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Abstract— Estimation of the generalization ability of a pre-
dictive model is an important issue, as it indicates expected
performance on previously unseen data and is also used for
model selection. Currently used generalization error estimation
procedures like cross–validation (CV) or bootstrap are stochas-
tic and thus require multiple repetitions in order to produce
reliable results, which can be computationally expensive if
not prohibitive. The correntropy–based Density Preserving
Sampling procedure (DPS) proposed in this paper eliminates the
need for repeating the error estimation procedure by dividing
the available data into subsets, which are guaranteed to be
representative of the input dataset. This allows to produce low
variance error estimates with accuracy comparable to 10 times
repeated cross–validation at a fraction of computations required
by CV, which has been investigated using a set of publicly
available benchmark datasets and standard classifiers.

I. INTRODUCTION

Estimation of the generalization ability of a predictive
model is an important issue in the machine learning field,
especially that it is independent of the actual model used.
Generalization accuracy estimates are not only used as
indicators of the expected performance of the developed
classifier or regressor on previously unseen data, but are also
commonly used for model ranking and selection [7].

In contrast to the large number of various regression
and classification methods currently in use, there is only a
handful of model independent generalization error estimation
techniques. The most popular of them are cross–validation
[5] dating back to 1968, and bootstrap [9] developed in
the 1979. These techniques, and especially cross–validation
are being used even more willingly and blindly after the
publication of a seminal paper by Kohavi in 1995, presenting
a comparative study of bootstrap and cross–validation [12],
and currently estimated to have more than 1500 citations1.

The basic idea, which is being shared by all generalization
error estimation methods is to reserve a subset of available
data to test the model after it has been trained using the
remainder of the dataset. The main difference between var-
ious techniques is the way the generalization error is being
calculated, the size of the subset reserved for testing or
whether the procedure is repeated multiple times or not.
They have however something in common, and that is the
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way in which the testing subset is being generated – random
sampling. Although the stochastic nature of bootstrap and
cross–validation ensures that in the limit they would both
converge to a true value, this may also lead to large variations
in the estimate between consecutive runs, making the results
unreliable. This effect can be alleviated to a large extent
by repeating both procedures multiple times, which however
significantly increases the computational demands.

A good test set should be independent of the training data
and representative of the population from which it has been
drawn. While random sampling meets the first requirement,
it does not guarantee the representativeness. In order to
address this issue, stratified sampling approaches have been
developed [12], which try to increase the representativeness
at the expense of independence, and are able to achieve better
results than their non–stratified counterparts.

Inspired by the success of stratified sampling approaches,
in this paper we propose a density preserving sampling
procedure (DPS), which further sacrifices the independence
of the test set to enforce its representativeness. The method
achieves this goal by optimizing the correntropy, a recently
developed, non–parametric similarity measure of the proba-
bility density functions [14], and as shown later produces
accurate generalization estimates requiring a fraction of
computations when compared to cross–validation.

The remainder of this paper is organized as follows. In
Section II the problem of estimation of generalization error
is introduced, together with standard estimation techniques
and criteria of their evaluation. Section III describes the
concept of Information Theoretic Learning including online
manipulation of Renyi’s quadratic entropy and the definition
of correntropy. In Section IV, the novel Density Preserving
Sampling procedure is derived. The experimental results are
given in Section V, while the discussion and conclusions can
be found in Sections VI and VII respectively.

II. ESTIMATION OF THE GENERALIZATION ERROR

Generalization error is the error a predictive model will
make on novel, previously unseen data, generated from the
same distribution as the data used to develop the model [7].
Low generalization error is thus a sign of a good match
between the model and the problem and no overfitting [4].

In general it is impossible to obtain a closed form solution
for calculation of the generalization error or even for calcu-
lation of tight bounds for the error, in all but the simplest
cases [2]. The only practical solution is to estimate the
generalization error from all available i.i.d. (independently
and identically distributed) data samples by splitting them



into training and validation sets [10]. For the error estimate
to be meaningful both these datasets should be representative
of the true distribution, so the way in which the data is being
split plays a crucial role.

A. Hold–out and random subsampling

The simplest and the least computationally expensive way
to estimate the generalization error is the hold–out method
[21], in which the data is split randomly into two parts: the
training set and the hold–out set, in a priori chosen propor-
tions. The model is then trained using the training dataset
and its error on the hold–out data becomes an estimate of
the generalization error. The obvious drawback of the hold–
out method is that unless both datasets are large enough
(which is a vague term by itself), different estimates will
be obtained from one run to another. A workaround, known
as random subsampling [10], repeats the hold–out procedure
multiple times and averages the results. This procedure
however still does not guarantee that all instances will at
some point be used for training nor that none of the classes
will be over/under–represented in the hold–out set [12]. In
order to circumvent these issues, more advanced resampling
techniques have been developed. Yet, the hold–out method
is still being used when dealing with large datasets, as in
this case other techniques quickly become untractable. It is
also assumed that more advanced resampling techniques are
simply not needed for large amounts of data.

B. Cross–validation

Cross–validation is a widely used standard statistical tech-
nique for estimation of model generalization ability, applied
with a great success to both classification and regression
problems [4], [7]. In k–fold cross–validation the whole avail-
able dataset is first randomly divided into k approximately
equal subsets. Each of these subsets or folds is then in
turn put aside as validation data, a model is built using
the remaining k − 1 subsets and tested using the validation
subset. The estimate of the generalization error is then
calculated as a mean value of all validation errors, while
the standard deviation of the validation error can be used
to approximate the confidence intervals of obtained error
estimate. The whole procedure thus requires development of
exactly k models. Since the results obtained in the setting
described above are also likely to vary from one run to
another, the procedure is repeated multiple times for various
random splits and the results are averaged.

The most frequently used variants of cross–validation are:
• Leave–one–out cross–validation in which a single in-

stance is used as a validation set. This produces unbi-
ased error estimates but with high variance and can be
computationally prohibitive for large datasets.

• Repeated 10–fold cross–validation, which often is a
good compromise between speed and accuracy.

• Repeated 2–fold cross–validation, which is an approxi-
mation of the bootstrap method [21].

In order to improve the accuracy of the estimates obtained,
a stratified cross–validation approach is used in practice,

which samples the data in a way that approximates the
percentage of each class in every fold [12]. For regression
problems, stratified cross–validation produces folds with
equal mean values of the target variable [10].

C. Bootstrap

Bootstrap is a second commonly used generalization error
estimation procedure [4], [7], especially useful when dealing
with small datasets [21]. Given an input dataset of size m,
the method performs uniform sampling with replacement to
produce a training set of the same size. The instances not
picked during the sampling procedure form the test set. The
probability of each instance ending up in the test set is thus:

(

1 −
1
m

)m

≈ e−1 ≈ 0.368 (1)

Due to the fact that the probability of each instance being
picked for training is 1 − 0.368 = 0.632, the method
is also often called the ‘0.632 bootstrap’ [21]. Since the
error estimate obtained using test data only would be overly
pessimistic (only about 63.2% of instances are used for
training every time), the generalization error estimate is
calculated using weighted test and training errors. In general,
the more times the whole process is repeated, the more
accurate the estimate. A comprehensive comparative study
of cross–validation and bootstrap can be found in [12].

D. Bias and variance of error estimation methods

The bias of an error estimation method is the difference
between the expected value of the error and the estimated
value [12]. For an unbiased estimator, this difference is equal
to zero. Bias can also be either positive or negative. In the
former case, the estimate is said to be overly optimistic, as the
estimated error is lower than the expected error. Negative bias
on the other hand leads to overly pessimistic error estimates.

Low bias on its own does not guarantee good performance
of the error estimation procedure. There is another important
parameter – the variance, which measures the variability
of the estimate from one run to another. In the case of
subsampling methods discussed in this paper, the variability
is usually approximated by the expected standard deviation
of a single accuracy estimation run [12]. A good estimator
should thus have low bias and low variance. Unfortunately
in practice it is usually difficult to achieve both at the same
time, leading to so called bias–variance trade–off [4].

III. INFORMATION THEORETIC LEARNING (ITL)

Information Theoretic Learning is a procedure of adapting
the parameters of a learning machine using information
theoretic criterion [17]. The goal of learning can be stated as
exploration and exploitation of redundancies from a single or
multiple sources of information the learning machine is ex-
posed to. This shifts the problem towards quantification and
manipulation of redundancy, making Shannon’s information
theory the ultimate framework of machine learning [18].

Application of the information theory to learning prob-
lems is however not straightforward. The main issue is the



omnipresent ‘learning from exemplars’ paradigm, while the
information theory in its traditional form is only able to deal
with probability density functions given in an analytic form
[18]. Although it is possible to use numerical approximation,
it quickly becomes intractable as the dimensionality of the
input space grows [17]. Information Theoretic Learning
framework should thus allow for both non–parametric esti-
mation and manipulation of entropy and various divergence
measures, enabling training of both linear and nonlinear
mappers by transferring as much information as possible
from the training data into parameters of the system [18].

A. Renyi’s quadratic entropy

Entropy is a measure of the uncertainty associated with a
random variable. It quantifies the average information content
that is missing due to the unknown value of the variable and
is the main criterion used in ITL approaches.

Denoting by p(y) the probability density of the random
variable y, Shannon’s differential entropy is given by:

HS(y) =
∫

p(y) log
1

p(y)
dy = −

∫
p(y) log p(y) dy (2)

Calculation of Shannon’s entropy usually requires the
density function to be given in an analytic form. There are
however other definitions of entropy that can be used in the
ITL framework. One of them is Renyi’s entropy of order α,
which for a continuous random variable is given by:

HRα(y) =
1

1 − α
log
∫

p(y)α dy (3)

Renyi’s entropy involves calculation of the integral of the
power of PDF rather than integral of the logarithm as in
the case of Shannon’s counterpart, which is much easier
to estimate [18]. Moreover, Shannon’s entropy is the lim-
iting case of Renyi’s entropy when α → 1. For practical
applications the choice of α = 2 is a good compromise
between robustness and computational complexity (O(n2))
[18], leading to the definition of Renyi’s quadratic entropy:

HR2 = − log
∫

p(y)2 dy (4)

The most important property of Renyi’s entropy from the
point of view of ITL is that the extrema of HS and HR

overlap [17], so both definitions are equivalent for the
purpose of entropy optimization.

The above criterion is however still useless without a
good estimate of the probability density function, which
fortunately can be obtained and efficiently integrated into (4)
by using the Parzen window density estimator [7]. Denoting
by G(y, σ2I) a spherical Gaussian kernel centered at y with
diagonal covariance matrix, the PDF can be estimated as:

p(y) =
1
N

N∑

i=1

G(y − yi, σ2I) (5)

Substituting 5 into 4 and using the convolution property of
the Gaussian kernel yields:

HR2(y) = − log
∫

p(y)2 dy = − log V (y) (6)

V (y) =
1

N2

N∑

i=1

N∑

j=1

G(yi − yj , 2σ2I) (7)

Renyi’s entropy of order α calculates the interactions be-
tween α–tuplets of samples, so the higher the value of α,
the more information about the structure of the dataset can
be extracted [18] but the computational complexity – O(nα)
– quickly becomes prohibitive.

If some imaginary particles were placed on top of each
data sample a potential field would be created, since G(yi −
yj , 2σ2I) is always positive and decays exponentially with
the square of the distance between yi and yj [17]. The
samples can thus be referred to as Information Particles while
V (y), which is an averaged sum of all pairs of interactions
and represents the total potential energy of the dataset –
Information Potential. By analogy to classical physics the
gradient of potential energy is a force, which wants to
drag the particles to a state with minimum potential. This
behaviour can be immediately used for training of adaptive
systems with forces taking the place of the injected error and
used for adjusting parameters of the model [18].

B. Auto– and cross–correntropy

A Generalized Correlation Function (GCF) for a stochastic
process xt has been defined in [20] as:

V (t1, t2) = E[φ(xt1), φ(xt2)] = E[k(xt1 , xt2)] (8)

where E stands for the expected value, φ denotes some kernel
induced transformation and k is a kernel function, assumed to
be Gaussian from now on. It has been proven, that the GCF
estimator not only conveys information about autocorrelation
but also about the structure of the dataset, as its mean value
for non–zero lags converges asymptotically to the estimate of
the Information Potential calculated using Renyi’s quadratic
entropy [20]. The function has been named auto–correntropy
and is a preferred choice over traditional methods also due
to taking advantage of all even moments of the PDF.

The idea of auto–correntropy has been further developed
in [14] to support a general case of two arbitrary random
variables. The new measure, named cross–correntropy (or
correntropy) is defined for random variables X and Y as:

V (X,Y ) = E[φ(X), φ(Y )] = E[k(X,Y )] (9)

The correntropy can be used as a measure of similarity
between X and Y but only in the neighbourhood of the joint
space. This results from the restriction of Gaussian kernels,
which have high values only along the x ≈ y line with
exponential fall off otherwise. The size of this neighbourhood
is therefore controlled by the kernel width parameter σ. As
a result, correntropy can also be defined as the integral of
the joint probability density along the line x = y:

V (X,Y ) ≈
∫

p(x, y) |x=y=u du (10)



The joint PDF can be estimated from the data using the
Parzen window method:

p(x, y) ≈
1
N

N∑

i=1

G(x − xi, σ
2I)G(y − yi, σ

2I) (11)

By integrating above equation along the x = y line and once
again using the convolution property of Gaussian functions,
the estimate of correntropy is finally obtained as:

V (X,Y ) ≈
1
N

N∑

i=1

G(xi − yi, 2σ2I) (12)

The correntropy can thus be regarded as the PDF of equality
of two variables in the neighbourhood of the joint space, of
the size determined by the kernel width parameter σ [14],
[16]. The measure has many interesting properties and one
of them is that for independent X and Y it can be approxi-
mated by the Information Potential formula similar to 7 and
named Cross Information Potential [16]. The correntropy has
been successfully employed as a localized, outlier–resistant
similarity measure for supervised learning [15], [16], [11].

IV. DENSITY PRESERVING SAMPLING PROCEDURE

Both cross–validation and bootstrap, described in sections
II-B and II-C are stochastic methods. The immediate con-
sequence is that the results can vary a lot from one run to
another and there is no guarantee that the datasets obtained
by splitting the original data are representative, which is a
necessary condition for obtaining accurate error estimates.
For this reason, in order to obtain reliable results, averaging
over multiple iterations is required. In general, the more
times the procedure is repeated the better, as in the limit
both methods will converge to the true error values. For
k−fold cross–validation using m−element dataset this could
mean averaging over all

(
m

m/k

)
possibilities of choosing m/k

instances out of m (the so called ‘complete cross–validation’
[12]), which quickly becomes untractable. There is however
another, often overlooked possibility – intelligent sampling
aiming at producing only representative splits.

From statistics, a random sample is considered represen-
tative if its characteristics reflect those of the population
from which it is drawn [6]. Since these characteristics
are reflected by the probability density function, the more
similar the distribution of the sample to the distribution of
the population, the more representative this sample is. The
correntropy described in section III-B can be used to measure
the similarity between two distributions and thus to measure
the ‘representativeness’ of the sample. Moreover, it is also
possible to use correntropy as an optimization criterion,
guiding the sampling process in order to split a given dataset
into two or more maximally representative subsets.

A. Correntropy for unsorted sets with unequal cardinalities

Equation 12 defines correntropy between two random vari-
ables or datasets X and Y as the value of a Gaussian kernel
centered at (xi−yi) averaged over all N instance pairs. There
are thus three requirements for calculation of correntropy

to be possible: the datasets (1) must be ordered, (2) must
have the same dimensionality and (3) must have the same
number of objects. While the second requirement is irrelevant
for sampling, as each subset of objects necessarily has the
same dimensionality as the set from which it originates, the
remaining two requirements may pose a problem.

For some applications like e.g. supervised learning, all the
above requirements are met automatically – if X denotes the
output of a mapper and Y denotes the target value, |X| = |Y |
and xi is the prediction of yi. In sampling however in general
one cannot expect the instances to be ordered, which means
that it is not obvious on the difference of which instances
to center the Gaussians. Moreover, the datasets may have
different cardinalities e.g. when one wants to calculate the
correntropy between the original dataset and its subset.

To address the ordering issue the following approach is
adapted. For every instance xi, i ∈ (1..N), the Gaussian is
centred at (xi − yj), such that:

j = argmin
j

‖ xi − yj ‖, j ∈ (1..N) (13)

where ‖ ∙ ‖ denotes the Euclidean norm. In other words
yj is selected to be as close to xi as possible. Both xi

and yj are then removed from their respective sets and
the procedure is repeated until all instances are exhausted.
The generalized, instance ordering insensitive formula for
calculation of correntropy thus becomes:

V (X,Y ) ≈
1
N

N∑

i=1

G(xi − yj , 2σ2I)

j = argmin
j

‖ xi − yj ‖, j ∈ Javail (14)

where the set Javail contains all indices of y which haven’t
yet been used, to ensure that each yk is used only once.

When the datasets have different cardinalities, that is with-
out loss of generality if NX > NY , the approach outlined
above will terminate after NY instances are processed. To
avoid this, a new dataset YN is created by duplicating the
original Y dataset dNX/NY e times. Correntropy is then
calculated between X and YN and the calculation will
terminate after exactly NX steps.

For the correntropy values to be more comparable for
different experiments, we scale V (X,Y ) to fit into the 0..1
range, by dividing each G(xi − yj , 2σ2I) in the sum in
Equation 14 by G(0, 2σ2I). Every correntropy value given
in the rest of this paper has been scaled. Note however, that
the correntropies should be compared with caution as their
absolute difference can be made almost arbitrarily large by
manipulating the Parzen window width parameter σ. For this
reason the correntropy values given should be seen as ranks
of various models/solutions on an ordinal scale.

B. Correntropy based sampling procedure

In this section we propose a correntropy–based, hierar-
chical, binary density preserving splitting procedure. The
correntropy given by Equation 12 is a function differentiable
with respect to both xi and yi, which unfortunately is not



the case for the generalized function given by Equation 14.
Moreover, none of them is differentiable with respect to
the indices i and j, which are the only variables that can
be manipulated within the splitting process. Gradient driven
optimization procedure is thus not straightforward, hence we
have reverted to a greedy, locally optimal approach.

Since correntropy is being estimated by a scaled sum of
Gaussians, it reaches a maximum when all components of the
sum reach their maximal values. In case of a single Gaussian
function, the maximum is reached at 0, so the closer xi and
yj are in Equation 14, the higher V (X,Y ) will be. This
immediately suggests an iterative, binary splitting procedure
of a dataset Z into datasets X and Y , which at each step
selects two instances zi and zj so that:

i, j = argmin
i,j

‖ zi − zj ‖ (15)

and then adds them to the sets X and Y , so that X = X∪zi

and Y = Y ∪ zj or the other way round, removing them
from dataset Z at the same time. The above procedure
aims at directly maximizing V (X,Y ), that is the correntropy
between the two new datasets. Due to the way correntropy
is calculated for sets with various cardinalities however,
it also indirectly maximizes V (X,Z) and V (Y,Z). As a
result, newly obtained datasets are splits with distributions
maximally similar to each other and to the distribution of the
original dataset. To obtain more than 2 splits, the procedure
can be repeated by splitting datasets X and Y again, which
will produce 4 splits and so on. The total number of splits
is thus always a power of 2.

The instances zi and zj can be added to the sets X and
Y arbitrarily or not. In our approach we have devised a
procedure in which the two objects are distributed in a way
that maximizes the average coverage of the input space by
both splits. Denoting by dkV the average Euclidean distance
between instance zk and all instances in set V , the rules are:

diX + djY ≥ djX + diY ⇒ X = X ∪ zi, Y = Y ∪ zj (16)

diX + djY < djX + diY ⇒ X = X ∪ zj , Y = Y ∪ zi (17)

For classification problems, the splitting procedure can be
executed in either supervised or unsupervised mode. In the
former case, the algorithm takes advantage of the class labels
supplied with the data by considering each class in turn and
in separation from the rest. In other words the dataset is
being split class by class. We refer to this approach as DPS–
S. In the unsupervised mode, the class labels are ignored, so
the procedure is purely density–driven and has been called
DPS–U. Similar remark applies to estimation of correntropy,
which can also be calculated in a class–wise (supervised) or
class–less (unsupervised) mode.

The computational complexity of the DPS approach is of
the order O(N2/2), as the most time consuming operation
is calculation of pairwise distances between all N instances.
This is however negligible when compared to the complexity
of most training algorithms.

V. EXPERIMENTS

The experiments have been conducted on 20 publicly
available datasets using a total of 16 different classifiers.
The datasets used come from the UCI Machine Learning
Repository [3], the ELENA database [1] and the PRTools
Pattern Recognition Toolbox for MATLAB [8]. The details
of datasets are given in Table I. The star symbol in the
‘#obj/attr’ column denotes the number of instances actually
used in the experiments, sampled randomly from the whole,
much bigger dataset in order to keep the experiments com-
putationally tractable. The numbers given in brackets in the
‘#class’ column denote the number of classes used, as we
have removed the classes with less than 16 instances due to
the problems it has caused during stratified sampling within
the cross–validation scheme. The classifiers used come from
the PRTools toolbox and their list is given in Table II.

The goal of the experiments was to compare the error
estimation accuracy of cross–validation (CV) and density
preserving sampling approaches (DPS) as well as to test
the stability of both error estimators. We have followed a
similar approach to that outlined in [12]. For each dataset a
stratified random subsampling procedure has been repeated
100 times, resulting in 100 random divisions of the dataset
into a training part (2/3) and independent test data (1/3).
The training part was then used to estimate the generalization
error using CV and DPS for each classifier, while the
independent test part has been used to calculate the ‘true’
generalization error, once again for each classifier in turn.
The true generalization error then served to calculate the
bias of each estimate, while the generalization error estimates
of a single estimation run have been used to calculate the
variance. Finally, the results have been averaged over all 100
runs of the random subsampling procedure.

The CV estimate has been calculated within a 10 times
repeated 8–fold cross–validation scheme. We provide the
average results for all 10 iterations as well as the result of
the best and worst single run in terms of bias/variance to
emphasize how wrong the things can go with CV.

Three 8–fold DPS estimates are also given – DPS–S
(using class label information), DPS–U (ignoring class label
information) and DPS–SU (averaged over DPS–S and –U).

A. Toy problem

The analysis starts with Cone–torus, a synthetic dataset
first used in [13]. The dataset has been chosen as it is two–
dimensional, which allows for visualisation of the results and
has been extensively used in our previous studies due to its
well known properties. The Cone–torus dataset consists of 3
classes, with instances generated from 3 differently shaped
distributions: a cone, half a torus, and a normal distribution.
The analysis of the scatter plots of DPS and CV folds2 have
revealed, that for DPS the classes tend to preserve their
shapes – the half torus for example was clearly visible in
7 out of 8 folds, while for CV only in 4 or 5. This was also

2The plots are not presented here due to space constraints but they are
available at http://www.budka.co.uk.



TABLE I

DATASET DETAILS

abbr name source #obj/attr #class
can Breast cancer Wisconsin UCI 569/30 2 (2)
cba Chromosome bands PRTools 1000*/30 24 (24)
chr Chromosome PRTools 1143/8 24 (23)
clo Clouds ELENA 1000*/2 2 (2)
cnc Concentric ELENA 1000*/2 2 (2)
cnt Cone–torus [13] 800/3 2 (2)
dia Pima Indians diabetes UCI 768/8 2 (2)
ga2 Gaussians 2d ELENA 1000*/2 2 (2)
ga4 Gaussians 4d ELENA 1000*/4 2 (2)
ga8 Gaussians 8d ELENA 1000*/8 2 (2)
ion Ionosphere radar data UCI 351/34 2 (2)
let Letter images UCI 1000*/16 26 (26)
liv Liver disorder UCI 345/6 2 (2)
pho Phoneme speech ELENA 1000*/5 2 (2)
sat Satellite images UCI 1000*/36 6 (6)
seg Image segmentation UCI 1000*/19 7 (7)
shu Shuttle UCI 1000*/9 7 (3)
syn Synth–mat [19] 1250/2 2 (2)
tex Texture ELENA 1000*/40 11 (11)
veh Vehicle silhouettes UCI 846/18 4 (4)

TABLE II

CLASSIFIER DETAILS

name description
fisherc Fisher’s Linear Classifier

ldc Linear Bayes Normal Classifier
loglc Logistic Linear Classifier
nmc Nearest Mean Classifier
nmsc Nearest Mean Scaled Classifier

quadrc Quadratic Discriminant Classifier
qdc Quadratic Bayes Normal Classifier
udc Uncorrelated Quadratic Bayes Normal Classifier

klldc Linear Classifier using KL expansion
pcldc Linear Classifier using PC expansion
knnc K–Nearest Neighbor Classifier

parzenc Parzen Density Based Classifier
treec Decision Tree Classifier

naivebc Naive Bayes Classifier
perlc Linear Perceptron Classifier
rbnc Radial Basis Function Neural Network Classifier

well reflected by the mean value of correntropy between all
8 folds and the original dataset, which is 0.81 for DPS and
0.71 for CV averaged over 10 runs (σ = 0.12).

The decision boundaries for the qdc classifier trained
on each of 8 folds in turn, superimposed on the original
dataset have been given in Figure 1. The black solid line
represents the boundaries of a classifier trained using DPS–
S folds, while the blue dotted line shows the boundaries for a
single CV run. Notice, that for DPS the decision boundaries
generally do not change their shape from one fold to another,
as opposed to CV, where the boundaries seem very unstable
and can change shape radically.

B. Benchmark datasets

1) Correntropy: Figure 2 presents the values of averaged
correntropy between the original dataset and 8 folds gen-
erated using DPS and CV, for all 20 datasets used in the
experiment. Note, that although the correntropy has been

Fig. 1. Cone–torus – decision boundaries for qdc trained on DPS–S (solid
line) and CV (dotted line) folds

normalized to the 0 ÷ 1 range, according to our earlier
argument the values represent an ordinal scale.
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Fig. 2. Mean correntropy between each fold and the original dataset

The correntropy between the DPS folds and the original
dataset is almost always higher than in the case of the
CV folds, even for the best CV split out of 10. This is
not surprising since the DPS splits have been obtained by
maximization of correntropy. In some cases however, the
supervised approach DPS–S falls behind CV. It happens in
general when dealing with datasets with a large number of
classes (e.g. cba – 24 or chr – 23), which must necessarily
be small. This constraints the optimization process resulting
in lower values of correntropy.

The picture is very similar for the between–fold cor-
rentropy depicted in Figure 3, where DPS–U is again an
unquestionable leader, usually followed by DPS–S, except
for the datasets with large numbers of classes.
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Fig. 3. Mean between–fold correntropy

2) Bias: The mean absolute bias for both DPS and CV
can be seen in Figures 4 and 5. The DPS approach has a bias
comparable to the mean CV result, with slight advantage of
the latter for roughly half of the datasets. DPS estimates



are however never as biased as the worst–case CV scenario,
yet the result was achieved with roughly 10 times less
computations.

A summary of the results can be found in Table III. DPS–
U has on average a lower bias than DPS–S by 0.0015 (mean)
and 0.0005 (median), while DPS–SU falls in the middle, due
to the way it was calculated. When compared to the CV,
the best of the three DPS estimators is worse by just 0.0003
(both mean and median). Note, that the spread (the difference
between maximal and minimal value) of the CV estimate is
more than 1.3 times bigger than the best–case scenario bias.
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Fig. 4. Mean absolute bias (averaged over all classifiers)
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Fig. 5. Mean absolute bias (averaged over all datasets)

TABLE III

BIAS AND VARIANCE SUMMARY (FOR ALL DATASETS AND CLASSIFIERS)

DPS DPS DPS CV CV CV
U S SU best mean worst

BIAS-mean 0.0256 0.0271 0.0263 0.0157 0.0251 0.0375
-median 0.0240 0.0245 0.0242 0.0148 0.0237 0.0342

VAR-mean 0.0384 0.0304 0.0344 0.0260 0.0429 0.0618
-median 0.0377 0.0281 0.0322 0.0264 0.0431 0.0615

3) Variance: The standard deviation of error estimates
can be seen in Figure 6 (averaged over all classifiers) and
Figure 7 (averaged over all datasets). Out of all three DPS
approaches, now DPS–S takes the lead, with the variance
comparable even to the best–case CV scenario for some
datasets. All three DPS approaches also have the variance
lower than the averaged value of 10 CV runs. According to
the summary given in Table III, for DPS–S and CV–mean
the difference reaches 0.0125 (mean) and 0.0150 (median).

Note, that in terms of bias, DPS–U was the leading
approach out of the three, while now DPS–S performs better.
We thus have two low complexity error estimates, one with

low bias but higher variance, the second with higher bias but
low variance. In practice, the third option – DPS–SU might
be worth considering, as it brings the best of both worlds – a
bit higher bias than CV (0.0012 – mean / 0.0005 – median)
and much lower variance (0.0085 / 0.0109), at about 20% of
the computations required by 10 times repeated CV.
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Fig. 6. Standard deviation of error estimate (averaged over all classifiers)
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Fig. 7. Standard deviation of error estimate (averaged over all datasets)

VI. DISCUSSION

The presented Density Preserving Sampling procedure is
a very attractive alternative for the commonly used cross–
validation technique for a number of reasons.

For the purpose of the generalization error estimation, k–
fold cross–validation is without a doubt the most widely and
commonly used technique, due to its universal character,
simplicity and effectiveness. Its stochastic nature however
requires the estimation to be repeated multiple times for
different random divisions of the data, in order to circumvent
the risk of obtaining the worst–case scenario estimate, which
as demonstrated in this paper can be highly biased and can
have a large variance. The need of running the procedure
multiple times makes it computationally expensive, forcing
the researchers to seek compromise elsewhere, for example
by not calculating the full gradient during optimization or
taking other shortcuts, which negatively influence optimality
of the solutions found. The DPS procedure proposed in this
paper is however deterministic. It thus does not need to be
repeated in order to improve the quality of the error estimate,
at the same time producing results comparable to repeated
cross–validation when it comes to bias, and superior to CV in
terms of the variance of obtained estimates. Yet it all happens
at 5–10 times lower computational cost.

Another related application area of CV is parameter es-
timation. Since for some models the objective function is
not always differentiable with regard to all its parameters,



the optimization procedure must resort to a search in the
parameter space. One example of such situation might be the
k–NN classifier, for which the number of nearest neighbours
k is usually being set by testing a number of possible values
using cross–validation. In such case, as the search itself might
be very costly depending on the dimensionality of the search
space, cross–validation is usually not being repeated in order
to save computations. As before, due to the non–deterministic
nature of CV, this can lead to suboptimal decisions based on
highly biased performance estimates. Note, that it also ap-
plies to other algorithms requiring calculation of performance
estimates repeated many times like e.g. feature selection. The
benefit of using DPS rather than CV in these scenarios can
be tremendous.

In case of some machine learning methods it is a common
technique to cross–train multiple models and select the best
performing one. The cross–training procedure is analogous
to cross–validation error estimation, that is the dataset is
divided randomly into k folds, which are then put aside
one by one to be used for verification of the model trained
using the remaining k − 1 folds. The difference is that the
obtained models instead of being discarded, are considered
as candidates for a final solution. This applies especially to
models like decision trees, which cannot be retrained using
the full dataset due to their instability. The danger here
is the combination of a relatively unstable error estimation
procedure (see plots of the decision boundaries in Figure 1)
with an unstable learning method, which in an unfavorable
case may lead to selection of one of the worst models rather
than the best. On the other hand, models trained using various
DPS splits will likely be much more similar to each other,
minimizing the risk and cost of incorrect choice.

The final application of random sampling procedures we
want to discuss here is early stopping, a technique widely
used in training of universal approximators to prevent over-
fitting. In this approach a randomly selected subset of the
data is used for continuous monitoring of model performance
during training, in order to stop it when the validation error
starts to increase, which is a sign of overfitting. The risk
of using unrepresentative validation set is obvious in this
case. Although the behavior of DPS in conjunction with early
stopping has not been addressed in this paper, it forms an
interesting and promising future research direction, which
will be investigated in our further work.

VII. CONCLUSIONS

The correntropy–based density–preserving data sampling
(DPS) procedure developed and investigated in this paper
is an interesting alternative for widely used cross–validation
technique in many applications. Unlike CV, DPS is a de-
terministic method, which eliminates the need for multiple
repetitions of the sampling procedure to obtain reliable
results, considerably reducing the computational burden.

The main property of the proposed method is that it
aims to produce only representative splits, which has many
implications outlined in the previous section. The experi-

ments conducted using a set of publicly available benchmark
datasets and standard classifiers have revealed that:

• For generalization error estimation, DPS is slightly more
biased than 10 times repeated cross–validation but has
much lower variance, comparable with the best–case CV
scenario. The DPS bias in all cases is also much lower
than in the worst–case CV scenario.

• The decision boundaries of a classifier trained using
DPS folds are much more stable than in the case of
a single cross–validation folds, which is the result of
representativeness of the subsets generated by DPS.

Further research will focus on application of DPS to early
stopping and model selection, as well as on using correntropy
as a measure of diversity of datasets for building ensemble
models. The results will be published in an extended version
of this paper, which will also include experimental results
not presented here due to limited presentation space.
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