Rapid prototyping & modelling of real-time
image convolvers

D. J. Gibson, M. K. Teal,
D. Ait-Boudaoud & M. Winchester™
School of Design, Engineering & Computing, Department of Electronics,
Boumemouth University.
e-mail: gibsond @bournemouth.ac.uk

Abstract

The foremost objective of designers is developing hardware with the correct functionality in
the shortest possible time. Therefore, they are keen to exploit any methodology that will help
to reduce development times, increase reuse and make ‘right first time’ design an achievable
target. This paper details such a method that allows rapid prototyping of custom hardware
for the implementation of real-time image convolvers. The technique relies on the
partitioning of a convolver template into standard components. A library containing VHDL
component models and various architectural implementations has been constructed. Using
this and an integrated design cycle, convolver models can be quickly and easily constructed.
As a standard has been established for the partitioning of the convolver and its components,
design times are significantly reduced. Since all the library component models have been
previously tested, time consuming development problems will be reduced. This novel
philosophy is presented in this paper and conclusions are made upon its use.

Keywords rapid prototyping, system design, image processing, VHDL

1. Introduction

The implementation of real-time image processing systems is generally performed on very
high speed processing units. However, before the image information is in a form that is
acceptable for processing it will often require some form of low-level manipulation. These
low-level or pixel-based operations tend to be realised in custom hardware as the algorithms
are executed on all the pixels within an image, and as such are computationally intensive.
One of the most widely used techniques for pixel-based manipulation is two dimensional
image convolution. This operation may be used to produce a wide variety of different results
depending on the filter coefficients chosen.

Although an image convolver performs the same basic operation for each filter
implementation, the design of its hardware is nontrivial. This is due to the wide range of
filter masks that can be realised. For example, the first mask shown in Figure 1-1 can be
used to implement a low-pass filter on an image convolver, whereas the other mask will give
a high-pass operation [1]. Although the mask change is a minor algorithmic difference the
impact on the convolver's architecture will be substantial for two reasons. First, the Jow-pass
filter will not require any multipliers as all the filter coefficients have a value of one.
However, the high-pass coefficient values imply that a multiplication stage is required, even
if this is a minor ‘power of two’ implementation. Secondly, the high-pass mask possesses
both positive and negative coefficients, meaning the convolver's hardware will require a
two’s complement architecture. Therefore, although the convolution is a simple ‘multiply &
accumulate’ operation the hardware realisations vary greatly.

111 0 -1 0
[1 1 1} Low-pass filter mask [_1 4 -1} High-pass filter mask
111

0 -1 0

Figure 1-1 Two examples of 3x3 image convolution masks

* British Aerospace Dynamic Division, Stevenage, Hertfordshire.

The use of Hardware Descriptive Languages (HDL’s) has revolutionised design techniques
for digital hardware. Over the last decade VHDL has become oné of the most popular
standards for digital design entry. Tt allows hardware to be modelled at various levels of
abstraction and these models can be simulated and synthesised to a particular implementation
technology. Although VHDL has been used for the design entry of pixel-based systems it has
not been used for algorithmic development or the modelling of generic classes [2]. This
paper will describe how a class of image convolvers may be rapidly designed and developed
using a parameterised library of component models and a standard convolver configuration.

1.1 Traditional system design techniques

Although convolution is a simple ‘multiply & accumulate’ operation, the design of a
hardware realisation is not asy. In the past, these systems have tended to be designed from
scratch using a top-down design flow [3], [4]. A typical design flow and testing philosophy
for image processing Systems is shown in Figure 1-2.

Specifications

Input images Output images
System
design
Hardf”a're Generic synthesis
design
.. tion & WIRCHAE . oeiraremnneses
Realisation Place & route

Figure 1-2 Schematic diagram representing a typical design flow and testing
philosophy for jmage processing systems

From the initial specifications the system developers will design an algorithmic realisation of
the system. This is generally performed using high-level programiming languages that are
very versatile and ideal for computationally intensive tasks, thus virtually any form of image

A AR

S S

processing algorithms can be implemented. This algorithmic design is then verified using
test vectors and input image sequences. The results obtained at this stage will become
benchmark results that will be used to determine if the subsequent development has the
correct functionality.

Following the algorithmic development the design is passed to the hardware engineers, this
change over phase is fraught with danger. For a start the hardware development is performed
using Hardware Descriptive Languages (HDL’s), therefore the hardware must be designed
from scratch so that it has the same functionality as the algorithmic implementation. This can
be difficult as many image processing algorithms can not be realised easily in digital
hardware. Close liaison between the system designers and the hardware engineers will be
required to ensure that the realisation of the chosen algorithms can be achieved in hardware.
The design entry for the hardware will be at Register Transfer (RT) level. The functionality
of this design stage is verified by using the same test vectors that were used during
algorithmic development and comparing the results.

The RT design is then translated into a gate-level realisation in terms of generic gates. The
translation or synthesis stage is a well automated process and can be performed using many
different tools. As with the previous stages the gate-level performance can be verified by
using the same test vectors. After the functionality of the hardware model has been verified
it can be targeted to a specific technology. First optimisation and targeting tools are used to
convert the design’s models from the generic gate-level to a technology dependent layout
level. Next the place and route tools are used to map the design to the hardware technology.
Finally, the functionality of this stage is confirmed against the previously used test vectors.
Although this design strategy is fine for either small systems or ones containing a low
number of functional blocks, it does have a number of faults. First, the translation between
the system and hardware phases is prone to the introduction of errors. This is because
translation is performed manually between two completely different modelling mediums,
thus errors can be inadvertently introduced. Also the system designers may not be fully
aware of the constraints that digital hardware has upon their chosen algorithms. Secondly,
when the hardware designers begin their task they will first decompose the systems
algorithms into functional blocks. These blocks will then be created as separate modules,
this means that the overall functionality of the RT system model cannot be verified until all
the modules have been created at this level. This process generally leads to errors that
hamper the debugging of the system model. Finally, this strategy despite the use of HDL’s
does not encourage reuse of designs and tends to rely greatly on the experience and expertise
of the engineers.

Our aim is to target these problems and create a design philosophy that will allow the rapid
prototyping of image processing systems. This paper documents how such a philosophy has
been applied to the design of image convolvers.

2. Rapid prototyping design philosophy

The design cycle adopted for our research is a library-based scheme that is represented
schematically in Figure 2-1. The entire design cycle is based around a VHDL component
library. This library contains models of basic arithmetic components such as adders and
multipliers, as well as components that are specifically required for image processing
systems. These include edge counters, thresholds and pipelines. All the components
contained within the library possess a standard interface that must be maintained during the
entire design cycle. With this pre-designed and simulated library of components the system
engineers can develop the required algorithms from the specifications. This is achieved by
creating a ‘virtual prototype’ of the system purely from the components contained in the
library [5]. As far as the system designers are concerned each of the components can be
considered as a functional ‘black box’. In this way the system engineers can design and
verify the relevant algorithms.

The design is then passed to the hardware developers, this changeover will be a much
smoother process as the modelling medium that both sets of engineers are using is the same.
In addition, the required algorithms and hence the design has already been partitioned into
functional blocks. The hardware engineers have to take each component and specify any
architectural constraints [5]. For example, the system engineer may have specified an 8-bit
addition, the hardware engineer will need to determine the architectural implementation, i.e.
ripple carry, carry look-ahead, carry save etc.

Specifications

Component based VHDL environment

| Algorithmic
| devclopment |

Component
library

Register
Transfer
Design

Generic Gate
Level Design
Layout design

- level

Input image

Output image

Figure 2-1 Schematic diagram representing the library based VHDL design philosophy

As each component model is modified to account for its hardware realisation, its performance
can be verified by integrating the modified component back into the system model and re-
simulating. This integrated testing strategy is based upon work undertaken at the University
of Dortrmund and allows components to be tested immediately [6]. This will identify errors
earlier in the design cycle as models at any level can be simulated after modification within
the previous system model. For example, if the architecture of an adder component is
synthesised to a generic gate-level it can be immediately re-integrated into the RT system
model and its performance verified.

2.1 The component model library

Before this rapid prototyping methodology can be adopted it is necessary to create a library
containing the relevant component models. The components that will be required can be
ascertained by decomposing the algorithm into functional blocks. For each block a

38

component will require creation with a standard interface. As the component model’s
internal structure may be subsequently modified with hardware details the interface must be
in terms of hardware. For example, Figure 2-2 contains the interface requirements for an
8-bit adder. As can be seen the interface is defined in terms of the IEEE standard
multivalued logic system for VHDL model interoperability (std_logic_1164) [7]. Ports A, B
and Result have been declared as type std_logic_vector and Clk, Reset and Cout as std_logic.
This means that although the system engineers are only concerned with the development of
the algorithms they must use this style of logic interface between the components.

A
LIBRARYIEEE; 8
USEIEEEstd_logic 1164.ALL;

— 2

ENTITY adder IS
GENERIC (bus_width : INTEGER = 8; Clk——o
granularity : INTEGER =2); ADDER
PORT (A: INstd _logic_vector ((bus_width - 1) DOWNTO0);
B : INstd_logic_vector ((bus_width - 1) DOWNTO0); Reset
Clk, Reset : IN std_logic;
Cout : OUT std_logic; l +
8

Result : OUT std_logic_vector ((bus_width - 1) DOWNTO0));
END adder;

Figure 2-2 Example of component interface for an adder

All the components contained in the library have been made fully generic in size. This
allows one model to be used for the realisation of any component width. This can be seen in
Figure 2-2, where the width of the adder is controlled by the generic bus_width. Due to the
high throughput nature of real-time applications it is difficult to predict the level of pipelining
that a component will require. Moreover, the degree of pipelining required is partly
dependent on the implementation technology chosen for the system. At the modelling stage
these details may not be known. Thus, the ‘granularity’ or pipelining of each component is
also controlled with generic constructs [8]. In addition, any algorithmic parameters that can
be varied in the components will also be controlled with generic constructs [9].

The abstraction level that the VHDL component models are created is dependent on the
functionality of the component. For example, a storage device is easily constructed at a RT
level, whereas an adder may be first designed at a functional level and then have
implementation details added later during the design cycle. This is shown more clearly in
Figure 2-3, where as an example an adder at different stages of the design cycle is shown. As
can be seen the adder statts off as a purely functional model and evolves into a full hardware
model. At the RT level a carry look-ahead architecture is added to the model, this can be
achieved in one of two ways. Either incorporate a pre-designed ripple carry architecture
from the library or modify the adder’s existing architecture. Following the model’s synthesis
it is determined that the adder requires a granularity of four. Finally, during the layout it is
discovered that the routing has incurred larger delays than expected and a granularity of two
is required. '

At any time during the design cycle the adder model should have the same functionality. As
the system engineers purely regard the component models as ‘black boxes’ they can take any
model during the projects design cycle and verify its functionality. This is simply achieved
by incorporating the component back into the overall system model.

39

Specifications
Result=A +B

bascd VHDL environment

’i ’i
Algorithmic - Functionud
development Reset— Adder

Cout Result

A B

4 o

Rogiver Cli—{ Carrylook-
Tans: ahes
Design Rese— ahead Adder

Cout Resull

A B

4

Generic Gate Clik—=] CLH Adder
| LevelDesign Reser— granularity =4

Cout Result

A B

4

Clk— CLA Adder
Resetr—] grenudarity =2

Cout Result

Figure 2-3 An example of an adder model throughout the rapid prototyping design
cycle

3. Rapid prototyping of image convolvers

Real-time image convolvers tend to be difficult to design and implement due to high
throughput and computational rates. In addition, a minor change at the algorithmic level can
translate into major implementation differences. For these reasons the design times for such
systems tend to be long. Hence, engineers are keen to adopt techniques that will speed up
their ‘time to market’. The design philosophy outlined in Section 2 has been applied to the
development of such systems and will be outlined in this section.

3.1 Component library and template for image convolvers

Before image convolvers can be modelled it is first necessary to establish what components
are required. This is achieved by decomposing the algorithms into functional blocks. The
centred, zero boundary superposition convolution algorithm that has been applied to our
rapid prototyping philosophy is shown below in Equation 3:1 [1].

-1 L-1
H(t1,22) * I(mu,mz2) = Q(j1, j2) = -]17 ZT(I’LI,I’LZ).I(jl —ni— Le, j2—n2— L)

ni=0 n2=0

Equation 3:1

This equation can be decomposed into six components. A schematic diagram representing
these components and their interaction is shown in Figure 3-1. The first component, the
pipeline is simply a storage device. This is required as the image pixels are supplied in a
raster scan form, the pipeline stores the pixels so that at any time the current pixels required
for the convolution operation are available. The coefficient multiplier component performs

40

multiplication between the current pixel values and the corresponding filter coefficients. The
results from the multiplication’s are then summed. Next the scaling division normalises the
current value. Finally, the last two components are included for the synchronisation of the
system. The counter keeps track of the current position and synchronises the convolver with
any external devices, the edge zero component sets the value of any edge pixel outside the
convolution range to zero.

Clock lCoumer Sync
) Cik s output
Resct e
Reset
Zero
¥
Data Pipeline Coeffient Summation Scaling Zero Data
Input multiplier division E output
oy 1 o o 11 Out| sasmammip! 1 o ety | Outjmmlml 10 COEE
" n ut u y g ut et n up [zero -
Clk Reset Clk Reset Cik Reset Clk Reset Clk Reset
Y [3 [a [-3 [-y 3
Clock
Resel [[[d

Figure 3-1 Schematic diagram representing the components required to implement an
image convolver

This configuration now becomes the standard template for the construction of convolvers
from the component library. Therefore, the interface for each component must be kept the
same throughout the design. VHDL models for each of the components have been
constructed and tested. Each model has been made fully generic in terms of size, pipelining
and the actual filter operations that the convolver can perform. Hence, the component library
can be used to model single convolution systems. In addition, extra architectures have been
included in the library for arithmetic operations. These include: ripple carry addition, carry
look-ahead addition and Wallace tree multiplication.

All the library’s component models and the convolver template have been fully tested, this
allows development of systems without having to worry about the configuration of the
convolver.

3.2 Rapid design and simulation of image convolvers

With the component library and the convolver template in place it is possible to design and
simulate image convolvers very quickly. From the specifications of the system the generic
parameters for each component can be established and entered into the convolver template.
This is the algorithmic development phase of the design philosophy as depicted in Figure 2-1.
Functional testing at this level can be performed directly upon the convolver with real input
image sequences. This is possible as each component and the system template have been
previously proven to function correctly. Hence, simulation at this level is only to establish
the performance of the chosen algorithms against real input images.

With a satisfactory derivative of the algorithm chosen, hardware implementation details can
be modified or added to the component models dependent on the application and realisation
technology. For example, an FPGA implementation of the convolver will require
modification to the arithmetic components and an external realisation of the pipeline. As
each component model is modified its functionality can be immediately verified by re-
simulating the convolver. In this way the architectural implementation of each component
can be verified in turn and tested immediately.

Following this design philosophy through to the hardware implementation speeds up the
design cycle and can lower the number of errors introduced into the system. This will reduce
the ‘time to market’ for such products and gives greater flexibility during the design to make
algorithmic alterations.

41

4. Conclusions on rapid prototyping philosophy

With the components contained in the library and the convolver template established a
number of different convolution systems have been designed and modelled. These include
Laplacian, Box filter, Gaussian, Roberts and Sobel.

The initial construction of an algorithmic model for such systems is dependent on the
constraints set by the customer’s specifications. Therefore, it is difficult to compare results
obtained from a contrived example with those expected from a real project. Howeyver, it was
found that using the convolver template and the component library lead to the chosen
algorithms being modelled in a matter of hours. This is much quicker than trying to verify
the algorithms using a high-level programming language as this will have to be constructed
from scratch. Moreover, although the system designers consider the component models as
purely functional ‘black boxes’, each is actually an abstraction of 2 hardware module.
Therefore, without a conscious effort the systems engineers will be considering the high-level
design in terms of hardware. In addition, the hand-over of the design between the system
developers to the hardware engineers will be much smoother as both design teams will be
using the same modelling medium. This promotes closer liaison and communication between
the teams making it easier to iron out errors and problems.

When the required components and templates generic configuration has been established the
hardware designers can concentrate on fitting specific architectures to each component. This
architectural targeting is dependent on the chosen algorithms and the application of the
system. However, using the component based design environment the design flow is greatly
eased as it allows the individual testing of new component architectures with previously
verified system models, thus, highlighting architectural problems earlier in the design and
therefore speeding up the development time.

The overall affect of this integrated design philosophy is that it forces the early partitioning
and establishment of the components, thus promoting the re-use of designs. This combined
with the integrated testing of the components highlight mistakes earlier and reduce design
times. All of these factors will help to reduce the ‘time to market’ for products designed
using this strategy.

[1] Pratt, W.K,, Digital Image Processing, Second edition. John Wiley & Sons, 1991.

[2] Schumacher. G., W. Nobel, W. Putzke & M. Wilmis ‘Applying Object-Oriented
Technologies to Hardware Modelling-A Case Study.” Proceedings SIG-VHDL Working
Conference, Spring 1996.

[3] Valle, M., G. Nateri, D. Caviglia & L. Briozzo, ‘An ASIC Design for Real-Time Image
Processing in Industrial Applications.’ Proceedings of the European Design & Test
Conference, 1993.

[4] Shewring, I W., M. A. Wahab ‘An Integrated Approach to the Design and
Implementation of Image Filters.” Proceedings IEE 15th SARAGA Colloguium on
Digital and Analogue Filters and Filtering Systems, 1995.

[5] Vahey, M., D. Bushman, S. DaBell, T. Ennis & P. Kalutkiewicz, ‘A Virtaal Prototype
VHDL Development Methodology.’ Proceeding of the VIUF Conference, VHDL:
Champions of the Second Generation. Spring 1995.

[6] Schwoerer, L., M. Liick & H. Schroder, ‘Integration of VHDL into a System Design
Enviroment.” Proceedings of the European Design Automation Conference, Sep 1995.

[7] IEEE Std 1164-1993, IEEE Standard Multivalued Logic System for VHDL Model
Interoperability (Std_logic_11 64).

[8] Dadda, L., & V. Piuri, ‘Pipelined Adders.” [EEE Transactions on Computers, Vol. 45,
No. 3, 1996.

[9] Joyce, I, & J. Van Tassel, ‘Fully Generic Descriptions of Hardware in VHDL.
Computer Hardware Description Languages and their Applications, Elsevier Science
Publishers, 1991.

42

