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21 Irrigation and phytolith formation:
an experimental study

Emma Jenkins, Khalil Jamjoum and Sameeh Al Nuimat

ABSTRACT

It has been proposed that phytoliths from archaeological

sites can be indicators of water availability and hence

inform about past agricultural practices (Rosen and

Weiner, 1994; Madella et al., 2009). Rosen and Weiner

(1994) found that the number of conjoined phytoliths

fromcereal husks increasedwith irrigationwhileMadella

et al. (2009) demonstrated that the ratio of long-celled

phytoliths to short-celled phytoliths increased with

irrigation. In order to further explore these hypotheses,

wheat and barley were experimentally grown from 2005

to 2008 in three different crop growing stations in Jordan.

Four different irrigation regimes were initially employed:

0% (rainfall only), 80%, 100% and 120% of the optimum

crop water requirements, with a 40% plot being added in

the second and third growing seasons. Each plot

measured 5 m � 5 m and a drip irrigation system was

used. Environmental variables were measured on a daily

basis, and soil and water samples were taken and

analysed at the University of Reading. Phytoliths from

the husks of these experimentally grown plants were

extracted using the dry ashing method. Results

demonstrate that although the number of conjoined cells

increases with irrigation, there were considerable inter-

site and inter-year differences suggesting that

environmental variables other than water availability

affect phytolith uptake and deposition. Furthermore,

analytical experiments demonstrated that conjoined

phytoliths are subject to change or breakage by external

factors, making thismethodology problematic to apply to

archaeological phytolith assemblages that have an

unknown taphonomic history. The ratio of long cells

to short cells also responded to increased irrigation,

and these forms are not subject to break up as are

conjoined forms. Our results from the modern samples

of durum wheat and six-row barley show that if an

assemblage of single-celled phytoliths consists of over

60% dendritic long cells then this strongly suggests that

the crop received optimum levels of water. Further

research is needed to determine if this finding is

consistent in phytolith samples from the leaves and

stems, as suggested byMadella et al. (2009), and in other

species of cereals. If this is the case then phytoliths are a

valuble tool for assessing the level of past water

availability and, potentially, past irrigation.

21 .1 INTRODUCTION

21.1.1 Archaeology, irrigation and phytoliths

The development of water management systems in southwest

Asia has long been recognised as important for understanding

socio-economic change. AlthoughWittfogel’s ‘hydraulic hypoth-

esis’ (Wittfogel, 1957) of irrigation management as the prime

mover for the emergence of early states may no longer be tenable,

the management requirements of irrigation systems and the poten-

tial increase in surplus that can arise from their use remain key

issues for understanding the emergence of social complexity

(Scarborough, 2003). Direct archaeological evidence for water

management in Jordan takes numerous forms, including wells,

cisterns, field systems and irrigation ditches (Chapter 14, this

volume; Oleson, 2001). Such evidence is often substantial for

proto-historic and historic periods, such as the sophisticatedNaba-

taean modifications to the siq at Petra (Bellwald and al-Huneidi,

2003) or the Roman/Byzantine reservoir, aqueduct and field

system in Wadi Faynan (Barker, 2000). Structural evidence for

water management is both more elusive and more difficult to

interpret for the prehistoric periods, when it is likely that water

management, including the irrigation of cereals, began.

The earliest known structural evidence in the Water, Life and

Civilisation study region has been summarised in Chapter 14 of

Water, Life and Civilisation: Climate, Environment and Society in the Jordan Valley, ed. StevenMithen and Emily Black. Published by Cambridge University Press.

# Steven Mithen and Emily Black 2011.
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this volume: the PPNB wadi barriers and cistern in the Jafr Basin;

the Pottery Neolithicwell at Sha’ar Hagolan, Israel (Garfinkel et al.,

2006); and the set of small terrace walls at the Neolithic site of

Dhra’, Jordan, which have been interpreted as functioning to mini-

mise soil erosion, controlling water runoff during wet periods of the

year, and as field systems for growing wild and domesticated plants.

Whether or not the Dhra’ walls functioned to provide additional

water to crops remains unclear. Indeed, such uncertainty often

exists even when a complex water management system is evident.

At the Early BronzeAge site of Jawa, for instance, there appears to

have been a system of channels, dams and pools to collect and

store winter flood water from the adjacent Wadi Rajil (Helms,

1981; Helms, 1989). Hydrological models have been developed to

estimate the size of the animal and human populations that could

be sustained by such water storage (Whitehead et al., 2008). But

the estimates are highly dependent upon whether the stored water

had also been used to irrigate surrounding fields for the growth of

cereals, for which there is no direct evidence.

At other archaeological sites there may be circumstantial evi-

dence for agricultural intensification requiring irrigation, but a

complete absence of any structural evidence for water manage-

ment. At the Chalcolithic site of Ghassul, for instance, Bourke

(2001, p. 119) proposes that there had been ‘elite-regulated exploit-

ation of flood-water irrigation systems’, but has no evidence for

ditches, walls or dams. Such structures may not have been neces-

sary or simply insufficiently substantial to have survived in the

archaeological record. Indeed, in some cases effective water man-

agement requires no more than minor and ephemeral adjustments

to water courses, as we have observed among the Bedouin inWadi

Faynan (Figure 15.2, this volume). They use small walls of pebbles

and mud to divert seasonal streams and create substantial pools of

water; these are constructed in a few minutes, frequently modified

and then simply washed away leaving no archaeological trace. Far

more substantial evidence may have been destroyed: Philip (2001)

notes that the down-cutting of wadis and the deposition of collu-

vium in the Jordan Valley may have removed or buried structural

evidence forwatermanagement of the Early BronzeAge, forwhich

there is only direct evidence from Tall Handaquq (Mabry, 1989)

and Jawa (Helms, 1981, 1989).

As the structural evidence for water management is difficult to

interpret and may simply not exist, it would be of considerable

value to have a methodology for the inference of crop irrigation

directly from archaeobotanical remains. Helback (1960) pro-

posed that the size of charred flax seeds could be used to this

end, while Mabry et al. (1996) suggested that the size of wheat

grains from Tall Handaquq implied irrigation agriculture. Such

arguments are problematic because of the impact that charring

itself may have on the size of seed grains, and the numerous other

factors that may also influence grain size. Studies by Jones et al.

(1995) and Charles et al. (2003) demonstrated that when modern-

day fields and crops are available for study, their weed floras can

be indicators of past water availability. Unfortunately, suffi-

ciently well-preserved assemblages of charred plant remains

from prehistoric sites for such studies are rarely recovered from

the archaeological record.

Carbon isotope analysis is another method which has been

proposed for identifying irrigation in arid regions (Araus et al.,

1997, 1999). Studies of carbon isotopes from cereal grains and

rachises have demonstrated that ratios change as a result of

increasedwater availability. However, there are problems in apply-

ing this method to archaeological remains. Firstly, as with the

method proposed by Jones et al. (1995) and Charles et al. (2003)

it is often impossible to recover a large enough sample from an

archaeological site to use this method. Secondly, there are

unknown environmental variables that could have affected the

carbon isotope signature such as climate and soil chemistry.

Thirdly, the impacts of charring and diagenesis on carbon isotope

ratios are poorly understood (Tieszen, 1991; Heaton, 1999; Codron

et al., 2005). Finally, a highly specialised laboratory is needed in

order to conduct analysis. However, despite these problems this

method has potential for identifying past water availability, and

research into the effect of irrigation and taphonomy on carbon

isotope ratio in cereal grains is being conducted as part of the

Water, Life and Civilisation project (Chapter 22, this volume).

Another proposed method for identifying irrigation is phyto-

lith analysis. Rosen and Weiner (1994) found that the number

of conjoined phytoliths from cereal husks increased with irriga-

tion while Madella et al. (2009) demonstrated that the ratio of

long-celled phytoliths to short-celled phytoliths increased with

irrigation. If phytoliths could be used to identify ancient irriga-

tion, this would be a very valuable tool for archaeologists;

phytoliths are often abundant on archaeological sites, samples

are easy to take and processing is straightforward and relatively

inexpensive compared with the hours of flotation time needed to

recover macroscopic remains or the cost involved in setting up a

stable isotope laboratory.

In order to further explore the hypothesis that phytoliths can be

indictators of water availability, wheat and barley were experi-

mentally grown from 2005 to 2008 in three different crop grow-

ing stations in Jordan under different irrigation regimes. The

phytoliths from the husks of these plants were then extracted

for analysis. This chapter outlines the methodology used in the

experiment and discusses the results in light of their implications

for the use of phytoliths as indicators of past water availability.

21.1.2 Phytoliths and their formation

Phytoliths are composed of opaline silica which is taken up as

monosilicic acid by plants through their roots into the vascular

system during transpiration and deposited in a solid state as

silicon dioxide in inter- and intra-cellular spaces. The reasons

that plants produce phytoliths are only partially understood. One
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reason appears to be protection from disease (Williams and Vla-

mis, 1957; Yoshida et al., 1959), herbivory, pathogenic fungi and

insect attack (Takijima et al., 1949; Djamin and Pathak, 1967;

Heath, 1979). Phytoliths also protect plants from the harmful

impacts of trace elements such as aluminium and manganese

(Jones and Handreck, 1967; Horiguchi, 1988; Hodson and Evans,

1995; Hodson and Sangster, 1999). It has also been demonstrated

that phytoliths slow down the rate of transpiration in cuticular and

epidermal cells (Mitsui and Takatoh, 1959; Yoshida et al., 1959;

Okuda and Takahashi, 1965; Raeside, 1970), inhibit the plant’s

uptake and translocation of sodium in saline conditions (Ahmad

et al., 1992; Liang et al., 1996) and increase the oxidising power of

roots (Okuda and Takahashi, 1965). Phytoliths also increase the

strength and yield capabilities of plants and even the fertility of

pollen in certain species (Mitsui and Takatoh, 1959; Yoshida

et al., 1959; Vlamis and Williams, 1967; Raeside, 1970; Miyake

and Takahashi, 1983, 1986; Ahmad et al., 1992). In Japan, silica

from slag has been used as a form of fertiliser for rice plants since

the 1950s because it increases dry matter production and grain

yield (Agarie et al., 1996).

Two modes – passive and active – of silicon uptake in plants

have been proposed, while some species have also been identified

as silicon rejectors (Richmond and Sussman, 2003). Jones and

Handreck (1965) were able to predict the weight percent of phy-

toliths to original plant matter processed (phytolith weight % ¼
weight of phytoliths/weight of plant matter processed � 100) if

they knew the concentration of silicon in the soil solution and the

amount of water transpired, suggesting that the uptake of silicon

was passive (Jones and Handreck, 1965). Okuda and Takahashi

(1965) demonstrated that silicon uptake can occur against a con-

centration gradient in rice, suggesting that uptake can also be

active. Barber and Shone (1966) argued that while passive uptake

explained the entry of silicon into the roots of barley it did not

adequately explain its uptake into the transpiration stream (Barber

and Shone, 1966). It has also been suggested that some plants

such as tomato and faba bean are silicon excluders or rejecters

and actively prohibit the uptake of silicon (Liang et al., 2006).

Generally the evidence for silicon uptake in grasses and sedges

now suggests that both passive and active components coexist in

many species (Jarvis, 1987; Walker and Lance, 1991; Mayland

et al., 1993; Ernst et al., 1995; Liang et al., 2006) but, unlike

diatoms, a suite of genes responsible for the transportation of

silicon has not yet been identified in plants (Richmond and Suss-

man, 2003).

Phytolith research is a relatively new topic within archae-

ology, the potential of which is still being explored (see

Chapter 23, this volume). One role that they may play is as a

proxy for past water availability and possible irrigation (Rosen

and Weiner, 1994; Rosen, 1999). This is because silicon uptake

and hence deposition is influenced by the rate of transpiration,

which in turn is dependent on water availability. Richardson

found a correlation between water transpired by barley grown

in controlled greenhouse conditions and the silicon content of the

plant (Richardson’s results reported in Hutton and Norrish, 1974,

p. 204). Jones and co-workers (Jones and Milne, 1963; Jones

et al., 1963; Jones and Handreck, 1965) demonstrated that water

transpiration affected silicon uptake in oats, while Hutton and

Norrish (1974) showed that the amount of silica found in the

husks of wheat was proportional to water transpired.

Additional variables also affect silicon uptake and deposition.

One important factor is the amount of silicon available to the

plant in the growing medium (Parry and Smithson, 1958, 1964,

1966; Yoshida et al., 1959; Blackman, 1968a, 1968b; Blackman

and Parry, 1969). This can come from two different sources, the

soil and the water. Rain water contains little silicon, with silicon

accretion and input from rain water being �1 kg ha–1 yr–1

(Alexandre et al., 1997). The level of silicon in the water used

for irrigation can vary according to the source of water used; if a

form of rainwater harvesting is employed, then the water will

contain little silicon, whereas if the water comes from a wadi or

river, the silicon level is likely to be higher (Imaizumi and

Yoshida, 1958; Meybeck, 1987; Bluth and Kump, 1994; White

and Blum, 1995). The amount of silicon in the soil varies

according to geology and land use (Alexandre et al., 1997). If

land is under cultivation, silicon levels in soils can be reduced by

plant uptake. If plants remain in situ, silicon will eventually be

released back into the soil through phytolith dissolution. How-

ever, if plants are harvested, and thus removed from the growing

site, then silicon levels will be reduced. The level to which this

occurs is partly dependent on plant species: monocots produce

between 14 and 20 times as much weight percent of phytolith as

dicots, thus leaving less silicon available in the growing medium

(Albert et al., 2003).

Another variable which affects the uptake and deposition of

silicon is the transpiration rate. This is climatically dependent,

being much faster in arid and semi-arid regions than in temperate

and humid climes (Jones and Handreck, 1965; Barber and Shone,

1966; Raeside, 1970; Hutton and Norrish, 1974; Rosen and

Weiner, 1994; Webb and Longstaffe, 2002). It has been sug-

gested, however, that one of the roles of silicon in plants is to

slow down transpiration rates: in both rice and (to a lesser extent)

barley, the transpiration rate is faster in silicon-deprived plants

than in the non-silicon-deprived control samples (Yoshida et al.,

1959; Okuda and Takahashi, 1965). Lewin and Reimann (1969)

suggest this increased transpiration rate in silicon-deficient plants

could be due to a lack of silica gel associated with the cellulose in

the cell walls of epidermal cells which helps reduce water loss

(Lewin and Reimann, 1969).

Soil texture and chemistry also affect phytolith production.

For example, a clay-rich soil will retain more water than other

soil types, while aluminium oxides, iron oxides and alkaline soils

are adsorbers of silicon, making less available to the plant

IRRIGATION AND PHYTOLITH FORMATION 349



Comp. by: ISAAC PANDIAN Stage: Revises1 Chapter No.: 21 Title Name: Mithen&Black
Page Number: 0 Date:28/1/11 Time:05:17:49

(Okamoto et al., 1957; Parry and Smithson, 1958, 1964, 1966;

McKeague and Cline, 1963). When nitrogen is added to soil, the

percentage of silicon in wheat decreases (Hutton and Norrish,

1974), while sodium fluoride inhibits silicon uptake in rice (Mitsui

and Takatoh, 1959; Okuda and Takahashi, 1965). Other variables

that affect silicon uptake are species (Parry and Smithson, 1958,

1964, 1966; for a review of silicon uptake in different species see

Lewin and Reimann, 1969, p. 294) and plant age (Sangster, 1970;

Bartoli and Souchier, 1978; Perry et al., 1984).

21.1.3 Phytoliths as a proxy for water availability

Rosen and Weiner (1994) explored the possibility of using phy-

toliths as a proxy for past irrigation by analysing dry-farmed and

irrigated samples of emmer wheat (Triticum turgidum subsp.

dicoccum) and bread wheat (T. aestivum). They hypothesised

that the increased level of transpiration in arid and semi-arid

regions would affect silicon uptake and deposition to such an

extent that it would be discernible in the archaeological record.

They set up a field experiment at the Gilat Agricultural Research

Station, Israel, where emmer wheat was planted in two plots, one

irrigated, the other non-irrigated, each measuring approximately

3 m � 1 m. The topography was flat and the growing medium

was a light loessial soil. Rainfall for the growing season was

224mm and the irrigated plot received an additional 200 mm of

water. In addition, samples of bread wheat (T. aestivum) were

collected from irrigated and dry-farmed fields in Gilat and north-

ern and central Israel as well as from dry-farmed fields in Ger-

many and eastern Washington State, USA. A limited number of

wild (Hordeum vulgare subsp. spontaneum) and domestic

(H. vulgare subsp. vulgare) barley samples were also collected.

Phytoliths were isolated from the samples using acid extraction

following the methodology of Piperno (1988) (Rosen and

Weiner, 1994, p. 127).

The results showed that the samples grown under irrigation

not only had a greater yield of phytoliths but also a greater

number of conjoined cells. The percentage of phytoliths with

10 or more conjoined cells was only 2.1% for the non-irrigated

plants but 13% in the irrigated plants (Rosen and Weiner, 1994).

A similar pattern was evident from bread wheat, with the yield

from irrigated wheat collected from Germany and the USA

consisting almost entirely of single-celled phytoliths, whereas

the irrigated Israeli-grown wheat contained a greater number of

conjoined forms. Owing to the limited number of barley samples

counted, it was not possible to obtain a statistically viable result,

but preliminary findings suggested that barley may respond to

irrigation in a similar way, with irrigated barley having a greater

number of conjoined cells than the dry-farmed barley (Rosen and

Weiner, 1994). Rosen and Weiner (1994) propose that when

dealing with archaeological samples from arid and semi-arid

regions, the presence of at least 10% of phytoliths with 10 or

more conjoined cells, or any phytoliths with 100 or more con-

joined cells, provides an indication of past irrigation. This was

used to infer that irrigation had been used for growing emmer

wheat at two Chalcolithic sites in the northern Negev: Gilat and

Shiqmim (Rosen and Weiner, 1994).

Although the work of Rosen and Weiner was pioneering,

experimentation was on a small scale in order to establish

whether the methodology had potential. As such, many variables

such as soil chemistry and climate were not accounted for. In

addition, only two irrigation regimes were employed, irrigated

and non-irrigated, and as such they were not able to determine

whether the size and number of conjoined phytoliths increases

linearly with irrigation or whether there is an exponential rela-

tionship between conjoined phytoliths and water availability.

Webb and Longstaffe (2002) reported that the weight

percent of phytoliths in Prairie grass (Calamovilfa longifolia)

was higher in plants grown in arid conditions than those grown

in regions with a high relative humidity (Webb and Longstaffe,

2002; Madella et al., 2009). A recent study by Madella et al.

(2009) also explored the possibility of using phytoliths as indic-

tors of past water availability. Their study involved five

different cereals: bread wheat (Triticum aestivum), emmer wheat

(T. dicoccum), spelt wheat (T. spelta), two-row barley (Hordeum

vulgare) and six-row barley (H. distichon). These were grown

under two different climatic regimes: Middle East climatic con-

ditions, which were simulated using a growing chamber, and

a North European climatic condition, i.e. open fields in

Cambridge, UK. The plants in the Middle Eastern climatic con-

ditions were grown under two different irrigation regimes: wet

and dry. The wet regime involved keeping the pots at water-

holding capacity, with water being administered on a daily basis,

and the dry regime was irrigated to 50% of the water-holding

capacity.

Madella et al. (2009) classified phytoliths according to their

method of silicification as either fixed forms or sensitive forms.

Fixed forms were defined as cells whose silicification is under

genetic control (presumably equivalent to the passive silicon

uptake described above) and would therefore be less influenced

by water availability; these comprise all short cells e.g. dumb-

bell/bilobate, rondel, trapezoid, crenate trapezoids, cross, keeled,

conical etc. (Madella et al., 2009, p. 35). The sensitive forms are

phytoliths formed in cells whose silicification is assumed to be

under environmental control (or active silicon uptake) and which

would, therefore, be indicative of past water and other climatic

variables; these consist of all grass long cells. Phytoliths from the

leaves of all plants were analysed, while phytoliths from the

stems were analysed for emmer and spelt wheat. Madella et al.

also used X-ray micro-chemical analysis on bread wheat to

measure the elemental concentration of silicon and oxygen in

the silica to help gain an understanding of water availability
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versus evapo-transpiration by detecting differences in the ratios

of oxygen and silicon in the plant (Madella et al., 2009).

Madella et al. (2009) compared the ratios of fixed to sensitive

forms from both the dry and wet regimes grown under Middle

Eastern climatic conditions. In the leaves, they found an increase

in the number of sensitive forms relative to fixed forms under the

wet regime for bread wheat, emmer wheat and two-row barley,

while an overlap was seen in the values between fixed and

sensitive forms in spelt wheat and six-row barley. The analysis

of phytoliths from plant stems showed that the mean for sensitive

forms from the dry regime was higher than for the wet regime,

although the error bars indicate that there was considerable

overlap in the values between the two regimes. Results from

the X-ray micro-analysis of phytoliths from bread wheat found

that the level of oxygen was higher in the wet grown samples

than in the dry regime samples (Madella et al., 2009).

While these results are valuable for the potential use of phy-

toliths as indicators of past water availability, they are not with-

out their limitations.

The first concern is that the plants grown under the Middle

Eastern climatic regime were cultivated in pots in a greenhouse

rather than in open fields and thus natural growing conditions

would not have been emulated. These plants would have

received little competition for water and nutrients from other

plants because of the restricted growing area and would presum-

ably have been weed-free, all of which could affect silicon

uptake. In addition, greenhouses increase humidity levels and,

unless dehumidifiers were used (which is not stated in the paper),

it is probable that the humidity would have been higher than

natural for a Middle Eastern arid environment, affecting transpir-

ation rates. A second issue is that the amount of water given to

the plants, and how this relates to their known crop water

requirements, is not stated and so it is unclear how these irriga-

tion systems relate to plant water requirements. For example,

what percentage of the crop water requirements is represented by

the 50% of the pot holding capacity, and would results have

differed if a regime supplying 25% of the pot holding capacity

been included in the experiment? A third concern is that the

soil silicon levels were not measured and so we do not know if

they were higher in the soils used for the pot experiments than

in the open fields.

21 .2 AIMS OF THE EXPERIMENTAL CROP

GROWING STUDY

To explore in more detail the hypothesis that phytoliths can be

indicators of past water availability, crop growing experiments

were established in Jordan as part of the Water, Life and Civil-

isation project in collaboration with the National Centre for

Agricultural Research and Extension (NCARE), Jordan. The

aims of the experiment were threefold: (1) to determine whether

the differences in irrigated and non-irrigated phytoliths observed

by Rosen and Weiner (1994) are apparent in other species of

wheat; (2) to determine if these differences are also observable in

other cereals (barley); and (3) to assess whether variables such as

climate and soil and water chemistry affect silica deposition.

21 .3 MATERIALS AND METHODS

21.3.1 Experimental conditions

Two crops were grown for phytolith analysis, both of which were

native land races: durum wheat (T. durum) (ASCAD 65) and six-

row hulled barley (H. vulgare) (ASCAD 176). These were grown

at three different NCARE crop growing stations: (1) Khirbet as

Samra, which is on the Jordanian Plateau to the northeast of

Amman, (2) Ramtha, which is in the north of Jordan, 5 km from

the Syrian border and (3) Deir ‘Alla, which is in the Jordan

Valley (see Figure 21.1 and Table 21.1). The experiment

involved three growing seasons. Each experimental plot meas-

ured 5 m by 5 m and was surrounded by a soil bund with a 1.5 m

100 km

Deir ‘Alla

Figure 21.1. Map showing location of crop growing sites.
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separation from the adjacent plot. In the first season, four differ-

ent irrigation regimes were employed: (1) no irrigation (0% of

crop water requirements); (2) under-irrigated (80% of crop water

requirements); (3) irrigated (100% of crop water requirements);

and (4) over-irrigated (120% of crop water requirements). In the

second and third seasons an additional under-irrigated plot

was added which was given 40% of crop water requirements.

The calculations for irrigation levels were based on knowledge

of crop water requirements estimated by using Class A – Pan

evaporation readings (Allen et al., 1998). Daily rainfall and

evaporation were taken into account and allowed for when irri-

gation was calculated, with less irrigation water being applied

during periods of higher rainfall and low evaporation. The total

amount of irrigation water applied to each of the experimental

plots is shown in Table 21.2, and total rainfall and evaporation

for all three sites by plant growth over the three growing seasons

is shown in Figure 21.2 (for more information on crop growth

stages see Allen et al., 1998). Water was provided by a drip

irrigation system with a 60 cm spacing between water pipes

and a 40 cm spacing between the drippers on each pipe. Each

irrigation plot had eight lines, with reclaimed wastewater being

used for irrigation. The water used for irrigation was treated

wastewater at Khirbet as Samra and Ramtha and a mixture

of treated wastewater and fresh water at Deir ‘Alla. The water

used was within the Jordanian standards for the irrigation of

restricted crops. Samples of irrigation water from all three crop

growing stations were collected and analysed at the Department

of Soil Science, University of Reading. Table 21.3 provides a list

of the analyses undertaken (see chapter 3 of Carr, 2009, for

methodologies).

Crops were planted in November of each year and harvested

in May. Figure 21.3 shows the harvesting of barley from the

third growing season at Khirbet as Samra. All plots, includ-

ing the non-irrigated ones, were given 25 mm of water after

sowing to encourage germination. No pesticides or fertilisers

were employed and the plots were not weeded. Bird attack

was an ongoing problem at Deir ‘Alla and Ramtha, with some

plots having to be entirely covered with mesh for protection

(Table 21.4), although this was not applied until the plants were

reaching maturity.

A grid system was used to collect the plants. This involved

running a tape measure diagonally across the plot and collecting

the plants along the diagonal transect from six 50 cm intervals:

0–50 cm, 50–100 cm, 100–150 cm, 150–200 cm, 200–250 cm

and 250–300 cm. This was done to avoid edge effect. Plants were

placed inside paper bags after collection. In addition to the plants

taken for phytolith analysis a 1 m � 1 m square was sampled for

Table 21.1 Description of crop growing sites

Khirbet as Samra Ramtha Deir ‘Alla

Location (latitude

and longitude)

N 32� 08.8900 N 32� 340 N 32� 11.4830

E 36�08.7100 E 36� 10 E 035� 37.1670

Altitude (metres) 567 m above sea level 500–600 m

above sea level

�192 m below

sea level

Slope (at soil sampling localities) <3� <3� <3�

Precipitation average (mm year–1) 150 300–350 250

After Carr (2009)

Table 21.2 Amount of applied irrigation (mm per year) by crop,

year and growing site

Irrigation regime Deir ‘Alla Ramtha Khirbet as Samra

Year 1 (2005–6) barley

0% 25.0 25.0 25.0

80% 74.1 101.5 124.2

100% 92.6 126.8 155.2

120% 111.1 152.2 186.3

Year 1 (2005–6) wheat

0% 25.0 25.0 25.0

80% 91.2 150.7 176.0

100% 114.0 188.4 220.1

120% 136.8 226.1 264.1

Year 2 (2006–7) wheat and barley

0% 25.0 25.0 25.0

40% 28.4 41.0 41.3

80% 56.8 82.0 82.5

100% 71.0 102.5 103.2

120% 85.2 123.0 123.8

Year 3 (2007–8) wheat and barley

0% 25.0 25.0 25.0

40% 88.9 60.2 79.2

80% 177.8 120.4 158.4

100% 222.3 150.5 198.1

120% 266.7 180.6 237.7
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yield for each of the irrigation plots which was analysed by the

scientists at the NCARE crop growing stations. The area sampled

for yield was selected at random by throwing a 1 m � 1 m square

into the 5 m � 5 m plot. The only occasions when this procedure

was not observed were when parts of the plot had been eaten by

birds. In these instances the square was placed into an uneaten

area to avoid biasing results.

21.3.2 Soil analysis

Soil samples were taken from each plot at three different depths:

0–5 cm, 5–25 cm and >25 cm, and characterised and analysed at

the Department of Soil Science, University of Reading (Carr,

2009). Table 21.5 provides a list of the analyses undertaken (see

chapters 4 and 5 of Carr, 2009, for methodologies). Soil samples

were also taken after the first and last years of experimentation to

test for plant-available silicon. The extraction was done using

0.025M citric acid (details of this methodology are provided in

Table 21.6). Analysis was conducted using a PE Optima ICP-

OES in the Department of Soil Science, University of Reading.

21.3.3 Phytolith processing and counting

Before the processing of the modern plants began, an experiment

was conducted to compare the impact that analytical methods

have on conjoined phytoliths (Jenkins, 2009). This was under-

taken using the husks from the 100% irrigated wheat from the

first season of crop growing at Khirbet as Samra. Two different

Late barley
+ late wheat

Figure 21.2. Irrigation and evaporation (both in mm) by crop development stage. Crop development stages (given on the x axis) follow the Food

and Agricultural Organisation convention of Initial (Init.), Crop development (Dev.), Mid-Season (Mid.) and Late. Late barley and late wheat

are shown separately, reflecting differences in their development. DA, Deir ‘Alla; KS, Khirbet as Samra; RA, Ramtha.
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processing methods were employed: dry ashing and acid extrac-

tion. The former method involves burning the plant samples in a

muffle furnace to remove organic matter while the latter uses

nitric acid to remove organic matter.

The results demonstrated that dry ashing produces a higher

weight percent of phytoliths to original plant matter and a far

greater number of conjoined cells than the acid extraction

method. This is in agreement with earlier studies, such as those

by Jones and Milne (1963) and Raeside (1970), both of which

reported a greater number of conjoined cells with dry ashing than

acid extraction. Two explanations are proposed for this. The first

is that the oxidation of the organic matter during acid extraction

forces the phytoliths apart and causes a mechanical breakdown of

conjoined forms that does not occur with dry ashing or that acid

extraction destroys the silica gel holding the phytoliths together

(Hayward and Parry, 1980). The second is that dry ashing causes

the silica to dehydrate, as proposed by Jones and Milne (1963),

causing fusion between forms resulting in a stronger structure

(Jenkins, 2009).

The finding that the analytical procedure employed can change

the structure of the phytoliths has implications for analysis of

archaeological assemblages. Frequently phytoliths are recovered

from ashy deposits or hearths and are the product of plants that

have been burnt in the past. It is presumed that such phytoliths

would resemble modern plants that have been dry ashed.

Samples are often taken, however, that do not appear to have

been burnt. These samples could either resemble those that have

been wet ashed based on the premise that dry ashing causes

fusion, or resemble those that have been dry ashed based on

the premise that acid extraction forces phytoliths apart. For the

purpose of this experiment it was decided to process the

modern plants using the dry ashing method. This is because

phytoliths are frequently recovered from ashy deposits and

these can be sampled in isolation for the application of the

proposed methodology; given that it is still unclear why the

morphology of the phytoliths changes with processing, it is

most reliable to compare archaeological samples that are pre-

sumed to have been heated with modern samples that have also

been heated. Until the exact cause of the differences resulting

from processing can be pinpointed, there is limited value in

proceeding with wet ashing and employing this methodology to

unburnt deposits. The methodology employed for extracting

phytoliths from modern plants is provided in Table 21.7. Only

husks were analysed because they have been found to have a

higher silica content than other parts of the plant. Hutton and

Norrish (1974) have suggested that the percentage of silica in

the husks is closely related to the amount of water transpired

in wheat and hence more accurately reflects water availability

during growth.

Slides were counted using a Leica DME at �400. Phytoliths

were counted according to the number of dendritic long cells in

each conjoined form and the following broad counting categories

were used: single cell, 2 to 5, 6 to 10, 11 to 15, 16 to 20, 21 to 30,

31 to 50, 51 to 70, 71 to 100, 101 to 150, 151 to 200, 201 to 250,

251 to 300, 301 or over. Frequently, forms were found that were

not properly silicified. In these forms the cork-silica cells and

papillae were silicified but the dendritic long cells were either

poorly silicified or unsilicified. Examples of well silicified and

poorly silicified forms are shown in Figure 21.4. In these cases

the same counting categories were used as above, but they were

classified as unclear/poorly silicified forms and the number of

dendritics was estimated by counting their outlines between the

silicified cork-silica cells and papillae. In addition, single cork-

silica cells were counted.

Ten slides were counted from the samples from the first

growing season and five from the second and third seasons.

Occasionally it was not possible to count the total target number

of slides, for example when the crop had failed to grow success-

fully or if it had been eaten by birds. Many of the barley samples

contained a large number of fused phytolith forms, even when

the ashing temperature was reduced to 400 �C, making it impos-

sible to count these slides. It is assumed that the phytolith forms

Table 21.4 Record of plots covered with mesh

Year 1 Year 2 Year 3

Deir ‘Alla barley not covered covered not covered

wheat covered covered covered

Ramtha barley covered covered covered

wheat covered covered not covered

Khirbet as

Samra

barley not covered not covered not covered

wheat not covered not covered not covered

Figure 21.3. Harvesting barley at Khirbet as Samra after the third

growing season.
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in these samples were only weakly silicified and were not robust

enough to withstand the ashing process. Over 250 forms

were counted per slide and in total, 90,855 barley phytolith forms

were counted from 245 slides and 104,360 wheat forms from

264 slides.

21 .4 RESULTS

21.4.1 Soil and water

All three growing sites had silty clay loam soils and a pH in

excess of 8.1 with Deir ‘Alla resulting in the highest reading with

8.63, indicating that the soil was alkaline (Table 21.5; see Carr,

2009, for the analyses). The organic carbon and organic matter

levels are low at all sites. Salinity levels and exchangeable

sodium percentage are highest at Deir ‘Alla, probably because

the soil had been irrigated with a mixture of treated wastewater

and fresh water for a year.

Results for extractable silicon are presented in Figure 21.5.

The greatest difference in levels of extractable silicon was

between sites, with Ramtha having the greatest amount of

extractable silicon and Khirbet as Samra the lowest. The levels

of silicon increased throughout experimentation at Ramtha and

Khirbet as Samra but remained the same at Deir ‘Alla. Results

from the water analysis demonstrate that the water from Khir-

bet as Samra and Ramtha has a higher concentration of both

plant-beneficial ions and potentially plant-toxic ions than the

water used for irrigation at Deir ‘Alla. However, solutes of

toxic metals such as arsenic, lead, zinc, nickel, cadmium and

copper were below detection limits in the water at all sites

(Carr, 2009).

Table 21.5 Soil physical and chemical properties at the crop growing stations

Khirbet As Samra –

non-irrigated soil Ramtha – non-irrigated soil

Deir ‘Alla – irrigated soil (100% of

the crop water demand for 1 year)

Surface

(0–5 cm)

Middle

(5–25 cm)

Bottom

(>25 cm)

Surface

(0–5 cm)

Middle

(5–25 cm)

Bottom

(>25 cm)

Surface

(0–5 cm)

Middle

(5–25 cm)

Bottom

(>25 cm)

Soil classification (World

Reference base)

Calcisol Calcisol Cambisol

Soil texture Silty clay loam Silty clay loam Silty clay loam

Soil colour Hue 7.5YR 6/6 – reddish yellow Hue 2.5YR 4/8 – red Hue 2.5YR 6/4 – light yellowish

brown

Parent material Limestone Limestone Quaternary sediments

Sand (%) 16.1 16.1 18.5 19.9 19.9 13.8 17.1 17.1 20.9

Silt (%) 60.2 60.2 64.9 66.4 66.4 74.0 64.6 64.6 64.4

Clay (%) 23.8 23.8 16.6 13.7 13.7 12.2 18.3 18.3 14.7

CEC to clay ratio (CCR) 0.86 4.34 1.28

Clay mineralogy Smectite, kaolinite, illite

(Khresat and Taimeh, 1998)

Smectite, kaolinite,

illite (Khresat, 2001)

Smectite, kaolinite

(Neamen et al., 1999)

pHe 8.30 8.16 7.96 8.27 8.21 8.20 8.41 8.63 8.63

ECe (dS m�1) 0.77 1.49 6.48 0.77 0.59 0.73 1.89 1.28 1.21

Organic carbon (%) 1.18 0.53 0.14 0.77 0.65 n/a 0.68 0.57 0.49

Organic matter (%)

(assuming OM contains

0.58 g C per g organic

matter)

2.03 0.91 0.24 1.33 1.12 n/a 1.17 0.97 0.84

CEC (cmolc kg
�1) 20.50 59.50 23.50

Ex Ca (cmolc kg
�1) 9.76 32.82 9.89

Ex Mg (cmolc kg
�1) 2.99 6.94 6.49

Ex Na (cmolc kg
�1) 0.67 0.66 1.66

Ex K (cmolc kg
�1) 1.23 1.79 2.76

ESP (%) 3.26 1.10 7.08

After Carr (2009)

CEC ¼ Cation exchange ratio; ECe ¼ electrical conductivity of a saturation paste extract; pHe ¼ pH of extract; Ex Ca ¼ Exchangeable calcium;

Ex Na ¼ Exchangeable sodium; Ex Mg ¼ Exchangeable magnesium; Ex K ¼ Exchangeable potassium.
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21.4.2 Crop yield

Crop yield could not be recorded for wheat from Ramtha for the

third growing season because the crop had been decimated by

birds. Also, it should be noted that although more water was

given to wheat than barley in the first growing season, to meet the

higher water requirements of wheat, the levels of irrigation for

both crops was the same for the second and third growing

seasons (see Table 21.2). However, a corresponding decrease in

yield from the first to the second season is not found as a result of

this, as shown in Figure 21.6. The most substantial difference in

the wheat yields was between the non-irrigated and 40% irrigated

plots, which had low yields, and the other irrigation regimes

which had higher yields. The lowest yields were from the non-

irrigated plots at Khirbet as Samra which failed to produce any

grains. This is probably attributable to the low rainfall at this site

which, in total, was less than 100 mm in all three years.

A more significant increase in yield was observable between

the non-irrigated barley and the 40% irrigated barley than was

seen in wheat, as illustrated in Figure 21.7. A similar result to

wheat was found with the non-irrigated barley from Khirbet as

Samra, which produced neither grains nor inflorescences, pre-

venting any phytolith analysis. It is interesting that non-irrigated

wheat produced inflorescences when non-irrigated barley did

not, because barley has a lower water requirement than wheat.

The non-irrigated plot from the third growing season at Deir

‘Alla also had a low grain yield with only 0.2 tonnes per hectare.

Table 21.7 Dry ashing methodology employed for extracting

phytoliths from modern plants

Procedure followed for dry ashing

1 Weigh empty crucibles

2 Put dried plant samples in crucibles and weigh them

3 Ash samples in muffle furnace for 3 hr at 500 �C
4 Transfer ashed samples into centrifuge tube

5 Add HCl 10% (up to 6 ml) and shake tube

6 Wait ~5 min

7 Level samples with distilled water (up to 10 ml), tighten lid

and shake tubes

8 Centrifuge 5 min at 2,000 rpm

9 Discard supernatant

10 Repeat three times

11 Transfer into weighed beakers

12 Put in drying cupboard at less than 50 �C until dry

13 Remove samples, allow to cool and weigh beakers and sample

14 Zero a balance with a labelled slide

15 Weigh 1 mg � 0.1 mg of sample on the slide

16 Add mounting agent (we used Entellan) and mix thoroughly

before covering with cover slip

Figure 21.4. (A) Well silicified conjoined phytolith. (B) Poorly

silicified conjoined phytolith.

Table 21.6 Methodology used for analysis of extractable silicon

Stage Procedures followed for available plant Si analysis

1 Air dry soils

2 Grind and pass through 2 mm mesh

3 Weigh 3 g into a 50 ml polypropylene centrifuge tube

4 Add 30 ml, 0.025M citric acid by pipette

5 Shake samples end over end at 14 rpm for 6 hours at 30 �C
6 Centrifuge samples at 3,000 rpm for 15 minutes (a Mistral

3000i machine was used)

7 Filter samples through filter paper (Whatman no 1 papers

were used)

8 Store extracts at 4 �C until measurement

9 Dilute extracts 1:20 with water before measurement

10 Measurements of Si concentrations were obtained using a

PE Optima ICP-OES

All storage, measuring and dispensing of solutions was

carried out with plastic ware
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The total rainfall at Deir ‘Alla was less in the third growing season

than in the previous two seasons and it is notable that a similarly

low yield was not observed for wheat as for barley. The barley

yields from Ramtha in the irrigated plots were less than for the

other two sites but this may be a product of bird attack which, as

stated above, severely damaged the wheat. Field notes record that

the non-irrigated barley was least affected by bird attack, probably

because it ripened after the irrigated plots; this would also explain

why the yield from Ramtha was higher in comparison to the other

two sites for the non-irrigated plot than for the irrigated ones.

21.4.3 Phytolith analysis

Weight percent was calculated by expressing the weight of

phytoliths to original plant matter processed (phytolith weight % ¼
weight of phytoliths/weight of plant matter processed �
100). This is useful for determining the level of silicon uptake

and resulting phytoliths in the plant. A comparison of the results

from plants grown in irrigated and non-irrigated conditions can

establish if the uptake is increased with irrigation. Figure 21.8

shows the mean weight percent of phytoliths for the wheat

samples and illustrates that the non-irrigated plot has the lowest

weight percent and that the highest values are from the samples

from the 80% irrigated plot. Deir ‘Alla has a greater mean weight

percent of phytoliths than the other two sites for the first and third

growing season but not for the second growing season. The

exception is the 40% plot. Generally Deir ‘Alla has greater

weight percents than the other two sites.

The most striking observation that can be made for the results

of the mean weight percent of phytoliths from barley is that the

values are much lower than for wheat (see Figure 21.9), Deir

‘Alla has the greatest weight percent for the non-irrigated barley

samples in all three years, followed by Ramtha and lastly Khirbet

as Samra. Values also rise in all of the non-irrigated plots with

each growing season. When this is plotted against rainfall it is

apparent that the increase in weight percent for non-irrigated

barley correlates with increased rainfall, with the exception of

the third year at Deir ‘Alla (see Figure 21.10). The results of the

samples from the irrigated plots show that the mean of those

from Ramtha is the highest, and that there is an increase in

weight percent of phytoliths in each growing season. This correl-

ates with the results of the extractable silicon analysis which

demonstrated that at Ramtha and Khirbet as Samra the level of

silicon in the soil increased from the beginning to the end of the

experiment. Figure 21.11 shows the mean value of extractable

silicon from all three sites plotted against phytolith weight per-

cent which demonstrates that barley has a positive correlation,

while wheat has a negative one. This increase in silicon levels is
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Figure 21.5. Extractable silicon from soil samples taken before and after experimentation.
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unexpected because the plants are taking up silicon from the soil

which is not being returned in phytolith form because the crops

are harvested and removed from the sites. Silicon is not entering

the soil through the irrigation water because the results show that

the greatest rise in silicon levels was in the non-irrigated plots.

Further tests are needed to check if other changes occurred in the

soil through time. For example, it is possible that the pH or cation

exchange capacity of the soil changed through time in a manner

that resulted in more available silicon. For example, the soil may

have become more alkaline which would have caused greater

dissolution of silicates in the soil. It is also possible that the clay

mineral fraction was being washed down through the soil profile by

the irrigation water, removing the clay silicates from the rooting

zone of the plants. This would explain why the non-irrigated

samples have more available silicon than the irrigated ones.

A comparison was made between long dendritic cells, those

termed by Madella et al. (2009) as sensitive forms, and cork-

silica cells or fixed forms (Madella et al., 2009). Silica cells and

cork cells form in pairs and for the purposes of this study are

grouped together as one category (Kaufman et al., 1970). These

cells are known by a variety of names; for example Blackman

and Parry (1968) refer to them as silico-suberous couples. Images

Figure 21.6. Crop yield for wheat.
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of both these phytolith types are shown in Figure 21.12. Results

of the comparison of long dendritic cells to cork-silica cells from

the wheat samples are shown in Figure 21.13. Only samples with

a combined total of over 200 cork-silica cells and dendritics

were used in this analysis. The results demonstrate that, with

the exception of the first growing season at Ramtha, the mean

percent of dendritics in the irrigated samples is always higher

than the percent for the non-irrigated ones. Despite this trend, it

is also apparent that there is often a significant overlap between

the values for the irrigated and non-irrigated samples, with the

exception of Khirbet as Samra where the percent of dendritics in

the non-irrigated samples is always lower than in the irrigated

ones. This correlates with rainfall which is significantly lower at

Khirbet as Samra than the other two sites. This negates the claim

of Rosen and Weiner (1994) that changes in phytolith assem-

blages reflect irrigation and not rainfall. It is also clear from

Figure 21.13 that there is a decrease in the mean percent of

dendritics from both the irrigated and non-irrigated samples

through time: the first growing season has an average of 48%,

the second season 28%, and the third season only 15%. This

Figure 21.7. Crop yield for barley.

360 EMMA JENKINS, KHALIL JAMJOUM AND SAMEEH AL NUIMAT



Comp. by: ISAAC PANDIAN Stage: Revises1 Chapter No.: 21 Title Name: Mithen&Black
Page Number: 0 Date:28/1/11 Time:05:17:58

correlates with weight percent of phytoliths which also

decreases, but not with the results of the extractable silicon

analysis which increases throughout experimentation.

The results from the barley analysis are provided in

Figure 21.14. These show that the mean percent of dendritics

in the irrigated samples is always greater than the percent for the

non-irrigated ones. There is also a decrease through time in the

percent of dendritics to cork-silica cells for barley, but the main

decrease happens between the second and third growing seasons.

In the samples from the first growing season, dendritics make up

50% of the total single cells. This decreases to 49% in the second

season and to 25% in the third growing season. This result,

however, could partly be influenced by sample size which was

reduced in the third growing season because many of the samples

fused during ashing. As with the wheat, the non-irrigated

samples from Khirbet as Samra have low percentages of dendri-

tics, although this is based on results from only one slide in the

third growing season because the phytoliths from the other four

samples were all fused and could not be counted. However, the

levels of dendritics in the irrigated barley are also lower at

Khirbet as Samra than in the samples from the other two sites.

A comparison of the number of well silicified to poorly silici-

fied conjoined wheat phytoliths can be found in Figure 21.15

and the absolute counts with standard deviations are shown in

Table 21.8. A difference can be seen between the sites in the first

growing season; the non-irrigated samples from Khirbet as

Samra produced far fewer well-silicified conjoined phytoliths

than the non-irrigated samples from the other two crop growing

Figure 21.8. Weight percent of phytoliths to original plant matter processed for wheat.
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stations, while Deir ‘Alla had a greater percent of well silicified

forms in the non-irrigated samples (63%) than in the mean of the

irrigated samples (60%). However, in all other seasons at the

three sites the irrigated samples had a greater mean of well

silicified conjoined forms than the non-irrigated ones. There is

an increase in the number of conjoined forms in the Khirbet as

Samra non-irrigated samples in the second year which reaches

32% but falls in the third year to 16%. A decrease in well

silicified forms is apparent in the third year in the irrigated

samples from both Khirbet as Samra and Ramtha. Figure 21.16

shows the comparison of well silicified and poorly silicified

forms for the barley samples with Table 21.9 showing the abso-

lute counts and standard deviations. From these it is clear that

there is a gradual decline in the number of well silicified forms

over time. It is also apparent that, unlike wheat, the non-irrigated

samples from Deir ‘Alla have far fewer well silicified forms than

the irrigated ones and that there is a decrease in the number of

well silicified forms from the second to the third growing season

in the non-irrigated samples from Khirbet as Samra.

Figure 21.17 shows the percent of conjoined dendritics for

the wheat samples by four different categories: 2–15 cells,

15–50 cells, 51–100 cells and 100 cells and over. It is clear that

in all of the plots the 2–15 cell category has the highest percent

of phytoliths. However, it is also apparent that this varies

between both sites and years. The most consistent site over the

three years was Khirbet as Samra. Here the phytoliths from the

Figure 21.9. Weight percent of phytoliths to original plant matter processed for barley.
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non-irrigated plots are largely dominated by forms that consist of

between 2 and 15 cells, with the first season having 80%, the

second season 79% and the third season 78%. Khirbet as Samra

also has the lowest percent of forms from the non-irrigated plots

in the over 100 cells category. The greatest variation between

years is found in the samples from Ramtha which has a more

even distribution of numbers of phytoliths over all four counting

categories than in the previous two years. Both Ramtha and Deir

‘Alla have an increase in the percent of forms in the 2–15 cell

category in the second growing season which then decreases in

the third season, and in the third growing season both Ramtha

Figure 21.11. Correlation between mean weight percent of phytoliths

and levels of extractable silicon.

Figure 21.12. (A) Single dendritic long cell. (B) Single cork-silica cell.
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Figure 21.10. Correlation between non-irrigated barley and rainfall.

Figure 21.13. Comparison of the percent of cork-silica cells and

dendritic long cells for the wheat samples.
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and Deir ‘Alla have a greater percent of non-irrigated samples in

the over 15 conjoined cell categories than irrigated ones. How-

ever, overall the number of conjoined cells increases with irriga-

tion; the average number of forms with over 15 conjoined cells

from the irrigated samples is 47% but is only 41% for the non-

irrigated samples.

Figure 21.18 shows the same comparison for barley. As with

wheat, there is an increase in the number of forms falling in the

2–15 cell category at Ramtha and Deir ‘Alla in 2006 to 2007

which decreases again in the third season. Unfortunately, there

was no sample for barley from the first year of crop growing at

Khirbet as Samra, and in the third season only one replicate was

analysed because, as stated above, the phytoliths in the other four

Barley 2005–2006

Barley 2006–2007

Barley 2007–2008

Figure 21.14. Comparison of cork/silica cells and dendritic long cells

for the barley samples.

Figure 21.15. Comparison of well silicified to poorly silicified

conjoined forms from the wheat samples.
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Table 21.8 Absolute numbers of well silicified and poorly silicified conjoined phytoliths counted with standard deviations from

the wheat samples (all standard deviations were calculated using the STDEV function in Excel 2007). DA, KS, RA ¼ Deir ‘Alla,

Khirbet as Samra and Ramtha, respectively

Site/

regime

Phytolith

type

n phytos

counted Mean n slides

Standard

deviation

Phytolith

type

n phytos

counted Mean n slides

Standard

deviation

Wheat 2005–2006

DA 0% poorly silicified 562 56 10 35.24 well silicified 1,498 150 10 47.66

DA 80% poorly silicified 880 88 10 25.24 well silicified 1,373 137 10 27.46

DA 100% poorly silicified 942 94 10 36.34 well silicified 1,436 144 10 33.13

DA 120% poorly silicified 953 95 10 43.29 well silicified 1,356 136 10 32.57

KS 0% poorly silicified 1,189 119 10 72.13 well silicified 59 6 10 6.56

KS 80% poorly silicified 746 75 10 33.15 well silicified 957 96 10 24.91

KS 100% poorly silicified 562 56 10 35.24 well silicified 1,498 150 10 47.66

KS 120% poorly silicified 571 57 10 25.37 well silicified 1,668 167 10 42.15

RA 0% poorly silicified 558 56 10 21.21 well silicified 1,574 157 10 20.08

RA 80% poorly silicified 378 38 10 14.19 well silicified 1,760 176 10 16.44

RA 100% poorly silicified 541 54 10 18.51 well silicified 1,532 153 10 45.66

RA 120% poorly silicified 634 63 10 27.28 well silicified 1,666 167 10 23.02

Wheat 2006–2007

DA 0% poorly silicified 173 35 5 22.53 well silicified 142 28 5 17.52

DA 40% poorly silicified 237 47 5 17.56 well silicified 349 70 5 18.32

DA 80% poorly silicified 197 39 5 6.50 well silicified 470 94 5 18.25

DA 100% poorly silicified 146 29 5 7.22 well silicified 463 93 5 23.36

DA 120% poorly silicified 171 34 5 14.96 well silicified 528 106 5 15.90

KS 0% poorly silicified 106 21 5 9.44 well silicified 50 10 5 7.00

KS 40% poorly silicified 347 69 5 27.48 well silicified 394 79 5 16.32

KS 80% poorly silicified 186 37 5 9.26 well silicified 392 78 5 21.22

KS 100% poorly silicified 216 43 5 11.03 well silicified 361 72 5 20.39

KS 120% poorly silicified 272 54 5 14.52 well silicified 390 78 5 13.34

RA 0% poorly silicified 186 37 5 5.89 well silicified 481 96 5 19.61

RA 40% poorly silicified 217 43 5 13.87 well silicified 304 61 5 14.69

RA 80% poorly silicified 222 44 5 19.73 well silicified 593 119 5 25.51

RA 100% poorly silicified 78 16 5 12.10 well silicified 701 140 5 39.32

RA 120% poorly silicified 166 33 5 3.56 well silicified 637 127 5 25.75

Wheat 2007–2008

DA 0% poorly silicified 252 50 5 13.90 well silicified 293 59 5 18.68

DA 40% poorly silicified 299 60 5 20.73 well silicified 336 67 5 12.83

DA 80% poorly silicified 274 55 5 12.56 well silicified 441 88 5 24.99

DA 100% poorly silicified 194 39 5 8.47 well silicified 566 113 5 18.31

DA 120% poorly silicified 218 44 5 16.88 well silicified 591 118 5 16.84

KS 0% poorly silicified 44 N/A 1 N/A well silicified 9 N/A 1 N/A

KS 40% poorly silicified 366 73 5 18.29 well silicified 185 37 5 23.31

KS 80% poorly silicified 292 58 5 21.79 well silicified 212 42 5 37.11

KS 100% poorly silicified 304 61 5 26.11 well silicified 178 36 5 18.61

KS 120% poorly silicified 319 64 5 15.51 well silicified 495 99 5 23.99

RA 0% poorly silicified 219 44 5 10.99 well silicified 129 26 5 8.93

RA 40% poorly silicified 312 62 5 18.60 well silicified 256 51 5 31.75

RA 80% poorly silicified 392 78 5 18.98 well silicified 187 37 5 10.57

RA 100% poorly silicified 185 37 5 23.66 well silicified 113 23 5 18.39

RA 120% poorly silicified 140 47 3 10.79 well silicified 218 73 3 22.68
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samples all fused during processing. Khirbet as Samra has the

highest percent of forms with over 100 cells while Deir ‘Alla has

the most variation in results over time. Overall, the number of

conjoined cells does increase with irrigation, with the number of

phytolith forms with over 15 conjoined cells increasing from

33% for non-irrigated samples to 39% for the mean of the

irrigated ones.

21 .5 DISCUSSION

21.5.1 Water availability and phytolith formation

Results from the crop yield analysis demonstrate that the yield

capability of the crops grown in this experiment were, as would

be expected, positively affected by irrigation but were not

affected by the increasing levels of salinity that were found to

have built up in the soil over the three years of experimentation

(Carr, 2009).

The results from the analysis of the available silicon and

weight percent of phytoliths produced interesting results. For

barley it is clear that, with the exception of the non-irrigated

plots, the results correlate with those from the extractable silicon

analysis, with Ramtha having both the greatest silicon levels and

highest phytolith yields. Wheat, however, does not respond in the

same way. In the second growing season the wheat from Ramtha

produced the highest weight percent of phytoliths in all plots

except the 40% plot, but in the first and third seasons, Deir ‘Alla

has the highest weight percent. It is also notable that, with the

exception of the third growing season at Deir ‘Alla, the phytolith

weight percent and soil silicon levels increase linearly with

barley, but the weight percent of phytoliths from wheat decrease

as silicon levels increase. These results, coupled with the signifi-

cantly lower weight percent for barley, suggest that the processes

that govern silica uptake and deposition differ between the two

crops. It appears that while wheat is more efficient in its uptake

of silicon than barley, there are factors other than available

silicon in the growing medium that affect phytolith production

and deposition in wheat.

Deir ‘Alla is located in the Jordan Valley, is below sea level

and, as such, records higher temperatures than either of the other

two crop growing stations. However, records of evaporation

show that Ramtha has the highest rates of evaporation, because

Deir ‘Alla is more humid owing to its proximity to the Dead Sea.

This greater phytolith weight percent from Ramtha for wheat is

not due to the use of mesh to cover the crops during maturation

because the wheat crops at both Deir ‘Alla and Ramtha were

covered in the first two growing seasons. Furthermore, the use of

mesh would increase humidity resulting in slower transpiration

rates and presumably decreased silicon uptake. Similarly there is

no correlation with this result and rainfall because while Deir

‘Alla had the highest rainfall in the first and second seasons

Ramtha recorded the greatest amount in the third growing

season. Another factor which could affect silicon uptake is high

concentrations of nitrogen in the soil. Unfortunately nitrogen was

Barley 2005–2006

Barley 2006–2007

Barley 2007–2008

Figure 21.16. Comparison of well silicified to poorly silicified

conjoined forms from the barley samples.
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not tested for during soil analysis. However, after the first grow-

ing season plant samples of both wheat and barley were taken,

oven dried and crushed and then tested for nitrogen, potassium

and phosphorus by NCARE. The results for both wheat and

barley found that the level of nitrogen was lower for the plants

from Ramtha than plants grown at the other two stations,

Table 21.9 Absolute numbers of well silicified and poorly silicified conjoined phytoliths counted with standard deviations from

the barley samples

Site/regime
Phytolith type: poorly silicified Phytolith type: well silicified

n phytos counted Mean n slides Standard deviation n phytos counted Mean n slides Standard deviation

Barley 2005–2006

DA 0% 1,372 137 10 56.70 1,069 107 10 22.46

DA 80% 239 24 10 10.57 1,638 164 10 36.76

DA 100% 158 16 10 13.37 1,105 111 10 9.86

DA 120% 89 9 10 10.56 1,323 132 10 34.35

KS 80% 168 17 10 11.48 1,123 112 10 47.57

KS 100% 105 11 10 9.66 661 66 10 31.09

KS 120% 133 13 10 8.33 840 84 10 29.54

RA 0% 393 44 9 30.55 1,488 165 9 38.32

RA 80% 48 5 10 2.82 913 91 10 26.17

RA 100% 135 14 10 18.40 1,232 123 10 43.30

RA 120% 162 18 9 32.49 1,021 113 9 40.69

Barley 2006–2007

DA 0% 64 13 5 6.69 153 31 5 8.91

DA 40% 50 17 3 10.02 84 28 3 13.86

DA 80% 74 15 5 9.15 121 24 5 5.93

DA 100% 31 6 5 4.82 89 18 5 8.70

DA 120% 41 8 5 5.50 199 40 5 5.85

KS 0% 31 6 5 3.11 124 25 5 13.22

KS 40% 66 13 5 6.69 195 39 5 8.94

KS 80% 77 15 5 13.90 344 69 5 14.31

KS 100% 125 25 5 15.03 413 83 5 31.61

KS 120% 35 7 5 2.92 179 36 5 17.14

RA 0% 72 14 5 5.77 246 49 5 10.33

RA 40% 33 7 5 3.21 180 36 5 7.07

RA 80% 28 6 5 3.36 157 31 5 5.27

RA 100% 42 8 5 7.02 158 32 5 5.94

RA 120% 24 5 5 0.84 194 39 5 10.08

Barley 2007–2008

DA 0% 156 31 5 12.52 190 38 5 21.95

DA 40% 115 29 4 10.47 169 42 4 13.82

DA 80% 335 67 5 25.80 261 52 5 16.50

DA 100% 102 26 4 9.29 306 77 4 16.34

DA 120% 16 N/A 1 N/A 75 N/A 1 N/A

KS 0% 14 N/A 1 N/A 2 N/A 1 N/A

KS 40% 327 65 5 21.56 405 81 5 15.15

KS 80% 366 92 4 28.72 251 63 4 35.35

KS 100% 285 95 3 11.31 170 57 3 36.77

KS 120% 442 88 5 37.04 262 52 5 32.67

RA 0% 242 48 5 19.37 184 37 5 21.99

RA 40% 96 19 5 5.54 411 82 5 12.40

RA 80% 111 22 5 5.76 493 99 5 15.98

RA 100% 76 15 5 5.17 416 83 5 15.74

RA 120% 73 15 5 7.23 308 62 5 9.71
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suggesting that the plants from Ramtha did not take higher levels

of nitrogen from the growing medium than plants from Deir

‘Alla and Khirbet as Samra.

Results from the comparison of the cork-silica cells to den-

dritic long cells, and from the comparison of well silicified

conjoined forms to the poorly silicified conjoined forms, show

a decrease in indicators of water availability (dendritic long cells

and well silicified conjoined forms) over time. This is interesting

because an increase in sensitive forms due to irrigation was not

found in the six-row barley analysed by Madella et al. (2009).

With wheat, the lowest percent of both these forms is found in

the non-irrigated plots from Khirbet as Samra. As this is the site

with the least rainfall, it confirms that the production of dendritic

long cells is governed by water availability.

While this study found that the ratio of dendritic long cells

to cork-silica cells is an indicator of water availability for both

wheat and barley, there were significant inter-site and, more

notably, inter-year differences. This demonstrates that local cli-

matic and environmental conditions affect results. However, the

decrease in dendritics over time is the biggest difference seen in

the results and affects all three sites. It is possible that this is due

to a build up of salinity in the soil caused by the use of treated

wastewater for irrigation, as demonstrated by the work of Carr

(2009). Ahmad et al. (1992) showed that silicon increases the

tolerance of bread wheat to salinity while Liang et al. (1996)

report similar findings for common barley, though they found

that barley was more salt-tolerant than bread wheat. Ahmad et al.

(1992) suggest that this tolerance occurs because there is an

interaction between freely available sodium and silicon ions

which reduces their uptake into the plants, as observed in the

roots of the wheat they studied. The fact that common barley

exhibits a greater tolerance for salt stress than wheat could

explain why in our experiments the percent of dendritics

decreased after one growing season for wheat but only after

two seasons for barley. It may also explain why phytolith weight

percent increases over time in barley samples but decreases in

wheat.

21.5.2 Implications for archaeological study

The results from this research demonstrate that phytolith assem-

blages are altered by increased water availability. The most

effective method for identifying water availability is the ratio

of long cells to short cells. This is because these forms are single

celled and not subject to break up, a problem with the conjoined

phytolith method proposed by Rosen and Weiner (1994). Ana-

lytical experiments conducted by Jenkins (2009) demonstrated

that conjoined phytolith forms do not remain stable from the time

of formation to the time of analysis, and using this method to

indicate water availability in assemblages with unknown tapho-

nomic pathways is problematic.

Although the proportion of dendritic long cells to cork-silica

cells is a more reliable indicator of water availability than

changes in the number of conjoined cells, this method is not

without its pitfalls. It is clear that the inter-year differences found

in the percent of dendritics are sometimes greater than that found

between the irrigated and non-irrigated samples. Further work is

planned to establish if the decrease in dendritics from the second

to the third growing season is the result of smaller sample size or

a real change in phytolith ratios. Work is also needed to deter-

mine if this method is applicable to the leaves and stems as well

as the husks as suggested in the work of Madella et al. (2009).

This is important because while the types of long cells found in

the leaves and stems have smooth edges and so are distinct from

the wavy edged dendritics found in husks, the corresponding

short cells formed in leaves (rondels) are morphologically very

similar to cork-silica cells. This means that in an archaeological

assemblage derived from a mixture of plant parts, it would be

difficult to isolate short cells formed in husks from those formed

in leaves.

Results from this study also show that the source of water, i.e.

rainfall or irrigation, is unimportant in its effects on changes in

phytolith formation and deposition. It is possible that the greater

amount of available silica coming from wadi water may increase

the level of silicon uptake, but our results found that the import-

ant factor for affecting changes to phytolith formation was water

availability. This inability to detect the difference between rain-

fall and irrigation is of course true for many methodologies

which claim to be able to identify irrigation, such as the FIBS

method (Charles et al., 2003). The changes they identify occur as

a result of increased water availability and not necessarily as a

result of rainfall. However, if other proxies, such as carbonate

deposits or stable isotopes, indicate that the site under excavation

was occupied during an arid period, then phytoliths can poten-

tially be used to infer past irrigation. Results from this experi-

ment suggest that an archaeological phytolith assemblage

consisting of 60% dendritics would indicate that water was

abundant. Chapter 22 shows an example of the application of

this methodology to archaeological and modern phytolith assem-

blages with encouraging results.

21 .6 CONCLUSION

This study has confirmed that the uptake and deposition of

phytoliths is affected by water availability, as suggested by

Rosen and Weiner (1994) and Madella et al. (2009). But it also

demonstrates that these changes reflect increased water availabil-

ity which could be from precipitation or irrigation, a claim

previously refuted by Rosen and Weiner (1994). The change in

phytolith composition is discernible in an increase in the ratio of

dendritic long cells to cork-silica cells in the husks of durum
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wheat and six-row barley, supplementing the work of Madella

et al. (2009). However, results for six-row barley contrast with

those of Madella et al. (2009) who found that six-row barley

responded negatively to increased irrigation, with the percent of

long cells in leaves decreasing, not increasing. The method

proposed by Rosen and Weiner (1994) which suggested that

the number of conjoined phytoliths increased with irrigation

was found to be less reliable for identifying past water availabil-

ity. Our results suggest that an assemblage consisting of over

60% dendritic long cells indicates a level of water availability

sufficient to meet the crop requirements of cereals. If this method

is found to be consistent in all plant parts, as suggested by the

work of Madella et al. (2009), phytoliths could be a valuable tool

for estimating past water availability and, potentially, irrigation.
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