A Modelling Methodology that Promotes the Rapid Prototyping of
Real-Time Image Processing Systems

D. J. Gibson, M. K. Teal,
D. Ait-Boudaoud & M. Winchester*
School of Design, Engineering & Computing, Department of Electronics,
Bournemouth University,
Fern Barrow, Poole, Dorset. UK

e-mail: gibsond@bournemouth.ac.uk
*British Aerospace Dynamic Division, Stevenage, Hertfordshire. UK

- Abstract

The foremost objective of system designers is developing hardware with the correct functionality in
the shortest possible time. Therefore, they are keen to exploit any methodology that will help reduce
development times, increase reuse and make ‘right first time’ design an achievable target. This paper
proposes a method that promotes the rapid prototyping of custom hardware for the implementation of
real-time image processing systems. The systems are partitioned into component blocks and then
prototyped using a library of generic models. Each component has a standard I/O interface and has
been simulated and synthesised to a technology independent level. Systems can be quickly and easily
constructed using this library and a model-oriented flow. The technique permits the functionality and
performance of the proposed system to be quickly assessed and verified throughout its design cycle.
Following simulation the hardware realisation can be considered by synthesising to a technology
independent level. This will produce a generic architecture for the system that may then be targeted to
a specific technology. Such an integrated approach reduces design times and smoothes the
development process. This novel philosophy is demonstrated through the development of an image
convolver implementing two low-pass filters.

1. Introduction

Although the principle of rapidly prototyping digital signal processing (DSP) systems using
libraries of standard components has been established for a number of years [1], this practice
has never been fully exploited for image processing systems. A number of reasons are
attributed to this. Firstly, standard structures for many DSP functions are well established, for
example, FIR filters. These structures can be easily translated into hardware realisations.
Secondly, image processing uses many of the same principles as DSP, but due to the two-
dimensional nature of image data the realisation will be far more complex. Thirdly, the real-
time requirement and computational rates needed for a hardware implementation of these
systems is not easily achieved. In recent years a new trend has been the use of
reconfigurable architectures for prototyping systems [2], [3]. These permit the
implementation of image processing models on a real-time platform. When the models have
been verified they can be retargeted to the desired technology. The major disadvantage of
these techniques is that the hardware models have been targeted to the prototyping
technology, generally FPGA’s. Therefore, the remapping process is extremely difficult and
prone to errors. All of these reasons have lead to little work being carried out on the
standardisation of image processing systems and their development. Any work that has been
undertaken has been specific to its realisation and has tended to rely on DSP development
tools [4]. This paper demonstrates an integrated methodology based upon a model-oriented
flow technique with a generic library of high-level component models. The high-level
design is performed using pre-defined components therefore allowing early characterisation
of the hardware.

85

2. Rapid prototyping design methodology
The design flow adopted during our research has been a library-based scheme that is
represented schematically in Figure 2-1.

Figure 2-1 Schematic diagram representing the library based VADL design
philosophy

The high and intermediate levels of design are based around a pre-defined VHDL
component library. This library contains models of basic arithmetic components such as
adders and multipliers, as well as components that are specifically required for image
processing systems. These include edge counters, thresholds and pipelines. This library of
components allows the system engineers to develop the required algorithms from their
specifications. This is achieved by creating an abstract ‘virtual prototype’ of the system
purely from the components contained in the library [5]. As far as the system designers are
concerned each of the components can be considered as a functional ‘black box’. In this way
the system engineers can design and verify the relevant algorithms.

When the design is passed to the hardware developers, the changeover will be a much
smoother process as both sets of engineers are using the same modelling medium. In
addition, the required algorithms and hence the design has already been partitioned into
functional blocks. Therefore, all the hardware engineers have to do is take each component
and specify the architectural realisation [5]. For example, the system engineer may have
specified an addition, the hardware engineer will need to determine the architectural
implementation, i.e. ripple carry, carry look-ahead, carry save etc.

As each component model is modified to account for its hardware realisation, its
performance can be verified by integrating the modified component back into the system
model and re-simulating. This integrated testing strategy allows components to be tested
immediately [6]. For example, if the architecture of an adder is synthesised to a generic gate-
level its functionality can be immediately verified by re-integrating the model into the RT
system model.

86

. The aim of this methodology is to produce earlier characterisation of the problem whilst

: still maintaining a high degree of flexibility. Thus, the development sphere should be able to

' accept design entry at any level of abstraction and cater for either ‘top-down’ or ‘bottom-up’
design flows. The use of a pre-designed library of components permits the rapid creation of
the virtual prototype. This can then be used for exploration of the problem domain, speeding
up the characterisation of the design. The achievable reduction in ‘time to market’ resulting
from the use of VHDL has been identified and publicised by the RASSP program [7]. It has
shown that VHDL can reduce design time by a half when designing these systems. The use
of VHDL in the typical design cycle of a signal processing system can be seen as a scarf joint
between modelling mediums. This is sown as a solid line in Figure 2-2, which represents the
use of modelling mediums in the design of digital hardware.

100
90
80
70
60

50 mmememe T'ypical

40

Improvement

30
20
10

Use of modelling mediums (percentage)

5
- -~ ™~ (32} o« < < © © ~ ~

Time (normalised)

Figure 2-2 Graphical representation of the modelling mediums used in the
design of digital hardware

As can be seen at the projects conception VHDL is not used, however throughout the
design cycle its use increases in the manner represented until at the completion VHDL is the
only medium used. The adoption of this rapid prototyping methodology in conjunction with
a component library increases the gradient of this scarf joint. This will result in quicker
design times that will reduce the ‘time to market’ of signal processing hardware. This
intended improvement is shown as a dashed scarf joint in Figure 2-2.

3. Two dimensional convolution

One of the most widely used techniques for the low-level manipulation of images is two
dimensional convolution. This is a moving neighbourhood, filtering operation that is used to
enhance desired features within images. Image convolution may be expressed
mathematically as Equation 3-1.

L-1 -1
H (11,:2)Y*I(ml,m2) = Q(jl,j2) = z Z H(nl,n2). I(jl-nl,j2-n2)
ni=0 n2=290
Equation 3-1

Where: T(#1,12) is a filter template of size (LxL), I(m1,m2) is the input image of (NxN) and
Q(1,72) is the output image with size (MxM). Note, this representation assumes that the input

87

and output images and the template are square. However, the formula may be easily
modified if this is not the case.

The filter template is an array of coefficients. This template is moved over the image in
steps of one pixel, at each new position an image window is created the same size as the
template. Each filter coefficient is then multiplied with the grey scale value of the
corresponding image pixel. The results of these multiplications are then summed to give a
single value. This value is taken to be the grey scale of the corresponding pixel within the
new image. As this operation is repeated over the whole image a resulting image is created.
The result from the convolution operation is only valid when the filter mask is fully on the
input image. That is, if the mask overhangs the image the result is not valid. Therefore, the
resulting image from the convolution is smaller than the original. However, for the designers
of image processing systems it is desirable to have input and output images of the same size.
One of the most popular methods for eliminating this problem is called centred, zero
boundary superposition [8]. This technique calculates the convolution when the filter mask
is fully over the image and any other pixels are zeroed. Thus, the size of the images remains
constant. This is shown as a diagram in Figure 3-1 and is expressed mathematically in

Equation 3-2.

L-1 L-1
H(1,t2)*I(ml,m2) = Q(jl, j2) = Z Z H(nl,n2).I(jl-nl1-Le,j2-n2-Lc)
nt=0 n2=90
Equation 3-2
Where:
L-1
L=
2

Equation 3-3

t—>»
ZviZalz3) ze| 25

Zs{ Z1} Z8 | Z9 | Zio
Filter Template (LxL)

wlZn|Zi2{ Z13| Zes| Z1s Tt}
l Ziej Zir{ Zig| Z19 | Z20
221{Zo2f Za3 i Z2e| Z2s
—
L-1
Le="1—
2
TE e
The values of all
pixel outside the
active region will
be zero
H Active region of
input image where
/ semplate docs not
! over-hang
m
Input kmage (NxN)

Koume)

Figure 3-1 Schematic showing the relationship between the input image and the
filter mask

88

The characteristics of the resulting image is dependent on the template’s coefficient
values. The values of these coefficients is derived from the impulse response of the filter,
this is often referred to as the filter’s operator. Thus, convolution can produce a wide variety
different outputs depending on the operator used. Many filter operators are already well
defined and can be used to produce some of the most fundamental image processing
operations. These include edge detection, high and low pass filtering. For example, a simple
low pass filter may have the filter operator H(z1,£2) as shown Equation 3-4.

1 1 1
H(tn,tz)=Al 11
1 1 1

Equation 3-4

Note that the filter operator normally consists of two parts, an array of coefficients and a
normalisation factor. These two separate parts may then be substituted into the centred, zero
boundary superposition formula, Equation 3-2. This will produce a general form as shown in
Equation 3-5.

-1 L-1
H(t,t2) * I(m,m2) = Q(J, j2) = L > D T(m,n2).I(ji—n— Le,j2 —n2— Le)
ni=0 n2=0

Equation 3-5
Where T(n1,n2) is the template of filter coefficients and 1}, is the normalisation factor.

4. Generic model for image convolution

Using the general form of the centred, zero boundary superposition formula (Equation 3-5)
derived in Section 3 it is possible to construct a standard model template of the required
hardware structure. Before the component models can be created it is necessary to establish
which algorithmic parameters should be quantified using generics. The easiest to spot are the
image size and mask size. Both of these can be changed and doing so will drastically affect
the systems hardware. Not so easy to spot is the range of grey scales within the image, this
determines the data width of the arithmetic hardware. Finally, the range of the operators’
coefficients will also affect the hardware architecture. Thus, a model of a two dimensional
image convolver can now be constructed in terms of these parameters. Therefore, this model
may be used for any square image size, any odd sized square mask (that is, 3, 5, 7, 9, etc.),
any power of grey scale range (that is, 1, 2, 4, 8, 16, 32, etc.) and any filter operator that is
made up of positive, power of two numbers. With the generic parameters established it is
now possible to decompose the algorithm into its constituent parts. A block diagram of the
convolvers’ components is shown in Figure 4-1.

i 1
H Filter i
i *
i Coeffidents Counter i
i |
! i
i i
i i
' .
Daa e Coefficient . Scaling t Data
pu—y> Pipcline Multipliers x Divisin [BEZ® % Ouput
1
1
i
i
i

Figure 4-1 Block diagram of the top-level image convolver model

89

5. Modelling image convolvers

Each of the component models constructed have been given an asynchronous reset and a
clock input. Therefore, a top-level model of the image convolver can constructed using the
component models created and the hardware template. A block diagram of the top-level
image convolver model is shown in Figure 5-1. This model of the image convolver has been
built by instantiating all the required components. Each of the components was given a
generic map that supplied the individual entities with the current algorithmic values for the
convolution system.

Counter

Syne;

Out!

Reset

Clock
Ck
Reset
Reset
Zero
v
Data Pipeline Coellicient Summation Scaling Zero
Input multiplier division Edge
y.d 2. yd
-ﬁ—. In Qut e In Out-#p In Out 7% In Out e In zero
Cik Resct Clk Reset Clk Reset Cik Reset Cik
7'y Y ! 2 x [} 3
Clock
Reset r r r (

Figure 5-1 Block diagram of the top-level image convolver model

Sync
output

Data
output

Using the convolver model it now possible to perform functional simulation for the desired

parameters.

accessed with the following parameters:

Image size = 128x128 pixels
Mask size = 3x3

Grey scales = 256 levels
Coefficientrange=1to 4
Scaling division = 16

1
Convolution mask= | 2
1

[S I N \S
p— N e

For example, the convolver’s performance and hardware structure were

The results from the functional simulation of the convolver with these parameters are shown
in Figure 5-2.

Figure 5-2 Simulation results obtained from a model of a convolution low pass

filter

90

(
£

Using exactly the same model it is possible to verify the functionality of a different
algorithmic implementation of a low pass filter. This is demonstrated below as the convolver
model has had its generic parameters modified so that the performance of following system
could be established.

Image size = 512x512 pixels
Mask size = 3x3

Grey scales = 256 levels
Coefficient range =0 to 1
Scaling division = 8

—_ O
T S W S

1
Convolution mask = | 1
| 1

The results from the functional simulation of this convolver with these new parameters
are shown in Figure 5-3.

Figure 5-3 Simulation results obtained from the second low pass model

These changes were implemented quickly and easily by simply modifying the relevant
generic values in the top-level model and changing the mask constant in the filter function.
Once these changes had been made the convolver was re-simulated. The simulation of the
model allows the convolvers performance to be compared with the pervious algorithm, for a
similar input image. Thus, it is instantly possible to assess if the algorithmic changes have
had the desired effect on the convolver’s performance.

6. Conclusions

With the component library and the convolver template in place it is possible to design
and simulate image convolvers very quickly. From the specifications of the system the
generic parameters for each component can be established and entered into the convolvers
top-level template. Functional testing at this level can be performed directly upon the
convolver model with real input image sequences. Simulation at this level is only to
establish the performance of the chosen algorithms against real images as all the components
have been previously tested. With a satisfactory variation of the algorithm chosen, hardware

91

implementation details can be modified or added to the component models. For example, an
FPGA implementation of the convolver will require modification to the arithmetic
components and an external realisation of the pipeline. This architectural targeting is
dependent on the chosen algorithms and the target application of the system. However, using
the component based design environment the design flow is greatly eased. It allows the
individual testing of new component architectures with previously verified system models,
thus, highlighting architectural problems earlier in the design and therefore speeding up the
development.

Although the high-level designer considers the component models purely as functional
‘black boxes’, each is actually an abstraction of a hardware module. Therefore, without a
conscious effort the systems engineer will be considering the high-level design in terms of
hardware. In addition, the hand-over of the design between system developers and hardware
engineers will be much smoother as both design teams will be using the same modelling
medium. This promotes closer liaison and communication between the teams making it
easier to iron out errors and problems. Moreover, this methodology will encourage early
characterisation of the design and allow rapid exploration of the problem domain. This in
turn will speed up the integration of VHDL into the design flow and therefore reduce the
‘time to market’ of products developed in this way.

References

[1] Salvela, V., P. Jarvinen, A. Nummela, J. Keskinen & J. Nurmi, ‘Utilization of a VHDL-
based ASIC-Realizable Filter Architecture Library in DSP System Design.’
Proceedings of the International User’s Forum, VI UF-Fall’94: Component Modelling,
1994. a

[2] Athanas, P., & A. Lynn Abbott, ‘Real-Time Image Processing on a Custom Computing
Platform.” J[EEE Computer Journal, Vol. 28, No. 2, February 1995.

[3] Quenot, G., C. Coutelle, J. Serot & B. Zavidovique, ‘Implementing Image Processing
Applications an a Real-Time Architecture.’ Proceedings of the Computer Architectures
for Machine Perception, 1993.

[4] Shewring, I. W., M. A. Wahab ‘An Integrated Approach to the Design and
Implementation of Image Filters.” Proceedings IEE 15th SARAGA Colloguium on
Digital and Analogue Filters and Filtering Systems, 1995.

[5] Vahey, M., D. Bushman, S. DaBell, T. Ennis & P. Kalutkiewicz, ‘A Virtual Prototype
VHDL Development Methodology.” Proceeding of the VIUF Conference, VHDL:
Champions of the Second Generation. Spring 1995.

[6] Schwoerer, L., M. Liick & H. Schroder, ‘Integraﬁon of VHDL into a System Design
Enviroment.” Proceedings of the European Design Automation Conference, Sep 1995.

[7]1 Hein, C., ‘Exploiting VHDL design in RASSP. Proceeding of the VIUF Conference

[8] Pratt, W., Digital Image Processing. New York: John Wiley & Sons, 1991.

92

