

Towards Neural-Symbolic Integration: The
Evolutionary Neural Logic Networks

Paradigm
Athanasios Tsakonas

AbstractThis work presents the application of a new

methodology for the production of neural logic networks into
two real-world problems from the medical domain. Namely,
we apply grammar guided genetic programming using
cellular encoding for the representation of neural logic
networks into population individuals. The application area is
consisted of the diagnosis of Diabetes and the diagnosis of the
course of Hepatitis patients. The system is proved able to
generate arbitrarily connected and interpretable evolved
solutions leading to potential knowledge extraction.

Index TermsNeural logic networks, Genetic
programming, Diabetes, Hepatitis

I. INTRODUCTION

Computational intelligence (CI), as a rapid growing
technology has nowadays substituted traditional artificial
intelligence (AI) and expert systems in a wide range of
applications. The main advantage of these new techniques
over AI’s symbolic processing, lies in the ability of the CI
systems to adapt to the problem environment, hence
bypassing the stage of human knowledge acquiring - a
mandatory step using expert systems. However, in a
number of high-level decision tasks, common expert
systems remain still applicable. The reason can be noticed
into the need for symbolic representation of the knowledge
into these systems, which is a feature that many CI systems
have unremarkable success. In other words, it is considered
that symbolic representation can be of significant value in
these systems for humans, by making clear the inference
process to users. Among CI methodologies, neural
networks are powerful connectionist systems that still lack
the element of complete and accurate interpretation into
human-understandable form of knowledge and remain a
black box for experts. To heal this situation, a number of
alternative approaches have been proposed. Neural logic
networks [1] belong to this category, and by their definition
can be interpreted into a number of Prolog rules that consist
an expert system. Virtually every logic rule can be
represented into these networks and then transformed into
Prolog commands. Although this model offers excellent
results when used within the AI framework (i.e. building a
system in a top-down process), the application of neural
logic networks in CI’s data mining tasks – considered a
bottom-up procedure- has undergone limited success. The

reason lies in that proposed systems suffered at least one of
the following limitations:

Athanasios Tsakonas is with the Aristotle University of Thessaloniki,

Greece (telephone: +306-937-891-399, e-mail: tsakonas@stt.aegean.gr).

• The extracted neural logic network cannot be
interpreted into expert rules [1]-[2].

• The proposed methodology cannot express neural
logic networks in their generic graph form [3].

• The user has to select topology and network
connection model [1]-[2].

The application of neural logic networks into adaptive
tasks seems promising: the extracted model will preserve
its interpretability into a number of expert rules and there is
not needed any knowledge-acquiring step. Moreover, a
solution obtained this way, leads to potential knowledge
extraction. Very recently, a new system, namely the
evolutionary neural logic networks (ENLN), has been
proposed [4] that fulfills those requirements. The new
approach uses grammar-guided genetic programming to
produce neural logic networks. The evolved solutions can
be arbitrarily large and connected networks, since an
indirect encoding is adopted. Also, neural logic networks
produced by this methodology can always be interpreted
into human-understandable expert rules, thus leading to
potential knowledge extraction. In this work, we present in
brief the methodology and then we apply and test its
effectiveness into two real-world problems from the
medical domain. In the first task, we examine the system
for the diagnosis of Diabetes, and in the second application,
we use the system for the diagnosis of the course of
Hepatitis patients. The paper is organized as follows. Next
section describes the theoretical background, presenting the
neural logic networks concept and the grammar guided
genetic programming. Section III deals with the design and
the implementation of the ENLN system. The results and a
following discussion are presented in Section IV. The paper
ends with our conclusion and a description of future work
in Section V.

II. BACKGROUND

A. Neural Logic Networks
The neural logic network is a finite directed graph. It is

usually consisted by a set of input nodes and an output
node. In its 3-valued form, the possible value for a node
can be one of three ordered pair activation values (1,0) for
“true”, (0,1) for “false” and (0,0) for “don't know”. Every
synapse (edge) is assigned also an ordered pair weight (x,y)
where x and y are real numbers. An example neural logic
and its output value (a,b) of node P is shown in Fig. 1.

Different sets of weights enable the representation of
different logical operations. It is actually possible to map
any rule of conventional knowledge into a neural logic
network. Neural logic networks can be expanded into fuzzy
neural logic networks, enabling this way the handling of
real valued attributes [1].

1 1

1 1

(1,0) 1

(,) (0,1) 1

(0,0)

k k

j j j j
j j

k k

j j j j
j j

if a x b y

a b if a x b y

otherwise

= =

= =

 − ≥

= −





∑ ∑

∑ ∑

≤ −

Fig. 1. Example neural logic network and its output value.

In Fig. 2, an example of a logical operator and its

implementation in neural logic networks is shown.

Fig. 2. An example logical operation for operating conjunction in neural
logic networks.

In order to illustrate the interpretability of neural logic

networks into expert rules, let us consider the following
simple neural logic network, consisting of the priority rule:

Richer (X,Y) priority (House_Owner, Car_Owner,

M/C_Owner)
⇐

Fig.3 depicts the neural logic network corresponding to

the above rule. The interpretation of the network into
Prolog rules is straightforward.

Fig. 3. Example neural logic network, corresponding to a priority rule.

The resulted Prolog commands are shown in Fig.4. Even

though powerful in their definition, neural logic networks
are not widely applied. The main reason can be located in
the fact that for the known training methodologies [1]-[2],
the refinement of the edge weights reduces significantly the
interpretability of these networks to expert rules, thus
depriving these networks from their valuable feature.

Some steps for the preservation of the interpretability
have been performed by [3], without however the ability to
express arbitrarily large and connected neural logic
networks. For instance, a neural logic network, which
performs the important logical operation of XOR, cannot
be represented using the direct encoding of [3].

(α1,β1) Q1

(α2,β2) Q2

(αk,βk) Qk

(x1,y1)

(x2,y2)

(xk,yk)

P

If House_Owner(Χ,Υ)=(1,0) then Richer(Χ,Υ)=(1,0)
If House_Owner (Χ,Υ)=(0,1) then Richer (Χ,Υ)=(0,1)
Supposing House_Owner (Χ,Υ)=(0,0)

If Car_Owner(Χ,Υ)=(1,0) then Richer (Χ,Υ)=(1,0)
If Car_Owner (Χ,Υ)=(0,1) then Richer (Χ,Υ)=(0,1)
Supposing House_Owner (Χ,Υ)=(0,0) and Car_Owner (Χ,Υ)=(0,0)

If M/C_Owner(Χ,Υ)=(1,0) then Richer (Χ,Υ)=(1,0)
If M/C_Owner (Χ,Υ)=(0,1) then Richer (Χ,Υ)=(0,1)

Supposing House_Owner (Χ,Υ)=(0,0) and Car_Owner (Χ,Υ)=(0,0)
and M/C_Owner (Χ,Υ)=(0,0) then Richer (Χ,Υ)=(0,0)

Fig. 4. Prolog rules equivalent to the neural logic network of Fig.3.

B. Grammar guided Genetic Programming
The prime advantage of genetic programming over

genetic algorithms, is the ability to construct functional
trees of variable length. This property enables the search
for very complex solutions that are usually in the form of a
mathematical formula - an approach that is commonly
known as symbolic regression. Later paradigms extended
this concept to calculate any boolean or programming
expression. Thus, complex intelligent structures, such as
fuzzy rule-based systems or decision trees have already
been used as the desirable target solution in genetic
programming approaches [5]-[8]. The main qualification
of this solving procedure is that the feature selection, and
the system configuration, derive in the searching process
and do not require any human involvement. The potential
gain of an automated feature selection and system
configuration is obvious; no prior knowledge is required
and, furthermore, not any human expertise is needed to
construct an intelligent system. Nevertheless, the task of
implementing complex intelligent structures into genetic
programming functional sets in not rather straightforward.
The function set that composes an intelligent system retains
a specific hierarchy that must be traced in the GP tree
permissible structures. This writing offers two advantages.
First, the search process avoids candidate solutions that are
meaningless or, at least, obscure. Second, the search space
is reduced significantly among only valid solutions. Thus, a
genotype - a point in the search space- corresponds always
to a phenotype - a point in the solution space. This
approach -known as legal search space handling method
[9]- is applied in this work using context-free grammars.

(1/2,2)

(1/2,2)

House_Owner (Χ,Υ)

C. Context-Free Grammars
Although powerful in its definition, the genetic
programming procedure may be proved greedy in
computational and time resources. Therefore, when the
syntax form of the desired solution is already known, it is

(4,4)

Car_Owner (Χ,Υ)

(1,1)

Richer (Χ,Υ) (2,2)

M/C_Owner (Χ,Υ)

useful to restrain the genetic programming from searching
solutions with different syntax forms [10]-[11]. The most
advantageous method to implement such restrictions among
other approaches [12], is to apply syntax constraints to
genetic programming trees, usually with the help of a
context-free grammar declared in the Backus-Naur-Form
(BNF) [13]. The BNF-grammar consists of terminal nodes
and non-terminal nodes and is represented by the set
{N,T,P,S} where N is the set of non-terminals, T is the
set of terminals, P is the set of production rules and S is a
member of N corresponding to the starting symbol. The
construction of the production rules can be the most critical
point in the creation of a BNF grammar, since these
production rules express the permissible structures of an
individual.

Fig. 5. Example genetic programming tree for the expression (a-
8)+7*(a/b).

An example grammar expressing a class of individuals,
which (among other grammars) may produce the program
shown in Fig. 5, is composed by the following sets:

N = {EXPR, OP}
T = {-,*,/,a,b,7,8}

S = <EXPR>

Then, P is expressed as shown in Table I.

TABLE I
GRAMMAR USED FOR A SIMPLE EXAMPLE TREE

D. Cellular Encoding
Although mapping decision trees or fuzzy rule-based

systems to specific grammars can be relatively easy to
implement, the execution of massively parallel processing
intelligent systems -such as the neural logic networks- is
not forthright. In order to explore variable sized solutions,
we applied indirect encoding. The most common one is the
cellular encoding [15], in which a genotype can be realized
as a descriptive phenotype for the desired solution. More
specifically, within such a function set, there are
elementary functions that modify the system architecture

together with functions that calculate tuning variables.
Current implementations include encoding for feed forward
and Kohonen neural networks [16], [17] and fuzzy Petri-
nets [18], [17]. In his original work, Gruau also used a
context-free grammar - a BNF grammar- to encode
indirectly the neural networks. On the other hand, in [18] a
logic grammar - a context-sensitive one- is adapted to
encode fuzzy Petri-nets. In our work, we show that as long
as the depth-first execution of the program nodes of a GP
tree is ensured -which is the default-, a context-free
grammar such as a BNF grammar is adequate for
expressing neural networks. Gruau's original work has been
facing some skepticism [19] on the ability to express
arbitrarily connected networks. Later developments [10]
seem to offer less restrictive grammar, though the cut
function in those implementations still maintained bounded
effect. A similar technology, called edge encoding,
developed by [20] is also today used with human
competitive results in a wide area of applications.

 +
 -
 a
 8
 *
 /
 a
 b
 7

III. DESIGN AND IMPLEMENTATION

A. Data Preprocessing and Genetic Programming Setup

We split each data set into a training set, a validation set
and a test set. The training set consists of 50% of the data
and the rest 50% is divided equally between the validation
set and the test set. The separation of the examples into
training, validation and test sets is performed in a loop
manner. Specifically, for every four samples, the first two
samples are assigned to the training set, the third sample is
assigned to the validation set, and the fourth one is assigned
to the test set. This process is repeated until all the
examples are assigned a set. During the training phase, the
validation set is typically used to avoid over-fitting. In all
experiments, we used the same GP parameters.

Without claiming optimality, the GP parameters are
presented in Table II. This optimization was decided after
experimentation, since it is not possible to obtain a general
principle regarding the most proper probability values for
every case.

TABLE II

GENETIC PROGRAMMING PARAMETERS Symbol Rule
<EXPR> ::= <EXPR> <OP> <EXPR> | <VAR> | <NUMBER>
<OP> ::=- | * | /
<VAR> ::= a | b
<NUMBER> ::= 7 | 8

Parameter Value
Population: 2,000 individuals
GP implementation: Steady-state G3P
Selection: Tournament with elitist strategy
Tournament size: 6
Crossover Rate: 0.35
Overall Mutation Rate: 0.65
Node Mutation Rate: 0.4
Shrink Mutation Rate: 0.6
Killing Anti-Tournament size: 2
Maximum allowed individualsize: 650 nodes
Maximum number of generations: 100

As it can be observed in Table II, the setup denotes our
preference for significantly high mutation rates, especially
shrink mutation [22] that slows down the code bloat caused
by crossover operations.

B. System Grammar and Operating Functions
The system grammar is presented in Fig.6. Initial symbol

(root) of a genetic programming tree can be a node of type
<PROG>. The function set is as follows:

Function PROG: The function PROG creates the
embryonic network that is used later by the functions S1,
S2, P1 and P2 to be expanded. An alternative name for
this function, which is used throughout this paper, is the
term “ENLN”.

Function S1 and S2: These functions enter a node in
serial to the node that is applied.

Function P1 and P2: These functions enter a node in
parallel to the node that is applied.

Function IN: The operation of function IN is to assign a
variable to the input node that it is applied.

Fig. 6. Context free grammar for the production of neural logic networks
within genetic programming framework.

Function E: The operation of function E is to mark the

end of the expansion of the network.
Function LNK: This function provides the framework

for the application of cut function. It actually enables the
non-full connectivity of the network, a feature that offers
larger solution search space.

TABLE III

OPERATIONS FOR FUNCTION CNR

Function CNR: This function performs the node
inference. Based on the first parameter, the corresponding
calculation is performed. The second parameter assists the
calculation for the at-least-k and majority-of-k operators.

Possible computations are shown in Table III. An
alternative name for this function, which is used throughout
this paper, is the term “Rule”.

Function NUM, CUT, K, CNRSEL: These functions
return an integer to be used by the corresponding calling
functions.

Having discussed the system design, in the following
session we shall apply the methodology in two medical
domains.

IV. RESULTS AND DISCUSSION

A. Diagnosis of Diabetes
The desirable diagnosis in this problem is whether the
patient has the diabetes symptoms, according to the criteria
of World Health Organization. The population that was
used for the collection of data lives near Phoenix in
Arizona, US. A number of constraints have been applied
for the selection of medical cases. Specifically, all the
patients are female, at least 21 years old and originated
from the race of Pima Indians [23]. The input features
correspond either to physiological human features (f.ex.
number or times being pregnant, body mass index etc.) or
laboratory tests (f.ex. plasma glucose concentration a 2
hours in an oral glucose tolerance test). Table IV presents
the domain characteristics, and Table V shows the input
features in detail. This problem is interesting since there is
unknown number of missing values, which is unknown
data noise.

<PROG> : = PROG <PLACE1><SYNAPSE>
<PLACE1> : = S1 <PLACE1><SYNAPSE><PLACE2>
 | P1 <PLACE1><PLACE1>
 | IN
IN : = Data attribute (system input)
<PLACE2> : = S2 <PLACE2><SYNAPSE><PLACE2>
 | P2 <PLACE2><SYNAPSE><PLACE2>
 | E
E : = ∅
<SYNAPSE> : = LNK <NUM><CUT><SYNAPSE>
 | CNR <CNRSEL><K>
<NUM> : = NUM
<CUT> : = CUT
<CNRSEL> : = CNRSEL
<K> : = K
NUM : = Integer in [1,256]
CUT : = Integer in [0,1]
CNRSEL : = Integer in [0,10]
K : = Integer in [0,9]

TABLE IV

DOMAIN DESCRIPTION FOR THE DIABETES PROBLEM

Parameter Value
Domain Diagnosis of Diabetes
Data Base Diabetes
Input Features 8
Continuous Input Features 8
Discrete Input Features 0
Binary Input Features 0
Total Records 764
Training Set Records 382
Validation Set Records 191
Test Set Records 191
Missing data Yes, unknown number
Normalized data Yes

In literature [23], there is an application of the ADAP
algorithm which works like a perceptron and is referred a
76% accuracy in unknown data. The solution that was
extracted using our system, although it achieves a 72.3 %
(138/191) accuracy in unknown data, it additionally enables
the interpretation of the solution. The accuracy in the
training data and in the validation set was 69.4% (265/382)
and 69.7% (133/191) correspondingly.

Parameter Calculation
0 Conjunction
1 Disjunction
2 Priority
3 At least k-true
4 At least k-false
5 Majority influence
6 Majority influence of k
7 2/3 Majority
8 Unanimity
9 If-Then operation,

Kleene’s model
10 Difference

We observe that from the 8 available features, the system
selected to use only 2 of them. From the solution that is
shown in Fig. 7, we may extract the following simple
expert system:

Q1 ⇐ conjunction (Body Mass Index)
Q ⇐ conjunction (Plasma Glucose Concentration a 2

Hours in an Oral Glucose Tolerance Test, Q1)

TABLE V
PARAMETER DESCRIPTION FOR THE DIABETES PROBLEM

The interpretation of the above expert rules based on the
fuzzy system inference, proposes the positive diagnosis of
diabetes if two features are “high”: the body mass index
and the plasma glucose concentration a 2 hours in an oral
glucose tolerance test. This expert system may be
simplified, roughly speaking, into a proposition similar to
“the higher is the plasma glucose concentration a 2 hours
in an oral glucose tolerance test and the larger is the body
mass index, the more likely is the positive diabetes
indication”. Moreover, is notable for the non-expert, the
absence in this neural logic network of other distinguishing
features -like the patient’s age or the diabetes pedigree
function - which might be expected to be included in the
solution.

(ENLN (P1 (S1 (In T7) (Rule 0 0) E) (In T2)) (Rule
0 0))

Fig. 7. Solution description and the corresponding neural logic network
for the Diabetes problem.

B. Diagnosis of the course of Hepatitis patients
This problem is concerned with the diagnosis of the

course of Hepatitis to patients, based on the physiological
and laboratory tests [24]. More specifically, with the aid of
the given data, we need to predict whether the patient will
survive or not. This domain is interesting since there is
unequal distribution between the two classes, that is only
20,64 % (32/155) of the data correspond to patients that
will live while the rest data is referred to patients that are
expected to die. Moreover, there is about 5% of missing
values, and a combination of binary and continuous input
features. Since the data is composed by features having
different value ranges, we preprocessed the data by
normalizing them into the [1,2] interval in order to be able
to apply the fuzzy neural logic networks model.
Specifically, using this scheme, a value of 1 denotes the
‘false’, a value of 2 denotes the ‘true’, while a value of 0
signifies the ‘unknown’. In the non-binary features, values
between 1 and 2 (which are the normalization borders) are
also allowed. This coding is only a convention scheme
since input values are actually decoded during the
evaluation into the system to the usual (x,y) neural logic

pairs. Table VI summarizes the characteristics of the
Hepatitis domain, and Table VII shows in detail the input
features of this database. In the literature, solutions that are
proposed achieve an accuracy ranging from 80% [24] to
83% [25].

Variable Feature Values/
Value
range

T1 Number of times being pregnant 0-17
T2 Plasma glucose concentration a 2 hours in an oral

glucose tolerance test
0-199

T3 Diastolic blood pressure (mm Hg) 0-122
Τ4 Triceps skin fold thickness (mm) 0-99
Τ5 2-Hour serum insulin (mu U/ml) 0-846
Τ6 Body mass index (weight in kg/(height in m) 2) 0-67.1
Τ7 Diabetes pedigree function 0.078-2.42
Τ8 Age (years) 21-81

TABLE VI

DOMAIN DESCRIPTION FOR THE HEPATITIS PROBLEM

Parameter Value
Domain Diagnosis of the course for Hepatitis

patients
Data Base Hepatitis
Input Features 19
Continuous Input Features 6
Discrete Input Features 0
Binary Input Features 13
Total Records 152
Training Set Records 76
Validation Set Records 38
Test Set Records 38
Missing data Yes, 146 values
Normalized data Yes

The solution that was extracted using our system
achieves accuracy 81.6 % (31/38) to unknown data (test
set). The accuracy to the training data and validation set
was 94.8% (72/76) and 68.4 % (26/38) correspondingly.
The produced neural logic network is shown in Fig. 8.

TABLE VII

PARAMETER DESCRIPTION FOR THE HEPATITIS PROBLEM

Variable Feature Values/Value range
T1 Age 10-80
T2 Sex (male/female) 0-1
T3 STEROID (true/false) 0-1
Τ4 ANTIVIRALS (true/false) 0-1
Τ5 FATIGUE (true/false) 0-1
Τ6 MALAISE (true/false) 0-1
Τ7 ANOREXIA (true/false) 0-1
Τ8 LIVER BIG (true/false) 0-1
Τ9 LIVER FIRM (true/false) 0-1
Τ10 SPLEEN PALPABLE (true/false) 0-1
Τ11 SPIDERS (true/false) 0-1
Τ12 ASCITES (true/false) 0-1
Τ13 VARICES (true/false) 0-1
Τ14 BILIRUBIN 0.39-4.00
Τ15 ALK PHOSPHATE 33-250
Τ16 SGOT 13-500
Τ17 ALBUMIN 2.1-6.0
Τ18 PROTIME 10-90
Τ19 HISTOLOGY (true/false) 0-1

Although the extracted solution is large and prevents
obvious interpretation, the neural logic network maintains
still its ability to be transformed into a (large, in this case)
set of expert rules. Additionally, it is worth to note that, in
order to make a decision, this proposed solution makes use
of only 5 features from the available 19 ones.

The selected features are AGE, SEX, ASCITES
(abnormal accumulation of clear yellow fluid in the
peritoneal cavity), SGOT (enzyme tests of liver function /
serum glutamic oxaloacetic transaminase), and ALBUMIN
(protein found in blood and maintains the proper amount of
water in it / serum albumin)

From the above decisive features, it is notable for the
non-expert, the existence of both the age and the sex for the
diagnosis of the course of Hepatitis.

(ENLN (S1 (P1 (P1 (S1 (In T2) (Rule 8 7) E) (P1
(S1 (In T16) (Rule 3 7) (P2 E (Link 3 4 (Link 15 3
(Rule 4 6))) (P2 E (Rule 2 5) E))) (P1 (S1 (In T1)
(Link 236 4 (Rule 4 4)) E) (P1 (In T16) (P1 (In
T17) (In T12)))))) (P1 (S1 (In T1) (Rule 8 7) E)
(In T1))) (Link 6 2 (Link 3 3 (Link 10 2 (Rule 2
8)))) (P2 E (Rule 2 9) (P2 E (Rule 5 11) E)))
(Rule 5 3))

Fig. 8. Solution description and the corresponding neural logic network
for the Hepatitis problem.

V. CONCLUSION AND FURTHER RESEARCH
Neural networks are powerful connectionist systems that

have been introduced in areas where symbolic processing
systems of traditional artificial intelligence used to be
applied. As a tool of computational intelligence, the
adaptation of the neural network to the problem domain
using an inductive method, offers advantage over expert
systems where the knowledge must be acquired first, before
the system development. Ever since their first application,
interpretation of the obtained knowledge was a research
target for neural networks. In the scope of this area, the
neural logic networks have been proposed as a class of
networks that by their definition preserve their
interpretability into symbolic knowledge.

Until recently however, the application of an effective
training / production method within the CI framework has
not been successful. A novel system that uses genetic
programming with indirect encoding that has been
proposed recently [4], overcomes these problems,
producing automatically designed and tuned neural logic
networks, which always preserve their interpretability. In
this work we applied the system into two real-world
medical problems, the Diabetes diagnosis and the diagnosis
of the course of Hepatitis patients. In both problems, the
system has been proved capable of producing competitive
to the literature results, which maintain their interpretability
and lead to potential knowledge extraction.

Future work involves the application of the system in
other areas, as well as the incorporation of recursive
structures into the neural logic network architecture.
Moreover, the minimum description length principle will be
developed to be included as an anti-overfitting measure.
Finally, parameter-tuning optimization of the underlying
genetic programming algorithm is expected to offer better
efficiency, hence it will be of primary importance among
our future work.

REFERENCES
[1] Teh H.H., Neural Logic Networks: A New Class of Neural Networks,

World Scientific Pub Co, 1995.
[2] Tan A-H. and Teow L-N., “Inductive neural logic network and the

SCM algorithm”, Neurocomputing, vol. 14, 2 : 5, pp.157-176, 1997
[3] Chia H.W-K. and Tan C-L.,"Neural logic network learning using

genetic programming", Intl. Journal of Comp. Intelligence and
Applications, 1:4, 2001, pp 357-368.

[4] Tsakonas A., Aggelis V., Karkazis I. and Dounias G., “An
Evolutionary System for Neural Logic Networks using Genetic
Programming and Indirect Encoding”, Journal of Applied Logic,
accepted for publication, Elsevier, Spring 2004.

[5] Alba E., Cotta C. and Troya J.M., "Evolutionary Design of Fuzzy
Logic Controllers Using Strongly-Typed GP", Proc. 1996 IEEE Int'l
Symposium on Intelligent Control, pp. 127-132. New York, NY.,
1996.

[6] Tsakonas A., Dounias G., "Hierarchical Classification Trees Using
Type-Constrained Genetic Programming", Proc. of 1st Intl. IEEE
Symposium in Intelligent Systems, Varna, Bulgaria, 2002.

[7] Tsakonas A., Dounias G., Axer H., and von Keyserlingk D.G., "Data
Classification using Fuzzy Rule-Based Systems represented as
Genetic Programming Type-Constrained Trees", Proc. of the UKCI-
01, Edinbourgh, UK, pp 162-168, 2001.

[8] Tsakonas A. and Dounias G., "A Scheme for the Evolution of
Feedforward Neural Networks using BNF-Grammar Driven Genetic
Programming", Proc. of Eunite-02, Algarve, Portugal, 2002.

[9] Yu T. and Bentley P., "Methods to Evolve Legal Phenotypes",
Lecture Notes in Comp. Science 1498, Proc. of. Parallel Problem
Solving from Nature V, pp 280-291,1998.

[10] Gruau F., Whitley D. and Pyeatt L., "A Comparison between
Cellular Encoding and Direct Encoding for Genetic Neural
Networks", in Koza J.R., Goldberg D.E., Fogel D.B., Riolo R.L.,
Eds.,, Genetic Programming 1996: Proceedings of the First Annual
Conf., pp 81-89, Cambridge, MA, MIT Press, 1996.

[11] Montana D.J., "Strongly Typed Genetic Programming",
Evolutionary Computation, vol. .3, no. 2, 1995.

[12] N.Paterson and M.Livesey,"Evolving Caching Algorithms in C by
GP", Genetic Programming 1997, pp 262-267, MIT Press, 1997.

[13] Naur P., "Revised report on the algorithmic language ALGOL 60",
Commun. ACM, vol 6, No 1, pp 1-17, Jan 1963.

[14] Whigham P., "Search Bias, Language Bias and Genetic
Programming", Genetic Programming 1996, pp 230-237, MIT Press,
1996

[15] Gruau F., "Neural Network Synthesis using Cellular Encoding and
the Genetic Algorithm", Ph.D. Thesis, Ecole Normale Superieure de
Lyon, anonymous ftp:lip.ens-lyon.fr (140.77.1.11) pub/Rapports/
PhD PhD94-01-E.ps.Z.

[16] Gruau F., "On Using Syntactic Constraints with Genetic
Programming", in P.J.Angeline, K.E.Jinnear,Jr., Eds., Advances in
Genetic Programming, MIT,1996.

[17] Tsakonas A. and Dounias G., Decision Making in the Medical
Domain: Comparing the Effectiveness of GP-Generated Fuzzy
Intelligent Structures, Proc. of Eunite-03, Oulou, Finland, 2003.

[18] Wong M.L., "A flexible knowledge discovery system using genetic
programming and logic grammars", Decision Support Systems, 31,
2001, pp 405-428.

[19] Hussain T., "Cellular Encoding: Review and Critique", Technical
Report, Queen's University, 1997, http://www.qucis.queensu
ca/home/hussain/web/1997_cellular_encoding_review.ps.gz

[20] J.Koza, F. Bennett, D. Andre and M. Keane, Genetic Programming
III: Automatic Programming and Automatic Circuit Synthesis,
Morgan Kaufmann, 2003.

[21] Ratle A. and Sebag M., "Genetic Programming and Domain
Knowledge: Beyond the Limitations of Grammar-Guided Machine
Discovery", Schienauer et al., Eds., Proc. of the 6th Conf. on Par.
Probl. Solv. from Nature, LNCS, Springer, Berlin, 2000, pp 211-220

[22] Singleton A., "Genetic Programming with C++", BYTE Magazine,
Feb 1994.

[23] Smith,J.W., Everhart,J.E., Dickson,W.C., Knowler,W.C., and
Johannes,R.S., “Using the ADAP learning algorithm to forecast the
onset of diabetes mellitus”, Proc. of the Symposium on Computer
Applications and Medical Care, pp. 261--265. IEEE Computer
Society Press, 1988.

[24] Diaconis,P. and Efron,B. “Computer-Intensive Methods in
Statistics”, Scientific American, vol. 248, 1983.

[25] Cestnik,G., Konenenko,I and Bratko,I, “Assistant-86: A
Knowledge-Elicitation Tool for Sophisticated Users”. I.Bratko,
N.Lavrac, Eds., Progress in Machine Learning, pp. 31-45, Sigma
Press, 1987.

