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Abstract. We present new coarse resolution50x 0.5°) main part, smaller than the overall uncertainty of 4.5-6 m es-
vegetation height and vegetation-cover fraction data sets beablished from the site measurements. Thirdly, the GLAS
tween 60 S and 60 N for use in climate models and ecolog- global vegetation height product is compared with a global
ical models. The data sets are derived from 2003—2009 mearegetation height product typically used in a climate model,
surements collected by the Geoscience Laser Altimeter Sysa recent global tree height product, and a vegetation green-
tem (GLAS) on the Ice, Cloud and land Elevation Satellite ness product and is shown to produce realistic estimates of
(ICESat), the only LIDAR instrument that provides close to vegetation height. Finally, the GLAS bare soil cover frac-
global coverage. Initial vegetation height is calculated fromtion is compared globally with the MODIS bare soil frac-
GLAS data using a development of the modelRdsette  tion (- = 0.65) and with bare soil cover fraction estimates
et al. (2008 with further calibration on desert sites. Filters derived from AVHRR NDVI dataK = 0.67); the GLAS tree-

are developed to identify and eliminate spurious observationgover fraction is compared with the MODIS tree-cover frac-
in the GLAS data, e.g. data that are affected by clouds, atmotion (- = 0.79). The evaluation indicates that filters applied
sphere and terrain and as such result in erroneous estimatésthe GLAS data are conservative and eliminate a large pro-
of vegetation height or vegetation cover. Filtered GLAS veg-portion of spurious data, while only in a minority of cases at
etation height estimates are aggregated in histograms from the cost of removing reliable data as well.

to 70m in 0.5m intervals for each® x 0.5°. The GLAS The new GLAS vegetation height product appears more
vegetation height product is evaluated in four ways. Firstly,realistic than previous data sets used in climate models and
the Vegetation height data and data filters are evaluated usecological models and hence should significantly improve
ing aircraft LIDAR measurements of the same for ten sitessimulations that involve the land surface.

in the Americas, Europe, and Australia. Application of fil-
ters to the GLAS vegetation height estimates increases the

correlation with aircraft data from=0.33 tor =0.78, de- 1 |ntroduction

creases the root-mean-square error by a factor 3 to about 6 m

(RMSE) or 4.5m (68 % error distribution) and decreases theGlobal biophysical parameters such as the fraction of photo-
bias from 5.7 m to-1.3 m. Secondly, the global aggregated synthetically active radiation (FAPAR) and leaf area index
GLAS vegetation height product is tested for sensitivity to- (LAI) are essential parameters in calculating fluxes in the
wards the choice of data quality filters; areas with frequentglobal carbon cycle, water cycle and energy budget. They are
cloud cover and areas with steep terrain are the most sensglosely linked to the amount of solar radiation absorbed and
tive to the choice of thresholds for the filters. The changesscattered by the vegetation canopy and can be estimated from
in height estimates by applying different filters are, for the data collected by passive optical radiometers that measure
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in visible and near-infrared wave bands. Examples of thesecological models. To estimate vegetation height from the
sensors collecting global data are the advanced very higlGLAS data we use the vegetation height model developed by
resolution radiometer (AVHRR; August 1981—present), theRosette et al(2008. The model was derived for a mixed
Sea-viewing Wide Field-of-view Sensor (SeaWiFS; Septem-forest in the United Kingdom over an area of moderate topo-
ber 1997-December 2010), the Syse Pour I'Observation  graphic complexity. Tree height was estimated with an accu-
de la Terre — Vegetation instrument (SPOT-VGT; April 1998— racy (root mean square error) of about 4.5 m. The advantage
present), the Along Track Scanning Radiometer (ATSR-2of the vegetation height model for global applications is that
and AATSR; June 1995—-present) and the moderate resoluregetation height can be estimated directly from GLAS data
tion image spectrometer (MODIS; February 2000—present)without the requirement of a highly accurate high resolution
see e.g.Sellers et al(1996; Myneni et al.(2003; Gob- digital elevation model (DEM).

ron et al.(2005. However, these sensors are not particu- To obtain a vegetation height data set for the land-surface
larly suitable to obtain estimates of biophysical parameterave set out to achieve the following four aims:

linked to canopy structure — e.g. vegetation height, above- ) )

ground biomass, canopy inflection point and stem diameter — 1+ Testthe vegetation height model Bpsette et a(2008
although there are approaches that exploit indirect relation- ~ derived for the Forest of Dean in the UK to see if it has
ships between measurements such as the Normalized Differ- ~MOre general applicability. GLAS vegetation height ob-

ence Vegetation Index (NDVI) and biomass with some de-  t@ined with the model is therefore compared with air-
gree of success for particular bioméRugker et al. 1986 craft LIDAR measurements for ten sites with different
Prince 1991 van der Werf et a).200§. Knowledge of tree-cover types (Sect.1).

structural vegetation parameters is, for example, essential )
to assess the amount of carbon stored in vegetation, to im-
prove modelling of light absorption and scattering through
the canopy and of photosynthesiltbn et al, 2005 and

to model the wind profile at the surface which affects the ex-
change of water and carbon between the land and atmosphere
(Sellers et a].1996.

A problem using passive optical sensors to infer canopy
structure is that different canopy structures can lead to the
same spectral and bidirectional response; the inversion of 3. Develop and test the derived near global°(6863 N)
biophysical parameters in these cases is a non-unique prob-  vegetation height product. Tests consist of a sensitivity
lem with more than one solution and this inhibits unambigu- analysis of global vegetation height fields to varying the
ous estimation of canopy parameters. An active optical sen-  thresholds of the data filters (Sedt2) and of a com-
sor, such as the Geoscience Laser Altimeter System (GLAS)  parison with other global vegetation data such as vege-
on the Ice, Cloud and land Elevation Satellite (ICESat) emits tation height Sellers et a].1996), tree height I efsky,

a light pulse of known intensity and duratioAwally et al, 2010 and vegetation greennedé et al, 200Q 2009
2002 Brenner et a.2003. The pulse is transmitted, ab- (Sect.4.3).

sorbed and scattered at various depths throughout the vege-

tation canopy by leaves and branches and the returned wave-4- Derive bare soil fraction and tree cover fraction from
form therefore provides information on canopy structure and ~ the GLAS tree height product and compare this prod-

. Develop and test data quality filters to screen GLAS
data and thus reduce the effects of cloud contamina-
tion, aerosols and topography in estimates of vegeta-
tion height. Filters are obtained from the literature and
from inspection of desert data (Se8}. The filters are
tested on the same site data used to evaluate the vege-
tation height model (Sect.1). The tests are applied to
data collected for all GLAS laser campaigns.

height Drake et al, 2003 Lefsky et al, 2005 Rosette et a). uct with the MODIS vegetation-cover fraction estimates
2008. Compared to active microwave (RADAR) instru- (Hansen et al.2003 2009 and the Fourier Adjusted,
ments, spaceborne LiDAR has the ability to obtain vegetation ~ Sensor and Solar zenith angle corrected, Interpolated
parameters at much higher biomass levBlsake et al, 2003 anq Reconstructed (FASIR) vegetation-cover fraction
Waring et al, 1995 but is also more sensitive to atmospheric estimatesl(os et al, 2000 2009 (Sect.4.4).

interference by clouds, water vapour and aerossysrhirne

et al, 2005. Furthermore, interpretation of GLAS wave-

forms is not straightforward since the waveform is not only

affected by the vegetation canopy, but also by other fac-

tors such as the occurrence of thin clouds and topography pata

(Rosette et a]2008 North et al, 201Q Rosette et a]201Q

Lee etal, 2011). We used the ICESat GLAS land data (GLA14) product, re-
The objective of the present paper is to obtain a vegetalease 31 Zwally et al, 2008 Brenner et a].2003. GLAS

tion height and vegetation cover data set from the GLASemits a pulse waveform in the 532 or 1064 nm bands which

instrument for most of the land surface betweef $@&and  is 1 m wide (corresponding to a duration of 5—6 ns) between

60° N that can be used in global climate models and globalthe points where the signal is half the size of the maximum

A version of the data in netcdf format is distributed as a
Supplement to the present paper.
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a) Waveform 885917506_14 b) Decomposition in the GLA14 product because the agreement with GLAS
waveform reference elevationgiev) was closer.

The MODIS continuous fractional cover datBlahsen
et al, 2003 2006, FASIR Normalized Difference Vegeta-
) k’ — tion Index (NDVI) and FASIR vegetation-cover fractidmg

(\)’ — et al, 200Q 2009 and global tree height dathdfsky, 2010
—_— were used to evaluate the vegetation height and vegetation
cover fraction products derived in the present paper.
] Aircraft LIDAR measurements of vegetation height from
00 02 o4 o8 08 10 00 o2 o4 o8 os Canada, Peru, the United Kingdom, the Netherlands, Ger-
many and Australia were used to test the GLAS vegeta-
tion height estimates and application of data quality filters.
Fig. 1. (a) Example of GLAS waveform collected for a vegetated These gIobaIIy distributed validation test sites incorporate
footprint and approximate indication of start and end of the wave-boreal, temperate and tropical vegetation; managed and nat-
form signal. The first return is reflected from the top of the canopy ural woodland and varied canopy cover (e.g. sparse cover in
(Signal Begin), incremental parts of the waveform are reflected bythe case of the Australian sites and near complete closure for
lower parts of the canopy; the end of the signal usually provides arthe Peru site). The product is thus evaluated using a range

under estimate of the elevation of the ground surfdbg Decom-  of conditions including those known to be problematic for
position of the waveform by six Gaussians. Gaussians 1 and 2 args| AS.

used to estimate the location of the ground.

Raw waveform Gaussian

—— Model alternate fit

600
|
600
|

Signal Begin

700
|
700

PNWAOO

800
|
800
|

Relative time (ns)
Relative time (ns)

Signal End

1000 900
1000 900

Returned pulse (V) Alternate fit returned pulse (V)

The Canadian sites, the former southern BOREAS study
sites in Saskatchewan, consist of fairly homogeneous
) ) forested areas and flat topography with an aspen sRoplif
amplitude. The returned waveform is measured for a duyys yremuloides Michy, a black spruce stan®icea mariana
ration equivalent to a length of about 82m at 15cm mter-Mi"_) an old jack pine siteRinus banksiana Lamp.and a
vals for the Laser 1A and 2A periods_, and for an equiva- re-grown jack pine siteBarr et al, 2006 Kljun et al, 2007).
lent length for 150 m for the other periodSIDC, 201).  The pery site is located in the Tambopata National Reserve
The footprint size is an ellipse with dimension of 95 by 414 consists of dense mature forest, regenerating forest, part
52m for the Laser 1A to 2C periods and 61 by 47m for o454 plain and wetland, in an area of flat topographyli(
the other periods. The returned waveform contains varioug al, 2017). The UK sites are the Glen Affric and Aberfoyle
peaks which are fitted by up to 6 Gaussians (B)g. The  gjtes hoth measured by the UK Forest Research. Glen Af-
GLAS instrument collected Qata intermittently during 2003— i (Stérez et al.2008 is an area of ancient woodland, it
2009, usually for 2 or 3 periods of about 1 month per year.,niains one of the largest ancient Caledonian pinewoods in
(Zwally et al, 2002 Harding and Carabaja2003. For the  gcqtland. Common species are Scots pRiays Sylvestris
derivation of the filters we used data from the Laser 1A P€- Juniper guniperus communjsbirch Betula pubescepsand
riod; for testing the filters and the vegetation_ height modelaspen Populus tremull The Aberfoyle site $uarez 2010
(Sect4) and for assembling the global vegetation height datajg 3 sjlviculture area where trees are planted and clearfelled in
we used data from all laser periods. rotations of 40-60yr. The dominant species is Sitka spruce

Tablel provides a list of the GLA14 parameters. For eas- (Picea sitchensis (Bong.) Cayr. At the Netherlands Loo-
ier processing, this subset of the GLA14 data is organised irpos site Scots pind>{nus Sylvestrisis the dominant species
5° x 5° tiles which conform to the tiles of the SRTM ver- (89 %) and is planted on flat, sandy terrain with some open
sion 4.1 dataRodriguez et a).2005 Jarvis et al.2008.  areas Polman et al. 2009. The German Tharandt site is
Data without geo-location, i.e. missing latitude and longi- a mixed forest stand with trees of different ages consisting
tude values, are removed, as are data without a saturatiogf mainly spruce Ricea abiey with scattered pineRinus
elevation adjustment (GLAS quality flagsatElevCore>2;  Sylvestriy and European LarcH @rix decidug on undulat-
seeNSIDC, 2011, Sect.3.2), since without this parameter it ing terrain Grilnwald and Bonhofer2007. The Australian
is not possible to calculate elevation. Data below8@nd  data were collected 7 km East of Tumbarumba research sta-
above 60N are not analysed because two of the filters re-tion to coincide with the GLAS measurements. The area is
quire SRTM data (Sec8.2). located in Bago State Forest, New South Wales and con-

The interpolated SRTM DEM version 4.1 distributed by sisted of mainly eucalyptus treeEucalyptus delegatensis
the Consultative Group for International Agriculture Re- R. T. Bakerand Eucalyptus dalrympleana Maidgim rela-
search — Consortium for Spatial Information (CGIAR-CSI) tively complex terrainl(euning et al.2005.

(Jarvis et al.2008 Rodriguez et a).2009 was used to com-
pare with the GLAS waveform reference elevatiorel@gv)
and to obtain an indication of the slope. The CGIAR-CSI
data were used rather than the SRTM DEM data included
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Table 1. List of GLAS parameters retained and of parameters added (last three rows).

GLA14 code Description

i_lat Latitude

i_lon Longitude

i_elev Waveform reference elevation (often located at the waveform centroid)
i_SolAng Solar incidence angle

i_gdHt Geoid height (EGM2008 geoid)

i_DEM_elv DEM elevation

i_SigBegOff Signal begin range increment

i_IdRNgOff Land range offset

i_SigEndOff Signal end range offset
i_gpCntRngOff  Centroid range increment for up to six peaks
i_maxSmAmp Peak amplitude of smoothed received echo

i_numPk Number of peaks found in the return
i_Gamp Amplitude of up to six Gaussians
i_Garea Area under up to six Gaussians
i_satElevCorr Saturation Elevation Correction
i_satCorrFlg Saturation Correction Flag
i_FRir_cldtop Full Resolution 1064 Cloud Top
Field Vegetation height (m)
slope Maximum of slope with 8 surrounding cells (%)
jday03 Days since 1 January 20G31)
3 Method the beginning of the waveform signal is a function of the in-

tercepted surface area at this elevation plus its reflectivity and
Estimation of vegetation height is based on the GLAS wave-will vary with vegetation crown shape and surface roughness,
form (GLA14) data, version 31. Figuréa illustrates the  canopy density, fractional cover and slope (e.g. if vegetation
waveform data for a vegetated footprint. The returned waveis uniformly distributed upon a sloped surface). Additionally,
form is the result of interaction of a light pulse emitted by since the illumination of the pulse on the ground is Gaussian
the GLAS laser with a vegetation canopy and the groundin form, the amplitude of the beginning of the waveform sig-
surface. The GLAS GLA14 product contains parameters obmal is also influenced by the distribution of vegetation within
tained from the raw waveform data such as the start and enhe footprint Hyde et al, 2005, tall vegetation towards the
of signal and the decomposition of the waveform by up to siXfootprint limits thereby contributing relatively less to the re-
Gaussians (Figlb). ceived waveform. The broad GLAS footprint poses chal-
lenges for the identification of the ground surface beneath a
vegetation canopy. This is particularly the case upon sloped

N . . surfaces where vegetation and ground can occur at similar
The accuracy of the estimation of vegetation height from . . L . I
elevations meaning that their signals are combined within

GLAS waveforms is highly dependent on the ability to detectt e waveform. The accuracy of vegetation estimates from

the uppermost canopy sur.facg (the signal b egin parametgr LAS waveforms are therefore influenced by the conditions
and a ground elevation which is representative of the terrain

within the broad lidar footprintRosette et al.2010. Re- in mountainous enqunmentHYde et al, 2009 and areas

. . . f low stature vegetationNelson 2010. The necessity of
garding the latter, here we select the centroid of whichever o ; . ; ) o

) . ! locating a single, representative ground elevation within a
the first two Gaussians has the greater amplitude to represen

the ground surface. The method is modified by caIibrationV\/"j“/e‘corm is more challenging for sites with complex topog-
on desert sites (Secé 2 Eq.3) raphy and vegetation distribution.

o . . . Various approaches exist to obtain vegetation height esti-
The limits of the waveform signal are determined using .
> . mates from GLAS waveform data. Here, we estimate vege-
a threshold above the mean noise leve#tGo in the case

of GLAS) (Brenner et al.2003. The Signal Begin param- tation height according tRosette et ak2008:

eter withiq a wayeform (6igBegOff) is assumed to repre- p,, = 1.06(r1 —ra, ,) (1)
sent the highest intercepted surface of the forest canopy. The

certainty with which the Signal Begin can be placed is de-With v = vegetation height;1 = signal start (iSighegOff);
pendent on the gradient of the leading edge of the wavefornia, , =the centroid range increment,gpCntRngOff; for
(Lefsky et al, 2007 Hancock et a].2011). The strength of ~max amplitude between Gaussians 1 and 2.

3.1 Estimating vegetation height

Geosci. Model Dev., 5, 413432, 2012 www.geosci-model-dev.net/5/413/2012/
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The equation was derived for the Forest of Dean in the
UK, an area with complex topography and mixed broadleaf

m GLAS 417

Arp = Difference radius for meridian (0.713682 m)
¢ = Latitude

and needleleaf trees. The choice of the maximum of the first _ -
two Gaussians to represent the elevation of the ground suffarameter namesellev (the reference position of the wave-

face reduces the effect of slope for areas of low to moderatdorm)., i-satElevCorr, igdHt indicate records of the GLAS

topography Rosette et a]2008.

3.2 Data filters

The tests below are intended to detect and eliminate spuri

data (Table 1); a further description of these records and of
elevation calculations can be found Ziwvally et al. (2002
and the GLAS on-line documentation provided by the Na-

tional Snow and Ice Data Centdat{p://nsidc.orgy.

Vegetation height as a function of latitude is shown in
Fig. 2c. High vegetation height estimates are found in ar-

ous values, e.g. high vegetation height values over desertgas where the topography changes rapidly; note that, e.g. the
from the GLAS data. Where possible, thresholds for the datespikes in vegetation height in Figc occur in the same loca-
filters rely on error estimates from the peer reviewed litera-tion as the spikes in topography in F@gp. Thus a first in-
ture. In cases where no estimates are available, the threshol@ggection of the data indicates that a large proportion of high

rely on visual interpretation of the data. A test of the filtered
GLAS product is carried out in Sect.1 and a sensitivity
analysis of the filters in Sect4.2and4.4.

To design the filters for identification of spurious data,
GLAS data from a desert site are explored. Vegetation heigh

estimates for deserts should as a general rule be low; higﬁ

values therefore indicate problems in the GLAS data. Occur
rences of spurious, high vegetation height values are com

pared with other measures such as slope, the difference b(—g-‘

tween the GLAS waveform reference elevatiorel@gv) and
the elevation indicated by a DEM and the strength of the
GLAS signal.

GLAS data from a 5x 5° tile between 20N-25 N and

0°-5° E are analysed; this tile covers a desert area with the
northern part located in Algeria. Data collected over 41 days

in February 2003 and March 2003 during the Laser 1A pe-
riod are investigated (51270 GLAS shots). The location of
the data is shown in Figa. The waveform reference eleva-
tion (i_elev) measured by the GLAS instrument and the ele-
vation in the SRTM DEM version 4.1 datR¢driguez et aJ.
2005 Jarvis et al.2008 are compared in Figeb as a func-
tion of latitude. The waveform reference elevatiamlgv) is
adjusted to the match the SRTM ellipsoid using:

with
h = topographic elevation
he = GLAS elevation; ielev
Ahe = Saturation elevation correction;satElevCorr
Ahg = Height of the EGM2008 geoid above the
TOPEX/Poseidon ellipsoid; gdHt
Ah) = Difference WGS84 and TOPEX/Poseidon
ellipsoid
= Arg(COSH)? + Arp(sing)?
with
Ar, = Difference radius of WGS84 and
TOPEX/Poseidon ellipsoids at equator (0.7 m)

www.geosci-model-dev.net/5/413/2012/

vegetation height values are spurious.
3.2.1 Slope test (Fig2d)

?Iopes affect the GLAS waveform; the waveform from a
lope without vegetation can look similar to that of a veg-
etation canopy over a flat surfadédfrth et al, 2010 Rosette

et al, 2010. Using the SRTM DEM 4.1 data, an approxi-
ation of the slope was calculated as the maximum of the
slopes between the grid cell for which the GLAS measure-
ment was collected and its 8 surrounding neighbours. The
grid cell size of the SRTM DEM 4.1 data is 90 m; thus in ar-
eas with variations in terrain at shorter lengths the SRTM
slope will underestimate the topographic variations within
he 50 to 60 m footprint most commonly produced by GLAS.

Grid cells with a slope exceeding 1@17 %) were re-
moved from further analysis. Based on theoretical grounds
and analysis of the desert data, a threshold of asl@pe
appears a reasonable compromise between retaining a suffi-
cient proportion of the signal and avoiding erroneous values
(Nelson et al.2009 North et al, 201Q Rosette et a]2010).
Figure2d indicates that for a slopel7 % both realistic low
values and spurious high values are collected; whereas for a
slope>17 % a very low number of realistic values and a very
large number of spurious high values for vegetation height
are found.

t

3.2.2 Elevation test (Fig2e)

The GLAS waveform reference elevation (E).is com-
pared with the SRTM DEM version 4.1. It is assumed that
large differences between the SRTM DEM version 4.1 data
and the GLAS waveform reference elevatiorelgv) indi-
cate problems in either data set. For the area shown in
Fig. 2a, the root mean square error (RMSE) between GLAS
and the SRTM 4.1 DEM data was about 3.7 m for February
2003 only and was 4.2m for data of February and March
2003 combined. The 95 % confidence interval of the SRTM
data globally is estimated at approximately 8 m; it varies
for different continents between 7 m to 8.8 m with the ex-
ception of New Zealand where the RMSE was about 12m

Geosci. Model Dev., 5, 432-2012
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a) Location data b) GLAS and SRTM elevation c) GLAS vegetation height, no filter
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Fig. 2. (a)Location of the GLAS data collected betweerf205 N and ®-5° E prior to April 2003 (Grey lines represent boundaries).

(b) Elevation as a function of latitude for the measurements shown under a; black circles are GLAS elevation measurements; they are
overlain by grey dots (SRTM 4.1 valuesfc) Vegetation height estimated from the GLAS data aResette et al(2009; no filter was

applied. (d) Estimated vegetation height as a function of slope. The slope was calculated as the maximum of the slope in 8 directions
calculated from the 90 m SRTM version 4.1 data. Grey values show data forslbpés; black values are for slopesl7 %. (e) Vegetation

height as a function of the difference between the GLAS reference elevation and the SRTM version 4.1 elevation. Grey circles show values
that passed the 17 % slope filter(at); black circles show the data with a difference in DEM m. 1.f) Vegetation height as a function of

the Area of the first Gaussian; black circles pass the test, line indicates the best fit through the 5% values per equal area interval of 10V ns.
(9) Amplitude test; threshold at 5V, top 0.1 % of highest values per Amplitude interval are renfbyedlues with a very high signal width

(sigma) are removed (grey value§),remaining values after Neighbour test is applied (compare @yith

(Rodriguez et a).2005 Jarvis et al.2008. The difference  spurious and are eliminated when the difference between
between SRTM and GLAS elevation appears small and unbithe GLAS elevation and SRTM DEM version 4.1 data is
ased, although the root-mean-square error increases with tdarger than 8 m (Fig2e). In cases where dense canopy ex-
pographic roughness and vegetation densitgr@bajal and ists, the SRTM data and GLAS waveform reference eleva-
Harding 2006. The errors in SRTM elevation include an tion (i_elev) are affected by the dense canopy and may rep-
error for geo-location (i.e. no adjustment for geo-location resent an elevation value about half way in the canopy; for
was made). Based dRodriguez et al(2005 and our anal- these cases the 95 % of the error distribution in both is likely
ysis of the Sahara desert we set a threshold at 8 m, aparger than 8 m Carabajal and Hardin@006 and the ele-
proximately the 95 % confidence interval; data are deemedsation test may therefore be too conservative. Whether or

Geosci. Model Dev., 5, 413432, 2012 www.geosci-model-dev.net/5/413/2012/
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not this is a problem is further investigated in the analysis3.2.4 Amplitude of First Gaussian test (Fig2g)
of the site data from Perd.1 and the comparison of vegeta- _ _ o
tion height in tropical forests found in this study with values A low amplitude of the first Gaussian indicates a data qual-

found in other studied.3. ity problem similar to the low area under the first Gaussian.
The ability to separate the true returned waveform start and

3.2.3 Area under first Gaussian test (Fig2f) end from the background noise is reduced. A test was imple-
mented to eliminate data with low amplitude (Fiyp) here

Refinement of the height model set at 0.05V. Figur&g indicates a number of outliers over

. ¢ ion heiaht in th hthe entire range of amplitudes. A second test was applied to
Estimates of vegetation height in the present paper use thgjiminate the highest 0.1 % of values per amplitude interval
difference between the start of signal and the centroid range¢ 4 1 v these values appear as outliers in By

increment of the first or second Gaussid&ogette et aj.

2008. The returned waveform will always have a measur-3 2 5 Sigma test (Fig2h)

able width even in cases where no vegetation is present be-

cause of the duration of the emitted signal, the atmOSpheri@aussians with a |arge Spread (range between the 5% and
attenuation of the signal and the reflection of the signal fromgs 94 values over 80 m or so) are unlikely to be from vegeta-
a surface that is rarely completely flat. The implication is tion which only in exceptional cases reaches these heights. A
that for bare soil a small difference between the signal startest was applied to all Gaussians to remove waveforms with
and the centre of the first Gaussian is found and this translatesigh sigma values. The threshold for the sigma test was cal-
into an equivalent estimate of vegetation height. InBighe  culated as the-99.9 % value; this test eliminates the data
estimated vegetation height is plotted as a function of the areqith the highest 0.1 % sigma values. The thresholds for this
under the first Gaussian (in units of¥ns; i.e. Voltx nano  test were calculated from frequency distributions of the un-
second) to obtain an indication of the magnitude of the effectfiltered data.

Figure 2f shows that, as the area under the first Gaussian in-

creases, the estimate for the minimum vegetation height in3.2.6 Neighbour test (Fig2i)

creases. Itis assumed that the 5 % values of the height distri-

butions (per interval of 0.1 V ns (Vo#t nano s) on the x-axis)  Finally, data were removed where the along-track neighbour
provide an indication of the magnitude of the effect. A line on either side failed any of the above tests.

is fitted and the estimated vegetation height (Bds subse-

quently adjusted according to: 3.2.7 Choice of filters

hoos =a+bA 3) The sequence in which the filters are applied starts
. ! . ! with thresholds obtained from the peer reviewed literature
with A the area under the first Gaussian (V ns) and fitted COYSect. 3.2.1-3.2.2) and ends with the neighbour test. The

efficientsa = 1.91 andb = 0.11 estimated from about 1400 .,qica of thresholds for the data filters obtained from the

5% values. The value fdro o5 is subtracted from all GLAS - yosert analysis is obtained from visual inspection rather than

vegetation height estimates. optimisation. The sensitivity of estimated vegetation height
towards the choice of these filters is therefore further evalu-
ated in Sect4.2

Figure 2f reveals a second potential problem; for low values ~The scatter plots (Fig) indicate that a large proportion of

of the area under the first Gaussian, the spread in estimatetPurious data is removed but some spurious values are likely
vegetation height is large. The higher values in this intervalStill to be present (Fig2i). The discussion in the next sec-
are likely to be unrealistic. A likely cause is that low val- tion and Table2 provide further indications as to how much
ues for the area under the first Gaussian indicate weak signzﬂata are removed by the filters. If'the filter thrgsholds are ad-
strengths, possibly caused by attenuation of the signal in théSted, a larger proportion of spurious values is removed, but
atmosphere or by low energy emitted. The latter problemthiS may be at the cost of removing too many reliable data.
occurred frequently during the last two years of the ICESatPrior to_a potgntlal adjustment of the th_resholds, the filtered
mission efsky, 2010. A threshold is applied to eliminate Vegetation height values are evaluated in Skct.

values with low first Gaussian areas. Because a low area un- L ! )

der the first Gaussian can also occur for vegetation with &> APPlication of filters to a temperate and a tropical
dense canopy or multiple scattering delaying the signal re- area

sponse, the threshold cannot be too. large so as not to ?“mLi'he filters are applied to data from western Europe and the
nate values from tall, dense vegetation. As a compromise

%\mazon to obtain an indication of the amount of data re-
value of 1V ns was selected. . .
moved by each of the processing steps. T@&demmarizes
the results for data collected over 2003 for thrée5° tiles,

Filter based on area under the first Gaussian
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Table 2. Cumulative percentage of data removed by subsequent filters 858 dbr 3 test tiles (Reported for data collected for 2003 only).

20°-25° N, 0°-5°E  50°-55°N, 0°-5°E  5° S-(, 65°-60° W

(Algeria) (W. Europe) South America
Dominant land cover Bare soil Agriculture  Broad leaf evergreen
Missing data 0.00% 0.00% 0.00%
Slope> 10° 1.33% 56.25 % 0.99%
Differenceh > 8m 2.93% 59.2% 11.54%
Area Gaussian ¥ 1V ns 5.49% 62.4% 46.41%
Amplitude Gaussian £ 0.05V 6.00 % 63.0% 57.4%
Outlier test &99.9 %) 6.10% 63.1% 57.5%
Sigma test (Gaussian 1-699.9 %) 6.11% 63.1% 57.5%
Neighbour test 9.16 % 66.8% 76.1%

the desert tile shown in Fi@, the tile in western Europe and the first Gaussian (E®) was added. Measurements from
the tile over the Amazon. Note that the statistics in Table individual laser shots were compared with aircraft data in
refer to the entire year of 2003; whereas Flgefers to data  Sect.4.1 and were then aggregated to global histograms for
collected prior to April 2003. For the desert tile, the filters 0.5° x 0.5° cells.

with the most impact are the elevation test (1.6 %), the area

under the first Gaussian test (2.5 %) and the neighbour test.1 Comparison with airborne LiDAR

(3%).

For the tile that covers part of western Europe most ofFiltered GLAS vegetation height estimates obtained for all
the spurious data are removed by the slope test; a majorityaser periods (2003-2009) were compared with airborne
of data removed by this test is because of missing SRTMLIDAR measurements of vegetation height for 10 sites
DEM values over the sea. The elevation test, area undefSect.2): the former southern old aspen, old black spruce
the first Gaussian test and neighbour test each remove agnd two jack pine BOREAS sites in Canada; a tropical forest
proximately 3 % of the data. For tropical forests the largestsite in Tambopata near Puerto Maldonado; Peru; the Loo-
amount of data, about 35%, is removed by the area undebos needle-leaf forest site in the Netherlaridslfnan et al.
the first Gaussian test. About 10 % is removed by the differ-2002; the Tharandt mixed forest site in Germany; the Glen
ence in elevation test, amplitude test and the neighbours tesAffric (ancient woodland) and Aberfoyle (silviculture) sites
The elevation test is principally intended to eliminate cloud in the UK; and a transect 7 km East of the Tumbarumba flux
contaminated data. When more aircraft LIDAR data becometower site in Australia. Airborne LIDAR data were collected
available for these regions it may be justified to relax the 8at a point density of 0.25m, 0.5m or 1 m. LiDAR point data
m uncertainty range over dense forests to acknowledge thevere sampled to a 50m resolution by one of three meth-
greater uncertainty in the SRTM and GLAS elevation data.ods: (1) by selecting the maximum vegetation height value
The large effect of the area under the first Gaussian test majBOREAS, Loobos, Tharandt, Tumbarumba, Peru) by first
indicate problems with the ground return of the waveform for sampling to 1 m resolution by taking the 99.9 % value and
dense vegetation canopies. Therefore, in SkRit is inves-  then selecting the maximum vegetation height (BOREAS) or
tigated how much the canopy height changes in response tby taking the 99.9 % value (the Glen Affric and Aberfoyle).
changing the thresholds for the filters. Notice the BOREAS data are sampled in two ways to evalu-

ate the sensitvity of the validation of GLAS data on airborne

data. The Tharandt data were post processed to remove er-
4 Testing the vegetation height model and the GLAS roneous data from sparse clouds during the airborne survey.

data filters The Peru data were matched with the centres of the GLAS

footprint; reported GLAS footprint dimensions and azimuth
For convenience of processing the data, raw, unfilteredor each laser campaighlGIDC, 2011 were used to extract
GLAS data were organised ir® & 5° tiles similar to the  coincident subsets of the airborne LIiDAR data. Vegetation
SRTM DEM v 4.1 tiles. A selection of statistics from the height estimated from the GLAS waveforms and the airborne
GLA14 record were retained and a number of measured.iDAR point clouds could then be directly compared. For
were added as well (Tabl®. The filters and adjustments the other data sets, aircraft data were mapped to a univer-
discussed in SecB were applied to the tiled GLAS data; sal transverse Mercator (UTM) projection. Latitude and lon-
data that did not pass the filters were removed. An estigitude were calculated for the centres of all grid cells, and
mate of vegetation height (Efj) adjusted for the area under data were compared if the distance (in the horizontal plane)
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a) Boreas sites b) Loobos c) Tharandt
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Fig. 3. Comparison of GLAS vegetation height retrievals with vegetation height measurements from aircraft LIDAR averaged to a 50 m by
50 m grid. Distance between the centre of the GLAS shot and centre of the 50 m grid cell is less than 20 m. Vegetation height from GLAS is
estimated both from the raw data (grey triangles) and the filtered katd (black dots). Statistics are shown in TaBlda) Former Boreas

sites (Canada)p) Loobos site (the Netherland&) Tambopata (Perufd) Tharandt (Germany)g) E of Tumbarumba (Australiajff) Glen

Affric and Aberfoyle (UK).

between the centre of the 50 by 50 m grid cell and the centré&sO m by selecting the maximum. The second row of T&ble
of the GLAS footprint was less than 20 m. The comparisonshows the result for selecting the maximum. The bias for
was carried out for unfiltered GLAS data, using the differ- the second case is larger§.6 m versus-0.8 m). This in-
ence of start of signal and end of signal to indicate vegetatiordicates two things: (1) the calculation of vegetation height
height, and for GLAS data with the filters of SeB2applied  from aircraft data is extremely sensitive to the statistic used
and field height calculated with Eqd)@nd @). and (2) the GLAS vegetation height is likely not indicative
of the maximum height of vegetation, but more indicative of

Figure 3 and Table3 summarise the results of the com- .
where the canopy starts to become more substantial.

parison. Overall, application of the filters led to a significant
improvement in the agreement between the GLAS data and A possible reason for the outliers in GLAS versus aircraft

aircraft dafca. All correlations between GLAS data and air- vegetation height scatter plots is the spatial variability in the
craft data increased, except for the Tharandt data where thgcene. For early laser campaigns, the major axis of the GLAS
correlation remained the same=£ 0.71). The root-mean- '

S . - footprint can be larger than 50 m; and may incorporate a re-
square error decreased significantly in all cases; in one Cas?ponse of a tree within an adjacent 50 m grid cell. Anecdotal
(Glen Affric) by a factor 10. The bias decreased for most

) evidence for this effect can be found at the Glen Affric site,
cases, only for the Peru data the bias became larger. where the one outlier is located at or near an area with a small
The effect of sampling the aircraft data is investigated with number of trees standing adjacent to the validation grid cell.
the BOREAS data. The first row of Tab®shows the re- The Tharandt site, which is the most problematic not only
sults when data are sampled to 1 m by selecting the 99.9 %because data were collected under partly cloudy conditions,
percentile of the height distribution and are then sampled tdut also because of the a large variability in tree type, age and

www.geosci-model-dev.net/5/413/2012/ Geosci. Model Dev., 5, 432-2012



422 S. O. Los et al.: Vegetation height between 8% and 60 N from GLAS
[t]

a) Combined data b) Laser 1 c) Laser 2
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Fig. 4. (a)Combined aircraft data and GLAS data (-Peru) of BigSee Table 3 for statisticgb—d) Combined aircraft data and GLAS

data (-Peru) shown per GLAS laser campaign. Paiiigd) indicate validity of the vegetation height model (Bg.and of the application

of filters (Sect3) across all laser campaign@) Difference in GLAS (Filterk = 1) and aircraft vegetation height estimates as a function of
distance between the centre of the GLAS pulse and the centre of the aircraft 50 m by 50 m grid cell. The slope of the regression line is not
statistically significant. The maximum error does increase with distance, hoW@wariation in difference between the GLAS and aircraft
vegetation height (absolute values) as a function of the spatial variability in the vegetation height aircraft measurements (standard deviation
of a 3 by 3 window around the centre of the 50 m grid cell). The slope of the regression is statistically signjfieat0(), the coefficient

of correlation is- = 0.3.

height, shows an improvement in values close to the 1:1 linejs represented by BOREAS data only, hence the smaller bias
but contains various outliers that remain in the data. Therecan be explained by the smaller bias in the BOREAS data
is reason to assume that these outliers are related to smaltow 1, Table3).

differences in footprint size in combination with a large vari-  Differences in vegetation height estimated from the GLAS
ability in tree height (below). The overall improvement is instrument and aircraft LIDAR can be caused by errors in
demonstrated when all data (without Peru; not included beeither instrument, registration errors, differences in the size
cause information from surrounding grid cells was missing) of the footprint and land-cover changes between times of
are combined (Fig4a); the correlation increases fron3G@ measurement. The geo-location error of the GLAS footprint
tor =0.78 and the RMSE decreases from 22.2 to 6.2 m (Ta-has a bias smaller than 1 m and a RMSE around 4 m for all
ble 3). but three GLAS laser campaigns (laser 2D-2F; N&¢DC,

The vegetation height model, as well as the application201]). Figurede shows the absolute difference between the
of the filters, improve the correspondence between airborndeight measurements as a function of distance of the centres
data and GLAS data for all laser campaigns (Fb—d) of the GLAS waveforms and the 50 m lidar grid cells derived
The bias for GLAS laser campaign 3 is larger than for from aircraft. There is no significant decrease in average ac-
GLAS campaign 1 (Tabl®); the GLAS laser 1 campaign curacy with increasing distance, but there is anincrease in the
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Table 3. Summary statistics comparing estimates of vegetation height from GLAS data with aircraft LIDAR measurements. Columns under

“Raw” show statistics with no filter applied to the GLAS data and the vegetation height estimated from the difference between the beginning
and end of signal. Columns under “Filtered” show the statistics with a filtedl applied to the GLAS data (Se&.2); “n” indicates the

number of observations where the centres of the aircraft laser shots and the GLAS laser shots were located withfri2Bmcbefficient

of correlation, “RMSE” is the root mean square error and “bias” is the average difference between GLAS and aircraft measurements. The

row with Boreas (MAX) selects the maximum height in a 50 by 50 m pixel; the agreement is better when the top 0.1 % of the data is removed.
see also Fig3.

Raw Filtered

n r RMSE bias n r RMSE bias
Boreas (CDN) 225 043 11.2 0.6 141 0.80 4.2-0.8
Boreas (MAX) 225 043 11.2 0.6 141 0.73 8.1-6.6
Loobos (NL) 57 0.66 6.9 —-0.8 31 0.63 6.5 —4.6
Tharandt (D) 112 0.72 8.8 3.7 34 0.71 8.3-1.7
Tambopata (PE) 648 0.32 15.1-3.9 27 0.72 9.9 -6.5
Tumbarumba (AUS) 420 0.39 155-1.6 10 0.91 95 -58
Glen Affric (GB) 61 0.13 42.3 244 8 0.89 4.1 0.4
Aberfoyle (GB) 190 0.16 39.0 248 17 0.40 12.1 35
Combined (-Peru) 1065 0.33 22.4 5.7 241 0.78 6.21.3
Combined L1A+B 101 0.39 11.1 2.6 60 0.76 3.9-04
Combined L2A-F 331 0.56 15.8 -3.2 79 0.74 74 -11
Combined L3A-K 633 0.28 26.4 10.8 102 0.81 6.5-2.0

maximum error with distance. The average error increases

significantly as a function of spatial variability, expressed as (9 < 10°/k)
the standard deviation in vegetation height for a 3 grid

cell window (Fig.4f). The mismatch of some of the GLAS &(A1>k>1Vng
data with aircraft data can therefore be explained by errors in& (51> kx0.05V) (4)
registration in combination with high spatial variability.

Overall the comparison with the aircraft data indicates awhered is the slopeA; the area of the first Gaussian (V ns)
dramatic improvement in the estimates of vegetation heigh@ndS1 amplitude of the first Gaussian (V). Figulseompares
when the filters are app“ed to the GLAS data. A |arge the cumulative distributions of vegetation helght per Sim-
amount of error, expressed as the RMSE in Table 3 is causeBle Biosphere model (SiB) vegetation cover typeveland
by high spatial variability in combination with a difference et al, 2001 for a filter factork = 1 versusk =2 in twelve
in what the GLAS waveform measures and what is repre-quantile-quantile plots and Fi§.shows the same compari-
sented by the 50m aircraft grid cell. The RMSE values Son but for a filter factok =2 versusk = 3. The quantile-
in Table 3 are therefore likely too high, an error estimateduantile plots of vegetation height for a filter factoe= 1
more resistant to outliers is the 68 % value of the distances ifyersusk = 2 vary only slightly for most biomes, indicating
Fig. 4b and this number is¥4.5m). This value of 45mis that the choice of filters does not affect the height distribu-
marginally larger than the RMSE of the elevation measuredions much at the biome level. The exceptions are mostly in
by GLAS (4 m) and is similar to the RMSE of 4.5 m reported the shorter vegetation classes: for the shrubs and bare soil,

by Rosette et al(2008. and to a lesser extent for ground cover and shrubs and tun-
dra. For these classes the larger height estimates for the filter
4.2 Sensitivity of vegetation height estimates to factor k = 2 are somewhat lower. Changing the filter factor
application of filters fromk = 2 tok = 3 affects the broad-leaf deciduous class; for

most other classes the height distributions are similar. Thus

The screened GLAS data are aggregated into frequency dist the biome level, application of filters does not change the
tributions from 0 to 70 m in 0.5 m intervals for eactbDx height distribution much.

0.5° land-surface cell between 88 and 60N. The 90th  The effect of application of the filters for a specific locale
vegetation height percentile was determined from the hisys jnvestigated by looking at the sensitivity global distribu-

tograms. The sensitivity of the 90th vegetation height per-tion of 90th percentile of the height frequency distributions
centile to the choice of data filters is explored. Thresholds forper 05° x 0.5° cell. The 90th percentile of the height distri-

three filters are varied simultaneously by a fadter 1,2,3,  pytions globally for a filter factok = 3 are shown in Fig7a.
producing increased severity of the filters: The values range from over 40 m in tropical forests to Om
in deserts. The effect of the filter factoks=1 andk =3
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Fig. 5. Quantile-quantile plots for probability distributions of vegetation height using filtered datacwith (x-axis) ork = 2 (y-axis) for
12 SiB classes.

is shown spatially as a change in difference in the 90th per4.3 Global vegetation height evaluation

centile for filter factork =1 andk = 3 in Fig. 7b. Most areas

do not show a significant change. In some areas, mostly irHistograms of the 90th percentile of the globally retrieved
the tropical forests, vegetation increases in height by up tosegetation height distributions (filtér= 3 to conform with

4m if k=3 is used. In some other, mostly mountainous ar-Fig. 8) are shown per SiB biome typ&¢llers et al.1996

eas, the vegetation decreases in height by at most 4m. Fan Fig. 8. Where in previous work one vegetation height per
the majority of cases the change in height is smaller than théiome was used, e.g. to obtain an estimate of surface rough-
RMSE of 4.5-6 m. ness Bellers et al.1996, we find a wider, more realistic,
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a. Broadleaf Evergreen b. Broadleaf Deciduous c. Broadleaf and Needleleaf
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Fig. 6. Same as Figb but for filtered data wittk = 2 (x-axis) andk = 3 (y-axis).

distribution of vegetation heights per biome. There is good Lefsky (2010 derives vegetation height for forests and
agreement between vegetation cover types 1-6 (dominatedoodlands at approximately 0.5km resolution by merging
by trees) and the occurrence of tall vegetation in the GLASthe MODIS land-cover producE(iedl et al, 2010 with ICE-
data; a similar agreement is found for land cover types 7-125at GLAS measurements. The MOD12Q1 product he uses
(shrubs, grasses, tundra, agriculture, bare soil) and the occuis different from the SiB classification scheme used in the
rence of mostly short vegetation. The exception is agriculturepresent paper. Nevertheless, for the more or less compara-
and to a lesser extent tundra. It is likely, however, that theséble tropical forest claskefsky (2010 derives height inter-
classes do contain a minority proportion of tall vegetation. vals different from the present results; his tropical and sub-
tropical moist broadleaf height estimates range between 10
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a) 90 % of vegetation height distribution (k = 3) straightforward, however, since Lefsky’s product pertains to
tree height, whereas the product in the present study pertains
to vegetation height. When the comparison is limited to ar-

40 eas with more than 40 % tree cover in the MODIS continuous
fields productHansen et a]2003 2006, the differences be-

30 tween the two data sets are smaller and are for the main part

limited to the tropics.

Figure 10 compares Lefsky’s tree height product and the
present vegetation height product with the mean NDVI fields
for 1982-1999. The comparison is for areas with more than
40 % tree coverHansen et al.2003 2006§. The NDVI is
near linearly related to the fraction of photosynthetically ac-
~150 -100 tive radiation absorbed by the vegetation canopy for photo-

synthesis and is linked to the amount of £&bsorbed by
vegetation $ellers et a].1996. The carbon absorbed by veg-
etation is allocated to leaves and woody biomass above and
below ground. From these principles, it is expected that a

4 positive relationship exists between mean annual NDVI and

vegetation or tree height. Fig0a shows a density scatter

plot of Lefsky’s tree height product as a function of mean an-
nual NDVI. Tree height shows a modest increase with mean
annual NDVI ¢ = 0.24). The relationship with the present

-2 vegetation height product is different; at high NDVI values

the vegetation height shows an exponential increase; the co-

efficient of correlation is = 0.51.
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4.4 Comparison of GLAS cover fraction with MODIS
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Fig. 7. (a) Spatial distribution of the 90th vegetation height per- . . .
centiles (in m) for filtered data with = 3; (b) difference in 90th The University of Maryland (UMD) MODIS continuous

height percentiles (in m) for filtered data with=3 andk = 1 (fil- field land-cover produgt provides the percentage cover for

ter k =3 — filter k = 1); vegetation height in the tropics increases tree classes: bare soil, trees and other vegetatiangen

when a more conservative filter is used, whereas vegetation heigtet al, 2003 200§. The Fourier Adjusted, Solar and sen-

in mountainous regions decreases at the same time. sor zenith angle corrected, interpolated and reconstructed
(FASIR) vegetation-cover fractiorL¢s et al, 2000 can be
used to calculate the bare soil fraction as wgi=1— fv,

and 30m with a peak at 25m, whereas our estimates fowith fy the vegetation-cover (all vegetation) fraction. From

broad-leaf evergreen forest show a range between 30 andne GLAS height estimates, a bare-cover fraction and a tree-

60 m with a peak at 40 m (Figa). Feldpausch et a(2011]) cover fraction can be estimated and these can be compared
analysed field data obtained from tropical forests in Amer-with the MODIS continuous fields and the FASIR bare soil

ica, Africa and Asia based on an inventory of field studiesfraction. Bare soil fraction can be calculated as the fraction
and for trees with a stem diameter over 40 cm average tre€f GLAS measurements within eactb®x 0.5° cell heights
height values between 30 and 40 m. Height estimates for talPelow a set threshold. This threshold is likely to be higher
vegetation classes outside the tropics have a similar range tdan some value above zero, otherwise small unevenness of
the estimates biefsky (2010, differences can to some ex- the soil topography may appear as low estimates of vegeta-
tent be attributed to differences in class definitions. tion height. The bare soil fraction was calculated from the
Figure 9 shows the spatial distribution in height differ- 0.5° x 0.5° degree GLAS height frequency distributions as
ences between the 90th percentile of tree heightkeff the proportion of footprints below a height threshold, start-
sky (2010 and the 90th percentile of the present vegeta-ing at 0 m and moving up at increments of 0.5 m:
tion height product. The 90th percentile of Lefsky’s data S he
was calculated for each® x 0.5° cell as the median of the fp; = ==
90th percentiles at 0.5 km resolution. For areas outside the
tropics both higher values (North America and south easwith ) nn<, being the number of observations for a height
Asia) and lower values (Eurasian boreal forest) are foundinterval smaller thary m with z varying from 0 to 70m in
in the Lefsky data. The comparison for these areas is no0.5m intervals andv the total number of observations per

5 ©)
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Fig. 8. Globally retrieved height frequency distributions by SiB vegetation clasgeland et al.2001) for Filter k = 3; height values for
SiB biomes Sellers et al.1996 are given for comparison: broadleaf evergréah=35m; broadleaf deciduoyb) and mixed broadleaf
and needleleafc) = 20 m; evergreen needlele@f) and deciduous needlele@)= 17 m; classes with a majority of ground covérd, h, i),

bare soil(k) and agriculturdl) = 1 m; shrubs and bare se{0.5m and tundra=0.6 m
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a) 90 % Tree height (Lefsky) — 90 % Vegetation height (this study)
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Fig. 9. (a) Differences between the 90th percentiletrafe height g Q2
distributions per ° x 0.5° cell obtained fromI(efsky, 2010 and %
the 90th percentile ofegetation heighftrees, shrubs, grasses and ; Q& 50000
bare soil) distributions of the present study. Notice that the two datag, o |
sets are only similar for areas where tree cover is higlfsameas <@
(a) but for areas where tree cover is larger than 40 %, the compari- o ‘ : :

son in(b) is more valid. Results indicate consistently lower values
for tropical forests by efsky (2010; values outside the tropics are
more similar (grey areas indicate differences smaller than 5m).

0.0 0.2 0.4 0.6 0.8

Mean annual NDVI

grid cell. Similarly, tree-cover fraction for each grid cell was Fig. 10. (&)Colour density plot showing the relationship between

threshold: for the height distribution per.B° x 0.5° cell obtained fronLefsky
(2010 for areas with more than 40 % tree cover. The coefficient of
- 2 Mz (6) correlationr = 0.24. (b) Same aga) but showing the 90th vegeta-
’ N tion height percentiles of the present study for cells with tree cover

with 3" n,=. being the number of observations for a height ©Ver 40%. The coefficient of correlation=0.51.

interval larger than or equal tom. _ similar, » = 0.65 at 1.5 m. For the tree-cover fraction the

The GLAS bare soil fraction and tree-cover fraction are maximum correlation fok = 1 was at 9 m £ = 0.794): the
compared with the MODIS pare soil anq tree—_cover fraCtiondiﬁerence withk = 2 at 8m was small{= 0.789). In all
sampled to &° x 0.5° resolution. Bare soil fraction and tree- ;505 estimates of tree height fraction and bare soil fraction
cover fraction were estimated from the raw GLAS data and, g filters were in much closer agreement with the MODIS
the filtered GLAS datak(=1,2,3). For the 4 versions of j.12"compared to estimates from the raw data (Ely. Fil-

GfLAS b?r? soil frﬁctrllon,\z;lmothlrge(;covefr frlactlé)r:j, a C(t))efﬂment terk =2 appears an acceptable compromise between retain-
grcorrelation with the ata lor land data between ing sufficient high quality data to obtain reasonable height

60° S and 60N was calculated for every height interval estimates and removing the bulk of spurious data.
The correlation as a function of the threshold height is shown The maximum correlations between the GLAS bare soil
in Fig. 11a for bare soil and in Figl1b for tree-cover. The fraction and the FASIR bare soil fraction are only slightly

highest agreement was obtained fo& 3; the GLAS bare  hor than the correlations with the MODIS bare soil frac-
soil fraction using a threshold height=1m resulted in the ;- (Fig. 11a)

highest correlationr(= 0.66) for k = 2 the correlation was
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a) Bare soil correlations b) Tree cover correlations
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Fig. 11. (a)Coefficient of correlation between University of Maryland (UMD) MODIS bare soil fraction and GLAS bare soil fraction as a
function of the height threshold used to identify bare soil. For bare soil estimated from raw data, the maxdn@ud2 is at 6 m; for filter

k =1 the maximunmr =0.64 is at 1.5 m; for filterk = 2 the maximum- = 0.65 is at 1.5 m (line not shown); for filtdr= 3 the maximum

r =0.66 is at 1 m. Maximum correlation with FASIR4fy, r =0.67 is at 2.0 to 2.5 m(b) Coefficient of correlation between UMD MODIS
tree-cover fraction and GLAS tree-cover fraction as a function of the height threshold used to identify trees. For raw data the maximum
r=0.584 is at 12.5m; for filtek = 1 the maximum- =0.794 is at 9 m; for filterk = 2 the maximum- =0.789 is at 8 m (line not shown);

for filter kK = 3 the maximum =0.777 is at 6—7 m.

5 Discussion and conclusion the initial study byRosette et al(2008, 6.2 versus 4.5, and
the coefficient of correlation was slightly lower, 0.86 versus

The present study describes the estimation of a global vegeQ'79; most differences are explained by a few outliers which

. . . are, at least in part, the result of a mismatch between the
tation height data set from the ICESat GLAS instrument, The'!ocation of the GLAS data and aircraft data. The robust esti-

fﬁ:gﬂ?ﬂegéﬁ; gha(i;g;atvlvsegrplggi;?];hgesh?a}FﬂLcsétzrggf ° mate of the RMSE, the 68 % of the error distribution, 4.5m,
analysis consists of the following four parts: Evaluation of IS S|m|le}r to th? results ob_tamed Rosette et al(:2008. The
the vegetation height model &osette et al(2008, devel- vegetation height model is likely representative of the loca-

’ tion where the canopy becomes more substantial, rather than

opment and evaluation of data quality filters, compilation of f1h . tent of th Thi f
a global vegetation height data set, and comparing the globa(f € maximum extent ot the canopy. 1his measure ot veg-

vegetation height data with various other global vegetationetatlon height is more useful for the calculation of aerody-

products: vegetation height, tree height, tree cover fraction2Mic roughness. T_he vegetatlon height model aqd applied
bare soil cover fraction and vegetation greenness filters results in consistent improvements for campaigns from

all three GLAS lasers.
The vegetation height model, developedRgsette et al.
(2008 for a mixed forest in the UK, was tested on aircraft Some of the filters developed to screen the GLAS data
LiDAR data for ten sites. The test sites covered a range ofbased on slope and elevation) were based on the literature,
land-cover types including boreal forests, mixed temperatevhereas other filters (the area under the first Gaussian, peak
forests, tropical forests and dense woodlands. Analysis obf the first Gaussian, neighbour test) were based on a visual
the test sites showed that the GLAS vegetation height estianalysis of desert data. The filters are not optimised using
mates were in good agreement with the measurements froran objective minimization criterion such as least squares, be-
aircraft when the GLAS data were filtered prior to analysis. cause of the large volumes of data that need to be handled.
The RMSE for the ten sites was larger to that obtained inThe most important filters are linked to slope (derived from
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the SRTM data, hence independent of a particular GLASmore straightforward and correlation with the MODIS prod-

laser campaign) and difference in elevation (likely less af-uct is higher than for bare soil & 0.79 for a 8 m height

fected by the laser campaign as well) and the energy of thehreshold).

pulse (area for the first Gaussian) which should have a depen- Only a small percentage of eactb®x 0.5° grid cell is

dency on the age of the GLAS laser. A sensitivity analysis ofsampled by the GLAS instrument. This can lead to uncer-

the filters indicated that estimates of vegetation height werdainties as to how representative the sample average is for

not overly sensitive to the choice of filters. As more data setshe grid cell averageMacDonald and Hal{1980 found that

from air campaigns become available, optimisation of the fil-crop yield for large areas could be estimated well with only a

ter thresholds and tuning filters for individual campaigns maysmall percentage of land sampled. The limited sensitivity of

lead to further improvements. However the product has beerthe GLAS 05° x 0.5° vegetation height estimates to varying

thoroughly tested for a range of vegetation types and condithe data quality filters is further indication that reasonable

tions found globally, including those known to be challeng- estimates are obtained.

ing for the GLAS instrument, and further improvements are The GLAS vegetation height distributions derived in the

therefore likely to be minor. present paper are a first attempt to obtain near-global esti-
For global aggregates of GLAS vegetation height distri- mates of vegetation height for all biomes without the use of

butions various comparisons with other data products weredditional vegetation data sets. Despite some limitations, the

made. Vegetation height histograms pd&i°t 0.5° cellshow  present product is a substantial improvement over existing

more realistic values than existing products. For exampleproducts used in climate models and ecological models.

vegetation height derived by biome uses only one average

value, the GLAS data indicate that a large variation in veg-Supplementary material related to this

etation height exists within land-cover classes. The latter isarticle is available online at:

more realistic. Compared to the tree height produdteff http://www.geosci-model-dev.net/5/413/2012/

sky (2010, 10-30 m with a peak at 25 m for tropical forest, gmd-5-413-2012-supplement.zip

our estimate of the corresponding 90th height percentiles is

almost twice as large: a range up to 60 m with 40 m heights . .

being the most frequently occurring. We believe our esti_AcknowledgementsThe MOD_IS global vegetation continuous

mates to be more realistic since the compare better with th |eld_s_, MOD_44B’ were obtained from the Global Land Cover

average estimate of 35 m 8&llers et al(199§ that is based acility, http://www.landcover.org/the ICESat GLAS data were

. - ) obtained from the National Snow and Ice Data Center (NSIDC),
on areview of the literature, and they compare better with thenttp://nsidc.org/ and the interpolated SRTM-DEM version 4.1

range of values published Byeldpausch et a(2011) who, data were obtained from the Consultative Group for International
based on an inventory of field studies, found 0.05 quantilesagriculture Research — Consortium for Spatial Information
between 15 to 60 m for trees with a diameter over 40 cm anqCGIAR-CSI), http://www.cgiar-csi.org/Airborne LIDAR data for
average tree height values between 30 and 40 m. the UK were provided by the UK government Forestry Commission
Measuring tree height from waveform LiDAR in tropical research agency, Forest Research. The LiDAR data of Peru were

forests is notoriously difficult to determine due to the diffi- acquired by Dr Bryan Mark of Ohio State University. We are also
culty in identifying the ground return. Further improvements 9rateful to Doreen Boyd of the University of Nottingham who is
can be expected if ground elevation can be estimated witpa't of the team working on this data set. Airborne LIDAR data
higher certainty. This is challenging for a large footprint Li- from the Canadian sites were obtained with support from NERC

h (grant NE/G000360/1, PI NK), from the Netherlands and German
DAR such as GLAS. A future satellite waveform sensor, pro- . .o support from NERC/ARSF/FSE grant EU10-01 and

ducing a smaller footprint, would improve the capability of \erc/cEF grant 909 (PI NK); and from Australia with support

detecting the ground for sloped and vegetated surfaces.  from NCEO EO mission support 2009 (PI NK). Special thanks to
The GLAS vegetation height data show remaining prob-the Applied Geomatics Research Group (AGRG) in Nova Scotia,

lems over bare soil(= 0.64 for a height threshold of 1 m). the NERC Airborne Research and Survey Facility (ARSF) and

The “apparent” vegetation height over bare soil is most likely Airborne Research Australia (ARA) for carrying out the airborne

caused by unevenness of the ground and the presence ofmpaigns. We thank Mike Lefsky for making his tree height

objects such as boulders. However this offers a significanProduct available.

improvement on observations of other authors of estimated

vegetation heights of several metres for bare soil. More-Edited by: D. Lawrence

over, for some applications such as the calculation of rough-

ness length, an indication of variations in height of solid ob-

jects at sub footprint level may be beneficial. Combining an

NDVI-based bare soil estimate or land-cover classification-

based bare soil estimate with the GLAS estimates should im-

prove the overall product further. Compared to calculating

the bare soil fraction, measuring the tree cover fraction is
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