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Abstract  In this paper, we first briefly introduce the multidimensional Principal Component 

Analysis (PCA) techniques, and then amend our previous N-dimensional PCA (ND-PCA) scheme 

by introducing multidirectional decomposition into ND-PCA implementation. For the case of high 

dimensionality, PCA technique is usually extended to an arbitrary n-dimensional space by the 

Higher-Order Singular Value Decomposition (HO-SVD) technique. Due to the size of tensor, 

HO-SVD implementation usually leads to a huge matrix along some direction of tensor, which is 

always beyond the capacity of an ordinary PC. The novelty of this paper is to amend our previous 

ND-PCA scheme to deal with this challenge and further prove that the revised ND-PCA scheme 

can provide a near optimal linear solution under the given error bound. To evaluate the numerical 

property of the revised ND-PCA scheme, experiments are performed on a set of 3D volume 

datasets. 

1 Introduction 

Principal component analysis (PCA) is a classical 

statistic technique that has been applied to many fields. 

Nevertheless, it can be noted that in the classical PCA 

the 2D data sample (e.g. image) must be initially 

converted to a 1D vector form. The resulting sample 

vector will lead to a high dimensional vector space. It 

is consequently difficult to evaluate the covariance 

matrix accurately when the sample vector is very long 

and the number of training samples is small. 

Furthermore, it can also be noted that the projection of 

a sample on each principal orthogonal vector is a 

scalar. This causes the sample data to be 

over-compressed. In order to overcome this kind of 

dimensionality problems, [5] and [6] separately 

proposed their individual PCA schemes for 2D case. 

For the case of high dimensionality, the higher order 

SVD (HO-SVD) has been applied to face recognition 

[2,8]. They both employed a higher order tensor form 

associated with people, view, illumination, and 

expression dimensions and applied the HO-SVD to it 

for face recognition. We formulated them into the 

N-Dimensional PCA scheme in [1]. However, the 

presented ND-PCA scheme still adopted the classical 

single directional decomposition. Besides, due to the 

size of tensor, HO-SVD implementation usually leads 

to a huge matrix along some dimension of tensor, 

which is always beyond the capacity of an ordinary 

PC. In [2,8], they all employed small sized intensity 

images or feature vectors and a limited number of 

viewpoints, facial expressions and illumination 

changes in their “tensorface”, so as to avoid this 

numerical challenge in HO-SVD computation. 

Motivated by the above-mentioned works, in this 

paper we will reformulate our ND-PCA scheme by 

introducing the multidirectional decomposition for a 

near optimal solution of the low rank approximation 

and overcome the above-mentioned numerical 

problems. 

2 Overview of Multidimensional PCA 

Techniques 

[5] firstly presented a 2D-PCA scheme by using the 

single dimensional decomposition technique for 2D 

case. It has been noted that 2D-PCA only considers 

between column (or row) correlations [4]. In order to 

improve the accuracy of the low rank approximation, 
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[6] presented a 2D-SVD scheme, that is, SVD is 

applied respectively to two covariance matrices as 

follows, 

( )( )

( ) ( )

T T

i i F
i

T T

i i G
i

F X X X X U U

G X X X X V V

     



    





, (1) 

where 2

i
X R  denotes a sample, X  denotes the 

mean of a set of samples, and ,
F G

   denote the 

diagonal matrices of the eigenvalues respectively. Let 

k
U  contains the first k principal eigenvectors of F and 

s
V  contains the first s principal eigenvectors of G. The 

low-rank approximation of X can be expressed as, 

ˆ

( )

T

k s

T

k s

X U MV X

M U X X V

  


 

. It is clear that the 2D-SVD employs 

the 2-directional decomposition, i.e. both 
k
U  and 

s
V  

appear in X̂ , while the 2D-PCA only employs the 

classical single directional decomposition. It is proven 

that the 2D-SVD can obtain a near-optimal solution 

compared to the 2D-PCA in [6]. 

For the case of high dimensionality, we presented the 

ND-PCA scheme in [1], in which a difference tensor 

was used instead of the covariance tensor as follows, 

 1
( ),...,( )

M
D X X X X   ,  (2) 

where 1 ... ...i NI I I

i
X R

  
  and 1 ... ...i NI MI ID R    , i.e. N-order 

tensors ( ), 1,...,
m
X X m M   are stacked along the ith 

dimension in the tensor D. Furthermore, applying 

HO-SVD to D generate n-mode singular vectors 

contained in ( ) , 1,...,nU n N . (For HO-SVD 

computation, refer to [7] please.) Accordingly, our 

ND-PCA scheme in [1] is expressed as, 

( )

( )

ˆ

( )

n

n n k

n T

n n k

X Y U X

Y X X U

   


  

,  (3) 

where ( )n

k
U  denotes the matrix of n-mode k principal 

vectors. It can be noted that the proposed ND-PCA 

scheme still adopted the classical single directional 

decomposition, i.e. only ( )n

k
U  is used in X̂ . However, 

unfolding a tensor along some dimensions in the 

HO-SVD implementation usually leads to a huge 

matrix, which is always beyond the capacity of an 

ordinary PC, such as, unfolding D of Eq.(2) along the 

1
st
 dimension will generate a matrix of size 

1 2 1
( ... ... )

i i N
I I MI I I


       in the HO-SVD computation. 

The size of the unfolded matrix depends upon the 

number of samples M and the sample size 
1

( ... )
N

I I  . 

3 Reformulating ND-PCA Scheme 

Introducing the multidirectional decomposition to 

Eq.(3) yield, 

1

1

(1) ( )

1 2

(1) ( )

1 2

ˆ ...

( ) ...

N

N

N

k N k

T N T

k N k

X Y U U X

Y X X U U

     


    

, (4) 

where ( )

i

i

kU  denotes the matrix of i-mode 
i
k  principal 

vectors, i = 1,…N. The main challenge is that unfolding 

the tensor D of Eq.(2) in HO-SVD usually generates an 

overly large matrix. 

First, we consider the case of unfolding D of Eq.(2) 

along the ith dimension, which generates a matrix of 

size 
1 1 1

( ... ... )
i i N i

MI I I I I
 

      . We prefer a unitary 

matrix ( )iU  of size 
i i
I I  to that of the size 

i i
MI MI . 

This can be achieved by reshaping the unfolded matrix 

as follows. 

Let 
j
A  be a 

1 1 1
( ... ... )

i i N i
I I I I I

 
       matrix and 

j=1,…M. The unfolded matrix is expressed as 

 1
,...,

T
T T

MA A A . Reshaping A into a 

1 1 1
( ... ... )

i i N i
I M I I I I

 
       matrix  1

ˆ ,...,
M

A A A , one 

can obtain an unitary matrix ( )iU  of size 
i i
I I  by 

SVD. 

Then, consider the generic case. Since the size of 

each dimension 
1
,...,

N
I I  may be very large, this still 

leads to an overly large matrix along some dimension 

of sample X. Without loss of generality, we assume that 

the sizes of dimensions of sample X are independent of 

each other. 

Now, this numerical problem can be rephrased as 

follows, for a large sized matrix, how to carry out SVD 

decomposition. It is straightforward to apply matrix 
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partitioning approach to the large matrix. As a start 

point, we first provide the following lemma. 

Lemma: 

For any matrix n mM R  , if each column 
i

M  of M, 

1
( ,..., )

m
M M M , maintains its own singular value 

i
 , 

i.e. 2( ,0,...,0)T T

i i i i i
M M U diag U , while the singular 

values of M are 
1 min( , )
,...,

m n
s s , i.e. 

1 min( , )
( ,..., ) T

m n
M Vdiag s s U , then 

min( , ) min( , )
2 2

1 1

m n m n

i i
i i

s
 

  . 

Proof: 

Let n > m. Because, 

   

2

1 1

2 2

1 1 1
,..., ( ,..., ) ,...,

m m
T T T

i i i i i
i i

T

m m m

MM M M u u

u u diag u u



 

 

 



 
, 

where 
i
u  is the first column of each 

i
U , while the 

SVD of TMM  is, 

2 2 2

1
1

( ,..., ,0,...,0)
m

T T T

m i i i
i

MM Vdiag s s V v s v


  , 

where 
i
v  is the ith column of V, we thus have, 

2 2( )
m m

T

i i
i i

tr MM s   ,            End of proof. 

The lemma implies that each column of M 

corresponds to its own singular value. Moreover, let Mi 

be a submatrix instead of column vector, n r

i
M R  . We 

have 2 2

1
( ,... ,...,0)T T

i i i i ri i
M M U diag s s U . It can be noted that 

there are more than one non-zero singular values 

1
... 0

i ri
s s   . If we let ( ) 1T

i i
rank M M  , the 

approximation of T

i i
M M  can be written as 

2

1
( ,0,...,0)T T

i i i i i
M M U diag s U . In terms of the lemma, we 

can also approximate it as 2

1 1 1 1 1

T T T

i i i i i i i
M M M M u u  , 

where 
1i

M  is a column of Mi corresponding to the 

biggest singular value 
1i

  of column vector. On this 

basis, 
1i

M  is regarded as the principal column vector 

of the submatrix Mi. 

We can rearrange the matrix M by sorting these 

singular values { }
i

  and partition it into 2 block 

submatrices 
1 2

ˆ ( , )M M M  (assume m ≥ n below), so 

that 
1

M  contains the columns corresponding to the 

first k biggest singular values while 
2

M  contains 

others. Note that M̂  is different from the original M 

because of a column permutation (denoted as 

Permute). Applying SVD to each 
i

M  respectively 

yields, 

  1 1

1 2

2 2

ˆ ,

T

T

V
M U U

V

   
   

  
. (5) 

Thus, matrix M̂  can be approximated as follows, 

  1 1

1 2

2

ˆ ˆ ,
0

T

T

V
M M U U

V

   
    

  
. (6) 

In order to obtain the approximation of M, the inverse 

permutation of Permute needs to be carried out on the 

row-wise orthogonal matrix of 1

2

T

T

V

V

 
 
 

 given in 

Eq.(6). The resulting matrix is the approximation of the 

original matrix M. The desired principal eigenvectors 

are therefore included in the matrix of 
1
U . 

Now, we can re-write our ND-PCA scheme as, 

1

1

(1) ( ) ( )

1

(1) ( )

1

( )

ˆ ... ...

( ) ...

 is from Eq.(6)

i N

N

i

i N

k i k N k

T N T

k N k

i

k

X Y U U U X

Y X X U U

U

     


   



. (7) 

For comparison, the similarity metric can adopt the 

Frobenius-norms between the reconstructions of two 

samples X and X   as follows, 

ˆ ˆ
FF

X X Y Y      .  (8) 

Furthermore, we can give out the following 

proposition. 

Proposition: 

X̂  of Eq.(7) is a near optimal approximation to 

sample X in a least-square sense. 

(For proof, please refer to appendix.) 

4 Experiments 
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Fig.3. Comparison of the reconstruction through 1-mode, 

3-mode and 1-mode+2-mode+3-mode principal subspace 

respectively. The scheme of Eq.(7) converges quicker than 

that of Eq.(3). 

 

a. single direction.     b. multi-direction. 

Fig.5  Comparison of the reconstructions by using single 

directional decomposition and multidirectional composition in 

terms of the normalized residual errors. 

The proposed ND-PCA approach was performed on a 

3D range database of human faces used for the Face 

Recognition Grand Challenge [3]. In order to establish 

an analogy with a 3D volume dataset or higher 

dimensional solid dataset, we embedded each 3D 

range dataset into a 3D array and mapped the pixels of 

the corresponding 2D face image to the voxels of the 

3D array. For the sake of memory size, the 

reconstructed volume dataset was then re-sampled to 

the size of 180×180×90. 

The experiment is to test the quality of the 

reconstructed sample. Within our 3D volume dataset, 

we got the 1-mode, 2-mode and 3-mode singular 

vectors, which can span three independent orthogonal 

spaces respectively. Our objective is to test which 

manner leads to the best reconstruction quality based 

on these three spaces. To this end, we first compare 

the residual errors of reconstructions by performing 

Eq.(7) on the 1-mode, 3-mode and 

1-mode+2-mode+3-mode principal subspaces 

respectively. (Note that when Eq.(7) is performed on 

1-mode or 3-mode principal subspaces, it will 

degenerate into Eq.(3).) The residual errors and 

conclusion are shown in Fig.3. To (1)U  and (3)U , as 

their dimensions are different, the ranges of principal 

component numbers k are different too. If the curve of 

3-mode (solid curve) is quantified to the same length 

of row coordinate as the curve of 1-mode (dashed 

line) in Fig.3, there isn't substantial difference 

compared to the 1-mode test, i.e. the curve of 3-mode 

is similar to that of 1-mode. The reconstructed results 

based on Eq.(3) are not affected by the difference 

between the different n-mode principal component 

subspaces. 

Furthermore, in the test of 1-mode+2-mode+3-mode 

principal component subspace, the numbers of 

principal components k are increased each time by 2 

for both (1)U  and (2)U  while increased by 1 for (3)U , 

and the maximum k are set to 180 for (1)U  and (2)U  

while 90 for (3)U . 

To compare the multidirectional decomposition with 

the single dimensional ones, we show the 

reconstructed results of the single directional 

decomposition (i.e. 2D-PCA and ND-PCA scheme of 

Eq.(3)) in Fig.5a and the multidirectional 

decomposition (i.e. 2D-SVD and ND-PCA scheme of 

Eq.(6-7)) in Fig.5b. The residual errors of 

reconstruction are normalized to the range of [0,1]. 

One can note that the multidirectional decomposition 

performs better than the single directional 

decomposition in the case of a small number of 

principal components. But then Fig.5a (or Fig.5b) also 

seems to show that 2D-PCA (or 2D-SVD) performs a 
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little better than ND-PCA scheme of Eq.(3) (or 

Eq.(6-7)) when only a small number of principal 

components are used. In our opinion, there is no 

visible difference in the reconstruction quality 

between 2D-PCA (or 2D-SVD) and ND-PCA schemes. 

This is because the reconstructed 3D volume dataset is 

a sparse 3D array (i.e. only the voxel values on the 

face surface are not equal to zero but all the others are 

equal to zero), it is therefore more sensitive to 

computational errors compared to a 2D still image. If 

the 3D volume datasets were solid, e.g. CT or MRI 

volume datasets, this difference between the two 

curves in Fig.5a (or Fig.5b) would not noticeably 

appear. 

5 Conclusions 

In this paper, we amended our previous ND-PCA 

approach in [1] by introducing the multidimensional 

decomposition technique. The novelties of this paper 

include, 1) introducing the multidirectional 

decomposition and overcoming the numerical 

difficulty of large matrix SVD decomposition; 2) 

giving out the estimation of error bound. The 

experimental results indicate that the revised ND-PCA 

scheme could effectively improve the accuracy of 

reconstruction. In future work, we will apply the 

ND-PCA scheme to the multimodal face data fusion 

and recognition and develop a practical prototypical 

system. 

 

Appendix 

Proof. 

According to the property 10 of HO-SVD in [10], we 

assume that the n-mode rank of ( )X X  be equal to 

(1 )
n
R n N   and ˆ( )X X  be defined by discarding 

the smallest n-mode singular values ( ) ( )

1
,...,

n n

n n

I R
    for 

given 
n
I  . Then, the approximation X̂  is a near 

optimal approximation of sample X. The error is 

bounded by Frobenius-norm as follows, 

1

1

1 1

2
(1)2 ( )2

1 1

ˆ ...
N

N

N N

RR
N

i i
F i I i I

X X  
    

     . (A1) 

This means that the tensor ˆ( )X X  is in general not 

the best possible approximation under the given 

n-mode rank constraints. But under the error 

upper-bound of Eq.(A1), X̂  is a near optimal 

approximation of sample X. 

Unfolding ( )X X  along ith dimension yields a 

large matrix which can be partitioned into two 

submatrices as shown in Eq.(5), i.e. 

    1 1

1 2 1 2

2 2

ˆ , ,

T

T

V
M M M U U

V

   
    

  
. 

Let   1 1

1 2

2

ˆ ,
0

T

T

V
M U U

V

   
    

  
 as shown in Eq.(6). 

Consider the difference of M̂  and ˆ n mM R   as 

follows, 

  1

1 2

2 2

0ˆ ˆ ,

T

T

V
M M U U

V

  
    

  
, 

where , , , 1,2i i im m n mn n

i i i
U R V R R i      . It can be 

noted that the 2-norm of 1

2

T

T

V

V

 
 
 

 is 1, and that of 

2

0 
 

 
 is 

2
max{ : }   . As 

   1 2 1

1 2

, ,
n n

n n n n T

I
U U U I I

U U



 

 
  

 
, 

we can note that the 2-norm of both the orthogonal 

matrix 
1
U  and 

1 2

n n

T

I

U U

 
 
 

 are 1, and that of 

 ,
n n n n
I I

   is 2  because of identity matrix 
n n
I


. 

Therefore, we have, 

2
2

2
2

ˆ ˆ 2max { : }M M     ,  (A2) 

in a 2-norm sense. 

Substituting Eq.(A2) into Eq.(A1) yields the error 

upper-bound of X̂  as follows, 

    

2

2 (1) (1) (1) 2 ( ) ( ) ( )

2 2

ˆ

2 max : ... max :

F

N N N

X X

   



    

. 
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This implies that the approximation X̂  of Eq.(7) is a 

near optimal approximation of sample X under this 

error upper bound.               End of proof. 
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