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MARINE COMPOSITES

Current methods of estimating the behaviour of marine 
composite structures under pressure due to slamming 
as a result of high waves are based on trial and error or 
oversimplification. Normally under these conditions the 
non-linearities of these structures are often neglected and, 
in order to compensate, an overestimated safety factor is 
employed. These conservative approaches can result in 
heavier and overdesigned structures. In this paper, a new 
semi-empirical method is proposed that overcomes some of 

these problems. This work involved the use of an artificial 
neural network (ANN) combined with strain gauge data 
to enable real-time in-service load monitoring of large 
marine structural panels. Such a tool has other important 
applications, such as monitoring slamming or other 
transient hydrostatic loads that can ultimately affect fatigue 
life. To develop this system, a glass fibre-reinforced polymer 
(GFRP) composite panel was used due to its potential for 
providing a non-linear response to pressure or slamming 
loads. It was found that the ANN was able to predict normal 
loads applied at different locations on the panel accurately. 
This method is also capable of predicting loads on the 
marine structure in real time.

Keywords:	Composite, marine, artificial intelligence, artificial 
neural network, structural analysis, load, non-linear 
structures, large displacement analysis.

1.	Introduction
In addition to hydrostatic and mass-related loads that can be 
evaluated with a high degree of accuracy and confidence, it is also 
desirable to measure transient loads due to slamming as a result of 
high waves. The current practice to determine wave loads is based 
on applying standard rules, which often relies on conservative 
methods due to large uncertainties in the theoretical treatment used 
for wave load predictions. This leads to a craft that is heavier and 
slower than it could otherwise be. 

Although sea has an irregular and arbitrary condition, the overall 
condition can be predicted statistically by superimposing a series of 
different regular waves of varying heights, lengths, directions and 
phase[1-3]. In order to define the sea-state that the craft are expected 
to encounter during their lifetime, an enormous amount of data 
regarding ocean waves has been collected. Hogben et al[4] collected 
comprehensive data regarding ocean waves from 104 ocean areas 
covering all major shipping routes. Having more information about 
sea states, the wave-induced loads on the craft structure and the 
response to such loads may be estimated. 

Techniques used to measure hydrodynamic loads use non-
linear equations due to the random and irregular nature of the 
sea, resulting in a very expensive and time-consuming analysis. 
Methods have been developed in order to simplify such an 
analysis[5]. Strip theory is one of the most well-known techniques 
used to determine the wave-induced loads[6,7]. The principle is that 
the craft’s hull is divided into a number of segments or strips. The 
forces acting on the hull are then calculated separately on each 
segment using a two-dimensional flow theory. This method ignores 
the longitudinal component of relative velocity and any type of 
interaction between the different segments. Other shortcomings of 
this theory include ignoring three-dimensional or viscous effects 
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as well as the inability to account for the above-water hull form. 
In order to resolve the problem with compatibility between strips, 
flexible beam strip theories were developed that account for the 
bending and shear stiffness of the hull[8]. Although this kind of 
theory can estimate the distortional higher frequency responses of 
a hull to slamming and lashing excitation, it is still linear analysis 
and extreme response is not well modelled. 

The accuracy of the strip theory and other codes has been 
investigated by several researchers and the error associated with 
predicting a mid-ship bending moment using strip theory is of the 
order of 10% to 20%. This accuracy is reduced further towards 
the ends of the vessel and as seas become progressively more 
beam-on[9]. Clarke[10] conducted many on-board measurements 
employing several Royal Navy (RN) ships. The results indicated 
that strip theory over-estimates wave bending moments, 
particularly at larger wave heights. Furthermore, the hogging 
bending moment was over-predicted more so than the sagging 
moment. It is concluded that these techniques are only accurate for 
moderate sea conditions and ship speeds meaning an extreme load 
causing a large displacement in panels is impossible to measure. 
Moreover, doubts also exist in many of the assumptions that involve 
stochastic/random data or procedures involving environmental 
and operational conditions. This is due to the fact that sometimes 
environmental and operational conditions are difficult to define 
accurately in advance and therefore assumptions are needed[11]. 

In order to improve the accuracy of estimation, especially in 
short waves, many numerical methods considering the three-
dimensional effects have been introduced. Among them are the 
three-dimensional Green function method[12] and Rankine source 
method[13-15] based on three-dimensional potential theory. The 
benefits of these methods include taking the three-dimensional 
effects into account, having good stability of computations and a 
moderate computing time. Hence, they are considered as suitable 
design tools replacing the strip methods. 

A review by Phelps[9] indicates that non-linear theories and 
three-dimensional load prediction methods have been introduced, 
but these require greater computational effort and have not yet 
proven to be significantly more accurate than the two-dimensional 
methods. It is concluded that a novel technique is required to 
overcome current limitations in the practices used to measure 
and estimate loads experienced by the hull of a small, high-speed 
boat operating in a seaway. Furthermore, as vessels and craft are, 
in most cases, extremely complicated structures, the mechanical 
properties, or relationship between externally-induced excitation 
and structural responses, are difficult to formulate. An appropriate 
load monitoring system and technique has to be developed for 
naval assets and large structures[16]. 

A novel approach for the determination of pressure loads 
experienced by marine structures is the utilisation of artificial 
neural networks (ANN) as an inverse method. In a study by Cao 
et al[16], an approach was developed to identify the loads acting on 
aircraft wings, where an ANN was utilised to model the load-strain 
relationship for structural analysis. The research demonstrated 
that using an ANN to identify loads is feasible and a well-trained 
ANN reveals an extremely fast convergence and a high degree of 
accuracy in the process of load identification for a cantilevered 
beam model. In a study by Amali et al[17], it is illustrated that 
ANN can be combined with experimental methods to create a 
hybrid inverse problem analysis tool or inverse problem engine. 
The hybrid approach can be applied to both direct problems 
(calculation of the structural response from known loads applied 
to the structure) and inverse problems (calculation of the applied 
load from a known structural response). Additionally, the approach 
avoids the need to have information on the component geometry 
and material properties[18,19].

Ramazani et al[20] have recently shown that the inverse 
problem approach can be used to estimate low loads applied on a 

composite marine panel from a small deflection and its associated 
strain measurements. A comparison of the ANN loads with the 
actual applied loads indicated a very good performance of the 
methodology. This was achieved in real time, providing an accurate 
load history for a component without requiring knowledge of the 
material properties or component geometry. However, a large load 
results in a large displacement in the panel, where the displacement 
is no longer predictable. This implies that the superposition method 
of generating training data for a small displacement can no longer 
be applied here. However, marine structures do experience large 
displacement and for that reason load prediction is essential. This 
paper reports on the research undertaken to further develop the 
ANN methodology to quantify static pressure/central load on a 
composite marine panel from its non-linear structural response. 

2.	Methodology
The methodology employed to evaluate the suitability of an ANN as 
an inverse problem is presented in this section. A backpropagation 
ANN was designed, developed and trained within the Matlab 
simulation environment (Mathworks, Natick, Massachusetts, 
USA) to measure transverse load on a flat composite marine panel. 
The estimated output was then validated by comparing it against 
both experimental and numerical data. 

2.1 Inverse problem analysis methodology
Inverse problem analysis is based on accurately calculating the 
external loads or boundary conditions that generate a known strain 
at pre-determined locations on a structure. An ANN, as an inverse 
problem solver, can be utilised to determine a relationship between 
the cause and its effect[20]. In this study, the static loads (the cause/
output) on a composite panel are quantified by acquiring repeatable 
strain responses (the effect/input) to these loads from the panel. 
Introducing these examples to an ANN, the system can learn 
and form the relationships between the input (strains) and output 
(load) through the transfer function. The ANN requires a number 
of known input and output data for training (ie relating the ANN 
inputs to outputs using a transfer function and series of weighting 
values). Once the ANN is sufficiently trained it can be utilised to 
estimate the output in real time. New inputs (problem data) can 
then be presented and the load can be estimated in real time.

2.2 Experimental set-up
The structure under consideration was a 1 m2 glass fibre-reinforced 
fibre polymer/plastic (GFRP) marine composite panel (Figure 1). 
The sample GFRP composite panel used was made of seven layers 
of stitched biaxial ±45 E-glass cloth with Ampreg 22 epoxy resin 
system, hand laid-up with a total thickness of 5 × 10–3 m. The fibres 
were aligned parallel to the edges of the panel. Table 1 shows the 
experimental mechanical properties of the glass fibre as provided 
by the manufacturer.

The panel was divided into a four-by-four grid producing 
sixteen equal regions, each with an area of 0.25 × 0.25 m2 (Figure 

Figure 1. Schematic of composite panel indicating strain gauge 
and loading locations
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1). The bottom surface of the panel was supported on all four edges 
using aluminium bars, each 0.0381 m high, 0.01905 m wide and  
1 m long. Sixteen linear electrical resistance strain gauges (ERSG) 
(S1-16) were bonded to the centre of each region (specification 
in Table 2). Two eight-channel NI cDAQ 9236 modules mounted 
on NI cDAQ 9174 chassis (National Instruments Corporation, 
Austin, Texas, USA) were used as the strain monitoring and control 
data acquisition system with a resolution of +/– 0.1 microstrain. 
The system provides differential inputs to monitor sixteen strain 
gauges at up to 10,000 samples per second. The strain data was 
collected using Matlab, utilising Matlab Data Acquisition Toolbox 
capabilities.

Table 2. Strain gauge specification

Type General purpose linear gauge

Resistance 350 ohms ± 0.6%

Gauge factor 2.100 ± 0.5%

Gauge length 6.35 mm

Gauge width 2.54 mm

Normal loads were randomly applied to the top surface of 
the panel at thirteen grid intersections (L1-13). Depending on 
the proximity of the gauge to the applied loads, different gauges 
exhibited different levels of sensitivity, which was as expected. To 
produce efficient training data the strain data should be captured 
at the sensitive regions (ie the strain at those locations must vary 
significantly due to changes in load level). In addition, the strain 
data collected must provide a unique response for each load 
distribution. If strain is collected from non-sensitive regions of the 
panel and/or the strain data collected is not unique for each load 
distribution the ANN is less likely to be able to find a function 
relating the input and output.

2.3 Generation of training data
Many small marine craft hulls are manufactured from fibreglass 
strengthened by wood or foam. Their characteristics are such that 
their thickness is small compared to their other dimensions. In this 
study, a GFRP panel has been utilised to represent a section of 
the hull. Panels can be classified according to their thickness and 
their lateral deflection compared to their thickness[21]. They can be 

classified as: (1) thick plate, small deflection; (2) thin plate and 
small deflection; (3) thin plate, large deflection; or (4) very thin 
plate (membranes) with either small deflection or large deflection. 
In all cases the solutions are approximate, not exact or closed form. 
The deflection at the centre of a plate subject to pressure is offered 
by Westergaard and Slater[22] and is based on the modified flexure 
theory of plates where, depending on the plate aspect ratio, edge 
boundary conditions and load, different approximate empirical 
solutions are found. In such cases, a small displacement is defined 
as displacement less than or equal to half the thickness of the plate. 
If the displacement exceeds this limit then the problem is treated 
as a non-linear problem where the displacement can no longer be 
accurately predicted using the above theory. This is due to highly 
non-linear double curvature deformation, unlike the displacement 
function stated above. In large displacement analysis, the transverse 
shear can also no longer be ignored and if the panel is composite 
then the transverse shear requires further special treatment. In 
such cases, the classical inverse approach used previously, based 
on utilising data generated from superposition, can no longer be 
employed due to the complexity of the displacement function. 

For non-linear structures an alternative approach is needed in 
order to generate the required training data. There are two ways 
in which such data can be generated: (a) experimentally; or (b) 
using a non-linear finite element analysis (FEA) solver. Generating 
the required training data experimentally is very time consuming 
and labour intensive. Therefore, non-linear FEA analysis using a 
script that allowed automatic generation of a random load on the 
panel was utilised to generate the training data. Abaqus 6.10-1 FEA 
software (Dassault Systèmes Simulia Corp, Rhode Island, USA) 
was used. A script function written in Python language was used to 
iteratively run the software in a batch using different random loads 
applied at each of the thirteen loading locations on the panel. The 
FEA model was initially validated to ensure that it represented the 
actual panel accurately. The validation was achieved by comparing 
strains collected experimentally with the FEA strains under the 
same loading conditions. Loads from 100 N to 800 N applied in 100 
N increments were placed on the panel one at a time at locations 
L1 to L13. The strain readings at locations S1 to S16 on the panel 
were saved for each test. The same tests were performed with FEA 
to compare with the experimental results.

Once validated, a large number of training (load/strain 

Table 1. Panel material specification provided by SP Gurit Systems (Newport, Isle of Wight, UK)

Material name XE905

Material type Stitched biaxial

Fibre volume fraction 0.46

Longitudinal property Units                                                                                      Units

Longitudinal tensile modulus N/mm2 21220 Poisson’s ratio (longitudinal strain) 0.120

Longitudinal tensile strength N/mm2 318.3 Poisson’s ratio (transverse strain) 0.120

Longitudinal compressive modulus N/mm2 21220 Longitudinal coeff. of thermal expansion 10-6/°K 14.62

Longitudinal compressive strength N/mm2 254.6 Transverse coeff. of thermal expansion 10-6/°K 14.62

Transverse property Density kg/m3 1786

Transverse tensile modulus N/mm2 21220 Structural ply thickness mm 0.75

Transverse tensile strength N/mm2 318.3 Actual ply weight g/m2 1364

Transverse compressive modulus N/mm2 21220 Shear thickness mm 0.75

Transverse compressive strength N/mm2 254.6

Shear properties Derived shear properties @ ±45°

Interlaminar shear modulus N/mm2 3050 Shear material name 1 x XE905 @ ±45°

Interlaminar shear strength N/mm2 36.6 Axial modulus with fibres @±45° N/mm2 9737

In-plane shear modulus N/mm2 3050 Shear modulus with fibres @45° N/mm2 9471

In-plane shear strength N/mm2 46.1 Poisson’s ratio with fibres @±45° 0.596



response) data was able to be generated from the FEA model. In 
order to increase the efficiency of generating the training data, 
it was possible to reduce the number of FEA models required to 
establish the non-linear strain response for each gauge location. 
This was achieved by fitting non-linear curves to data collected for 
each strain location and using the curves to interpolate strain data 
for different load magnitudes. 

The structural responses of the panel in terms of strain were 
saved to be used as the input training dataset. The corresponding 
load for each input dataset was also saved and utilised as the output 
training set. Some of these input and outputs were saved separately 
for testing the network and error minimisation. In this study, sixteen 
single strain gauge readings (inputs) and thirteen applied loads 
(outputs) constitute one training dataset. At each loading location 
(L1-L13),  a static load ranging between 24.525 N and 784.8 N was 
applied in steps of 24.525 N. In total, 1040 training datasets were 
generated from the non-linear FEA model.

2.4 ANN architecture/topology
ANN analysis often requires a high number of individual loops 
to determine the best solution. However, the training time can 
be reduced (ie reduce the number of loops to minimise the error 
equation) by pre-processing the data that is given to the network 
to train. Having multiple hidden layers of neurons with non-linear 
transfer functions (such as tan-sig and log-sig) enables the network 
to understand both non-linear and linear relationships between 
input and output data. Unsatisfactory performance of the ANN can 
be due to a wide range of reasons, such as:
q	 an unsuitable ANN architecture or learning method;
q	 insufficient representative data (not enough example strain/load 

data);
q	 inadequate pre-processing (noisy data from data acquisition 

system ignored);
q	 unsuitable ANN training parameters.

Most of the time this is not the case and the ANN will be well 
trained and perform satisfactorily, even on a new untrained dataset. 
Key architectural issues that can be optimised include: (i) the 
number of layers in the ANN; (ii) the number of neurons per layer; 
(iii) the type and parameters of the neuron, which are usually the 
same throughout; and (iv) the number of calculations per iteration 
during learning and recall. 

The Matlab Artificial Neural Network toolbox was used in this 
study to generate two different backpropagation ANN architectures in 
order to compare their performance. The architectures utilised were:
q	 One network with sixteen neurons in the input layer and thirteen 

neurons in the output layer is trained to estimate the load on the 
panel from the strain responses (Figure 3).

q	 Thirteen networks each with sixteen neurons in the input layer 
and one neuron in the output layer are trained and used to estimate 
the load on the panel from the strain responses (Figure 4). 

The number of hidden layers and neurons 
in each hidden layer of the two network 
architectures were flexible. These were 
dependent on the complexity of the training 
datasets and were optimised according to the 
network performance. The sum of squared 
errors (SSE) and mean of squared errors 
(MSE) are common network performance 
indicators. Through the testing of various 
network architectures, the optimum network 
having the lowest performance indicator can 
be determined. Once the ANN is trained, it 
can be employed to estimate new loading 
cases where the same patterns exist. In 
other words, whenever the same pattern of 

strain reading as an input is introduced to the network, it will be 
able to estimate the loads that caused those structure responses. 
Depending on how well the network is trained (the performance of 
the network), there will be an error between the output dataset and 
the network estimated output (load). 

2.5 ANN validation and performance
The validity and performance of the ANN method was evaluated 
by comparing the load estimated by the ANN with known loads 
applied to the panel, which were not seen by the network during 
the training process. The first validation study utilised load and 
strain data generated from the FEA model and was compared with 
estimated loads from the ANN. In the second study, problem strain 
data was captured directly from the panel and again the estimated 
loads were compared with the actual applied loads.

3.	Results
The validity of utilising FEA for training data generation and 
the ANN validity and performance are detailed in the following 
sections.

3.1 FEA model validation
Figure 2 indicates that for loading only location L13, there is 
reasonable agreement between the strain readings (S6 and S10) of 
FEA tests and experimental tests. The average percentage error is 
less than 7%. These results indicate that the FEA model can be used 
confidently to simulate various loading conditions and to generate 
the required training input data.

3.2 ANN validation and performance
As mentioned in Section 2.4, two different methods are employed 
to define the networks. Table 3 lists the major parameters of the 
network architecture used in the two methods. It was determined, 

Table 3. ANN architectures 

1 network with 16 strain inputs 
and 13 load outputs

13 networks each with 16 
strain inputs and 1 load output

Number of networks 1 13

Architecture Feed forward backpropagation

Number of layers in each network 2 1

Range of load estimation 24.525-784.8 (N) 24.525-784.8 (N)

No of inputs (surface strains) 16 16

No of output layer neurons (loads) 13 1

No of each hidden layer of neurons [20 20] [50]

Number of training patterns 1040 1040

Number of testing patterns 1040 1040

Figure 2. Comparison of FEA and experimental data of selected 
strain gauges 
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through the testing of various network architectures, that the 
optimum network (lowest SSE) for method one had two hidden 
layers with twenty neurons and used a tan-sig transfer (Figure 3). 
The output layer had thirteen neurons (representing the thirteen 
loads to be estimated) and used a pure-lin transfer function. 
Similarly, it was determined that the thirteen networks for method 
two had one hidden layer each with fifty neurons and used a tan-
sig transfer (Figure 4). The output layer of each network had one 
neuron (each network estimates the corresponding load of one 
location) and used a pure-lin transfer function.

In this study, SSE is used as a performance indicator. Once the 
networks were trained, SSE values between the estimated loads and 
training load data were calculated. Each network has an individual 
SSE value. This means that although the first method has only one 
SSE value, the second method had thirteen SSE values. Figure 
5 indicates the SSE performance of all thirteen networks, each 
having sixteen inputs (all strain readings) and one output (load at 
one location) generated from the second network architecture.

In order to compare the two methods, the summation of all the 
networks’ SSE values in the second method is compared to the SSE 
value of the first method, when only a network with sixteen inputs 
and thirteen outputs were used to train the system. As it is indicated 
in Figure 6, a better performance for the second method is achieved. 

In addition to having a better performance, the second method 
has more flexibility. This means having thirteen independent 
networks; for each load location a separate new network 
architecture and parameters can be employed. 
For instance, the sum of the estimation 
performances of networks in the second 
method can be improved by changing the 
network architecture of those networks (eight 
and twelve from Figure 5) having relatively 
higher SSE values. As it is illustrated in Table 
4, for locations eight and twelve, networks 
with two layers with twenty neurons are 
used. The improvement in SSE for networks 
eight and twelve with the new architectures 
can be seen in Figure 7. 

In order to investigate the capability of the 
ANN to estimate loads in real time, once the 
ANN is trained new strain data from different 

loading cases were introduced to it. Having a good performance, 
the ANN should be able to estimate the external pressure loads that 
caused those structure responses. For instance, introducing new 
sets of strain data that have not been used to train the network, the 
ANN estimates the corresponding load data. Depending on how 
well the network is trained (the performance of the network), there 
will be errors between the expected output dataset and the network 
estimated output (loads). Figure 8 depicts a random example of 
estimated loads with the ANN for both FEA and experimental tests 
against the desired loads applied in tests when there was only one 
external load of 500 N at location L13 (data is used to train the 
network). For both sets of problem data it can be seen that the ANN 
can again estimate the load at the loaded locations with a high 

Table 4. Optimum ANN architecture 2

13 networks each with 16 strain inputs and 1 load output

Number of networks 13

Architecture Feed forward backpropagation

Number of layers in each network Most of it has 1 and for location 8 and 12 are 2

Range of loads 0-809.3 (N)

Number of inputs (surface strains) 16

Number of neurons in output layer (normal loads) 1

Number of neurons in each hidden layer [50] or [20 20]

Number of training patterns 1040

Number of testing patterns 1040

Figure 3. Matlab representation of ANN architecture 1

Figure 4. Matlab representation of ANN architecture 2

Figure 5. SSE performance of network architecture 2

Figure 6. Comparison of the SSE values of the two network 
architectures

Figure 7. Flexibility of ANN architecture 2 in training stage



degree of accuracy. However, the error size of estimated loads with 
the ANN for experimental tests is slightly bigger. Such a small error 
is normal and it could be from an initial error between the FEA data 
and experimental data, errors induced from the repeatability of the 
data acquisition system with a resolution of +/– 0.1 microstrain as 
well as possible overtraining of the ANN.

The estimated negative load values at the unloaded locations 
were due to the differences between the strain data collected to 
generate the training data and the collected problem strain data. 
Due to these errors, slightly different strain patterns are introduced 
to the ANN producing the errors in the estimated loads. The 
introduction of further noisy patterns in the training dataset may 
reduce these small errors, indicating that further work could be 
carried out to improve the accuracy further.

4.	Discussion
In this study, it is shown that the inverse problem method, utilising 
an ANN, is capable of estimating magnitude and position of the 
static pressure loads on a marine composite panel under large 
displacement from non-linear strain measurements. The results of 
this study can be summarised as follows:
q	 FEA data can be used to generate training data for ANN inverse 

load estimation problems.
q	 Two different ANN architectures are used and the performances 

are compared.
q	 Having non-linear relationships between the applied load and 

the surface strains, the system always converges and the SSE is 
in the range of acceptable error.

q	 The system is capable of estimating the position and magnitude 
of static pressure loads on a marine composite panel under large 
displacement.

q	 Having a large difference between the training datasets and the 
problem dataset makes the ANN unable to estimate the load 
accurately. 

q	 The main source of error was found to be an initial error between 
the FEA data and experimental data. 

The ability to measure the actual load history of a craft in-service 
would enable the designer to validate the load estimation and 
structural design tools used during the design stage of a craft. This 
would lead to the development of more optimal structure designs 
for this type of craft. The operational safety of the craft can also 
be improved by having a real-time load monitoring system that is 
able to detect any degradation of the structural integrity and defects 
within the structure. 

It is proposed that the ANN methodology, with further research 
and development, could be utilised for the quantification of 
in-service, transient loads in real-time acting on the craft from the 
craft’s structural response (strain response to load). This would 
provide valuable information to influence future craft design. In 
order to fully evaluate the proposed methodology for in-service 
load monitoring of marine structures, the following areas require 
investigation:
q	 The behaviour of marine structures under transient load 

conditions (dynamic load is applied).
q	 The effect of the size of the structure on the ANN estimation 

accuracy.
q	 The number of sensors required for accurate load estimation by 

optimising the method. While some vessels do have integrated 
sensors most do not. The number of sensors should be minimised 
to reduce the time to train the system, cost and weight. 

q	 The effect of modifying ANN training parameters, including the 
number and type of training patterns introduced to the ANN.

q	 Validation of the methodology on a craft in-service.

Finally, a graphical user interface (GUI) should be developed 
allowing control of various parameters of the data acquisition and 
load monitoring system, as well as graphical display in real time.

5.	Conclusions
It has been shown that the inverse problem approach can be used 
to estimate the magnitude and position of static pressure loads on 
a marine composite panel under large displacement from non-
linear strain measurements. A comparison of the ANN loads with 
the actual applied loads indicated a very good performance of the 
methodology. This was achieved in real time, providing an accurate 
load history. This potentially makes the system ideal for solving 
many classes of complex engineering problem that require load 
monitoring. 
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