

Automated Expert Knowledge Base Generation
Using Genetic Programming

Athanasios Tsakonas a 1 and Georgios Dounias b
a University of the Aegean, Dept. of Business Administration,

8 Michalon Str., Chios, Greece,
b University of the Aegean, Dept. of Finance,

31 Fostini Str., Chios, Greece

ABSTRACT: Nowadays, a large number of intelligent systems for decision-
making have yielded encouraging results. However, it is commonly acknowledged
that expert system technology has some drawbacks. In particular, the knowledge
bases of expert systems do not evolve. To solve this problem, a solution that inte-
grates neural networks and expert systems has recently proposed, namely the ap-
plication of neural logic networks. This integrated system combines the strength of
rule-based semantic structure and the learning capability of connectionist architec-
ture. Nevertheless, the early approaches of this model carried the disadvantage of
producing poor results or solutions that could not be interpreted straightforward.
In this work, we overcome these problems and we propose a system that is capa-
ble of producing arbitrary large and connected neural logic networks that can eas-
ily be interpreted into sets of expert rules. To accomplish this task we adopt a ge-
netic programming approach, guided through grammars and we encode indirectly
the architecture into genetic programming individuals. We test and make conclu-
sions on the effectiveness of the proposed system into two real-world decision
making domains.

Keywords: Expert systems, Neural Logic Networks, Grammar Guided Genetic
Programming, Cellular Encoding.

1 Corresponding author. Tel: +306-937-891-399, Fax: +302-271-093-464
E-mail address: tsakonas@stt.aegean.gr (Athanasios Tsakonas)

1. Introduction

Since their first application, artificial neural networks have been the research tar-
get for scientists that were aiming to obtain a meaningful to the humans interpreta-
tion of these networks' powerful structure. A specific class of artificial neural net-
works, so-called neural logic networks, by their definition can be easily
interpreted in a number of expert rules. Hence, they can be considered as integra-
tion between rule-based expert systems and neural networks (Quah et al. 1996).
However, the advantage in these networks is that they are not necessarily static as
the expert systems, but can be trained according to the problem encountered. In
(Teh 1995), a training methodology related to back-propagation was proposed.
Later, the Supervised Clustering and Matching (SCM) algorithm (Tan and Teow
1997) was introduced. These training models however, aiming at the refinement of
the edge weights often made the neural logic networks suffer in terms of their in-
terpretability. This drawback led the research to alternative solving methodologies
such as the genetic programming (Chia and Tan 2001). However, in their system,
(Chia and Tan 2001) provided a system that was capable of producing only a lim-
ited number of neural logic network formats, that were those that resemble to a bi-
nary tree. In our work, we overcome these problems providing a framework for
the production of neural logic networks and fuzzy neural logic networks that can
be arbitrarily large and connected but still maintain their interpretability, and can
be always translated in a series of expert rules. For this reason, we adapt a gram-
mar guided genetic programming (Koza 1992) approach that uses cellular encod-
ing (Gruau 1996) to describe the neural logic networks. Grammar-guided genetic
programming for knowledge discovery is an extension to the original GP concept
and it makes possible the efficient automatic discovery of empirical laws. It relates
to the Machine Discovery framework, originally described by Langley (Langley et
al. 1983), which incorporated inductive heuristics but suffered from limitations re-
garding ill-conditioned data and large search spaces (Ratle and Sebag 2000). Ge-
netic programming however can easily overcome these problems mainly due to its
stochastic nature. We apply this system to two real-world problems. The first
problem is the NASA space shuttle landing control. Our results in this domain
demonstrate the ability of the proposed system to explore easily understandable
neural logic network representations and facilitate the knowledge discovery. The
second problem we apply the system is the ionosphere radar data classification,
where the system is proved capable of investigating and providing very complex
neural logic network structures, however still maintaining the ability of interpreta-
tion of these networks into expert rules. The paper is organised as follows. In sec-
tion 2 we introduce the theoretical background of the neural logic networks and
the genetic programming framework. Section 3 contains the design and the im-
plementation description of the proposed system. In section 4 we included the de-
scription of the problem domains, our system configuration and the obtained re-
sults together with a discussion. Finally, section 5 contains our conclusion
regarding this work and proposed future directions for this domain.

2. Background

2.1 Neural Logic Networks

The neural logic network is a finite directed graph. It is usually consisted by a set
of input nodes and an output node. In its 3-valued form, the possible value for a
node can be one of three ordered pair activation values (1,0) for true, (0,1) for
false and (0,0) for don't know. Every synapse (edge) is assigned also a an ordered
pair weight (x,y) where x and y are real numbers. An example of a neural logic
network and its output value (a,b) of node P is shown in Fig. 2.1.

 (α1,β1) Q1

(α2,β2) Q2

(αk,βk) Qk

(x1,y1)

(x2,y2)

(xk,yk)

P

1 1

1 1

(1,0) 1

(,) (0,1) 1

(0,0)

k k

j j j j
j j

k k

j j j j
j j

if a x b y

a b if a x b y

otherwise

= =

= =

 − ≥

= −





∑ ∑

∑ ∑ ≤ −

Fig. 2.1. An example of a neural logic network and its output value.

Different sets of weights enable the representation of different logical operations.
It is actually possible to map any rule of conventional knowledge into a neural
logic network. In Fig. 2.2, a number of logical operators and their implementation
in neural logic networks is shown. In this work, these operations, among others,
are possible to be part of any candidate solution. According to (Teh 1995), the
neural logic networks fulfill all the features that are required for the unification of
the symbolic and neural processing. In the following example, we present an en-
hancement of the PROLOG programming language, using neural logic networks,
aiming at a more powerful programming environment, the so-called "Neural
Prolog" (Teh 1995). The procedure includes the following steps:

Step 1:We enhance the facts of PROLOG, by allowing to simple predicates to get
three values: (1,0), (0,1) and (0,0). Hence,
Father(Χ,Υ)=(1,0) means that it is true that Χ is Father of Υ,

Father(Χ,Υ)=(0,1) means that it is false that Χ is Father of Υ,
Father(Χ,Υ)=(0,0) means that it is still unknown if Χ is Father of Υ

Richer (Χ,Υ)

(4,4)

(1,1)

Stronger (Χ,Υ)
(2,2)

Taller (Χ,Υ)

Better (Χ,Υ)

 Fig. 2.2 Neural logic network example. The specific network corresponds to one
priority rule
.
If in the same program appear both predicates Father(Χ,Υ)=(1,0) and Fa-
ther(Χ,Υ)=(0,1), then the program is considered inconsistent. On the opposite, if
the predicates Father(Χ,Υ)=(1,0) and Father(Χ,Υ)=(0,0) appear, then the program
is consistent and the Father(Χ,Υ)=(0,0) will be deleted. This generalisation can be
expanded into fuzzy neural logic networks as well.
Step 2: We may create rules into the programming language PROLOG directly by
every neural logic network. For example, the neural logic network shown in Fig.
2.5, which corresponds to a priority rule, produces a number of rules in PROLOG
(If-Then rules), which are presented in Fig. 2.3.

If richer(Χ,Υ)=(1,0) then better(Χ,Υ)=(1,0)
If richer(Χ,Υ)=(0,1) then better(Χ,Υ)=(0,1)
Suppose richer(Χ,Υ)=(0,0)

If stronger(Χ,Υ)=(1,0) then better(Χ,Υ)=(1,0)
If stronger(Χ,Υ)=(0,1) then better(Χ,Υ)=(0,1)
Suppose richer(Χ,Υ)=(0,0) and stronger(Χ,Υ)=(0,0)

If taller(Χ,Υ)=(1,0) then better(Χ,Υ)=(1,0)
If taller(Χ,Υ)=(0,1) then better(Χ,Υ)=(0,1)

Suppose richer(Χ,Υ)=(0,0) and stronger(Χ,Υ)=(0,0)
and taller(Χ,Υ)=(0,0) then better(Χ,Υ)=(0,0)

Fig. 2.3. Rules in PROLOG that derive by the network of Fig. 2.5

From this example it is shown that every neural logic network may be interpreted
into a set of If-Then rules of the PROLOG programming language, which is used
mainly in artificial intelligence expert systems.

2.2 Grammar Guided Genetic Programming

Genetic Programming (GP) is a search methodology belonging to the family of
evolutionary computation (EC). The prime advantage of genetic programming
over classic genetic algorithms, is the ability to construct functional trees of vari-
able length. This property enables the search for very complex solutions that are
usually in the form of a mathematical formula - an approach that is commonly
known as symbolic regression. When the syntax form of the desired solution is al-
ready known, it is useful to restrain the genetic programming from searching solu-
tions with different syntax forms (Gruau et al. 1996, Montana 1995) with the help
of a context-free grammar declared in the Backus-Naur-Form (BNF) (Gruau 1996,
Janikow 1996, Naur 1963, Ryan et al. 1998). The BNF-grammar consists of ter-
minal nodes and non-terminal nodes and is represented by the set {N,T,P,S}
where N is the set of non-terminals, T is the set of terminals, P is the set of
production rules and S is a member of N corresponding to the starting symbol. In
order to explore variable sized solutions, usually a kind of indirect encoding is ap-
plied. The most common one is the cellular encoding (Gruau 1996), in which a
genotype can be realized as a descriptive phenotype for the desired solution. More
specifically, within such a function set, there are elementary functions that modify
the system architecture together with functions that calculate tuning variables.

3. Design and Implementation

The GP parameters of the system are presented in Table 1. The selected parame-
ters offered efficient runs throughout experiments..

Table 1 GP parameters for G3P

Parameter Value

Population: 2,000 individuals
GP implementation: Steady-state G3P
Selection: Tournament with elitist

strategy
Tournament size: 6
Crossover Rate: 0.35
Overall Mutation Rate: 0.65
Node Mutation Rate: 0.4
Shrink Mutation Rate: 0.6
Killing Anti-Tournament
size:

2

Maximum allowed indi-
vidualsize:

650 nodes

Maximum number of gen-
erations:

100

The system grammar is presented in Fig. 3.1. Initial symbol (root) of a tree can be
only of a type <PROG>.

<PROG> : = PROG <PLACE1><SYNAPSE>
<PLACE1> : = S1 <PLACE1><SYNAPSE><PLACE2>
 | P1 <PLACE1><PLACE1>
 | IN
IN : = Data attribute (system input)
<PLACE2> : = S2 <PLACE2><SYNAPSE><PLACE2>
 | P2 <PLACE2><SYNAPSE><PLACE2>
 | E

E : = ∅
<SYNAPSE> : = LNK NUM><CUT><SY APSE> < N
 | CNR <CNRSEL><K>
<NUM> : = NUM
<CUT> : = CUT
<CNRSEL> : = CNRSEL
<K> : = K
NUM : = Integer in [1,256]
CUT : = Integer in [0,1]
CNRSEL : = Integer in [0,10]

K : = Integer in [0,9]

Fig. 3.1. System grammar

A detailed function description can be found in (Tsakonas et al. 2004). In general,
these functions can be divided into topology altering functions and tuning func-
tions.

4. Results and discussion

In the section that follows we apply the procedure in two real world problems,
namely the shuttle-landing control problem and the ionosphere radar returns clas-
sification problem. Both databases reside in the UCI Machine Learning repository
(Blake et al. 2003). In the first problem, the space shuttle landing control, we ap-
ply the fuzzy neural logic network model to achieve knowledge extraction. This
problem is consisted by a very small database of NASA, which was used by the
team of Roger Burke (Michie 1988) in order to determine the cases in which the
crew of the space shuttle should prefer automated landing control, or perform the
landing manually.. The features of the database are presented in Table 3, and they
are comprised of weather conditions, landing error, and the shuttle stability. For
each of the nominal input features having n possible values, we created n binary
features. The solution shown in Fig. 4.1 was achieved after 34,889 iterations. It
achieved accuracy of 100% (5/5) in the test set (unknown data). The accuracy in
the training set was 100% (10/10) and the accuracy in the validation set was also
100% (5/5).

Table 2. Shuttle landing data description

Domain Selection of Automated or Manual Shuttle

Landing procedure
Database Shuttle-landing-control
Total Inputs 6 encoded to 12
Continuous Inputs 0
Discrete Inputs 2 encoded to 8 binary inputs
Binary Inputs 4
Total Records 15
Training Set Records 10
Validation Set Records 5
Test Set Records 5

Table 3. Features and their encoding of the Shuttle landing problem

Vari-
able

Nu
m

Feature Values / Value
range

Encoding

T1 #1 STABILITY stab, xstab 1 (binary)
T2-
T5

#2 ERROR XL, LX, MM, SS 4 (nominal, 1 of 4)

T6 #6 SIGN pp, nn 1 (binary)
Τ7 #7 WIND head,tail 1 (binary)
T8-
T11

#8 MAGNITUDE Low, Medium,
Strong, OutOfRange

4 (nominal, 1 of 4)

T12 #12 VISIBILITY yes, no 1 (binary)

(CNLN (P1 (In T12) (S1 (In T11) (Link 78 0 (Link 35 0 (Link 88 0
(Rule 8 3)))) E)) (Link 2 6 (Rule 6 3)))

Fig. 4.1 Neural logic network for the Shuttle landing problem.

Hence, we may conclude that the extracted solution performs a perfect fit to the
data. When we translate this network solution into a set of expert rules, we get the
following expert system:

Q1 Unanimity (Magnitude Out of Range) ⇐
Q Majority Influence (Visibility, Q1) ⇐

This example demonstrates the ability of the system to provide potential knowl-
edge discovery performed by the proposed methodology. The next domain of ap-
plication for the neural logic network model is the ionosphere data returns classifi-
cation.

Table 4. Ionosphere Radar data description

Domain Classification of Ionosphere signals
Database Ionosphere
Total Inputs 34
Continuous Inputs 34
Discrete Inputs 0
Binary Inputs 0
Total Records 346
Training Set Records 147
Validation Set Records 48
Test Set Records 151

CNLN (P1 (P1 (In T27) (S1 (P1 (S1 (S1 (S1 (In T14) (Rule 6 4) (S2 E
(Rule 4 4) E)) (Link 89 7 (Rule 4 6)) E) (Link 86 3 (Rule 11 2)) E)
(In T12)) (Rule 2 12) (P2 E (Rule 8 7) E))) (S1 (P1 (S1 (P1 (S1 (In
T16) (Rule 2 6) (S2 E (Rule 4 7) E)) (In T12)) (Link 196 2 (Link 85 3
(Link 193 3 (Rule 2 2)))) (S2 E (Rule 5 11) E)) (P1 (In T14) (In
T2))) (Rule 5 3) (P2 E (Rule 11 4) E))) (Link 2 2 (Link 191 2 (Rule 3
3))))
Fig. 4.3 Neural logic network for the Ionosphere Radar data classification prob-

lem

We selected the last 151 records as test set, according to the problem specifica-
tions in (Sigillito et al. 1989). The solution shown in Fig. 4.3 was achieved after
50,000 iterations. It achieved accuracy of 92,05% (139/151) in the test set (un-
known data). Other applications on this domain include C4 algorithms (94.0%
accuracy), ID3 (96.7%), linear perceptron (90%), non-linear perceptron (92%) and
backpropagation neural networks (96%) (Sigillito et al. 1989).

5. Conclusions and further research

This work presented a novel approach for the construction of neural logic net-
works. The proposed system inherits recent developments in genetic program-
ming. It makes use of grammar guided search methodology and the cellular
encoding advance in order to express arbitrary large and connected neural logic
networks. The resulted solutions maintain their interpretability and they can be
used either for knowledge discovery or as highly accurate classification systems.
The effectiveness of the system is demonstrated in two real-world problems. The
first problem concerns the shuttle landing control. In this problem, the system is
shown capable of generating transparent solutions, by producing expert rules that
enhance the domain knowledge. The next addressed problem is the ionosphere
radar returns classification. The system is shown capable of producing competitive
results, as compared to those of the existing literature. Further research will be ap-
plied in both domains, in order to explore extensively the solution space and pos-
sibly provide more simple and interpretable results. More data domains will be
used in order to demonstrate the effectiveness of the proposed approach. In the
part of the implementation, more logical operations will be included in future ver-
sions of the system. Finally, tuning the overall genetic programming parameters
will be considered in order to offer the most proper search speed of the algorithm.

References

Blake C., Keogh E., Merz C.J., (2003) UCI Repository of machine learning data-
bases. Dept. Inform. Comp. Sci. Univ. California, Irvine, CA.
[http://www.ics.uci.edu/~mlearn/ML-Repository.html]

Chia H.W-K., Tan C-L.,(2001) Neural logic network learning using genetic pro-
gramming, Intl.Journal of Comp.Intelligence and Applications, 1:4, 2001, pp
357-368

Gruau F. (1996) Neural Network Synthesis using Cellular Encoding and the Ge-
netic Algorithm", Ph.D. Thesis, Ecole Normale Superieure de Lyon, anony-
mous ftp:lip.ens-lyon.fr (140.77.1.11) pub/Rapports/PhD PhD94-01-E.ps.Z

Gruau F. (1996) On Using Syntactic Constraints with Genetic Programming, in
P.J.Angeline, K.E.Jinnear,Jr., "Advances in Genetic Programming", MIT

Gruau F., Whitley D., Pyeatt L. (1996) "A Comparison between Cellular Encod-
ing and Direct Encoding for Genetic Neural Networks", in Koza J.R., Gold-
berg D.E., Fogel D.B., Riolo R.L. (eds.), Genetic Programming 1996: Pro-
ceedings of the First Annual Conf., pp 81-89, Cambridge, MA, MIT Press

Janikow C.Z. (1996) A Methodology for Processing Problem Constraints in Ge-
netic Programming, in Computers Math.Applic. Vol.32:8,pp 97-113

Koza J.R. (1992) "Genetic Programming: On the Programming of Computers by
Means of Natural Selection", Cambridge, MA, MIT Press.

Koza J.R. (1999) Bennett III F.H., Andre D., Keane M.A., "Genetic Programming
III", Morgan Kaufmann Publ., Inc.

Langley P., Simon H.A., Bradshaw G.L.(1983) Rediscovering chemistry with the
Bacon system", in Machine Learning: an artificial intelligence approach, Vol
1, Morgan Kaufmann

Michie,D. (1988) The Fifth Generation's Unbridged Gap. In Rolf Herken (Ed.)
The Universal Turing Machine: A Half-Century Survey, 466-489, Oxford
University Press

Montana D.J. (1995) Strongly Typed Genetic Programming", in Evolutionary
Computation, vol. .3, no. 2

Naur P.(1963) Revised report on the algorithmic language ALGOL 60, Commun.
ACM, Vol 6, No 1, pp 1-17, Jan 1963

Prechelt L. (1994) Proben1 - A set of neural network benchmark problems and
benchmarking rules", Tech.Rep. 21/94, Univ. Karlsruhe, Karlsruhe, Germany

Quah T-S., Tan C-L.(1995) Teh H-H.,Sriniivasan B.,"Utilizing a Neural Logic
Expert system in Currency Option Trading", Expert Systems with Applica-
tions, 9:2, pp 213-222

Quah T-S., Tan C-L., Raman K., Sriniivasan B. (1996) Towards integrating rule-
based expert systems and neural networks, Decision Support Systems, 17, pp
99-118

Ryan C., Collins J.J., O'Neil M. (1998) Grammatical Evolution: Evolving Pro-
grams for an Arbitrary Language, in W.Banzhaf, R.Poli, M.Schoenauer,
T.C.Fogarty (Eds.), "Genetic Programming", Lecture Notes in Computer Sci-
ence, Springer

Sfetsos A. (2000) A comparison of various forecasting techniques applied to mean
hourly wind speed time series, Renewable Energy, 21, pp 23-25

Sigillito, V. G., Wing, S. P., Hutton, L. V.,Baker, K. B. (1989), Classification of
radar returns from the ionosphere using neural networks. Johns Hopkins APL
Technical Digest, 10, 262-266

Tan A-H., Teow L-N. (1997) Inductive neural logic network and the SCM algo-
rithm, Neurocomputing 14, pp 157-176

Teh H-H. (1995) Neural Logic Networks, World Scientific
Tsakonas A., Aggelis V., Karkazis I., Dounias G. (2004) An Evolutionary System

for Neural Logic Networks using Genetic Programming and Indirect Encod-
ing, Journal of Applied Logic, Elsevier, forthcoming, Spring 2004

