.85
20 || -1.49 | -0.82 | -1.58 | -1.00 -8.29 | -1.57
21 || -2.56 | -2.00 | -2.41 | -1.66 | -11.77 | -2.63
avg 0.76 1.71 1.09 1.28 -4.13 | 0.77

Table 4.3: Flat forecast combination: percentage of relative performance
improvement compared to reference forecast (Isb), high level
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DCP H avg ‘ sat ‘ outp ‘ var ‘ opt ‘ regr

0 1.39 1.99 1.44 1.69 0.84 1.44
1 1.28 1.37 2.27 1.59 -6.25 1.37
2 0.43 0.87 1.32 0.83 | -10.87 | 0.32
3 0.21 0.85 1.11 0.66 -9.39 | 0.17
4 || -0.32 0.59 0.35 0.20 -8.25 | -0.45
5 || -0.45 0.33 0.00 0.00 -6.96 | -0.53
6 || -0.47 | 0.28 0.04 | -0.00 -7.43 | -0.48
7 || -0.30 0.48 0.18 0.18 -6.43 | -0.31
8 || -0.13 0.70 0.48 0.39 -6.25 | -0.22
9 0.01 0.98 0.70 0.56 -5.72 | -0.02
10 0.00 1.03 0.84 0.63 -5.39 | -0.05
11 0.41 1.49 1.47 1.08 -5.77 | 0.27
12 0.58 1.46 1.67 1.28 -5.75 | 0.50
13 0.69 1.50 1.77 1.36 -5.88 | 0.59
14 0.51 1.47 1.65 1.27 -5.84 | 0.40
15 0.39 1.40 1.48 1.23 -6.15 | 0.30
16 || -0.28 0.44 0.87 0.51 -8.60 | -0.40
17 || -0.63 0.19 0.39 0.14 | -10.05 | -0.73
18 || -1.02 | -0.24 | -0.15 | -0.23 | -10.83 | -1.13
19 || -1.59 | -0.47 | -0.92 | -0.72 | -12.62 | -1.69
20 || -2.57 | -1.31 | -2.10 | -1.50 | -16.77 | -2.63
21 || -3.92 | -2.45 | -3.28 | -2.39 | -21.02 | -3.99
avg || -0.26 0.59 0.53 0.40 -8.24 | -0.33

Table 4.4: Flat forecast combination: percentage of relative performance
improvement compared to reference forecast (Isb), low level

simple average with trimming performs best, with the outperformance model and
the variance-based approach following closely in the next positions.

4.4 Conclusions

This chapter provides a detailed description of the methodology and steps involved
in generating airline net booking forecasts. Individual methods presented in the
previous chapter have been assessed on the airline data set used throughout the
thesis. This includes a first evaluation of the newly introduced probability forecast,
which performed very well compared to the other methods.

Forecast combinations were not able to improve on the best individual predic-
tor on the fine level, however, improvements could be observed when forecasts were
aggregated on a higher level. In contrast to the results of Chapter 3, a simple com-
bination method with trimming clearly outperformed methods that require more
sophisticated parameter estimation. This contradiction illustrates the fact that
method performances will vary depending on the problem they are used for and
provides another motivation for the meta-learning investigations following in the
next chapter.

A few other questions can be raised when looking at the results provided in this
chapter: what exactly are the benefits of including more forecasts in the method
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pool? How can performance differences between the high and the low level be ex-
plained? What can be done if the choice of methods is so restricted that only
few individual methods are available, reducing opportunities for combination ap-
proaches? What are the general mechanisms that make a combination method
successful? These questions will be investigated in Chapters 5 and 6 of this thesis.
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Meta-learning

What is it that determines the success or failure of a forecasting model? Chapter 3
summarised a number of studies that fail to provide consistent results as to which
actual method generally performs best, which can also be concluded when comparing
the empirical experiments conducted in the Chapters 3 and 4 of this thesis. The well-
known no-free-lunch theorem, for example described in Wolpert (1996), provides an
explanation by stating that there are no algorithms that perform better or worse
than random when looking at all possible data sets or learning tasks. This implies
that no assumptions on the performance of an algorithm can be made if nothing
is known about the problem that it is applied to, but that there will of course be
specific problems for which one algorithm performs better than another in practice.
In accordance to this, this chapter investigates approaches to relax the assumption
that nothing is known about a problem by extracting domain knowledge from data,
linking it to well-performing methods and drawing conclusions for a similar set of
time series. It identifies an extensive novel feature set describing both the time series
and the pool of individual forecasting methods for the competition data sets and
finds application-specific variables to characterise airline data. The applicability of
different meta-learning approaches is investigated using both classic techniques and
a newer ranking algorithm, first to gain knowledge on which model works best in
which situation, later to improve forecasting performance.

Traditionally, experts visually inspect time series characteristics and fit models
according to their judgement. The approaches investigated here are purely au-
tomatic, since a thorough time series analysis by humans is often not feasible in
practical applications that process a large number of time series in very limited
time.

5.1 Background

According to Vilalta & Drissi (2002), meta-learning in the broadest sense tries to
answer the question of “.how can we exploit knowledge about learning (i.e. meta-
knowledge) to improve the performance of learning algorithms?” and has mainly
been investigated in a machine learning context. Meta-knowledge can have different
origins as summarised in the same publication, most straightforward is the extraction
of general information of the problem; for time series forecasting, this could be the
series’ length, its seasonality or the length of the forecasting horizon. Statistical
summary measures, for example the variance or kurtosis of a time series can be used
as well. Alternatively, information of individual algorithms and how they solved
the problem can be considered, for example, their predicted confidence intervals or
the depth of a generated decision tree. A different approach is called landmarking,
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using the performance of simple algorithms to describe the problem and correlating
these information with the performance of more advanced learning algorithms as
described in Pfahringer et al. (2000).

In this work, meta-learning is referred to as the process of linking the charac-
teristics of the problem described by meta-knowledge to the performance of the
individual algorithms as formulated by Prudencio & Ludermir (2004a), with the
goal of selecting the best model or providing a ranking of models for the problem
under study. This provides the means of adaptation of algorithms at different levels
of abstraction. One difference to the general perception of meta-learning is that
the individual methods used here are not necessarily machine learning algorithms
themselves, but include other approaches as well.

A classic and straightforward classification for time series has been given by
Pegels (1969). Time series can thus have patterns that show different seasonal
effects and trends, both of which can be additive, multiplicative or non-existent.
Gardner (1985) extended this classification by including damped trends. Time series
analysis in order to find an appropriate ARIMA model has been discussed since the
seminal paper of Box & Jenkins (1970). Guidelines are summarised in Makridakis
et al. (1998) and rely heavily on visually examining autocorrelation and partial
autocorrelation values of a series.

The idea of using characteristics of univariate time series to select an appropriate
forecasting model has been pursued since the 1990s. The first systems were rule
based and built on a mix of judgemental and quantitative methods. Collopy &
Armstrong (1992) use time series features to generate 99 rules for weighting four
different models; features were obtained judgementally, by both visually inspecting
the time series and using domain knowledge. Adya et al. (2000) and Adya et al.
(2001) later modified this system and reduced the necessary human input, yet did
not abandon manual intervention completely. Vokurka et al. (1996) extract features
automatically to weight between three individual models and a combination in a
rule-base that was built automatically, but required manual review of the outputs.
Completely automatic systems have been proposed by Arinze et al. (1997), where a
generated rule base selects between six forecasting methods. Discriminant analysis
to select between three forecasting methods using 26 features is used in Shah (1997).
A similar study with bigger data sets and an extended method pool is provided by
Meade (2000), who uses ordinary least squares regression to map 25 descriptive
statistics to a performance index.

The phrase meta-learning in the context of time series was first adopted from
the general machine learning community in Prudencio & Ludermir (2004b), where
two case studies are presented: in the first one, a C4.5 decision tree is used to
link six features to the performance of two forecasting methods; in the second one,
the NOEMON approach introduced by Kalousis & Theoharis (1999) is used for
ranking three methods. NOEMON builds classifiers for each pair of base forecasting
methods, using the six features to predict the more promising algorithm for each
two-class problem. A ranking is generated using the classifiers’ outputs.

The most recent and comprehensive treatment of the subject can be found in
Wang et al. (2009), where time series are clustered according to nine data charac-
teristics including measures for chaos, self-similarity and traditional statistics like
trend, seasonality and kurtosis. In a first step, rules are generated judgementally
by looking at performances of clusters of methods identified on a self-organising
map. Furthermore, a C4.5 decision tree is automatically generated for the same
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purpose. The approach is extended to determine weights for a combination of indi-
vidual models based on data characteristics. Table 5.1 summarises some facts about
the related work presented here for a better overview of approaches and methods
used. The calculation of features and meta-learning method listed are implemented
automatically if not otherwise stated.

Year | Authors Features Meta- Time Se- | Model pool
learning ries
method
1992 Collopy & Arm- | 18 (judge- | rule base | 126 (M1) 2 exp. smoothing, ran-
strong (1992) mental) (judgemental) dom walk, linear re-
gression
1996 | Vokurka et al. | 5 rule base | 126 (M1) 2 exp. smoothing,
(1996) (partly  auto- structural and a com-
matic) bination of the three
1997 | Arinze et al. | 6 rule base 67 2 exp. smoothing,
(1997) adaptive filtering,
three “hybrids” of the
previous
1997 | Shah (1997) 26 discriminant 203 (M1) 2 exp. smoothing,
analysis structural
2000 | Adya et al. | 26 (mainly | rule base | 3003 (M3) | 2 exp. smoothing, ran-
(2001) auto- (judgemental) dom walk, linear re-
matic) gression
2000 | Meade (2000) 26 regression 1001 (M1) | 3 mnaive, 3 exp.
+ 263 + | smoothing, 2 ARIMA
6144 gene-
rated
2004 | Prudencio & Lu- | 6 / 7 decision tree / | 99 / 645 | exp. smoothing, neu-
dermir (2004b) NOEMON (M3) ral network / random
walk, exp. smoothing,
auto-regressive
2009 | Wang et al. | 9 decision tree 315 random walk, smooth-
(2009) ing, ARIMA, neural
network

Table 5.1: Time series model selection - overview of literature

5.2 Methodology for empirical studies

The remainder of this chapter investigates different meta-learning approaches, first
for the competition data sets, later for the airline application. The features used
to describe each data set are different and will be presented in the corresponding
sections. However, there are methodological similarities of the studies that will be
described here.

Figure 5.1 shows a general overview of the applied process: characteristics of
time series are extracted and used as features in a classification problem, with an
empirical evaluation of the performances providing the class labels. Several meta-
learning approaches can then be used on the resulting data set.
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Time series
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|
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Figure 5.1: Meta-learning overview

5.2.1 Exploratory analysis

Both studies start with an exploratory analysis, providing a better understanding
of the data and the potential of meta-learning for the specific problems. Because
of the need for producing understandable results, decision trees are used as a ma-
chine learning method. The best performing method for each series provides its
class label; features and performances are obtained for the whole data set in this
experiment. The trees were built using the Matlab statistics toolbox, which imple-
ments classification and regression trees according to Breiman (1984), calculating
the feature and split point at each node according to the highest resulting reduction
of impurity, which denotes its degree of heterogeneity regarding the target variable.
Gini’s diversity index! (GI) is used as the impurity measure, which is a common
criterion used for many problem domains, a recent discussion can be found in Sen
(2005). The pruned final tree is obtained by choosing the minimum-cost-tree of a
ten-fold crossvalidation.

5.2.2 Comparing meta-learning approaches

Moving away from the exploratory nature of the first experiments, a number of ma-
chine learning algorithms for meta-learning are tested in the subsequent ones, adop-
ting the leave-one-out methodology that has, for example, been applied in Prudencio

'Let y be the target variable of a classification problem which can assume n different values,
one specific value being denoted with index i. For a subset of all instances, Gini’s diversity index
is calculated using the fractions fr; of y assuming the value ¢ with the equation GI =1 -7, fr2.
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& Ludermir (2004b). Of the n available series, or origin/destination opportunities
for airline data, only n — 1 are used as a training set before the remaining one is
used to test the resulting meta-model. This process is repeated n times, until every
series/opportunity has been the test set once. Features for the test set were now
only calculated using the training set, which means that the last observations were
held back from the series.

5.2.2.1 Classic machine learning

Three classic machine learning approaches have been implemented using the leave-
one-out methodology, dealing with the classification problem of linking time series
features to the class label of one of the most promising forecasting algorithms:

e Following the same methodology described in Section 5.2.1, a pruned decision
tree is the first classic approach used.

e A feedforward neural network with one hidden layer was implemented. The
number of hidden neurons was set to the number of features selected. Pa-
rameters and early stopping conditions were implemented as described in the
experiments of Chapter 3.

e The third method investigated is a support vector machine in the least-
squares version provided by Suykens et al. (2002) with a radial basis function
as the kernel. Two parameters have to be set for the implementation used: the
regularisation parameter v, which trades off training error and model complex-
ity thus providing a mechanism against overfitting, and the kernel bandwidth
o which controls the nonlinear mapping from input space to feature space.
Both have been set following a grid search on the validation set.

5.2.2.2 Zoomed Ranking

Only selecting one model that is applied to a problem as in the three more traditional
meta-learning approaches presented above has the obvious limitation of bearing a
certain risk, even if one of the selected algorithms is a combination of predictors
as in the case of our experiments. A newer approach that facilitates combinations
on a higher level, the meta learning level, is presented in Brazdil et al. (2003) and
applied to time series forecasting in Maforte dos Santos et al. (2004). It allows
taking relations of individual performances into account by providing a ranking of
methods for a particular problem. The problem space is divided using clustering on
a distance measure that was calculated using the time series features. Details of this
so-called zoomed ranking and our implementation of it follow.

In the first step of the zoomed ranking algorithm, divergence in the set of time
series are calculated. With the normalised features f,,,, where z is the meta-
attribute number and s; denotes the series under study, the divergence of two series
s; and s; is given by the unweighted L; norm:

|fxasi - fIE,Sj‘

maxy£i( fo,s,) — Mingzi( fe,s,)

dist(s;, sj) = Z

xT

(5.1)

The distances are then clustered using the k-means algorithm, and the series in the
cluster closest to the test series are identified for further inspection. The ranking is
then generated by a variation of the Adjust Ratio of Ratios (ARR), which is applied
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in a classification context in the original paper of Brazdil et al. (2003) and extended
by a penalty term for time intensity in Maforte dos Santos et al. (2004). However,
in this experiment, the time dimension was discarded and an absolute error measure
denoted by FRROR in the equation was used instead of classifier success rates to
adapt the ranking to regression problems. The measure used for the competition
data is the SMAPE. For the airline data, the mean absolute deviation was used to
allow for comparability with previous studies. The pairwise ARR for forecasting
models g, and g, on series s; is

 ERROR,;
ARRY . = d

ke 7 5.2
ivds — ERROR, (52)

A high ARR indicates that model p performs better than model q. To aggregate
all rankings over the selected series and the pairwise ranking to one number per
method, the following equation is used:

ZA { Hsi ARR?Z 0
ARRy, = —— 2" (5.3)

where m is the number of models and n the number of time series. The method
with the best ranking then gets selected, or, in an alternative approach, the rankings
are then used to calculate convex weights for the algorithms considered in each
experiment.

5.3 Meta-learning for competition data

This section presents a number of meta-learning experiments for the NN3/NN5
competition data with the aim to provide insights into the question of which method
to pick in which situations. An extensive feature set describing both the time series
and the pool of individual forecasting methods will be identified in the first part of
this section. These global characteristics are used as a set of descriptors to analyse
time series data with different meta-learning approaches, first to gain knowledge on
which model works best in which situation. Following the exploratory experiment,
a different set-up is used to analyse effects of different meta-learning approaches on
forecasting performance. Finally, the experimental set-up is changed to reflect the
NNb5 competition conditions to compare the achieved performances.

5.3.1 Time series features

Some time series features presented here are similar to the ones used in literature,
but other novel and different features are introduced extending previous work pub-
lished in Lemke & Gabrys (2009) and Lemke & Gabrys (2008b). In particular,
features concerning the diversity of the ensemble of algorithms are included, which
is facilitated by adding a number of popular forecast combination algorithms to the
feature pool.

5.3.1.1 General statistics

Time series are often assumed to consist of different components, the most common
ones being a trend component 1" and a seasonal component S. The series is then
commonly formulated by the additive equation
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ye = Sy + 1 + Ex, (5.4)

with E; being the remaining irregular component at time index ¢ which represents
the series without seasonal or trend influences and will be referred to as the adjusted
series.

For some time series features, the original time series should be the basis for
calculations, for others, it is more sensible to use the adjusted version. For estimat-
ing the trend component, a piecewise polynomial curve with each of the polynomials
having order three (cubic spline) with three knots as suggested in Wang et al. (2009)
is fitted, providing a more flexible curve compared to a polynomial regression ap-
proach. The seasonal component is extracted using the algorithm suggested by Mohr
(2005), which basically models a stochastic seasonal process with an autoregressive
moving average (ARMA) component.

Metrics for trend and seasonality are then calculated as suggested in Wang et al.
(2009), using the equations

Var(Ey)
trend = 1— —— "2 5.5
Var(y: — St) (5:5)

Var(Ey)
season = 11— ——"— 5.6
Var(ys —Ty) (56)

quantifying the amount of the variance that can be attributed to the trend or the
season, respectively.

General descriptive statistics for a time series are standard deviation, skewness
and kurtosis of the adjusted series as well as its length. Furthermore, the ratio of
the standard deviation of the first and second half of the series is calculated, in order
to capture changing behaviour.

Turning points and step changes are adapted from Shah (1997) describing oscil-
lating behaviour and structural breaks in the adjusted series, respectively. A turning
point for series with observations y; = {y1...y;} is given if y; is a local maximum or
minimum for its two closest neighbours. A step change is counted whenever

yi — {y1-vi1}| > 20(y1-yi1), (5.7)

where {y;...ys—1} is the mean and o (y;...y;—1) the standard deviation of the series up
to point ¢ — 1. Both measures are divided by the number of observations to ensure
comparability.

Two measures of interest have been published in Gautama et al. (2004): the
deterministic component of a time series measure is measured by representing a
time series as a number of delay vectors of embedding dimension v, denoted by
Vi = [Yt—1...Y1—v]. Delay vectors are grouped according to their similarity, so that the
variances of the targets provides an inverse indication of predictability. Furthermore,
using the iterative amplitude adjusted Fourier Transform according to Schreiber &
Schmitz (1996), nonlinearity is estimated by generating 99 surrogate time series
for linearised versions of the data as the realisation of the null hypothesis that the
series is linear. If the delay vector representations of original and surrogate series
are significantly different, the time series is considered to be nonlinear.

The largest Lyapunov exponent is a measure for the separation rate of trajec-
tories of observations that are initially close to each other and the observations a
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number of periods ahead, quantifiying chaos in a time series. The average of the
Lyapunov exponents calculated using software provided in University of Goettingen
(2009) was added to the feature set. All features have been listed and summarised
in Table 5.2.

General statistics

abbreviation | description

trend Trend measure

season Seasonality measure

length Length of series

std Standard deviation

skew Skewness of series

kurt Kurtosis of series

stdratio Standard deviation(first half)/standard deviation(second half)
turn Number of turning points
step Number of step changes
pred Predictability measure
nonlin Nonlinearity measure

lyap Largest Lyapunov exponent

Table 5.2: Summary of features - general statistics

5.3.1.2 Frequency domain

A number of features have been extracted from the Fast Fourier Transform of the
adjusted series as summarised in Table 5.3. The frequencies at which the three
maximum values of the power spectrum occur are intended to give an indication
of periodicity additional to seasonality, the maximum value of the power spectrum
should give a measure of the general strength of the strongest periodic component.
The number of peaks in the power spectrum that have a value of at least 60% of
the maximum value quantify how many strong recurring components the time series
has.

Frequency domain

abbreviation | description

ff[1-3] Power spectrum frequencies of three biggest values

4] Power spectrum: maximal value

ft[5] Number of peaks not lower than 60% of the maximum
Table 5.3: Summary of features - frequency domain

5.3.1.3 Autocorrelations

Autocorrelation and partial autocorrelation give indications on stationarity and sea-
sonality of a time series; both of the measures have been included for the lags one
and two, for the original and the adjusted series. Furthermore, domain knowledge
on seasonality is exploited by including the autocorrelations of lag 12 for the NN3

62



CHAPTER 5. META-LEARNING

data set which consists of monthly data and the partial autocorrelation of lag 7 for
the NN5 data, which consists of weekly time series.

The Ljung-Box-Test provides a measure of randomness for autocorrelations acf
of time series. It is given by

v

b=n(n+2)>_

=1

acf?

n-—1

(5.8)

where n is the length of the series and v the number of lags investigated. A higher
value of the [b measure indicates a lower probability of the autocorrelations being
random. All of the measures are calculated on the original and the adjusted series
and are summarised in Table 5.4.

Autocorrelations
abbreviation | description
acf[1,2] Autocorrelations at lags one and two
act(s] acf[7] for NN5, acf[12] for NN3
pacf[1,2] Partial autocorrelations at lags one and two
pact(s] pact[7] for NN5, pacf[12] for NN3
acfa[1,2] Autocorrelations of adjusted series at lags one and two
acfa[s] acfa[7] for NN5, acfa[12] for NN3
pacfa[1,2] Partial autocorrelations of adjusted series at lags one and two
pacfal[s] pacfa[7] for NN5, pacfa[12] for NN3
Ib Ljung-Box test statistic

Table 5.4: Summary of features - autocorrelations

5.3.1.4 Diversity features

When dealing with combinations of forecasts, it is crucial to look at characteristics of
the available individual forecasts. It is desirable to have a diverse pool of individual
predictors, ideally with the strengths of one forecast compensating weaknesses of
another. On another note, if there is one extremely superior forecast in the ensemble,
it is unlikely that a combination with other forecasts will outperform it. All diversity
features are listed in Table 5.5.

The standard ways to look at diversity for a number of methods is examining
correlation coefficients. The feature pool here includes mean and standard deviation
of the error correlation coefficients of the forecast pool. Other diversity measures
have mainly been discussed in the context of classification tasks, for example in
Kuncheva & Whitaker (2003) and Gabrys & Ruta (2005). One of the few publica-
tions dealing with diversity in a regression context is Brown, Wyatt & Tino (2005),
where an error function e for training regression ensembles is introduced following
the equation

R R R (5.9

where ¢; denotes the prediction of the ith of m models, y an actual observation
(the target value) and g¢ the combined output of the ensemble members. In the
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publication, parameter x has been added arbitrarily to control the impact of the
second term of the equation.

The first term in the equation can be interpreted as the mean error of the indi-
vidual methods, while the second term is the variability of the ensemble members
in relation to the combined output. Brown, Wyatt & Tino (2005) relate these two
components to a bias-variance-covariance error decomposition and show analytically
that the first term of Equation 5.9 contains the bias and variance error terms, while
the second error term contains the bias and variance error term as well, but includes
the covariance of the errors of the ensemble members in addition to these. Hence,
parameter x controls the extent of the covariance impact on the error and, when
used for training regression ensembles, can enforce diversity of the individual pre-
dictors. To exploit these findings for experiments with time series forecasts and the
extraction of time series features, two values have been added to the feature set: the
error measure in Equation 5.9 in its original form and the quotient of the mean error
(first term of equation) and the variability between the ensemble members (second
term). In this way, the trade off between individual accuracy and diversity can be
measured.

The clustering combination method inspires a different approach on quantifying
diversity. A k-means clustering algorithm is used to assign individual forecasts to
one of three groups. The number of methods in the top performing cluster is then
taken as a feature, that will identify if there are few or many equally well performing
methods, or even just a single one. Additionally, the distance of the mean of the
errors of methods in the top performing cluster to the mean of the second best is
added to the feature set, in order to put the two performances into relation.

Fang (2003) state that one characteristic of a superior individual forecast is its
encompassing of rival forecasts, i.e. it includes all the information other models give
and dominates them. Forecasts that are encompassed by others are redundant for
a forecast combination. The absence of an individual forecast that encompasses all
of the others is also an indicator that combining might be beneficial. A simple test
for encompassing is proposed by the regression

y =011+ Palia + €

where y is the target variable, §; and g2 are two forecasts and e represents the
error component. Successful testing for §; = 1 and §2 = 0 means that forecast
2 is encompassed by forecast 1. Adopting the methodology of Kisinbay (2007),
this encompassing test is conducted starting with the forecast performing best in

Diversity features

abbreviation | description

divl mean(SMAPESs)-mean(SMAPEs deviation from average SMAPE)
div2 mean(SMAPESs)/mean(SMAPEs deviation from average SMAPE)
div3 mean(correlation coefficients of ensemble errors)

div4 std(correlation coefficients of ensemble errors)

divb Number of methods in top performing cluster

div6 Distance top performing cluster to second best

div7 Number of forecasts that are not encompassed by others

Table 5.5: Summary of features - diversity
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the validation period, performing a pairwise comparison to the other forecasts and
excluding the ones that are encompassed. The process is repeated with the next
best forecast until no worse performing forecast is left in the pool. The number of
remaining forecasts is another diversity characteristic.

5.3.1.5 Feature selection

Including irrelevant features in a machine learning algorithm can cause degrading
performance of the resulting model according to Witten & Frank (2005). The use
of redundant attributes may have the same effect. The features presented in this
section were submitted to an automatic feature selection algorithm.

The method chosen is “Subset Selection”, which was proposed in Hall (1998) and
is implemented in the Weka collection of machine learning algorithms described in
Witten & Frank (2005). It belongs to the so-called filter methods, which are known
for fast and efficient selection of features in a preprocessing step, independent of a
learning algorithm. The quality of a feature subset is measured by two components:
the individual predictive power given by correlation values and the level of inter-
correlation among them. Searching the feature space is carried out using a greedy
Best First algorithm with an empty feature set as a starting point. All possible
expansions are then evaluated and the best one is picked to be expanded again.

5.3.2 Exploratory analysis - decision trees

In the exploratory analysis following the description given in Section 5.2.1, using all
available methods as class labels did not yield interpretable results, which is why,
concentrating on the best performing approaches in the underlying experiments, the
classification problem has been reduced to three different questions:

1. When is it better to use the structural time series model and when is it better
to use a neural network approach? (two class labels)

2. How can one decide between pooling and outperformance model as a combi-
nation approach? (two class labels)

3. Which of the two individual and two combination methods work best for which
kind of time series (four class labels)?

Results given in this section do not claim to be universally applicable, they merely
provide an insight on the existence of rules for the specific data set used. However,
if the meta-features describe the series well and a series with similar characteristics
can be found, it is likely that the guidelines are generalisable.

In the figures given in the following results, the leaf to the left of a node represents
the data that fulfils its condition, the leaf to the right hand side represents data that
does not. The numbers following the methods in the leafs denote the fraction of
times this particular method performed best on the data subset.

The first classification problem concerned a decision between using the structural
model and the neural network, the resulting tree is shown in Figure 5.2. The top
node divides the series according to their Ljung-Box statistic of the autocorrelations,
stating in the right branch that the structural model works well on series where this
value is higher, indicating a lower probability of the autocorrelations being random.
For series with autocorrelations with higher probability of being random in the left
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branch, neural networks usually beat the structural model. However, if there is
a higher remaining seasonality in the adjusted series, the structural model again

performs better.
Ib <135
struct: 0.7
( kurt < 2.7 ) NN: 0.3
struct: 0.3
( acfa[s] < 0.4 ) NN: 0.7

struct: 0.2 struct: 1.0
NN: 0.8 NN: 0.0

Figure 5.2: Decision tree one - which individual method?

In the second tree in Figure 5.3, two different combination approaches are compared.
Variance-based pooling seems to perform better on seasonal series indicated by a
higher partial autocorrelation at the seasonal lag. The left part of the tree shows an
interesting outcome: if the individual accuracy is high in relation to the diversity in
the pool of forecasts, an outperformance model works better; if individual accuracy
however is small compared to the diversity, the variance-based pooling is the better
choice. This is rather intuitive as low individual accuracy with high diversity of
individual forecasts means a high risk for instabilities in the combination weights
using a simple approach like the outperformance model, whereas the variance-based
pooling with the strong but flexible trimming of methods may provide a higher

pacf[s] < 0.4
. outp: 0.2
( div2 < 0.4 ) vbp: 0.8

outp: 0.4 outp: 0.8
vbp: 0.6 vbp: 0.2

security.

Figure 5.3: Decision tree two - which combination method?

The last decision tree in Figure 5.4 looks at how to decide between the structural
model, the neural networks, the outperformance combination and the variance-based
pooling approach. It shows that for the data sets used here, variance-based pooling
works best for series with a low or negative autocorrelation at lag one, while the
structural model is able to more accurately predict series with a high trend measure.
The outperformance model works best for series with a higher autocorrelation at lag
one and a lower trend measure.
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acf[1] < 0.002
struct: 0.2
NN: 0.1 ( trend < 0.2 )

outp: 0.1

vbp: 0.6
struct: 0.2 struct: 0.5
NN: 0.2 NN: 0.2
outp: 0.4 outp: 0.1
vbp: 0.2 vbp: 0.2

Figure 5.4: Decision tree three - which method?

In summary, this experiment has shown that rules can be generated for the NN3
and NN5 data sets, some of which have a straightforward interpretation, others of
which seem fairly random. The next experiment investigates if forecast performance
can be improved using decision trees and other meta-learning techniques.

5.3.3 Comparing meta-learning approaches

This experiment follows the methodology described in Section 5.2.2. For the di-
versity features of the test series, only the validation set forecasts were used. The
validation set of the NN5 algorithm was also used for running the same basic empiri-
cal experiments described in Chapter 3, in order to help guiding decisions concerning
the selection of class labels. Running the baseline experiments on the validation set
of the NN3 series is impossible with some of the algorithms used here, which is due
to the shortness of some of the time series included, however, it is anticipated that
a preselection of methods on the NN5 data will also be beneficial for the NN3 data.

In the NNb5 validation set, four methods performed best with a big performance
gap to the next best methods, namely the structural model, the neural network,
the restricted regression combination and the variance-based pooling, which will be
used as class labels referred to as label set one. Since the restricted regression often
performed well or badly together with one of the other three methods in label set
one, the outperformance model was chosen to replace the regression combination
in the second set of class labels. It showed reasonable performance as well, while
providing a different functional combination approach and thus promising different
insights into the problem. Table 5.6 summarises the two label sets.

In the first part of this section, classic machine learning approaches are investi-
gated along with the ranking-based approach presented in Section 5.2.2.2. It has to
be stated that the performances given in the table cannot directly be compared to
the competition results, as the whole time series were used in the training set for
building the models.

Even though all series are treated as one data set in the experiment, performances
in Table 5.7 are given separately for NN3 and NN5 data. The results show that the
meta-learning approach investigated here, even when using the whole time series as
the training series, can only match performance of the underlying approaches in a
few cases for the NNb5 data, where the best method’s SMAPE was 25.9, and can
only slightly outperform them for the NN3 competition, where the best SMAPE was
16.3. The best overall performance is achieved by the decision tree, closely followed
by the support vector machine.
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Label set 1

structural model

neural network

restricted regression combination
variance-based pooling with three clusters

Label set 2

structural model
neural network
outperformance combination

variance-based pooling with three clusters

Table 5.6: Label sets for the meta-learning classification problem

Label set 1 ‘ Label set 2

Method NN3 ‘ NN5 ‘ NN3 ‘ NN5
Decision tree 16.7 25.9 | 16.3 25.9
Neural network 17.1 29.8 16.8 | 29.6

Support vector machine || 16.2 | 26.3 16.7 | 26.0

Table 5.7: SMAPE error measures applying three classic meta-learning techniques

One of the open questions using the zoomed ranking approach is determining the
number of clusters to use for the k-means algorithm. However, trying different values
for the number of clusters, it becomes clear that the impact on the performance is
small as can be seen in Figure 5.5, so that it is safe to set the number arbitrarily,
within reason.

23

Average performance

20

10
Number of clusters

Figure 5.5: Average performance in relation to number of clusters

Performance results for the modified zoomed ranking presented in this section can be
found in Table 5.8. Results are again given separately for the NN3 and the NN5 data
sets, allowing better comparison with the performances given in Chapter 3. Four
different ways of using the obtained rankings have been investigated, namely picking
the method with the best ranking or calculating weights for a linear combination of
the two (three, four) best methods.

The weighted combinations of three or four individual methods outperform all
other meta-learning approaches and also improve upon the best individual predic-
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tors. It can thus be seen, that some combinations outperformed model selection on
a meta-learning level, which underlines the need for approaches providing a ranking
of models as opposed to just recommending one of the available approaches.

All methods Label set 1 Label set 2
Method NN3 | NN5 | NN3 | NN5 | NN3 | NN5

Pick best 17.0 | 26.1 | 17.8 | 26.5 | 17.0 | 25.7
Weighted best 2 || 15.8 | 25.9 | 16.2 | 26.1 15.8 | 25.5
Weighted best 3 || 15.6 | 25.4 | 15.5 | 25.3 | 15.8 | 24.0
Weighted best 4 || 15.7 | 24.6 | 15.4 | 23.7 | 15.5 | 24.2

Table 5.8: SMAPE error measures applying the meta-learning ranking algorithm

For the combination of three and four methods, using all methods as class labels
provides performance that beats the best individual predictors. The best perfor-
mance is obtained by using label set one, which consisted of the best performing
methods on the NNb) validation set.

5.3.4 Ranking in the NN5 competition

For the previous experiments, time series observations that were not available at
the time of the competition were used for training the meta-models. In this experi-
ment, the zoomed ranking approach was evaluated on features that were calculated
excluding the test data, hence the obtained forecast could have participated in the
competitions. This caused problems for the NN3 data set, as the necessary valida-
tion periods for the combination approaches would reduce the observations available
for individual model building to only 15 for the shortest of the series, which is too
few for some of the methods to work. This experiment therefore only considers the
NNb5 competition, resulting performances are given in Table 5.9.

H No preselected labels | Label set 1 | Label set 2

Pick best 26.6 26.7 26.5
Weighted best 2 || 25.6 26.1 25.3
Weighted best 3 || 25.4 25.3 23.9
Weighted best 4 || 24.5 23.8 24.1

Table 5.9: Performances applying different meta-learning techniques, competition
conditions

Applying the zoomed ranking approach, the resulting out-of-sample SMAPE of
23.8 is similar to the performance in the previous experiment, showing that the
approach was successful also in competition conditions and improving the 12th rank
of the best individual method to rank 9 of 20 competitors. Even without pre-selection
of methods for the combination, ranking-based weight calculation proved beneficial.

5.4 Meta-learning for the airline application

The benefit of meta-learning has been demonstrated on a range of different time
series in the previous section. This section investigates meta-learning in the context
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of the special application area of airline demand and cancellation forecasting, where,
in contrast to the NN3 and NN5 competition data, extensive domain knowledge is
available. Time series are no longer one-dimensional but can be aggregated on
various levels, with the time series predicting booking and cancellation numbers for
one specific flight being as short as 23 data points. The shortness of the time series,
their special characteristics and the additional domain knowledge completely change
the set of features that can be potentially relevant for characterising the data.

In the experiments presented here, global characteristics will be extracted from
the data set with the purpose of exploring the impact of application-specific processes
like booking control on the error values. Similar to the last experiments, the features
will then be linked to the best performing method. In the second part, meta-
learning will be performed on a global level, building meta-models on one set of
flights and applying them to another. The third section then looks at meta-learning
opportunities in each of the flights in the data set, attempting to improve forecasting
performance at runtime of the forecasting system.

5.4.1 Exploratory analysis - the data

A number of features is extracted in order to gain a better understanding of the data,
the influence of booking control and application-specific preprocessing as well as of
the strengths and weaknesses of the forecasting algorithms. The characteristics are
disaggregated on the level of origin-destination-opportunity and fareclasses and are
calculated for the test set, the training set and the whole data set. Straightforward
numbers extracted from the data include

e the number of data collection points (DCPs) with no values (defaults),
e the number of DCPs at which the fareclass was closed due to booking control,

e the overall number of bookings and cancellations.

In order to assess how much the cancellation reference curve has changed from the
initial default reference, the difference of the most recent reference curve and the
default reference for a fareclass has been taken. Both the original and the absolute
values have been summed up to obtain two measures of the change, which will be
referred to as the default reference change, abbreviated by deltaRef.

As fareclasses include different numbers of default values, for example if an origin
and destination has no associated flights for certain days of the week, normalisation
procedures need to be employed. As an illustration: if a fareclass with no defaults has
been closed for half of the DCPs, the same number of closed DCPs will mean more
for a fareclass with a significant portion of default values. Furthermore, if a fareclass
usually only has a few cancellations, a certain change in the learnt reference curve
means a higher deviation from the default reference as if the same change occurs in
a fareclass with many cancellations. To address these two scenarios, the number of
DCPs with non-default values is used to calculate the following measures:

e the percentage of DCPs at which the fareclass was closed due to booking

closed DCPs
control ( non-defaults )’

e the number of average cancellations per DCP where the fareclass was open for

the whole data set and the test set (%),
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M)

e the default reference change, relative and absolute per open DCP, (<350

e default reference change, relative and absolute per average cancellations at

deltaRef
open DCPs (canC. per open DCP)

Another issue having an influence on forecasting performance could be the difference
between the training and test sets. Measures used to quantify this are

e closed DCPs (training) / closed DCPs (test)
e bookings (training) / bookings (test)
e cancellations (training) / cancellations (test)

Summary statistics of the described features are given in Table 5.10. A few inte-
resting things can be seen here; for example does the negative mean of the relative
reference curve change measure indicate that the default reference curve tends to
overestimate cancellation rates on the given data. Some fareclasses do not have any
bookings and cancellations in the test set, but in the training set as indicated by
the minimum numbers of features 11 and 12.

For the whole available data set, correlation values were subsequently determined
between measures mentioned and the sum of the net booking and cancellation errors
per fareclass and origin-destination-opportunity that were obtained by evaluating
the exponential smoothing forecasting method. The errors used are absolute values
of the sum of relative errors, because potential systematic errors are to be investi-
gated. Errors are given without any normalisation as well as divided by non-default
values and average cancellations per open DCP. The resulting correlation coefficients
are given in Table 5.11 with absolute values above 0.5 printed in bold.

High correlation values exist between the errors and the booking and cancellation
numbers per nondefault DCP. This is rather intuitive, as higher booking and can-
cellation numbers do lead to risks of errors on a bigger scale. Normalising the error
with the number of cancellations per open DCP however compensates this effect.

Feature Mean ‘ Max ‘ Min ‘ Std. Dev. | Kurtosis | Skewness
1. nondefault values 68515.48 | 74865 | 30981 11885 1.50 -1.75
2. % closed DCPs 22.74 | 9453 0.63 23.37 0.53 1.26
3. _Dookings 0.15 | 1.86 0.00 0.23 20.25 3.92
4, Cancellations 0.09 1.53 0.00 0.16 34.60 5.09
5. Cancellations et set 1.69 | 28.79 0.00 3.20 34.75 5.14
6. deltaltel -0.02 0.17 | -0.16 0.06 1.22 0.64
7. deltaRef(abs) 0.08 | 0.18 0.01 0.03 0.25 0.46
8. e eGP -10.08 | 131.58 | -256.56 28.75 23.51 -2.85
9. eeltaRel by s 28.90 | 275.49 0.38 35.03 10.46 2.65
10. DCPs closed rainine 6.11 | 30.84 0.89 4.12 9.83 2.58
11. Bookings ‘rainine 4.82 | 28.76 0.00 3.67 21.14 4.17
12. Cancellations “ainins 4.71 | 22.35 0.00 2.73 11.46 2.78

Table 5.10: Airline data features summary statistics
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[ [ ———
1. nondefault values 0.12 0.06 -0.08
2. % closed DCPs 0.17 0.19 0.34
3. _Dookings 0.65 0.64 0.14
4. Sancellations 0.53 0.52 -0.16
5. Cancellations gegt et 0.45 0.43 -0.16
6. deltafel 0.32 0.33 0.07
7. ldeliaRefl 0.21 0.25 017
8. e ep 0.15 0.15 -0.48
9. e -0.30 -0.30 0.56
10. DCPs closed Z2ine || 014 -0.13 0.04
11. Bookings ‘g 0.33 0.39 -0.05
12. Cancellations 202 || 0.23 0.27 -0.13

Table 5.11: Correlation coefficients of airline data features and net booking errors

Another high correlation can be found for the absolute change of the reference curve
and the error divided by the cancellations per open DCP. This indicates an increa-
sing error with a higher deviation of the reference curve to the default reference.
Interesting is the absence of a strong correlation between errors in general and the
percentage of DCPs where a fareclass was closed. It was suspected that the uncon-
straining procedure described in Section 2.1.4.3 necessary to appropriately deal with
the effects of closing fareclasses due to booking control will increase errors, but this
is not the case.

Predicting a best performing method per origin-destination-opportunity and
fareclass, the subset feature algorithm on the data set only recommends using fea-
tures number 6 and 7 from table 5.11, corresponding to relative and absolute change
from the default reference curve to the learnt reference curve. A decision tree was
built on these features with the best performing method as a class label. The tree
in Figure 5.6 suggests using the probability forecast if the absolute reference change
measure is below a certain value, and Brown’s exponential smoothing otherwise.

@Itareﬂ / nondefaults < 0.13

exp: 0.2 exp: 0
brown: 0.2 brown: 0.8
regr: 0.2 regr: 0.2
prob: 0.4 prob: 0

Figure 5.6: Decision tree - best method for airline net booking forecast
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5.4.2 Global meta-learning

The leave-one-out methodology described in Section 5.2.2 is again employed to as-
sess the performance of the following meta-learning approaches: decision trees (DT),
neural networks (NN), support vector machines (SVM), ARR ranking method pick-
ing the best method (R-PB), ARR ranking with weighted combinations of the 2
(3,4) best models (R-T2, R-T3, R-T4). The three features capturing the relation of
booking/cancellation/closed DCP numbers between training and test set had to be
omitted, as they cannot be determined on the test series. A meta-model is built on
13 of the available origin-destination opportunities and then applied to the remain-
ing one. Results for the high aggregation level can be found in Table 5.12 and for
the fine level in Table 5.13.

Neural networks and the ranking approach just selecting the best method per-
form worst in this experiment. The decision tree and the support vector machine
approach provide performances very similar to the performance delivered by the
probability forecasting method, which indicates that this method gets selected as
a class label in the great majority of the cases; a look at the actual class labels
confirmed this suspicion. The combinations with weights obtained by the ranking
algorithm perform better on average on the high level, with the ranking combination
of all available methods performing best overall. It is able to outperform the refe-
rence method by 0.74% on average, which is better than the average performance of
the new probability forecast, but worse than the best flat combination as presented
in the previous chapter. The performance improvement is biggest for the first DCPs
with improvements of up to 6.8% per DCP, which is not as good as the improve-

DCP | DT | NN | SVM | R-PB | R-T2 | R-T3 | R-T4

0 7.30 1.88 7.09 1.88 5.92 5.73 5.30
1 8.94 | 6.19 8.51 0.60 6.78 7.14 5.59
2 7.28 | 2.74 6.87 -3.28 3.84 4.14 4.42
3 6.26 1.37 5.92 -3.79 3.27 3.45 3.79
4 5.04 | -1.27 4.70 -2.98 2.56 2.86 3.06
5 5.26 | -2.33 5.05 -2.37 3.08 3.66 3.95
6 3.42 | -4.23 3.31 -3.44 1.75 2.40 2.62
7 0.01 | -4.03 -0.03 -4.51 0.61 1.11 1.03
8 -2.17 | -3.67 -1.97 -5.27 0.21 0.64 0.50
9 -2.47 | -2.95 -2.29 -6.25 0.69 0.91 0.53
10 -5.69 | -2.16 -5.48 -6.81 -0.30 | -0.25 -0.66
11 -8.54 | -2.98 -8.14 -7.31 | -0.57 -0.90 -1.58
12 -8.96 | -2.93 -8.48 -6.38 | -0.28 -0.76 -1.62
13 -6.81 | -2.11 -6.50 -4.91 1.16 0.60 -0.49
14 -8.65 | -3.66 -8.32 -5.78 0.28 -0.23 -1.44
15 -8.75 | -2.81 -8.39 -5.80 | -0.17 -0.45 -1.68
16 -9.28 | -7.23 -8.96 -5.69 | -0.91 -1.46 -2.87
17 -9.73 | -7.39 -9.30 -5.43 | -1.26 -1.93 -3.40
18 -8.56 | -8.26 -8.28 -5.19 | -1.87 -2.48 -3.58
19 -7.70 | -7.70 -7.56 -4.65 | -1.68 -2.62 -3.86
20 -7.24 | -7.90 -7.24 -5.28 | -2.75 -3.70 -4.79
21 || -10.21 | -7.15 | -10.13 -5.95 | -4.09 -5.56 -6.81
avg -2.78 | -3.12 -2.71 -4.48 0.74 0.56 -0.09

Table 5.12: Global meta-learning: percentage of relative performance improvement
compared to reference forecast, high level
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DCP | DT | NN | SVM | RPB | R-T2 | R-T3 | R-T4

0| 3.91 -0.79 3.77 -2.67 1.87 2.08 2.07
1 1.94 -0.18 1.74 -2.97 1.64 1.98 0.10
2 1.04 -1.73 0.83 -3.88 0.87 1.21 -0.74
3 1.01 -2.54 0.76 -4.06 0.66 0.93 -0.75
4 || 1.20 -4.63 0.92 -4.36 0.07 0.15 -0.80
5 1.60 -5.31 1.30 -4.11 -0.18 -0.27 -0.49
6 1.95 -5.88 1.67 -4.45 -0.20 -0.24 -0.25
7| 1.77 -5.60 1.50 -4.58 -0.18 -0.16 -0.08
8 1.43 -5.80 1.13 -5.14 -0.19 -0.12 -0.14
9 1.88 -5.49 1.57 -5.44 0.04 0.32 0.36
10 || 1.60 -5.66 1.32 -5.76 0.03 0.42 0.38
11 1.90 -5.68 1.57 -5.74 0.37 0.83 0.69

12 1.86 -5.47 1.53 -5.57 0.53 0.93 0.72
13 1.69 -5.71 1.35 -5.56 0.49 0.97 0.66
14 || 1.16 -5.95 0.79 -6.14 0.34 0.85 0.54
15 || 0.72 -6.08 0.36 -6.38 0.10 0.59 0.22
16 || -1.14 | -10.77 -1.55 -6.24 -0.98 | -0.79 -1.86
17 || -1.60 | -10.96 -1.98 -6.47 -1.27 | -1.24 -2.20
18 || -2.23 | -11.25 -2.62 -6.84 | -1.75 -1.77 -2.80
19 || -3.12 | -11.46 -3.50 -7.38 | -2.32 -2.54 -3.49
20 || -4.83 | -12.48 -5.18 -8.31 | -3.36 -3.68 -4.84
21 || -9.06 | -14.27 -9.40 | -11.00 | -4.97 -5.85 -7.32
avg || 0.21 -6.53 -0.10 -5.59 -0.38 -0.25 -0.91

Table 5.13: Global meta-learning: percentage of relative performance improvement
compared to reference forecast, low level

ments achieved by the probability forecast, but more consistent over all DCPs. On
the low level, improvements are less obvious, with only the decision tree producing
a slight overall performance gain.

5.4.3 Local meta-learning

Global features of the data set are currently not available in the Lufthansa Systems
Forecasting kernel, which is the reason why this section investigates the applicability
of meta-learning on a smaller level. The main objective remains to link features of
the data instances to the performance of four individual forecasting algorithms in
order to build a meta-model that predicts which method will work best in a certain
situation. The following features describe data on this low level and were extracted
from the training and the test set on the finest possible level:

e the current data collection point

e the current number of bookings

current bookings )

e the current fraction of expected bookings (booking Forocast

e the difference between the current reference curve and the currently measured
cancellation rate

e the availability of the fareclass (0 for closed, 1 for open)

e the percentage of previous DCPs at which the fareclass was closed
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The instances of the feature set were then labelled with the number of the individual
forecasting method that performs best in the training set, which again formulates
the problem as a classification task with four classes. Training features were ex-
tracted for the weeks 52 to 123 of the available 155 calendar weeks, test features
were calculated on the remaining 31 weeks. For reasons of computational complex-
ity, the support vector machine had to be removed from the pool of investigated
meta-learning methods, because the time to compute results became too long. The
remaining methods being compared are decision trees (DT), neural networks (NN)
and the ranking algorithm (R) with results given in Tables 5.14 and 5.15. The suffix
“T2” denotes trimming of the 2 methods that performed worst on the training set.

DCP | DT | DT-T2 | NN [ NN-T2| R | R-T2
o 612 6.46 [ 4.03 312 550 [ 5.62
1| 632| 847 214 2.61 | 578 | 5.89
2| 321| 486 |-434| -152| 190 | 197
3| s.01 3.68 | -5.72 |  -152 | 174 | 181
4 220| 351 |-658| -220| 124 131
5| 266 | 3.67|-456 | -2.28 | 1.81| 181
6| 1.60 | 272 |-493| 363 | 067 | 0.70
7| 074| 230 |-466| -429| 029 029
8 | -0.70 1.85 | -5.64 | -433 | 024 | o0.14
9 | -0.91 1.45 | -5.56 |  -4.83 | 026 | 0.19
10 || -1.83 1.69 | -6.13 |  -4.69 | -0.48 | -0.54
11 || 285 | 059 |-624 | -500| -0.78 | -0.81
12 || 273 | 0.34 | -5.00 | -4.37 | 0.07 | 0.03
13 || -1.53 0.68 | -3.79 |  -355 | 1.56 | 1.55
14 || -3.25 | -1.01 | -4.87 |  -4.60 | 0.62 | 0.61
15 || -2.61 | -0.26 | -4.57 |  -4.63 | 0.09 | 0.06
16 || -2.28 |  -0.83 | -5.02 | -4.50 | 0.28 | 0.27
17 || -3.33 | -1.08 | -5.67 |  -5.67 | -0.31 | -0.35
18 || 261 | -1.29 | -5.81 -5.56 | -0.69 | -0.75
19 || 310 | -0.90 | -5.55 |  -4.79 | -0.96 | -0.96
20 || -3.80 | -1.24 | -5.02 |  -4.70 | -1.67 | -1.66
21 || -4.83 | -1.96 | -4.23 | 437 | -2.64 | -2.64

avg [ -047 | 153 [ 444 | 342 [ 0.66 | 0.66

Table 5.14: Local meta-learning: percentage of relative performance improvement
compared to reference forecast, high level

For this experiment, the ranking algorithms do not provide the best performance.
While slightly improving average forecasting performance on the high level, average
performance on the low level is worse than for the reference forecasts. The best
performing method for this experiment is decision trees with trimming, achieving
overall improvements of 1.21% on the low level and 1.5% on the high level on average,
with improvements at the first DCPs amounting to up to 8.5% for the second DCP.

5.5 Chapter summary

This chapter investigated meta-learning approaches on both publicly available time
series competition data and the airline data set. Following a review of literature
relevant to the area, empirical experiments have been conducted with the main
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DCP || DT [ DT-T2| NN |[NN-T2 | R [R-T2
0 [[ -0.26 1.95 [ -1.62 106 [ Lo7 | L4
1] 122 3.33 | -2.21 -1.44 | 154 | 100
2 || 053 2.55 | -3.74 223 | 088 | 0.24
3| 063 2.13 | -4.17 270 | 059 | -0.02
4 -0.21 1.66 | -5.53 -3.56 | -0.04 | -0.61
5| -0.76 1.01 | -6.11 -4.22 | -0.17 | -0.57
6 || -0.81 0.99 | -6.22 -4.91 | -0.21 | -0.62
7 || -0.76 0.91 | -5.82 -4.85 | -0.12 | -0.47
8 || -0.72 1.10 | -6.13 -5.26 | 0.03 | -0.44
9 || -0.31 1.34 | -6.37 -5.26 | 0.12 | -0.16

10 || -0.11 1.29 | -6.41 -5.31 | 0.14 | -0.19
11 || 0.62 1.70 | -5.85 -4.96 | 062 | 0.21
12 || 0.72 1.63 | -5.67 -4.81 | 066 | 0.39
13 || 0.82 1.81 | -5.43 4.81 | 073 | 052
14 || 0.82 1.47 | -5.76 -5.04 | 0.64 | 0.31
15 || 0.67 1.28 | -6.13 -5.33 | 049 | 0.19
16 || 1.29 1.89 | -7.37 -5.33 | 047 | -0.63
17 || 0.81 1.35 | -7.61 -5.87 | 0.07 | -0.94
18 || 0.46 0.95 | -7.78 6.32 | -0.37 | -1.37
19 || -0.39 0.18 | -8.55 -6.60 | -0.99 | -1.92
20 || -2.00 | -0.87 | -9.78 -7.95 | 217 | -2.96
21 || -3.77 | -3.08 | -12.19 -9.57 | -4.58 | -4.51
avg || -0.07 [ 1.21 [ -6.20 -4.88 | -0.03 | -0.52

Table 5.15: Local meta-learning: percentage of relative performance improvement
compared to reference forecast, low level

objective of creating domain knowledge by extracting descriptors on a training set
of time series in order to train meta-models to be used on a test set.

For the competition data, an extensive number of features has been identified,
some of which are novel and have not been used in this context before. Noteworthy is
the description of not only the series itself, but also of the pool of available forecasting
methods in order to guide decisions on whether or not a forecast combination is the
best approach for a combination. For the airline data, the extracted features have
been chosen differently to reflect the special characteristics of the data set and the
application.

Meta-learning proved extremely valuable for the competition data when using a
newer ranking approach giving weights for a linear combination of methods as op-
posed to only suggesting one of them. The SMAPE error values could substantially
be improved with combinations of the three or four methods having the best perfor-
mance on the test set. The ranking algorithm also performs best of all investigated
meta-learning approaches on the airline data from a more global perspective, but
does not outperform the classic decision tree when meta-learning is applied on a
smaller scale. The reason for lack of success for the global airline experiment may
be found in the data set: since origin-destination-opportunities were chosen to be
representative of all the flights offered by the airline, the flight characteristics are
necessarily quite different from each other. Since meta-learning relies on having
seen a similar problem before, the diversity of the individual flights are most likely
detrimental for this experiment. However, using meta-learning on a smaller scale
does not provide convincing results either, which underlines a second prerequisite
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for meta-learning: the data needs to be stable enough to extract meaningful meta-
features, and meta-feature identification needs to be suitable and reliable. The data
characteristics on the finest possible level might be too noisy and limited and the
problem domain too confined to provide meta-data that can be used to obtain effi-
cient and generalisable combination weights. A third reason for meta-learning being
less successful than expected could be found in the changing environment, which
probably could not be grasped with the static meta-learning approach used here.
More investigations in the area of adaptive meta-learning, starting with rebuilding
the model periodically, could be beneficial.

Summarising, the big potential for the meta-learning concept has been illustrated
on the competition data, underlining the fact that the problem domain is an impor-
tant factor in determining when a forecasting method works well and when it will
fail. Furthermore, it was shown that this knowledge can be automatically extracted
and lead to better forecasting performance.

Meta-learning experiments on the airline data however showed less convincing
results. Reasons can be found in the nature of the data, but recalling the mediocre
performances of flat combinations given in the previous chapter, the question also
arises why forecast combination as a concept seems to fail in the airline application.
The next chapter will be dedicated to exploring ways of further improving airline
net booking forecasting performance by generating additional cancellation forecasts
with diversification procedures, examining their impact on the composition of the
forecast error and investigating alternative forecast combination approaches.

7



Diversification strategies for the airline
application

In the previous chapter, meta-learning proved very successful when used on com-
petition data, where domain knowledge was limited and time series were diverse.
However, performances on the airline data set were not convincing; possible reasons
were discussed. The next logical step is looking at alternative ways to improve fore-
cast accuracy for the airline application, possibly exploiting the abundance of domain
knowledge available and the special characteristics of the data set. Riedel (2007) pro-
vides an extensive treatment of forecasting strategies for the airline demand forecast,
whereas this work tries to improve the net booking forecast by changing forecasts
of its cancellation component.

Comparing the experiments for the NN3/NN5 competitions with experiments
on the airline data, a major difference seems to be the number of individual fore-
casts considered: the competition application had over three times more individual
forecasts at its disposal. This chapter looks at means of generating more individual
cancellation forecasts by diversification procedures in a manner that adds value for
a combination. In the process, additional insights into the dynamics of forecast
combinations are sought, trying to identify beneficial characteristics of individual
forecasts in general and for this specific application.

The next section will provide the necessary background, explaining different
error decompositions for ensembles and combinations and their implications. Diver-
sification methods are then discussed in Section 6.2, followed by a look at effects
of airline-specific calculations on the error components identified. The last part
of this chapter presents empirical experiments studying the effects of the diversifi-
cations and investigating alternative combination methods including novel forecast
combination structures.

6.1 Background and motivation

Multiple classifier and prediction systems in machine learning are often referred
to as ensembles and consist of a number of models sharing the same functional
approach as opposed to combinations, where individual methods are usually built
using different prediction models. Ensemble learning is a term describing strategies
for training these models and combining their outputs to obtain a single prediction
as, for example, described in Dietterich (2000) and Yao & Islam (2008). Diversity as
a quantification of the disagreement between the models is crucial for the success of
a combination as acknowledged in Gabrys & Ruta (2005) and Brown, Wyatt & Tino
(2005) which can be illustrated based on the rather intuitive fact that a combination

78



CHAPTER 6. DIVERSIFICATION STRATEGIES FOR THE AIRLINE
APPLICATION

of predictors that completely agree in all situations will not be more accurate than
any of the individual predictors.

Members of an ensemble for prediction can be designed for a classification and a
regression problem. For classification problems, where individual predictors produce
crisp class labels, the question of diversity still remains an open research issue due
to the lack of a concept of distance, although diversity measures for classification
have been discussed by, for example, Kuncheva & Whitaker (2003), Gabrys & Ruta
(2005) and Tang et al. (2006). For ensembles of regressors, the understanding of
diversity is quite mature due to the involvement of several research communities,
for example the forecasting community. Regression ensemble diversity can be quite
easily quantified by covariance values of the methods in the pool. Two error de-
compositions applicable for ensembles and combinations are common, which will be
presented in the following sections.

6.1.1 The ambiguity decomposition

Krogh & Vedelsby (1995) published an important contribution for the understanding
of regression ensembles. The main finding is expressed with Equation 6.1, which is
given in the forecast notation with y denoting the actual observation or the target
value and ¢; the individual forecast of model number 4.

(4°—y)? sz —y)? = > willi —§°)? (6.1)
i
Furthermore, 3¢ is the linear combination of individual forecasts,
:IQC = sz@i, (6.2)
i

with combination weights w; being non-negative and summing to one:

Zwi == 1, W Z 0. (63)
i

Several proofs for Equation 6.1 have been given, for example in the original pa-
per of Krogh & Vedelsby (1995), in Hansen (2000) and in Brown, Wyatt & Tino
(2005). Here, the proof of Brown, Wyatt & Tino (2005) will be given for a better

understanding. The starting point is a simple manipulation of the quadratic error
equation:

D@l =) = D i — i+~ )
Z - Zw (5 — 9% + (5° — 9)* + 20 — §°)(5° — )]
- zl:wi G — 9°) +szy —y)?
+Z2wz 9i — 99 — y) (64)

Now, Equation 6.2 can be used to reduce the second term of Equation 6.4:
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Zwi(@c—y)Q = (1°—y) sz
= (@ -y)? (6.5)

and Equations 6.2 and 6.3 help to eliminate the third term:
22% 9i— 9@ —y) = 200" —y) Y wili — i)
i
~ 2 S
i i

= 2(5° - y)(§° —9°)
= 0 (6.6)

then

sz(gz ZW'L Yi (y _y)

which turns out to be equivalent to Equation 6.1.

Having a closer look at the right hand sight of the Equation 6.1, the first term
represents the weighted average error of the individuals. The second term can be
referred to as ambiguity, providing a measure for the variability among the ensem-
ble members. The latter term is non-negative, leading to the conclusion that the
quadratic error of the ensemble estimator, given by the left side of the equation,
will always be less or equal to the average quadratic error of the individual predic-
tors, which is represented by the first term of the right hand side of the equation.
This decomposition is also referred to as the ambiguity decomposition and holds
for convex weights and mean squared error loss. The bigger the ambiguity term is,
the bigger is the overall error reduction. However, an increasing disagreement in
the ensemble will also affect the first term of the decomposition, so that only the
right balance between the two terms can produce the lowest overall ensemble error.
This decomposition provides the basis for a successful ensemble training technique
“negative correlation learning” first introduced in Liu & Yao (1999).

Brown, Wyatt & Tino (2005) relate the ambiguity decomposition to a bias-
variance-covariance decomposition and provide an error function that can be used
for explicitly controlling the diversity of an ensemble, which has been exploited as
a diversity measure for the meta-learning experiments in Section 5.3.1.4 and will be
further explored in the next section. Hansen (2000) provides a more comprehensive
treatment of the ambiguity decomposition and its implications for machine learning,
however, in the context of the thesis, the concept that individual accuracy of en-
semble members has to be balanced with their diversity in an effective combination
shall suffice.

6.1.2 Bias/variance/covariance

The bias/variance dilemma is well-known and studied in estimation theory and
modelling; one of the seminal papers relating it to machine learning in general and
neural network ensembles in particular has been published by Geman et al. (1992).
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It assumes that the estimation error can be decomposed into a bias and a variance
component:

e The bias component represents the expected error over all trained ensembles,
i.e. the expected loss when using the average combined predictor for forecas-
ting target y. This part of the error results from incorrect models and the
fact that the class of functions used for modelling a data generation process
may not include the correct one. Since the correct models are hard to find
and identify for real-world problems, a bias component will be inherent in a
forecasting error.

e The variance denotes the degree of variability between one particular com-
bined predictor and the average over all combined predictors. It can be at-
tributed to parameter sets not being perfectly estimated due to limitations of
the available training data.

In very simple models, errors will usually have a large bias component, as the pre-
dictors are not sufficiently complex to model the data generation process. However,
they will agree in their predictions as there are not many parameters to estimate,
producing a low variance component. On the other hand, if more complex mod-
els are chosen for modelling, the number of parameters to estimate becomes large.
Extremely and sometimes prohibitively large training sets are necessary for an appro-
priate parameter estimation, with the estimation being extremely slow to converge.
In this scenario, the bias component of the error would be small at the expense of
a much bigger variance. This illustrates the trade-off between the two components;
reducing one of them will cause an increase in the other. It also provides an expla-
nation for the fact that a simple model can outperform a more complex one when
training data is limited or noisy, causing an increased risk of overfitting and making
the parameter estimation too dependent on the actual training sample.

When not considering a combination approach as a single learning unit, Brown,
Wyatt, Harris & Yao (2005) add another component to the error decomposition:
the covariance.

e The covariance component of a combination forecast error is the averaged
covariance of the individual methods. Highly correlated individual forecasts
increase the error, but again the covariance cannot be reduced without affecting
bias and variance values. The two-way bias/variance trade-off when designing
an individual predictor thus becomes a three-way trade-off for combinations.

6.1.3 Motivation for diversification

Flat combinations and meta-learning of methods for airline cancellation forecasts
showed interesting results in the previous sections, but did not produce consistent
improvements over the individual predictors. For further improvements, the gene-
ration of individual forecasts additional to the presented four methods seems most
promising. Unfortunately, the choice of available methods is limited, as only a few
simple and robust methods can deal with the noisy data, the small number prob-
lems and comply with the time restrictions of the airline application. A number of
other suggestions regarding the creation of additional forecasts for an ensemble can
be found in the scientific literature, which will be investigated in the next section
and fitted to the airline application whenever applicable. As discussed previously
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in this section, individual forecasts need to have certain characteristics to provide
a beneficial contribution in a combination, which can be explained with the help
of error decompositions. Diversification ideas are examined in this respect as well,
with the aim of exploring the resulting forecasts and their characteristics.

6.2 Generating forecasts by diversification procedures

Diversification algorithms have been studied in different research and application
areas, with the most mature contributions seeming to be available in the machine
learning community. Publications especially relevant to classifier diversity and me-
thods of how to encourage generation of diverse ensembles can be found in Kuncheva
& Whitaker (2003) and Kuncheva (2004). Brown, Wyatt & Tino (2005) propose a

taxonomy for creating diversity in neural network ensembles, distinguishing

e different starting points in the hypothesis space, for example by random weight
initialisation,

e manipulating accessible hypotheses by changing training data or network ar-
chitectures and

e changing the way the hypothesis space is traversed, for example by negative
correlation learning as mentioned earlier.

Sharkey & Sharkey (1997) separate “blind” approaches of random methods to achieve
diversity (random architectures, weights, initialisations) from active attempts to cre-
ate an ensemble of predictors that can effectively be combined, which also fits the
concept of implicit and explicit diversity creation methods discussed in Tang et al.
(2006).

The following sections will investigate diversification approaches by looking at
literature relevant in the context of this thesis, and, similar to the approach used in
Riedel & Gabrys (2009), relating them to the bias-variance-covariance decomposition
of errors. Furthermore, the possible applicability for the airline data set is explored
at the same time.

6.2.1 Decomposing data

In Section 5.3.1.1, it was discussed to decompose time series into a trend compo-
nent and a seasonal component. In a more general case, the existence of different
components in a time series can lead to a situation where input forecasts predict
one or more of the components in a similar manner. This will lead to an increased
correlation between the individual forecasts which is generally undesirable for a
combination. Decomposing time series and predicting components separately as, for
example, described in Makridakis et al. (1998) can thus provide a way to avoid these
difficulties common in industrial practice as shown in Jain (2008).

At Lufthansa Systems, decomposition is one of the key concepts used. As shown
in Figure 6.1, historical data is split into a demand and a cancellation component,
with the demand further being split into a seasonality and an attractiveness com-
ponent as described in Section 2.1.4.4 which are all predicted separately.

As this thesis is concerned with improvements of the cancellation forecast which
is not further split into components, this type of diversification is not used.
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historical data

demand cancellations
attractivity seasonality

Figure 6.1: Decomposition of data in the airline application

6.2.2 Diversifying functional approaches

One of the first explicit discussions of diversity in the context of combinations of
forecasts can be found in Batchelor & Dua (1995), who suggest that functionally dif-
ferent approaches are very unlikely to produce errors that are strongly correlated and
are thus suitable for forecast combination. A number of empirical studies like Zhang
(2004), Terui & van Dijk (2002) and Swanson & Zeng (2001) illustrate the benefits
of including models clearly differing in complexity in a combination of forecasts,
the complexity difference mostly being achieved by a pool of linear and nonlinear
models. This generates models with different trade-offs between their error bias and
variance components, ideally leading to uncorrelated errors and compensation effects
in a combination. Another general approach is using a strongly restricted approach
as prediction model, producing forecast errors with a high bias and a low variance
component with a combination increasing complexity and reducing the bias term in
the process, which will however only work if the biases are not strongly correlated.
As discussed in Section 2.1.4, individual algorithms employed at Lufthansa Sys-
tems have to be fairly simple due to the nature of the data, so that including a
nonlinear method as an additional method in the pool is not an option. However,
as described in the same section, three different methods are readily available for
cancellation forecasting, two being based on exponential smoothing and one on re-
gression. An algorithm based on cancellation probabilities was added in the scope
of this thesis as described in Section 4.2 to further enforce diversity in the functional
approaches and potentially benefiting the accuracy of the combined forecast.

6.2.3 Diversifying parameters

Granger & Jeon (2004) criticise ordinary model-building approaches consisting of a
single specification and its estimation as unrealistic. They suggest taking into ac-
count alternative specifications of similar quality and combine the different results,
a methodology referred to as “thick modelling”. Even though alternative specifica-
tions may mean using different models or data sets for training to obtain different
forecasts, a major application of the concept is using different parameters for the
same model, which is also how thick modelling is used for airline demand forecas-
ting in Riedel (2007). Fixing certain parameters which would normally be learnt
or estimated reduces the error variance at the expense of an increased bias, which
can however again be compensated for in the combination process. On the other
hand, if more specifications are considered as opposed to only using one model, again
different models will emerge with different bias/variance trade-offs. If learning of
the models takes place on the same data, highly correlated variance components are
very likely, but uncorrelated parts can exist in the bias component. This means that
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the bias component of the error needs to be relevant in order to generate uncorre-
lated forecasts with this type of diversification. Related experiments are presented
in Section 6.4.2.

6.2.4 Diversifying training data

Linear and nonlinear transformations as reviewed in Fodor (2002) provide different
ways of representing data and using it for building the models, often reducing dimen-
sionality at the same time. Principal component analysis as, for example, described
in Jolliffe (2002) is a very popular approach belonging to this group of methods.

The bias-variance decomposition explains the variance component as a result
of using one particular limited sample of the training data. Manipulating training
data by resampling techniques and training a different model on each one of the
sampled data partitions has the potential of reducing the variance component when
combining the resulting predictions. The approach of resampling is used by a number
of ensemble generation techniques:

e Bagging as introduced by Breiman (1996) denotes random sampling with re-
placement with the number of samples having the same size as the original
training set.

e Manipulating the probability which samples are drawn from the original train-
ing data, boosting according to Freund & Schapire (1997) sequentially trains
classifiers and iteratively changes the probabilities of selecting specific data
points from the training set. Data instances which were previously misclassi-
fied by the other predictors, get an increased selection probability.

Hansen (2000) states that ensemble generation techniques based on resampling are
mainly useful for individual predictors that are complex and flexible enough to po-
tentially overfit on training data and hence have a low bias and a high variance
component. In this case, resampling reduces the overfitting risk and potentially
provides higher estimation accuracy. The forecasting techniques used at Lufthansa
Systems however provide a different approach to ensure generalisation ability and
prevent overfitting in using reference curves, confidence limits and strongly restricted
prediction models as discussed in Section 2.1.4, so that resampling is not considered
in this work.

However, the fact that airline data can be aggregated and disaggregated on
different levels can be exploited for a diversification of the training data. Figure 6.2
illustrates a decomposition: A time series is first decomposed into the three different
points of sale, with each of them furthermore being decomposed regarding day of
the week. A recent example of a publication investigating approaches of hierarchical
forecasting in the area of tourism can be found in Athanasopoulos et al. (2009).

Currently, history for airline cancellation forecasts is built on the finest possible
level, which means using data collected per fareclass, day of week, point of sale
and origin-destination-itinerary. On this finest level, important characteristics that
are only visible when looking at the bigger picture, i.e. a higher aggregation level,
might be lost, and when the training data is noisy, a high error variance component
becomes likely. On the other hand, using the high level for model building might
omit characteristics specific to certain parts of the data although having a variance-
stabilising effect, leading to inferior forecasts as well. Generating forecasts learnt on
a higher aggregation level of the data will not affect the bias component compared
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to the low level forecasts, as the prediction model used remains the same, but an
impact on the variance error component can be expected. Hence, the error variance
component needs to be relevant in comparison to the bias component for a bigger
potential for accuracy improvement. Experiments concerning multi-level learning

are described in Section 6.4.1.
/ Total \
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|country of origin | | other | country of destination|
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level day of week

Figure 6.2: Example of different aggregation levels of airline data

6.2.5 Summary

Approaches to generate additional forecasts for inclusion in a combination process
have been discussed in this section, including a discussion of the effects the diversi-
fication procedures will have on the different components of the error. Some of the
methods presented are applicable to the airline application investigated here: diver-
sifying the functional approaches, diversifying parameter sets and diversification of
sources of training data by using data aggregated from different aggregation levels.
The classic approach of using functionally different approaches has been pursued in
Chapter 4. Before introducing and analysing experiments regarding the other two
diversification strategies in the remainder of this chapter, additional explanations
about application-specific calculations and their effect on the error composition are
given.

6.3 Application-specific dynamics of the error components

Improving airline net booking forecasts by investigating the modification of the can-
cellation component is a complex procedure as described in Chapter 4, with the
different steps having various effects on the error decomposition. This section will
relate the bias/variance error decomposition to two calculations specific to the appli-
cation and thus provide the basis for the discussion of the diversification experiments
presented later in this chapter.

6.3.1 The interaction with the booking forecast

The first aspect to look at is the interaction of the predicted cancellations with
the predicted bookings. Both are components needed to calculate the net booking
forecast, which is the basis for assessing forecasting performance in this work as
explained in Section 4.2. Both booking and cancellation forecast naturally have
errors that can be split into a bias and a variance component. Since the approaches
used for each of the forecasts differ in their functional approach, strong correlations
of the bias components are unlikely, which will not lead to consistent compensation
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or accumulation effects when subtracting the cancellation forecast from the booking
forecast to obtain the prediction of net bookings. However, it is likely that the error
variance of the two components is positively correlated, as the training data for
both components is subject to similar influences of noise, changing environment or
structural breaks at the same time. This will lead to compensation of this part of the
error when subtracting the two and create a situation in which a reduced variance
component in the cancellation forecast does not necessarily generate a better net
booking forecast, which was already observed in Section 4.2.

6.3.2 Aggregating

Performance results for the airline application are normally evaluated on the finest
possible aggregation level, which is the level on which forecasts are needed in the
productive system. However, for visualisation and decision making purposes, fore-
casts are often also aggregated to a higher level, which has already been done for the
empirical experiments in the Chapters 4 and 5 and will be continued in this chapter.
The improvement of the low level performance is the main objective of this work,
however, an improved high-level forecast is certainly desirable as well.

Riedel (2007) gives an analysis of the dynamics of the different error components
when aggregating forecasts on a higher level. In general, the aggregation process
sums up relative values of errors from different subspaces, with the subspaces being
given by the different fareclasses and points of sale in this application. Positively cor-
related errors in the different subspaces will lead to undesirable accumulation effects
while uncorrelated or negatively correlated errors will cause beneficial compensation.
As discussed previously, the error variance component is related to parameter esti-
mation error which is strongly affected by noisy data. According to Riedel (2007),
the noise tends to be highly correlated between the different subspaces in the airline
application, which can result in highly correlated error variance terms which will
accumulate on the high level. The bias error component on the other hand has a
bigger chance of being compensated in the aggregation process, however, positive
correlations might still exist to a lesser extent.

6.4 Flat combinations of diversified forecasts

This section will look at flat combinations of a pool of individual methods, which
was, in comparison to the experiments presented in Chapter 4, extended by a number
of diversification approaches explained previously in this chapter. The experiments
presented in this section have been conducted using the same methodology as de-
scribed in Chapter 4 with a minor change in the choice of combination methods:
the unrestricted regression method has been omitted from the combination pool,
as weight estimation turned out to be extremely unstable for the increased number
of individual methods. Instead of the simple average taking all available methods
into account, which consistently provided worse results than the simple average with
trimming of 20% on this data set, a simple average using only the four historically
best performing methods labelled as “avg4” has been included.

6.4.1 Diversifying level of learning

The first experiment of this chapter looks at diversifying the aggregation level of the
data used for building a forecasting model as motivated in Section 6.2.4. Similar to
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the work done in Riedel (2007), the training data for building the reference curves
has been used on the finest possible level as well as aggregated over the different
compartments. Each of the four forecasting models is therefore built using data
from two different aggregation levels, producing eight individual forecasts as inputs
for the combination.

Table 6.1 shows that level diversifications fail to produce successful combination
results. Results on the low level outperformed the flat combinations of Chapter 4
in some cases, but not the best individual predictor. The idea of including high-
level information in building cancellation models was to stabilise the error variance
component at the expense of the bias component. This has most probably backfired
when subtracting the cancellation forecast from the booking forecast, where the error
variances of the two components were not able to compensate each other any longer
as described in Section 6.3.1. The forecasts added to the pool were thus inferior, not
being able to produce a performance gain by better balancing individual accuracy
and diversity in the ensemble. Furthermore, the composition of the errors of the
resulting low level forecasts was less beneficial for aggregation to the higher level.
The optimal model again performs worst of all, suffering from a badly estimated
covariance matrix due to limited training data and a higher number of individual
forecasts.

The graphs in Figure 6.3 illustrate how including high level information can be
beneficial in some cases and detrimental in others. Both pictures show reference
curves from high and low levels, averaged over calender weeks. The lack of change
in the first 52 weeks appears due to the initialisation period. The left picture shows
a fareclass in which it is clear that the fine level curve fits the data much better
and the high level curve differs significantly from the actual data. The right picture
shows a shift in the data, which makes the high level curve more accurate in some
cases. However, these beneficial cases seem to be the exception, explaining the bad
performance of the resulting additional forecasts.
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Figure 6.3: Reference curves learnt on high level and low level and actual data
averaged per calendar week. Left: scenario in which the low level curve
corresponds to data much better, right: scenario where higher level information
can be beneficial towards the end
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DCP H avg4 ‘ sat ‘ outp ‘ var ‘ opt ‘ regr
0 6.01 4.53 7.53 4.42 -9.28 6.46
1 4.17 1.56 7.38 1.26 -5.23 4.31
2 0.95 -1.86 1.26 -3.17 -11.68 0.95
3 0.14 -2.37 | 0.65 -3.53 -16.77 0.23
4 -1.24 -2.72 | 0.21 -3.43 -22.87 -1.23
5 -1.42 -2.83 1.33 -2.98 -10.56 -1.35
6 -2.74 -3.51 0.42 -3.83 -12.05 -2.65
7 -2.45 -3.47 | -0.45 -3.84 -12.62 -2.46
8 -2.78 -3.10 | -0.85 -3.28 -14.58 -2.74
9 -2.15 -2.35 | -0.85 -2.79 -11.45 -2.20
10 -1.51 -2.16 | -1.38 -2.50 -12.40 -1.52
11 -0.62 -1.18 | -1.41 -1.65 -14.69 -0.60
12 -0.28 -0.81 | -1.02 -0.90 -14.22 -0.32
13 0.73 0.41 0.85 0.71 -11.59 0.71
14 0.73 0.21 0.27 0.63 -15.48 0.59
15 0.53 0.60 0.44 0.74 -13.93 0.54
16 0.44 0.11 0.40 0.56 -15.33 0.38
17 0.24 -0.03 | 0.33 0.29 -16.18 0.23
18 -0.11 -0.08 | -0.22 0.06 -18.79 -0.21
19 0.19 -0.08 | -0.47 0.02 -13.49 0.09
20 -0.41 -0.91 | -1.27 -0.77 -15.13 | -0.39
21 -0.66 -1.13 | -1.67 -0.88 -13.82 | -0.64
avg || -0.10 | -0.96 | 0.52 | -1.13 | -13.73 | -0.08
DCP H avg4 ‘ sat ‘ outp var opt regr
0 4.60 3.33 4.15 2.97 -23.34 4.73
1 2.20 0.96 2.82 0.83 -23.76 2.04
2 0.79 -0.59 0.99 -0.85 -27.36 0.71
3 -0.01 -1.09 0.24 -1.43 -28.79 -0.03
4 || -0.93 -1.87 -1.12 -2.37 -29.71 -0.95
5 || -1.45 -2.29 -1.62 -2.75 -28.76 -1.46
6 -1.89 -2.61 | -1.77 -2.79 -27.93 -1.96
71 -1.70 -2.39 -1.89 -2.57 -25.36 -1.78
8 || -1.68 -2.03 -1.71 -2.24 -23.59 -1.75
9 || -1.14 -1.61 -1.52 -1.86 -21.76 -1.20
10 || -0.76 -1.24 -1.40 -1.60 -20.06 -0.77
11 || -0.25 -0.67 -0.90 -0.98 -19.88 -0.31
12 0.17 -0.21 -0.78 -0.64 -19.98 0.10
13 0.41 0.08 -0.79 -0.35 -19.54 0.33
14 0.64 0.34 -1.19 -0.24 -19.34 0.54
15 0.81 0.57 -1.76 -0.13 -19.70 0.75
16 || -0.52 -0.95 -3.89 -1.80 -20.69 -0.62
17 || -0.36 -0.67 -4.79 -1.71 -22.25 -0.46
18 || -0.22 -0.70 -6.07 -1.83 -26.17 -0.30
19 0.09 -0.37 -7.71 -1.83 -25.39 -0.00
20 0.48 -0.23 -9.67 -1.85 -29.97 0.47
21 0.86 -0.15 | -11.89 -1.33 -30.75 0.80
avg || 0.01 | -0.65 | -2.38 | -1.24 | -24.28 | -0.05

Table 6.1: Level diversification: percentage of relative performance improvement

compared to reference forecast, top: high level, bottom: low level
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6.4.2 Diversifying the smoothing parameter

Looking at the four individual forecasting methods described in Section 2.1.4, two
parameters are suitable for diversification:

e The smoothing parameter « for the reference curve update, which is present
in the two smoothing models and the probability forecast and

e the width of the confidence limits applied to the observed data before forecas-
ting and history building, used in the two smoothing models and the regression
model.

Both of these choices affect the adaptation capabilities of the data in a similar
manner. With a higher smoothing parameter, the adaptation of the reference curve
is stronger, consequently believing the new data to a higher extent. By applying
wider confidence limits around the reference curve, again belief in the current data
is stronger by allowing a wider range of values around the current reference curve.
However, it is expected that diversification of the smoothing parameter will pro-
duce more diverse forecasts than diversification of the confidence limits, because
manipulating the reference curves directly affects all data at all DCPs, while ma-
nipulating confidence limits only influences predictions under certain conditions as
described in Section 2.1.4. A look into Figure 6.4 illustrates this hypothesis by gi-
ving average error values for the diversified forecasts for a sample origin-destination
opportunity, clearly showing a bigger impact of the smoothing parameter.

0.3

Relative error value
Relative error value

. . . I . . . .
5 10 15 20 0 5 10 15 20
Data collection point Data collection point

Figure 6.4: Average cancellation forecast errors, with the different curves
corresponding to three different parameters used, smoothing factor (left) and
confidence limit width (right).

Parameter diversification experiments have been conducted using the same metho-
dology and combination methods as described in Chapter 4. As justified above, the
smoothing parameter has been diversified using three values, including the one it
was previously fixed at for the two smoothing based methods and the method based
on probability. The regression approach however does not have a smoothing param-
eter, which is why the confidence limits have been diversified in this method’s case,
also using three different values. The four methods with three different parameters
produce twelve different individual forecasts for the combination methods investi-
gated, which are the same as in the level diversification experiment. Combination
performance results for the low and high level are given in the Table 6.2.
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DCP H avgd ‘ sat ‘ outp ‘ var ‘ opt ‘ regr
0 6.71 6.13 3.72 5.46 1.91 6.67
1 7.31 5.93 4.24 5.51 2.71 4.48
2 5.02 3.68 1.64 3.05 -0.82 2.50
3 3.93 3.04 0.69 2.46 -2.85 1.48
4 3.25 2.32 -0.32 1.50 -0.87 0.47
5 2.45 1.42 -1.40 0.51 -4.37 | -0.84
6 1.82 1.24 | -1.33 0.23 -8.08 -0.89
7 2.08 1.20 -2.16 0.04 -4.82 -1.38
8 1.48 1.29 -2.27 0.00 -9.88 -1.43
9 2.20 1.81 -1.18 0.86 -897 | -0.29
10 1.61 1.68 -1.19 0.70 -9.66 -0.62
11 1.17 1.33 -1.19 0.51 -9.76 -0.37
12 1.53 2.09 -0.06 1.50 | -10.17 0.79
13 2.25 2.85 1.16 2.59 | -10.96 1.86
14 1.15 2.18 0.86 1.94 | -12.38 1.01
15 0.84 1.46 0.62 1.42 | -13.21 0.89
16 9.87 7.23 8.95 7.46 1.11 5.59
17 9.78 6.41 8.28 6.79 -0.18 5.07
18 10.23 6.31 8.21 6.64 | -10.78 4.66
19 9.83 6.53 8.22 6.59 1.49 4.51
20 9.22 5.72 7.42 6.03 -0.76 4.07
21 6.68 3.72 5.00 4.19 -3.94 2.37
avg 4.56 3.43 2.18 3.00 -5.24 1.85

DCP H avg4 ‘ sat ‘ outp ‘ var ‘ opt ‘ regr
0 2.92 1.81 | -1.31 1.24 -8.70 0.64
1 2.68 1.87 0.44 1.80 | -14.17 0.96
2 2.39 1.48 | -0.09 1.36 | -16.13 0.66
3 2.03 1.43 | -0.45 1.15 | -17.73 0.37
4 1.63 093 | -1.51 0.44 | -15.79 | -0.46
5 1.21 0.58 | -1.94 0.05 | -14.78 | -0.86
6 1.06 0.65 | -1.95 0.00 | -15.41 | -0.94
7 1.19 0.78 | -1.75 0.11 | -13.32 | -1.30
8 1.02 0.92 | -1.58 0.19 | -13.86 | -0.76
9 1.50 1.07 | -1.30 0.39 | -14.00 | -0.63

10 1.72 1.20 | -0.87 0.55 | -13.67 | -0.43
11 2.06 1.53 | -0.11 1.00 | -13.73 0.03
12 2.22 1.77 0.36 1.31 | -13.30 0.39
13 2.41 1.88 0.94 1.52 | -13.13 0.71
14 2.22 1.92 1.16 1.65 | -14.59 0.65
15 2.16 1.78 0.98 1.52 | -15.47 0.59
16 || 15.78 | 10.49 | 13.73 | 10.49 9.31 7.40
17 || 15.69 | 10.25 | 13.49 | 10.38 9.08 7.30
18 || 15.29 9.88 | 12.89 9.96 3.62 6.90
19 || 14.52 9.33 | 11.92 9.36 6.33 6.36
20 || 12.89 8.17 | 10.20 8.17 1.68 5.25
21 9.43 5.95 7.14 5.99 -8.34 3.18

avg 5.18 3.44 2.74 3.12 -9.37 1.64

Table 6.2: Parameter diversification: percentage of relative performance
improvement compared to reference forecast, top: high level, bottom: low level
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The results look promising. With the variance-based method and the simple
average with different degrees of trimming, the individual forecasts could be outper-
formed consistently for all data collection points on the low and high level. The high
performance gains at the later DCPs can however be a bit misleading due to the
absolute numbers being very small, especially at the low level. The outperformance
and regression model again suffer from parameter estimation instabilities.

6.5 Advanced combination techniques

The experiments presented in the previous section showed some promising results for
flat combinations of forecasts generated by a number of diversification procedures.
This section now investigates if further improvements can be achieved by using
more advanced combination techniques. In order to obtain a combination result with
increased accuracy, Riedel (2007) analyses a number of desirable characteristics that
a forecast ensemble should have, which can be summarised in the following points:

e Individual forecasts should contain diverse information but still have reasona-
ble individual performance. This has also been described using the ambiguity
decomposition in formula 6.1 at the beginning of this chapter. The total num-
ber should be restricted using trimming approaches, which has for example
been reviewed in Timmermann (2006).

e In general, individual forecasts should have a low error variance component.
If error variance is high in relation to the bias, impact of the training data
would increase and so would the positive correlation of forecast errors, which
is detrimental for the combination, especially for approaches that perform some
kind of parameter estimation.

e Homogeneous error variance and correlation values are desirable. Both Riedel
(2007) and Timmermann (2006) come to the conclusion that loss expected
from not taking variance and/or covariance information into account when
using a simpler combination model as opposed to the optimal model is high
when error variances and covariances are inhomogeneous.

These criteria are not sufficiently met with the experiments described above: with
the diversification procedures, the number of forecasts to combine becomes rather
big and the noisy data will cause high error variance components. As described
when discussing diversification approaches in Section 6.2, each has the potential
to produce forecast errors that are at least uncorrelated in some parts, so that a
homogeneous covariance matrix is not realistic. As a solution to this problem, the
next sections are looking at clustering approaches, multi-step combination structures
and evolutionary computation in relation to the airline application. The approaches
are empirically evaluated and analysed.

6.5.1 Pooling and multilevel structures

Pooling denotes the division of a combination task into several subtasks called pools,
with a final combination generating the overall prediction from each of the pool’s
outputs. This can be implemented on several levels, so that multi-step structures
are generated. In each of the pools, the available input forecasts can be combined
by a combination approach as well. This provides a number of advantages: it limits
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the number of forecasts to combine in each step, which can be further enforced by
using trimming. Ideally, the covariance matrix of the forecasts of one pool would
also be homogeneous, and a combination with a simple method would reduce total
error.

A popular pooling approach introduced by Aiolfi & Timmermann (2006) has
already been mentioned in Chapter 3 and was very successful in the experiments on
the competition data. It groups forecasts into clusters using the k-means algorithm
on their past forecast errors. Figure 6.5 shows a sample combination structure with
three clusters, where the number of forecasts in each cluster is restricted to five and
the cluster including the forecasts with the highest error is discarded. The individual
forecasts are again given by 7; with ¢ being the forecast number.

L
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44400

cluster 1

cluster 3

forecast

Figure 6.5: Example of a combination structure generated by variance-based
pooling

Riedel & Gabrys (2007) however argue that the variance-based combination ap-
proach risks high losses of accuracy if the covariance matrices are not homogeneous,
as it does not take correlation between forecasts into account. As a remedy, cluster-
ing based on the covariance matrix is recommended if possible. Looking back at the
discussion about the “forecast combination puzzle” in Section 3.1.2, this brings up
a familiar dilemma: using a simpler combination method will have accuracy losses
compared to a more complex method taking covariance into account, but since it
is error-prone and time-consuming to estimate covariance information, the theoret-
ically optimal weights do not necessarily perform best.

Riedel & Gabrys (2007) hence suggest taking knowledge of the forecast gene-
ration process of the individual forecasts into account when generating pools. Ac-
cording to the discussion, only forecasts differing in one aspect of their forecast
generation process should be pooled, otherwise, the risk of strongly inhomogeneous
covariance matrices in each of the pools increases and will have a negative impact
on performance of resulting output forecasts and overall forecast accuracy. An illus-
tration can be found in Figure 6.6: eight forecasts have been generated using two
different methods m1 and m2, two different parameter sets pl and p2 and two levels
of learning [1 and [2. In the first step, the level of learning is chosen as first pooling
“dimension”. The pooling process aggregates this level dimension and produces four
forecasts with differing methods and parameter sets. The next level of pooling then
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aggregates the parameter dimension before combining the resulting two forecasts
that now only differ in the method used.

Cmipz2 >
Cm2e1 >
2 >

dimension| ' dimensionp ' dimensionm

(098 60EE

Figure 6.6: Illustration of a combination structure generated by dimension-specific
pooling

A number of parameters have to be identified when generating multi-level struc-
tures for combining forecasts: which dimension should first be aggregated? How
many methods should be allowed per cluster, how many trimmed? Which combi-
nation method is most beneficial for the combinations in the sub-problems? Riedel
& Gabrys (2004) and Riedel & Gabrys (2005) propose solutions for these ques-
tions, however, it is also stated that predefining structures requires a lot of expert
knowledge and would have to be verified in trial and error procedures. Using au-
tomatically evolved structures is suggested to overcome these difficulties in Riedel
(2007), which will be discussed and implemented in the next section.

6.5.2 Evolving multilevel structures

Evolutionary computation is an area of artificial intelligence that was inspired by
evolutionary biology. It involves metaheuristic optimisation techniques and includes,
among others, the subfields of genetic algorithms as first introduced by Goldberg
& Holland (1988) and genetic programming as described in Koza (1992). Initially,
a population of individuals representing potential solutions to a given optimisa-
tion problem is randomly generated. In subsequent steps, new and better sets, so
called generations, of individuals are evolved using genetic operators like mutation,
crossover and selection. A fitness function evaluates the quality of the candidate
solutions, until a certain fitness level has been reached or a predefined number of
generations has been produced. The next sections will fit the problem of finding
well-performing combination structures into the framework of an evolutionary ap-
proach and present results of empirical experiments before more closely analysing
the resulting combination structures.

6.5.3 Experimental setup

Genetic programming is an extension of genetic algorithms, where individuals in
the population are tree-like structures with the leafs representing arguments that
are passed to the nodes which then apply a primitive function. Traditionally, it is
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used for evolving actual computer programs with the fitness function assessing a
program’s ability to perform a given task. These tree-like structures do however
correspond quite well to the forecasting structures described in the previous section,
which is why Riedel (2007) formulate the problem of finding suitable combination
structures as an optimisation problem that can be solved with an evolutionary algo-
rithm similar to genetic programming. The following details of the evolution have
been identified:

e The leafs of the generated tree represent the input forecasts of the ensemble.

e The nodes represent the forecast combination algorithms available, each of
which can apply a certain degree of trimming.

e The fitness function evaluates the mean absolute deviation of the generated
structures in a validation period. The possibility of using penalty terms for
enforcing diversity has been discarded as other ways of dealing with diversity
are applied, for example following the concept of dimension-specific pooling as
described previously.

e An initial population consisting of eight individual combination structures is
generated either randomly or corresponding to the idea of dimension-specific
pooling from Section 6.5.1.

e The standard genetic operators crossover and mutation can be used without
application-specific changes.

e A crossover randomly exchanges subtrees in two parents, which can either
be a single combination procedure or a substructure. A maximum crossover
number of 100 has been used in line with the experiments presented in Chapter
7 of Riedel (2007).

e Mutation randomly exchanges a terminal (input forecast) or a primitive func-
tion (combination algorithm) with a 20% probability in each step.

e The algorithm stops early if performance has not improved in the last 50
generations.

The following list enumerates actual methods that have been evaluated in this em-
pirical experiment with the abbreviations used in the tables.

e evl: Dynamic structures with varying complexity are evolved with this algo-
rithm. A population of eight structures is randomly initialised, each level con-
taining between two and five combination procedures. Combination methods
are determined randomly as well, choosing between the average, outperfor-
mance, variance-based and optimal model with a random degree of trimming
per pool. One parameter differs in comparison to the experiments in Riedel
(2007): the maximum number of combination levels allowed. It has been re-
duced from four to two here to avoid problems that occured with overfitting.

e ev2: In order to avoid covariance inhomogeneities, dimension-specific pooling
according to Section 6.5.1 has been implemented. Evolution takes place modi-
fying the order in which the dimensions are aggregated. Additionally, a global
percentage of trimming is evolved, while the combination method is fixed to
the variance-based one.
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e ev3: This method is similar to ev2, with the only difference of now additionally
including the combination method in the aspects that are randomly generated
and changed during the evolution.

e ev4: Again, this methods corresponds to the previous one, but also evolves
the maximum number of forecasts allowed per pool.

e tim: For comparison, the pooling method introduced by Aiolfi & Timmermann
(2006) is considered. This approach only takes past error variance of forecasts
into account, thus discarding information on the forecast error correlations.

6.5.4 Results

Experiments have been run using only parameter diversified forecasts as well as using
parameter and level diversified forecasts. For the first experiments, the standard
booking forecast was used as a basis for calculating net bookings, results are given
in Table 6.3. For the final experiments, an improved booking forecast obtained by
the EV8 algorithm of the experiments in Chapter 7 of the thesis of Riedel (2007)
has been used in order to assess the interaction between the algorithms presented
in this thesis and the previous project, with results given in Table 6.4. Again, it
has to be emphasized that performance gains at the later DCPs should be taken
with some care, as the absolute numbers are very small and lead to big percentage
improvements. The discussion of results will thus focus on the first half of the DCPs.

Looking at the performances of combination structures of parameter and level
diversified forecasts in the top part of Table 6.3, a number of improvements can
be observed. On the low level, improvements of up to 8% for the first DCPs are
achieved, but deteriorate quickly with ascending DCPs. On the high level, consistent
improvements can be found using the variance-based pooling and the ev3 algorithm
with a peak improvement of 10.7% on the second DCP of the evl algorithm. More
consistent improvements can be seen for only using parameter-diversified individual
forecasts in the bottom part of Table 6.3, allthough peak improvements only as high
as 4% on the low level and 9.9% on the high level are achieved. Using the improved
booking forecast does not notably change results for the low level parameter and
level diversified forecasts. However, considerable improvements can be seen on the
high level for both sets of individual forecasts, with improvements of now up to
14.8% on the high level and 6% for the low level structures using the parameter
diversified forecasts.

Comparing the different algorithms used, it can be said that the variance-based
pooling and the ev2 algorithm using dimension-specific pooling with a fixed combi-
nation method are usually outperformed by the other methods. It is thus safe to say
that dynamically evolving a combination method for the clusters has proven to be
very beneficial in all cases. Algorithms ev3 and ev4 only differ in their approach to
perform trimming within the clusters, where ev3 fixes a maximum number of fore-
casts and ev4 dynamically evolves it. Comparing performances of the two, results
are inconclusive.

The algorithms evl, ev3 and ev4 generally perform quite similarly, with advan-
tages of the evl algorithm especially when using the improved booking forecast. This
is a contradiction to the results of Riedel (2007), where dimension-specific pooling
clearly outperformed the more flexible approach. A few reasons can be given for
this: in the previous work, four different diversifications were used (4 methods, 4
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high level low level
DCP tim \ evl \ ev2 \ ev3 \ ev4 tim \ evl \ ev2 \ ev3 \ ev4d

0 8.3 5.0 5.8 9.6 5.6 6.1 5.5 4.8 8.0 6.7
1 9.4 | 10.7 6.2 4.0 5.9 3.6 3.5 2.2 0.9 0.4
2 3.2 5.7 2.2 3.1 -0.8 28 | 3.0 0.6 2.3 0.9
3 3.3 4.8 2.1 3.9 -0.1 1.2 2.2 0.1 2.6 1.8
4 2.5 2.2 0.4 1.4 2.9 1.1 1.1 | -0.7 0.1 0.9
5 2.3 3.1 | -0.1 1.4 2.9 -1.0 | 0.9 | -15 -0.9 0.9
6 1.2 2.2 | -0.0 0.6 1.8 -04 | 0.8 | -0.8 -0.2 0.7
7 1.1 -0.1 | -2.2 0.5 0.9 -0.6 | 0.4 | -1.5 -0.7 -0.3
8 0.4 0.3 | -1.8 0.1 0.4 -0.5 | -02 | -1.3 -0.7 -0.2
9 0.5 -0.0 | -0.8 0.6 0.1 0.2 | -01 | -05 -0.1 0.2
10 0.7 1.1 | -0.3 0.9 0.8 0.2 0.2 0.0 -0.3 0.3
11 0.2 -0.1 | -0.2 0.1 0.3 1.2 1.0 1.3 1.0 1.2
12 0.4 0.1 0.6 1.6 1.3 1.7 1.8 1.8 1.8 1.9
13 1.8 2.0 1.9 2.7 2.1 2.3 2.1 2.5 2.1 2.3
14 1.1 1.7 1.7 2.1 1.8 2.4 2.7 3.1 2.8 2.8
15 1.2 1.5 1.4 1.8 1.4 2.7 | 3.4 3.2 2.8 3.0
16 | 129 | 12.3 | 12.6 | 12,5 | 13.5 23.2 | 224 | 22.0 | 23.3 | 231
17 | 127 | 13.6 | 13.0 | 13.1 12.8 || 23.3 | 229 | 22.1 | 23.3 | 23.1
18 | 14.1 | 14.6 | 14.0 | 144 | 145 || 23.0 | 22.7 | 21.7 | 22.7 | 229
19 | 140 | 14.5 | 142 | 14.1 | 14.5 || 22.1 | 21.6 | 20.9 | 21.8 | 22.1
20 | 14.8 | 14.2 | 14.5 14.6 | 14.7 20.5 | 20.2 | 19.6 | 20.3 | 20.7
21 13.5 | 11.0 | 119 | 14.6 14.3 16.8 | 16.0 | 159 | 16.4 | 17.0
avg 5.4 5.5 | 44 5.3 5.1 6.9 | 70| 6.2 6.8 6.9

high level low level
DCP | tim ‘ evl ‘ ev2 ‘ ev3 ‘ ev4 tim ‘ evl ‘ ev2 ‘ ev3 ‘ ev4

0 4.5 8.6 5.0 9.4 7.8 1.9 3.3 1.9 3.4 3.2
1 6.0 9.6 5.6 9.9 9.6 1.7 1.6 2.0 2.1 2.3
2 4.0 6.5 3.8 6.8 6.9 1.7 2.6 1.7 2.6 3.1
3 4.0 6.0 2.9 6.3 6.0 1.9 4.1 1.7 3.2 3.4
4 2.3 5.2 1.8 4.4 5.1 1.5 3.0 1.1 2.3 2.8
5 2.7 5.2 1.8 4.3 4.4 1.3 2.7 0.9 2.5 2.9
6 2.2 4.1 1.3 3.6 4.4 1.2 2.6 1.1 2.5 2.6
7 1.4 2.4 0.8 2.6 2.6 1.4 2.9 1.1 2.2 2.0
8 2.1 2.7 1.0 2.7 2.5 1.7 2.6 1.4 2.0 2.2
9 2.5 2.3 2.1 3.2 3.0 2.0 2.9 1.8 2.4 2.6
10 1.9 1.4 1.3 2.0 1.9 2.0 3.0 2.0 2.5 2.8
11 1.6 0.2 1.4 1.3 1.2 2.6 3.2 24 3.1 3.1
12 2.0 1.0 1.7 2.2 0.8 3.1 3.5 2.6 3.1 3.2
13 | 3.1 2.8 2.8 2.6 2.7 3.2 3.7 2.9 3.4 3.3
14 1.6 1.5 2.1 1.6 1.9 3.3 3.9 3.2 3.4 3.8
15 1.2 1.4 1.5 1.4 1.3 3.1 3.3 3.0 3.3 3.6
16 | 11.9 | 12.6 | 12.0 | 12.9 | 12.7 || 19.8 | 23.0 | 20.8 | 22.9 | 23.4
17 | 126 | 12.2 | 12.8 | 12.7 | 12.6 || 19.9 | 23.0 | 20.7 | 23.1 | 23.1
18 | 12.8 | 13.8 | 13.2 13.7 | 135 || 19.5 | 223 | 20.3 | 23.1 | 22.7
19 | 126 | 134 | 133 | 14.1 | 14.1 18.8 | 21.6 | 19.7 | 21.7 | 22.0
20 | 12.5 144 | 134 | 13.0 | 14.8 || 174 | 20.7 | 18.1 19.7 | 20.6
21 7.8 | 109 | 10.5 12.0 | 13.7 || 12.7 | 159 | 13.8 | 16.3 | 17.1
avg | 5.2 6.3 5.1 6.5 6.5 6.4 8.0 | 6.6 7.8 8.0

Table 6.3: Percentage of relative net booking forecast improvement of combination
structures compared to the reference forecast. Top: parameter and level diversified
forecasts, bottom: parameter diversified forecasts, left: high aggregation level,
right: low aggregation level.
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high level low level
DCP | tim \ evl \ ev2 \ ev3 \ evd || tim \ evl \ ev2 \ ev3 \ ev4
0 7.0 9.3 7.5 7.2 | 11.0 5.7 4.9 6.6 6.0 6.7
1 6.4 14.3 10.0 8.4 | 15.4 2.3 3.0 2.8 3.3 0.4
2 2.0 | 12.7 6.5 9.0 11.3 0.8 4.6 1.3 3.4 0.9
3 0.9 8.8 2.3 7.7 6.3 -0.5 1.6 | -0.7 0.4 1.8
4 -1.5 5.5 1.2 6.3 5.5 -1.8 -0.5 -1.1 1.1 0.9
5| -2.9 5.7 0.1 5.4 5.4 -3.0 0.9 | -2.1 0.3 0.9
6 | -44 5.0 -0.4 4.2 4.1 -2.9 0.9 | -1.8 -0.2 0.7
T 4.7 2.4 -2.2 2.3 3.3 -2.5 -0.6 | -2.3 -0.4 | -0.3
8 | -2.9 2.4 -1.1 2.1 2.8 -2.3 -0.4 | -2.0 -0.5 | -0.2
9| -1.1 3.1 -0.2 3.4 3.1 -1.5 -0.3 | -1.0 -0.2 0.2
10 1.1 3.5 1.0 3.0 3.6 -0.7 -0.5 | -0.8 -0.2 0.3
11 0.9 2.9 1.4 2.8 3.8 0.3 0.5 0.6 0.9 1.2
12 1.8 3.6 2.5 3.5 3.6 0.6 1.8 1.4 1.1 1.9
13 3.0 4.5 3.0 4.3 5.0 1.3 2.2 2.3 2.1 2.3
14 2.6 3.4 2.8 4.3 4.1 1.9 3.3 3.0 3.1 2.8
15 2.0 2.6 3.1 3.2 3.9 2.4 3.2 3.4 3.5 3.0
16 | 15.0 154 | 16.1 16.0 15.8 || 20.2 23.7 | 22.7 | 24.2 | 23.1
17 | 154 15.8 16.0 16.1 | 16.4 || 20.3 | 23.7 | 22.8 | 24.1 | 23.1
18 | 16.1 16.6 16.9 16.8 | 17.0 || 20.5 | 23.8 | 22.6 | 24.4 | 229
19 | 15.8 16.7 16.7 | 17.0 16.8 19.6 | 23.5 | 22.1 23.3 | 22.1
20 | 15.8 | 17.4 17.1 17.2 17.1 18.8 | 22.4 | 21.2 | 22.3 | 20.7
21 | 15.1 17.9 17.0 18.1 | 18.5 16.2 | 19.7 | 19.0 | 19.7 | 17.0
avg 4.7 8.6 6.2 8.1 8.8 5.3 7.3 6.4 7.4 6.9
high level low level
DCP | tim ‘ evl ev2 ‘ ev3 ‘ ev4 tim ‘ evl | ev2 ev3 ‘ ev4
0 6.0 9.4 6.6 9.2 8.6 4.6 5.9 4.6 5.6 5.9
1 9.5 | 14.8 8.8 12.2 12.8 3.6 5.0 3.6 3.3 3.7
2 7.0 | 13.4 6.9 10.9 11.8 3.2 4.7 2.5 3.6 3.5
3 5.6 | 10.3 4.6 9.1 10.1 2.1 4.9 1.7 3.4 4.2
4 4.8 9.0 3.9 8.9 9.0 1.7 3.7 1.0 2.4 2.6
5 3.8 8.7 3.0 8.2 7.2 1.0 2.9 0.6 2.1 2.4
6 3.6 8.4 2.9 6.7 8.0 1.1 2.4 0.7 2.3 2.2
7 3.3 5.6 2.3 5.7 6.4 1.1 2.0 0.6 1.4 1.5
8 3.1 5.6 3.2 5.3 6.1 1.0 2.0 0.9 1.5 1.8
9 4.9 6.0 4.4 5.8 6.3 1.5 2.3 1.1 1.6 2.0
10 4.3 5.1 3.7 5.0 5.5 1.6 2.4 1.1 1.9 2.0
11 4.3 4.2 3.8 4.5 4.8 2.3 2.6 1.8 2.4 2.5
12 4.9 4.7 5.0 5.3 4.8 2.7 3.2 2.3 2.7 2.8
13 5.5 5.7 5.3 5.7 5.8 2.9 3.3 2.6 3.0 3.2
14 4.3 4.5 4.8 4.3 4.7 3.3 3.6 2.9 3.3 3.5
15 3.7 4.0 3.7 4.1 4.0 3.3 3.5 3.0 3.4 3.6
16 | 14.6 14.8 14.9 14.7 | 15.2 20.6 23.4 | 21.3 23.6 | 23.6
17 | 150 | 15.2 | 15.2 14.5 14.8 || 20.7 | 23.5 | 21.4 | 23.5 | 23.5
18 | 15.7 15.6 | 15.9 15.4 15.5 20.8 23.5 | 21.4 | 235 | 23.8
19 | 15.6 15.9 15.7 15.8 | 16.1 20.2 22.9 | 20.7 | 23.0 | 23.2
20 | 16.5 | 16.8 16.3 16.5 16.5 19.6 | 22.3 | 19.7 | 21.9 22.2
21 | 15.6 17.3 15.5 | 17.9 17.3 174 | 19.9 | 16.7 19.7 19.4
avg 7.8 9.8 7.6 9.3 9.6 7.1 8.6 6.9 8.1 8.3

Table 6.4: Percentage of relative net booking forecast improvement of combination
structures compared to the reference forecast using the improved booking forecast.

Top: parameter and level diversified forecasts, bottom: parameter diversified

forecasts, left: high aggregation level, right: low aggregation level.
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parameters, 2x2 levels), whereas in this work, fewer of them are considered (4 me-
thods, 3 parameters, 2 levels). Together with the fact that the maximum number
of combination levels has been reduced, overfitting to the training data due to too
complex structures has most probably become less of an issue. Furthermore, ge-
nerating additional cancellation forecasts by diversification will have the effects on
the error components described above, however, subtracting them from the booking
forecast to generate net booking forecasts before evolving combination structures
can induce unanticipated side effects, so that more flexible combination structures
as in evl turn out to be more successful.

6.5.5 Analysis of generated structures

This section will have a closer look at the generated structures to investigate why
they were able to outperform flat combinations. All the numbers given are obtained
by taking the example of one flight of the data set, as the characteristics examined
were similar for the other flights as well. The experiment investigated is the last
one presented in the previous section, using a set of parameter and level diversified
individual forecasts and the improved booking forecast.

First of all, it is interesting to look at a few sample structures that were gene-
rated. In the figures included later, individual forecasts are described using certain
abbreviations with mappings given in Table 6.5.

Method ‘ Param. ‘ Level ‘ code H Method ‘ Param. ‘ Level ‘ code

0 (exp) 0| 0 (low) | mOp010 2 (regr) 0| 0 (low) | m2p010
0 (exp) 0 | 1 (high) | mOpOl1 2 (regr) 0 | 1 (high) | m2p0l1
0 (exp) 1| 0 (low) | mOpllo 2 (regr) 1| 0 (low) | m2pll0
0 (exp) 1 | 1 (high) | mOplll 2 (regr) 1 | 1 (high) | m2plll
0 (exp) 2 | 0 (low) | mOp2l0 2 (regr) 2 | 0 (low) | m2p2l0
0 (exp) 2 | 1 (high) | mOp2l1 2 (regr) 2 | 1 (high) | m2p2l1
1 (brown) 0| 0 (low) | mlp0l0 || 3 (prob) 0| 0 (low) | m3p0l0
1 (brown) 0 | 1 (high) | mlpOll || 3 (prob) 0 | 1 (high) | m3p0l1
1 (brown) 1| 0 (low) | mlpllo || 3 (prob) 1| 0 (low) | m3pllo
1 (brown) 1| 1 (high) | mlplll || 3 (prob) 1| 1 (high) | m3plll
1 (brown) 2 | 0 (low) | mlp2l0 || 3 (prob) 2 | 0 (low) | m3p2l0
1 (brown) 2 | 1 (high) | m1p2l1 || 3 (prob) 2 | 1 (high) | m3p2l1

Table 6.5: Mapping of forecast representations in the figures to the actual forecast
generation

Figure 6.7 shows a sample structure generated by the evl algorithm. On the first
combination level to the left of the picture, two to four individual forecasts are
grouped into clusters. Eleven of the 23 available forecasts have been used as inputs,
with six of them being used twice. The combination models in the second and third
level of the combination vary as they were dynamically evolved. Many structures
similar to this one were evolved with the evl algorithm, but a big number of them
were also bigger and more complicated than the example given here.

Figure 6.8 shows a combination structure evolved by the ev4 algorithm. On
the first level, all 24 input forecasts differing only in the level dimension are pooled.
The pooling process then aggregates this dimension as described in Section 6.5.1 and
produces 12 output forecasts that can be interpreted as having been reduced by the
level dimension. The next dimension to be aggregated is the parameter dimension
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Figure 6.8: Sample combination structure generated by the ev4 algorithm
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before moving on to the method dimension. As a side effect, this structure illustrates
why evolving or not evolving the trimming parameter does not make a big difference
in the results, as the number of individual methods per pool will always be quite
small with two to four, resulting from the size of the dimensions.

It is now interesting to investigate a number of facts about the generated struc-
tures:

What is the predominant combination method used for the pools? Table
6.6 shows the percentages each of the available combination methods was used for
the pools, for both the evl and ev4 algorithm. No predominant method can be
identified, although it can be seen that the optimal model is slightly more often
present in the final evolved structure. This shows that problems encountered with
the optimal model in flat combinations can possibly be reduced by pooling, as the
number of forecasts in each pool can be considerably smaller and the covariance
estimates are less error-prone.

Method \ evl \ evd

avg | 24% | 24%
outp | 24% | 25%
var | 24% | 24%
opt | 27% | 26%

Table 6.6: Percentage of times a particular combination method is present in the
final evolved structure in evl and ev4

Are there input forecasts that get selected more often than others? Table
6.7 shows the percentage of times an individual forecasts was selected as an input
variable for a pool in the final evolved structure in the evl algorithm. Again, no
obvious trend can be seen, as the numbers all range between 4.0 and 4.5%.

code ‘ % chosen H code ‘ % chosen
mOp010 4.1 || m2p010 4.1
mOpO0l1 4.1 || m2p011 4.1
mOp110 4.2 || m2p1l0 4.2
mOplll 4.1 || m2pll1 4.2
mOp210 4.2 || m2p2l0 4.3
mOp211 4.1 || m2p211 4.2
m1p010 4.1 || m3p0l10 4.5
m1p0l1 4.1 || m3p011 4.3
mlpll0 4.2 || m3pll0 4.2
mlplll 4.1 || m3plll 4.1
m1p210 4.3 || m3p210 4.3
mlp2l1 4.0 || m3p211 4.2

Table 6.7: Percentage of times an individual forecast is present in the final
structure in evl

Is there a typical order of dimensions that has been evolved for the di-
mension-specific pooling? In the ev4 algorithm, the order of the dimensions for
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the multi-step pooling process was evolved. Table 6.8 shows the percentage a par-
ticular aggregation dimension is picked in relation to a combination level. It can be
seen that the parameter dimension is a little bit less likely to be the first aggregation
dimension, however, results in general are quite similar.

Dimension H 1st level ‘ 2nd level ‘ 3rd level

Method 35% 31% 33%
Parameter 29% 35% 35%
Level 35% 32% 32%

Table 6.8: Percentage of times a particular aggregation dimension is selected for a
combination level in ev4

Which degree of trimming is used most often? The maximum number of
forecasts allowed per cluster has been evolved for the evl algorithm. With numbers
from one to ten being allowed, the percentage of each of the possibilities being
present in the final combination structure is around 10%, again not revealing any
obvious trends.

The numbers given in this section reveal mainly one fact: there is nothing to reveal.
The generated structures seem random with no considerable characteristics that
could be identified. However, the structures do still outperform the flat combinations
of forecasts investigated earlier in this chapter. This means, that the structures were
able to adapt to specific situations and to produce better performing forecasts, but
were different from situation to situation, so that no visible trends could be found.

6.6 Chapter summary

The generation of additional forecasts by diversification procedures was investigated
in this chapter, linking properties of the resulting forecasts to error decompositions
of both the individual forecasts themselves as well as to the error components of
a combination it is part of. Characteristics specific to the airline application have
been discussed.

In a first set of empirical experiments, benefits from using additional forecasts
generated by diversification of parameters and level of learning have been evaluated.
It shows that, contrary to results of a previous project investigating the demand fore-
cast only, combinations of parameter-diversified individual forecasts provide better
results than using different levels of learning, which has been attributed to the in-
teractions between the booking and the cancellation forecast when calculating net
bookings.

The chapter continued to have a look at advanced combination strategies, moti-
vating and justifying the need for more complex and flexible approaches in the form
of combination structures for the airline application. The second set of experiments
then formulated the forecasting problem as an optimisation task searching for the
most suitable combination structure by using evolutionary approaches. The resulting
structures have been analysed and showed very few common characteristics, which
underlines their flexibility and the need for different structures for different situa-
tions, also providing another explanation for the lack of success of meta-learning on
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this data set. Including forecasts diversified in their level of learning improves peak
performances, but is less consistent in the improvements over all DCPs compared
to structures only using forecasts diversified in their parameter sets. For parameter-
diversified individual forecasts using the improved booking forecast, performances
improved by up to 14.4% and 6% on the high and low level, respectively.
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Conclusions and future work

With the abundance of time series forecasting algorithms available, solely concentrat-
ing on developing new methods, improving existing ones and conducting countless
empirical studies on different data sets does not seem sufficient. This thesis investi-
gated time series forecasting from a different point of view and made contributions
to answering the question of why methods perform well in some situations and fail
to provide reasonable predictions in others. This chapter provides a summary of the
thesis; its findings, conclusions and original contributions, linking it to the research
questions given in the introductory chapter. A discussion of opportunities for future
research will round up this chapter and this thesis.

7.1 Summary of the chapters

In the introduction, the need for a deeper understanding of forecasting and forecast
combination methods and their usage was motivated. At the same time, forecasting
of airline booking, cancellation and net booking values was introduced as a practical
application of great importance for airline revenue management. The next chapter
provided the background of forecasting in the context of airline revenue management
and a more general treatment of time series forecasting and forecast combination.

Chapter 3 then started by critically looking into the major empirical studies pub-
lished in the literature. As a consequence of the main findings being very general
and evidence frequently suggesting that simple methods can perform better than
more sophisticated ones, our own empirical investigation was conducted and de-
scribed using forecast competition data. The main objective here was to investigate
a pool of off-the-shelf forecasting methods that are practically very relevant because
of their relatively straightforward parameterisation and implementation. The role
of forecast combination as an approach to increase complexity of the system and
automatically weight different individual models has been investigated. Chapter 4
once more turned the attention to the airline application and presented baseline fore-
casting and forecast combination results using methods applicable to this particular
problem.

Chapter 5 looked at meta-learning in the time series forecasting context and
gave results on empirical investigations, both for the competition and the airline
data set. Following data analyses of a more exploratory nature, possible forecast ac-
curacy improvement by several meta-learning approaches was investigated in normal
forecasting conditions.

Chapter 6 was then dedicated to an investigation of the generation of additional
individual forecasts specific to the airline application and provided a discussion on
the effects on the different error components and potential benefits. An empirical
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study in that chapter looked at flat combinations similar to the ones used in Chapters
3 and 4, but extended the experiments to include multi-level structures that were
evolved using genetic algorithms.

7.2 Findings and conclusions

In section 1.2 of the introduction, a number of research questions were formulated,
which will be repeated and commented on at this point. The main general questions
asked are listed below:

To what extent are expert contributions beneficial in empirical forecas-
ting applications?

This issue has been investigated in Chapter 3. The off-the-shelf algorithms in-
vestigated there were able to outperform many of the expert contributions to the
NN3/NN5 competition, which supports the conclusion that sophisticated methods
do not have an edge in empirical studies. This does of course not imply that the au-
thor suggests discouraging research regarding more sophisticated methods, which is
naturally crucial for a better understanding of time series and forecasting. However,
in purely practical applications, simpler methods have a great chance of performing
just fine.

Can adequate performance be achieved by combining simple individual
predictors?

Combinations have once again proven to outperform individual predictors on ave-
rage throughout the thesis. In some cases, even consistently outperforming the best
individual predictor is possible for both the competition and the airline data as seen
in Chapters 5 and 6. Caution is however necessary when applying combinations, as
consistent outperformance has only been achieved using more advanced techniques
like meta-learning in the case of the competition data or generating additional fore-
casts by diversification procedures and evolving combination structures in the case
of the airline data.

Can situations in which a particular method works well be automatically
identified and domain knowledge be exploited for improved forecasting
performance?

Chapter 5 discussed meta-learning as an approach to generate domain knowledge
on the performance of methods and exploit it to improve forecasting performance,
which has proven to be very successful for the competition data and resulted in
consistent performance gains compared to the experiments described in Chapter 3.
It however failed to provide consistent improvement for the airline application due
to certain characteristics of the airline data set including the higher probability of a
changing data generation process due to a longer forecasting horizon, lack of stability
in the low level data preventing meaningful extraction of meta-features and missing
generalisability from characteristics of one flight to the other.

How can a pool of individual methods be extended, and what characte-
ristics are necessary to increase combination accuracy?
This question has been investigated in the context of the airline application in
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Chapter 6, describing the generation of additional individual forecasts by diversify-
ing method parameters and learning reference curves on different data aggregation
levels. Especially using diversified parameters was successful in increasing the ac-
curacy of the combination results. It is however important to consider the effects
that diversification has on the error components of both the individual methods and
the ensembles to anticipate possible positive and negative application-specific side
effects, which has also been discussed in Chapter 6.

7.3 Original contributions

Original contributions of the thesis were discussed in the introduction, but will be
summarised a second time with the benefit of hindsight.

Chapter 3 did not only describe another empirical study conducted in the area
of time series forecasting. It critically investigated major past empirical studies and
as a result questioned the need for sophisticated forecasting methods in practical
applications. Consequently, the experiments have been conducted with off-the-shelf
forecasting and forecast combination techniques, underlining their competitiveness
with contributions that require more expert effort for modelling and parametrisation
as well as computational power. Relatively simple combinations were able to further
improve results and decrease the risk of picking a badly performing model from the
pool of individual predictors.

A comprehensive review of meta-learning for time series forecasting has been
provided in Chapter 5. A new empirical experiment has been conducted, extending
the feature and method pools of previous work. Furthermore, a ranking algorithm
for meta-learning was investigated, which is an approach that has hardly been looked
at previously in this context. Evidence from both literature and the experiments
presented suggest that domain knowledge is one of the keys for a better understan-
ding of the dynamics of time series forecasting performance and to provide a solution
to the dilemma of the no-free-lunch theorem.

Extensive work on industrial applications of time series forecasting is rare. Due
to a collaboration with Lufthansa Systems in Berlin, this work has been able to
provide unique insights into the practical applicability of forecasting algorithms and
current industrial practice in the Chapters 2, 4, 5 and 6. A novel probability based
forecasting algorithm for airline cancellations has been introduced in Chapter 2.
Chapter 6 discussed means of generating additional forecasts by diversification pro-
cedures and discussed impact on error components of different decompositions, thus
helping to understand why one method might be more successful than another under
certain circumstances. Flexible combination structures were evolved for the airline
data set, extending previous work by evolving more parameters for the combinations.
An analysis of the generated structures provided insights as to why the combination
structures were successful in improving forecast accuracy.

In summary, this work gave a unique treatment of time series forecasting, con-
tributing to a better understanding of what makes the combination of forecasts
beneficial. With the transferability of latest research outcomes into industrial prac-
tices always having been a rather problematic issue in research, this thesis’ main
strength is looking at the research area from two points of view: on the one hand,
investigating new techniques on data sets from recent forecasting competitions fitted
the results into current academic research, while, on the other hand, the big focus
on the airline application provided a link to practical applications in industry.
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7.4 Future work

Of course there can always be a wider range of forecasting/combination/meta-
learning methods, more parametrisations, more features and different data sets that
can be investigated for any empirical study; the same applies to the empirical studies
presented in this thesis. The future in time series forecasting according to Ord (2001)
however does not lie in increasing the number of comparative empirical studies, but
in gaining a better understanding of the behaviour of existing forecasting methods
in different scenarios. In this respect, extending experiments on meta-learning as
presented in Chapter 5 seem to be particularly promising for future investigations,
especially if dealing with ranking approaches on which literature is very sparse to
date.

There are many directions in which research for the airline application could
be pursued. As explained in Chapter 2, the airline net booking forecasting process
follows the concept of decomposition. As seen in Chapter 6, the different components
interact with each other when eventually calculating the final forecast. To completely
understand these interactions and exploit them for better accuracy, investigations
going further than the ones presented here would be useful.

The question of aggregating forecasts to different levels certainly has potential
for further research. High level forecasts are currently aggregated from forecasts
obtained on the low level. This bottom-up approach is compared to different ver-
sions of a top-down approach in Athanasopoulos et al. (2009) in the context of a
tourism application. Similar investigations could be carried out for airline data.
Furthermore, since higher level data tends to be more stable, it might be beneficial
to generate forecasts directly on the levels they are needed for.

Evolving combination structures has proven to be very successful for airline data.
However, only the availability of domain knowledge and special characteristics of the
data set, for example the presence of different aggregation levels, facilitated a discus-
sion of the impacts of diversification procedures on the forecast error components.
The link to more general data sets is not entirely straightforward, but its investiga-
tion would be novel and promising.

Another interesting issue is adaptivity. The forecasting process of Lufthansa
Systems automatically adapts to the data by updating the reference curves of the
individual algorithms as time goes by. The combination weights and the meta-
learning weights were then only calculated on a training set and assessed on an out-
of-sample test set, however, investigating adaptivity on the level of the combination
methods would be worth looking at, as methods are likely to change their relative
performance to each other as the data generation process changes. A periodic rebuild
of the combination weights would be an easy option to start with.

Due to its great practical relevance and the diversity of application areas, time
series forecasting has been a very active research area for about half a century now,
and it is very likely to remain this way. As mentioned in several places of the thesis,
research however started to shift into the direction of why methods work, moving
away from trying to find the one superior algorithm. More research is to be expected
in this context, with this thesis providing a contribution.
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Description of the software

A software tool called ” Avanti” has been developed in the scope of a previous colla-
boration project of Bournemouth University and Lufthansa Systems Berlin. Avanti
is implemented in C++ and uses the Microsoft Foundation Classes (MFC) for the
graphical user interface. It can be seen as a software spinoff primarily used for re-
search, which is strongly linked to the forecasting kernel developed by Lufthansa
Systems Berlin that is used in the productive systems offered to the customers.

Avanti provides the possibility to visualise and analyse results according to se-
lected dimensions of the data. Its design has been kept modular, so that calculations
are broken down to components that facilitate easier understanding and reusability.
An extensive manual on how to install and use Avanti for running experiments on
airline data has been provided in Riedel (2007). In this section, only additional
components that were developed to allow for experiments involving cancellation
forecasting will be described.

A.1 Preprocessing

A.1.1 ABS_TO_RATE and RATE_TO_ABS

Given absolute booking numbers, these two components calculate a cancellation
rate given absolute cancellation numbers and vice versa. A few application-specific
corrections are carried out, for example restricting the maximum number of bookings
and ensuring the monotony of the absolute cancellations for a flight.

ABS_TO_RATE

Input bookings
cancellations
Output cancellation rate
Parameters | pCycleSize: number of DCPs before departure

RATE_TO_ABS

Input bookings

cancellation rate

Output absolute cancellations

Parameters | pCycleSize: number of DCPs before departure

pMaxBkg: maximum number of bookings
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A.1.2 CONSTRAIN_RATE

As described in Section 2.1.5.1, the actual observed cancellation rate is constrained
using confidence limits. This component is used for correcting the observed cancel-
lation rate before both the history building and the forecasting calculations.

| CONSTRAIN_RATE \

Input bookings
reference cancellation rate
observed cancellation rate

booking forecast (if used for forecasting)

Output corrected cancellation rate

Parameters | pCycleSize: number of DCPs before departure
pCanclnitialBound: initial bounds for cancellation rate
pCancLowerBound: width of confidence limits
pSuffBkgs: parameter for sufficient bookings

pUseFc: indicating if rate will be used for forecasting or history
building

A.1.3 UNCONSTRAINING_CANC

Section 2.1.4.3 explains the need for unconstraining booking and cancellation num-
bers due to fareclasses closing and opening because of booking control. Uncon-
straining for cancellations is implemented in this component. It is carried out by
calculating the weighted sum of the cancellation reference curve applied to the con-
strained bookings and the default cancellation rate applied to the estimated denied
bookings.

| UNCONSTRAINING_CANC |

Input observed cancellation rate
reference cancellation rate
bookings

denied bookings

Output | unconstrained cancellation rate

A.2 Data analysis

A.2.1 DEFAULT_PROB

Default probabilities for the new individual forecasting method are calculated in
this component. Data from the initialisation period is used for this purpose. The
algorithm is equivalent to the one used for the ordinary history building, which was
described in Section 2.1.5.3, with the difference that the distribution of an occurring
cancellation to bookings at previous DCPs is not weighted, but assumes an equal
probability for the cancellation belonging to any of the previous bookings.
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DEFAULT_PROB \

Input bookings
cancellations
Output default probability

Parameter | pCycleSize: number of DCPs before departure

pHistCycles: length of initialisation period

A.2.2 DATA_ANALYSE

This component is used for the exploratory airline data analysis presented in Section
5.4.1.

DATA_ANALYSE |

Input bookings

cancellations

availability

cancellation reference curve (exponential smoothing)

default references

Output summary data features

Parameter | pCycleSize: number of DCPs before departure
pSplit: indicates position of split between training and test data

pChunks: denotes block size of the signals provided, which are
given by their level of aggregation

A.2.3 FEATURES

For meta learning, a number of features need to be extracted from the data set,
which is carried out in this component. The features are described in Section 5.4.3.

[ FEATURES |
Input bookings
cancellations
availability

cancellation reference curve (exponential smoothing)
cancellation forecast (exponential smoothing)
block element shift

Output data features

Parameter | pCycleSize: number of DCPs before departure

A.3 History building

A.3.1 HB_SMCANC

Two traditional ways of generating cancellation rate reference curves are using expo-
nential smoothing and Brown’s smoothing approach, which were described in Section
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2.1.5.2. These are implemented in the component HB_.SMCANC. Initially, the rate
is set to a default cancellation rate provided by Lufthansa Systems, before observed
cancellation rates are used to update it.

HB_SMCANC

Input bookings
cancellations

default cancellation rate

Output cancellation rate reference curve

trend for the reference curve

Parameters | pMethod: exponential or Brown’s smoothing
pSmoothingFactor: smoothing factor used
pCycleSize: number of DCPs before departure
pHistCycles: number of cycles in initialisation period
pTrendMin: trend lower bound

pTrendMax: trend upper bound

pCanclnitialBound: values of initial confidence limits
pCancLowerBound: width of confidence limits

pSuffBkgs: number of bookings that indicate sufficient informa-
tion to relax confidence limits

pLearningInfluence: determines the extent of the influence of
changes at later DCPs has on earlier DCPs for the reference curve

A.3.2 HB_REGRCANC

Updating the reference curves using a regression approach, also described in Section
2.1.5.2, is implemented in this component.

HB_REGRCANC

Input bookings
cancellations

default cancellation rate

Output cancellation rate reference curve

trend for the reference curve

Parameter | pCycleSize: number of DCPs before departure
pHistCycles: number of cycles in initialisation period
pTrendMin: trend lower bound

pTrendMax: trend upper bound

A.3.3 HB_PROBCANC

History building for the new probability forecast introduced in Section 2.1.5.3 is
realised in this component. Cancellation probabilities are initialised using default
probabilities estimated in a seperate component. Because the data cubes holding
probability references tend to be too big, only data after a certain learning period

is provided in the output.
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HB_PROBCANC \

Input bookings
cancellations
default probability

Output probability references

Parameter | pSmoothing: smoothing factor used for reference curve update

pInitProb: fixed probability used if no default probability curves
are given

pCycleSize: number of DCPs before departure

pHistCycles: number of cycles in initialisation period

pLearn: length of period not used for forecasting (used to limit
size of the output reference)

pLearningInfluence: determines the extent of the influence of
changes at later DCPs has on earlier DCPs for the reference curve

A.4 Forecasting

A.4.1 FC_CANC

This component calculates forecasts based on reference curves as explained in Section
2.1.5.2, regardless if the curves were generated with the exponential smoothing, the
Brown’s smoothing method or the regression approach. The block element shift
input signal denotes the number of time series ”intervals” between one block element
and the last block element, which is necessary due to the fact that the DCPs have
different distances to the departure date as shown in Table 2.1. Providing these
values as an input parameter is necessary to ensure that only values learnt before
the time of forecast generation are used.

FC_CANC

Input bookings

observed cancellation rate
cancellation rate reference curve
cancellation rate reference curve trend
booking forecast

block element shift

Output cancellation rate forecast

Parameter | pUseTrend: indicates availability of trend information

pDampTrend: indicates whether or not trend should be dampened

pCycleSize: number of DCPs before departure

A.4.2 FC_PROBCANC

The probability forecast using the probabilty reference curves is implemented in this
component.
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FC_PROBCANC

Input

bookings

booking reference curve

booking forecast

observed cancellation rate

cancellation probability reference curve
cancellation forecast exponential smoothing
block element shift

Output

cancellation rate forecast or net booking forecast

Parameter

pNetBkg: indicates whether to calculate the net booking or can-
cellation rate forecast

A.4.3 FC_META

This component is needed for the meta-learning experiments described in Section
5.4. The machine learning algorithms to build the meta-knowledge are implemented
in matlab called using the C+4 matlab engine. Three different ways of trimming are
possible: providing the maximum number or the perventage of individual forecasts
to consider or a variance ratio with regard to the best individual forecast that cannot

be exceeded.

| FC.META

Input

data features
forecast errors on training set

individual forecasts

Output

cancellation rate forecast or net booking forecast

Parameter

pTrimmingMaxNbrFc¢: maximum number of individual forecasts
to consider

pTrimmingPerc: percentage of individual forecasts two consider

pTrimmingMaxVarRatio: maximum variance ratio to best indivi-
dual forecast

pMethod: indicates which method to use: decision trees (0), neu-
ral networks (1), support vector machines (2) or ranking (3)

pFeatures: number of features

pSplit: calendar week at which the feature set is split into a train-
ing and a testing period

pEnd: total number of feature records

112



Airline data experiments

Experiments on airline data analysed in this thesis have been carried out using the
previously described Avanti software. Each of the experiments involve a big number
of components which will not all be listed here. However, to provide an impression
of the experiments, components and their parameters will be listed for the exam-
ple of evaluating individual forecasting methods and simple combination approaches
as presented in Chapter 3. Calculations related to the demand forecast, including
decomposing data, estimating seasonality and calculating the booking forecast ac-

cording to Ex

periment2 in Riedel (2007), will not be included.

| FILE_ INTERFACE
Purpose initial loading of data
Parameter | pCubesToLoad: bookings, cancellations, availablity
pCubesToSave: none
pAppliedDimInFile: DCP
FILE_INTERFACE
Purpose initial loading of auxilliary data
Parameter | pCubesToLoad: default cancellation rate, default probabilities, block

Element shift
pCubesToSave: none
pAppliedDimInFile: none

ABS_TO RATE |

Purpose calculating constrained cancellation rate from bookings and cancellations
using default reference

Input bookings
cancellations
default cancellation rate

Output constrained cancellation rate

Parameter | pCycleSize: number of DCPs (23)

HB_SMCANC

Purpose calculating a first estimate of the cancellation rate reference curve using
constrained data
Input bookings
cancellation rate
default cancellation rate
Output reference cancellation rate
reference cancellation rate trend (unused)
Parameter | pMethod: 0 (exponential smoothing)

pSmoothingFactor: 0.1
pCycleSize: 23
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pHistCycles: 51
pMinTrend: unused
pMaxTrend: unused
pCanclnitialBound: 0.3
pCancLowerBound: 0.05
pSuffBkgs: 15
pLearningInfluence: 0.5

ABS_TO_RATE \

Purpose calculating constrained cancellation rate from bookings and cancellations
using first reference curve estimate

Input bookings
cancellations
reference cancellation rate

Output constrained cancellation rate

Parameter | pCycleSize: 23

UNCONSTRAINING_CANC

Purpose unconstraining cancellation rate

Input constrained cancellation rate
reference cancellation rate
constrained bookings
rejected bookings

Output unconstrained cancellation rate

RATE_TO_ABS \

Purpose calculate absolute unconstrained cancellations for performance evalua-
tion

Input unconstrained bookings
unconstrained cancellation rate

Output unconstrained absolute cancellations

Parameter | pCycleSize: 23

Parameter | pMaxBkg: 2000

| DIFFERENCE

Purpose calculate absolute unconstrained net bookings for performance evalua-
tion

Input unconstrained bookings
unconstrained absolute cancellations

Output unconstrained net bookings

‘ HB_SMCANC

Purpose calculate the final estimate of the cancellation rate reference curve -
exponential smoothing

Input unconstrained bookings
unconstrained cancellation rate
default cancellation rate

Output reference cancellation rate (exp)
reference cancellation rate trend (unused)

Parameter | pMethod: 0

pSmoothingFactor: 0.1
pCycleSize: 23
pHistCycles: 51
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pMinTrend: unused
pMaxTrend: unused
pCanclnitialBound: 0.3
pCancLowerBound: 0.05
pSuffBkgs: 15
pLearningInfluence: 0.5

[HB_SMCANC

Purpose

calculate the final estimate of the cancellation rate reference curve -
Brown’s smoothing

Input unconstrained bookings
unconstrained cancellation rate
default cancellation rate
Output reference cancellation rate (Brown)
reference cancellation rate trend (Brown)
Parameter | pMethod: 1

pSmoothingFactor: 0.1
pCycleSize: 23
pHistCycles: 51
pMinTrend: -0.1
pMaxTrend: 0.1
pCanclnitialBound: 0.3
pCancLowerBound: 0.05
pSuffBkgs: 15
pLearningInfluence: 0.5

HB_REGRCANC

Purpose calculate the final estimate of the cancellation rate reference curve -
regression
Input unconstrained bookings
unconstrained cancellation rate
default cancellation rate
Output reference cancellation rate (regr)
reference cancellation rate trend (regr)
Parameter | pCycleSize: 23

pHistCycles: 51
pMinTrend: -0.1
pMaxTrend: 0.1
pCanclnitialBound: 0.3
pCancLowerBound: 0.05
pSuffBkgs: 15
pLearningInfluence: 0.5

HB_PROBCANC

Purpose calculate probability reference curves
Input unconstrained bookings

unconstrained cancellation rate

default probabilities
Output cancellation probability reference curve
Parameter | pSmoothingFactor: 0.1

pInitProb: unused
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pCycleSize: 23
pHistCycles: 51
pLearningInfluence: 0.9

| CONSTRAIN_RATE

Purpose

Apply confidence limits to the observed rate

Input

unconstrained bookings
reference cancellation rate (exp)
unconstrained cancellation rate
booking forecast

Output

unconstrained corrected cancellation rate

Parameter

pCycleSize: 23
pCanclnitialBound: 0.3
pCancLowerBound: 0.05
pSuffBkgs: 15

pUseFc: 1 (yes)

FC_CANC

Purpose

Generate forecasts using the exponential smoothing (Brown, regression)
reference curves

Input

unconstrained bookings

unconstrained corrected cancellation rate

cancellation rate reference curve exponential smoothing (Brown, regres-
sion)

trend of cancellation rate reference curve exponential smoothing (Brown,
regression)

booking forecast

block element shift

Output

cancellation rate forecast

Parameter

pCycleSize: 23
pUseTrend: 0 (1,1)
pDampTrend: 0 (1,0)

FC_PROBCANC

Purpose

Generate probability forecast

Input

unconstrained bookings

booking reference curve

booking forecast

unconstrained corrected cancellation rate
cancellation probability reference curve
cancellation rate forecast (exponential smoothing)
block element shift

Output

cancellation rate forecast

Parameter

pNetBkg: 1 (cancellation rate)
pCycleSize: 23

RATE_TO_ABS

Purpose calculate absolute cancellation forecasts
Input booking forecast

cancellation rate forecasts
Output absolute cancellations forecasts
Parameter | pCycleSize: 23
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Parameter | pMaxBkg: 2000
| DIFFERENCE
Purpose calculate net booking forecasts
Input booking forecast
absolute cancellations forecast
Output net booking forecast

RATE_TO_ABS

Purpose calculate absolute cancellation forecasts
Input booking forecast

cancellation rate forecasts
Output absolute cancellations forecasts
Parameter | pCycleSize: 23
Parameter | pMaxBkg: 2000

| DIFFERENCE

Purpose calculate net booking forecasts
Input booking forecast

absolute cancellations forecast
Output net booking forecast

VALID _FC_REF

Purpose calculate relative forecast error

Input unconstrained net bookings
net booking forecast

Output net booking error

ERROR_COVAR

Purpose calculate absolute forecast error
Input net booking error
Output absolute net booking error

HB_LINEAR_COMBINATION

Purpose Calculate linear combination weights
Input net booking error
unconstrained net bookings
Output linear combination weights
Parameter | pMethod: 0- simple average (1- outperformance, 2- variance-based, 3-

restricted regression, 4- unrestricted regression)
pTrimmingMaxNbrFec: -1 (unused)
pTrimmingPerc: -1 (unused)
pTrimmingMaxVarRatio: -1 (unused)

LINEAR_COMBINATION

Purpose Calculate combination forecast
Input net booking forecast

linear combination weights
Output combined net booking forecast

VALID _FC_REF

Purpose calculate relative combination forecast error
Input unconstrained net bookings

combined net booking forecast
Output combined net booking error
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| ERROR_COVAR \

Purpose calculate absolute combination forecast error
Input combined net booking error
Output combined absolute net booking error
| FILE_ INTERFACE
Purpose saving error values for individual and combined methods

Parameter | pCubesToLoad: none
pCubesToSave: individual and combined net booking error
pAppliedDimInFile: DCPFC (forecast DCP)

118



References

Abraham, B. & Ledolter, J. (1986), ‘Forecast functions implied by autoregressive
integrated moving average models and other related forecast procedures’, Inter-
national Statistical Review 54(1), 51-66.

Adya, M., Armstrong, J., Collopy, F. & Kennedy, M. (2000), ‘An application of rule-
based forecasting to a situation lacking domain knowledge’, International Journal
of Forecasting 16(4), 477-484.

Adya, M., Collopy, F., Armstrong, J. & Kennedy, M. (2001), ‘Automatic identifi-
cation of time series features for rule-based forecasting’, International Journal of
Forecasting 17(2), 143-157.

Aiolfi, M. & Timmermann, A. (2006), ‘Persistence in forecasting performance and
conditional combination strategies’, Journal of Econometrics 127(1-2), 31-53.

Akaike, H. (1973), Information theory and an extension of the maximum likelihood
principle, in B. Petrov & F. Caski, eds, ‘In Proceedings of the 2nd International
Symposium on Information Theory’, Akademiai Kiado, pp. 267-281.

Anastasakis, L. & Mort, N. (2009), ‘Exchange rate forecasting using a combined
parametric and nonparametric self-organising modelling approach’, Ezxpert Sys-
tems with Applications 36(10), 12001-12011.

Arinze, B., Kim, S.-L. & Anandarajan, M. (1997), ‘Combining and selecting fore-
casting models using rule based induction’, Computers € Operations Research
24(5), 423-433.

Assimakopoulos, V. & Nikolopoulos, K. (2000), ‘The theta model: A decomposition
approach to forecasting’, International Journal of Forecasting 16(4), 521-30.

Athanasopoulos, G., Ahmed, R. A. & Hyndman, R. J. (2009), ‘Hierarchical forecasts
for australian domestic tourism’, International Journal of Forecasting 25(1), 146—

166.

Batchelor, R. & Dua, P. (1995), ‘Forecaster diversity and the benefits of combining
forecasts’, Management Science 41(1), 68-75.

Bates, J. & Granger, C. (1969), ‘The combination of forecasts’, Operational Research
20(4), 451-468.

Belobaba, P. (1987), Air Travel Demand and Airline Seat Inventory Management,
PhD thesis, Flight Transportation Laboratory, Massachusetts Institute of Tech-
nology.

Bitran, G. & Caldentey, R. (2003), ‘An overview of pricing models for revenue
management’, Manufacturing and Service Operations Management 5, 1407-1420.

Box, G. & Jenkins, G. (1970), Time Series Analysis, Holden-Day, San Francisco.

Brazdil, P., Soares, C. & Pinto de Costa, J. (2003), ‘Ranking learning algorithms:
Using ibl and meta-learning on accuracy and time results’, Machine Learning
50(3), 251-277.

Breiman, L. (1984), Classification and Regression Trees, Chapman & Hall.
Breiman, L. (1996), ‘Bagging predictors’, Machine Learning 24(2), 123-140.

Brown, G., Wyatt, J., Harris, R. & Yao, X. (2005), ‘Diversity creation methods: a
survey and categorisation’, Journal of Information Fusion 6, 5-20.

Brown, G., Wyatt, J. & Tino, P. (2005), ‘Managing diversity in regression ensem-
bles’, The Journal of Machine Learning Research 6, 1621-1650.

119



REFERENCES

Brown, R. G., Meyer, R. F. & D’Esopo, D. A. (1961), ‘The fundamental theorem of
exponential smoothing’, Operations Research 9(5), 673-687.

Bunn, D. (1975), ‘A bayesian approach to the linear combination of forecasts’, Op-
erational Research Quarterly 26(2), 325-329.

Cai, X., Zhang, N., Venayagamoorthy, G. K. & II, D. C. W. (2007), ‘Time series
prediction with recurrent neural networks trained by a hybrid PSO-EA algorithm’,
Neurocomputing 70(13-15), 2342-2353.

Chatfield, C. (1995), ‘Positive or negative?’, International Journal of Forecasting
11(4), 501-502.

Chatfield, C., Koehler, A. B., Ord, J. K. & Snyder, R. D. (2001), ‘A new look at
models for exponential smoothing’, Journal of the Royal Statistical Society. Series
D (The Statistician) 50(2), 147-1509.

Chiang, W.-C., C.H. Chen, J. & Xu, X. (2007), ‘An overview of research on revenue
management: current issues and future research’, International Journal Revenue
Management 1(1), 97-128.

Clemen, R. (1989), ‘Combining forecasts: A review and annotated bibliography’,
International Journal of Forecasting 5, 559-583.

Clements, M. & Smith, J. (1997), ‘The performance of alternative forecasting me-
thods for SETAR models’, International Journal of Forecasting 13(4), 463-475.

Collopy, F. & Armstrong, S. J. (1992), ‘Rule-based forecasting: Development and
validation of an expert systems approach to combining time series extrapolations’,
Management Science 38(10), 1394-1414.

Cox Jr, L. & Popken, D. (2002), ‘A hybrid system-identification method for forecas-
ting telecommunications product demands’, International Journal of Forecasting
18(4), 647-671.

Crone, S. (2006/2007), ‘NN3 Forecasting Competition [Online]’. Available online:
http://www.neural-forecasting-competition.com/NN3/ [02/06/2009].

Crone, S. (2008), ‘NN5 Forecasting Competition [Online]’.  Available online:
http://www.neural-forecasting-competition.com/NN5/ [02/06/2009].

de Menezes, L. M., Bunn, D. W. & Taylor, J. W. (2000), ‘Review of guidelines for the
use of combined forecasts’, European Journal of Operational Research 120(1), 190—
204.

Delft Center for Systems and Control (2007), ‘Matlab toolbox ARMASA [Online]’.
http://www.dcsc.tudelft.nl/Research/Software [13/06/2007].

Deutsch, M., Granger, C. W. J. & Terésvirta, T. (1994), ‘The combination of fore-
casts using changing weights’, International Journal of Forecasting 10(1), 47-57.

Diebold, F. (1988), ‘Serial correlation and the combination of forecasts’, Journal of
Business & Economic Statistics 6(1), 105-111.

Diebold, F. X. & Pauly, P. (1986), Structural change and the combination of fore-
casts, Special Studies Papers 201, Board of Governors of the Federal Reserve
System (U.S.). available at http://ideas.repec.org/p/fip/fedgsp/201.html.

Dietterich, T. (2000), Ensemble methods in machine learning, in ‘Proceedings of the
First International Workshop on Multiple Classifier Systems’, pp. 1-15.

Donaldson, R. G. & Kamstra, M. (1999), ‘Neural network forecast combining with
interaction effects’, Journal of The Franklin Institute 336(2), 227-236.

120



REFERENCES

Donaldson, R. & Kamstra, M. (1996), ‘Forecast combining with neural networks’,
Journal of Forecasting 15(1), 49-61.

Durbin, J. & Koopman, S. (2001), Time series analysis by state space methods,
Oxford University Press.

Elliott, G. & Timmermann, A. (2005), ‘Optimal forecast combination under regime
switching’, International Economic Review 46(4), 1081-1102.

Fang, Y. (2003), ‘Forecasting combination and encompassing tests’, International
Journal of Forecasting 19(1), 87-94.

Fiordaliso, A. (1998), ‘A nonlinear forecasts combination method based on Takagi-
Sugeno fuzzy systems’, International Journal of Forecasting 14(3), 367-379.

Fodor, I. K. (2002), A survey of dimension reduction techniques, Technical report,

Center for Applied Scientific Computing, Lawrence Livermore National Labora-
tory.

Fok, D., van Dijk, D. & Franses, P. H. (2005), ‘Forecasting aggregates using panels
of nonlinear time series’, International Journal of Forecasting 21(4), 785-794.

Frantti, T. & Mahonen, P. (2001), ‘Fuzzy logic-based forecasting model’, Engineering
Applications of Artificial Intelligence 14(2), 189-201.

Freund, Y. & Schapire, R. E. (1997), ‘A decision-theoretic generalization of on-
line learning and an application to boosting’, Journal of Computer and System
Sciences 55(1), 119-139.

Gabrys, B. & Ruta, D. (2005), ‘Classifier selection for majority voting’, Information
Fusion 6(1), 63-81.

Gardner, E. S. (1985), ‘Exponential smoothing: The state of the art’, Journal of
Forecasting 4(1), 1-28.

Gardner, E. S. (2006), ‘Exponential smoothing: The state of the art—part ii’, Inter-
national Journal of Forecasting 22(4), 637-666.

Gautama, T., Mandic, D. & Van Hulle, M. (2004), ‘A novel method for determining

the nature of time series’, IEEE Transactions on Biomedical Engineering 51, 728~
736.

Geman, S., Bienenstock, E. & Doursat, R. (1992), ‘Neural networks and the
bias/variance dilemma’, Neural Computation 4(1), 1-58.

Goldberg, D. & Holland, J. (1988), ‘Genetic algorithms and machine learning’, Ma-
chine Learning 3(2-3), 95-99.

Gooijer, J. G. D. & Hyndman, R. J. (2006), ‘25 years of time series forecasting’,
International Journal of Forecasting 22(3), 443-473.

Granger, C. (1989), ‘Invited review: Combining forecasts - twenty years later’, Jour-
nal of Forecasting 8, 167-173.

Granger, C. & Jeon, Y. (2004), ‘Thick modeling’, Economic Modelling 21(2), 323~
343.

Granger, C. & Ramanathan, R. (1984), ‘Improved methods of combining forecasts’,
Journal of Forecasting 3(2), 197-204.

Gyorfi, L., Lugosi, G. & Udina, F. (2006), ‘Nonparametric kernel-based sequential
investment strategies’, Mathematical Finance 16(2), 337-357.

121



REFERENCES

Hall, M. A. (1998), Correlation-based Feature Subset Selection for Machine Learn-
ing, PhD thesis, University of Waikato, Hamilton, New Zealand.

Hansen, J. V. (2000), Combining Predictors: Meta Machine Learning Methods and
Bias/Variance & Ambiguity Decompositions, PhD thesis, Department of Com-
puter Science, University of Aarhus.

Harrald, P. & Kamstra, M. (1997), ‘Evolving artificial neural networks to combine
financial forecasts’, IEEE Transactions on Fvolutionary Computation 1, 40-52.

Harvey, A. (2006), Forecasting with unobserved components time series models, in
G. Elliott, C. Granger & A. Timmermann, eds, ‘Handbook of Economic Forecas-
ting’, Elsevier, pp. 327-408.

He, C. & Xu, X. (2005), ‘Combination of forecasts using self-organizing algorithms’,
Journal of Forecasting 24, 269-278.

Hendry, D. & Clements, M. (2002), ‘Pooling of forecasts’, Econometrics Journal
5, 1-26.

Hibon, M. & Evgeniou, T. (2005), ‘To combine or not to combine: selecting among

forecasts and their combinations’, International Journal of Forecasting 21(1), 15—
24.

Hill, T., O’Connor, M. & Remus, W. (1996), ‘Neural network models for time series
forecasts’, Management Science 42(7), 1082-1092.

Hippert, H., Bunn, D. & Souza, R. (2005), ‘Large neural networks for electricity load

forecasting: Are they overfitted?’, International Journal of Forecasting 21(3), 425—
434.

Hippert, H., Pedreira, C. & Souza, R. (2001), ‘Neural networks for short-term
load forecasting: a review and evaluation’, IEEE Transactions on Power Systems
16(1), 44-55.

Hu, M. & Tsoukalas, C. (1999), ‘Combining conditional volatility forecasts using
neural networks: an application to the ems exchange rates’, Journal of Interna-
tional Financial Markets, Institutions & Money 9(4), 407-422.

Huang, H. & Lee, T.-H. (2007), To combine forecasts or to combine information?,
Working papers, University of California at Riverside, Department of Economics.

Hyndman, R. & Billah, B. (2003), ‘Unmasking the Theta method’, International
Journal of Forecasting 19(2), 287-290.

Hyndman, R. J. (2001), ‘It’s time to move from what to why’, International Journal
of Forecasting 17, 567-570.

Hyndman, R. J., Koehler, A. B., Snyder, R. D. & Grose, S. (2002), ‘A state space
framework for automatic forecasting using exponential smoothing methods’, In-
ternational Journal of Forecasting 18(3), 439-454.

Ivakhnenko, A. (1970), ‘Heuristic self-organization in problems of engineering cy-
bernetics’, Automatica 6(2), 207-219.

Jain, C. L. (2008), ‘Benchmarking forecasting models’, Journal of Business Forecas-
ting 26, 15-35.

Jolliffe, 1. (2002), Principal component analysis 2nd edition, Springer.

Jose, V. R. R. & Winkler, R. L. (2008), ‘Simple robust averages of forecasts: Some
empirical results’, International Journal of Forecasting 24(1), 163-169.

122



REFERENCES

Kalman, R. (1960), ‘A new approach to linear filtering and prediction problems’,
Journal of Basic Engineering 82(1), 35—45.

Kalousis, A. & Theoharis, T. (1999), ‘NOEMON: design, implementaion and per-
formance results of an intelligent assistant for classifier selection’, Intelligent Data
Analysis 5(3), 319-337.

Kisinbay, T. (2007), The use of encompassing tests for forecast combinations, Tech-
nical report, International Monetary Fund Working Paper N. 07/264.

Kodogiannis, V. & Lolis, A. (2002), ‘Forecasting financial time series using neural
network and fuzzy system-based techniques’, Neural Computing and Applications
11(2), 90-102.

Koutroumanidis, T., Ioannou, K. & Arabatzis, G. (2009), ‘Predicting fuelwood
prices in Greece with the use of ARIMA models, artificial neural networks and a
hybrid ARIMA-ANN model’, Energy Policy 37(9), 3627-3634.

Koza, J. R. (1992), Genetic Programming, MIT Press.

Krogh, A. & Vedelsby, J. (1995), ‘Neural network ensembles, cross-validation and
active learning’, Advances in Neural Information Processing Systems 7, 231-238.

Kuncheva, L. (2004), Combining pattern classifiers: methods and algorithms, John
Wiley & Sons.

Kuncheva, L. I. & Whitaker, C. J. (2003), ‘Measures of diversity in classifier ensem-
bles’, Machine Learning 51(2), 181-207.

Lemke, C. & Gabrys, B. (2007), Review of nature-inspired forecast combination
techniques, in ‘NiSIS 2007 Symposium’.

Lemke, C. & Gabrys, B. (2008a), Do we need experts for time series forecasting?,

in ‘Proceedings of the 16th European Symposium on Artificial Neural Networks’,
pp. 253-258.

Lemke, C. & Gabrys, B. (2008b), On the benefit of using time series features for
choosing a forecasting method, in ‘Proceedings of the European Symposium on
Time Series Prediction’, pp. 1-10.

Lemke, C. & Gabrys, B. (2009), ‘Meta-learning for time series forecasting and fore-
cast combination’, accepted to a special issue of Neurocomputing .

Lemke, C., Riedel, S. & Gabrys, B. (2009), Dynamic combination of forecasts gene-
rated by diversification procedures applied to forecasting of airline cancellations,

in ‘Proceedings of the IEEE Symposium Series on Computational Intelligence’,
pp. 85-91.

Li, F. & Tkacz, G. (2001), Evaluating linear and non-linear time-varying forecast-
combination methods, Technical report, Bank of Canada.

Littlewood, K. (1972), ‘Forecasting and control of passenger bookings’, AGIFORS
Symposium Proceedings 12, 95-117.

Liu, Y. (2005), Value-at-risk model combination using artificial neural networks,
Technical report, Emory University Working Paper Series.

Liu, Y. & Yao, X. (1999), ‘Ensemble learning via negative correlation’, Neural Net-
works 12(10), 1399-1404.

Maforte dos Santos, P., Ludermir, T. & Cavalcante, R. (2004), Selection of time
series forecasting models based on performance information, in ‘Proceedings of
the Fourth International Conference on Hybrid Intelligent Systems’; pp. 366-371.

123



REFERENCES

Makridakis, S., Andersen, A., Carbone, R., Fildes, R., Hibon, M., Lewandowski, R.,
Newton, J., Parzen, E. & Winkler, R. (1982), ‘The accuracy of extrapolative (time

series) methods: The results of a forecasting competition.’, Journal of forecasting
1, 111-153.

Makridakis, S., Chatfield, C., Hibon, M., Lawrence, M., Mills, T., Ord, K. & Sim-
mons, L. F. (1993), ‘The m2-competition: A real-time judgmentally based fore-
casting study’, International Journal of Forecasting 9(1), 5 — 22.

Makridakis, S. & Hibon, M. (2000), ‘The M3-competition: Results, conclusions and
implications’, International Journal of Forecasting 16(4), 451-476.

Makridakis, S., Wheelwright, S. & Hyndman, R. (1998), Forecasting: Methods and
Applications, 3rd edn, John Wiley, New York.

Marcellino, M. (2005), Instability and non-linearity in the EMU, in C. Milas,
P. Rothman & D. van Dijk, eds, ‘Nonlinear Time Series Analysis of Business
Cycles’, Elsevier Amsterdam.

Marcellino, M., Stock, J. & Watson, M. (2006), ‘A comparison of direct and iterated
multistop AR methods for forecasting macroeconomic time series’, Journal of
Econometrics 135, 499-526.

McGill, J. & van Ryzin, G. (1999), ‘Revenue management: Research overview and
prospects’, Transportation Science 33(2), 233-256.

Meade, N. (2000), ‘Evidence for the selection of forecasting methods’, International
Journal of Forecasting 6(19), 515-535.

Mohr, M. (2005), A trend-cycle(-season filter), Technical report, European Central
Bank.

Newbold, P. & Granger, C. (1974), ‘Experience with forecasting univariate time
series and the combination of forecasts’, Journal of the Royal Statistical Society.
Series A (General) 137(2), 131-165.

Newbold, P. & Harvey, D. 1. (2006), Forecast combination and encompassing, in
M. Clements & D. Hendry, eds, ‘A Companion to Economic Forecasting’, Black-
well Publishing.

Ord, K. (2001), ‘Commentaries on the M3-competition’, International Journal of
Forecasting 17, 537-584.

Ozun, A. & Cifter, A. (2007), Nonlinear combination of financial forecast with ge-
netic algorithm, Technical report, University Munich.

Pak, K. & Piersma, N. (2002), Airline revenue management: an overview of OR
techniques 1982-2001, Technical report, Econometric Institute Report EI.

Palit, A. & Popovic, D. (2000), Nonlinear combination of forecasts using artificial
neural network, fuzzy logic and neuro-fuzzy approaches, in ‘The Ninth IEEE In-
ternational Conference on Fuzzy Systems’, pp. 566-571.

Pegels, C. (1969), ‘Exponential forecasting: Some new variations’, Management
Science 15(5), 311-315.

Peng, J-Y. & Aston, J. A. D. (2007), The SSM toolbox for MAT-
LAB, Technical report, Institute of Statistical Science, Academia Sinica.
http://www.stat.sinica.edu.tw/jaston/software.html.

Pesaran, M. & Timmermann, A. (2007), ‘Selection of estimation window in the
presence of breaks’, Journal of Econometrics 127(1), 134-161.

124



REFERENCES

Petrovic, D., Xie, Y. & Burnham, K. (2006), ‘Fuzzy decision support system for de-

mand forecasting with a learning mechanism’, Fuzzy Sets and Systems 157, 1713—
1725.

Pfahringer, B., Bensusan, H. & Giraud-Carrier, C. (2000), Meta-learning by land-
marking various learning algorithms, in ‘In Proceedings of the Seventeenth Inter-
national Conference on Machine Learning’, Morgan Kaufmann, pp. 743-750.

Poelt, S. (1998), Forecasting is difficult - especially if it refers to the future, in
‘Proceedings of the Reservations and Yield Management Study Group Annual
Meeting’.

Prudencio, R. B. & Ludermir, T. B. (2004a), ‘Meta-learning approaches to selecting
time series models’, Neurocomputing 61, 121-137.

Prudencio, R. & Ludermir, T. (2004b), Using machine learning techniques to com-
bine forecasting methods, in ‘Proceedings of the 17th Australian Joint Conference
on Artificial Intelligence’, pp. 1122-1127.

Raftery, A. E. (1986), ‘Choosing models for cross-classifications’, American Socio-
logical Review 51(1), 145-146.

Riedel, S. (2007), Forecast combination in revenue management demand forecasting,

PhD thesis, Bournemouth University in collaboration with Lufthansa Systems
Berlin GmbH.

Riedel, S. & Gabrys, B. (2004), ‘Hierarchical multilevel approaches of forecast com-
bination’, Proceedings of the GOR 200/ conference pp. 1-8.

Riedel, S. & Gabrys, B. (2005), Evolving multilevel forecast combination models-an
experimental study, in ‘Proceedings of NiSIS 2005 Symposium’.

Riedel, S. & Gabrys, B. (2007), Dynamic pooling for the combination of forecasts
generated using multi level learning, in ‘Proceedings of the International Joint
Conference on Neural Networks’, pp. 454-459.

Riedel, S. & Gabrys, B. (2009), ‘Pooling for combination of multi level forecasts’,
IEEE Transactions on Knowledge and Data Engineering 12(21), 1753-1766.

Rivas, V. M., Merelo, J. J., Castillo, P. A., Arenas, M. G. & Castellano, J. G.
(2004), ‘Evolving RBF neural networks for time-series forecasting with EvRBEF”,

Information Sciences 165(3-4), 207-220.

Ruta, D., Gabrys, B. & Lemke, C. (2009), ‘A generic multilevel architecture for
time series prediction’; accepted to IEEE Transactions on Knowledge and Data
Engineering .

Schreiber, T. & Schmitz, A. (1996), ‘Improved surrogate data for nonlinearity tests’,
Physical Review Letters 77(4), 635-638.

See, L. & Openshaw, S. (2000), ‘A hybrid multi-model approach to river level fore-
casting’, Hydrological Sciences-Journal 45, 523-536.

Sen, P. K. (2005), ‘Gini diversity index, hamming distance and curse of dimension-
ality’, International Journal of Statistics 63(3), 329-349.

Shah, C. (1997), ‘Model selection in univariate time series forecasting using discrim-
inant analysis’, International Journal of Forecasting 13(4), 489-500.

Sharkey, A. J. & Sharkey, N. E. (1997), ‘Combining diverse neural nets’, The Know-
ledge Engineering Review 12(03), 231-247.

Shi, S., Da Xu, L. & Liu, B. (1999), ‘Improving the accuracy of nonlinear combined
forecasting using neural networks’, Ezpert Systems with Applications 16(1), 49-54.

125



REFERENCES

Shi, S. & Liu, B. (1993), Nonlinear combination of forecasts with neural networks,

in ‘Proceedings of the International Joint Conference on Neural Networks’, Vol. 1,
pp- 959-962.

Smith, J. & Wallis, K. F. (2009), ‘A simple explanation of the forecast combination
puzzle’, Ozford Bulletin of Economics and Statistics 71(3), 331-355.

Stock, J. & Watson, M. (2001), A comparison of linear and nonlinear univariate
models for forecasting macroeconomic time series, in R. Engle & H. White, eds,
‘Cointegration, causality and forecasting. A festschrift in honour of Clive W.J.
Granger’, Oxford University Press, pp. 1-44.

Stock, J. & Watson, M. (2002), ‘Macroeconomic forecasting using diffusion indexes’,
Journal of Business and Economic Statistics 20(2), 147-162.

Stock, J. & Watson, M. (2004), ‘Combination forecasts of output growth in a seven-
country data set’, Journal of Forecasting 23(6), 405-430.

Suykens, J., van Gestel, T., de Brabanter, J., de Moor, B. & Vandewalle, J. (2002),
Least Squares Support Vector Machines, World Scientific.

Swanson, N. & Zeng, T. (2001), ‘Choosing among competing econometric forecasts:
Regression-based forecast combination using model selection’, Journal of Forecas-
ting 20(6), 425-440.

Talluri, K. T. & van Ryzin, G. (2005), The theory and practice of revenue manage-
ment, Springer.

Tang, E., Suganthan, P. & Yao, X. (2006), ‘An analysis of diversity measures’,
Machine learning 65(1), 247-271.

Taylor, J. W. (2003), ‘Exponential smoothing with a damped multiplicative trend’,
International Journal of Forecasting 19(4), 715-725.

Terasvirta, T., van Dijk, D. & Medeiros, M. (2004), Linear Models, Smooth Transi-
tion Autoregressions, and Neural Networks for Forecasting Macroeconomic Time
Series: A Reexamination, Pontificia Universidade Catdlica de Rio de Janeiro.

Terui, N. & van Dijk, H. K. (2002), ‘Combined forecasts from linear and nonlinear

time series models’, International Journal of Forecasting, Volume 18, Issue 3
pp. 421-438.

Timmermann, A. (2006), Forecast combinations, in G. Elliott, C. Granger & A. Tim-
mermann, eds, ‘Handbook of Economic Forecasting’, Elsevier, pp. 135-196.

Tong, H. (1990), Non-linear time series: A dynamical system approach., Clarendon
Press.

University of Goettingen (2009), ‘TSTOOL software package for nonlinear
time series analysis [online]’.  Available online: http://www.dpi.physik.uni-
goettingen.de/tstool/ [03/06,/2009].

van Dijk, D. & Franses, P. (2000), Smooth Transition Autoregressive Models: A
Survey of Recent Developments, Econometric Institute.

Vilalta, R. & Drissi, Y. (2002), ‘A perspective view and survey of meta-learning’,
Artificial Intelligence Review 18, 77-95.

Vokurka, R., Flores, B. & Pearce, S. (1996), ‘Automatic feature identification and
graphical support in rule-based forecasting: a comparison’, International Journal
of Forecasting 12(4), 495-512.

126



REFERENCES

Wang, X., Smith-Miles, K. & Hyndman, R. (2009), ‘Rule induction for forecas-
ting method selection: Meta-learning the characteristics of univariate time series’,
Neurocomputing 72, 2581-2594.

Weatherford, L. & Kimes, S. (2003), ‘A comparison of forecasting methods for hotel
revenue management’, International Journal of Forecasting 19(3), 401-415.

Witten, I. H. & Frank, E. (2005), Data Mining: Practical Machine Learning Tools
and Techniques, 2nd edn, Morgan Kaufmann.

Wolpert, D. (1996), ‘The lack of a priori distinctions between learning algorithms’,
Neural Computation 8(7), 1341-1390.

Yao, X. & Islam, M. (2008), ‘Evolving artificial neural network ensembles’, IEEFE
Computational Intelligence Magazine 3, 31-42.

Zaki, H. (2000), ‘Forecasting for airline revenue management’, Journal of Business
Forecasting Methods and Systems 19, 2—6.

Zeni, R. H. (2001), Improved forecast accuracy in airline revenue management by un-
constraining demand estimates from censored data, PhD thesis, Graduate School-
Newark.

Zhang, G. (2007), ‘Avoiding pitfalls in neural network research’, Systems, Man and
Cybernetics 37(1), 3-16.

Zhang, G. P. (2004), ‘A combined arima and neural network approach for time series
forecasting’, Neural Networks in Business Forecasting, Hershey, PA: Idea Group
Publishing: pp. 213-225.

Zhang, G., Patuwo, B. & Hu, M. (1998), ‘Forecasting with artificial neural networks:
The state of the art’, International Journal of Forecasting 14(1), 35-62.

Zhao, L., Collopy, F. & Kennedy, M. (2003), ‘The problem of neural networks in
business forecasting: An attempt to reproduce the Hill, O’Connor and Remus
study’, Sprouts: Working Papers on Information Systems 3(18), 234-243.

127



	Copyright statement
	Abstract
	List of Tables
	List of Figures
	Acknowledgements
	Author's declaration
	List of Abbreviations and Symbols
	1 Introduction
	1.1 Background and motivation
	1.2 Aims and objectives
	1.3 Methodology and organisation of the thesis
	1.4 Original contributions
	1.5 List of publications

	2 Airline revenue management and forecasting
	2.1 Airline revenue management
	2.1.1 Background
	2.1.2 History
	2.1.3 The role of forecasting
	2.1.4 Lufthansa Systems forecasting basics
	2.1.5 Lufthansa Systems cancellation forecasting

	2.2 Time series forecasting
	2.2.1 Exponential smoothing
	2.2.2 ARIMA models
	2.2.3 State-space models
	2.2.4 Regime switching
	2.2.5 Artificial neural networks

	2.3 Forecast combinations
	2.3.1 Nonparametric methods
	2.3.2 Variance-covariance based methods
	2.3.3 Regression
	2.3.4 Nonlinear combinations
	2.3.5 Adaptivity
	2.3.6 Combining or not combining?

	2.4 Chapter summary and future work

	3 Do we need experts for time series forecasting?
	3.1 Choosing a forecasting approach
	3.1.1 Empirical studies
	3.1.2 Evidence on using combinations of forecasts
	3.1.3 Conclusions

	3.2 Empirical study
	3.2.1 Data sets
	3.2.2 Methodology
	3.2.3 Results (single-step-ahead)
	3.2.4 Results (multi-step-ahead)
	3.2.5 Outcomes

	3.3 Chapter summary

	4 Forecast combination for airline data
	4.1 Data set and methodology
	4.2 Individual forecasting methods
	4.3 Combinations
	4.4 Conclusions

	5 Meta-learning
	5.1 Background
	5.2 Methodology for empirical studies
	5.2.1 Exploratory analysis
	5.2.2 Comparing meta-learning approaches

	5.3 Meta-learning for competition data
	5.3.1 Time series features
	5.3.2 Exploratory analysis - decision trees
	5.3.3 Comparing meta-learning approaches
	5.3.4 Ranking in the NN5 competition

	5.4 Meta-learning for the airline application
	5.4.1 Exploratory analysis - the data
	5.4.2 Global meta-learning
	5.4.3 Local meta-learning

	5.5 Chapter summary

	6 Diversification strategies for the airline application
	6.1 Background and motivation
	6.1.1 The ambiguity decomposition
	6.1.2 Bias/variance/covariance
	6.1.3 Motivation for diversification

	6.2 Generating forecasts by diversification procedures
	6.2.1 Decomposing data
	6.2.2 Diversifying functional approaches
	6.2.3 Diversifying parameters
	6.2.4 Diversifying training data
	6.2.5 Summary

	6.3 Application-specific dynamics of the error components
	6.3.1 The interaction with the booking forecast
	6.3.2 Aggregating

	6.4 Flat combinations of diversified forecasts
	6.4.1 Diversifying level of learning
	6.4.2 Diversifying the smoothing parameter

	6.5 Advanced combination techniques
	6.5.1 Pooling and multilevel structures
	6.5.2 Evolving multilevel structures
	6.5.3 Experimental setup
	6.5.4 Results
	6.5.5 Analysis of generated structures

	6.6 Chapter summary

	7 Conclusions and future work
	7.1 Summary of the chapters
	7.2 Findings and conclusions
	7.3 Original contributions
	7.4 Future work

	A Description of the software
	A.1 Preprocessing
	A.1.1 ABS_TO_RATE and RATE_TO_ABS
	A.1.2 CONSTRAIN_RATE
	A.1.3 UNCONSTRAINING_CANC

	A.2 Data analysis
	A.2.1 DEFAULT_PROB
	A.2.2 DATA_ANALYSE
	A.2.3 FEATURES

	A.3 History building
	A.3.1 HB_SMCANC
	A.3.2 HB_REGRCANC
	A.3.3 HB_PROBCANC

	A.4 Forecasting
	A.4.1 FC_CANC
	A.4.2 FC_PROBCANC
	A.4.3 FC_META


	B Airline data experiments
	References

