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MARINE COMPOSITES

Current methods of estimating the behaviour of marine 
composite structures under pressure due to slamming 
as a result of high waves are based on trial and error or 
oversimplification. Normally under these conditions the 
non-linearities of these structures are often neglected and, 
in order to compensate, an overestimated safety factor is 
employed. These conservative approaches can result in 
heavier and overdesigned structures. In this paper, a new 
semi-empirical method is proposed that overcomes some of 

these problems. This work involved the use of an artificial 
neural network (ANN) combined with strain gauge data 
to enable real-time in-service load monitoring of large 
marine structural panels. Such a tool has other important 
applications, such as monitoring slamming or other 
transient hydrostatic loads that can ultimately affect fatigue 
life. To develop this system, a glass fibre-reinforced polymer 
(GFRP) composite panel was used due to its potential for 
providing a non-linear response to pressure or slamming 
loads. It was found that the ANN was able to predict normal 
loads applied at different locations on the panel accurately. 
This method is also capable of predicting loads on the 
marine structure in real time.

Keywords:	Composite,	 marine,	 artificial	 intelligence,	 artificial	
neural	 network,	 structural	 analysis,	 load,	 non-linear	
structures,	large	displacement	analysis.

1. Introduction
In	 addition	 to	 hydrostatic	 and	 mass-related	 loads	 that	 can	 be	
evaluated	with	a	high	degree	of	accuracy	and	confidence,	it	is	also	
desirable	to	measure	transient	loads	due	to	slamming	as	a	result	of	
high	waves.	The	current	practice	to	determine	wave	loads	is	based	
on	 applying	 standard	 rules,	 which	 often	 relies	 on	 conservative	
methods	due	to	large	uncertainties	in	the	theoretical	treatment	used	
for	wave	load	predictions.	This	leads	to	a	craft	that	is	heavier	and	
slower	than	it	could	otherwise	be.	

Although	sea	has	an	irregular	and	arbitrary	condition,	the	overall	
condition	can	be	predicted	statistically	by	superimposing	a	series	of	
different	regular	waves	of	varying	heights,	lengths,	directions	and	
phase[1-3].	In	order	to	define	the	sea-state	that	the	craft	are	expected	
to	 encounter	 during	 their	 lifetime,	 an	 enormous	 amount	 of	 data	
regarding	ocean	waves	has	been	collected.	Hogben	et al[4]	collected	
comprehensive	data	regarding	ocean	waves	from	104	ocean	areas	
covering	all	major	shipping	routes.	Having	more	information	about	
sea	 states,	 the	wave-induced	 loads	 on	 the	 craft	 structure	 and	 the	
response	to	such	loads	may	be	estimated.	

Techniques	 used	 to	 measure	 hydrodynamic	 loads	 use	 non-
linear	 equations	 due	 to	 the	 random	 and	 irregular	 nature	 of	 the	
sea,	 resulting	 in	 a	 very	 expensive	 and	 time-consuming	 analysis.	
Methods	 have	 been	 developed	 in	 order	 to	 simplify	 such	 an	
analysis[5].	Strip	theory	is	one	of	the	most	well-known	techniques	
used	to	determine	the	wave-induced	loads[6,7].	The	principle	is	that	
the	craft’s	hull	is	divided	into	a	number	of	segments	or	strips.	The	
forces	 acting	 on	 the	 hull	 are	 then	 calculated	 separately	 on	 each	
segment	using	a	two-dimensional	flow	theory.	This	method	ignores	
the	 longitudinal	 component	 of	 relative	 velocity	 and	 any	 type	 of	
interaction	between	the	different	segments.	Other	shortcomings	of	
this	 theory	 include	 ignoring	 three-dimensional	 or	 viscous	 effects	

Using artificial neural networks and strain gauges 
for the determination of static loads on a thin square 
fully-constrained composite marine panel subjected 
to a large central displacement

M R Ramazani, S Noroozi, P Sewell, R Khandan and B Cripps
Submitted 19.07.12 
Accepted 06.09.12

Mohammad Reza Ramazani received his MEng degree in mechanical 
engineering from the University of Birmingham in 2009. He is currently 
studying for a PhD jointly funded by Bournemouth University and BAE 
Surface Ships Ltd to investigate in-service load monitoring of marine 
structures. His interests include artificial intelligence and computer-aided 
engineering.

Professor Siamak Noroozi received his PhD from Sheffield University 
in 1986 in the area of finite element analysis coupled with boundary 
element analysis. He currently holds the Chair in Advanced Technology at 
Bournemouth University. His research interests are finite element analysis, 
boundary element analysis, biomechanics, condition monitoring, general 
stress analysis, photoelasticity, alternative numerical analysis, composite 
technology and aeroelasticity.

Dr Philip Sewell received his BEng degree in mechanical engineering from 
the University of the West of England in 1999 and a PhD in the field of 
prosthetic design in 2003. He is currently employed as a Senior Academic 
in Design Simulation at Bournemouth University. His research interests 
include the design of novel tools for prosthetic fitting, the development of 
techniques to determine prosthetic interfacial pressure distributions and 
experimental and numerical stress analysis. 

Rasoul Khandan received his BSc degree in mechanical engineering from 
the Isfahan University of Technology in 2004 and an MSc in mechanical 
engineering (applied design) in 2008 from Shiraz University. He is 
currently working on modelling, simulation and optimisation of composite 
materials as a PhD researcher in the Design Simulation Research Centre 
at Bournemouth University. His main research interest is modelling and the 
application of composite and smart materials. 

Professor Bob Cripps received his degree in ship science from the 
University of Southampton in 1976. He was awarded an Honorary Doctor 
of Engineering from Bournemouth University in 2005. He is currently a 
Director of Longitude Consulting Engineering, part of London Offshore 
Consultants (LOC). He is a Visiting Professor at Bournemouth University 
and a Royal Academy of Engineering Visiting Professor in the Principles of 
Engineering Design at the University of Southampton. 

Mohammad Reza Ramazani*, Siamak Noroozi, Philip Sewell and Rasoul 
Khandan are with the School of Design, Engineering & Computing, 
Bournemouth University, Bournemouth, UK.

Bob Cripps is with Longitude Consulting Engineers Ltd, Southampton, UK.

*Corresponding author. Tel: 01202 961528; Email: mramazani@
bournemouth.ac.uk



as	well	as	 the	inability	 to	account	for	 the	above-water	hull	form.	
In	order	to	resolve	the	problem	with	compatibility	between	strips,	
flexible	 beam	 strip	 theories	were	 developed	 that	 account	 for	 the	
bending	 and	 shear	 stiffness	 of	 the	 hull[8].	Although	 this	 kind	 of	
theory	can	estimate	the	distortional	higher	frequency	responses	of	
a	hull	to	slamming	and	lashing	excitation,	it	is	still	linear	analysis	
and	extreme	response	is	not	well	modelled.	

The	 accuracy	 of	 the	 strip	 theory	 and	 other	 codes	 has	 been	
investigated	by	 several	 researchers	 and	 the	 error	 associated	with	
predicting	a	mid-ship	bending	moment	using	strip	theory	is	of	the	
order	 of	 10%	 to	 20%.	This	 accuracy	 is	 reduced	 further	 towards	
the	 ends	 of	 the	 vessel	 and	 as	 seas	 become	 progressively	 more	
beam-on[9].	 Clarke[10]	 conducted	 many	 on-board	 measurements	
employing	several	Royal	Navy	(RN)	ships.	The	results	 indicated	
that	 strip	 theory	 over-estimates	 wave	 bending	 moments,	
particularly	 at	 larger	 wave	 heights.	 Furthermore,	 the	 hogging	
bending	 moment	 was	 over-predicted	 more	 so	 than	 the	 sagging	
moment.	It	is	concluded	that	these	techniques	are	only	accurate	for	
moderate	sea	conditions	and	ship	speeds	meaning	an	extreme	load	
causing	a	 large	displacement	 in	panels	 is	 impossible	 to	measure.	
Moreover,	doubts	also	exist	in	many	of	the	assumptions	that	involve	
stochastic/random	 data	 or	 procedures	 involving	 environmental	
and	operational	conditions.	This	is	due	to	the	fact	that	sometimes	
environmental	 and	 operational	 conditions	 are	 difficult	 to	 define	
accurately	in	advance	and	therefore	assumptions	are	needed[11].	

In	 order	 to	 improve	 the	 accuracy	 of	 estimation,	 especially	 in	
short	 waves,	 many	 numerical	 methods	 considering	 the	 three-
dimensional	 effects	 have	 been	 introduced.	Among	 them	 are	 the	
three-dimensional	Green	 function	method[12]	 and	Rankine	 source	
method[13-15]	 based	 on	 three-dimensional	 potential	 theory.	 The	
benefits	 of	 these	 methods	 include	 taking	 the	 three-dimensional	
effects	 into	account,	having	good	stability	of	computations	and	a	
moderate	computing	time.	Hence,	they	are	considered	as	suitable	
design	tools	replacing	the	strip	methods.	

A	 review	 by	 Phelps[9]	 indicates	 that	 non-linear	 theories	 and	
three-dimensional	load	prediction	methods	have	been	introduced,	
but	 these	 require	 greater	 computational	 effort	 and	 have	 not	 yet	
proven	to	be	significantly	more	accurate	than	the	two-dimensional	
methods.	 It	 is	 concluded	 that	 a	 novel	 technique	 is	 required	 to	
overcome	 current	 limitations	 in	 the	 practices	 used	 to	 measure	
and	estimate	loads	experienced	by	the	hull	of	a	small,	high-speed	
boat	operating	in	a	seaway.	Furthermore,	as	vessels	and	craft	are,	
in	most	 cases,	 extremely	 complicated	 structures,	 the	mechanical	
properties,	 or	 relationship	 between	 externally-induced	 excitation	
and	structural	responses,	are	difficult	to	formulate.	An	appropriate	
load	 monitoring	 system	 and	 technique	 has	 to	 be	 developed	 for	
naval	assets	and	large	structures[16].	

A	 novel	 approach	 for	 the	 determination	 of	 pressure	 loads	
experienced	 by	 marine	 structures	 is	 the	 utilisation	 of	 artificial	
neural	networks	(ANN)	as	an	inverse	method.	In	a	study	by	Cao	
et al[16],	an	approach	was	developed	to	identify	the	loads	acting	on	
aircraft	wings,	where	an	ANN	was	utilised	to	model	the	load-strain	
relationship	 for	 structural	 analysis.	 The	 research	 demonstrated	
that	using	an	ANN	to	identify	loads	is	feasible	and	a	well-trained	
ANN	reveals	an	extremely	fast	convergence	and	a	high	degree	of	
accuracy	 in	 the	 process	 of	 load	 identification	 for	 a	 cantilevered	
beam	 model.	 In	 a	 study	 by	Amali	 et al[17],	 it	 is	 illustrated	 that	
ANN	 can	 be	 combined	 with	 experimental	 methods	 to	 create	 a	
hybrid	 inverse	 problem	 analysis	 tool	 or	 inverse	 problem	 engine.	
The	 hybrid	 approach	 can	 be	 applied	 to	 both	 direct	 problems	
(calculation	of	 the	 structural	 response	 from	known	 loads	applied	
to	the	structure)	and	inverse	problems	(calculation	of	 the	applied	
load	from	a	known	structural	response).	Additionally,	the	approach	
avoids	 the	need	 to	have	 information	on	 the	component	geometry	
and	material	properties[18,19].

Ramazani	 et al[20]	 have	 recently	 shown	 that	 the	 inverse	
problem	approach	can	be	used	to	estimate	low	loads	applied	on	a	

composite	marine	panel	from	a	small	deflection	and	its	associated	
strain	 measurements.	A	 comparison	 of	 the	ANN	 loads	 with	 the	
actual	 applied	 loads	 indicated	 a	 very	 good	 performance	 of	 the	
methodology.	This	was	achieved	in	real	time,	providing	an	accurate	
load	history	for	a	component	without	requiring	knowledge	of	the	
material	properties	or	component	geometry.	However,	a	large	load	
results	in	a	large	displacement	in	the	panel,	where	the	displacement	
is	no	longer	predictable.	This	implies	that	the	superposition	method	
of	generating	training	data	for	a	small	displacement	can	no	longer	
be	 applied	here.	However,	marine	 structures	do	 experience	 large	
displacement	and	for	that	reason	load	prediction	is	essential.	This	
paper	 reports	 on	 the	 research	 undertaken	 to	 further	 develop	 the	
ANN	 methodology	 to	 quantify	 static	 pressure/central	 load	 on	 a	
composite	marine	panel	from	its	non-linear	structural	response.	

2. Methodology
The	methodology	employed	to	evaluate	the	suitability	of	an	ANN	as	
an	inverse	problem	is	presented	in	this	section.	A	backpropagation	
ANN	 was	 designed,	 developed	 and	 trained	 within	 the	 Matlab	
simulation	 environment	 (Mathworks,	 Natick,	 Massachusetts,	
USA)	to	measure	transverse	load	on	a	flat	composite	marine	panel.	
The	estimated	output	was	 then	validated	by	comparing	 it	against	
both	experimental	and	numerical	data.	

2.1 Inverse problem analysis methodology
Inverse	 problem	 analysis	 is	 based	 on	 accurately	 calculating	 the	
external	loads	or	boundary	conditions	that	generate	a	known	strain	
at	pre-determined	locations	on	a	structure.	An	ANN,	as	an	inverse	
problem	solver,	can	be	utilised	to	determine	a	relationship	between	
the	cause	and	its	effect[20].	In	this	study,	the	static	loads	(the	cause/
output)	on	a	composite	panel	are	quantified	by	acquiring	repeatable	
strain	 responses	 (the	 effect/input)	 to	 these	 loads	 from	 the	 panel.	
Introducing	 these	 examples	 to	 an	 ANN,	 the	 system	 can	 learn	
and	form	the	relationships	between	the	input	(strains)	and	output	
(load)	through	the	transfer	function.	The	ANN	requires	a	number	
of	known	input	and	output	data	for	training	(ie	relating	the	ANN	
inputs	to	outputs	using	a	transfer	function	and	series	of	weighting	
values).	Once	the	ANN	is	sufficiently	trained	it	can	be	utilised	to	
estimate	 the	 output	 in	 real	 time.	New	 inputs	 (problem	data)	 can	
then	be	presented	and	the	load	can	be	estimated	in	real	time.

2.2 Experimental set-up
The	structure	under	consideration	was	a	1	m2	glass	fibre-reinforced	
fibre	polymer/plastic	(GFRP)	marine	composite	panel	(Figure	1).	
The	sample	GFRP	composite	panel	used	was	made	of	seven	layers	
of	stitched	biaxial	±45	E-glass	cloth	with	Ampreg	22	epoxy	resin	
system,	hand	laid-up	with	a	total	thickness	of	5	×	10–3	m.	The	fibres	
were	aligned	parallel	to	the	edges	of	the	panel.	Table	1	shows	the	
experimental	mechanical	properties	of	the	glass	fibre	as	provided	
by	the	manufacturer.

The	 panel	 was	 divided	 into	 a	 four-by-four	 grid	 producing	
sixteen	equal	regions,	each	with	an	area	of	0.25	×	0.25	m2	(Figure	

Figure 1. Schematic of composite panel indicating strain gauge 
and loading locations
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1).	The	bottom	surface	of	the	panel	was	supported	on	all	four	edges	
using	aluminium	bars,	each	0.0381	m	high,	0.01905	m	wide	and	 
1	m	long.	Sixteen	linear	electrical	resistance	strain	gauges	(ERSG)	
(S1-16)	were	 bonded	 to	 the	 centre	 of	 each	 region	 (specification	
in	Table	2).	Two	eight-channel	NI	cDAQ	9236	modules	mounted	
on	 NI	 cDAQ	 9174	 chassis	 (National	 Instruments	 Corporation,	
Austin,	Texas,	USA)	were	used	as	the	strain	monitoring	and	control	
data	 acquisition	 system	with	 a	 resolution	of	+/–	 0.1	microstrain.	
The	 system	provides	 differential	 inputs	 to	monitor	 sixteen	 strain	
gauges	 at	 up	 to	 10,000	 samples	 per	 second.	The	 strain	 data	was	
collected	using	Matlab,	utilising	Matlab	Data	Acquisition	Toolbox	
capabilities.

Table 2. Strain gauge specification

Type General	purpose	linear	gauge

Resistance 350	ohms	±	0.6%

Gauge	factor 2.100	±	0.5%

Gauge	length 6.35	mm

Gauge	width 2.54	mm

Normal	 loads	 were	 randomly	 applied	 to	 the	 top	 surface	 of	
the	 panel	 at	 thirteen	 grid	 intersections	 (L1-13).	 Depending	 on	
the	proximity	of	 the	gauge	 to	 the	applied	 loads,	different	gauges	
exhibited	different	levels	of	sensitivity,	which	was	as	expected.	To	
produce	efficient	 training	data	 the	strain	data	should	be	captured	
at	the	sensitive	regions	(ie	the	strain	at	those	locations	must	vary	
significantly	due	to	changes	in	load	level).	In	addition,	 the	strain	
data	 collected	 must	 provide	 a	 unique	 response	 for	 each	 load	
distribution.	If	strain	is	collected	from	non-sensitive	regions	of	the	
panel	and/or	 the	strain	data	collected	 is	not	unique	for	each	 load	
distribution	 the	ANN	 is	 less	 likely	 to	 be	 able	 to	 find	 a	 function	
relating	the	input	and	output.

2.3 Generation of training data
Many	 small	marine	 craft	 hulls	 are	manufactured	 from	fibreglass	
strengthened	by	wood	or	foam.	Their	characteristics	are	such	that	
their	thickness	is	small	compared	to	their	other	dimensions.	In	this	
study,	 a	 GFRP	 panel	 has	 been	 utilised	 to	 represent	 a	 section	 of	
the	hull.	Panels	can	be	classified	according	to	their	thickness	and	
their	lateral	deflection	compared	to	their	thickness[21].	They	can	be	

classified	 as:	 (1)	 thick	 plate,	 small	 deflection;	 (2)	 thin	 plate	 and	
small	 deflection;	 (3)	 thin	 plate,	 large	 deflection;	 or	 (4)	 very	 thin	
plate	(membranes)	with	either	small	deflection	or	large	deflection.	
In	all	cases	the	solutions	are	approximate,	not	exact	or	closed	form.	
The	deflection	at	the	centre	of	a	plate	subject	to	pressure	is	offered	
by	Westergaard	and	Slater[22]	and	is	based	on	the	modified	flexure	
theory	of	plates	where,	depending	on	the	plate	aspect	ratio,	edge	
boundary	 conditions	 and	 load,	 different	 approximate	 empirical	
solutions	are	found.	In	such	cases,	a	small	displacement	is	defined	
as	displacement	less	than	or	equal	to	half	the	thickness	of	the	plate.	
If	the	displacement	exceeds	this	limit	then	the	problem	is	treated	
as	a	non-linear	problem	where	the	displacement	can	no	longer	be	
accurately	predicted	using	the	above	theory.	This	is	due	to	highly	
non-linear	double	curvature	deformation,	unlike	the	displacement	
function	stated	above.	In	large	displacement	analysis,	the	transverse	
shear	can	also	no	longer	be	ignored	and	if	the	panel	is	composite	
then	 the	 transverse	 shear	 requires	 further	 special	 treatment.	 In	
such	cases,	 the	classical	 inverse	approach	used	previously,	based	
on	utilising	data	 generated	 from	 superposition,	 can	no	 longer	 be	
employed	due	to	the	complexity	of	the	displacement	function.	

For	non-linear	structures	an	alternative	approach	 is	needed	 in	
order	 to	generate	 the	 required	 training	data.	There	 are	 two	ways	
in	which	 such	 data	 can	 be	 generated:	 (a)	 experimentally;	 or	 (b)	
using	a	non-linear	finite	element	analysis	(FEA)	solver.	Generating	
the	required	training	data	experimentally	is	very	time	consuming	
and	 labour	 intensive.	Therefore,	non-linear	FEA	analysis	using	a	
script	that	allowed	automatic	generation	of	a	random	load	on	the	
panel	was	utilised	to	generate	the	training	data.	Abaqus	6.10-1	FEA	
software	 (Dassault	 Systèmes	Simulia	Corp,	Rhode	 Island,	USA)	
was	used.	A	script	function	written	in	Python	language	was	used	to	
iteratively	run	the	software	in	a	batch	using	different	random	loads	
applied	at	each	of	the	thirteen	loading	locations	on	the	panel.	The	
FEA	model	was	initially	validated	to	ensure	that	it	represented	the	
actual	panel	accurately.	The	validation	was	achieved	by	comparing	
strains	 collected	 experimentally	 with	 the	 FEA	 strains	 under	 the	
same	loading	conditions.	Loads	from	100	N	to	800	N	applied	in	100	
N	increments	were	placed	on	the	panel	one	at	a	time	at	locations	
L1	to	L13.	The	strain	readings	at	locations	S1	to	S16	on	the	panel	
were	saved	for	each	test.	The	same	tests	were	performed	with	FEA	
to	compare	with	the	experimental	results.

Once	 validated,	 a	 large	 number	 of	 training	 (load/strain	

Table 1. Panel material specification provided by SP Gurit Systems (Newport, Isle of Wight, UK)

Material	name XE905

Material	type Stitched	biaxial

Fibre	volume	fraction 0.46

Longitudinal	property Units                                                                                      Units

Longitudinal	tensile	modulus N/mm2 21220 Poisson’s	ratio	(longitudinal	strain) 0.120

Longitudinal	tensile	strength N/mm2 318.3 Poisson’s	ratio	(transverse	strain) 0.120

Longitudinal	compressive	modulus N/mm2 21220 Longitudinal	coeff.	of	thermal	expansion 10-6/°K 14.62

Longitudinal	compressive	strength N/mm2 254.6 Transverse	coeff.	of	thermal	expansion 10-6/°K 14.62

Transverse	property Density kg/m3 1786

Transverse	tensile	modulus N/mm2 21220 Structural	ply	thickness mm 0.75

Transverse	tensile	strength N/mm2 318.3 Actual	ply	weight g/m2 1364

Transverse	compressive	modulus N/mm2 21220 Shear	thickness mm 0.75

Transverse	compressive	strength N/mm2 254.6

Shear	properties Derived	shear	properties	@	±45°

Interlaminar	shear	modulus N/mm2 3050 Shear	material	name 1	x	XE905	@	±45°

Interlaminar	shear	strength N/mm2 36.6 Axial	modulus	with	fibres	@±45° N/mm2 9737

In-plane	shear	modulus N/mm2 3050 Shear	modulus	with	fibres	@45° N/mm2 9471

In-plane	shear	strength N/mm2 46.1 Poisson’s	ratio	with	fibres	@±45° 0.596



response)	data	was	able	 to	be	generated	from	the	FEA	model.	In	
order	 to	 increase	 the	 efficiency	 of	 generating	 the	 training	 data,	
it	was	possible	 to	 reduce	 the	number	of	FEA	models	 required	 to	
establish	 the	 non-linear	 strain	 response	 for	 each	 gauge	 location.	
This	was	achieved	by	fitting	non-linear	curves	to	data	collected	for	
each	strain	location	and	using	the	curves	to	interpolate	strain	data	
for	different	load	magnitudes.	

The	 structural	 responses	 of	 the	 panel	 in	 terms	 of	 strain	were	
saved	to	be	used	as	the	input	training	dataset.	The	corresponding	
load	for	each	input	dataset	was	also	saved	and	utilised	as	the	output	
training	set.	Some	of	these	input	and	outputs	were	saved	separately	
for	testing	the	network	and	error	minimisation.	In	this	study,	sixteen	
single	 strain	 gauge	 readings	 (inputs)	 and	 thirteen	 applied	 loads	
(outputs)	constitute	one	training	dataset.	At	each	loading	location	
(L1-L13),		a	static	load	ranging	between	24.525	N	and	784.8	N	was	
applied	in	steps	of	24.525	N.	In	total,	1040	training	datasets	were	
generated	from	the	non-linear	FEA	model.

2.4 ANN architecture/topology
ANN	 analysis	 often	 requires	 a	 high	 number	 of	 individual	 loops	
to	 determine	 the	 best	 solution.	 However,	 the	 training	 time	 can	
be	 reduced	(ie	 reduce	 the	number	of	 loops	 to	minimise	 the	error	
equation)	by	pre-processing	 the	data	 that	 is	given	to	 the	network	
to	train.	Having	multiple	hidden	layers	of	neurons	with	non-linear	
transfer	functions	(such	as	tan-sig	and	log-sig)	enables	the	network	
to	 understand	 both	 non-linear	 and	 linear	 relationships	 between	
input	and	output	data.	Unsatisfactory	performance	of	the	ANN	can	
be	due	to	a	wide	range	of	reasons,	such	as:
q	 an	unsuitable	ANN	architecture	or	learning	method;
q	 insufficient	representative	data	(not	enough	example	strain/load	

data);
q	 inadequate	 pre-processing	 (noisy	 data	 from	 data	 acquisition	

system	ignored);
q	 unsuitable	ANN	training	parameters.

Most	of	the	time	this	is	not	the	case	and	the	ANN	will	be	well	
trained	and	perform	satisfactorily,	even	on	a	new	untrained	dataset.	
Key	 architectural	 issues	 that	 can	 be	 optimised	 include:	 (i)	 the	
number	of	layers	in	the	ANN;	(ii)	the	number	of	neurons	per	layer;	
(iii)	the	type	and	parameters	of	the	neuron,	which	are	usually	the	
same	throughout;	and	(iv)	the	number	of	calculations	per	iteration	
during	learning	and	recall.	

The	Matlab	Artificial	Neural	Network	 toolbox	was	 used	 in	 this	
study	to	generate	two	different	backpropagation	ANN	architectures	in	
order	to	compare	their	performance.	The	architectures	utilised	were:
q	 One	network	with	sixteen	neurons	in	the	input	layer	and	thirteen	

neurons	in	the	output	layer	is	trained	to	estimate	the	load	on	the	
panel	from	the	strain	responses	(Figure	3).

q	 Thirteen	networks	each	with	sixteen	neurons	 in	 the	 input	 layer	
and	one	neuron	in	the	output	layer	are	trained	and	used	to	estimate	
the	load	on	the	panel	from	the	strain	responses	(Figure	4).	

The	number	of	hidden	layers	and	neurons	
in	 each	 hidden	 layer	 of	 the	 two	 network	
architectures	 were	 flexible.	 These	 were	
dependent	on	the	complexity	of	the	training	
datasets	and	were	optimised	according	to	the	
network	 performance.	 The	 sum	 of	 squared	
errors	 (SSE)	 and	 mean	 of	 squared	 errors	
(MSE)	 are	 common	 network	 performance	
indicators.	 Through	 the	 testing	 of	 various	
network	architectures,	the	optimum	network	
having	the	lowest	performance	indicator	can	
be	determined.	Once	 the	ANN	 is	 trained,	 it	
can	 be	 employed	 to	 estimate	 new	 loading	
cases	 where	 the	 same	 patterns	 exist.	 In	
other	 words,	 whenever	 the	 same	 pattern	 of	

strain	reading	as	an	input	 is	 introduced	to	the	network,	 it	will	be	
able	 to	 estimate	 the	 loads	 that	 caused	 those	 structure	 responses.	
Depending	on	how	well	the	network	is	trained	(the	performance	of	
the	network),	there	will	be	an	error	between	the	output	dataset	and	
the	network	estimated	output	(load).	

2.5 ANN validation and performance
The	validity	and	performance	of	the	ANN	method	was	evaluated	
by	comparing	 the	 load	estimated	by	 the	ANN	with	known	 loads	
applied	to	 the	panel,	which	were	not	seen	by	the	network	during	
the	 training	 process.	 The	 first	 validation	 study	 utilised	 load	 and	
strain	data	generated	from	the	FEA	model	and	was	compared	with	
estimated	loads	from	the	ANN.	In	the	second	study,	problem	strain	
data	was	captured	directly	from	the	panel	and	again	the	estimated	
loads	were	compared	with	the	actual	applied	loads.

3. Results
The	 validity	 of	 utilising	 FEA	 for	 training	 data	 generation	 and	
the	ANN	validity	 and	 performance	 are	 detailed	 in	 the	 following	
sections.

3.1 FEA model validation
Figure	 2	 indicates	 that	 for	 loading	 only	 location	 L13,	 there	 is	
reasonable	agreement	between	the	strain	readings	(S6	and	S10)	of	
FEA	tests	and	experimental	tests.	The	average	percentage	error	is	
less	than	7%.	These	results	indicate	that	the	FEA	model	can	be	used	
confidently	to	simulate	various	loading	conditions	and	to	generate	
the	required	training	input	data.

3.2 ANN validation and performance
As	mentioned	in	Section	2.4,	two	different	methods	are	employed	
to	define	 the	networks.	Table	3	 lists	 the	major	parameters	of	 the	
network	architecture	used	in	the	two	methods.	It	was	determined,	

Table 3. ANN architectures 

1	network	with	16	strain	inputs	
and	13	load	outputs

13	networks	each	with	16	
strain	inputs	and	1	load	output

Number	of	networks 1 13

Architecture	 Feed	forward	backpropagation

Number	of	layers	in	each	network 2 1

Range	of	load	estimation 24.525-784.8	(N) 24.525-784.8	(N)

No	of	inputs	(surface	strains)	 16 16

No	of	output	layer	neurons	(loads) 13 1

No	of	each	hidden	layer	of	neurons	 [20	20] [50]

Number	of	training	patterns	 1040 1040

Number	of	testing	patterns	 1040 1040

Figure 2. Comparison of FEA and experimental data of selected 
strain gauges 
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through	 the	 testing	 of	 various	 network	 architectures,	 that	 the	
optimum	network	 (lowest	 SSE)	 for	method	 one	 had	 two	 hidden	
layers	with	twenty	neurons	and	used	a	tan-sig	transfer	(Figure	3).	
The	 output	 layer	 had	 thirteen	 neurons	 (representing	 the	 thirteen	
loads	 to	 be	 estimated)	 and	 used	 a	 pure-lin	 transfer	 function.	
Similarly,	it	was	determined	that	the	thirteen	networks	for	method	
two	had	one	hidden	layer	each	with	fifty	neurons	and	used	a	tan-
sig	transfer	(Figure	4).	The	output	layer	of	each	network	had	one	
neuron	 (each	 network	 estimates	 the	 corresponding	 load	 of	 one	
location)	and	used	a	pure-lin	transfer	function.

In	this	study,	SSE	is	used	as	a	performance	indicator.	Once	the	
networks	were	trained,	SSE	values	between	the	estimated	loads	and	
training	load	data	were	calculated.	Each	network	has	an	individual	
SSE	value.	This	means	that	although	the	first	method	has	only	one	
SSE	 value,	 the	 second	 method	 had	 thirteen	 SSE	 values.	 Figure	
5	 indicates	 the	 SSE	 performance	 of	 all	 thirteen	 networks,	 each	
having	sixteen	inputs	(all	strain	readings)	and	one	output	(load	at	
one	location)	generated	from	the	second	network	architecture.

In	order	to	compare	the	two	methods,	the	summation	of	all	the	
networks’	SSE	values	in	the	second	method	is	compared	to	the	SSE	
value	of	the	first	method,	when	only	a	network	with	sixteen	inputs	
and	thirteen	outputs	were	used	to	train	the	system.	As	it	is	indicated	
in	Figure	6,	a	better	performance	for	the	second	method	is	achieved.	

In	addition	to	having	a	better	performance,	the	second	method	
has	 more	 flexibility.	 This	 means	 having	 thirteen	 independent	
networks;	 for	 each	 load	 location	 a	 separate	 new	 network	
architecture	and	parameters	can	be	employed.	
For	 instance,	 the	 sum	 of	 the	 estimation	
performances	 of	 networks	 in	 the	 second	
method	 can	 be	 improved	 by	 changing	 the	
network	architecture	of	those	networks	(eight	
and	twelve	from	Figure	5)	having	relatively	
higher	SSE	values.	As	it	is	illustrated	in	Table	
4,	 for	 locations	 eight	 and	 twelve,	 networks	
with	 two	 layers	 with	 twenty	 neurons	 are	
used.	The	improvement	in	SSE	for	networks	
eight	and	 twelve	with	 the	new	architectures	
can	be	seen	in	Figure	7.	

In	order	to	investigate	the	capability	of	the	
ANN	to	estimate	loads	in	real	time,	once	the	
ANN	is	trained	new	strain	data	from	different	

loading	cases	were	introduced	to	it.	Having	a	good	performance,	
the	ANN	should	be	able	to	estimate	the	external	pressure	loads	that	
caused	 those	 structure	 responses.	 For	 instance,	 introducing	 new	
sets	of	strain	data	that	have	not	been	used	to	train	the	network,	the	
ANN	 estimates	 the	 corresponding	 load	 data.	Depending	 on	 how	
well	the	network	is	trained	(the	performance	of	the	network),	there	
will	be	errors	between	the	expected	output	dataset	and	the	network	
estimated	 output	 (loads).	 Figure	 8	 depicts	 a	 random	 example	 of	
estimated	loads	with	the	ANN	for	both	FEA	and	experimental	tests	
against	the	desired	loads	applied	in	tests	when	there	was	only	one	
external	 load	of	500	N	at	 location	L13	 (data	 is	used	 to	 train	 the	
network).	For	both	sets	of	problem	data	it	can	be	seen	that	the	ANN	
can	 again	 estimate	 the	 load	 at	 the	 loaded	 locations	 with	 a	 high	

Table 4. Optimum ANN architecture 2

13	networks	each	with	16	strain	inputs	and	1	load	output

Number	of	networks 13

Architecture	 Feed	forward	backpropagation

Number	of	layers	in	each	network Most	of	it	has	1	and	for	location	8	and	12	are	2

Range	of	loads	 0-809.3	(N)

Number	of	inputs	(surface	strains)	 16

Number	of	neurons	in	output	layer	(normal	loads) 1

Number	of	neurons	in	each	hidden	layer	 [50]	or	[20	20]

Number	of	training	patterns	 1040

Number	of	testing	patterns	 1040

Figure 3. Matlab representation of ANN architecture 1

Figure 4. Matlab representation of ANN architecture 2

Figure 5. SSE performance of network architecture 2

Figure 6. Comparison of the SSE values of the two network 
architectures

Figure 7. Flexibility of ANN architecture 2 in training stage



degree	of	accuracy.	However,	the	error	size	of	estimated	loads	with	
the	ANN	for	experimental	tests	is	slightly	bigger.	Such	a	small	error	
is	normal	and	it	could	be	from	an	initial	error	between	the	FEA	data	
and	experimental	data,	errors	induced	from	the	repeatability	of	the	
data	acquisition	system	with	a	resolution	of	+/–	0.1	microstrain	as	
well	as	possible	overtraining	of	the	ANN.

The	 estimated	 negative	 load	 values	 at	 the	 unloaded	 locations	
were	 due	 to	 the	 differences	 between	 the	 strain	 data	 collected	 to	
generate	 the	 training	 data	 and	 the	 collected	 problem	 strain	 data.	
Due	to	these	errors,	slightly	different	strain	patterns	are	introduced	
to	 the	 ANN	 producing	 the	 errors	 in	 the	 estimated	 loads.	 The	
introduction	of	 further	noisy	patterns	 in	 the	 training	dataset	may	
reduce	 these	 small	 errors,	 indicating	 that	 further	 work	 could	 be	
carried	out	to	improve	the	accuracy	further.

4. Discussion
In	this	study,	it	is	shown	that	the	inverse	problem	method,	utilising	
an	ANN,	 is	 capable	of	 estimating	magnitude	and	position	of	 the	
static	 pressure	 loads	 on	 a	 marine	 composite	 panel	 under	 large	
displacement	from	non-linear	strain	measurements.	The	results	of	
this	study	can	be	summarised	as	follows:
q	 FEA	data	can	be	used	to	generate	training	data	for	ANN	inverse	

load	estimation	problems.
q	 Two	different	ANN	architectures	are	used	and	the	performances	

are	compared.
q	 Having	non-linear	 relationships	between	 the	applied	 load	and	

the	surface	strains,	the	system	always	converges	and	the	SSE	is	
in	the	range	of	acceptable	error.

q	 The	system	is	capable	of	estimating	the	position	and	magnitude	
of	static	pressure	loads	on	a	marine	composite	panel	under	large	
displacement.

q	 Having	a	large	difference	between	the	training	datasets	and	the	
problem	 dataset	makes	 the	ANN	 unable	 to	 estimate	 the	 load	
accurately.	

q	 The	main	source	of	error	was	found	to	be	an	initial	error	between	
the	FEA	data	and	experimental	data.	

The	ability	to	measure	the	actual	load	history	of	a	craft	in-service	
would	 enable	 the	 designer	 to	 validate	 the	 load	 estimation	 and	
structural	design	tools	used	during	the	design	stage	of	a	craft.	This	
would	lead	to	the	development	of	more	optimal	structure	designs	
for	 this	 type	of	craft.	The	operational	safety	of	 the	craft	can	also	
be	improved	by	having	a	real-time	load	monitoring	system	that	is	
able	to	detect	any	degradation	of	the	structural	integrity	and	defects	
within	the	structure.	

It	is	proposed	that	the	ANN	methodology,	with	further	research	
and	 development,	 could	 be	 utilised	 for	 the	 quantification	 of	
in-service,	transient	loads	in	real-time	acting	on	the	craft	from	the	
craft’s	 structural	 response	 (strain	 response	 to	 load).	 This	 would	
provide	 valuable	 information	 to	 influence	 future	 craft	 design.	 In	
order	 to	 fully	 evaluate	 the	 proposed	methodology	 for	 in-service	
load	monitoring	of	marine	structures,	 the	following	areas	require	
investigation:
q	 The	 behaviour	 of	 marine	 structures	 under	 transient	 load	

conditions	(dynamic	load	is	applied).
q	 The	effect	of	 the	size	of	 the	structure	on	 the	ANN	estimation	

accuracy.
q	 The	number	of	sensors	required	for	accurate	load	estimation	by	

optimising	the	method.	While	some	vessels	do	have	integrated	
sensors	most	do	not.	The	number	of	sensors	should	be	minimised	
to	reduce	the	time	to	train	the	system,	cost	and	weight.	

q	 The	effect	of	modifying	ANN	training	parameters,	including	the	
number	and	type	of	training	patterns	introduced	to	the	ANN.

q	 Validation	of	the	methodology	on	a	craft	in-service.

Finally,	a	graphical	user	 interface	 (GUI)	should	be	developed	
allowing	control	of	various	parameters	of	the	data	acquisition	and	
load	monitoring	system,	as	well	as	graphical	display	in	real	time.

5. Conclusions
It	has	been	shown	that	the	inverse	problem	approach	can	be	used	
to	estimate	the	magnitude	and	position	of	static	pressure	loads	on	
a	 marine	 composite	 panel	 under	 large	 displacement	 from	 non-
linear	strain	measurements.	A	comparison	of	the	ANN	loads	with	
the	actual	applied	loads	indicated	a	very	good	performance	of	the	
methodology.	This	was	achieved	in	real	time,	providing	an	accurate	
load	history.	This	potentially	makes	 the	 system	 ideal	 for	 solving	
many	 classes	 of	 complex	 engineering	 problem	 that	 require	 load	
monitoring.	
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