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Abstract

We propose a new approach to modelling heterogeneous slgjectaining internal volumetric structures with size
of details orders of magnitude smaller than the overall sizéhe object. The proposed function-based procedural
representation provides compact, precise, and arbjtrpatametrised models of coherent microstructures, which
can undergo blending, deformations, and other geometecabipns, and can be directly rendered and fabricated
without generating any auxiliary representations (sughoggonal meshes and voxel arrays). In particular, mauglli

of regular lattices and cellular microstructures as wellreegular porous media is discussed and illustrated. We
also present a method to estimate parameters of the giverlrogditting it to microstructure data obtained with
magnetic resonance imaging and other measurements obhand artificial objects. Examples of rendering and
digital fabrication of microstructure models are presdnte

Keywords: microstructure, lattice, porous media, tissue engingesodfold, function representation, digital
fabrication

1. Introduction rication processes. Adding internal microstructures to
objects reduces weight, materials, energy and time re-
Recent developments in computing allow researchers quired to create an object. In the future it is likely
to look beyond traditional geometric modelling tech- that most large, digitally fabricated objects will not be
niques oriented towards surface based and homoge-reated as solid blocks of materials but will instead be
neous solid models. Man-made objects are often nearly made up of microstructures.
uniform in their internal structure, for example, most Existing approaches to modelling microstructures in-
of mechanical parts can be modelled as homogeneousg|yde those relying on surfaces (boundary representa-
solids. In contrast, natural objects are rarely homoge- tjons or BRep) and voxels (discrete volume represen-
neous having a complicated internal structure and mate-tations). Although to some extent microstructures can
rials distribution. be generated using these representations (see the next
New application areas of CARAM such asbiomed-  section), many of the known problems and limitations
ical tissue engineering [1] and composite materials in of poth representations are amplified by the geomet-
mechanical engineering [2] deal with essentially hetero- ric complexity of microstructures. The problem com-
geneous objects. Such objects can be madefigfrdnt  pounds further when modelling irregular microstruc-
materials with variable densities and can have internal yres. One can distinguish between quantitative prob-

microstructures. The common feature of such objects is |ems (model size and processing time) and qualitative

of the object. These can be lattices, porous, branchingtations:

or granular material compositions varying from regu- ] o
lar to completely irregular random structures. Notonly ~ ® Size and processing time

are microstructures important in engineering new com- Surface based models of a moderate size contain-
plex objects, but are becoming increasingly important ing high quality lattice microstructures can include
for manufacturing traditional objects using digital fab- such a huge number of polygons that it becomes
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difficult or impossible for modern graphics hard-

ware to render. Although the size of voxel models
is not directly dependent on the object complex-
ity, the number of voxels needed to represent high
quality surfaces along with small details can easily
exceed available capacities of computer memory.
Time for rendering as well as for other types of

processing grows with the size of the model.

Validity and precision

Known problems arising from traditional BRep
based CAD models and approaches (such as cracks
in surfaces, self-intersections of polygons, addi-
tional false polygons left over from modelling, and
inverted normal orientation) already problematic
for the manufacturing industry become increas-
ingly difficult or impossible to model and manu-
facture at nano- and micro- scales. BRep and voxel
models are usually created inside some specifically
given bounding unit and then iteratively replicated
in space without considering spatial coherence of
the structure, which can cause additional cracks in

other additive processes, which produce a physical
object layer by layer [3][4][1]. As object becomes
large or finely packed microstructures are required,
BRep models dramatically increase in size and be-
come very hard or impossible for current hard-
ware systems to visualize and even moré@clilt

to cross-section as is required by many digital fab-
rication systems and processes. While current dig-
ital fabrication systems have limited resolutions, in
recent years they have achieved ever greater accu-
racy and this trend is expected to continue. Even
so, it is currently not uncommon to see defects
or missing sections of an object, largely due to
the complexity involved in creating proper cross-
sections from the standard STL format. Some
but not all digital fabrication systems accept voxel
models as input, however voxels have known alias-
ing problems unless they are given at very high res-
olutions requiring large amounts of memory. For
systems that do not work with voxels, polygoniza-
tion of the voxel data is necessary.

the model at the boundaries of each unit. Like-  The objective of this work is to develop an approach
wise, the "skinning” or proper connection of a mi-  to the modelling and manufacturing of microstructures
crostructure to the object shell presents many un- that resolves most of the above issues. We propose a
solved issues for current systems. In general, both compact, precise, and arbitrarily parametrised construc-
the polygonal BRep and the voxel representation tive model based on real functions of point coordinates
are not exact and only approximate the modelled allowing for the procedural generation of spatially co-
geometry with limited precision. herent microstructures, which can undergo blending,
offsetting, deformations, and other geometric opera-
tions. Such models can be automatically fitted to scan
The support of model generation with variable pa- data of real microstructures, and can be directly ren-
rameters is crucial for modelling microstructures, dered and manufactured without generating any auxil-
because their geometry can depend on a number ofiary representations.
factors such as distance to the object surface, pre- In this work, we concentrate on modelling regular mi-
defined strength conditions, density variations, and crostructures such as lattices and cellular structures, as
others. The existing representations have limited well as irregular microstructures such as porous media.
or no support for parameterization of microstruc- By "lattice” we mean a periodic spatial structure con-
ture models. When parameters are changed, BRepsisting of crossing rods, laths or other thin strips of ma-
and voxel models have to be re-generated using aterial. We use the term “cellular structures” to desig-
separate, high level procedure or method. A user nate the periodic replication of the given geometry in-
may need to apply further specific operations on side some unit cell within a bounding box of known
microstructures such adfeets, blends and shape size and location. The term "porous media” describes
deformations, which have limited or no support various materials that exhibit the property of irregular
within the current representations. porosity through an interconnected network of cavities
- (pores) within a solid material stratum. We try to avoid
Manufacturability using the term "sd@old” because it can be applied to
Controlled complex microstructures are not easy both types of structures.
to manufacture using most existing technolo- In the next section we outline the prior work on all
gies. Currently the best solution can be found in the above mentioned types of microstructures as well as
rapid prototyping or digital fabrication technolo- the background of the Function Representation (FRep)
gies such as laser sintering, stereolithography andin geometric modelling. Sections 3 and 4 respectively
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present the proposed approaches to modelling regulardescribed in [4]. A commercial BRep solid modelling
microstructures (lattices and cellular structures) and ir system is used to generate lattices for bone implants
regular structures (porous media). Fitting of parameter- with the selected spatial structure parametrised by pore
ized template models to scan data is presented in Sec=sizes, porosity, and surface area to volume ratio. The
tion 5. Section 6 briefly outlines the approaches to di- overall required shape of the model is taken from hu-
rect rendering and direct fabrication avoiding auxiliary man body data collected by magnetic resonance imag-
representations. The paper is concluded with some dis-ing. The Boolean intersection is applied to produce a
cussion of open problems in the last Section 7. lattice within the patient’'s bone shape.

Optimization of lattices is presented in [7][8] using
maximal strength, minimal weight, and other criteria.
The lattice structure (namely, connections between lat-
tice nodes and positions of nodes) is optimized to satisfy
the selected criteria.

2. Prior work

In this section we first describe the main approaches
to modelling microstructures and then introduce the ba-
sics of the Function Representation for geometric mod- 2.2. Irregular microstructures

els. L .
Modelling irregular microstructures such as porous

media is much more complex than modelling regu-
lar microstructures because of irregularities essential
Generation of a polygonal model of a regular lat- to pores’ locations and shapes. It can be stated that
tice with cubic elements for visualization is quite trivial available CAD methods and tools are not adequate for
using standard surface primitives such as cylinders or solving this problem. There are two main approaches
blocks. The problem becomes more complex if a valid pursued in recent works: image-based reconstruction
solid (BRep) model is required for further geometric op- [1][9][10] of a surface and voxel models, and pseudo-
erations (such as blending between the lattice rods andrandom simulation [11][12][13].
the outer surface) or digital fabrication. Existing publi- The process of obtaining geometric surface models
cations provide quite limited information on procedures for biological porous tissues is described in [1]. It in-
for the generation of lattice models and primarily con- cludes obtaining 2D images of the internal tissue struc-
centrate on lattices for specific applications. ture using computer tomography and other techniques;
A geometric modelling method for creating confor- reconstruction of a 3D voxel model from a set of im-
mal lattice structures was proposed in [5]. Regular cel- ages; and construction of a surface model through the
lular structures are built as a set of unit trusses (cells). tessellation of a selected isosurface or by the voxel
The solid model of each unit truss is created using model segmentation and fitting with predefined param-
Boolean operations performed in a commercial solid eterized surface primitives.
modelling system. Copies of the unit truss are then  To reconstruct a 3D model of a porous structure, the
directly stacked together to generate the model of the authors of [9] construct a voxel model from a set of
entire cellular structure. However, it was pointed out cross-section images of a biological material sample.
that it took significant computational resources to gener- The voxel model is segmented into three regions: ex-
ate the models of lattice structures since the generationterior, material and pores. A graph is built reflecting
of each unit truss required several Boolean operations.individual pores and connections between them. A ge-
This work was extended in [6] to more general regu- ometric model can be generated and visualized where
lar internal structure design with truss geometry given each pore is represented by a sphere with the estimated
as a mesh prior to its replication. The proposed 3D tex- radius.
ture mapping approach is based on mapping of a3D mi- A process for customised modelling of fitting micro-
crostructure pattern (truss geometry) into a design spaceimplants into bones based on a volumetric texture syn-
to generate internal cellular structures which then are thesis is described in [10]. First, a 3D model is recon-
combined with a given CAD model of the object. structed from digitized slice-by-slice 2D images along
A classification of regular microstructures is given with extracting microstructures from 28D images.
in [1] along with the outline of the modelling pro- Then volumes in the mesh which represent "unhealthy”
cess in biomedical applications involving predefined holes in the bone structure (characterised by sparse and
microstructure patterns and scanned biological shapesrelatively thin trabeculae) are identified. Each 3D hole
such as human bones. The typical steps of lattice de-is in-filled using irregular samples taken from a match-
sign in biological tissue engineering and fabrication are ing "healthy” region located around the hole. The Ex-
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tended Voxel-by-Voxel (EVolV) texture synthesis algo-
rithm allowing mapping a matching block of voxels .
rather than only one voxel has been proposed for that fs=fiva T2 forthe union;
purpose. f3 = f1 A, T2 for the intersection; (1)
A direct approach to 3D modelling of porous media f3 = f1\of2  for the subtraction;
is presented in [11]. First, a number of microspheres, . . o
which can be packed within the given volume, is es- yvhere f, and f, are def|.n|ng functions .of initial ob-
timated. Then the selected number of microspheres€CtS @ndVa, Ao, \q are signs of R-functions. One of
is randomly packed in the volume. The Boolean sub- e classes of R-functions is
traction of the microspheres model from the basic vol- f1 V1 f» = max(fy, f2)
ume model using a commercial BRep modeller results f £ = min(f.. f 5
in the porous volume structure. The experiments were 1 A1 fo = min(fy, T2) (2)
conducted with a quite limited number of microspheres fi\1f2 = min(fy, —f2)
(about 50).
A model of a porous object is represented in [12]
as a Constructive Solid Geometry (CSG) tree with

These functions ar€* discontinuous at all points
wheref; = f,. R-functions of another class:

stochastically generated primitives (spheres) represent >

ing pores in the leaves of the tree structure and regular- fivofa=Tfi+ o+ v ff+13

ized Boolean operations placed in its nodes. The struc- [5 <2

ture analysis is performed on the voxelized version of fidofo=fi+fo— Jfi+ 1 3)
this model. A 3D porous structure can be built as a stack f\ofy = f— fp — [t2 ., f2

of thin extruded 2D slices. The structure in each slice is tofz= T o

modelled in [13] using a Voronoi diagram built for the

: : . haveC! discontinuity only at the points where both ar-
structure generating points moving on the plane.

) guments are equal to zero.

We can conclude that BRep and voxels remain the = | jicit surfaces have been recently applied to mod-
main models researchers use {0 represent Microstrucyjing the internal structure of a biological cell [18] in-
tures. The major drawbacks of these representations,,qing thousands of irregularly shaped components on
were discussed in the previous section. In.the remainderp o micro-level. Stolte [19] presented replication of im-
of the paper we tackle these problems using proceduralyjicit syrfaces in space using the triangle wave function.
functlon-_based models in the form of the Function Rep- Shapiro [17] showed that a periodic regular structure
resentation (FRep). such as a chess board can be modelled using trigono-

metric functions defining horizontal and vertical strips,
. which then are combined using the set-theoretic union.
2.3. FRep basics We further develop the logical construction based mod-
eling of microstructures. Our experimental models are

The main idea of the function-based modelling (or implemented in the HyperFun language [20], which
"implicit surface” modelling [14]) is to define point sets  fully supports the FRep modelling paradigm.
via trivariate scalar fields or continuous real functions of
point coordinates F(x,y,z). The point membership de-
pends on the sign of the defining function evaluated at
that point, typically points with positive and zero func-  To overcome the known problems of the BRep and
tion values are included in the set, while zero-level sub- yoxel based models, we propose to describe microstruc-
set is considered a boundary. This approach to geomet-tures using real functions of point coordinates combined
ric modelling was extended in the Function Represen- in a constructive manner following the FRep approach
tation (FRep) [15] by explicitly introducing elementary presented above. The main requirement for a defining
objects (primitives) and operations on using the corre- function is to have at leag® continuity. FRep mod-
sponding operations on defining functions. els of microstructures are very compact, precise, and

One particular class of the FRep operations are set- arbitrarily parameterized. They can undergo geometric
theoretic ones defined by R-functions [16][17][15]. An transformations typical for FRep models: set-theoretic
object resulting from the set-theoretic operations has the operations, blending, deformations, and many others.
defining function expressed as follows: In this section, we model infinite regular lattices using

3. Modelling regular microstructures



trigonometric periodic functions and R-functions. For  According to the properties of R-functions, the above
infinite cellular structures with general unit cell geome- function with @ = 0 for the regular lattice isC-
try, we apply a periodic space mapping while maintain- continuous in the entire domain, exceptits surface edges
ing the defining function continuity. resulting from the intersection and union operations.
Note that all the parameters in the above lattice model
can be made variable. Fig. 1 illustrates the construc-
tion of the regular lattice with some constant parame-
We propose the following approach to modelling in- ters (Fig. 1 a,b) and with the rod thickness controlled
finite regular 3D lattices: by the thresholds linearly changing along the horizontal
axis (Fig. 1c).
The rods have square in cross-section. Other types

3.1. Modelling lattice microstructures

1. a set of infinite parallel slabs orthogonal to each

coqrdinate ax.is can be defined by a corresponding of cross-sections can be obtained by usifitna trans-
perlgdlc func't|on; . formations over the slabs. To obtain ellipse or circle in
2. the intersection of two of these sets results in the ¢ross-section, fisetting operation can be used. In this

infinite rods parallel to one of the axes; case in 4 we sdt= 1 and apply fset:
3. the union of rods gives us an infinite rectangular ]
lattice. Sx(X Y, 2) = sin(@xX + py) — 1

Sy(X.Y,2) = sin(@y + py) -1

To define the infinite slabs, the following functions can :
S(X.Y,2) =sin(@z+ ps) - 1

be applied: )
r(X.¥,2) = S Ag S + Oy
Sx(X,Y,2) = sin(@xx + Py) — Ix ry(%,Y,2) = Sx Aa S + 0y
S/(X.Y,2) = sin(yy + py) — Iy 4) r(X%Y,2) = Sx Aa Sy + s

S:(%¥.2) = sin@z + p) - Iz In casedy = dy = d, we obtain circle in cross-section
where the inequalitg, > 0 describes a set of slabs or- for all the rods, otherwise we obtain ellipse. Fig. 2 illus-
thogonal to x-axis and parallel to each other, the fre- trates the construction of the regular lattice with circle
quencyqy defines the distance between parallel slabs in cross-section.
along x-axis, the phasgy defines the position of slabs All operations that can be applied to functionally-
on the x-axis relative to the origin, and the threshold based models can be applied to lattices. For example,
-1 < Iy < 1 together with the frequency defines the Wwe can obtain cylindrical lattices by using mapping to

thickness of each slab. The slabs orthogonal &mdz cylindrical coordinates (Fig. 3a). Note that this map-
axes are symmetrically defined by the functiepgnd ping is a non-linear transformation, and because of that
s,. the width of the lattices increases with increasing of the

The next step is to describe three sets of rods parallel distance from the centre of the cylinder. By applying
to each axis: the tapering operation, we can vary a frequency of the
lattices in the selected area or globally (Fig. 3b). Also

(XY, 2 =8 Ao & we can modify the linear nature of lattices by applying

(X Y:2) = Sk Ae & (5) the twist operation (Fig. 3c).

The controlled blending versions of set-theoretic op-
erations are applicable to FRep objects [15]. Instead

Here the inequalityy > O describes a set of rods par- ©f Producing sharp edges, these operations result in
allel to x-axis and obtained as the set-theoretic intersec- SMOOth transitions between two given surfaces while
tion between slabs orthogonalyeaxis andz-axis using & St operation is applied to two solids. The formula-
an R-function (Egs. 1-3). The final infinite regular lat- tion of & blending operation is based on the displace-

tice is a union of all the rods and can be described as Ment added to a standard R-function, for example for
the blending intersection, we have:

r(XY,2) = SxAe S

follows:
o
9% Y,2) = Ix Vo Ty Va Iy fire fo=(fine o) + —————  (8)
or 1+(2) +(2)
9% Y,2) = (Sy Ae &) Va (Sx Ae &) Va (Sk A ) wherena,, stands for one of the R-functions defining the
(6) intersection (Eg. 3) and the additional term defines the



-_
AiE". A" 0N
WHA", ",

(b)

Figure 2: Construction of cylindrical rods: a) Union of kasylindri-
C) cal rods forming a lattice b) Applying blending union betweeds
instead of the pure union
Figure 1: Function-based infinite regular lattice with (ahstant pa-
rameters; (b) triple frequency (c) variable parameters,rdd thick-
ness grows linearly along one axis; (d) rods smoothed bydiign
Zooming is provided for images (a), (b) and (d).
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Figure 3: Applying transformation to function-based tz=8: a)
Cylindrical mapping b) Tapering c) Twisting

displacement with the parametexs a;, a, controlling

the shape of the blend. For examyag < 0 corresponds

to a blend with removed material (chamfer). Fig. 1d

illustrates an application of this operation to the rods
construction, where the intersection operations of Eq. 5
are replaced by the blending intersection (Eq. 8). Sim-
ilarly, blending union operations can be applied to the
rods forming the lattice as shown in Fig. 2b.

It is important for most of applications to be able to
combine a microstructure with the given external shape
of the object. Typically a thin shell of the object is cre-
ated and the microstructure is truncated to fit inside the
shell. These operations for the functiBrdefining the
initial external shape can be described as follows:

Fo(X,¥,2 = F(X,y,2 — lo

This function defines the internalffeet of the given
shape, wheré, > 0 is the dfset threshold. The shell
of the object is defined as the subtraction of thiset
from the initial shape:

Fs(x.y,2) = F\.Fo

The constant thickness of the thin shell can be
achieved with this operation for defining distance func-
tions or with normalized functions approximating the
distance function near the surface [21].

The finite lattice within the object can be obtained by
intersecting the infinite lattice with the given object:

Fo=0gAcF

and finally the object shell with the microstructure in-
side has the defining function

Fm(Xy,2) = FsV, Fg= (F\eFo) Vo (@A F)  (9)

The above construction is illustrated by Fig. 4a,
where the functiofr defines a sphere. If the union oper-
ationin Eq. 9is replaced by a blending union operation,
the microstructure rods will be blended with the shell as
shown in Fig. 4 b. More complex shapes can undergo
similar operations. Fig. 5 illustrates a practical example
of the lattice scfiold design for a jaw bone. The given
shape in this case is an FRep model fitted to a scanned
bone.

The lattice parametrization resulting in variable den-
sity and rod sizes can be made dependent not only on
spatial coordinates, but on other factors. In biomedical
engineering the lattice sffalds have to be denser near
the surface. This can be achieved by making lattice pa-
rameters dependable either on the distance to the surface
or, in the case of FRep object, on the defining function,
which takes zero value on the boundary (see Fig. 4c).
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Figure 4: Combining microstructures with external shaggasunion
of a spherical shell with a regular lattice; (b) blendingambetween
the rods of the regular lattice, and between the rods andpheris
cal shell; (c) lattice parametrization depending on théadise to the

external surface.
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Figure 5: Lattice sd#old design for a jaw bone: (a) the given shape of
a jaw bone; (b) truncation of the microstructure by intetisecit with

the bone model; (c) the resulting $idd as union of the truncated
microstructure with the object shell.
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Figure 6: Discontinuity for geometric connectivity: (a)ntour plot
of the unit cell from figure 9, (b) contour plot of the replicat, (c)
zoom on the area @° discontinuity.
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3.2. Modelling cellular microstructures

The known approach to modelling microstructures
based on the cell (truss) replication is similar to tex-
ture tiling. The modelling process consists of two steps:
first, a geometric model of the base object (so-called
unit cell) is prepared, and secondly, the unit cell is repli-
cated in space to form the cellular microstructure. In the
case of BRep and voxel models, a finite set of unit cell
copies are combined inside a finite bounding box. To
obtain an FRep model of an infinite cellular structure,
we apply a periodic function defining a space mapping
to the FRep model of the unit cell geometry.

Given a geometric object defined by the continuous
real functionf(x,y, 2) on the intervall = (Xpin < X <
Xmaxs Ymin < Y < Ymax, Zmin < Z < Zmax) and the peri-
odic replication functiorg(t) such ag(t) € [0, 1]Vt, the
cellular model is defined by the following equation:

r(%Y,2) = f(Xmin + 9(X) * (Xmax — Xmin),
Ymin + 9(Y) * (Ymax — Ymin)s (10)
Zmin + 9(2) * (Zmax — Zmin))

The object defined by the functiohon | is called

(b)

Figure 7: Application of dierent types of replication functions for
blending operation of the object with cellular structurés: Sawtooth
wave, (b) Triangle wave.
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Figure 8: Unit cell replication using the Fourier sawtootave: (a)
Fourier sawtooth function with 50 harmonics; (b) zoom to thest
problematic area of the Fourier sawtooth (marked in gregating
artefacts; (c) unit cell geometry; (d) unit cell replicatiith 20 har-
monics; (e) zoom to the artefacts in the neighbourhood ofittiecell
faces; (f) unit cell replication with 50 harmonics.
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Figure 9: Cellular microstructures: (a) unit cell, (b) ieption of the
unit cell, (c) unit cell with added blending, (d) replicatiof the unit
cell with blending.



a unit cell. The function for the unit cell has to pro-
vide the connectivity necessary for the properties of the
cellular structure. We distinguish twoftérent types of
connectivity. First is geometric connectivity, where the
criterion is:

f(xmin, Y, Z) = 0, iff(Xmax, Y, Z) =0 \/y,ze |
f(X’ ymin, Z) = 0, |ff(X, ymax, Z) = 0 VX,ZE I
f(X Y, Zmin) = 0,if f(X, Y, Zmax) =0 VX Y€

(11)

This means the object’s boundary curves at the oppo-
site faces of the unit cell bounding box have to be con-
gruent. This property ensures that the replicated cells of
the overal cellular structure are connected to each other
at these curves.

The second type is full connectivity, where the crite-
rion is:

@)

Figure 10: Frequency variation for cellular structure.

7). In general, the dierential properties of the regular

f i Vo 2) = f(rm Yo 2) VY, Z€ | lattice models described earlier are better than those of

f(X, Ymin, Z) = f(X, Ymax» Z) \/X,ZE |
f(% Y, Zmin) = F(X Y, Zman)  YX, Y€

(12)

the cellular structures. On the other hand, regular lat-
tices are quite limited in their geometry and require new
formulae for each geometry type.

We can apply a Fourier series representing the saw-

Such a property ensures the defining function conti- {40th wave instead of the standard sawtooth function:
nuity for the entire cellular structure.

We select the sawtooth function as the basic replica-
tion function:

n

2

k=1

1 1

gL 13 snsay

- (15)
Heren is the number of harmonics in the series. The
Fourier series function allows to have continuity@f
Because of the nature of the sawtooth function, the re- and higher. However, in this case we have to select a
sulting cellular model has geometric discontinuity on very big number of harmonics to have a good approxi-
the faces of the cells in case the unit cell has no con- mation of the sawtooth function. Fig. 8 illustrates the
nectivity property. In case of the geometric connectiv- fundamental problems with employing the Fourier saw-

o(t) = % N (% - roor(% N %)) (13)

ity, we obtain geometric continuity of the entire model,
however the resulting function can B&-discontinuous

on the faces of each cell (see Fig. 6). In case of the full
unit cell connectivity we hav€°-continuous function

in the entire domain, bu€!-discontinuity can appear
on the cell faces and cause surface artefacts in blend-
ing and other operations. However, we can ob@in
continuous function for the unit cell geometry symmet-
ric in respect to the planes parallel to the unit cell faces

tooth wave for the replication. In Fig. 8d and Fig. 8f
it can be seen that even 50 harmonics are not enough
for a good approximation. Moreover, the replication
based on the Fourier series adds artefacts (projection-
type copies of the unit cell geometry) to the neighbour-
hood of the cell faces (clearly visible in Fig. 8e), which
is inappropriate in most cases and needs further research
for improvement.

Fig. 9 illustrates the steps of the cellular microstruc-

and passing through its centre. In this case we shouldture design. First, an FRep model of the unit cell has
use a diferent replication function, the triangle wave in- to be defined (Figs. 9a, ¢). Then, the replication func-
stead of the sawtooth wave: tion is applied to the part of the model placed inside the
unit cube (shown in grey). Note that the truncation of
the unit cell geometry by the unit cube occurs automat-
ically due to the sawtooth function construction. The
A similar approach is presented in [19]. For trian- resulting cellular microstructure (Figs. 9b, d) is infinite
gle wave we obtaii€!-continuous function, but restrict  in space and can be combined with an arbitrary geomet-
unit cell to be symmetrical as described above (see Fig ric object similar to the case of lattices. In case the mi-
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crostructure is not manufacturable as in Fig. 9b (it will
not hold together after the support material is removed)
some modifications to the unit cell geometry have to be
made such as bounded blending [22] between its dis-
connected components (Fig. 9c¢).

We can apply additional transformation for replica-
tion function to obtain variation of the shape of the re-
sulting cellular structure. For example, we can have fre-
guency in the sawtooth function be dependent on the
coordinate value and thus vary the frequency (see Fig.
10).

4. Modelling irregular microstructures

Irregular microstructures such as porous media need
an approach dlierent from the one suitable for mod-
elling the regular rectangular lattices. As we could see
from the survey of existing works, interconnected spher-
ical pores with pseudo-random variations of sizes and
positions are typically used in the porous structure anal-
ysis. We can replicate the basic pore shape with a pe-
riodic space mapping similar to cellular structures, but
the overall microstructure connectivity is not an issue in
this case. We propose the following modelling proce-
dure:

1. select a basic pore shape such as a sphere or an
ellipsoid;

2. replicate the basic pore in space with variable pa-
rameters, if necessary;

3. introduce pseudo-random variations of the pores
positions and sizes;

4. subtract the pores from the given initial shape.

The proposed procedure is illustrated by Figs. 11 a-
c. A basic pore with the defining functidf, can be
replicated in space (Fig. 11a) by the following space

mapping:

X' = pysin(@xX)

Y = pysin@,%
7 = pysin(a) (16)
Fr = Fp(x’, y,,Z')

where py > 0 specifies a linear scaling for the

coordinate andj, > 0 controls the frequency of the
basic pore replication _a,'O“Q thea?<|§: The replicated . Figure 11: Function-based porous media modelling: (a) #séctpore
pores make actual cavities in the initial shape (sphere in replicated in space and subtracted from the initial shapethe pore

Fig. 11) with the defining functiofr through the set- sizes made decreasing with the distance to the surfacéig(seudo-
theoretic subtraction: random variations of pores’ parameters; (d) the crossseofia sam-
' ple bone for comparison.

Fm(X.y,2) = F\oF¢
12



Similar to the case of lattices, a pore size can be madeulated annealing (SA) [26, 27, 28] with the Levenberg-
variable depending on the distance to the initial surface Marquardt algorithm.

(Fig. 11b). Finally, the pseudo-random deformations of

pores can be introduced by adding a solid noise function 5.1 Algorithm

[23] to any of the model parameters. In the example of
Fig. 11c, the Gardner noise [23] withftérent param-
eters was added to the values of scale p, frequency q, : X X .
and the basic pore functidfy. The solid noise param- ness) functiorg deflned using the mlcrostructure tem-
eters were selected to generate the pore shapes similarlate_ model functionf and the point seps as fol-
to those in the sample bone cross-section (Fig. 11d). OWS." o

More sophisticated methods are definitely required to 1 initialize p, popt « P

ensure the model adequacy to the samples of natural 2: G < 9(p), Gopr < G

porous media. For example, the model parameters can 3: T < To

undergo non-linear fitting to satisfy some criteria such 4 M« 0

as the minimal dference between the model porosity 5 While T > Tpin do

Our algorithm optimizes the parametgrsof a mi-
crostructure model by minimizing the objective (fit-

and the real object porosity in the case of irregular struc-  6:  for m=0toNy do
tures. 7: for each parameterdo
8: Puial[i] < P[i] + c[i] «r
9: end for
5. Fitting microstructures 10: G < g(p)
11: AE G -G
We need to compare generated microstructures with 12: if AE < Othen
those obtained by means of magnetic resonance imag-13: GG
ing and other measurements of natural or artificial ob- 14: P < Pria
jects. This is useful for both the model adequacy analy- 15: if G’ < Gopr then
sis and the parameters estimation of the newly measured16: Gopr < G
objects. 17 PopT < P
For each type of microstructure (lattice, cellular, non- 18: end if
regular) and each domain of application, it is possible 19: else -
to design a generic parameterized template model. This 20: G « G’ with probabilitye™™
model can later be tuned to fit the acquired data. For 21: P < Pria
example, a model for the cellular microstructure illus-  22: end if
trated in Fig. 9b with the union of three torii as a unit 23:  end for
cell, can be adapted to various sets of acquired data that24: T < rr =T
25: end while

would correspond to a similar structure but wittfeli-
ent parameter values (bigger internal radius for the torii, 26: Popt < LM(, Popr)
different center locations, etc). In this section, we inves- 27: returnpopr
tigate algorithms for fitting a parameterized microstruc-  The lines 1 to 4 initialize dferent variables of the
ture model to a set of three dimensional points posi- algorithm: T is the variable that simulates the temper-
tioned on or near the surface of a microstructure object. ature of the system in the SA algorithm and decreases
Parameters estimation is done by minimizing the with each iterationG keeps track of the value of the
residual error of the model against the measured dataprevious objective function evaluation amdlefines the
points. The residual error of the model can be simply number of steps before a reduction of the temperature.
computed as the sum of the squared values of the modelThe combination of the initial temperatuiig, the re-
defining function at each sample. The residual error duction factorr andNy forms the cooling schedule of
to be minimized is a complicated non-linear function the SA algorithm. In our experiments, we used the fol-
of the model parameters, and applying standard meth-lowing values:To = 1000,r1 = 0.85 andNy = 200.
ods such as the Levenberg-Marquardtalgorithm [24, 25] = The main part of the algorithm is the loop in the lines
can easily fail (i.e., converge to a local minimum) un- 5to 25. Inthe lines 7 to 9, a new vector of parameters is
less starting from a good approximation of the parame- generated by adding to each parameter a random value
ters. To solve this problem, we use a combination of a in the range {1, 1]. The variablec is used to limit the
stochastic global optimization algorithm known as sim- search space in each direction. If a parameter is outside

13



of the search space after its modification, the step 8 is
iterated one more time.

In the lines 12 to 18, if the new parameter values re-
sult in improvement they are always kept. A worst solu-
tion can still be accepted with a probabil'&y¥ (lines
19 to 22). The best vector of parameters and the best
function value found so far are also kept in lines 15 to
18.

After Ny function evaluation steps, the temperature
of the system is decreased (line 24), making the accep-
tance of worst solutions less likely. Finally, after the

Evolution of the objective function with the number of iterations
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temperature has reached some minimial threshold (otherFigure 12: Evolution of the objective function with the nuentof

termination criteria can be used as well), the Levenberg-
Marquardt algorithm is used with the best found solu-
tion popr as an initial estimation (line 26).

5.1.1. Choicesfor the objective function

The presented algorithm aims to minimize the objec-
tive function g defined using the microstructure tem-
plate model functionf and the set of the points scat-
tered on the surfacps. The simplest choice for the ob-
jective function is to use the least square ergip) =
i F2(pdlil, p).

A slightly better choice is to use a decreasing expo-

2
nential: g(p) = X e‘f (g']’m, which acts similarly to
counting the number of points which are within a dis-
tanceo to the surface represented by= 0. In this case

the problem becomes a maximization problem and the
signs in the algorithm above should be changed accord-
ingly (lines 12 and 15).

5.1.2. Choicesfor the termination criteria

The termination criteria in the above algorithm is
rather simple: it terminates when the system tempera-
ture is below the given thresholf,,. In our experi-
ments, we usedly, = 10°°. More sophisticated termi-
nation criteria involve monitoring the values of the ob-
jective function during the algorithm’s iterations. The
following criteria was used in our experiments: the loop
(lines 5 to 25) terminates Bopr — G’ < € and if the
difference betwee@’ and the last five best values@f
are not exceeding A value of 100 was used ferin all
our experiments.

5.2. Experimental results

We illustrate our algorithm with three examples using
two types of regular micro-structures: lattice and cellu-
lar.

14

iterations of the SA algorithm for a regular lattice model.

5.2.1. Regular lattice

The first example corresponds to the regular lattice
model illustrated in Fig. 4c. Our model has seven pa-
rameters corresponding to the scale and frequency of
the slabs (see Eq. 4) and the parameters of the blending
set operations (see Eqg. 8). The frequency and scale of
the model vary in space: they are controlled by the dis-
tance to the shell which is used to interpolate between
two boundary values of the frequency and scale.

A set of 385,535 points scattered on the surface of the
object is used as the target for fitting the chosen seven
parameters of the model. The decreasing exponential
(see section 5.1.1) with the value= 103 was used as
the objective function optimized by the algorithm dis-
cussed in section 5.1.

The termination of the main loop occurred after 42
iterations, taking approximately 20 min on a Sun work-
station with 2.8Ghz Intel Xeon processors. The evo-
lution during the algorithm’s iterations of the value of
the objective function corresponding to the best solution
(Gopt and popt in the algorithm above) is illustrated
in Fig. 12. The initial values of the parameters are
randomly selected: .624, 2581, 1921, 3254, 4743,
0.941 and 3H41. The final values are:. 9, 3, 0759,
0.84, 0959, 3103 and 3L03 corresponding respectively
to the scale and frequency of the slabs (2 parameters for
the scales and 2 parameters for the frequencies) and the
three parameters controlling the blending union (see Eqg.

8).

5.2.2. Céellular microstructure

The second example used to illustrate our algorithm
corresponds to the cellular microstructure in Fig. 9b. A
template model with 14 parameters is used and fitted to
points scattered on the surface of the object. The param-
eters consist of the center coordinates of the torii and
their radii as well as the scale parameter of the sawtooth
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Figure 13: Evolution of the objective function with the nuenknf
iterations of the SA algorithm for the cellular microstuiet made of
three torii.

4.77E-07

5.18E-16

function (see Eq. 13). ) oured ’ -
. . Figure 14: Point-set on the surface coloured accordinge@fiprox-
The data set is made of 53,400 points scattered ONimation error (2) of the optimized model for the cellular microstruc-

the surface of the object. The same settings as in thetyre.
previous example were used for the algorithm. The
termination of the main loop occurred after 35 itera-
tions in approximately 10 min. The evolution of the
objective function corresponding to the best solution is ) o ) )
illustrated in Fig. 13. The initial values for the pa-  Evolution of the objective function value with the

rameters are randomly chosen:187, 0258, 03778 number of iterations is illustrated in Fig. 16. The al-
0581 0479. —0.985 0607 —0.821 -0.016. —1126. gorithm converged to a reasonable result after 35 it-

_1.248.-0.331.-0.668. and—0.396. The final values  €rations in approximately 20 min. The initial values
are: 5003. 0999. 0999 0999. O1. —0.999 0999. 0. O for the parameters are randomly choser28, 0314,
~0.999,-0.999, 0999, 0, and M99 corresponding re-  0-388,-0.482,~1.349,0.0450, 1192,-0.773, A082,
spectively to the scale parameter of the sawtooth func- ~0-017, 1065,-0.462, 0562 and 223. The final val-

tion, the radii of the torii and the coordinates of each UeS are: ©01, 0995, 01, -0.997, Q995, & - 05,
(orUs center. le- 5, -0.995,-0.996, 0996, % — 05, 0996, Q795,

L : 0.081 corresponding respectively to the scale parameter
We measure the approximation error at each point by . .
! . of the sawtooth function, the torii radius (2 parameters),
the square of the microstructure function value at that

i . the coordinates of the torii centers (9 parameters) and
point. The best found parameters are used in the model.. : )
. . . finally the parameters for the bounded blending union
Fig. 14 illustrates the point-set on the surface where

_ . ...~ (last 3 parameters).
each point is coloured according to the approximation . . .
error For the first two examples, it was possible to use a

faster cooling schedule (by decreasMg or Tg) while
The model for this cellular microstructure can be ex- 9 (by g 0)

ded b laci h . on b h getting similar results. However for this third example,
tef? ed by replacing the union qperatlon .etvx{een the 5 slow cooling schedule was needed to reach an accept-
unit cells by a blending union as illustrated in Figs. 9c

' able result.
d. If the blend described in Eq. 8 is used, then three

more parameters are added to the precedent model. If . .
the bounded blend operation described in [22] is used, 5.3. Discussion

then four additional parameters are needed. We need Minimization (or maximization) of non-linear objec-
also to add at least one more parameter for the functiontive functions is in general a fiicult task if we do not
localizing the blend. We found in our experiments that know apriori a good starting point. The algorithm pro-
fitting the parameters corresponding to the blending op- posed here has provided acceptable results in our ex-
eration was a diicult task. Fig. 15 plots the least square periments. This type of algorithm is however expen-
error of the model for dierent values of the cdigcient sive as it requires a significant number of evaluations
ap governing the blend and the radiuof the sphere  of the objective function. For our domain of applica-
used to localize the blend. It can be seen that the pa-tion, the objective function is defined itself as the sum
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rameter space is extremly flat making the optimization
difficult.



Figure 15: Variation of the least square error with two of plaegame-
ters used in controlling the blend between the unit cellfiefdellular

LS error

a0 in bounded blend 0 o

LS error vs blend parameters

0.6

sphere (bounding function) radius

micro-structure.

Value of fitness function

Figure 16: Evolution of the objective function with the nuenlnf
iterations of the SA algorithm for the cellular microstuiet using

blend.
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over a number of points of a function of space coordi-
nates. The objective function is consequently already
expensive to compute (in the examples described above
the sums were over approximately 400,000 and 60,000
points). The reduction of the size of the input point set
in a pre-processing step is one possible approach to de-
crease the time spent for optimization. This can be done
using clustering (for example, k-means clustering) and
replacing each cluster by its closest neighbour in the
original point-set (using, for example, a kd-tree). We
have not explored this possibility yet.

In the evaluation of the objective function, each com-
putation in the sum is independent, so it is easy to dis-
tribute the total computation using several threads on a
multi-core (or multi-cpu) computer and this can provide
an improvement of the running time.

The cooling schedule used is a reduction by a con-
stant factort (0.85 in our experiments) of the previous
temperature at everiy time step (200 in our exper-
iments), starting from an initial temperatufg (1000
in our experiments). The cooling schedule is an im-
portant part of the algorithm: if it is too slow, it will
result in a long running time for the algorithm; if it is
too fast, the algorithm may converge to a local optimum
only. A lower starting temperature (100) and a smaller
Nt worked for the first and second examples described
above but failed for the last one. These parameters are
likely to be dependent on the model, and we gave val-
ues that had worked for the examples above. They can
probably be better estimated by an initial sampling of
the objective function but this is a part of a future work.

6. Direct rendering and fabrication

Application areas of microstructure modelling such
as composite material design and biomedical tissue en-
gineering require both model rendering and manufac-
turing procedures. Typically a function-based model
has to be converted to some auxiliary representations
for subsequent rendering using modern graphics hard-
ware and then for manufacturing on rapid prototyping
or 3D printing equipment. The conversion to BRep in-
volves an isosurface polygonization (tessellation) while
the voxelization is needed to produce a voxel array rep-
resentation. The disadvantages of both these auxiliary
representations in the case of microstructure modelling
were discussed in Introduction. A more promising ap-
proach can be calledirect rendering and fabrication.

Direct rendering of isosurfaces can be done with ac-
celerated ray-tracinigpy-casting. In [29] it was shown
that using of GPU allows direct rendering of relatively
complex function-based models with interactive rates
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Figure 17: Near real-time ray-casting of a spherical thiallswith

the internal regular lattice of fierent density; GPU rendering rate

remains about 20 frames per second independent of the tnicchse
complexity (image size 512*512)
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Figure 18: The model of Fig. 4c fabricated in several formsonf
right to left: polyamide material using a 3D Systems Siritgisn
HiQ, impregnated plaster using a ZCorp 3D printer and FDM de-
posited plastic filament using a Stratasys Dimension 3Dt&rin

on modern graphics hardware (PC with NVidia 9600
graphics card). An example of ray-casting of the sphere
with microstructures is shown in Fig. 17. As the com-
plexity of the function does not depend on the density of
microstructures, the rendering time is almost the same
for lattices with diferent densities on the given graphics
hardware.

Several of the FRep based microstructure models de-
scribed above have been fabricated using a variety of
digital fabrication machines and materials. For exam-
ple, Fig. 18 shows a fabricated model of a lattice
parametrised by the distance to the external surface (Fig.
4c). The models were first polygonized and then out-
put as STL files. The STL files were imported into
the various software packages for driving the machine
where they were checked for surface defects and then
machine paths were generated based on layered slices
of the STL and manufacturing constraints. Many of the
models must also go through post processing to remove
support structure arior add additional strength. During
the manufacturing process, the STL file format created
many issues for the slicing, path planning and fabrica-
tion of some of the fine microstructures.

A much better approach is to directly fabricate the
FRep model without poor intermediate formats such as
STL. This has been previously proposed in [30] and is
an active ongoing focus of our research. One possibility
is to produce a raster image for each layer of manufac-
turing at the machine resolution, which is an acceptable
input for some existing machines. Thus the microstruc-
ture could be procedurally defined on a voxel-grid that
corresponds directly to the layer thickness and to the



simple spherical pore was tested; however, any porous
shape can be involved without changes in the rest of the
generation procedure.

One could observe that thefléirential properties of
the regular lattice models are better than those of the
cellular structures. The providegtt-continuity of the
functions for lattices allow for blending operations with-
out any surface artefacts. On the other hand, the model
for cellular structures is a more general approach, sup-
porting practically arbitrary geometry of the unit cell,
which is very useful for interactive modelling.

The proposed models are extremely compact (all ex-
amples in this paper can be implemented in 10-20 lines
of HyperFun [20] or in 30-40 lines of C language),
while providing precise and spatially coherent models.
Compared to methods using BRep, FRep parametriza-
tion provides more robust and dynamic control, includ-
ing parameter-dependent changes in object’s topology.
Figure 19: Raster image layers for direct fabrication of atimu The FRep models of mlcrostruc'tures Can be used asar
material version of the object of Fig. 4c: microstructurdsare made ~ guments for further set-theoretic, blendingfsetting,
of one material and another material is added by blending and other geometric operations. These models can be
directly rendered using ray-tracing with interactive sate
in the case of the GPU implementation.

Manual creation of models for each particular in-
stance of the microstructure of the given type is tedious
) ! . work. We present a method for the automatic estimation
using the FRep model the lattice rods and the material of parameters of the given template model by fitting it

ahddeddby the blednd|?g union op.erlatlog. n tr:ns mode!, Ito scanned or otherwise measured surface points. Our
the rods are made of one material and another materia experiments showed promising results, however, such

IS idd?ﬁ by Ele.ndl'ngi girectl irol the diaital fab structures as porous bones and other irregular structures
nother choice IS 1o directly control the digital 1ab- a0 4 more sophisticated approaches.

r!c?gon pr?ceszlncludln?hthet;[o:)l Tnotlons ar:ddrgatteh- The direct fabrication of microstructures without gen-
rial deposition. HOWEVET, the obstacies presented by eerating any auxiliary representations is one of the im-

proprietary nature of most digital fabrication technolo- mediate subjects for our research and development. As

gies, sucdh as access to th:accrinne prototcols andhcont[k?lthe model strength can be one of the design criteria, the
commands, require open haraware systems such as %trength analysis will be an area of our future research,

Fab@Home or RepRap 3D printers. Unfortunately, the based on the heterogeneous objects discretization and
resolution of these free and open source systems is cur-

. . : . finite element meshes generation reported in [31].
rently not competitive with high end commercial ma- . : . .
: , : ; The primary subject of this work was modelling vol-
chines necessary for fine resolution microstructures.

umetric microstructures and it will be a subject of fu-
ture research to find out if this approach can be applied
7. Discussion and conclusions to material microstructures such as grains, grain bound-
aries and secondary phases such as nanofibers. Finally,
We have proposed several approaches that use pewe intend to develop function-based models for other
riodic functions in diferent ways for modelling both  types of volumetric microstructures such as octahedral

regular and irregular microstructures within the FRep |attices, natural branching and organic structures.
framework. In the case of lattices, these functions serve

to directly define the point membership by analysing the

sign of the function. In the case of cellular structures Acknowledgment

and porous media, the periodic functions are used for

space mapping (coordinates transformations) such that The authors would like to thank Denis Kravtsov for
some basic shape can be infinitely replicated in space. Athe FRep based model of the jaw bone. We are also
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© (d)

pixel spacing of the printing process. Fig. 19 shows
several raster image layers of a multi-material version
of the object in Fig. 4c. It is quite easy to distinguish
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