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1 Introduction

Radial basis functions (RBFs) are a popular variational
representation of volumes and surfaces in computer
graphics. In general, an RBF is a real–valued func-
tion whose value depends only on the distance from it’s
center. A special class of these functions havecompact
support— in this case the function decays smoothly to
zero as the radius approaches 1. In this way, only a rel-
atively small number of RBF’s influence any particular
point in space, which in turn greatly improves compu-
tational efficiency.

However, certain features are not best represented by
radial basis functions, such as in Figure1. Consider
two parallel lines — if they are close enough together,
you will need many RBF’s in order to ensure that the
two features are separated. In comparison, anelliptical
shape can better represent this structure.

(a) (b)

Figure 1: On certain features (a), basic radial basis
functions are inefficient at capturing the surface prop-
erties. In comparison (b), very few elliptical functions
would be needed to represent this feature.

Elliptical (also anisotropic radial) basis functions
have already been used to reconstruct surfaces and in-
terpolate volumes[8, 10, 5].

In this technical report I present a method to recon-
struct a surface representation from a a set of EBF’s,
and in addition present an efficient top–down method to
build an EBF representation from a point cloud repre-
sentation of a surface. I also discuss the advantages and
disadvantages of this approach.

2 Background

The reader is probably familiar with the well known
general elliptical formx2/a2 + y2/b2 = 1. This 2D
formulation assumes the ellipse is centered at the ori-
gin, a and b are the lengths of the major and mi-
nor axes which are aligned with the Cartesian axes.
In general we use the quadratic form for an ellipse
Ax2+By2+Cx+Dy+Exy+F = 1. This can be rewrit-
ten in matrix form

f (x) = (x−q)TQ(x−q) = 1 (1)

for ellipse centerq and shape matrixQ. Note that for
real roots,Q must be positive semi–definite, i.e. (Q =
QT and〈x,Qx〉 ≥ 0 for all x∈ R

n). Q can be factorized
into Q = MTM.

An alternative, more compact formulation is to use
homogeneous coordinatesx̂ = [x,1]T and combineq
andQ into a single matrix with a translational compo-
nent:

A =

[

Q 0
−q 1

]

so that Equation1 becomes

f (x̂) = x̂TAx̂ = 1 (2)

In general we refer to the ellipse by the pair[q,Q].
The expression in Equation1 computes the elliptical
radius. Note that the volume of an ellipse is given by
v =

√

det(Q).

2.1 Radial Basis Functions

Radial Basis Functions (RBF) provide a simple method
to construct smooth implicit surfaces from data of ar-
bitrary dimension. Given a matrix of sample points
P= [x1, . . . ,xn] which we assume are generated by sam-
pling on the smooth implicit surfacêf (x) = 0, we esti-
mate this function using the a standard RBF formulation
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f (x) = ∑
q∈C

αiφσi (‖x−q‖)+bT p(x), (3)

whereσ is the local basis function radius for compactly
supported RBF’sφσ (r) = φ(r/σ), φ(r) is a radial ba-
sis function,b = [β1, . . . ,β|p(x)|]

T , αi and β j are un-
known coefficients andp(x) is some polynomial inx
with |p(x)| terms1. The setC = {q1, . . . ,qm} contains
the chosen RBF centers, and for a compact approxima-
tion we assumem≪ n.

The choice of the basis functionφ(r) depends on the
application — we have used globally supported spline
φ(r) = r2 log(r), near compactly supported Gaus-
sian φ(r) = e−r2

and compactly supported Wendland
functions[18]

φ(r) = (1− r)4
+(4r +1).2

Dinh and Turk [7] propose the use of the spline formu-
lation of Chen and Suter [6] due to the ability to locally
control the smoothness of the resulting surface. This
formulation requires two additional smoothness param-
eters which must currently be chosen in an ad–hoc fash-
ion. As we will define locally anisotropic basis func-
tions, the derivation of locally adaptive variants ofφ
adds an unnecessary layer of complexity that is best
avoided.

2.2 Variational Implicit Surface Approxi-
mation

RBF’s have been used extensively for the interpolation
of volumetric data, neural networks and smooth surface
approximations[17, 3]. For surface approximation, a
subset ofk input points are chosen as RBF centers are
chosen from the input dataCs, andl additional centers
are added which are known to be on the exterior of the
objectCe, C = Cs∪Ce.

We use the fact that

f (q) =

{

0, q ∈ Cs

−1, q ∈ Ce

in order to evaluate the coefficientsαi using linear re-

1A good choice forp(x) is typically x+1.
2The f (r)+ operator ensures positivity, i.e. iff (r) < 0 then

f (r)+ = 0, elsef (r)+ = f (r).

gression. The problem can be stated in matrix form
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(4)
whereφi, j = φσi (

∥

∥qi −q j
∥

∥). Using Equation4 we can
solve for the coefficientsαi andb, and using these the
implicit surface can be evaluated at any point using
Equation3.

Defining the locations of external centersCe re-
quires some concept of the orientation of the surface.
Often[14, 15, 17] an associated normal field is assumed.
In these cases, an external centerqe is simply defined in
terms of the center on the surfaceqs, qe = qs+ψns, for
someψ > 0.

3 Elliptical basis functions

The isotropic behavior of RBF interpolation and result-
ing smoothness is often not a desirable property. Con-
sider the bunny’s ear in Figure4(a). Because a single
RBF center with a largeσi is used to represent the flat
part of the ear, the reconstruction does not reproduce
this flat region. This problem could be solved by using
many smaller centers to encode the flat region, but this
can dramatically increase the size of the left matrix in
Equation4, making the problem expensive to solve.

Figure 2: Anisotropic radial basis functions compute
distances in the warped space, computed by applying
the transformation matrixM.

For flat oriented regions anellipse better approxi-
mates shape. Recall that the shape matrixQ describes
the shape of the ellipse. In particular, becauseQ is pos-

2



itive semi-definite and symmetric, we can factorize3 it
Q = MTM. In Figure2 we warp the input space by
transforming the input points using the ellipse shape
matrix, i.e.x′ = M(x−q)+q. This space warping pro-
cedure is a method for local anisotropic interpolation.

3.1 Formulation

For an elliptical basis function formulation we define
our set of centers as

C = {[q1,Q1,σ1], . . . , [qm,Qm,σm]}

, consisting of tuples containing the elliptical informa-
tion. We can incorporate this local space warping ma-
trix M in the RBF definition of Equation3:

fk(x) = ∑
q∈C

αi,kφσi (‖Mk(x−q)‖)+bT
k p(x). (5)

Note that we use a subscriptk to denote which trans-
formation function is used. The coefficients must now
be computed for each EBF center (and hence eachMk)
using Equation4.

The problem of locally anisotropic RBF’s is resolved
using apartition of unityapproach. Loosely speaking,
the coefficientsαi andβ j are deduced for each of the
elliptical centers[q,Q,σ ] ∈ C . In order to evaluate an
isovalue at somex, we compute a weight based on the
proximity of x from each center in the locally warped
space. Then, the final isovalue is computed by comput-
ing the sum of these locally computed weighted func-
tions.

More formally, we compute the isovalue by defining
a new isosurface function

g(x) =
∑m

k=1wk(x) fk(x)

∑m
k=1wk(x)

(6)

with the isosurface atg(x) = 0. By choosing a smooth
weight functionwk(x) we ensure that the reconstruction
results are of Equation6 is also smooth. Casciola et al.
[4] use the local weight function

wk(x) =

(

(σk−‖Mk(x−qk)‖)+
σk‖Mk(x−qk)‖

)γk

, (7)

where σk is, the region of influence of each local
anisotropic center andγk is a local regularization ex-
ponent. We have usedγk = 1 for all our results. Note

3Factorization is through singular value decomposition.[V,λ ] =

eig(Q), M = Vdiag(
√

λ )VT .

that σk here is used to both scale the radius in Equa-
tion 5 and to determine the weights in Equation7, and
is a measurement of theregion of influenceof a compact
elliptical basis function.

So in summary, given a set of elliptical centersC

consisting of the positionq, shape matrixQ and radius
of influenceσ of each center, we construct a variational
implicit surface using elliptical basis functions as fol-
lows:

• For each center [qk,Qk,σk] ∈ C , compute the co-
efficientsαi,k, bk using Equation4 as a preprocess.

• For an input pointx, compute each of the weights
wk using Equation7.

• Computeg(x) using these weights in Equations5
and6.

4 Building an EBF surface from
point data

In this section we focus on the construction of EBF sur-
faces from point cloud data in any dimension without
any shape information, such as surface normals. In or-
der to construct an EBF surface we need a number of
components:

• The elliptical shape properties of each centerqk

andQk,

• The radius of influence of each centerσk,

• A normal field for the determination of external
centersCe, and

• Some radial basis functionφ(r).

For our application, we choose the radius of influence
arbitrarily as the minimum radius needed to enclose
a user specified number of neighboring centers in the
warped elliptical space. For the radial basis function
φ(r) we make use of one of the standard RBF functions
from Section3.1, depending on the application. In the
following sections we will present a method for geo-
metrically identifying the EBF centers and the the local
region of influence for each center.

In the following section we will discuss our method
to deduce the location and orientation of the elliptical
centers.
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4.1 Flatness clustering

Other authors have made use of either randomized[7] or
bottom–up[4] approaches to selecting surface centers.
Unfortunately these either yield unpredictable results,
or are expensive because of the need to compute local
curvature information at every input point.

Algorithm 1 L = flatClust(P, i,ε,n): Clusters the in-
put point cloud into flat ellipses.P is the list of points,
i is a subset of the points to cluster (required for recur-
sion) andn defines the number of clusters to dividePi
into at each step.

L ⇐{}
% Compute the minimum volume bounding ellipse
[q,Q] ⇐ Khachiyan(Pi,ε)
[V,λ ] ⇐ eig(Q)
% Compute the flatness of our local ellipse
λ̂ ⇐ sort(λ , ′descending′)
ε̃ ⇐ λ̂d/∑d

j=1 λ̂ j

if ε̃ > ε then
% Our ellipse is not flat enough, so we cluster the
data and recurse
I ⇐ kmeans(P, i)
for all ĩ ∈ I do

L ⇐ L ∪flatClust(P, ĩ)
end for

else
% Our ellipse is flat enough, so we return it
L ⇐{[q,Q]}

end if
return L

We define a recursive top–down algorithm for parti-
tioning an input set of pointsP into flat regions. Loosely
speaking, we compute a minimum volume ellipse from
the current list of points and measure the flatness. We
measure the “flatness” by using the ratio of the mini-
mum ellipse axis length over the sum of all elliptical
axis lengths, similar to the the method of Luiz et al.
[13]. If the surface is not sufficiently flat we subdivide
the list of points by using a standard clustering algo-
rithm, and append the results of recursive calls to the
same function on each cluster.

Algorithm 1 makes use of the Khachiyan method for
finding the minimum volume ellipseKhachiyan(P,ε),
further discussed in AppendixA. The eigenanalysis
functioneig returns both the eigenvectorsV and eigen-
valuesλ . kmeans(P, i) uses the method of Lloyd [12]
to cluster only the points inP with the indicesi, and

Figure 3: Constructing EBF’s over a 3D point cloud.

returns the setI =
{

ĩ1, . . . , ĩn
}

with each̃i j containing
the indices ofP belonging to each of then clusters. We
have usedn = 2 for best results, although convergence
is often faster when using a larger number of clusters.
This approach can easily be applied to 3D data, as in
Figure3.

4.2 Consistent orientation

In order to determine the external elliptical centersCe

we require a local surface normalns. We can easily
deduce anunorientednormal from the eigenvector ofQ
associated with it’s smallest eigenvalue.

A popular method for orienting these normals is by
using the propagation method of Hoppe et al. [9]. In
brief, this method constructs a Riemannian graph by
defining each normal (tangent plane) as the nodes and
edges connecting them are deduced using some prox-
imity metric (in [9] this is the distance between the cen-
ters). A cost associated with an edge connecting node
Ni to Nj is defined as 1−|ni ·n j |. The tree is traversed
with a minimal spanning tree[16]. Whenever an edge
(i, j) is traversed, the orientation ofni is corrected if
ni · n̂ j < 0, wheren̂ has already been corrected.

In order to approximate the Riemannian graph, and
thereby reduce the computation time and errors arising
from using a minimal spanning tree, we instead deter-
mine neighboring centers by using ellipse intersection.
Traditional ellipse intersection techniques require com-
puting the roots of a quadratic polynomial, which can
be time–consuming to compute numerically.

Alfano and Greer [1] present a method to test for the
intersection of two ellipsesA and B (in the homoge-
neous form of Equation2). The roots of the intersec-
tion can be found by determining[V,λ ] = eig(A−1B)
and testing eigenvectors associated with non–real or re-
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peated eigenvalues. This approach is easy to implement
and very efficient asA−1 can be precomputed for all
ellipses.

4.3 Consolidation

Becausekmeans clustering is not flatness sensitive,
flat regions may become fragmented due to this pro-
cedure. An additional consolidation step is required
to merge neighboring elliptical centers which exhibit
the same flatness. We deduce the neighborhood of
each ellipse by using the same intersection method de-
scribed in Section5.2, and use a simple bottom–up
method to combine elliptical centers the elliptical error
ε̃ = λ̂d/∑d

j=1 λ̂ j is less than some user specified toler-
anceε.

5 Results

I have applied this method reconstruct the curve silhou-
ette of the bunny model from sample points in 2D — the
results are given in Figure4. As the compact RBF rep-
resentation gradually transforms into an EBF represen-
tation, the contours sharpens — the best result probably
is given in (c). However, note that as the ellipse thins,
the internal and external contours deteriate, potentially
leading to unpleasant numerical artefacts.

6 Conclusion

In this technical report I have demonstrated a method
to build and represent point set surfaces using a scat-
tered data interpolation technique based on compactly
supported elliptical basis functions (EBF’s). While the
technique has been successfully employed elsewhere in
representing volume (and image) data, it’s application
to surfaces is largely unexplored.

While this initial finding does show promise, my sus-
picion is that this approach has a number of consider-
able failings:

• Computation: It is computationally very expen-
sive to solve the variational system in Equation4
for every elliptical basis function — which is the
reason for no 3D results being included in this re-
port. I believe that one possible option is to signif-
icantly improve the performance of the interpola-
tion if only a limited subset of EBF’s are used to
represent a shape, in the same way that a Gabor

Wavelet filter bank has a limited number of filter
orientations. In fact, an interesting idea for future
work is to deduce an algorithm that adaptively de-
termines the best orientations of a limited number
of EBF’s in order to represent the shape.

• Accuracy: While some of the shapes in the re-
sults of Figure4 are promising, I am very con-
cerned about the bottom row — as the EBF thins,
the shape of the contour deteriorates significantly,
which may cause numerical instabilities when the
EBF’s are not chosen correctly. How to fit EBF’s
to a surface without excessive thinning is a difficult
problem, and certainly not addressed here.

A Minimum Volume Enclosing El-
lipse

Given n pointsxi , i = 1, . . . ,n, find the minimum vol-
ume enclosing ellipsoid. This is effectively the opti-
mization problem

min[log(det(Q))] s.t. (xi −q)TQ(xi −q) ≤ 1.

Algorithm 2 [q,Q] = Khachiyan(P,ε): The Khachiyan
method for finding a minimum volume ellipse. Given a
d×mmatrix of pointsP and an target errorε, compute
the minimum volume bounding ellipse[q,Q].

A⇐ [P e]T

u⇐ (1/m)e
γ ⇐ γ0

while γ < ε do
% Find the index of the farthest point
X ⇐ Adiag(u)AT

M ⇐ diag(ATX−1A)
j ⇐ maxi Mi

% Updating the barycentric coordinates u
δ ⇐ (M j −d−1)/((d+1)(M j −1))
û⇐ (1−δ )u+δe j

γ ⇐ ||û−u||2
u⇐ û

end while
% Computing the ellipse[q,Q]
U ⇐ diag(u)
q ⇐ Pu
Q⇐ 1/d

(

PUPT −qqT
)−1

return [q,Q]
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(a) (b) (c)

(d) (e) (f)

Figure 4: Gradually transforming the compact EBF shape matrices from radial (RBF) to elliptical. From (a)
to (c), the sharpening of the resulting contour is clearly visible at the bunny foot. The shape contour begins to
deteriorate in (d) to (e), as ellipses that are orthogonal tothe surface begin influencing the interior of the shape. In
this example,σk is chosen to include the 10 nearest centers.
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This problem is solved using the Khachiyan
method[11], also known asbarycentric coordinate as-
cent. This approach finds the barycentric coordinatesu
of a center of the ellipse in terms of the input pointsP
by an iterative algorithm which shiftsu closer to the
farthest point from the centerq = Pu. The optimal
step–sizeδ is deduced using the method presented by
Khachiyan [11]. This approach is presented in Algo-
rithm 2, wheree is anm–length vector of ones ande j

is the jth basis vector. This method is typically greatly
accelerated by using only the points on the convex hull
of P. For this we use theQHull method[2].
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