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ABSTRACT: Nowadays, a large number of intelligent systems for decision-
making have yielded encouraging results. However, it is commonly acknowledged 
that expert system technology has some drawbacks. In particular, the knowledge 
bases of expert systems do not evolve. To solve this problem, a solution that inte-
grates neural networks and expert systems has recently proposed, namely the ap-
plication of neural logic networks. This integrated system combines the strength of 
rule-based semantic structure and the learning capability of connectionist architec-
ture. Nevertheless, the early approaches of this model carried the disadvantage of 
producing poor results or solutions that could not be interpreted straightforward. 
In this work, we overcome these problems and we propose a system that is capa-
ble of producing arbitrary large and connected neural logic networks that can eas-
ily be interpreted into sets of expert rules. To accomplish this task we adopt a ge-
netic programming approach, guided through grammars and we encode indirectly 
the architecture into genetic programming individuals. We test and make conclu-
sions on the effectiveness of the proposed system into two real-world decision 
making domains. 
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1. Introduction 
 
Since their first application, artificial neural networks have been the research tar-
get for scientists that were aiming to obtain a meaningful to the humans interpreta-
tion of these networks' powerful structure. A specific class of artificial neural net-
works, so-called neural logic networks, by their definition can be easily 
interpreted in a number of expert rules. Hence, they can be considered as integra-
tion between rule-based expert systems and neural networks (Quah et al. 1996). 
However, the advantage in these networks is that they are not necessarily static as 
the expert systems, but can be trained according to the problem encountered. In 
(Teh 1995), a training methodology related to back-propagation was proposed. 
Later, the Supervised Clustering and Matching (SCM) algorithm (Tan and Teow 
1997) was introduced. These training models however, aiming at the refinement of 
the edge weights often made the neural logic networks suffer in terms of their in-
terpretability. This drawback led the research to alternative solving methodologies 
such as the genetic programming (Chia and Tan 2001). However, in their system, 
(Chia and Tan 2001) provided a system that was capable of producing only a lim-
ited number of neural logic network formats, that were those that resemble to a bi-
nary tree. In our work, we overcome these problems providing a framework for 
the production of neural logic networks and fuzzy neural logic networks that can 
be arbitrarily large and connected but still maintain their interpretability, and can 
be always translated in a series of expert rules. For this reason, we adapt a gram-
mar guided genetic programming (Koza 1992) approach that uses cellular encod-
ing (Gruau 1996) to describe the neural logic networks. Grammar-guided genetic 
programming for knowledge discovery is an extension to the original GP concept 
and it makes possible the efficient automatic discovery of empirical laws. It relates 
to the Machine Discovery framework, originally described by Langley (Langley et 
al. 1983), which incorporated inductive heuristics but suffered from limitations re-
garding ill-conditioned data and large search spaces (Ratle and Sebag 2000). Ge-
netic programming however can easily overcome these problems mainly due to its 
stochastic nature. We apply this system to two real-world problems. The first 
problem is the NASA space shuttle landing control. Our results in this domain 
demonstrate the ability of the proposed system to explore easily understandable 
neural logic network representations and facilitate the knowledge discovery. The 
second problem we apply the system is the ionosphere radar data classification, 
where the system is proved capable of investigating and providing very complex 
neural logic network structures, however still maintaining the ability of interpreta-
tion of these networks into expert rules. The paper is organised as follows. In sec-
tion 2 we introduce the theoretical background of the neural logic networks and 
the genetic programming framework. Section 3 contains the design and the im-
plementation description of the proposed system. In section 4 we included the de-
scription of the problem domains, our system configuration and the obtained re-
sults together with a discussion. Finally, section 5 contains our conclusion 
regarding this work and proposed future directions for this domain.  
 



2. Background  

2.1 Neural Logic Networks 

The neural logic network is a finite directed graph. It is usually consisted by a set 
of input nodes and an output node. In its 3-valued form, the possible value for a 
node can be one of three ordered pair activation values (1,0) for true, (0,1) for 
false and (0,0) for don't know. Every synapse (edge) is assigned also a an ordered 
pair weight (x,y) where x and y are real numbers. An example of a neural logic 
network and its output value (a,b) of node P is shown in Fig. 2.1.  
 
 (α1,β1)   Q1

(α2,β2)  Q2

(αk,βk)  Qk

(x1,y1)

(x2,y2)

(xk,yk)

P

 
 
 
 
 
 

 

1 1

1 1

(1,0) 1

( , ) (0,1) 1

(0,0)

k k

j j j j
j j

k k

j j j j
j j

if a x b y

a b if a x b y

otherwise

= =

= =

 − ≥

= −





∑ ∑

∑ ∑ ≤ −
 

 
Fig. 2.1. An example of a neural logic network and its output value. 

 

Different sets of weights enable the representation of different logical operations. 
It is actually possible to map any rule of conventional knowledge into a neural 
logic network. In Fig. 2.2, a number of logical operators and their implementation 
in neural logic networks is shown. In this work, these operations, among others, 
are possible to be part of any candidate solution. According to (Teh 1995), the 
neural logic networks fulfill all the features that are required for the unification of 
the symbolic and neural processing. In the following example, we present an en-
hancement of the PROLOG programming language, using neural logic networks, 
aiming at a more powerful programming environment, the so-called "Neural 
Prolog" (Teh 1995). The procedure includes the following steps: 

Step 1:We enhance the facts of PROLOG, by allowing to simple predicates to get 
three values: (1,0), (0,1) and (0,0).  Hence, 
Father(Χ,Υ)=(1,0) means that it is true that Χ is Father of Υ, 

 



Father(Χ,Υ)=(0,1) means that it is false that Χ is Father of Υ, 
Father(Χ,Υ)=(0,0) means that it is still unknown if Χ is Father of Υ 

Richer (Χ,Υ) 

(4,4) 

(1,1) 
 

Stronger (Χ,Υ) 
(2,2) 

Taller (Χ,Υ) 

Better (Χ,Υ) 

 Fig. 2.2 Neural logic network example. The specific network corresponds to one 
priority rule 
. 
If in the same program appear both predicates Father(Χ,Υ)=(1,0) and Fa-
ther(Χ,Υ)=(0,1), then the program is considered inconsistent.  On the opposite, if  
the predicates Father(Χ,Υ)=(1,0) and Father(Χ,Υ)=(0,0) appear, then the program 
is consistent and the Father(Χ,Υ)=(0,0) will be deleted. This generalisation can be 
expanded into fuzzy neural logic networks as well. 
Step 2: We may create rules into the programming language PROLOG directly by 
every neural logic network. For example, the neural logic network shown in Fig. 
2.5, which corresponds to a priority rule, produces a number of rules in PROLOG 
(If-Then rules), which are presented in Fig. 2.3. 
 
If richer(Χ,Υ)=(1,0) then better(Χ,Υ)=(1,0) 
If richer(Χ,Υ)=(0,1) then better(Χ,Υ)=(0,1) 
Suppose richer(Χ,Υ)=(0,0) 

If stronger(Χ,Υ)=(1,0) then better(Χ,Υ)=(1,0) 
If stronger(Χ,Υ)=(0,1) then better(Χ,Υ)=(0,1) 
Suppose richer(Χ,Υ)=(0,0) and stronger(Χ,Υ)=(0,0) 

If taller(Χ,Υ)=(1,0) then better(Χ,Υ)=(1,0) 
If taller(Χ,Υ)=(0,1) then better(Χ,Υ)=(0,1) 

Suppose richer(Χ,Υ)=(0,0) and stronger(Χ,Υ)=(0,0) 
and taller(Χ,Υ)=(0,0) then better(Χ,Υ)=(0,0) 

 
Fig. 2.3. Rules in PROLOG that derive by the network of Fig. 2.5 
 
From this example it is shown that every neural logic network may be interpreted 
into a set of If-Then rules of the PROLOG programming language, which is used 
mainly in artificial intelligence expert systems. 
 
 



2.2 Grammar Guided Genetic Programming 

Genetic Programming (GP) is a search methodology belonging to the family of 
evolutionary computation (EC). The prime advantage of genetic programming 
over classic genetic algorithms, is the ability to construct functional trees of vari-
able length. This property enables the search for very complex solutions that are 
usually in the form of a mathematical formula - an approach that is commonly 
known as symbolic regression. When the syntax form of the desired solution is al-
ready known, it is useful to restrain the genetic programming from searching solu-
tions with different syntax forms (Gruau et al. 1996, Montana 1995) with the help 
of a context-free grammar declared in the Backus-Naur-Form (BNF) (Gruau 1996, 
Janikow 1996, Naur 1963, Ryan et al. 1998). The BNF-grammar consists of ter-
minal nodes and non-terminal nodes and is represented by the set {N,T,P,S} 
where N is the set of non-terminals, T is the set of terminals, P is the set of 
production rules and S is a member of N corresponding to the starting symbol. In 
order to explore variable sized solutions, usually a kind of indirect encoding is ap-
plied. The most common one is the cellular encoding (Gruau 1996), in which a 
genotype can be realized as a descriptive phenotype for the desired solution. More 
specifically, within such a function set, there are elementary functions that modify 
the system architecture together with functions that calculate tuning variables. 

3. Design and Implementation 

The GP parameters of the system are presented in Table 1. The selected parame-
ters offered efficient runs throughout experiments.. 
 

Table 1 GP parameters for G3P 

Parameter Value 

Population:  2,000 individuals  
GP implementation: Steady-state G3P 
Selection:  Tournament with elitist 

strategy 
Tournament size:  6 
Crossover Rate:  0.35 
Overall Mutation Rate:  0.65 
Node Mutation Rate: 0.4 
Shrink Mutation Rate: 0.6 
Killing Anti-Tournament 
size:  

2 

Maximum allowed indi-
vidualsize:  

650 nodes  

Maximum number of gen-
erations: 

100 

 



 
The system grammar is presented in Fig. 3.1. Initial symbol (root) of a tree can be 
only of a type <PROG>. 
 

<PROG> : = PROG <PLACE1><SYNAPSE> 
<PLACE1> : = S1 <PLACE1><SYNAPSE><PLACE2> 
   | P1 <PLACE1><PLACE1> 
   | IN 
IN  : = Data attribute (system input) 
<PLACE2> : = S2 <PLACE2><SYNAPSE><PLACE2> 
   | P2 <PLACE2><SYNAPSE><PLACE2> 
   | E 

E  : = ∅  
<SYNAPSE> : = LNK NUM><CUT><SY APSE>  < N
   | CNR <CNRSEL><K>  
<NUM>  : =  NUM 
<CUT>  : = CUT 
<CNRSEL> : = CNRSEL 
<K>  : = K 
NUM  : = Integer in [1,256] 
CUT  : =  Integer in [0,1] 
CNRSEL : = Integer in [0,10] 

K  : =  Integer in [0,9] 

Fig. 3.1. System grammar 

A detailed function description can be found in (Tsakonas et al. 2004). In general, 
these functions can be divided into topology altering functions and tuning func-
tions. 

4. Results and discussion 

In the section that follows we apply the procedure in two real world problems, 
namely the shuttle-landing control problem and the ionosphere radar returns clas-
sification problem. Both databases reside in the UCI Machine Learning repository 
(Blake et al. 2003). In the first problem, the space shuttle landing control, we ap-
ply the fuzzy neural logic network model to achieve knowledge extraction. This 
problem is consisted by a very small database of NASA, which was used by the 
team of Roger Burke (Michie 1988) in order to determine the cases in which the 
crew of the space shuttle should prefer automated landing control, or perform the 
landing manually.. The features of the database are presented in Table 3, and they 
are comprised of weather conditions, landing error, and the shuttle stability. For 
each of the nominal input features having n possible values, we created n binary 
features. The solution shown in Fig. 4.1 was achieved after 34,889 iterations. It 
achieved accuracy of 100% (5/5) in the test set (unknown data). The accuracy in 
the training set was 100% (10/10) and the accuracy in the validation set was also 
100% (5/5). 



 
Table 2. Shuttle landing data description 

 
Domain Selection of Automated or Manual Shuttle 

Landing procedure 
Database Shuttle-landing-control 
Total Inputs 6 encoded to 12 
Continuous Inputs 0 
Discrete Inputs 2 encoded to 8 binary inputs 
Binary Inputs 4 
Total Records 15 
Training Set Records 10 
Validation Set Records 5 
Test Set Records 5 

 
 

Table 3. Features and their encoding of the Shuttle landing problem 
 

Vari-
able 

Nu
m 

Feature Values / Value 
range 

Encoding 

T1 #1 STABILITY       stab, xstab  1 (binary)    
T2-
T5 

#2 ERROR        XL, LX, MM, SS 4 (nominal, 1 of 4) 

T6  #6 SIGN pp, nn 1 (binary)    
Τ7 #7 WIND head,tail 1 (binary)    
T8-
T11 

#8 MAGNITUDE Low, Medium, 
Strong, OutOfRange 

4 (nominal, 1 of 4) 

T12 #12 VISIBILITY yes, no 1 (binary)    
 

 
(CNLN (P1 (In T12) (S1 (In T11) (Link 78 0 (Link 35 0 (Link 88 0 
(Rule 8 3)))) E)) (Link 2 6 (Rule 6 3))) 

Fig. 4.1  Neural logic network for the Shuttle landing problem. 
 

Hence, we may conclude that the extracted solution performs a perfect fit to the 
data. When we translate this network solution into a set of expert rules, we get the 
following expert system: 

 



 
Q1 Unanimity (Magnitude Out of Range) ⇐
Q Majority Influence (Visibility, Q1) ⇐
 
This example demonstrates the ability of the system to provide potential knowl-
edge discovery performed by the proposed methodology. The next domain of ap-
plication for the neural logic network model is the ionosphere data returns classifi-
cation.  

Table 4. Ionosphere Radar data description 
 

Domain Classification of Ionosphere signals 
Database Ionosphere 
Total Inputs 34 
Continuous Inputs 34 
Discrete Inputs 0 
Binary Inputs 0 
Total Records 346 
Training Set Records 147 
Validation Set Records 48 
Test Set Records 151 

 
CNLN (P1 (P1 (In T27) (S1 (P1 (S1 (S1 (S1 (In T14) (Rule 6 4) (S2 E 
(Rule 4 4) E)) (Link 89 7 (Rule 4 6)) E) (Link 86 3 (Rule 11 2)) E) 
(In T12)) (Rule 2 12) (P2 E (Rule 8 7) E))) (S1 (P1 (S1 (P1 (S1 (In 
T16) (Rule 2 6) (S2 E (Rule 4 7) E)) (In T12)) (Link 196 2 (Link 85 3 
(Link 193 3 (Rule 2 2)))) (S2 E (Rule 5 11) E)) (P1 (In T14) (In 
T2))) (Rule 5 3) (P2 E (Rule 11 4) E))) (Link 2 2 (Link 191 2 (Rule 3 
3)))) 
Fig. 4.3  Neural logic network for the Ionosphere Radar data classification prob-

lem 



We selected the last 151 records as test set, according to the problem specifica-
tions in (Sigillito et al. 1989). The solution shown in Fig. 4.3 was achieved after 
50,000 iterations. It achieved accuracy of 92,05% (139/151) in the test set (un-
known data). Other applications on this domain include C4 algorithms (94.0% 
accuracy), ID3 (96.7%), linear perceptron (90%), non-linear perceptron (92%) and 
backpropagation neural networks (96%) (Sigillito et al. 1989). 

5. Conclusions and further research 

 
This work presented a novel approach for the construction of neural logic net-
works. The proposed system inherits recent developments in genetic program-
ming. It makes use of grammar guided search methodology and the cellular 
encoding advance in order to express arbitrary large and connected neural logic 
networks. The resulted solutions maintain their interpretability and they can be 
used either for knowledge discovery or as highly accurate classification systems. 
The effectiveness of the system is demonstrated in two real-world problems. The 
first problem concerns the shuttle landing control. In this problem, the system is 
shown capable of generating transparent solutions, by producing expert rules that 
enhance the domain knowledge.  The next addressed problem is the ionosphere 
radar returns classification. The system is shown capable of producing competitive 
results, as compared to those of the existing literature. Further research will be ap-
plied in both domains, in order to explore extensively the solution space and pos-
sibly provide more simple and interpretable results. More data domains will be 
used in order to demonstrate the effectiveness of the proposed approach. In the 
part of the implementation, more logical operations will be included in future ver-
sions of the system. Finally, tuning the overall genetic programming parameters 
will be considered in order to offer the most proper search speed of the algorithm. 
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