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ABSTRACT 

The realism of character animation is associated with a number of tasks ranging from 

modelling, skin deformation, motion generation to rendering. In this research we are 

concerned with two of them: skeletonization and weight assignment for skin deformation. 

The former is to generate a skeleton, which is placed within the character model and links 

the motion data to the skin shape of the character. The latter assists the modelling of 

realistic skin shape when a character is in motion. 

In the current animation production practice, the task of skeletonization is primarily 

undertaken by hand, i. e. the animator produces an appropriate skeleton and binds it with 

the skin model of a character. This is inevitably very time-consuming and costs a lot of 
labour. In order to improve this issue, in this thesis we present an automatic 

skeletonization framework. It aims at producing high-quality animatible skeletons 

without heavy human involvement while allowing the animator to maintain the overall 

control of the process. 

In the literature, the term skeletonization can have different meanings. Most existing 

research on skeletonization is in the remit of CAD (Computer Aided Design). Although 

existing research is of significant reference value to animation, their downside is the 

skeleton generated is either not appropriate for the particular needs of animation, or the 

methods are computationally expensive. Although some purpose-build animation skeleton 

generation techniques exist, unfortunately they rely on complicated post-processing 

procedures, such as thinning and pruning, which again can be undesirable. 
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The proposed skeletonization framework makes use of a new geometric entity known as 

the 3D silhouette that is an ordinary silhouette with its depth information recorded. We 

extract a curve skeleton from two 3D silhouettes of a character detected from its two 

perpendicular projections. The skeletal joints are identified by down sampling the curve 

skeleton, leading to the generation of the final animation skeleton. 

The efficiency and quality are major performance indicators in animation skeleton 

generation. Our framework achieves the former by providing a 2D solution to the 3D 

skeletonization problem. Reducing in dimensions brings much faster performances. 
Experiments and comparisons are carried out to demonstrate the computational simplicity. 

Its accuracy is also verified via these experiments and comparisons. 

To link a skeleton to the skin, accordingly we present a skin attachment framework 

aiming at automatic and reasonable weight distribution. It differs from the conventional 

algorithms in taking topological information into account during weight computation. An 

effective range is defined for a joint. Skin vertices located outside the effective range will 

not be affected by this joint. By this means, we provide a solution to remove the influence 

of a topologically distant, hence highly likely irrelevant joint on a vertex. A user-defined 

parameter is also provided in this algorithm, which allows different deformation effects to 
be obtained according to user's needs. 

Experiments and comparisons prove that the presented framework results in weight 
distribution of good quality. Thus it frees animators from tedious manual weight editing. 
Furthermore, it is flexible to be used with various deformation algorithms. 
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Chapter 1. Introduction 

CHAPTER I 

INTRODUCTION 

The emergence of character animation can be traced back to the early 1900's 

when a short film Gertie the Dinosaur was on air [Vince 2000]. Ever since the use 

of computers was extended to the graphics domain, it aroused great interest in 

bringing a virtual character to life by the aid of computer. During nearly a century, 

character animation has gone through stages from 2D cartoon to computer aided 

2D animation, until true 3D animation. It plays an increasingly significant role 

nowadays in vast areas such as training and entertaining industries. 

Character animation features manipulating a digital figure to produce an illusion 

of its moving. The figure is usually expressed by a surface mesh. Researchers 

have explored numerous methods to handle a character model mesh feasibly. For 

an articulated body, to control it with its skeleton, namely skeleton-driven 

animation, maintains the dominant method in current systems. The deformation of 

the surface is rendered through calculating displacements of the skeleton over 

animation time period. 

Magnenat-Thalmann et al. [1988] is credited for putting forth the method, namely 
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Chapter I. Introduction 

Joint-Dependant Local Deformation (JLD), which is considered to be one of the 

earliest techniques to derive surface deformation of a 3D articulated object using 
its skeleton. 

Improvements and innovations in techniques have advanced since then during the 

development of skeleton-driven animation. A great deal of them has already been 

integrated successfully into commercial software packages during past years. 

They tackle different issues raised from animation. 

User friendly interfaces and tools are provided by these packages to ensure easy 

access for even novices. With their help, modelling 3D characters has become 

much simpler than before. However, deforming the surface of a 3D character in a 
lifelike pattern remains a tricky subject. 

An anatomical based approach was proposed by Scheepers et al. [1997], Wilhelms 

and Gelder [1997], etc. This approach adopts anatomical body configuration to 

create an animatable character model. It takes into account the internal structure 

which affects the final outcomes of deformation, thus it is capable of producing 

robust graphical realism. Scheepers et al. [1997] also concluded a typical 

anatomical based model as three layers: the skeleton layer, the musculature layer 

which may includes fatty tissues and the skin layer which is represented by 

surface mesh. 

The modelling process of an anatomical based approach works by establishing the 

model from inside out, i. e. it requires animators to first set up the skeleton, then 
lay the muscles and finally spread the skin. The musculature layer has to be 

described explicitly and precisely to fit the external skin shape. This process is 

opposite to the conventional animation workflow during which the skin layer is 

the first to be created. This opposition in a certain extent makes the modelling 
result unpredictable and requires repeatedly manual amendments to reach desired 
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goals. Although Pratscher et al. [2005] proposed an outside-in method trying to 

overcome this inconvenience, it only serves ellipse-shaped muscles bearing very 

simple movements. 

Moreover, the deformation is derived from the overall shape of muscles and fatty 

tissues. Extra parameters and functions are introduced to express influences taken. 

This adds up to computational complexity during rendering. 

Outstanding graphical effects anatomical-based approach may bring, it suffers 

from unintuitive modelling process and high computational cost. These drawbacks 

prevent it from being popularized in animation industries. 

An alternative approach regards that the skeleton transformation has a direct 

impact on its skin. It attempts to resemble skin movements without considering 

the anatomic in-between layer of muscles and fatty tissues. 

Direct deduction of skin deformation from the skeleton has been wide-spread in 

the animation industry, especially in applications where rendering speed is found 

crucial, such as in computer games, due to its computational simplicity and 

efficiency. 

During the procedure of this direct deduction, each vertex among the model's 

surface mesh is attached to a chosen set of joints in the skeletal hierarchy with 

corresponding weight values for indicating the influence a specified joint has on 
that vertex. The final motion of a character is taken from the combined 

transformation of all the related bones or joints, thus appropriate skeleton 

construction and weight assignment are vital steps to achieve performances which 

are computationally efficient and visually convincible. 

To set up a hierarchy, building up bones or joints in a skeleton is mainly 
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Chapter 1. Introduction 

completed through manual work in existing commercial animation software 

packages. The structure of the hierarchy is also established by hand based on 

generally accepted examples. Techniques of generating the skeleton from the 

surface mesh of a 3D model automatically or semi-automatically have been 

discussed by many researchers in earlier years, yet they do not serve animation as 

their primary purpose that either the skeleton they produce is not organized for the 

convenient controlling of animation or the model mesh needs tedious 

pre-processing. 

Apart from setting up a skeleton manually, allocating weights by hand is another 

and probably much more burdensome task. Most of the commercially used 

animation software spread weight values according to the Euclidean distance 

between the vertex and the particular joint. To select the set of relative joints is 

also based on the Euclidean distance. This mechanism of delivering initial weight 

always puts irrelevant influences in consideration. It is left to animators to polish 

up the distribution to obtain feasible values. 

In spite of the efforts traditional modelling and animation techniques have made 
to offer support to animators, efficiency and quality of the techniques either much 
depend on professional experience and skills of animators as a major part of the 

work has to be done manually, or relies on a large number of pre-obtained 

good-quality examples. Moreover, anatomical knowledge may be needed in some 
cases. This makes the whole process difficult to grasp and highly time consuming. 

To solve the problems mentioned above, in this thesis we propose an automatic 

skeleton generation and skin attachment framework. Within this framework, we 
develop effective algorithms for skeletal character animation. Compared to 

traditional method, our method is easy to use, and the result is of rather good 
quality. It supplies animators with models possessing considerably accurate body 
details whilst saving them from the tedious work of locating the joints and 
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adjusting the skin weights manually. At the same time, this algorithm provides 

enough flexibility, allowing animators of fine tuning according to their needs. 

1.1 Framework and Applications 
In this thesis, we will present a framework of automatic skeleton extraction, and a 

framework of weight distribution. 

1.1.1 Skeleton Generation Framework 

The traditional means of generating an animatable skeleton is to accomplish the 

construction by hand. When a mesh of a 3D model is supplied, animators will 

locate joints and construct the skeleton hierarchy manually. This is a 

labour-intense process. And the ease of control over the skeletal model depends a 

great deal on animators' personal experiences. 

Other automatic or semi-automatic skeleton generation frameworks primarily 

concern solving rather `general' cases, e. g. CAD. The algorithms that they 

employed to construct the 3D curve skeleton of a model, such as voxelization, 

thinning and pruning, are computationally expensive. They are not suitable for 

character animation. 

In our framework, we propose a skeleton generation algorithm from a different 

angle. This framework takes advantage of the fact that common 3D animation 

characters such as humans and animals are usually composed of a series of 

segments whose cross-sections are approximately elliptic. Therefore the 

projection of their 3D curve skeleton on a 2D plane can be approximated with the 

2D medial axis of the projection of the original model in the same projection 

orientation. It suggests that the problem of finding a 3D curve skeleton can be 

settled in 2D spaces. It allows for developing an efficient and effective 

purpose-built skeleton generation approach for animating various characters. 
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1.1.2 Skin Attachment Framework 

The most widely adopted method by existing animation software to define weight 

values is to compute first the distances between a vertex and the joints. A number 

of joints are then selected as a relevant influence set based on the geometrical 

closeness. Popular animation software, e. g. Maya, usually chooses 4-5 closest 

joints as the related joint set. During skin attachment, weights are blended in 

accordance with its proportion based on its distance. This distribution is quite 

rough. Careful rectification has to be made manually afterwards in order to get 

desired deformation. 

In this thesis, we come up with a solution which tries to compute skin weights 

automatically with enhanced usability. We first segment the mesh into different 

regions of which each is associated with one joint. Then we base the weight 
distribution on the distance between the vertex and the region boundary. This 

algorithm associates a vertex with a more realistic influence joints set. Thus the 

distortions resulting from getting irrelevant influences may be reduced. 

1.1.3 Applications 
We contribute our framework to realistic skeletal 3D character animation, yet its 

application is not confined. Techniques derived during the research, e. g. the 3D 

silhouette detection, might be applied to other fields as well. 

1.2 Objectives 
The overall objective of the framework proposed here is to develop an automatic 

skeletonization and skin attachment approach whilst not breaking the traditional 

animation work pipeline. The framework is expected to possess qualities in the 

following aspects: 

" It should be easy to use. The method proposed should aim at not only 
professional animators but also novices with little experience in animation. 
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With the most tedious and skilful part accomplished by computer, character 

animation would become a more accessible work. 
" It should be intuitive and interactive. Fine tunings should be allowed on 

outcomes during both skeleton generation and skin attachment processes in 

order to suit different needs in applications. 

" It should be example-independent. Pre-obtained example database may 
facilitate the refinement of the results but is not necessary in both skeleton 

generation and weight computation process. 
" It should produce more accurate results which can be used in animation with 

much less manual supervision than before. This will save labour and time of 
animators. 

" Most importantly, it should be compatible with the current industrial 

animation pipeline, which will make it possible to be directly adopted in 

commercial software. 

1.3 Thesis Layout 
The structure of the thesis is presented in figure 1.1. 

An overview of this thesis is given in Chapter 1. It outlines the objective and basic 

methodology of our work. 

Chapter 2 introduces character animation and some difficulties encountered by 

skeleton-driven animation on a general background, which explains the 

motivation of our research. Previously developed techniques regarding both 

skeleton generation and skin deformation will be reviewed in this chapter as well, 

which lays the foundation of our research. 
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Chapter 3 presents our framework of automatic skeleton extraction which regards 

character animation as its main purpose. 

Chapter 4 constructs a reliable weight computation framework as a solution to 
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manual weight painting currently used in animation software. 

In Chapter 5, we give examples which result from our proposed framework. We 

compare the results derived from our framework with those derived from other 

algorithms. The advantage of our framework is examined and discussed in this 

chapter as well. 

Chapter 6 concludes the whole thesis, and will look into some aspects of possible 
future work. 
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Chapter 2. Related Work 

CHAPTER 2 

RELATED WORK 

To attain believable effects in computer animation relies on accurate graphical and 

mathematical representations, and feasible instructions during the animation 

process which generate and render a motion sequence. Thus developing 

algorithms and a framework which helps to improve visual realism is one of the 

issues of primary research interest. 

In this chapter, we will first briefly introduce the general background of character 

animation. Then previously developed techniques which are related to our 
research, such as rigging and skinning, will be reviewed in detail. 

2.1 Character Animation 
The main idea of character animation is to associate computer generated figures, 

either human or non-human, with visually convincible movements [Vince 2000]. 

In industry pipeline, it undergoes several stages including: story design, which 
lays out the plot and the guidance of desired characters; modelling, which is 

concerned with setting up the character's geometry; and animating, which assigns 

appropriate motion data to the character. 
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A popular approach of animating an articulated character is skeleton-driven 

animation. To facilitate the description of our research, a general background to 

the basics of the skeleton-driven character animation is given in this section. It 

lays the foundation for better understanding of our skeletonization and skin 

attachment framework. 

2.1.1 Layered Model 

In animation practice, every movement of a virtual character is created by 

manipulating a computer-generated model. A better quality model enhances the 

sense of reality. At the same time, it usually increases the amount of data to be 

processed. To get around this issue, animators often use a layered model structure 
in character animation. 

The shape of a character is represented by its surface which is called skin. The 

skin can be approximated by different geometric entities, such as polygons 
[Botsch et al. 2007], or by parametric surfaces [Eck and Hoppe 1996] [Shen et al. 
1994]. The most common description of such a surface is a triangular mesh which 
is composed of interconnected vertices, for its flexibility in approximating 

arbitrary topologies. 

The skin usually consists of a large amount of vertices, which makes it extremely 
expensive in terms of computation to be animated directly. Consequently, a lower 

resolution representation was introduced into animation, which is called skeleton. 
It provides a means of easy control over an animation process: specify the 

skeleton movements in each animation frame and transformations will be passed 
to skin as designed. 

Skin and skeleton are considered as two requisite elements for a character model 
used in skeleton-driven animation. In-between layers, such as musculature or fatty 
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tissues, sometimes are appended to provide extra details for the model [Scheepers 

et al. 1997] [Yang and Zhang 2006a]. In this case, other methods are demanded to 

describe their representations and animated effects. 

2.1.2 Rigging 

In skeleton-driven animation. rigging, which defines how the internal structure 

(skeleton) affects the movements of the model surface, is the basis of character 

animation framework. 

2.1.2.1 Skeleton Generation 

The skeleton used in animation is purposed for controlling the character. Thus it is 

not necessary that it strictly depict the anatomical skeletal structure of a character. 

However, in the interest of graphical realism, understanding the anatomy is 

important for rigging. Poor placement of joints may cause severe distortions. 

Figure 2.1(a) and (b) illustrates the anatomical skeleton and the animatible 
skeleton of a human character. 

(a) 
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(b) 

figure 2.1: An illustration of skeleton: (a) an anatomical skeleton; (b) an 

example of an animatible skeleton. 

The animatible skeleton is a set of hierarchically organized joints embedded in the 

skin mesh [Kavan and Zara 2003]. Each joint is described by variables specifying 
its position and orientation, and each connecting pair of joints is bound by a 

parent-child relationship. 

With current state-of-the-art commercial software, generating a skeleton is mainly 
done by hand. Animators have to manually locate each joint inside a character, 

which is a time-consuming and skilful task. 

Techniques on automatic skeleton generation have been produced. Due to 

different unsuitabilities, they have not been adopted in the modern industrial 

animation pipeline. The following section will give an overview on their pros and 

cons. 

2.1.2.2 Skin Attachment 
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Joints in the skeleton will not be rendered to be seen during runtime. They are 

actually matrices or other mathematical forms which represent transformations. 

Therefore, after setting up the skeleton hierarchy, it needs to be bound to the skin 
in order to display the visual effects. 

Each vertex in the mesh is associated with the skeletal joint with a scalar value 

which is referred to as weight. Weight reflects how much influence a joint 

contributes to a vertex. The larger the weight value is, the greater the joint 

influence on the vertex is. 

Basically, skin attachment methods can be categorized into two groups based on 

the number of joints a vertex is attached to. In the animation software Maya, it is 

referred to as rigid skinning and smooth skinning. Rigid skinning confines the 

attachment of a vertex to only one joint, while smooth skinning attaches a vertex 
to several joints. In the latter case, the movement of the vertex is regarded as 

transformed by each attached joint respectively and the final position is 

interpolated by all the transformed positions. 

In current animation pipeline, animation software provides an initial weight 
distribution. However, the quality is often too poor to be used in animation. Again 

animators have to manually adjust the weights, often referred to as weight 

painting, to achieve correct skin deformations, which is one of the most tedious 

processes in character animation. Several algorithms have been proposed which 
intend to evaluate the influence of a joint on a vertex automatically. However, 

they failed in compatibility so that they have not been integrated into current 

animation systems. 

2.1.3 Animating 

The stage of animating, i. e. bringing a character to life, is the most crucial phase 
during computer animation procedure. 
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2.1.3.1 Skeleton Animation 

Many techniques can be applied to the skeleton to determine joint movements at 

each presented frame. The animation of a skeleton yields to its underlying 

hierarchical structure: Transformations are inherited by a child joint from its 

parent joint [Clark et al. 2005]. 

The keyframing technique allows the animator to draw a few `key' frames, and 

leaves in-between frames interpolated by the computer. It is adopted by almost all 

the animation systems. Another technique to define joint movements over time is 

to modify them using parametric curves. When a prototype of virtual character 

exists in reality, motion capture techniques can be used as well to obtain realistic 

motion data [O'Rourke 1998]. 

2.1.3.2 Skin Deformation 

A major topic in character animation is to express changes that made upon shape 

of its surface with its skeleton, which is often referred to as skin deformation or 

skinning. Numerous approaches regarding this area have been explored to cope 

with model features [MacCracken and Joy 1996] [Singh and Fiume 1998] [Shen 

et al. 1994] [Hyun et al. 2003]. 

In skeleton-driven animation, with each vertex in the skin mesh attached to the 

skeleton, different level of influences are taken from joints according to the 

weight associated. Various strategies are provided to define the deformation. 

2.1.4 Summary 

Character animation applies appropriate motion data to computer generated either 
human or non-human figure models. Given that human perception to distortions 

occurred on a character is usually sensitive, when visual realism is the purpose, it 

could be difficult to achieve. 
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In this section, we have presented a brief introduction to skeleton-driven character 

animation. Skeleton-driven character animation has become a de facto industrial 

standard, yet with current animation software, to achieve the desired result 

involves a great deal of manual work. In the following sections, we will review 

related algorithms and techniques previously developed which aim to achieve 

realistic results with less manual intervention. 

2.2 Skeletonization 
As stated earlier, the skeleton plays a fundamental role in skeleton-driven 

animation. Placing a skeleton is still mainly done by hand in current animation 

industries, although researches on automatic skeleton generation started a long 

time ago. Among these automatic skeletoniztion methods, numerous researchers 

focus on extracting a curve skeleton which roughly resembles a desired animatible 

skeleton, others aim at obtaining the skeleton of a target model by referring to a 

template model. 

2.2.1 Curve Skeleton Extraction 
Although differing in terms of mathematical ways, curve skeleton [Dey and Sun 

2006] [Lieutier 2003] and medial axis [Blum 1967] are two closely related 

concepts. They are both 1D representations which encodes topological 

information of the original object. The curve skeleton can be represented by or 

generated from the medial axis in many applications. 

Most of curve skeleton extraction algorithms are based on drawing medial axis of 

the model. An overview of curve skeleton generation has been given by Cornea et 

al. [2007]. Depending on the mesh type with which is dealt, existing extraction 

algorithms fall into two main categories: volumetric-based and geometric-based. 
The former handles volumetric solid meshes, while the latter handles surface 

meshes which can be regarded as a 2D surface embedded into 3D space. 

26 



Chapter 2. Related Work 

2.2.1.1 Volumetric-based Method 

Volumetric-based method can be further divided into three classes: thinning, 

distance field based, and general field based. 

Thinning methods use templates or masks against which all boundary voxels are 

tested to determine whether it is a simple point, i. e. a point which can be removed 

whilst the topology of an object is preserved. Curve skeletons are generated by 

iteratively removing simple points inward until it reaches the desired thinness. 

[Ma et al. 2002] [Svensson et al. 2002] 

The fact that this method relies on removing simple points increases the risk of 

excessive shortening of curve-skeleton branches since an end-point of curve 

skeleton itself is a simple point. Furthermore, the curve skeleton produced by 

thinning algorithms is not always smooth. Wang and Lee [2008] proposed a 

method to achieve smoother skeleton by applying an iterative least-squares 

optimization to shrink models before thinning, but the skeleton it produced suffers 

the potential problem of losing good centrality. 

Distance field methods define the smallest distance from an interior point of an 

object to the boundary as the distance field of that point. They attempt to detect 

the ridges of the distance field to identify those locally centred voxels within an 

object as candidates. A curve skeleton is extracted by pruning down the candidate 

voxel set and then connecting the remaining voxels. [Couprie et al. 2007] [Bitter 

et al. 2001 ] [Zhou and Toga 1999] 

These methods are most successful in extracting medial surfaces and the 

computation of a distance field is fast. The drawback is that the candidate voxel 
set is considerably large in quantity and additional processing methods are 

required to extract curve skeletons out of medial surfaces. 
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General field methods [Chuang et al. 2000] make use of functions to create a 

field other than distance field. The field of an interior point is defined as the sum 

of potentials regarding the object's boundary which are generated by certain 

function. Cornea et al. [2005] considered boundary voxels also as points. These 

methods extract curve skeleton by detecting and connecting local extremes of the 

field. Grigorishin et al. [1998] presented an electrostatic field function to generate 

a potential inside a 3D object to extract the curve skeleton, while radial basis 

functions are adopted by Ma et al. [2003]. Liu et al. [2003] introduced the 

Newtonian repulsive force to solve the searching problems, which can be regarded 

as a special case proposed by Chuang et al. [2000]. 

The main advantage of general field methods is that they are capable of generating 

nicer curves on medial surfaces than distance field methods do. However, this 

merit is achieved at the price of sacrificing computation efficiency and numerical 

stability. 

Volumetric-based methods require the model mesh to be volumetrically solid. 

However, the models provided in animation are usually only surfaces. 

Pre-processing, such as voxelization, is always required. The voxel size has to be 

smaller than model features in order to describe details of a model correctly. This 

adds significant complexity, hence leads to extra computation costs. 

2.2.1.2 Geometric Method 

Geometric based method is most applicable to models which are represented by 

discrete points or polygonal surface meshes. 

Voronoi diagram is widely used in geometric-based method category for its 

simplicity and intuitiveness [Brandt and Algazi 1992] [Wu et al. 2006]. The 
Voronoi diagram can be generated by either vertices of a 3D polygonal mesh or a 
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set of scattered vertices. It describes a subdivision of a metric space into regions 

of which each consists of elements closest to a generator element than all the rest 

elements. Internal faces and edges of these regions are used in extracting the 

medial surface of a 3D object. 

M-reps [Pizer et al. 1999] obtain the medial surface on the basis-of generalized 

cores which provides additional information of local shape of the object. The 

medial surface is modelled with a web formed by connected cores. Shock 

scaffold is similar in basing its extraction method on contact spheres. It extracts 

the medial surface by a propagation of an initial source along the scaffold 
[Leymarie and Kimia 2003]. In a later study [Leymarie and Kimia 2007], medial 

scaffold was proposed which intends to improve the shock scaffold method. 

Instead of producing medial axis directly, Voronoi diagram methods, M-reps and 

scaffold methods all produce approximation of medial surface, which is similar to 

the methods using distance field functions. Although further processing, such as 

pruning or curve thinning, can be applied to achieve medial axis [Culver et al. 
2004] [Yang et al. 2004], it increases the computational cost. 

Reeb graph based methods have attracted much attention in recent years. The 

Reeb graph is a 1D structure which represents the topology of the model by 

establishing correspondence between its nodes and critical points of the function 
defined on the model surface. Reeb graph is not a curve skeleton, yet an 

embedding of Reeb graph into the original space of an object can be used to 
define a curve skeleton for the object [Pascucci et al, 2007]. Biasotti et al. [2000] 

and Xiao et al. [2003] extended the application of Reeb graph to polygonal 

meshes. 

Reeb graph directly generates 1D skeleton from the object. It maintains a 
comparative insensitivity to boundary noise. However, most Reeb-graph-based 
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methods require the user to set the boundary conditions explicitly, which is a task 

of difficulty. And re-sampling on model surface is needed to increase the skeletal 

nodes which can be obtained. 

Mesh contraction method was presented by Au et al. [2008] to extract the 

skeleton using implicit Laplacian smoothing. The contracted mesh is then 

converted into a 1D structure curve through a connectivity surgery process. The 

result of this method is of good quality. However, it shows some obvious 

disadvantages besides the limitations mentioned by the author. For example, to 

ensure the collapsed shape preserve the original geometry in contraction process, 

the weights of attraction and contraction constraints for different vertices must be 

carefully set, which is a difficult task for animators in practical use. Moreover, the 

geometry contraction is also a very time-consuming process. 

Point cloud was proposed most recently by Tagliasacchi et al. [20091 to extract 

the skeleton from incomplete point clouds with missing data information. They 

used a planar cut in search of rotational symmetric axis (ROSA) points which are 

connected into a curve skeleton. Field function or intermediate surface 

representation is not required by this method. However, the convergence of the 

planar cutting is not proved. Moreover, it involves a great deal of optimization and 

parameterization, which indicates a high level of complexity of this method. 

The skeletonization algorithm presented in this thesis belongs to geometric based 

category. It extracts a curve skeleton using Voronoi diagram generated from 

constrained Delaunay triangulation. However, compared with other methods 

which also feature Voronoi diagram, one remarkable advantage of our algorithm is 

that the result from the two perpendicular silhouettes is the 3D medial axis, not 

medial surface. It can generate a curve skeleton directly without post-processing 

such as thinning and pruning, which significantly speeds up the computation. 
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2.2.2 Skeleton Embedding 

Skeleton embedding differs from the above methods which extract curve skeleton 

as the groundwork for generating an animatible skeleton. Skeleton embedding 

obtains an animatible skeleton of a given model by applying an existing template 

to it. 

To obtain an optimal skeleton fitting for the given model, Baran and Popovic 

[2007] designed a maximum-margin supervised learning method with a set of 

hand-constructed penalty functions. They also presented a Laplace's diffusion 

equation based method for skin attachment. Their method is fast enough, capable 

of rigging a character model of over 50,000 vertices in less than one minute on a 

midrange PC. However, it asks for well-proportioned character models and often 

fails in correctly positioning knees and elbows. 

Aujay et al. [2007] presented a method which combines Reeb graph and skeleton 

embedding. It constructs the Reeb graph of a harmonic function, which gives the 

overall morphological structure of the model. Then it is refined and embedded to 

generate the animatible skeleton by the aid of anatomical information. This 

approach is quite fast as well, yet it needs tuning of parameters and a reference 

anatomical template of the character during the refining process. 

Skeleton embedding method in general requires that a character model has 

approximately the same proportion and pose as the template. Moreover, every 

type of character needs a template of its own. For example, in the paper of Baran 

and Popovic [2007], the embedding method was only applied to the human-like 

characters due to the template they have held. To set up various templates 

indicates extra labours to be taken. 

2.2.3 Skeleton Generation by Mesh Decomposition 
Decomposing a model can facilitate skeleton generation, for it provides guidance 
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for understanding the model structure. Our skeletonization framework benefits 

from mesh decomposition as well. 

Generating the skeleton with mesh segments was mentioned in the study of Katz 

and Tal [2003]. Their method segments mesh into meaningful components which 

are in forms of hierarchically structured patches according to region concavity. 
The skeleton thus could be inferred by associating each patch with a joint. The 

hierarchy of the skeleton can be deduced as well from the hierarchy of skin 

patches. However, the complexity involved in mesh segmentation of this method 

slows down the process of generating skeleton. 

In Lien et al. [2006], skeleton is also generated from decomposed mesh. They first 

generated a simple skeleton from the input model either using centroids, which is 

easier, or using the principal axis, which is more accurate. The skeleton is checked 

against some criteria defined by the user. If the quality is not satisfied, the model 
is further decomposed into finer segments. Skeleton extraction is then performed 

according to each component and is expected to evolve to a better quality. The 

mesh decomposition and skeleton extraction are repeated in turn, until the desired 

result is achieved. Obviously, this approach means a process of tedium, where our 

skeleton extraction framework intends to improve. 

2.2.4 Summary 
In section 2.2, we reviewed the techniques for skeleton generation which have 

been developed previously. Although many algorithms aiming at automation have 

been proposed, they are primarily for a more general purpose than for character 

animation as a specific objective. As a result, these methods are typically 

computational expensive or need significant manual intervention from the user. 

A few methods mentioned above regard computer animation as their main 
concern, but they have their own drawbacks, such as low efficiency, which holds 

32 



Chapter 2. Related Work 

back their suitability in practice. 

Our skeleton generation framework presented in this thesis aims to present an 

accurate and efficient approach, whose particular purpose is to automatically rig a 
3D character for animation. 

2.3 Deformation 
The movements of a virtual character are expressed visually through positional 

changes of its skin vertices. It is impractical to give a direct description of every 

vertex at each animation frame considering the large number of vertices in a 

model mesh. Thus deformation algorithms are needed to map transformations of 

the skeleton of a character to its skin, which provides a more manageable means 

of tracing vertex displacements. 

Skeleton-based deformation has been favoured by various researchers for 

manipulating articulated characters. Burtnyk and Wein [1976] proposed an 

algorithm of 2D bilinear skeletal deformation. An early 3D skeleton-driven 
deformation algorithm was addressed by Magnenat-Thalmann et al. [1988]. It has 

evolved into various styles and algorithms over decades. 

Efficiency has always been an important criterion in judging deformation 

algorithm. Recent studies cast great attention on enhancing visual realism of 

character animation as well. Therefore, a great deal of research work has been 

dedicated to both directions. 

2.3.1 Anatomy-based Deformation 
In terms of realism, anatomy-based deformation demonstrates an ability of the 

closest resemblance of reality. 

By studying artistic anatomy [Goldfinger 1991], factors that affect the surface 
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form of a character were identified by Scheepers et al. [1997] as skeleton, muscles 

and fatty tissues. Scheepers et al. [1997] approximated muscles with ellipsoids 

and presented a general muscle bending model. However, algorithms of skin 

deformation by means of muscles movements are not mentioned in the paper. 

Another muscle model was proposed by Kahler et al. [2001] and adopted by 

Albrecht et al. [2003]. A hand model was deformed in the study of Albrecht et al. 

[2003] based on anatomical data and mechanical laws through pseudo-muscles 

which control the rotation of bones and geometric-muscles which shape the 

formation of the skin. 

The graphical effect of anatomical based deformation is impressive for it works 
by imitating details of an actual character. However, to handle such a model, a 
large number of parameters and intricate algorithms are required in order to 

capture the fine features to create these elegant effects. This inevitably results in 

prolonged rendering time. Furthermore, it suffers from a profound modelling 

process, which as well adds its complexity. As for real time interactive 

applications, such as gaming, anatomy-based deformation quite likely fails to 

meet their needs. 

Trying to overcome these difficulties, Pratscher et al. [2005] provided a simplified 

anatomical model with an `outside-in' modelling method. It generates muscles by 

first segmenting mesh into regions which correspond to bones. Each region is 

again divided into two sub-regions and a pair of ellipsoids is created to represent 
the rough geometry of the muscles. The ellipsoid muscle is then reshaped to fit the 

skin. This method takes off much the complexity of producing a model suitable 
for anatomy-based deformation. However, it is still expensive in terms of 

computation for real-time rendering. Furthermore, it is not proved to work well on 

models. 
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2.3.2 Example-based Deformation 

Example-based approach is considered to be another powerful solution for 

realistic skin deformation. Its way of deforming skin is to mimic the deformation 

pattern of training examples. 

The method proposed by Wang et al. [2007] aims at capturing extra deformation 

details, such as twisting and bulging, by predicting deformation gradient D 

[James and Twigg 2005] from bone transformations q. The mapping between 

q and D is solved by a training process during which a sequence of existing 

mappings are provided as examples. 

Other example-based deformation approaches can be found in [Mohr and Gleicher 

2003], etc. 

The common disadvantage of all example-based deformation algorithms is its 

high dependence on its database. This example database has to be of good quality. 
If it is not available from real characters, it has to be prepared with other methods, 

which could mean another tedious process. 

2.3.3 Linear Deformation 

Within linear deformation framework, transformation of a joint is defined as a 
4x4 matrix under homogenous coordinates that incorporates both translation 

and rotation information. Given initial vertex position v, its new position with 

regard to the i" joint is deduced by: 

Vi = Mimi IV (2.1) 

where i stands for the i"joint, M, for the transformation matrix associated with 

the joint in its current pose, and M; for the transformation matrix in its binding 

pose. 
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During animation, the vertex is considered to be transformed by a number of 

joints. Linear deformation algorithms basically can be regarded as finding the best 

strategy for blending these transformations. 

Among all deformation algorithms, be it linear or non-linear, Skeleton Subspace 

Deformation (SSD) is the most popular one. It is widely spread in real-time 

animation for its well-known efficiency. SSD has never been published formally, 

yet its description is available in many literatures under different names, e. g. 

Enveloping or Linear Blend Skinning (LBS) [Lewis et al. 2000] [Wang and 

Phillips 2002] [Merry et al. 2006]. In some commercial animation software, e. g. 

Maya, it is called smooth skinning. 

SSD associates a vertex to each joint with a weight. The resulting position is an 

interpolation between all the deformed positions with reference to their weighted 

influences respectively, as shown in equation (2.2) 

v=w; M; M-l v (2.2) 

Considering the simplest example of associating vertex vto two joints J, and 

J2 , the resulting position v 'would lie on the line segment connecting v, and v2 , 
as illustrated in figure 2.3(b). 

In practice, a vertex is associated with several joints, which gives a bit more 

freedom to its possible deformation space. Nevertheless, the interpolated position 

v'is restricted to inside a convex combination of each transformed position of v. 

The stiffer the combination is, the more restricted the deformation space is. 

Therefore, as efficient and simple as SSD may be, it is vulnerable for artefacts 

such as collapsing joint and candy-wrapper caused by such stiffness. In search of 
improvements, one direction is toward increasing flexibility over blending 
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components during linear blending. 

Wang and Phillips [2002] proposed a Multi-Weight Enveloping (MWE) 

technique which launches additional weights for transformation components. That 

is to say, let transformation matrix be T=M; M; ', Wang and Phillips [2002] 

rewrote vertex blending as: 

woo, moo wo1Rmo1 wo2kmo2 w14Rm1a 

V, _ 
wiontlo wIlkmIl WI2kM]2 w14 m14 

' .v (2.3) 
i=1 w2oý m2o w21k m21 w22, 

k 
m22 w24R m2a 

0001 

The extra weights allow more degrees of freedom. Additional flexibility is 

expected to produce non-linear effect to reduce the artefacts. However, tuning 

weights depends on a range of existing well-established example poses. An 

increased number of weights lead to a higher risk of overfitting as well. 
Furthermore, taking into more parameters suggests more memory usage and 

slower performance. 

Merry et al. [2006] tackles the same issue of improving the result of linear 

blending with a method called Animation Space. Let v; = w; M; -'v, the blending 

equation of Animation Space is written by them as: 

v =ýMýv+ =[M1 

Vl 

M2 ... Mn]" 
vZ 

(2.4) 

This method tries to bypass the distortion problem by providing a more flexible 
blending as MWE does. It allows a joint to impose independently on every 
component of a vertex description. In this regard, it also increases the number of 
weights as MWE does. This drives Animation Space method into a dilemma: 
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painting weight by hand makes it painstaking as SSD is, while tuning weights by 

examples makes it face the same problem as MWE does. 

2.3.4 Dual Quaternion Deformation 

In mathematical terms, changing of orthogonality of the rotational components 

causes non-rotational factors being introduced into the rotation matrix during pure 

linear blending. This explains the candy-wrapper artefact encountered in SSD. 

Should the rotational angle be small, the errors are so trivial that they may not 

have much influence on the overall effects. As the rotational angle increases, the 

errors are increased, and distortions become more noticeable, as shown in figure 

2.2. 

figure 2.2: An illustration of the candy-wrapper artefacts brought by Skeleton 

Subspace Deformation [Kavan and 26ra 2005]. 

The artefacts mentioned above are inherent for pure linear blending. Therefore, 

another direction of reducing these distortions is not toward a modified linear 

blending but toward a totally different way: bringing nonlinearity into the 

deformation algorithm. 

A method called Spherical Blend Skinning (SBS) was proposed by Kavan and 
Zara [2005]. Intuitive-wise, the deformed position would lie on an arc not on a 

line segment if considering the same simplest example of a vertex affected by two 

joints, as shown in figure 2.3(c). 

SBS splits the transformation into a pair of elements: translation and rotation. 
Instead of blending transformed positions of a vertex, it interpolates directly the 

38 



Chapter 2. Related Work 

transformation quaternion which is a replacement of a transformation matrix. 

V 

vi 
" 

Ov, 

(b) 

" J, 

J, 

(a) 

V 

J, VI 
ý'--"v2 

(c) 

figure 2.3: An illustration of vertex transfor, nation. (a) initial position: 

(h)hlended by SSD; (c)hlended by SBS. The actual position is 

influenced by the ratio between w, and w, 

Due to the incapability of a regular quaternion to represent translation, one 

bottleneck of this interpolation is to determine the rotation centre in order to 

approximate a non-translational transformation as closely as possible. Kavan and 
Zara [2005] proposed to compute precisely the optimal rotation centre for each 

individual vertex using singular value decomposition (SVD) but with a high 

computational cost. 

In exchange for efficiency, the runtime algorithm was twisted into caching 

rotation centre derived for a previous vertex and reusing it for other vertices 

assigned to the same joints set. This trick potentially causes discontinuity of 
deformed skin due to discontinuous change of rotation centres. 
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Regarding this, Kavan et al. [2007] proposed to base the transformation on dual 

quaternions and examined the proposal both theoretically and practically. They 

presented an algorithm called Dual quaternion Linear Blending (DLB) which 

was polished and addressed in further details in their following study [Kavan et al. 

2008]. 

The DLB algorithm in [Kavan et al, 2007] is simply written as: 

wlg1 ý'... +wngn 
DLB(w, gl,..., qn) _ (2.5) 

Ilwlgl 
+... Wngnll 

where q; stands for transformations represented by a series of unit quaternions 

and w; stands for weights associated with each transformation. 

Both translations and rotations can be interpreted with a dual quaternion. This 

enables a dual quaternion to represent rotations about an arbitrary axis. In other 

words, dual quaternion rotation is coordinate-independent. Thus DLB eliminates 

problems caused by determining rotation centres. 

DLB exhibits a fast and robust performance on rigid joint transformations, 

whereas it demands much longer shader code and more memory usage in runtime 

than SSD where non-rigid transformations, such as non-uniform scaling to vary 

the proportion of a character, are involved. In this regard, DLB is not ready yet to 

take the place of SSD in animation industry. 

2.3.5 Other Deformation Methods 
The pure linear blending also introduces non-uniform scaling and skewing into 

transformation components during matrix multiplication, which causes volume 
loss while bending a joint, as shown in figure 2.4. 

Yang et al. [2006] proposed to solve the deformation using `curve skeleton'. The 
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name of `curve skeleton' is different from its traditional concept. It is used in their 

method as a control curve layered on top of the animation skeleton. A local frame 

of every skin vertex is defined by associating the vertex with a curve segment. 

The transformed position of a vertex is calculated via the transformed local frame 

on the curve. This method corrects the collapsing joint problem caused by SSD. 

and is compatible with current animation software. e. g. Maya. However, it is not 

easy to decide the appropriate associating curve segment for a vertex when the 

bending angle of a joint is large. 

(a) (b) 

figure 2.4: Correcting collapsing joint using 'curve skeleton '. (a) An 

illustration of collapsing joint caused by SSD. (b) Correction of 

collapsing joint using `curve skeleton'. [Yang et al. 20061 

Similar idea of transforming vertex using associated local frame was adopted by 

Fortsmann et al. [2007]. They defined spline-based coordinates for a skin vertex 

and used Free Form Deformation (FFD) rather than SSD when transforming the 

vertex. Their problem is how to establish the appropriate bounding box required 
by FFD. Another problem is that new tools and a new data format is demanded. 

which makes it difficult to be integrated in existing animation system. 

2.3.6 Summary 

In section 2.3. a review has been given for the different deformation methods. 
Despite the excellent performance of other deformation algorithms. SSD still 
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dominates the current animation industry for its simplicity, efficiency, and ability 

of expressing all types of transformations. 

Instead of producing a replacement method of SSD, the skin attachment 

framework presented in this thesis focuses on automatic weight distribution. This 

framework aims to provide an excellent weight distribution result as well as 

reducing the tedium of manual skin weight editing. 

2.4 Skin Attachment 
No matter which deformation method is chosen in an animation procedure, the 

skin and the skeleton of a character model needs to be tied together. Each joint or 

bone contributes to a vertex transformation on a different scale. Its influence is 

reflected by the corresponding weight. Reasonable weight distribution affected 

considerably the realism of skin deformation. 

2.4.1 Geometrically-Based Attachment 

In modem animation industry, SSD is still the prevailing approach for animating 

an articulated character. Despite its well-known simplicity and efficiency, SSD is 

unfortunately tedious in terms of defining weight, which is predominately 

undertaken manually. 

Commercial animation software integrated with SSD, e. g. Maya, does make a 

guess for initial weight distribution based on the distance between a skin vertex 

and its associated joints. A deduction made on its principles of the guessing was 

given by Yang and Zhang [2006b]. 

Let us denote the vertex with v, the associated joint with J; , and the child joint 

of J, in the skeleton hierarchy with 1k" If we project vto the line on which joint 

link JA lies, depending on the position of the projection v', the distance 
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D(v, J, ) between v and J; regarding child j oint Jk can be defined in three ways 

as follow: 

Jry' Jr'k (2.6) 

kg" z 
Ix J; Jk 

0<_a<_1 lj-ijk I 

D(v, Jj)- IIJ; 
vI, a <0 (2.7) 

lJkvk(>1 

Illustration is given below in figure 2.5. Suppose J, has more than one child, then 

D(v, J; )is given as the minimum value regarding its child joints: 

D(v, J; ) = min(Dk (v, J; ), Jk E Child (J; )) (2.8) 

D(v, J, ) 

V* SJk 
(a) 

v 
`- D(v, J; 

Jk 
......................... - 

v 
(b) 

v 

D(v, J, ) , 
1! 

Jr Jk 

(C) 

figure 2.5: An illustration of determining distance D(v, J; ) between a vertex 

and the associated joint. D(v, J; ) is represented by dashed line. 

(a)0<_a<_1; (b)a<0; (c)a>1. [Yang and Zhang 2006b] 

Therefore, suppose there are n joints in the influence set of a vertex v, for the 
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weight which is associated with i"Joint, Yang and Zhang [2006b] also gave out a 

computation equation according to the methods proposed in [Shepard, 1968]. In 

practice, the number of influence joint is chosen as 4 or 5 for good performance. 

The result of the automatic guess made by the animation software is far from 

being `reasonable' to use. Influences on a vertex brought by joints which are 

topologically far yet geometrically close result in bizarre effects during 

deformation runtime. A skin vertex might move while it should not because of 

redundant influences it gets from a neighbouring joint. A typical example is skin 

attachment around the armpit area of a human body, as shown in figure 2.6. 

. 
figure 2.6: An illustration of excess deformation caused by vertices getting 

irrelevant influences. 

Animators usually have to manually tweak the weights, which is considered to be 

one of the most tedious and time-consuming tasks in production pipeline. To make 
it more difficult, an appropriate weight allocating in one pose is not always 

suitable for another pose. Therefore, the model needs to be exercised in various 

poses to verify the painted weights. 

An algorithm to smooth out the weights automatically was proposed by Weber 

[2000]. This method establishes cross-sections at both ends of a joint link to 
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evaluate its local thickness. A threshold based on the local thickness is then 

defined to specify the maximal weight change allowed between two vertices 

which are tied to the same joint. This algorithm performs well in preventing 

radical weight changes between vertices. However, it does not prevent the 

distortions caused by vertex being affected by irrelevant joints. 

The method proposed by Forstmann et al. [2007] based the weight computation 

on the twisted angle of a joint. It is able to create deformation details, such as 

wrinkles. However, the weights are computed for certain poses and not 

transferable for a global weight distribution. 

More recently, Rohmer et al. [2008] proposed to compute the weight simply using 

the ratio of the length of a joint link to the distance between a vertex and the joint 

link. A ray tracing algorithm is hired in this method to determine influence bones. 

This algorithm is simple and presumably fast. However, it produces rather rigid 

transformations since the closest bone is likely to take up all the influences. 

2.4.2 Example-based Attachment 
A different solution that aims at weight distribution was adopted in [Mohr and 

Gleicher 2003]. This algorithm determines the weights by learning from examples. 

During a learning process, the pair of skeleton configuration and its matching skin 

geometry is fed to the system as an example pose. By solving a least-squares 

problem, the weights set of a joint are trained to fit the example. The learning 

process is repeated until the system finds the set of weights which produces the 

closest fit to the whole example sequences. 

A similar idea can be found in the study of James and Twigg [2005] where to 

estimate weights is also done via least-squares-based approach. James and Twigg 

[2005] furthermore proposed to compute a weights set by solving the nonnegative 
least squares problem (NNLS) to reduce overfitting. Their approach was 
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suggested by Merry et al. [2006] and Wang et al. [2007] in their example-based 

weight training processes. 

Weber et al. [2007] also proposed to fit weights through example-based training. 

However, the weights are computed by solving a Laplace equation in their 

methods. 

The mutual problem of example-based weight fitting is that their quality depends 

on a considerable amount of well-established examples. It is unable to achieve its 

goal where these examples are not available, 

2.4.3 Other Methods of Attachment 
An interactive method was proposed in the article of Mohr et al. [2003]. It creates 

a possible deformation range for a vertex, and lets the user decide the exact 

position according to their needs. The weight is then computed from the given 

position. This method may produce an ideal result. Nevertheless, it needs a great 

deal of manual supervision. 

In another article [Baran and Popovic 2007], heat equation was used to find the 

ideal weights. The character body is regarded as an insulation within which heat 

conducts. The temperature is assigned 1 to the bone being dealt with, while other 

bones are assigned 0. As the heat diffuses over the surface, the temperature 

equilibrium at a vertex can be calculated. This temperature equilibrium is taken as 

the weight at the vertex. If a vertex is influenced by several bones, it takes heat 

contributed by other bones. This algorithm also embedded a distance field to 

decide whether the shortest line segment between a bone and a vertex is totally 

contained in the mesh. If not, the heat contributed from this bone is forced to 0 in 

order to eliminate unwanted influences. This method needs to store a 

pre-calculated distance field and solve a heat equation for each vertex regarding 

every bone. It is expensive in terms of both memory usage and computation. 
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2.4.4 Summary 

In section 2.4, we have reviewed different weight computation algorithms 
developed previously, of which some are labour intense and some are data 

dependant. Most of them are designed to suit a particular deformation algorithm 

and non-transferable. 

Our algorithm presented in the thesis otherwise provides an automatic and more 
flexible way for skin attachment, which not only benefits SSD, but also can be 

used in other deformation algorithms. 
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CHAPTER 3 

AUTOMATIC SKELETONIZATION 

Appropriate skeletonization for 3D characters is crucial since it lays the 

foundation of skeletal animation. Most existing skeleton generation techniques 

serve rather `general' purposes other than animation. Some researches targeting 

animation have been carried out, e. g. by Aujay et al. [2007] and by Schaefer and 

Yuksel [2007]. Yet they all suffer from either computation overload or intense 

manual intervention that holds them back from being used directly in animation. 

In this chapter, an automatic skeletoniaztion framework aiming at realistic skeletal 

character animation is discussed. The approach is based on curve skeleton 

extraction, which has been discussed by other researchers. However, our goal is 

not to produce a skeleton for general usage, but to present an efficient and 

easy-to-use technique especially for generating animatible skeleton of good 

quality. As reflecting the differences in purpose, the framework differs from 

previous ones in a few aspects. 

3.1 Terminology 
Our method of extracting an animation skeleton introduces a new geometric entity 
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called 3D silhouette. It is an extension of silhouette which is conventionally a 2D 

concept. Given a polygonal mesh, the 3D silhouette records extra depth 

information than a 2D silhouette. 

We denote a connective vertex set of a meshed model with V, and any vertex 

that belongs to V with c(x, y, z) . Without losing generality, we suppose the 

appropriate projection orientation with the least occlusion of this mesh model is 

along the Z axis and the 2D projection of Von the XY plane is P. For P, 

we can detect its 2D silhouette C 'as a set of vertices that lie on the boundary of 

P. For each element c(x, y) in set C', we record its Z coordinate zc, from 

the corresponding vertex c; (x, y, z) in V. Here c, (x, y, z) forms a vertex of the 

3D silhouette of V when the projection direction is along the Z axis. So a 3D 

silhouette C of mesh model V can be defined in mathematical term as follow: 

C{C, (X, Y, Z)Ci(X, Y, Z)EV, Ci(X, y) E C, CCP, Xc., =X, Yc, =Yc; f 
ý3.1 

The primary 3D silhouette is defined as the 3D silhouette when the original 3D 

model is projected from an optimal orientation. To facilitate the generation of an 
ideal curve skeleton, it is important that the projection direction of the original 3D 

model should be selected so that it minimises the likelihood of occlusion. This is 

equivalent to making the model have approximately the maximal projection area. 
Thus we describe the optimal direction of projection as: 

Si 
II 

niy 
II 

S 
Ifni` II 

(3.2) mý it? ým 
1 

`Si 
Y 

`Si 
E'Si 

i=1 i=1 i=1 

where m stands for the number of triangles in this mesh model, S. for the area of 

the i'h triangle and n; for its normal vector. 

Other terms used for describing different objects and processes during the 
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extraction are explained as follow: 

" Animation Skeleton: It is the skeletal structure used in animation, which 

consists of joints and bones (joint links). 

0 Curve Skeleton: It is a term often used in CAD (Computer Aided Design), 

graphical data compression and object topology analysis. No strict definition 

has been given before. Nevertheless, it might be regarded as a subset of the 

medial surface, as suggested in the work of Dey and Sun [2006]. 

" Skeletonization: It is the process of animation / curve skeleton generation. 

3.2 Overview 
It is known that the cross-sections of a common 3D animation character are 

approximately elliptic. These character models could be approximated using their 

2D representations which have been produced from suitable projection angles. 
This fact suggests that extracting a 3D skeleton structure could be dealt with on 
2D planes. Reducing of dimensions is supposed to provide an easier and faster 

solution. 

Our skeletonization procedure begins with the construction of a 3D silhouette of 

the target model. Using constrained Delaunay triangulation, a curve skeleton is 

generated from the 3D silhouette, after which the positions of primary joints are 
located and the animation skeleton is produced by down sampling the curve 

skeleton. Therefore, this skeletonization framework can be summarized in 3 steps: 

1.3D silhouette detection 

2. Curve skeleton extraction 
3. Animation skeleton generation 

Each step will be addressed in the following sections. An illustration of extracting 
a curve skeleton from its 3D silhouette is shown below in figure 3.1. 
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figure 3.1: Two different 3D silhouettes of the thumb are represented by red 

und yello"w curves. Its 3D medial axes are represented by the blue 

curve. 

3.3 Primary 3D Silhouette Detection 
The optimal projection orientation demonstrated in this section is supposed to be 

along the Z axis. In computer animation, the binding pose will normally meet 

this requirement. If not, other orientations can be dealt with in the same way by 

rotating the model to make sure the optimal projection orientation align with the 

Z axis. 

3.3.1 Finding the Start Vertex 

The silhouette being detect is a closed boundary curve of the model with all the 

vertices belonging to the model lying inside. On the XY plane. the highest vertex. 
i. e. the vertex with maximum y value is definitely on the boundary of the 

model projection. We label it as c, (x, v), c, EP. This vertex is regarded as the 

start vertex of the silhouette set. 

3.3.2 Two-Level Detection Algorithm 
During a practical animation process, a model is usually given at a neutral pose, 

e. g. commonly-used Da Vinci Pose. In this case, the mesh is roughly extended. i. e. 
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with little occlusion. This provides the prerequisite for our two-level silhouette 

detection algorithm. 

The Level 1 search is called global search which aims to determine the overall 

shape of a 3D silhouette without considering connectivity between vertices. The 

Level 2 search is called local search, which is to refine the 3D silhouette and 

connect all the vertices which belong to silhouette set C with regard to their 

connectivity in the original model mesh. For any character model that is deal with 

in this thesis, its 3D silhouette should result in a simple closed curve. 

3.3.2.1 Global Search 

The global search aims to find vertices which will decide the rough shape of a 3D 

silhouette. A further refinement will be given in the local search. 

An illustration of a global search is given in figure 3.2. The search algorithm can 
be broken down to 4 steps. 

ri 

r3 "; 11 

ca (. j) ." -_.... 

figure 3.2: Illustration of global search 

Step 1: Finding the second vertex. Search for all the vertices in P whose 
distance to c, (x, y) is less than a given value r. These vertices are regarded as a 

candidates set of the second silhouette vertex, recorded as T'. Each vertex is 
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labelled t, (x, y), t, E=-T'. Here all `distance' mentioned in the global search is 

referred to as 2D Euclidean distance, and r is chosen as an experiential 

parameter which has a rather remarkable influence on accuracy and robustness of 

the global search. The value of r is affected by local vertex density. If the 

current local density is large, r should be considerably small. It helps to find 

more boundary vertices in order to express changes of the silhouette as proper as 

possible, and vice versa, if the current local density is small, increasing r will 

guarantee the potential silhouette vertex enters the search scope. 

For each tj 
, it can be regarded as lying on a vector pointing from c, to tj . 

Regarding OX as the positive orientation of the polar axis, and c, (x, y) as the 

origin, we search for the vertex in fon the vector with the least angle clockwise. 

This vertex is the second vertex of the 2D silhouette set, labelled as c2 (x, y) . 

Step 3: Finding the third vertex. Search for all the vertices in P whose 
distance to vertex c2 (x, y) is within r. Similarly, they are candidates of the third 

vertex in the silhouette set, recorded as tj (x, y) ET'. Here the value of r is 

evaluated by the local vertex density as well. 

c2 is regarded as the origin, and cc as the positive orientation. Search among 

ffor the vertex with the maximal value of angle Ltjc2c; , calculating clockwise. 

This vertex is accordingly labelled as c3 (x, y) . It is the third vertex of the 2D 

silhouette. 

Step 4: Finding the rest vertices. Repeat Step 3 until the vertex currently being 

detected c. (x, y) meets the start vertex q (x, y) or their distance is below a given 

value. 
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Step 5: Extent 2D silhouette vertices to 3D. After all vertices of 2D silhouette 

set C are discovered, we can extend them into 3D vertices in accordance with 

the definition given in equation (4.1) by acquiring for them the z coordinates. i. e. 

the depth information. By this means the primary 3D silhouette vertex set 
is constructed. 

During the global search, an experimental self-adaptive equation is often used to 

evaluate r. shown below: 

r= maxllt', (x, y) - c, (x, i,, )Il (3.3) 

where t, (. x, v) is the neighbour vertex connected to the current vertex ci. . 

Figure 3.3 shows an example of a hand model after a global search. The original 

model is shown in figure 3.8(a). 

r. ý... 
v" 

n"1Y. Iý 

figure 3.3: Discrete 3D silhouette vertices detected after a global search 

3.3.2.2 Local Search 

Global search produces a set of discrete vertices of which the 3D silhouette 

consists. The next level of the algorithm is the local search which is to link all 
these vertices in accordance with their connectivity in the original model mesh V 

As mentioned previously, the 3D silhouette is one closed simple curve. That is to 
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say, the first and the last vertex of the silhouette set should meet. Moreover, there 

are no intersections when connecting the vertices together. 

The local search can be regarded as searching for the approximate shortest route 

within the mesh for each vertex pair c; (x, y, z) and c, 1(x, y, z) . 
Suppose there 

are n vertices in silhouette vertex set C, then a loop as follow can be used to 

described the linking process: 

For( i from 1 to n) 
Connect (ci (x, y, z), c, +, 

(x, y, z)) ; 

We also break down this Connect (c, (x, y, z), c; +, 
(x, y, z)) operation into steps. 

Step 1: Starting from c,, find its connecting vertices in the original mesh. These 

vertices are then recorded as a connecting set T. 

Step2: Each t; ET will be first compared with c,,,. If any t; is found the same 

as cr+, , that means c, and c; +, are connected originally. During local search, they 

can be connected directly. Otherwise, calculate the each distance between c; +, 

and every t,. The vertex closest to c,,, is chosen as the next connecting vertex 

with c,. This vertex is labelled as c;, . 

Step 3: Start from c,,, find all its connecting vertices in the original mesh and 

repeat step 2 until a vertex the same as c; +, 
is found or the distance between one 

vertex and c, +, 
is below a given value. 

The local search method is effective, yet without the general estimation of the 

silhouette from global search, it usually falls into an infinite loop. 

3.3.3 Detection Algorithms Using Linkage Information 
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As mentioned previously, in animation practice, the character model is usually 

given at a roughly extended pose with little occlusion, which will well satisfy the 

prerequisites for the above presented two-level search algorithm. However, the 

two-level algorithm may fail in finding the appropriate silhouette in some extreme 

cases where parts of a model are highly occluded. Therefore, another detection 

algorithm is presented in this section. This algorithm is capable of dealing with 

general situations without the restriction of poses. However, it may sacrifice 

efficiency to achieve this generalization. 

3.3.3.1 Initial Algorithm 

The character model mesh used in animation is composed of a set of connected 

vertices. The silhouette vertex set is expected to resemble this connectivity. In the 

two-level search algorithm above, the rough shape of a silhouette and its 

connectivity are considered in separate processes. In this section, another 

detection algorithm will be devised to take into account the connectivity of the 

silhouette whilst considering its shape. This is achieved by examining those 

connected to the current silhouette vertex. That is to say, our initial attempt of 

finding the next silhouette vertex is based on the assumption the next silhouette 

vertex is among one of the vertices connected to the current one. 

Under the assumption given above, the second vertex of the 3D silhouette is one 

of connecting vertices of c, . Supposing there are n vertices connected to c, , we 

label them as ti, jE (1, n). M is used to mark a point chosen lying on the line 

y=y,. This point does not have to really exist in the original model mesh 

vertices. It only matters that a vector c, M which is parallel to the X axis needs to 

be established and shares the same positive direction as the X axis. 

c, is chosen by having the largest y coordinate value among the projection vertex 

set C', which indicates that any other vertices on the projection plane situate 
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below the line y=v, i. e. when c, is chosen as the origin, c, M as the positive 

orientation, calculated clockwise, it is impossible for any angle a', formed by 

c, M and c, t.; to have a value outside (O, 7r), as illustrated in figure 3.4. 

Cl M 
Jr 

rk , 
rA. I 

rA 

figure 3.4: Angles formed by c, with its connecting vertices. The silhouette is 

represented by the red curve. c, is the start vertex of the silhouette 

set and t, ,, tk , tA. are among its connecting vertices. Let c, M he 

the positive orientation and c, he the origin, following clockwise, 

any angle Lt, c, M is less than 180 degrees. 

With all the rest of the vertices below q, the silhouette curve segment at 

c, becomes convex. This is also illustrated in figure 3.4. Every connecting vertices 

of c, can be used to construct a vector c, t', pointing from c, to t,. the vector 

which has the largest angle calculated from c, M extends to the outmost of the 

vertex set. The vertex which forms this vector therefore lies on the boundary of 

the projection, following an anticlockwise direction. Thus we can calculate the 

angle a', between c, M and c, t.; and the vertex with the biggest a', is recorded 

as the second silhouette vertex. It is labelled as c, . 
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After finding out the first two silhouette vertices, the means of searching for the 

remaining vertices of the silhouette set is repeatedly the same. 

Supposing the current silhouette vertex is Ck 'its previous silhouette vertex is 

cA ,, and there are n vertices connected to cA. . 
The set of connecting vertices is 

denoted with T. It is the set of candidates of the next silhouette vertex. Each of 

those vertices is denoted with t 
,, 

je (I, n). ck , 
is connected to ck , so ck , ET . 

However, cA , should be excluded in the search of the next silhouette vertex. Thus 

for each it is first compared with cA , 
in the original model mesh to remove 

duplicate. 

The initial side is always considered as cAcA ,, and the angle between two vectors 

is always calculated clockwise. As shown below in figure 3.5(a) and (b), either the 

curvature at c is convex or concave, the vertex lying on the vector which forms 

the largest angle with c,. c, , is always on the boundary of the projection. 

I 

(a) 

ýk 
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Lk 

Ck I 

r 

(b) 

figure 3.5. Curvature at a silhouette vertex Ch . 
The red curve represents the 

silhouette. (a)The curvature of silhouette at ck is concave. (h)The 

curvature of silhouette at cA is convex. s, r, w" E (1, n) . 

For each connecting vertex t', , the angle a,. between the vector cAt', and vector 

cACA , 
is calculated clockwise. The vertex lying on the vector which bears the 

largest angle would he the next silhouette vertex. Moreover, to ensure that the 

search process as a whole moves anticlockwise, another rule is brought into the 

algorithm for determining the silhouette vertex. The angle a�, between the 

normal vector nA of c, and c, C, , is first calculated. Any t', bearing an angle 

a, exceeding a�, will be removed to maintain the consistency of the search 

direction, as illustrated in figure 3.6. 
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CA 

figure 3.6: Removing unsuitable vertices using nk . 
The silhouette is 

represented by the red curve. During the search process, t, will he 

removed to maintain a constant search direction 

Therefore, the search algorithm to accomplish a 3D silhouette using its 

connectivity information can be described in 5 steps as follow: 

Step 1: Construct a vector c, M which is parallel to X axis. Find in the original 

model all the vertices connected to c, . 
Each vertex t, in the projection of those 

connecting vertices is used to form a vector with c, . 
Calculate the angles 

between cc, M and c, t, . 
The vertex lying on the vector bearing the largest angle 

with c, M is selected as the second silhouette vertex, recorded as c'). 

Step 2: For any vertex cA (x, y) , 
find in the original model all the vertices 

connected to c, . The projected vertex set of those connecting vertices is labelled 

fas the candidates set of the next silhouette vertex. Compare t; E T' with the 

previous silhouette vertex c, ,. The vertex which is found the same as cA , will 

he eliminated from the candidates set. 
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Step 3: Calculate the angle ak between the normal vector of ck and vector 

c ck_, . Also calculate the angle a; between vector c, t; and vector ckck_1 . For 

any a; that exceeds ak , the corresponding t; will be eliminated from the 

candidates set as well. 

Step 4: Find a vertex among the rest of T'with the maximal angle with c'c' . 

This vertex will be selected as the next silhouette vertex, recorded as ck+, . 

Step 5: Repeat step 2 and step 3. After each silhouette vertex is discovered, it will 

be checked against c, . When this silhouette vertex meets c, , the detection is 

completed. The silhouette is joined into a closed curve. 

The detection algorithm makes use of the vertex connectivity of the original 

model mesh. This connectivity does not change along with model postures and it 

remains constant after projection. Thus it presumably is applicable to any postures 

without concerning occlusions and the Euclidean distance between vertices may 

affect the search result. 

During implementation, we found that the algorithm works well in many cases 

with arbitrary projection orientations, yet in other cases it is sensitive to projection 

orientation. When a model is projected from a certain angle, it produces a false 

silhouette result, or the implementation crashes and produces no result at all. 

Though this problem can always be solved by adjusting the projection angle, it 

weakens the robustness of this algorithm. 

The false results are due to the criterion which employs the angle ak between the 

normal vector nk of the current vertex and cc, -, as the threshold. It is not 

guaranteed to decide the proper silhouette vertices without exceptions. For 
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example, if the curvature at ck suffers an acute change, the angle with 

ckck_1 which is formed by a vertex irrelevant to the silhouette set may still be 

below ak, yet this vertex will be selected as the next silhouette vertex. Vice versa, 

if the curvature only suffers an acute change at ck while maintaining smooth 

changes over a large scale, under certain projection orientation, the angle formed 

by the true silhouette vertex may exceed ak . In this case, the next true silhouette 

vertex is removed and a false vertex is chosen. Both situations may bring the 

search process towards the wrong direction. In other words, the convergence of 

the initial algorithm is beyond provability. 

3.3.3.2 Modified Algorithm 

The initial algorithm aims to identify the next silhouette vertex ck+I among the 

connecting vertices of ck by the angles they formed with ckck_, . However, it fails 

under certain projection orientation. As mentioned above, the reason which 

accounts for this failure is the insufficiency of its selecting criteria. To overcome 

this orientation sensitivity, a modified algorithm is developed in this section. 

The feasibility of the selecting criterion lies on appropriately determining 

maximal angle among all the angles formed by the connecting vertices. In the 

original model mesh, ck with its connecting vertices forms a series of 

non-overlapping triangular facets. Each triangle shares a common side, i. e. two 

common vertices, with another two triangles respectively, shown below in figure 

3.7(a). Regardless of the projection orientation, the connectivity maintains its 

topological properties, as illustrated in figure 3.7(b) and (c). The modified 

algorithm is capable of distinguishing between these two situations. 
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(b) (c) 

figure 3.7: An illustration of projection of ck . (a) connectivity in the original 

model. (b) ck is projected on the boundary. (c) ck projected 

inside. 

In figure 3.7(b), is is the desired next silhouette vertex. While in figure 3.7(c), 

tý should be eliminated from the candidate set. The adjustment converts Ltcck_, 

in order to distinguish these two situations. 

The adjustment follows the order of the triangular connectivity. It can be 

described in 5 steps: 

Step 1: Regard ck and ck_, as two vertices of a triangle, according to the linkage 

information given in the original model mesh, the third vertex that composes this 

triangle can be found. This vertex is labelled as t;, the angle formed by ckt; and 

ckck_, is accordingly labelled a,. 
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Step 2: Regarding c' and t, as two vertices of the next triangle, find the third 

vertex of the next triangle and label it t2. Accordingly, a2 is found and labelled. 

Repeat this process, until all the connecting vertices and the angles they formed 

are labelled. 

Step 3: Consider the value of a, . If it is below 180° , the adjusted angle a, = a,, 

and then move to a2 . If it exceeds 180° , its adjusted angle a, " =a, -360*, and 

then move to a2 . 

Step 4: For each a; 9 compute the value difference between a; and a, _, . 
If it is 

less than 180° , this a, remains unaltered; if not, it will be replaced with 

a, , a, =a, -3600. 

Step 5: Compare all a, . The corresponding vertex of the largest angle is the next 

silhouette vertex. 

The example of the final detected 3D silhouette of a hand model is shown below 

in Figure 3.8(b). 

3.4 Skeleton Extraction 
In our framework, the animation skeleton is generated by down sampling the 

curve skeleton. Thus we first need to extract a curve skeleton from the 3D 

silhouette. After determining skeletal joints along the curve skeleton and joining 

them with line segments, the animation skeleton is then established. The entire 

process is illustrated in figure 3.8. 
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(a) 

(b) 
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figure 3.8: Animation skeleton generation process. 

(a) Original model 

(h) Primary 3D silhouette 

(f) 

(c) 3D medial axis o/ hand by constrained Deluunuv triangulation 

(d) Course curve skeleton and key skeletal joints 

(e) Decomposition 

(/) Animation skeleton and skeletal joints 

3.4.1 Curve Skeleton Extraction 

Once a 3D silhouette of the model is drawn, it can be divided into a set of 

triangles based on constrained Delaunay triangulation. The curve skeleton is then 

generated by down-sampling the medial axis of the triangulated silhouette. 

3.4.1.1 Constrained Delaunay Triangulation 

(d) 

(e) 

ýý i %> i 
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For a 2D silhouette vertex set C its medial axis M' can be detected easily by 

several Voronoi-based geometric methods which have been reviewed in chapter 3. 

In this section, we will extend the constrained-Delaunay-triangulation-based 

method to detect the 3D medial axis of a model. Without regard to its 

Z coordinates, the 3D silhouette can be treated as 2D. The triangulation 

performed on it is therefore similar to 2D constrained Delaunay triangulation. The 

3D medial axis is then generated from the 2D medial axis coupled with the depth 

information which is interpolated from the 3D silhouette. 

-'i 

ý_ sý gg 

figure 3.9: Illustration of extracting the 3D medial axis from a 3D silhouette. 

The triangulation process is illustrated in figure 3.9. Suppose the vertices which 

consists of a triangle edge are c, (x, v, :) and c, (x, y, :), without considering its 

x. +i + 
z coordinates, it is easy to work out the 2D midpoint mA (22) of the 

edge c, c, . 
The interpolated : value is then put back to form a vertex of the 3D 

medial axis tor the 3D silhouette. Therefore, along with the 2D medial axis M 

the 3D medial axis M is also discovered. In mathematical terms. the 3D medial 

axis M follows: 

M, m, (x. y, --)Im EM , xk =xA 
L +Z L, yý = vý. 1z4 -2J (3.4) 
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Two types of edges can be distinguished after constrained Delaunay triangulation: 

external edge and internal edge. The triangles are then divided into three 

categories with regard to their edge type: 

1. Terminal Triangles: with two external edges and one internal edge; 

2. Sleeve Triangles: with one external edge and two internal edges; 

3. Junction Triangles: without external edges. 

The different types of edges and triangles they form are illustrated with different 

colours in figure 3.10: 

figure 3.10: Two h'peS of edges after constrained Delaunav triangulation are 

represented by two different colours. The red represent external 

edges and the blue represent internal edges. They form triangles 

of three categories. 

A medial axis is obtained by connecting the midpoint of the internal edges 

(Igarashi et al. 19991. It ends when it meets the large junction triangles. The 

experimental result of constrained Delaunay triangulation and 3D medial axis 
detection of a hand model is shown in figure 3.8(c). The medial axis produced 
from the primary 3D silhouette consists of several segments. We regard it as a 

coarse curve skeleton. 
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3.4.1.2 Decomposition 

In character animation, the centrality of an animation skeleton, i. e. all joints and 

bones lie on the central path of the body segments, is of great importance. The 

coarse curve skeleton is centred in the particular projection plane which it is 

produced from, yet some part of it may not be centred in other projection 

directions, since the actual z coordinates of the curve skeleton points are not 

considered during coarse curve skeleton generation. 

As we stated earlier in this chapter, an accurate curve skeleton can be determined 

by two 3D silhouettes from different projection planes. To centre the curve 

skeleton to obtain good centrality of the animation skeleton extracted from it later, 

a second 3D silhouette to adjust the z coordinates of the points for each segment 

of the coarse curve skeleton is required. 

The coarse curve skeleton consists of several branches. Each branch should be 

centred after adjustment. Thus information of each branch is required. However, 

projected as a whole, details of some branches may be missed. In order to obtain 

information of each branch, the second silhouette has to be detected from the 

model which is decomposed according to its coarse curve skeleton branches. 

During decomposition, each vertex of the original mesh is assigned to a certain 
branch using a simple but effective method which is similar to the 

nearest-neighbour algorithm in pattern recognition. First of all, the distance 

between a mesh vertex and every point on each coarse curve skeleton is calculated. 
For the nearest-neighbour algorithm, the minimum distance value presumably 

assigns the vertex to the segment which this point belongs to. However, there 

could be situations that lead to false categorizations. For example, consider the 
hand model presented in figure 3.8(c). If the arm is too strong, it might cause a 

vertex that actually belongs to the arm part to have a less distance value to a point 
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situated on the coarse curve skeleton of the finger than to any points on the coarse 

skeleton of the arm. 

A modification is made to eliminate this error. We calculate the distance between 

the corresponding point and the 3D primary silhouetted. For each point, its two 

distances are compared to discover the differences. The minimum value is used to 

determine which segment the vertex belongs to. In general, this algorithm is 

formulated as: 
k 

s(v;, k) = mini distance(v;, mk, 3(x, y, z))-lk, j1 (3.5) 
J=(1, n) 

where k stands for the sequence number of the coarse curve skeleton branch, 

v, for the Ph vertex of the model mesh and mk, j (x, y, z) for the j' point of the 

k`" branch. distance (v,, mk j (x, y, z)) is the Euclidean distance between vj and 

mk . 
lk, j 

is the distance between mk, f and the primary silhouette. The vertex 

v, will be classified into the k`" branch which bears the minimum distance 

difference. Figure 3.8(e) shows the decomposition result with seven parts of the 

hand. 

A vertex lying on the silhouette is assigned to the branch which it is connected 

through constrained Delaunay triangulation. Other vertices are presumably to be 

checked against all the branches of the coarse curve skeleton to find the minimum 
distance difference. To improve efficiency, an approach which involves fewer 

calculations is employed. This approach is based on the condition that all vertices 
in a model mesh are connected. Choosing any vertex in the silhouette set as the 

root, all vertices can be traversed, and thus categorized, through connectivity. 

Suppose v is a classified vertex, bk is its classified branch, and T is its 

connecting vertex set. The neighbourhood branches of bk can be identified by 

studying the junction triangles at both ends of bk 9 and we denote them with p,. 
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For any vertex tET. it belongs to either hA or p, . 
Thus we only need to 

compute its distance to hA and to p, for the comparison proposed in equation 

(3.5). 

3.4.1.3 Curve skeleton refinement 

After decomposition, we now need to detect the 3D silhouette for each segment of 

the object in the second projection direction. This detection is for the purpose of 

fine tuning the coordinates of the coarse curve skeleton. 

When the second projection plane is chosen, it is preferred that the projection 

orientation is perpendicular to the plane from which the primary silhouette is 

produced. We calculate the corresponding projection orientation of the 

segment of the model using equation (3.6): 

ph =hxm, (Rd - mA ��r (3.6) 

where p, stands for the projection vector of the k" segment of the model. p is 

the projection vector of the plane form which the primary 3D silhouette is 

generated, mh ,,., and rn,, ,,,,, stand for the start point and the end point of the 

k"' coarse curve skeleton segment. 

mA iw 

figure 3.11: An illustration or calculating the second projection vector of the 

k"' segment of the course curve skeleton. The red curve 

represents the k`h segment. 
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As illustrated in figure 3.11, the second projection vector is perpendicular to 

mA - m, ,,,,, as well. By this means, it is most possible to make the second 

projection fully extended hence it is most likely to obtain the maximum projection 

area. 

The detection of the 3D silhouette for each decomposed part of the model is the 

same as what we described in section 4.3. In most cases, the global search is 

effective enough to produce the desired result: however, the local search or the 

other detection algorithm is always applicable if necessary. Figure 3.12 illustrates 

the second 3D silhouette for each segment of a hand model. Each branch is 

self-closed by simply joining projected vertices lying on the end of the 

decomposed mesh. 

_\y 

figure 3. /2: The second 3D silhouette for six segments of'a hand model 

The second 31) silhouette for each curve skeleton segment is used to fine tune the 

z coordinates of the coarse curve skeleton points in order to acquire good 

centrality. Figure 3.13 illustrates how to refine a coarse curve skeleton through the 

second 31) silhouette. 
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i>L I 
I/ nr 

. m, 
m m ( 

figure 3.13: Illustration of* curve skeleton refinement. The coarse curve 

skeleton is shown with the blue curve, and the refined skeleton is 

shown with the red curve. 

For a given point in on the coarse curve skeleton, the four nearest neighbour 

vertices on the second 3D silhouette of this segment can be found. 

As shown previously in figure 3.8. in this case, m is on the common edge of two 

adjoin triangles. These four vertices of the two triangles are the four nearest 

neighbour vertices. Using interpolation methods proposed by Dey and Sun [20061, 

the : coordinates of m can be adjusted by these four vertices. m is then offset to 

m' to form a new point of the curve skeleton. 

In figure 3.14, the variance of the curve skeleton of the hand model during 

refinement is demonstrated. The improvement of curve skeleton centrality is 

clearly shown by comparing (b) with (a). 

(a) (b) 
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figure 3.14: Comparison between before and after the refining curve skeleton 

of a hand model. (a) before refinement. (b) after refinement. 

3.4.2 Animation skeleton generation 
The curve skeleton is different from a skeleton used in character animation. To 

make it usable, it must be converted to an animitable skeleton. 

An animation skeleton consists of a series of connected skeletal joints. Our 

primary goal here is to locate these skeletal joints properly on the curve skeleton 

derived in above sections. The final animation skeleton is a set of joint nodes 

linked with straight line segments. 

Observed from figure 3.8(c), a 3D medial axis, i. e. the coarse curve skeleton, is 

divided into branches when it meets the junction triangles. It ends at the midpoint 

of an internal edge of the junction triangle. After refinement, these points may 

change position, yet the new points they form are still regarded as an end point of 

the curve skeleton branch. Each curve skeleton branch has two ends. These two 

end points represent the key skeletal joints for the animation skeleton. As shown 
in figure 3.8(d), they are marked in blue. Thus it delivers the coarse animation 

skeleton structure. 

Taking the hand model as an example, it is divided into seven branches: wrist, 

palm and five fingers. Accordingly seven medial axes containing fourteen points 

are constructed, which includes both end points of each branch curve. Those 

fourteen points are treated as the key skeletal joints. 

The next stage is to identify those in-between joints, i. e. the joints located between 

the two ends of a 3D medial axis branch. A number of methods are practicable for 

this task. In our work, a method which makes use of a technique called down 

sampling was adopted. 
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The constrained Delaunay triangulation produces a set of discrete nodes which are 

the midpoints of internal edges. These points are considered as potential skeletal 

joints. Our further deduction is made by assuming that the skeletal link of a rigid 

body object exhibits rotational displacements to a certain extent around a joint. 

For each node. we calculate the angle between the line segments that joins it with 

its two adjacent nodes. A threshold is given to evaluate the bending. If the angle is 

below the threshold, this node will be determined a skeletal joint. This is shown in 

figure 3.15. 

figure 3.15: Illu. ciration of determining u joint. The bending angle 

Lm,., nz is below a given threshold. mA is determined as a 

skeletal joint. 

The advantage of this method is that it is not restricted to suit a certain type of 

models. It is capable of detect in-between joints of a model which whether it is a 
human-like character or an odd-shaped monster. The disadvantage is that, if the 

model is given at a pose where the extracted animation skeleton is absolutely fully 

extended at some joint. i. e. not bent at all, it is not possible to identify all the 

joints. Some in-between joints may be missing. For example. the elbow is 

unlikely to be identified if the arm is extended without even tiny bend around it. 

However, the joints set can always be adjusted manually if necessary. With major 
joints having been detected, it is rather straightforward to insert or remove a few 

in-between joints. 
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After all the skeletal joints are located, one of them is selected to serve as the root 

for the skeleton hierarchy. The selecting method is presented in the study of Wade 

and Parent [2002]. 

An example of an animation skeleton generated for a hand model is given in 

figure 3.8(f). The green nodes represent the major joints which are produced 

directly by end points of curve skeleton branch and the blue nodes represent the 

in-between joints which are determined by bending angles. 

3.5 Summary 
In this chapter, we have presented a framework of automatic skeletonization. This 

framework is based on curve skeleton extraction. A geometric entity called the 3D 

silhouette was introduced, which is detected from two perpendicular projections 

of a character model. Two algorithms have been presented to detect the 3D 

silhouette. 

The first algorithm is based on a two-level-search procedure using a user-defined 

parameter as the searching radius: the global search selects a set of discrete 

vertices which describe the overall configuration of the silhouette, followed by the 

local search which connects and refines the result. 

l 

The other algorithm is based on the connectivity of vertices in the original mesh. 
It works by identifying the next silhouette vertex from those vertices connected to 

the current one, which at the same time connects the silhouette. This algorithm 
frees the silhouette detection from the assumption required by the 

two-level-search algorithm that the character model has to be given at an extended 

pose but at a price of efficiency. Its purpose is to handle the extreme cases since 

most models will satisfy the assumption in practice. 
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The curve skeleton can be extracted automatically from the 3D silhouette using 

constrained Delaunay triangulation, which describes the rough shape of the 

character's animation skeleton. With the necessary joints identified, it is able to 

establish an animation skeleton with them. 

This automatic skeletonization framework is suitable for dealing with characters 

of different appearances and topological structures. It only demands that the 

cross-sections of a model are roughly elliptic. 

This automatic skeletonization framework also provides interactive options for 

animation. Automation is important for relieving human labour. However, it only 

aims to ease the tediousness in animation, and should not be perceived as 

replacing completely the craftsmanship of animators. An animator is therefore 

given the overall control of the final decision. They are allowed to supervise the 

result, adding or removing joints and adjusting the positions of the joints produced 

by this automatic algorithm according to their needs. 
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CHAPTER 4 

AUTOMATIC SKIN ATTACHMENT 

Due to various advantages of skeleton-driven animation, it is widely spread in 

modern animation industry for handling articulated character models. This 

approach, as reviewed in Chapter 2, drives the skin deformation with an 

embedded skeleton which consists of joints and bones (joint links). Most 

deformation algorithms attach the skin to the skeleton with a set of weights to 

evaluate the influence a skin vertex gets from a joint during transformation. 

Determining weight appropriately is not easy. The weight distribution algorithm 

currently in practical use simply computes the distance between a vertex and each 
joint and chooses a number of geometrically closest joints as the influence joint 

set. It introduces too many irrelevant influences that adjusting weight values 

afterwards is recognized as the most tedious task in realistic animation. 

In this chapter, we aim to present a new automatic skin attachment framework 

which distributes weight values of better usability without intense manual 
intervention. This proposed framework is intended to be compatible with most of 

the popular skinning approaches. 
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4.1 Overview 
Contrary to the conventional weight computation techniques which calculate 

weights directly from the distance between a vertex and a joint without 

considering the model structure, our framework of weight distribution benefits 

from its ability to determine a set of joints which have substantial influence on the 

skin shape by taking into account the topological neighbourhood of a skin vertex. 

We start with segmenting a model mesh into regions. Each region corresponds to 

a joint. In accordance with the structure of the skeleton, two regions are described 

`adjacent' if their enclosed joints bear a `parent-child' relationship or share the 

same parent. For each region of a joint, a shadow area and a dominant area are 
further described, which reflects the rough level of influence of the enclosed joint 

We then categorize each skin vertex into either a dominant area or a shadow area 

of a joint region with regard to its distance to the region boundaries. Should a skin 

vertex fall into a dominant area, it is only attached to the enclosed joint of the 

region and only affected by this enclosed joint during deformation. Otherwise, it 

falls into a shadow area, and is affected by the enclosed joint of one or several 

adjacent regions as well. The weight that associates the vertex with each joint is 

solved according to the distance from the vertex to the boundary of the region of 
that joint. 

Therefore, the weight computation framework presented in this thesis can be 
divided into three steps: 

1. Boundary generation; 
2. Dominant area and shadow area specification; 
3. Weight computation. 
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We will explain each step in detail in the following sections. 

4.2 Preliminaries 
Our skin attachment framework starts with mesh decomposition. It is assumed 

that the model prepared for skin attachment is already embedded with an 

animation skeleton. The skeleton can be either set up by hand, or extracted using 

the skeletonization algorithm proposed in the previous chapter, or using any other 

extraction algorithms. 

4.2.1 Related Mesh Decomposition Methods 

Mesh decomposition is about dividing a mesh into a number of disjoint subsets 

under preset conditions. A great deal of decomposing criteria and algorithms can 

be found in literature [Shamir 2008]. 

In dealing with partitioning an object into meaningful segments, many approaches 

focused on making use of surface properties, such as convexity, or concavity, or 

dihedral angles [Kraevoy et al. 2007][Zuckerberger et al. 2002]. Some approaches 

proposed to decompose the mesh by defining feature points [Katz et al. 2005]. 

Skeleton and medial axis encode topological information of the object, hence they 

can be linked to mesh segmentation directly [Lien et al. 20061 [Wu et al. 2006] 

[Tierny et al. 2007]. In the study of Shapira et al. [2008], the mesh was 
decomposed via the measurement of local-thickness using their proposed 

shape-diameter-function. A decomposition method for articulated bodies was 

proposed by de Goes et al. [2008] by defining a new medial structure of the body. 

By recursively computing the bijection between a region and its medial structure, 

the mesh segments are established and refined to the desired standard. 

In our framework, the mesh decomposition is based on the structure of the 

character skeleton. The skeleton-based decomposition methods mentioned above 
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are able to finely define body segments. However, they are computationally too 

expensive for our goal of weight computation. We will present another 

decomposition algorithm which is more explicit in computation, and well suits our 

needs. 

4.2.2 Fundamentals of Decomposition 

The representation of a character in animation is its surface configuration, i. e. the 

skin. In skeleton-driven animation, the deformation of the skin is derived from its 

embedded skeleton. Transformations of the skeletal joints bring to the character 

changes on its surface shape. 

The mesh decomposition used in this framework aims to define more accurately 

how the skin vertices are affected by the joints. Therefore, a skeletal joint is a key 

reference for decomposition. Segmentation can be regarded as a mesh being cut at 

each joint. 

However, the setup of animation skeletal joints does not strictly copy from the 

anatomical skeleton. Very often, a larger number of anatomical joints can be 

simplified to a few animation joints. For instance, anatomical joints along the 

spine are usually represented by three nodes in animation skeleton: neck, chest 

and pelvis. The joints taken in animation are considered of great importance in 

motion generation, e. g. elbow or ankle. 

It is observed that, in most cases, a joint of this type usually defines a major 
division. At some point on the surface of the joint area, the curvature exhibits a 

concave change, as shown in figure 4.1(a). In other cases, this concavity may not 
be as obvious as others, as shown in figure 4.1(b). Nevertheless, the area around 

the joint over a large range is unlikely to be `thicker'. 
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(a) (b) 

figure 4.1: An illustration of the surface change around a joint area. (a) 

Around the wrist area, the surface appears concave at some point. 

(h)For a cat tail, no obvious changes are observed. 

This observation is made on creatures which exist in reality. However, for a 

virtual character to appear realistic, it needs to preserve similar anatomical 

configurations of real ones. 

therefore. the principle of our mesh decomposition algorithm is to divide the 

model mesh at the potentially concave point where the distance between the 

surface and the joint is approximately the shortest among its neighbouring area. 

the boundary of the mesh segments may be detected by curvature examination as 

proposed in some papers. This is achieved by finding four points on the surface 

which is approximately the closest to the joint, and a boundary is generated by 

joining the dividing points together. 

4.3 Mesh Decomposition 

In order to reduce distortions caused by excess influences from topologically 

irrelevant joints, it is considered in our framework that the joint affecting a skin 

vertex should be close to the vertex not only geometrically, but also topologically. 

We identify the influence joints set for a vertex by first dividing the character 

mesh into regions. Each region corresponds to a joint. These regions are then 

extended to create overlapping areas for the purpose of smoother weight blending. 

The extended region describes an effective range of a joint. 
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The mesh decomposition is achieved by specifying a boundary between two 

regions whose enclosed joints are bound by a 'parent-child' relationship. As 

illustrated in figure 4.2. let J,, be the parent joint of a joint J. let J 
.0 <_ i <_ in 

be the child of J. We denote the mesh region corresponding to J,, with i-,,. the 

region corresponding to J with r, and the region corresponding to each 

J( with r; . 
Region r is then separated from r, by boundary B. and from 

r by boundary B, 
. 

'*1,1- 

figure 4.2. Illustration o/'regions specified bi holindaries corresponding to 

joints. Boundary B with its dividing points which separates r. from 

ý, i. s represented by the blue. Boundary B with its dividing points 

which separates r from r is represent by the red. k, tE (1, m) . 

A boundary is a closed curve which roughly encircles a joint. In our algorithm, it 

is determined by four dividing points on the mesh surface, also illustrated in 

figure 4.2. 

4.3.1 Dividing Points Detection 

Intuitively speaking. the boundary stops the influence of a joint from entering the 
domain of its child joint. Thus we would exclude the consideration of root joint. 
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e. g. the pelvis in a human skeleton, before searching for dividing points of a joint. 

As shown in figure 4.3(a) and (b), a root joint J is the top node of a skeleton 

hierarchy. Without influence taken from another higher node, there is nothing to 

separate from at this joint. 

nj 

A"i 

(a) (b) 

figure 4.3: An illustration of Jas a root joint of the skeleton hierarchy: (a) 

with one child; (b) with multiple children. Without a parent joint 

of its own, no boundary needs to be specified at J to separating 
influences from a higher level node. 

Based on the observation and deduction stated in section 4.2.2, the distance 

between a dividing point and its corresponding joint should be a local minimum. 

4.3.1.1 Type of Joint Linkage 

A boundary B corresponding to a joint J describes the separation of region 

r of its own from the region rp of its parent. The approach to find dividing 

points that determine the boundary at J relies on the number of links formed by 

J with its child joints. 

Also based on the number of child joint links of a joint, we classify joints as two 
types: single-linkage joint and multi-linkage joint. This categorization is similar to 

that proposed by Yang et al. [2006]. 

Single linkage implies a joint J has only one child, as shown in figure 4.4(a). In 
the case of a joint having no child, i. e. J is the leaf node of a skeleton hierarchy, 
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it can be regarded as a single-linkage joint as well, with a virtual child placed on 

the prolongation line of joint link J7 . 

A multi-linkage indicates a joint J has more than one child. Thus its links 

formed with its children is a one-to-multiple linkage, as shown in figure 4.4(b). 

Jp 

J 

J 
J 

(a) (b) 
'-'z 

figure 4.4: Illustration of two types of linkage. (a) single-linkage; (b) 

multi-linkage. 

To find dividing points for a joint of either type of linkage is similar in principles, 
but with a few modifications in practice. 

4.3.1.2 Detection Algorithm for Single-Linkage Joint 

To search for a dividing point, a searching plane needs to be fixed. For a joint of 

single-linkage, the dividing points are regarded as two pairs located on two 

perpendicular planes which can be referred to as XYplane and XZ plane. Here 

only how to decide the XY plane is described. With the XY plane and the origin 
being fixed, the XZ plane is also fixed. 

In a single-linkage, the link J7J which is formed by joint J and its parent is 

taken as the orientation of positive X axis, with J as its origin. The method of 
determining the XY plane can be further divided depending on its child link JJ,. 
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As a plane is determined by two intersecting lines, the XY searching plane can be 

determined generally by J 
,J and JJ, shown in figure 4.5(a). For a joint whose 

links JpJ and JJ, are in the same line, any plane that passes the X axis, i. e. 

link J 
pJ , can be chosen as the XY plane, which is shown in figure 4.5(b). 

. 

. 

Jc 

------ ------------ 

. 
(a) 

(b) 

figure 4.5: Determining theXYsearching plane for a single-linkage joint. 

(a)The plane is determined by intersecting joint links JPJ and 

JJC ; (b) In the case of J7J and JJ, in the same line, the 

XYplane is chosen as any plane passing JpJJJ. 

The approach of finding the diving points, i. e. finding the surface points which are 

approximately the closest, for a joint J of single-linkage type is rather 

straightforward. A sample of distance value can be obtained by emitting a ray 
from joint J on the XYplane. When the ray intersects the surface at a point p, 

the length of line segment Jp is recorded as the distance from J to this 
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particular surface point. 

As shown in figure 4.6(a), the XY plane in which joint link JpJ and JJ,, lie is 

divided into two halves by these two links. Thus we sample the distance all along 

the surface between J, and JJ within both sides of link (JP, J, J, ) by 

respectively emitting n rays. On either side, the point bearing the shortest 

distance is selected as one of the dividing points. 

The number n affects the density of distance sampling. It can be user-defined. In 

the interest of both accuracy and efficiency, n is normally chosen between 100 

and 150. It gives good performance in practice. 

As shown in figure 4.6(b), to determine the other pair of dividing points on 

XZ plane, a similar approach applies with a slight modification. 

Suppose n rays are emitted from joint J on positive Z half plane and negative 

Z half plane respectively, between positive X axis and negative X axis. After 

compare the distance obtained via measuring the line segment formed by J and 

the intersection point, the dividing points on XZ plane is also chosen as the 

points which bears the shortest length. 

AT 

. 
1 

ýO 

xz 
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Jp 

XY 

(a) (b) 

figure 4.6: Illustration of detecting dividing points for a joint of single-linkage 

by sampling the distance along the surface. (a) on XYplane: (h) 

on XZ plane. The sampling rays are represented by red, and the 

blue vector points to the positive Z. 

Therefore, the detecting algorithm is formulated as: 

(h, ý) = min I D(J, p, ) (4.1) 

where ! )(J. p, ) stands for the distance between the joint and the i`/' intersection 

point, i for the sequence number of the intersection point that bears the shortest 

length of the intersection line segment. 

4.3.1.3 Detection Algorithm for Multi-Linkage Joint 

To search for dividing points for a joint of multi-linkage type is a little more 

complicated. Any three of these joint links are not always on the same plane. Thus 

we are not able to determine a common plane as a searching plane using all the 

joint links. 

I lowever. in animation practice. the binding pose of a model is usually neutral. At 

this pose, all joint links are approximately fully extended. That is to say, when 
projected to a plane. all the joint links do not overlap each other. 

Suppose there is one parent joint and m child joints connected to J. their 

J 
v 

J 
J 

xz 
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coordinates, i. e. JP (x 
p, y p, z p) and JJ, (x,, y,, z, ) are already known. A plane is 

then fitted with Jo and J, by solving a over-determined linear equation with 

least-squares approach: 

1xp yp Zp -1 a 
xi YI z, -1b=0 (4.2) 
... ... ... ... c 

xm Ym Z. -1 LdJ 

This plane is then translated to go through J. Thus the XY plane is determined. 

J is chosen as the origin and the projection JJ of JpJ on this plane is chosen 

as the orientation of positive X axis, as shown in figure 4.7. 

, Jo 

p Jýý 

figure 4.7: Fitting the XYplane for am ulti-linkage joint using the parent and 

child joints of the joint. 

To find the four dividing points for such a multi-linkage joint, we still consider 

that two of them lie on the XZ plane which is perpendicular to the XY plane 

given above. The approach of searching for these two points remains the same as 

that of searching for the two points on the XZ plane for a single-linkage joint. 

However, as the children of J may not lie on the XY plane, accordingly, we 

will not define the other two dividing points on the XY plane. 

To find the other two dividing points, we first calculate angle between J, J and 

the projection of each joint link JJ,,, i E (1, m) on the XYplane anticlockwise. 

The child joints are labelled from J., to JAM following the order of angles from 
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small to large. The two links formed by the child joints with smallest and largest 

angle respectively. i. e. link JJ, and JJ., are defined as the 'border' link. The 

other two dividing points are located respectively on the plane determined by 

J,, J with J. I and with JJ, 
. 

As shown in figure 4.8, rays are emitted from joint 

J. on the plane determined by J,, J and JJ, and the plane determined by JI, J 

and JJ respectively, to sample the distance between the surface and the joint 

I. 

J 
ýý 

J 
J -ý 

(a) 
J 

J 
ý, 

(b) 

figure 4.8: Illustration o/' dividing points detection Jr omulti-linkage joint 

using n rays on the plane determined by: (a) J,, J and JJ 

(h) ýJ and JJ. The sampling rays are represented by the red. 

The dividing points are chosen as the intersection point bearing the shortest 
distance to .I as well, as stated in egation (4.1). 

4.3.2 Dividing Points Modification 

In the process of determining the dividing points via local minimum, some 
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sampling rays may return fluctuated values within a small range, as shown in 

figure 4.9(a). Or they may return several local minima which are very close to 

each other. as shown in figure 4.10(a). 

To deal with such noisy circumstances, we need to smooth the sample values 

before making the final decision. The fluctuated values can be smoothed out by 

this process, as shown in figure 4.9(b). However, as regards the situation that two 

or more local minima appear, another selecting criterion is provided. 

A dividing point is on a boundary of regions which correspond to two different 

joints. By studying the anatomy of a character, it can be expected that the obvious 

change in surface shape can be observed in the neighbouring area of a diving 

point. That is to say, if there are radical changes in curvature of the surface, it 

would be highly likely to occur at a dividing point. 

Therefore, the second selecting criterion adopts the evaluation of distance change 

at adjacent points of a point which is a local minimum point. In the distance value 

chart, the second derivation, which reflects the change of slope, at a local 

minimum point is calculated. The larger the value is, the more acute the change is 

at its adjacent point. The point with the largest second derivation is then chosen as 

the dividing point, shown in figure 4.10(b). 

ýý'ý 

(a) (b) 
figure 4.9: Illustration of'smoothing the sampling distances. (a) Fluctuated 

values; (b) After smoothing. 
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figure 4.10: Illustration of selecting a dividing point from a group of points 

with a similar distance value to the joint. (a) two local minima 

with similar value appear; (b) the one with more radical changes 

at its neighbouring points are determined as the dividing point. 

4.3.3 Boundary Generation 

After the dividing points for each joint are determined, the next step is to define 

the boundary B at joint J. 

The four dividing points are labelled from h, to h4 
. The order can be either 

clockwise or anticlockwise. As shown below in figure 4.11. we use the 

anticlockwise direction. A plane can be determined by every two adjacent points 

along with J. Its intersection with the model surface between the two adjacent 

dividing points forms a curve segment. For an instance. the plane determined by 

b4 
, 

h, and J produces an intersection curve segment (h4. h, ) which forms a 

segment of B. 

The four curve segments produced by every adjacent pair of dividing points join 

into a closed curve. Thus the boundary B is generated. 

4.3.4 Decomposition 

Once the boundaries are created, regions belonging to different joints are 

separated. Skin vertices are then categorized into each region. The algorithm we 

use for the mesh decomposition is a region grow algorithm which is described in 

[Shamir 2008]. 
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Edges in the model mesh which are intersected with B are referred to as a 

boundary edge. We first choose randomly a boundary edge. The two vertices at 

the ends of such an edge are separated into regions on the different sides of the 

boundary. The decomposition then can be started with either of these categorized 

vertices. Its connecting vertices are visited in turn. All vertices will be categorized 

into the same region until a vertex on the other side of a boundary is reached. If a 

vertex is just on the boundary, we categorize it into the adjacent region. 

After all vertices in the mesh have been visited, the decomposition is completed. 

4.4 Weight Computation 
By decomposing a mesh into regions corresponding to a joint, an effective range 

of a joint is roughly defined. However, the joint region and the effective range is 

not exactly the same. 

A region can be divided into two areas. The area closer to a joint J is the 

dominant area r, where the vertices are regarded as being affected by J alone. 

The further area is the shadow area r,,, where the influence of a child joint JJ, 

starts to blend in. 

4.4.1 Division of Dominant Area and Shadow Area 
Suppose a vertex v is located in region r which corresponds to joint J, to 

judge which area of r the vertex v falls into is based on the distance between v 

and boundary B,, which separates r from regions that correspond to a child joint 

J, of J. Geodesic distance can be used. To achieve good performance whilst 

accelerating the computation speed, a simplification is adopted in practice. 

In boundary generation, boundary B is composed of four curve segments. Here a 
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simplified boundary can be created by substituting line segments for curve 

segments. which is also shown in figure 4.11. The distance between vv and each 

line segment is computed. and the shortest one is defined as the distance dß from 

v to boundary B B. That is to say. dH is computed by: 

dH=min Idis(v, h)I (4.2) 

where /A stands for the line segment which forms the simplified boundary. 

Similarly. the distance d 
,, 

between v and boundary B( is computed as: 

dt = nein I dis(v, h ) (4.3) 

We also calculate the distance between the two line segments from which d� 

and d is measured. It is recorded as D, . 

The value of 11D, is given as a threshold to estimate whether or not the vertex " 

belongs to a shadow area r. If d, < rflD; . the vertex is regarded as belonging to 

r, . Otherwise, it is categorized into dominant area r, of joint J. 

h. Cl, 

ha 
ry 

ýý, 1 

tl - 

figure 4.11: Illustration cif distance measuring. The line segment from which 

the distance between a vertex v and a boundary is taken is 

shown in red. The distance 4 between these two line segments is 

shown in yellow. The distance dBand d, are shown in blue. 
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The parameter i in the evaluation is user-defined. It affects the rigidness of the 

deformation effects. Larger 77 produces smoother deformation and vice versa. 

The deformation would be totally rigid if i=0. Depending on the deformation 

effects a user wants to present, i can be assigned with different values according 

to their needs. 

4.4.2 Weight Blending in Shadow Area 
In this section, we will define the weight which associates a vertex with a joint 

with consideration to the area the vertex belongs to. For a vertex located in a 
dominant area, it is only attached to the enclosed joint. Thus the weight associated 

with joint J is assigned with 1. For a vertex in a shadow area, it is attached to 

several joints, and the weight associating with each joint is blended with respect to 

the distance to the boundary of the related region. 

Suppose the vertex v is attached to n joints, the weight used in animation needs 
to satisfy: 
1. W, (v)z0; 

2. Ew, (v)=1; 
i=i 

3. w, (v)eC°. 

Here w, (v) is the weight that associates vertex v with the i"joint. Therefore, 

we choose Shepard's method [Shepard 1968] for weight blending: 
n 

1 -Ida 

wj v=nn (4.4) 

1 11 da k=1 j*i, j=l 

where di stands for the distance from v to the boundary that separates the region 

of i"joint for its parent joint region. a is called the drop rate. The larger a is, 
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the smoother the effect is. 

For a region that belongs to an end joint, i. e. a leaf node in skeleton hierarchy, 

there is no influence from other adjacent regions to blend in. Therefore, the whole 

region is regarded as a dominant area, with the weight of a vertex in this region 

assigned to the enclosed joint with 1. 

4.5 Summary 
In this chapter, we have presented a framework of automatic skin attachment. This 

framework is based on mesh decomposition. It determines a reasonable influence 

joints set for a vertex by taking into account the topological distance between a 

vertex and a joint. 

By determining dividing points, boundaries are specified to separate a mesh into 

regions which correspond to the joints. Vertices in the mesh are categorized into 

these regions. Depending on the distance to the region boundary, a vertex may be 

further categorized into dominant area and shadow area of the region. In dominant 

area, the vertex is attached to only the enclosed joint of this region, while in 

shadow area, it is attached to the enclosed joints of some adjacent regions as well. 
In the latter case, we use Shepard's method to distribute the weights. 

To distinguish the shadow area from dominant area, a user-defined parameter is 

provided. Depending on the smoothness of the deformation effect, this parameter 

can be adjusted according to their needs. 

This framework aims to provide a more accurate weight computation to relieve 
the manual modification currently required by conventional weight assigning 
method. Furthermore, it aims to provide a flexible skinning approach which is 

compatible with various deformation methods, e. g. SSD or SBS mentioned in 
Chapter 2. 
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CHAPTER 5 

RESULTS, COMPARISON, 

AND DISCUSSION 

In Chapter 3 and Chapter 4, we have presented an automatic skeletonization and 

skin attachment framework, aiming to provide a more accurate and easy-to-use 

approach for both animation skeleton generation and skin weight distribution. In 

this chapter, we will demonstrate the application of the framework and compare 

its results to the results of previously developed frameworks. 

5.1 Skeletonization 
The first model we use to demonstrate the skeleton generation is a hand model, 

shown in figure 5.1(a). Its primary 3D silhouette is shown in figure 5.1(b). Via 

Delaunay triangulation, a 3D medial axis, i. e. a coarse curve skeleton, is extracted 

from the primary silhouette by connecting the midpoints of the internal edges of 

the triangles. Its centrality is refined by the second 3D silhouette which is 

generated from a decomposed mesh, shown in figure 5.1(c) and (d). 

By down sampling the curve skeleton, 22 skeletal nodes are produced. The 
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animation skeleton is generated by connecting these skeletal joints with line 

segments. as shown in figure 5.1(e). 

;; ̀ ' 
ýýý ý: '. °ýý, 

(a) (b) (c) 

(d) (e) 

figure 5.1: An illustration of generating an animation skeleton for a hand 

model. (a) original modal; (h) primary 3D silhouette; (c) 

decomposed mesh; (d) curve skeleton; (e) animation skeleton. 

This presented framework is applicable to various character models despite shape 

and size, as long as the cross-section of the model maintains approximately 

elliptic. Three other examples are given below in figure 5.2 to demonstrate its 
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(a) 

11 

(b) 
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(c) 

figure 5.2: Other examples of animation skeleton generation. (a) man; (h) 

ostrich: (c) horse. 

The skeleton generation process is performed on a 1.6 GHz Intel Core Dual PC 

with I GB of memory. The timing statistics of each stage along with the face count 

for each character is given below in table 5.1. 

Model hand man ostrich horse 

Face number 38016 29216 52895 16843 

Primary 3D silhouette detection 4.2 3.7 9.2 2.2 

Curve skeleton extraction 2.0 1.9 5.4 1.2 

Joints location 0.4 0.3 0.5 0.2 

Total time 6.6 5.9 15.1 3.6 

Table 5.1: Execution time statistics 
. 
for four different 3D models (sec. ) 

For frameworks which generate the animation skeleton from a curve skeleton, the 

curve skeleton is expected to depict the topology of the animation skeleton as 

closely as possible. To evaluate the accuracy of the framework proposed in this 

thesis, we compare the skeleton of a hand generated by our framework to the 
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skeleton derived from five other popular skeletonization methods. These five 

methods are medial surface, Reeb Graph, thinning, distance-field and 

potential-field methods. The comparison is illustrated in figure 5.3. 

Figure 5.3(a) illustrates an animation skeleton of a hand model which is manually 

rigged by animators [Alias 2004]. It is used as the evaluation criterion. 

According to this standard animation skeleton, the curve skeleton generated by 

either thinning or distance-field algorithm is not smooth and contains many 

unwanted fine branches. Post-processing, e. g. pruning. is demanded and this 

inevitably undermines the applicability of these two algorithms. 

The skeleton generated by Reeb Graph method results in poor centrality which is 

fatal to the control of animation. The skeleton produced by potential-field and 

medial surface algorithms yield cleaner and smoother results. However, these two 

algorithms do not always preserve the connectivity of the model. Furthermore, 

intense post-processing is also demanded by these two algorithms. 

In contrast, the curve skeleton extracted using our method results in a clean, 

continuous, well-centered and topological-preserving structure. It is the closest 

resemblance of the standard manually-rigged animation skeleton. 

(a) 

ioo 
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/ 

(b) (c) (d) 

(e) (f) (g) 

figure 5.3: Comparisons of the results produced by different classes of curve 

skeleton extraction algorithms. (a) a hand model rigged manually 

[Alias 2005]: (h) our method; (c) thinning; (d)distance 
, 
field; (e) 

Reel, Graph; (f) medial surface; (g) potential. field. 

To study the efficiency of the presented framework, the computation complexity 

of this framework and other frameworks are analyzed. Suppose there are 

n vertices in the model mesh, m vertices in the primary 3D silhouette, and 

l branches in the curve skeleton extracted from the primary silhouette, the 

computation complexity of such a model using our framework for primary 3D 

silhouette detection, curve skeleton extraction, joints locating, skin attachment 

respectively are O(m2 ), o"', <). O(m) and O(n). In a general sense. in can 

be regarded as the maximal contour length (perimeter) of the model and n can 
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be regarded as the surface area. This makes O(rn2) approximately equal to O(n). 

Thus the total computation complexity of the automatic skeletonization algorithm 

in our framework is O(n). Compared to the O(n2) computation complexity of 

typical automatic skeletonization methods [Wu et al, 2006], our framework works 

much more efficiently. Table I suggests that on average we can generate the 

animation skeleton of a 3D model with around 30000 triangles in less than 10 

seconds, which is much faster than most skeletonization methods. 

5.2 Skin Attachment 
The proposed automatic skin attachment framework aims to associate the skin 

vertices with a more reasonable influence joints set to produce more accurate 
initial weights. A human model is used in this section for demonstration. The 

original model is shown in figure 5.4, composed of 14,652 vertices and 29,862 

edges and 133 joints. 

figure 5.4: Original mesh with embedded skeleton. /iv skin attachment 
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n rays are emitted from a joint to sample the distance between this joint and its 

surface area. In our implementation. we choose n= 100. The dividing points are 

chosen as the closest points. according to formula (4.1). An illustration of this 

process is given below in figure 5.5. 

Ai. 
(a) 

10 

8 

6 

4 

2 

0 

(c) 

(h) 

figure 5.5: Searching for a dividing point at the lower neck joint. (a) Ra. vs are 
emitted to sample the distance. (h) The distance values returned by 

the /(H) sampling rays. (c) The closest point to the joint is chosen 

as a dividing point. 
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A boundary is generated at each joint by connecting dividing points and the model 

mesh is then decomposed into regions corresponding to joints, as shown in figure 

5.6. 

. 
/igure5.6: Decomposition based on skeletal joints. A houndafy is generated to 

. cpeci/v a joint region. 

To study this framework's ability of removing irrelevant influences from 

topologically far joints, we compare its computed weights to the results derived 

from conventional automatic binding method. An illustration is given in figure 5.7 

to demonstrate the weight computation results. In figure 5.8 and figure 5.9. the 

differences can be seen in the armpit area. The unwanted transformations of 

vertices in the armpit area as the shoulder moves are eliminated. 
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ý_ýý 

_ýý 

(a) 

9- 

(h) 

figure5.7. Comparison o/ ti'eiglºt computation for º'ertices in the armpit area 

using di(Jýýrent skin attachment methods. The brightness indicates the 

change in weigh/ values. (a) our method; (h) Maya smooth binding. 
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(a) 

(b) 
figure 5.8: Comparison of deformation effects using weights derived. from: (a) 

our frume%i ork; (h) Maya smooth binding. View rom front. 
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(a) 

(b) 

. 
figure 5.9: Comparison of deformation effects using weights derived from: (a) 

our framework; (b) Maya smooth binding. View from hack. 

107 



Chapter 5. Results. Comparison and Discussion 

Another example is to demonstrate the advantage of using a non-planar boundary 

to segment the mesh. We use a cat model for demonstration. 

. 
figure 5.10: The original model mesh of a cat. A bulge area can he seen 

between the leg part and the torso part. 

As shown in figure 5.10, if separated by a planar boundary, the bulge part which 

topologically belongs to the leg would be categorized to a region belongs to the 

torso. I lowever, using our method, it is capable of classifying this part to `leg', as 

illustrated in figure 5.11. 

figure 5.11: The region between the leg and the torso of "a cat is separated hi' 

a non planar boundary. 

The weight computation result is shown in figure 5.12. The deformed effect using 

weights computed from this segmentation is compared to that using planar 
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segmentation boundary in figure 5.13. 

figure 5.12: Weight computation results of the upper leg part. 

(a) 

(b) 
figure 5.13: Comparison of deformed effects ht' weight computation using: (a) 

our non-planar boundary in mesh segmentation; (h) conventional 

planar boundary in mesh segmentation. 

109 



Chapter 5. Results, Comparison and Discussion 

The computation involved in our framework is slightly more complicated than 

conventional automatic binding approach which calculates the distance from a 

vertex to a joint directly. However, our framework produces far more accurate 

results that it saves a great deal of time on manual tuning needed by conventional 

attachment methods and reduces the tedium. Furthermore, this weight 

computation process is accomplished before animating. It would not affect the 

rendering speed during run time. 
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CHAPTER 6 

CONCLUSIONS AND FUTURE WORK 

6.1 Conclusions 
Skeleton generation is of great importance to articulated character animation. 

Traditionally, this task is done by hand, which is time consuming and experience 

dependant. Approaches to automatic skeleton generation have been proposed 

before. However, most of them aim at general use rather than animation so that 

the skeleton they produce does not suit the needs of animation, others are 

computationally expensive. 

In this thesis, we have presented an automatic skeletonization framework which 

serves realistic character animation as its particular purpose. This framework is 

applicable to characters with various shapes and topologies as long as their 

cross-sections are approximately elliptic. 

A new geometric entity, namely 3D silhouette, is introduced in our skeletonization 

algorithm. A two-level search algorithm is developed to detect the 3D silhouette 

of a character model. This search algorithm is simple and fast. It handles most 

character models hence they are usually given at roughly extended poses. Another 
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algorithm employing connectivity information is presented as well to deal with 

some extreme circumstance where models are severely occluded. 

A coarse curve skeleton is extracted automatically from the 3D silhouette via 

constrained Delaunay triangulation, which roughly depicts the formation of an 

animation skeleton. This coarse curve skeleton can be divided into several 

branches which are used in guiding the decomposition the model. A second 3D 

silhouette is then extracted from the decomposed mesh, which improves the 

centrality of the curve skeleton. By identifying necessary joints on the refined 

curve skeleton, an animation skeleton is generated. 

This framework solves the 3D problem of skeletonization in 2D space. Thus it 

simplifies the computation and is more efficient. The computation complexity of 

other main skeletonization methods for a model with n vertices is typically O(n2), 

while that of our method is O(n). Furthermore, we have compared the skeleton 

generated using our framework with that using other methods in Chapter 5. The 

results produced by our method are of much better quality. 

Nevertheless, our algorithm has some limitations. The main disadvantage is that 

the algorithm is restrictive to the shape of the objects. Although it is able to handle 

most character models, if the model cannot be treated as a series of generalized 

elliptic columns, e. g. a rock with grotesque shape, the centrality of the generated 

skeleton is not guaranteed. 

Another deficiency is that if the pose of a model is extended to a certain degree 

that the bending angle of a joint is too small, some joints may not be recognized 

on the generated curve skeleton. However, this is very rare in practice. At the 

same time, with key joints being located, to decide a few in-between joints is 

rather straightforward. After all, the automation aims to facilitate the animation, 

not to replace animators. 
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In skeleton-driven animation, to derive the deformation from the skeleton, the 

skin and the skeleton need to be tied together. It is a vital step to attach skin mesh 

to skeleton with weights which can reasonably reflect the contribution of each 

joint to a vertex during deformation. The weight distribution made by animation 

software currently in use is simply based on the geometric distance between a 

vertex and a joint. It introduces to a vertex many influences which should be 

considered irrelevant so that manual weight editing is one of the most tedious 

tasks along the animation pipeline. Researchers have proposed a few automatic 

weight distribution methods. However, they either do not solve the problem 

fundamentally, or are designed for a certain deformation algorithm and are not 

transferable. 

In this thesis, a framework has been presented to provide a flexible and more 

reasonable automatic weight computation algorithm. It starts from segmenting a 

model mesh into regions of which each corresponds to a joint. These regions are 

then extended to generate overlapping areas which we call shadow areas, in 

contrast of the non-overlapping areas which we call dominant areas. Vertices in 

the skin mesh are classified into these areas. Should a vertex fall into a dominant 

area of a joint, it is affected only by this joint. Otherwise, it is transformed by all 

the joints in regions that overlap in this area during deformation. The weight 

distribution among the associated joints is based on distance from the vertex to the 

boundary of each related region. 

A user-defined parameter is provided in our algorithm to define the size of the 

shadow area. Depending on the value of the parameter, the blended weights are 

capable of produce either quasi-rigid or smooth deformation effects. 

Examples are provided in Chapter 5 to demonstrate the application of this skin 
attachment framework. The weight computation results are of better quality than 
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that produced by conventional method which computes weight directly using the 

distance between a vertex and a joint. The weights derived from this framework 

are flexible that they can be used with different deformation methods. 

Our skin attachment framework would benefit experienced animators as well as 

novices. The computation complexity is slightly higher than conventional 

methods due to an extra step of mesh decomposition. Given that it saves 

animators from intense labour of manual weight editing, this is considered to be 

worth it. Fine tuning may still be required. However, our purpose is to accomplish 

the most tedious part of the task using computers instead of men. Pure automation 

is not our ultimate goal. As stated earlier, it should not, and never will, replace the 

craftsmanship of animators. 

6.2 Future Work 

6.2.1 Future Work in Skeletonization 

Regarding the problem of missing joints mentioned above for the proposed 

skeletonization framework, some methods can be explored in our future work. 

One direction is to use template matching method for more accurate inbetween 

joints locating. 

Two types of templates are considered for future development. The first template 

consists of a full-body skeleton of a character where all joints are predefined. The 

second is a template for a partial skeleton associated with a body segment. For an 
instance, for an arm of a human model, only middle joint, i. e. the elbow, may need 

to be specified since the wrist and the shoulder joint are key nodes which can be 

identified directly from the midpoints of junction triangles after constrained 

Delaunay triangulation. Using this partial template helps to locate any middle 
joints by comparing the medial axis branch of the model with the matching 

template. Such a simplified template may work more effectively than a complete 

114 



Chapter 6. Conclusions and Future Work 

one. 

6.2.2 Future Work in Skin Attachment 

A possible improvement of our skin attachment framework in future is its 

accuracy, although it has outperformed the existing methods. In consideration of 

computation cost, our current framework uses a simplified boundary line and 

Euclidean distance in weight computation. In future, the actual boundary line and 

geodesic distance will be used in implementation. That may bring an even better 

distribution result. 

Another aspect of possible improvements is toward enlarging its range of 

applicable models. Currently our decomposition method is based on the 

observation on the anatomical shape of real creatures. Although this observation is 

correct for most realistic characters, it may not suit some imaginary creature that 

does not hold an anatomical feasibility. In future, other decomposition methods 

may be developed to solve this need. 

Furthermore, the weight distribution derived from our framework is flexible to be 

used in various deformation styles, yet we would like to develop a new algorithm 

in future based on this distribution approach for a more realistic deformation. 
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