

Soil microbiology and ecosystem function in chemically restored lowland heath

Iain Green, Anita Diaz & Mark Tibbett

Background - Calluna heath

- 86 % of Dorset heath lost between 1835 & 1980
- ~8,000 ha remaining, about 13 % of remaining lowland heath
- But it is fragmented
- UK Biodiversity action plan priority
- Difficult to restore on improved farmland due to legacy of high pH and nutrient levels

Design of trial

- Trial established in 1999 on two NT farms
- 2 chemical treatments & soil stripping
- Ferrous ammonium sulphate didn't work!
- Elemental sulphur applied at 3.6 t ha⁻¹ did!
- Successful removal of competitive mesotrophic grasses achieved
- Heath like vegetation community restored after addition of propagules

Site location

Experimental Area

Restored heath!

However

- Available Nutrient levels relatively high
- Ericoid mycorrhizal fungi colonisation of Calluna low (Diaz et al., 2008)
- No O horizon
- Soil pH rising (3.0 4.4)
- By 2009, 6 plots had reverted to grassland or were dominated by *Juncus effusus*
- What is the future of the other 4 plots?

Possible factors for success

- Lowering soil pH should drive changes in the microbial community
- Could this result in the restoration of a key ecosystem function – slow decomposition of plant litter?
- Thus decreasing nutrient mobilisation
- 'locking' nutrients in a developing O horizon
- Giving time for re-podzolisation to take effect?

Research questions

- Has elemental sulphur amendment driven change in the microbial community?
- Has this in turn reduced microbial activity?
- And therefore litter decomposition rates?

Quantifying microorganisms

- The number of colony forming units (CFUs) of bacteria and fungi where determined by a selective viable count procedure.
- Many components of the soil microbial community will not be cultured!

Results – Bacterial CFUs

Results – Fungal CFUs

Potential drivers of change

	Fungi	pН	Al	Moist.	C:N
Bacteria	-0.65**	0.78**	-0.48	-0.26	-0.61*
Fungi		-0.57*	0.09	0.13	0.32
рН	-0.57*		-0.34	-0.14	-0.49
Al	0.09	-0.0.34		0.52	0.79**
Moist	0.13	-0.14	0.52		0.77**

Microbial activity

- Hydrolytic enzymes convert colourless Fluorescein diacetate into fluorescein
- Enzymes include lipases, esterases, proteases
- Which are involved in decomposition
- FDA hydrolysis correlates with measures of microbial biomass

Results – FDA assay

Litter decomposition

- Barley straw in 100 µm mesh litter bags
- Buried for 1 year (from 2008)
- Measure of decomposition by microorganisms AND protozoa & nematodes

Results – Litter bags

Summary

Elemental sulphur appears to:

- Result in a restoration of some aspects of soil microbiology and microbial activity
- Thereby impacting on litter decomposition
- At least partially restoring a key ecosystem function of slow litter decomposition
- Which should translate into a reduction in the competitive advantage of *Molinia* and other grasses over *Calluna*
- But is this enough for Calluna to survive?

Acknowledgements

The National Trust & their Studland team

Angel Peters

Beverley Analytical Laboratories

Karen Walmsley

Kirsty Totterdell

Paul Westbrook-Merry

The small hoard of placement students