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Abstract

We propose a new approach to modelling heterogeneous objects containing internal volumetric structures with size
of details orders of magnitude smaller than the overall sizeof the object. The proposed function-based procedural
representation provides compact, precise, and arbitrarily parametrised models of coherent microstructures, which
can undergo blending, deformations, and other geometric operations, and can be directly rendered and fabricated
without generating any auxiliary representations (such aspolygonal meshes and voxel arrays). In particular, modelling
of regular lattices and cellular microstructures as well asirregular porous media is discussed and illustrated. We
also present a method to estimate parameters of the given model by fitting it to microstructure data obtained with
magnetic resonance imaging and other measurements of natural and artificial objects. Examples of rendering and
digital fabrication of microstructure models are presented.

Keywords: microstructure, lattice, porous media, tissue engineering, scaffold, function representation, digital
fabrication

1. Introduction

Recent developments in computing allow researchers
to look beyond traditional geometric modelling tech-
niques oriented towards surface based and homoge-
neous solid models. Man-made objects are often nearly
uniform in their internal structure, for example, most
of mechanical parts can be modelled as homogeneous
solids. In contrast, natural objects are rarely homoge-
neous having a complicated internal structure and mate-
rials distribution.

New application areas of CAD/CAM such as biomed-
ical tissue engineering [1] and composite materials in
mechanical engineering [2] deal with essentially hetero-
geneous objects. Such objects can be made of different
materials with variable densities and can have internal
microstructures. The common feature of such objects is
presence of internal volumetric structures with size of
details orders of magnitude smaller than the overall size
of the object. These can be lattices, porous, branching
or granular material compositions varying from regu-
lar to completely irregular random structures. Not only
are microstructures important in engineering new com-
plex objects, but are becoming increasingly important
for manufacturing traditional objects using digital fab-

rication processes. Adding internal microstructures to
objects reduces weight, materials, energy and time re-
quired to create an object. In the future it is likely
that most large, digitally fabricated objects will not be
created as solid blocks of materials but will instead be
made up of microstructures.

Existing approaches to modelling microstructures in-
clude those relying on surfaces (boundary representa-
tions or BRep) and voxels (discrete volume represen-
tations). Although to some extent microstructures can
be generated using these representations (see the next
section), many of the known problems and limitations
of both representations are amplified by the geomet-
ric complexity of microstructures. The problem com-
pounds further when modelling irregular microstruc-
tures. One can distinguish between quantitative prob-
lems (model size and processing time) and qualitative
problems (model validity, precision, parameterization,
operability, and manufacturability) of existing represen-
tations:

• Size and processing time

Surface based models of a moderate size contain-
ing high quality lattice microstructures can include
such a huge number of polygons that it becomes
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difficult or impossible for modern graphics hard-
ware to render. Although the size of voxel models
is not directly dependent on the object complex-
ity, the number of voxels needed to represent high
quality surfaces along with small details can easily
exceed available capacities of computer memory.
Time for rendering as well as for other types of
processing grows with the size of the model.

• Validity and precision

Known problems arising from traditional BRep
based CAD models and approaches (such as cracks
in surfaces, self-intersections of polygons, addi-
tional false polygons left over from modelling, and
inverted normal orientation) already problematic
for the manufacturing industry become increas-
ingly difficult or impossible to model and manu-
facture at nano- and micro- scales. BRep and voxel
models are usually created inside some specifically
given bounding unit and then iteratively replicated
in space without considering spatial coherence of
the structure, which can cause additional cracks in
the model at the boundaries of each unit. Like-
wise, the ”skinning” or proper connection of a mi-
crostructure to the object shell presents many un-
solved issues for current systems. In general, both
the polygonal BRep and the voxel representation
are not exact and only approximate the modelled
geometry with limited precision.

• Parameterization and operability

The support of model generation with variable pa-
rameters is crucial for modelling microstructures,
because their geometry can depend on a number of
factors such as distance to the object surface, pre-
defined strength conditions, density variations, and
others. The existing representations have limited
or no support for parameterization of microstruc-
ture models. When parameters are changed, BRep
and voxel models have to be re-generated using a
separate, high level procedure or method. A user
may need to apply further specific operations on
microstructures such as offsets, blends and shape
deformations, which have limited or no support
within the current representations.

• Manufacturability

Controlled complex microstructures are not easy
to manufacture using most existing technolo-
gies. Currently the best solution can be found in
rapid prototyping or digital fabrication technolo-
gies such as laser sintering, stereolithography and

other additive processes, which produce a physical
object layer by layer [3][4][1]. As object becomes
large or finely packed microstructures are required,
BRep models dramatically increase in size and be-
come very hard or impossible for current hard-
ware systems to visualize and even more difficult
to cross-section as is required by many digital fab-
rication systems and processes. While current dig-
ital fabrication systems have limited resolutions, in
recent years they have achieved ever greater accu-
racy and this trend is expected to continue. Even
so, it is currently not uncommon to see defects
or missing sections of an object, largely due to
the complexity involved in creating proper cross-
sections from the standard STL format. Some
but not all digital fabrication systems accept voxel
models as input, however voxels have known alias-
ing problems unless they are given at very high res-
olutions requiring large amounts of memory. For
systems that do not work with voxels, polygoniza-
tion of the voxel data is necessary.

The objective of this work is to develop an approach
to the modelling and manufacturing of microstructures
that resolves most of the above issues. We propose a
compact, precise, and arbitrarily parametrised construc-
tive model based on real functions of point coordinates
allowing for the procedural generation of spatially co-
herent microstructures, which can undergo blending,
offsetting, deformations, and other geometric opera-
tions. Such models can be automatically fitted to scan
data of real microstructures, and can be directly ren-
dered and manufactured without generating any auxil-
iary representations.

In this work, we concentrate on modelling regular mi-
crostructures such as lattices and cellular structures, as
well as irregular microstructures such as porous media.
By ”lattice” we mean a periodic spatial structure con-
sisting of crossing rods, laths or other thin strips of ma-
terial. We use the term ”cellular structures” to desig-
nate the periodic replication of the given geometry in-
side some unit cell within a bounding box of known
size and location. The term ”porous media” describes
various materials that exhibit the property of irregular
porosity through an interconnected network of cavities
(pores) within a solid material stratum. We try to avoid
using the term ”scaffold” because it can be applied to
both types of structures.

In the next section we outline the prior work on all
the above mentioned types of microstructures as well as
the background of the Function Representation (FRep)
in geometric modelling. Sections 3 and 4 respectively
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present the proposed approaches to modelling regular
microstructures (lattices and cellular structures) and ir-
regular structures (porous media). Fitting of parameter-
ized template models to scan data is presented in Sec-
tion 5. Section 6 briefly outlines the approaches to di-
rect rendering and direct fabrication avoiding auxiliary
representations. The paper is concluded with some dis-
cussion of open problems in the last Section 7.

2. Prior work

In this section we first describe the main approaches
to modelling microstructures and then introduce the ba-
sics of the Function Representation for geometric mod-
els.

2.1. Regular microstructures

Generation of a polygonal model of a regular lat-
tice with cubic elements for visualization is quite trivial
using standard surface primitives such as cylinders or
blocks. The problem becomes more complex if a valid
solid (BRep) model is required for further geometric op-
erations (such as blending between the lattice rods and
the outer surface) or digital fabrication. Existing publi-
cations provide quite limited information on procedures
for the generation of lattice models and primarily con-
centrate on lattices for specific applications.

A geometric modelling method for creating confor-
mal lattice structures was proposed in [5]. Regular cel-
lular structures are built as a set of unit trusses (cells).
The solid model of each unit truss is created using
Boolean operations performed in a commercial solid
modelling system. Copies of the unit truss are then
directly stacked together to generate the model of the
entire cellular structure. However, it was pointed out
that it took significant computational resources to gener-
ate the models of lattice structures since the generation
of each unit truss required several Boolean operations.
This work was extended in [6] to more general regu-
lar internal structure design with truss geometry given
as a mesh prior to its replication. The proposed 3D tex-
ture mapping approach is based on mapping of a 3D mi-
crostructure pattern (truss geometry) into a design space
to generate internal cellular structures which then are
combined with a given CAD model of the object.

A classification of regular microstructures is given
in [1] along with the outline of the modelling pro-
cess in biomedical applications involving predefined
microstructure patterns and scanned biological shapes
such as human bones. The typical steps of lattice de-
sign in biological tissue engineering and fabrication are

described in [4]. A commercial BRep solid modelling
system is used to generate lattices for bone implants
with the selected spatial structure parametrised by pore
sizes, porosity, and surface area to volume ratio. The
overall required shape of the model is taken from hu-
man body data collected by magnetic resonance imag-
ing. The Boolean intersection is applied to produce a
lattice within the patient’s bone shape.

Optimization of lattices is presented in [7][8] using
maximal strength, minimal weight, and other criteria.
The lattice structure (namely, connections between lat-
tice nodes and positions of nodes) is optimized to satisfy
the selected criteria.

2.2. Irregular microstructures
Modelling irregular microstructures such as porous

media is much more complex than modelling regu-
lar microstructures because of irregularities essential
to pores’ locations and shapes. It can be stated that
available CAD methods and tools are not adequate for
solving this problem. There are two main approaches
pursued in recent works: image-based reconstruction
[1][9][10] of a surface and voxel models, and pseudo-
random simulation [11][12][13].

The process of obtaining geometric surface models
for biological porous tissues is described in [1]. It in-
cludes obtaining 2D images of the internal tissue struc-
ture using computer tomography and other techniques;
reconstruction of a 3D voxel model from a set of im-
ages; and construction of a surface model through the
tessellation of a selected isosurface or by the voxel
model segmentation and fitting with predefined param-
eterized surface primitives.

To reconstruct a 3D model of a porous structure, the
authors of [9] construct a voxel model from a set of
cross-section images of a biological material sample.
The voxel model is segmented into three regions: ex-
terior, material and pores. A graph is built reflecting
individual pores and connections between them. A ge-
ometric model can be generated and visualized where
each pore is represented by a sphere with the estimated
radius.

A process for customised modelling of fitting micro-
implants into bones based on a volumetric texture syn-
thesis is described in [10]. First, a 3D model is recon-
structed from digitized slice-by-slice 2D images along
with extracting microstructures from 2D/3D images.
Then volumes in the mesh which represent ”unhealthy”
holes in the bone structure (characterised by sparse and
relatively thin trabeculae) are identified. Each 3D hole
is in-filled using irregular samples taken from a match-
ing ”healthy” region located around the hole. The Ex-
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tended Voxel-by-Voxel (EVolV) texture synthesis algo-
rithm allowing mapping a matching block of voxels
rather than only one voxel has been proposed for that
purpose.

A direct approach to 3D modelling of porous media
is presented in [11]. First, a number of microspheres,
which can be packed within the given volume, is es-
timated. Then the selected number of microspheres
is randomly packed in the volume. The Boolean sub-
traction of the microspheres model from the basic vol-
ume model using a commercial BRep modeller results
in the porous volume structure. The experiments were
conducted with a quite limited number of microspheres
(about 50).

A model of a porous object is represented in [12]
as a Constructive Solid Geometry (CSG) tree with
stochastically generated primitives (spheres) represent-
ing pores in the leaves of the tree structure and regular-
ized Boolean operations placed in its nodes. The struc-
ture analysis is performed on the voxelized version of
this model. A 3D porous structure can be built as a stack
of thin extruded 2D slices. The structure in each slice is
modelled in [13] using a Voronoi diagram built for the
structure generating points moving on the plane.

We can conclude that BRep and voxels remain the
main models researchers use to represent microstruc-
tures. The major drawbacks of these representations
were discussed in the previous section. In the remainder
of the paper we tackle these problems using procedural
function-based models in the form of the Function Rep-
resentation (FRep).

2.3. FRep basics

The main idea of the function-based modelling (or
”implicit surface” modelling [14]) is to define point sets
via trivariate scalar fields or continuous real functions of
point coordinates F(x,y,z). The point membership de-
pends on the sign of the defining function evaluated at
that point, typically points with positive and zero func-
tion values are included in the set, while zero-level sub-
set is considered a boundary. This approach to geomet-
ric modelling was extended in the Function Represen-
tation (FRep) [15] by explicitly introducing elementary
objects (primitives) and operations on using the corre-
sponding operations on defining functions.

One particular class of the FRep operations are set-
theoretic ones defined by R-functions [16][17][15]. An
object resulting from the set-theoretic operations has the
defining function expressed as follows:

f3 = f1 ∨α f2 for the union;

f3 = f1 ∧α f2 for the intersection;

f3 = f1\α f2 for the subtraction;

(1)

where f1 and f2 are defining functions of initial ob-
jects and∨α,∧α, \α are signs of R-functions. One of
the classes of R-functions is

f1 ∨1 f2 = max(f1, f2)

f1 ∧1 f2 = min( f1, f2)

f1\1 f2 = min( f1,− f2)

(2)

These functions areC1 discontinuous at all points
where f1 = f2. R-functions of another class:

f1 ∨0 f2 = f1 + f2 +
√

f 2
1 + f 2

2

f1 ∧0 f2 = f1 + f2 −
√

f 2
1 + f 2

2

f1\0 f2 = f1 − f2 −
√

f 2
1 + f 2

2

(3)

haveC1 discontinuity only at the points where both ar-
guments are equal to zero.

Implicit surfaces have been recently applied to mod-
elling the internal structure of a biological cell [18] in-
cluding thousands of irregularly shaped components on
the micro-level. Stolte [19] presented replication of im-
plicit surfaces in space using the triangle wave function.
Shapiro [17] showed that a periodic regular structure
such as a chess board can be modelled using trigono-
metric functions defining horizontal and vertical strips,
which then are combined using the set-theoretic union.
We further develop the logical construction based mod-
eling of microstructures. Our experimental models are
implemented in the HyperFun language [20], which
fully supports the FRep modelling paradigm.

3. Modelling regular microstructures

To overcome the known problems of the BRep and
voxel based models, we propose to describe microstruc-
tures using real functions of point coordinates combined
in a constructive manner following the FRep approach
presented above. The main requirement for a defining
function is to have at leastC0 continuity. FRep mod-
els of microstructures are very compact, precise, and
arbitrarily parameterized. They can undergo geometric
transformations typical for FRep models: set-theoretic
operations, blending, deformations, and many others.
In this section, we model infinite regular lattices using
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trigonometric periodic functions and R-functions. For
infinite cellular structures with general unit cell geome-
try, we apply a periodic space mapping while maintain-
ing the defining function continuity.

3.1. Modelling lattice microstructures

We propose the following approach to modelling in-
finite regular 3D lattices:

1. a set of infinite parallel slabs orthogonal to each
coordinate axis can be defined by a corresponding
periodic function;

2. the intersection of two of these sets results in the
infinite rods parallel to one of the axes;

3. the union of rods gives us an infinite rectangular
lattice.

To define the infinite slabs, the following functions can
be applied:

sx(x, y, z) = sin(qxx + px) − lx

sy(x, y, z) = sin(qyy + py) − ly
sz(x, y, z) = sin(qzz + pz) − lz

(4)

where the inequalitysx ≥ 0 describes a set of slabs or-
thogonal to x-axis and parallel to each other, the fre-
quencyqx defines the distance between parallel slabs
along x-axis, the phasepx defines the position of slabs
on the x-axis relative to the origin, and the threshold
−1 < lx < 1 together with the frequency defines the
thickness of each slab. The slabs orthogonal toy andz
axes are symmetrically defined by the functionssy and
sz.

The next step is to describe three sets of rods parallel
to each axis:

rx(x, y, z) = sy ∧α sz

ry(x, y, z) = sx ∧α sz

rz(x, y, z) = sx ∧α sy

(5)

Here the inequalityrx ≥ 0 describes a set of rods par-
allel to x-axis and obtained as the set-theoretic intersec-
tion between slabs orthogonal toy-axis andz-axis using
an R-function (Eqs. 1-3). The final infinite regular lat-
tice is a union of all the rods and can be described as
follows:

g(x, y, z) = rx ∨α ry ∨α rz

or

g(x, y, z) = (sy ∧α sz) ∨α (sx ∧α sz) ∨α (sx ∧α sy)
(6)

According to the properties of R-functions, the above
function with α = 0 for the regular lattice isC1-
continuous in the entire domain, except its surface edges
resulting from the intersection and union operations.
Note that all the parameters in the above lattice model
can be made variable. Fig. 1 illustrates the construc-
tion of the regular lattice with some constant parame-
ters (Fig. 1 a,b) and with the rod thickness controlled
by the thresholds linearly changing along the horizontal
axis (Fig. 1c).

The rods have square in cross-section. Other types
of cross-sections can be obtained by using affine trans-
formations over the slabs. To obtain ellipse or circle in
cross-section, offsetting operation can be used. In this
case in 4 we setl = 1 and apply offset:

sx(x, y, z) = sin(qxx + px) − 1

sy(x, y, z) = sin(qyy + py) − 1

sz(x, y, z) = sin(qzz + pz) − 1

rx(x, y, z) = sy ∧α sz + dx

ry(x, y, z) = sx ∧α sz + dy

rz(x, y, z) = sx ∧α sy + dz

(7)

In casedx ≡ dy ≡ dz we obtain circle in cross-section
for all the rods, otherwise we obtain ellipse. Fig. 2 illus-
trates the construction of the regular lattice with circle
in cross-section.

All operations that can be applied to functionally-
based models can be applied to lattices. For example,
we can obtain cylindrical lattices by using mapping to
cylindrical coordinates (Fig. 3a). Note that this map-
ping is a non-linear transformation, and because of that
the width of the lattices increases with increasing of the
distance from the centre of the cylinder. By applying
the tapering operation, we can vary a frequency of the
lattices in the selected area or globally (Fig. 3b). Also
we can modify the linear nature of lattices by applying
the twist operation (Fig. 3c).

The controlled blending versions of set-theoretic op-
erations are applicable to FRep objects [15]. Instead
of producing sharp edges, these operations result in
smooth transitions between two given surfaces while
a set operation is applied to two solids. The formula-
tion of a blending operation is based on the displace-
ment added to a standard R-function, for example for
the blending intersection, we have:

f1 ∧b f2 = ( f1 ∧α f2) +
a0

1+
(

f1
a1

)2
+
(

f2
a2

)2
(8)

where∧α stands for one of the R-functions defining the
intersection (Eq. 3) and the additional term defines the
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(a)

(b)

(c)

(d)

Figure 1: Function-based infinite regular lattice with (a) constant pa-
rameters; (b) triple frequency (c) variable parameters, the rod thick-
ness grows linearly along one axis; (d) rods smoothed by blending.
Zooming is provided for images (a), (b) and (d).

(a)

(b)

Figure 2: Construction of cylindrical rods: a) Union of basic cylindri-
cal rods forming a lattice b) Applying blending union between rods
instead of the pure union
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(a)

(b)

(c)

Figure 3: Applying transformation to function-based lattices: a)
Cylindrical mapping b) Tapering c) Twisting

displacement with the parametersa0, a1, a2 controlling
the shape of the blend. For example,a0 < 0 corresponds
to a blend with removed material (chamfer). Fig. 1d
illustrates an application of this operation to the rods
construction, where the intersection operations of Eq. 5
are replaced by the blending intersection (Eq. 8). Sim-
ilarly, blending union operations can be applied to the
rods forming the lattice as shown in Fig. 2b.

It is important for most of applications to be able to
combine a microstructure with the given external shape
of the object. Typically a thin shell of the object is cre-
ated and the microstructure is truncated to fit inside the
shell. These operations for the functionF defining the
initial external shape can be described as follows:

Fo(x, y, z) = F(x, y, z) − lo

This function defines the internal offset of the given
shape, wherelo > 0 is the offset threshold. The shell
of the object is defined as the subtraction of the offset
from the initial shape:

Fs(x, y, z) = F\αFo

The constant thickness of the thin shell can be
achieved with this operation for defining distance func-
tions or with normalized functions approximating the
distance function near the surface [21].

The finite lattice within the object can be obtained by
intersecting the infinite lattice with the given object:

Fg = g ∧α F

and finally the object shell with the microstructure in-
side has the defining function

Fm(x, y, z) = Fs ∨α Fg = (F\αFo) ∨α (g ∧α F) (9)

The above construction is illustrated by Fig. 4a,
where the functionF defines a sphere. If the union oper-
ation in Eq. 9 is replaced by a blending union operation,
the microstructure rods will be blended with the shell as
shown in Fig. 4 b. More complex shapes can undergo
similar operations. Fig. 5 illustrates a practical example
of the lattice scaffold design for a jaw bone. The given
shape in this case is an FRep model fitted to a scanned
bone.

The lattice parametrization resulting in variable den-
sity and rod sizes can be made dependent not only on
spatial coordinates, but on other factors. In biomedical
engineering the lattice scaffolds have to be denser near
the surface. This can be achieved by making lattice pa-
rameters dependable either on the distance to the surface
or, in the case of FRep object, on the defining function,
which takes zero value on the boundary (see Fig. 4c).
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(a)

(b)

(c)

Figure 4: Combining microstructures with external shapes:(a) union
of a spherical shell with a regular lattice; (b) blending union between
the rods of the regular lattice, and between the rods and the spheri-
cal shell; (c) lattice parametrization depending on the distance to the
external surface.

(a)

(b)

(c)

Figure 5: Lattice scaffold design for a jaw bone: (a) the given shape of
a jaw bone; (b) truncation of the microstructure by intersecting it with
the bone model; (c) the resulting scaffold as union of the truncated
microstructure with the object shell.
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(a) (b)

(c)

Figure 6: Discontinuity for geometric connectivity: (a) contour plot
of the unit cell from figure 9, (b) contour plot of the replication, (c)
zoom on the area ofC0 discontinuity.

3.2. Modelling cellular microstructures

The known approach to modelling microstructures
based on the cell (truss) replication is similar to tex-
ture tiling. The modelling process consists of two steps:
first, a geometric model of the base object (so-called
unit cell) is prepared, and secondly, the unit cell is repli-
cated in space to form the cellular microstructure. In the
case of BRep and voxel models, a finite set of unit cell
copies are combined inside a finite bounding box. To
obtain an FRep model of an infinite cellular structure,
we apply a periodic function defining a space mapping
to the FRep model of the unit cell geometry.

Given a geometric object defined by the continuous
real function f (x, y, z) on the intervalI = (xmin ≤ x ≤
xmax, ymin ≤ y ≤ ymax, zmin ≤ z ≤ zmax) and the peri-
odic replication functiong(t) such asg(t) ∈ [0, 1]∀t, the
cellular model is defined by the following equation:

r(x, y, z) = f (xmin + g(x) ∗ (xmax − xmin),

ymin + g(y) ∗ (ymax − ymin),

zmin + g(z) ∗ (zmax − zmin))

(10)

The object defined by the functionf on I is called

(a)

(b)

Figure 7: Application of different types of replication functions for
blending operation of the object with cellular structures:(a) Sawtooth
wave, (b) Triangle wave.
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(a)

(b)

(c) (d)

(e) (f)

Figure 8: Unit cell replication using the Fourier sawtooth wave: (a)
Fourier sawtooth function with 50 harmonics; (b) zoom to themost
problematic area of the Fourier sawtooth (marked in grey) creating
artefacts; (c) unit cell geometry; (d) unit cell replication with 20 har-
monics; (e) zoom to the artefacts in the neighbourhood of theunit cell
faces; (f) unit cell replication with 50 harmonics.

(a) (b)

(c) (d)

Figure 9: Cellular microstructures: (a) unit cell, (b) replication of the
unit cell, (c) unit cell with added blending, (d) replication of the unit
cell with blending.
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a unit cell. The function for the unit cell has to pro-
vide the connectivity necessary for the properties of the
cellular structure. We distinguish two different types of
connectivity. First is geometric connectivity, where the
criterion is:

f (xmin, y, z) = 0, if f (xmax, y, z) = 0 ∀y, z ∈ I

f (x, ymin, z) = 0, if f (x, ymax, z) = 0 ∀x, z ∈ I

f (x, y, zmin) = 0, if f (x, y, zmax) = 0 ∀x, y ∈ I

(11)

This means the object’s boundary curves at the oppo-
site faces of the unit cell bounding box have to be con-
gruent. This property ensures that the replicated cells of
the overal cellular structure are connected to each other
at these curves.

The second type is full connectivity, where the crite-
rion is:

f (xmin, y, z) = f (xmax, y, z) ∀y, z ∈ I

f (x, ymin, z) = f (x, ymax, z) ∀x, z ∈ I

f (x, y, zmin) = f (x, y, zmax) ∀x, y ∈ I

(12)

Such a property ensures the defining function conti-
nuity for the entire cellular structure.

We select the sawtooth function as the basic replica-
tion function:

g(t) =
1
2
+ (

t
a
− f loor(

t
a
+

1
2

)) (13)

Because of the nature of the sawtooth function, the re-
sulting cellular model has geometric discontinuity on
the faces of the cells in case the unit cell has no con-
nectivity property. In case of the geometric connectiv-
ity, we obtain geometric continuity of the entire model,
however the resulting function can beC0-discontinuous
on the faces of each cell (see Fig. 6). In case of the full
unit cell connectivity we haveC0-continuous function
in the entire domain, butC1-discontinuity can appear
on the cell faces and cause surface artefacts in blend-
ing and other operations. However, we can obtainC1-
continuous function for the unit cell geometry symmet-
ric in respect to the planes parallel to the unit cell faces
and passing through its centre. In this case we should
use a different replication function, the triangle wave in-
stead of the sawtooth wave:

g(t) = 1+
2
π

arcsin[sin(π(t −
1
2

)] (14)

A similar approach is presented in [19]. For trian-
gle wave we obtainC1-continuous function, but restrict
unit cell to be symmetrical as described above (see Fig

(a)

Figure 10: Frequency variation for cellular structure.

7). In general, the differential properties of the regular
lattice models described earlier are better than those of
the cellular structures. On the other hand, regular lat-
tices are quite limited in their geometry and require new
formulae for each geometry type.

We can apply a Fourier series representing the saw-
tooth wave instead of the standard sawtooth function:

g(t) =
1
2
−

1
π

n
∑

k=1

sin(2πkat)
k

(15)

Heren is the number of harmonics in the series. The
Fourier series function allows to have continuity ofC1

and higher. However, in this case we have to select a
very big number of harmonics to have a good approxi-
mation of the sawtooth function. Fig. 8 illustrates the
fundamental problems with employing the Fourier saw-
tooth wave for the replication. In Fig. 8d and Fig. 8f
it can be seen that even 50 harmonics are not enough
for a good approximation. Moreover, the replication
based on the Fourier series adds artefacts (projection-
type copies of the unit cell geometry) to the neighbour-
hood of the cell faces (clearly visible in Fig. 8e), which
is inappropriate in most cases and needs further research
for improvement.

Fig. 9 illustrates the steps of the cellular microstruc-
ture design. First, an FRep model of the unit cell has
to be defined (Figs. 9a, c). Then, the replication func-
tion is applied to the part of the model placed inside the
unit cube (shown in grey). Note that the truncation of
the unit cell geometry by the unit cube occurs automat-
ically due to the sawtooth function construction. The
resulting cellular microstructure (Figs. 9b, d) is infinite
in space and can be combined with an arbitrary geomet-
ric object similar to the case of lattices. In case the mi-
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crostructure is not manufacturable as in Fig. 9b (it will
not hold together after the support material is removed)
some modifications to the unit cell geometry have to be
made such as bounded blending [22] between its dis-
connected components (Fig. 9c).

We can apply additional transformation for replica-
tion function to obtain variation of the shape of the re-
sulting cellular structure. For example, we can have fre-
quency in the sawtooth function be dependent on the
coordinate value and thus vary the frequency (see Fig.
10).

4. Modelling irregular microstructures

Irregular microstructures such as porous media need
an approach different from the one suitable for mod-
elling the regular rectangular lattices. As we could see
from the survey of existing works, interconnected spher-
ical pores with pseudo-random variations of sizes and
positions are typically used in the porous structure anal-
ysis. We can replicate the basic pore shape with a pe-
riodic space mapping similar to cellular structures, but
the overall microstructure connectivity is not an issue in
this case. We propose the following modelling proce-
dure:

1. select a basic pore shape such as a sphere or an
ellipsoid;

2. replicate the basic pore in space with variable pa-
rameters, if necessary;

3. introduce pseudo-random variations of the pores
positions and sizes;

4. subtract the pores from the given initial shape.

The proposed procedure is illustrated by Figs. 11 a-
c. A basic pore with the defining functionFp can be
replicated in space (Fig. 11a) by the following space
mapping:

x′ = px sin(qxx)

y′ = py sin(qyx)

z′ = pz sin(qzx)

Fr = Fp(x′, y′, z′)

(16)

where px > 0 specifies a linear scaling for thex-
coordinate andqx > 0 controls the frequency of the
basic pore replication along thex-axis. The replicated
pores make actual cavities in the initial shape (sphere in
Fig. 11) with the defining functionF through the set-
theoretic subtraction:

Fm(x, y, z) = F\αFr

(a)

(b)

(c)

(d)

Figure 11: Function-based porous media modelling: (a) the basic pore
replicated in space and subtracted from the initial shape; (b) the pore
sizes made decreasing with the distance to the surface; (c) the pseudo-
random variations of pores’ parameters; (d) the cross section of a sam-
ple bone for comparison.
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Similar to the case of lattices, a pore size can be made
variable depending on the distance to the initial surface
(Fig. 11b). Finally, the pseudo-random deformations of
pores can be introduced by adding a solid noise function
[23] to any of the model parameters. In the example of
Fig. 11c, the Gardner noise [23] with different param-
eters was added to the values of scale p, frequency q,
and the basic pore functionFp. The solid noise param-
eters were selected to generate the pore shapes similar
to those in the sample bone cross-section (Fig. 11d).
More sophisticated methods are definitely required to
ensure the model adequacy to the samples of natural
porous media. For example, the model parameters can
undergo non-linear fitting to satisfy some criteria such
as the minimal difference between the model porosity
and the real object porosity in the case of irregular struc-
tures.

5. Fitting microstructures

We need to compare generated microstructures with
those obtained by means of magnetic resonance imag-
ing and other measurements of natural or artificial ob-
jects. This is useful for both the model adequacy analy-
sis and the parameters estimation of the newly measured
objects.

For each type of microstructure (lattice, cellular, non-
regular) and each domain of application, it is possible
to design a generic parameterized template model. This
model can later be tuned to fit the acquired data. For
example, a model for the cellular microstructure illus-
trated in Fig. 9b with the union of three torii as a unit
cell, can be adapted to various sets of acquired data that
would correspond to a similar structure but with differ-
ent parameter values (bigger internal radius for the torii,
different center locations, etc). In this section, we inves-
tigate algorithms for fitting a parameterized microstruc-
ture model to a set of three dimensional points posi-
tioned on or near the surface of a microstructure object.

Parameters estimation is done by minimizing the
residual error of the model against the measured data
points. The residual error of the model can be simply
computed as the sum of the squared values of the model
defining function at each sample. The residual error
to be minimized is a complicated non-linear function
of the model parameters, and applying standard meth-
ods such as the Levenberg-Marquardtalgorithm [24, 25]
can easily fail (i.e., converge to a local minimum) un-
less starting from a good approximation of the parame-
ters. To solve this problem, we use a combination of a
stochastic global optimization algorithm known as sim-

ulated annealing (SA) [26, 27, 28] with the Levenberg-
Marquardt algorithm.

5.1. Algorithm

Our algorithm optimizes the parametersp of a mi-
crostructure model by minimizing the objective (fit-
ness) functiong defined using the microstructure tem-
plate model functionf and the point setps as fol-
lows:

1: initialize p, pOPT ← p
2: G ← g(p), GOPT ← G
3: T ← T0

4: m← 0
5: while T > Tmin do
6: for m = 0 to NT do
7: for each parameteri do
8: ptrial[i] ← p[i] + c[i] ∗ r
9: end for

10: G′ ← g(p)
11: ∆E ← G′ −G
12: if ∆E ≤ 0 then
13: G ← G′

14: p← ptrial

15: if G′ < GOPT then
16: GOPT ← G
17: pOPT ← p
18: end if
19: else
20: G ← G′ with probabilitye−

∆E
T

21: p← ptrial

22: end if
23: end for
24: T ← rT ∗ T
25: end while
26: pOPT ← LM(g, pOPT )
27: returnpOPT

The lines 1 to 4 initialize different variables of the
algorithm: T is the variable that simulates the temper-
ature of the system in the SA algorithm and decreases
with each iteration,G keeps track of the value of the
previous objective function evaluation andm defines the
number of steps before a reduction of the temperature.
The combination of the initial temperatureT0, the re-
duction factorrT andNT forms the cooling schedule of
the SA algorithm. In our experiments, we used the fol-
lowing values:T0 = 1000,rT = 0.85 andNT = 200.

The main part of the algorithm is the loop in the lines
5 to 25. In the lines 7 to 9, a new vector of parameters is
generated by adding to each parameter a random value
in the range [−1, 1]. The variablec is used to limit the
search space in each direction. If a parameter is outside
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of the search space after its modification, the step 8 is
iterated one more time.

In the lines 12 to 18, if the new parameter values re-
sult in improvement they are always kept. A worst solu-
tion can still be accepted with a probabilitye−

∆E
T (lines

19 to 22). The best vector of parameters and the best
function value found so far are also kept in lines 15 to
18.

After NT function evaluation steps, the temperature
of the system is decreased (line 24), making the accep-
tance of worst solutions less likely. Finally, after the
temperature has reached some minimial threshold (other
termination criteria can be used as well), the Levenberg-
Marquardt algorithm is used with the best found solu-
tion pOPT as an initial estimation (line 26).

5.1.1. Choices for the objective function

The presented algorithm aims to minimize the objec-
tive function g defined using the microstructure tem-
plate model functionf and the set of the points scat-
tered on the surfaceps. The simplest choice for the ob-
jective function is to use the least square error:g(p) =
∑

i f 2(ps[i], p).
A slightly better choice is to use a decreasing expo-

nential: g(p) =
∑

i e−
f 2(ps[i],p)

σ2 , which acts similarly to
counting the number of points which are within a dis-
tanceσ to the surface represented byf = 0. In this case
the problem becomes a maximization problem and the
signs in the algorithm above should be changed accord-
ingly (lines 12 and 15).

5.1.2. Choices for the termination criteria

The termination criteria in the above algorithm is
rather simple: it terminates when the system tempera-
ture is below the given thresholdTmin. In our experi-
ments, we usedTmin = 10−5. More sophisticated termi-
nation criteria involve monitoring the values of the ob-
jective function during the algorithm’s iterations. The
following criteria was used in our experiments: the loop
(lines 5 to 25) terminates ifGOPT − G′ < ε and if the
difference betweenG′ and the last five best values ofG′

are not exceedingε. A value of 100 was used forε in all
our experiments.

5.2. Experimental results

We illustrate our algorithm with three examples using
two types of regular micro-structures: lattice and cellu-
lar.
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Figure 12: Evolution of the objective function with the number of
iterations of the SA algorithm for a regular lattice model.

5.2.1. Regular lattice
The first example corresponds to the regular lattice

model illustrated in Fig. 4c. Our model has seven pa-
rameters corresponding to the scale and frequency of
the slabs (see Eq. 4) and the parameters of the blending
set operations (see Eq. 8). The frequency and scale of
the model vary in space: they are controlled by the dis-
tance to the shell which is used to interpolate between
two boundary values of the frequency and scale.

A set of 385,535 points scattered on the surface of the
object is used as the target for fitting the chosen seven
parameters of the model. The decreasing exponential
(see section 5.1.1) with the valueσ = 10−3 was used as
the objective function optimized by the algorithm dis-
cussed in section 5.1.

The termination of the main loop occurred after 42
iterations, taking approximately 20 min on a Sun work-
station with 2.8Ghz Intel Xeon processors. The evo-
lution during the algorithm’s iterations of the value of
the objective function corresponding to the best solution
(GOPT and pOPT in the algorithm above) is illustrated
in Fig. 12. The initial values of the parameters are
randomly selected: 5.624, 2.581, 1.921, 3.254, 4.743,
0.941 and 3.541. The final values are: 8.999, 3, 0.759,
0.84, 0.959, 3.103 and 3.103 corresponding respectively
to the scale and frequency of the slabs (2 parameters for
the scales and 2 parameters for the frequencies) and the
three parameters controlling the blending union (see Eq.
8).

5.2.2. Cellular microstructure
The second example used to illustrate our algorithm

corresponds to the cellular microstructure in Fig. 9b. A
template model with 14 parameters is used and fitted to
points scattered on the surface of the object. The param-
eters consist of the center coordinates of the torii and
their radii as well as the scale parameter of the sawtooth
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Figure 13: Evolution of the objective function with the number of
iterations of the SA algorithm for the cellular microstructure made of
three torii.

function (see Eq. 13).
The data set is made of 53,400 points scattered on

the surface of the object. The same settings as in the
previous example were used for the algorithm. The
termination of the main loop occurred after 35 itera-
tions in approximately 10 min. The evolution of the
objective function corresponding to the best solution is
illustrated in Fig. 13. The initial values for the pa-
rameters are randomly chosen: 5.187, 0.258, 0.3778,
0.581, 0.479,−0.985, 0.607,−0.821,−0.016,−1.126,
−1.248,−0.331,−0.668, and−0.396. The final values
are: 5.003, 0.999, 0.999, 0.999, 0.1,−0.999, 0.999, 0, 0,
−0.999,−0.999, 0.999, 0, and 0.999 corresponding re-
spectively to the scale parameter of the sawtooth func-
tion, the radii of the torii and the coordinates of each
torus center.

We measure the approximation error at each point by
the square of the microstructure function value at that
point. The best found parameters are used in the model.
Fig. 14 illustrates the point-set on the surface where
each point is coloured according to the approximation
error.

The model for this cellular microstructure can be ex-
tended by replacing the union operation between the
unit cells by a blending union as illustrated in Figs. 9c,
d. If the blend described in Eq. 8 is used, then three
more parameters are added to the precedent model. If
the bounded blend operation described in [22] is used,
then four additional parameters are needed. We need
also to add at least one more parameter for the function
localizing the blend. We found in our experiments that
fitting the parameters corresponding to the blending op-
eration was a difficult task. Fig. 15 plots the least square
error of the model for different values of the coefficient
a0 governing the blend and the radiusr of the sphere
used to localize the blend. It can be seen that the pa-

Figure 14: Point-set on the surface coloured according to the approx-
imation error (f 2) of the optimized model for the cellular microstruc-
ture.

rameter space is extremly flat making the optimization
difficult.

Evolution of the objective function value with the
number of iterations is illustrated in Fig. 16. The al-
gorithm converged to a reasonable result after 35 it-
erations in approximately 20 min. The initial values
for the parameters are randomly chosen: 8.520, 0.314,
0.388,−0.482,−1.349,−0.0450, 1.192,−0.773, 0.082,
−0.017, 1.065,−0.462, 0.562 and 0.223. The final val-
ues are: 5.001, 0.995, 0.1, −0.997, 0.995, 7e − 05,
1e − 5, −0.995,−0.996, 0.996, 1e − 05, 0.996, 0.795,
0.081 corresponding respectively to the scale parameter
of the sawtooth function, the torii radius (2 parameters),
the coordinates of the torii centers (9 parameters) and
finally the parameters for the bounded blending union
(last 3 parameters).

For the first two examples, it was possible to use a
faster cooling schedule (by decreasingNT or T0) while
getting similar results. However for this third example,
a slow cooling schedule was needed to reach an accept-
able result.

5.3. Discussion

Minimization (or maximization) of non-linear objec-
tive functions is in general a difficult task if we do not
know apriori a good starting point. The algorithm pro-
posed here has provided acceptable results in our ex-
periments. This type of algorithm is however expen-
sive as it requires a significant number of evaluations
of the objective function. For our domain of applica-
tion, the objective function is defined itself as the sum
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Figure 16: Evolution of the objective function with the number of
iterations of the SA algorithm for the cellular microstructure using
blend.

over a number of points of a function of space coordi-
nates. The objective function is consequently already
expensive to compute (in the examples described above
the sums were over approximately 400,000 and 60,000
points). The reduction of the size of the input point set
in a pre-processing step is one possible approach to de-
crease the time spent for optimization. This can be done
using clustering (for example, k-means clustering) and
replacing each cluster by its closest neighbour in the
original point-set (using, for example, a kd-tree). We
have not explored this possibility yet.

In the evaluation of the objective function, each com-
putation in the sum is independent, so it is easy to dis-
tribute the total computation using several threads on a
multi-core (or multi-cpu) computer and this can provide
an improvement of the running time.

The cooling schedule used is a reduction by a con-
stant factorrT (0.85 in our experiments) of the previous
temperature at everyNT time step (200 in our exper-
iments), starting from an initial temperatureT0 (1000
in our experiments). The cooling schedule is an im-
portant part of the algorithm: if it is too slow, it will
result in a long running time for the algorithm; if it is
too fast, the algorithm may converge to a local optimum
only. A lower starting temperature (100) and a smaller
NT worked for the first and second examples described
above but failed for the last one. These parameters are
likely to be dependent on the model, and we gave val-
ues that had worked for the examples above. They can
probably be better estimated by an initial sampling of
the objective function but this is a part of a future work.

6. Direct rendering and fabrication

Application areas of microstructure modelling such
as composite material design and biomedical tissue en-
gineering require both model rendering and manufac-
turing procedures. Typically a function-based model
has to be converted to some auxiliary representations
for subsequent rendering using modern graphics hard-
ware and then for manufacturing on rapid prototyping
or 3D printing equipment. The conversion to BRep in-
volves an isosurface polygonization (tessellation) while
the voxelization is needed to produce a voxel array rep-
resentation. The disadvantages of both these auxiliary
representations in the case of microstructure modelling
were discussed in Introduction. A more promising ap-
proach can be calleddirect rendering and fabrication.

Direct rendering of isosurfaces can be done with ac-
celerated ray-tracing/ray-casting. In [29] it was shown
that using of GPU allows direct rendering of relatively
complex function-based models with interactive rates
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(a)

(b)

(c)

Figure 17: Near real-time ray-casting of a spherical thin shell with
the internal regular lattice of different density; GPU rendering rate
remains about 20 frames per second independent of the microstructure
complexity (image size 512*512)

Figure 18: The model of Fig. 4c fabricated in several forms - from
right to left: polyamide material using a 3D Systems Sinterstation
HiQ, impregnated plaster using a ZCorp 3D printer and FDM de-
posited plastic filament using a Stratasys Dimension 3D Printer.

on modern graphics hardware (PC with NVidia 9600
graphics card). An example of ray-casting of the sphere
with microstructures is shown in Fig. 17. As the com-
plexity of the function does not depend on the density of
microstructures, the rendering time is almost the same
for lattices with different densities on the given graphics
hardware.

Several of the FRep based microstructure models de-
scribed above have been fabricated using a variety of
digital fabrication machines and materials. For exam-
ple, Fig. 18 shows a fabricated model of a lattice
parametrised by the distance to the external surface (Fig.
4c). The models were first polygonized and then out-
put as STL files. The STL files were imported into
the various software packages for driving the machine
where they were checked for surface defects and then
machine paths were generated based on layered slices
of the STL and manufacturing constraints. Many of the
models must also go through post processing to remove
support structure and/or add additional strength. During
the manufacturing process, the STL file format created
many issues for the slicing, path planning and fabrica-
tion of some of the fine microstructures.

A much better approach is to directly fabricate the
FRep model without poor intermediate formats such as
STL. This has been previously proposed in [30] and is
an active ongoing focus of our research. One possibility
is to produce a raster image for each layer of manufac-
turing at the machine resolution, which is an acceptable
input for some existing machines. Thus the microstruc-
ture could be procedurally defined on a voxel-grid that
corresponds directly to the layer thickness and to the

17



(a) (b)

(c) (d)

Figure 19: Raster image layers for direct fabrication of a multi-
material version of the object of Fig. 4c: microstructure rods are made
of one material and another material is added by blending

pixel spacing of the printing process. Fig. 19 shows
several raster image layers of a multi-material version
of the object in Fig. 4c. It is quite easy to distinguish
using the FRep model the lattice rods and the material
added by the blending union operation. In this model,
the rods are made of one material and another material
is added by blending.

Another choice is to directly control the digital fab-
rication process including the tool motions and mate-
rial deposition. However, the obstacles presented by the
proprietary nature of most digital fabrication technolo-
gies, such as access to machine protocols and control
commands, require open hardware systems such as the
Fab@Home or RepRap 3D printers. Unfortunately, the
resolution of these free and open source systems is cur-
rently not competitive with high end commercial ma-
chines necessary for fine resolution microstructures.

7. Discussion and conclusions

We have proposed several approaches that use pe-
riodic functions in different ways for modelling both
regular and irregular microstructures within the FRep
framework. In the case of lattices, these functions serve
to directly define the point membership by analysing the
sign of the function. In the case of cellular structures
and porous media, the periodic functions are used for
space mapping (coordinates transformations) such that
some basic shape can be infinitely replicated in space. A

simple spherical pore was tested; however, any porous
shape can be involved without changes in the rest of the
generation procedure.

One could observe that the differential properties of
the regular lattice models are better than those of the
cellular structures. The providedC1-continuity of the
functions for lattices allow for blending operations with-
out any surface artefacts. On the other hand, the model
for cellular structures is a more general approach, sup-
porting practically arbitrary geometry of the unit cell,
which is very useful for interactive modelling.

The proposed models are extremely compact (all ex-
amples in this paper can be implemented in 10-20 lines
of HyperFun [20] or in 30-40 lines of C language),
while providing precise and spatially coherent models.
Compared to methods using BRep, FRep parametriza-
tion provides more robust and dynamic control, includ-
ing parameter-dependent changes in object’s topology.
The FRep models of microstructures can be used as ar-
guments for further set-theoretic, blending, offsetting,
and other geometric operations. These models can be
directly rendered using ray-tracing with interactive rates
in the case of the GPU implementation.

Manual creation of models for each particular in-
stance of the microstructure of the given type is tedious
work. We present a method for the automatic estimation
of parameters of the given template model by fitting it
to scanned or otherwise measured surface points. Our
experiments showed promising results, however, such
structures as porous bones and other irregular structures
need more sophisticated approaches.

The direct fabrication of microstructures without gen-
erating any auxiliary representations is one of the im-
mediate subjects for our research and development. As
the model strength can be one of the design criteria, the
strength analysis will be an area of our future research,
based on the heterogeneous objects discretization and
finite element meshes generation reported in [31].

The primary subject of this work was modelling vol-
umetric microstructures and it will be a subject of fu-
ture research to find out if this approach can be applied
to material microstructures such as grains, grain bound-
aries and secondary phases such as nanofibers. Finally,
we intend to develop function-based models for other
types of volumetric microstructures such as octahedral
lattices, natural branching and organic structures.
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