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Factors affecting the growth and recruitment of the roach Rutilus rutilus 

population of the River Wensum, Eastern England 

 

Helen Beardsley 

 

Abstract 

 

1. The roach Rutilus rutilus population of the River Wensum, Eastern England, 

has long been the topic of deliberation amongst the angling community due to a 

perceived decline in their catches since the 1970s.  Analysis of fish population 

survey data collected by the Environment Agency and its predecessor 

organisations since 1983 revealed that although the roach populations have 

shown considerable temporal variability around their long-term mean 

abundances, their estimated abundance in 2009 was not significantly different 

to that estimated in the 1980s. A significant decline in the abundance of dace 

Leusicus leusicus (L.) was detected, although the abundance of chub Leuciscus 

cephalus (L.) has increased.  

 

2. Annual variation in the recruitment strength of 0 group roach contributed to 

their temporal variability in population abundance. Recruitment was largely 

driven by climate, specifically water temperatures in the first year of life of year 

classes. Point abundance electric fishing sampling conducted in 2007 and 2008 

revealed that nursery habitat was limited for the larval and juvenile life stages 

of the roach population, revealed by only 6 % of all points sampled containing 
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at least one roach. The probability of roach capture in a sample point only 

exceeded 0.80 when depths exceeded 1m and macrophyte cover the sampled 

area exceeded 60 %.  

 

3. The growth rate of adult roach has declined between the 1970s and the present, 

with this long-term depressed growth only apparent since the initiation of 

phosphate stripping in the mid to late 1990s.  Prior to phosphate stripping, roach 

growth was largely dependent on water temperature; post-stripping, it was 

significantly associated with levels of ortho-phosphate. Thus, whilst this 

reduction in nutrient input into the river was positive for its chemical and 

biological water quality, it now prevents individual fish growing rapid to a size 

considered as a „specimen‟ by anglers (>1 kg). It is this depressed growth and 

reduction in the numbers of „specimen‟ roach being produced in the river that is 

contributing to the perceived declines of roach by the angling fraternity. 

 

4. To prevent flooding in the river catchment, a number of flood prevention works 

have been regularly completed by authorities, including channel straightening 

and removal of in-stream woody debris. Whilst these tend to have negative 

consequences for fish production, the cutting of in-stream macrophytes during 

the summer months to ensure the channel was sufficiently clear to facilitate 

flood relief flows was measured as having a significant deleterious impact for 

juvenile roach. Comparison of pre- and post-weed cutting electric fishing point 

samples revealed presence and abundance of juvenile roach decreased by 

approximately 50 % following weed cutting.  

 



 5 

5. These outputs were used to develop a series of management recommendations 

to assist the production of roach in the river without compromising other river 

management perspectives such as flood risk management. A key aspect of this 

is the creation of in-stream and off-channel refuge and nursery areas for roach 

that promote their survival and growth across all aspects of their lifecycle.  
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Chapter 1: Introduction 

 

1.1 The River Wensum 

 

'The River Wensum, the loveliest of Norfolk's rivers' (Wilson, 1997) 

 

The River Wensum is a temperate lowland river in the East of England (source: 

52º46‟27.59”N, 0º51‟42.07”E mouth: 52º37‟17.85”N, 01º19‟24.29”E, Fig. 1.1) that 

is of high national and international importance for the purposes of nature 

conservation. This is reflected by it being selected by English Nature (now Natural 

England) as a Site of Specific Scientific Interest (SSSI) for 70 km of its length in 

1993. Much of this recognition was a consequence of it being a naturally enriched, 

lowland calcareous river, with over 100 species of aquatic and riparian plants, a rich 

invertebrate fauna and a diverse fish assemblage (Natural England, 1993). In 2005, 

the conservation importance of the river was further confirmed by it being designated 

as a Special Area of Conservation (SAC) under the European Habitats directive 

(Joint Nature Conservation Committee, 2005). The Annex I  primary reason for 

selection is the River Wensum being an example of a water course of plain to 

montane levels with water crowfoot vegetation, Ranunculus fluitantis and water 

starwort, Callitricho-Batrachion vegetation. Annex II reason for selection cites the 

presence white clawed crayfish (Austropotamobius pallipes) with populations of 

bullhead (Cottus gobio), brook lamprey (Lampetra planeris), and Desmoulins whorl-

snail (Vertigo mouslinsiana) as qualifying features (Sear et al., 2006). Thus, the river 

is a relatively rare example of a temperate river of calcareous geology (especially in 
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Eastern England) that has consequently been recognised as having a high degree of 

conservation designation.  

 

1.2 The fish community of the River Wensum 

 

The diverse macrophyte and invertebrate communities of the river support a 

relatively diverse fish community (for the UK) that tends to be dominated in the 

middle and lower reaches by species of the Cyprinidae family, principally roach 

Rutilus rutilus (L.), chub Leuciscus cephalus (L.) and dace Leuciscus leuciscus (L.). 

During the 1970s and 1980s, the river attracted a great deal of angling interest at a 

national level on account of the quality of the fishing available, particularly for R. 

rutilus of specimen proportions (> 1 kg). For example, it was not uncommon for 

anglers to catch up to 10 kg of these fish with a number of specimens often being of 

specimen size. Indeed, according to Wilson (1977), the river in the 1970s 

„………produced fish of an exceptionally high average size and in good numbers 

too. Its roach are fantastic – growing up to 3 lb and over‟.  

 

In the last twenty years, however, the performance of the river‟s fisheries, 

especially in regard to R. rutilus, has been perceived as having declined substantially 

„The glorious specimen roach fishing days on the Wensum are now a distant 

memory……The roach populations for which the river was nationally famous for 

have all but disappeared with very few juvenile fish to replace the leviathans as they 

died off‟ (Johnson, 2004). Similarly Church (2009) stated „Anglers recognise the 

Wensum as being a shadow of its former status from an angling perspective. The 

commonly held view is that fish populations have been in continual 
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decline……Adding to the frustration is the inaction of any environmental authority 

to take any action‟.  

 

In 2010 John Wilson compiled a report detailing the economic consequences of 

the deterioration of angling as a leisure activity along the River Wensum valley, over 

a 30 mile stretch from Norwich to Fakenham. It states „this has meant a substantial 

reduction in business to local pubs, shops, post offices, supermarkets, hotels and the 

once numerous, once prolific coarse fisheries.‟ Such frustrations attracted a great 

deal of adverse negative publicity nationally, resulting in local stakeholders (such as 

controlling angling associations), raising high levels of complaints to the 

Environment Agency and its predecessors over the situation. In particular, numerous 

concerns have been raised of the influence on the fish community (and, hence, the 

fishery) of bird and mammal predation and of river management strategies that are 

perceived as having had a detrimental effect of processes such as fish recruitment, 

including channel modification and flow regulation. 

 

1.3  River management of the Wensum  

 

Anthropogenic modifications to the river and its channel have an extremely long 

history and have resulted in the river channel today having relatively limited lateral 

and longitudinal connectivity compared to its natural form. In particular, these 

include large-scale changes to the form of the river channel (Section 1.3.1) and its 

longitudinal connectivity through the construction of water mills (Section 1.3.2). 
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1.3.1 Original form of the river channel 

 

Prior to any form of anthropogenic modification, the river would have been a single 

sinuous channel with adjoining tributaries, surrounded by wet fen and carr woodland 

that covered the floodplain in its entirety (Sear et al., 2006). Clearance of these vast 

woodland floodplains for settlement and agriculture took place around 4500 years 

ago, with the river modified such that by medieval times it represented the single 

thread channel that is present today, (Sear et al., 2006). This represents a loss of 

lateral connectivity within aspects of the floodplain and subsequent substantial 

changes in land use (such as urbanisation and intensive agriculture) have impacted its 

hydrological regime. Nevertheless, the chalk geology of the river still means it is 

aquifer fed, with ground water an important component of its flow regime (rather 

than surface run-off).  

  

1.3.2 Water Mills 

 

The river has a long history of water mills being used in the catchment. Mill 

construction began around 900 years ago for the milling of corn and paper and seed-

crushing where the working practice involved impounding the river over a 24 hour 

period to create a head of water, and then releasing it through the mill stream to 

power the mill wheel (Atkins, 2010). Pulses of high-energy water would have been 

discharged at regular intervals, scouring the substrate downstream of the mills 

(Perrow, 1998). The regulation of water flow in this manner had the effect of 

creating an impounded section of river immediately upstream of the mill that was 

relatively deep and slow flowing, whereas immediately downstream were pools and 
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fast flowing riffles. This would have had a profound influence on local flow 

velocities and the dimensions and structure of the channel. The control of water 

levels through the mill, sluice and weir operations have played a significant role in 

the downstream movement of sediment within the Wensum, shaping channel 

dimensions for hundreds of years (Boar et al., 1994). 

 

This shift in the river‟s flow regime to impounded sections via milling is likely to 

have had a profound influence on river ecology. The increased diversity in flow and 

habitat conditions, effectively creating lentic and lotic sections in close proximity, 

would have enabled the river to support both limnophilic and rheophilic species. For 

example, limnophilic fish species such as common bream Abramis brama (L.), tench 

Tinca tinca (L.) and rudd Scardinius erythrophthalmus (L.) would have now been 

able to tolerate the flow conditions in the impounded areas, with species such as 

brown trout Salmo trutta (L.) continuing to utilise the shallower and faster flowing 

riffle and pool habitats downstream. Conversely changes in fish community 

composition have been observed in the upper reaches of the Suffolk Stour following 

increases in flow as a result of the Ely-Ouse Transfer Scheme. Since the onset of this 

scheme in the 1980s to supplement the increasing demand for water within the Stour 

catchment, the fish community structure has shifted from roach, eels Anguilla 

anguilla (L.) and dace to that of predominantly chub, (Clarke, 2009).  

 

Today, fourteen mills and associated water flow control structures exist along the 

length of the Wensum (Figure 1.2a-b). Indeed, perhaps the greatest change in water 

usage within the catchment in recent years has been the cessation of water milling 

(Boar et al., 1994), as the majority of mills ceased production by the early 1960s 
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(Atkins, 2010). Nevertheless, their presence along the river has still resulted in a loss 

of longitudinal connectivity within the catchment, with the impoundments effectively 

creating discrete sections of river. Although the effect of these on fish movements 

(particularly upstream) has not been tested on the Wensum, they are likely to inhibit 

the movement of fish between sections (Ward & Stanford, 1995; Lucas & Baras, 

2001; Trussart et al., 2002).    

 

1.3.3 Management influences on the river in the 20
th

 and 21
st
 Century 

 

There has been a wide range of more recent river management schemes and tools 

that have further impacted the channel form and its flow regime. These are 

summarised below:  

 Changes in channel form, associated with both the 1953-57 post-war policy 

of intensive land drainage for agricultural purposes and intensive dredging to 

increase the carrying capacity of the channel for flood risk management. In 

particular, removal of large meander loops, alongside straightening and major 

deviation of the channel, was common at this time. Located within the mid to 

upper Wensum, a meander loop at Great Ryburgh Common was bypassed in 

the 1950‟s when the river was widened, straightened and deepened as part of 

a land drainage improvement scheme (RCC, 2011). The emphasis was to 

convey water away as directly and rapidly as possible from the surrounding 

land, preventing flooding of crops. This resulted in increased habitat 

homogeneity in the river channel, potentially reducing habitats for fish during 

crucial parts of their lifecycle, for example, off-channel areas important as 
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nursery areas for larval and juvenile fishes (Welcomme & Cowx, 1998; 

Garner, 1996; Watkins et al., 1997; Copp, 1997).   

 Regular channel maintenance, such as dredging, removal of obstructions like 

woody debris and control of aquatic and riparian vegetation, for the purposes 

of maintaining the ability of the river to act as a drainage channel for flood 

relief, occur annually.  Similar to the above, such activities all reduce habitat 

heterogeneity for the fish community (Robertson & Crook, 1999; Mott, 2010; 

WTT, 2012). Potential consequences include the removal of important 

spawning substrate such as gravel and tree roots, (Mann, 1973; Mills, 1981; 

Punchard et al., 2008) and reduced availability of refugia from periods of 

high flow and predators (Mann & Bass, 1997; Pinder, 1997; Allouche et al., 

2001; Cowx et al., 2004).  

 Intensive agricultural schemes that reclaimed backwaters and water meadows 

for crops, resulting in a loss of lateral connectivity between the main river 

channel and its floodplain. Embankments built-up in many locations along 

the river for example, from Elsing to Swanton Morley in the middle reaches 

of the Wensum, removed connectivity by confining the movement of water to 

within the channel, allowing faster water movement and removing the risk of 

excess water flowing over into the floodplain. This has the effect of removing 

areas of reduced flow that would be important for minimising the 

displacement of juvenile fish in episodes of high flow periods (Copp, 1997; 

Garner, 1996; Cowx et al., 2004).  

 Increased abstraction and irrigation through increased water demand in the 

catchment through substantial residential and industrial development, in 

conjunction with intensive farming practises in the catchment (Perrow, 1998). 
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In its lower reaches, the river is now classified as over-abstracted at times of 

low flow (Environment Agency, 2011). The net effect of this is an overall 

reduction in river volume and flow that may result in the siltation of 

important spawning gravels through the reduced capacity of the river to flush 

out fine sediments (Maitland, 1995; Acreman et al., 2000; Cowx et al., 2004).     

 Increased sediment loading from agricultural practices and road run-off, 

smothering gravel substrates and reducing their spawning suitability for 

rheophilic fishes. For many years Norfolk Anglers Conservation Association 

(NACA) have been concerned about the increasing sedimentation and 

compaction of spawning riffles for barbel Barbus barbus (L.). The 

Environment Agency have been working with NACA to gravel jet riffles 

where spawning activity has been observed, using high power jets of water to 

clean and loosen gravels. 

 

In combination, these river management practises have resulted in a heavily 

regulated river that, even in periods of high rains onto saturated land in winter 

periods, tends to stay within its channel and not flood surrounding lands. In this 

respect, it has similarities with many UK rivers, especially those in Eastern England 

such as the Great Ouse that have been primarily regarded in the last fifty years as 

large flood relief and drainage channels by a number of regulatory authorities (Mann, 

1988; Garner, 1997). The channel modifications outlined have resulted in decreased 

heterogeneity in fish habitats throughout the catchment, with losses of spawning and 

nursery habitats, including areas of refugia during episodes of high flow (Copp, 

1997; Garner, 1996; Cowx et al., 2004). 
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1.4 Factors affecting the fish community and fishery 

 

It was mentioned in Section 1.2 that the River Wensum fishery, especially that 

component reliant on R. rutilus, has been perceived to have declined in recent years. 

Indeed, articles in the angling press, in conjunction with anecdotal information, have 

even suggested declines in the populations of indigenous fishes of the river since the 

1960s, especially R. rutilus. There are no data from this time to be able to support or 

refute the allegations. 

 

The perceived decline in the R. rutilus population was suggested as initially being 

at least partly attributable to the major incidence of „Columnaris Disease‟ that caused 

the high mortality of considerable numbers of fish in the 1960s (Smith, 1968). 

Caused by the bacterium Flexibacter Columnaris that remains present in all 

freshwaters, it infects fish through the skin, gills and wounds causing a white fungal-

like appearance. All freshwater fish are susceptible to the disease under 

environmental conditions that are favourable to the bacterium and stressful to the 

fish, with the majority of outbreaks occurring when the water temperature is between 

20 and 30ºC, (Wakabayashi, 1991). For a severe outbreak to occur it would be 

expected that the fish were already immuno-compromised, as Columnaris is usually 

a secondary infection in response to an already weakened immune system, for 

example through a long-term response to a stressor such as poor water quality. Given 

the lack of data available from the river from this time, any further analysis or 

interpretation is speculative and without foundation. 
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The chub is not indigenous to the river and was introduced in the 1950‟s to 

enhance the fishery by providing an additional angler-target species (Perrow, 1998). 

Whilst the species thrived in the habitat conditions present and soon began to 

dominate angler catches in the mid to lower reaches over the river (John Wilson, 

personal communication), it is not known whether their populations had any adverse 

ecological consequences. Nevertheless, aspects of the apparent declines in R. rutilus 

catches in the 1980s to an increase in catches of L. cephalus were noticed by the 

angling community. For example, in 1985, John Wilson (a famous local angler) 

documented that in the 1970s, the river regularly produced large number of roach of 

over 2lbs (approximately 1 kg; specimen size) but in the 1980s he stated that the 

“…..roach stocks are at a painfully low ebb. Yet there are now so many quality chub 

in the Wensum that it is being referred to as one of the top chub rivers in England, 

the balance has swung from one species another. Whilst roach are incapable of 

propagating their kind at present, the chub are having a field day, they are not the 

reason for the roach decline as many would have it but their presence will certainly 

hamper roach trying to re-establish themselves because they occupy all the best 

roach holding areas”.  More recently, Chris Turnbull, another well known local 

angler, wrote:  “Those of us who have been close to the Wensum over the past 30 

years or more will be only too aware of how far the river has declined as a fishery 

over that time. The glorious specimen roach fishing is now a distant memory, its 

huge wild trout are now also long gone and even its shoals of dace have become few 

and far between. Indeed, if it was not for the non-indigenous chub that have 

flourished throughout many of its reaches, most of the Wensum would have long ago 

been abandoned as a fishery” (Turnbull, 2007).   
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The lack of fish stock assessment data from the 1960s and 1970s prevented testing 

of whether the R. rutilus population had actually significantly declined in those time 

periods, as regular and targeted stock assessment only commenced in 1983 (Chapter 

2). Irrespective, in response to the concerns of the local angling community, a period 

of stock enhancement of R. rutilus commenced in the mid-1980s, with approximately 

35000 individuals stocked between 1986 and 1996 (Perrow, 1998). It is not known 

whether these actually had any long-term effect (beneficial or otherwise) on the 

indigenous R. rutilus population of the river. 

 

1.5 Historical fish research in the River Wensum 

 

A report by Perrow (1998) suggested that the cause of the decline of roach was 

associated with recruitment failure, occurring as an indirect consequence of the 

changes in the channel form and function arising from the agricultural and flood 

defence schemes, and the abstraction, that were outlined in Section 1.3. The report 

highlighted that aspects of river management were adversely impacting the Wensum 

fishery through sedimentation of spawning gravels, increased concentrations of un-

ionised ammonia, increased nutrient levels and through the reduction of suitable 

habitat required for different life stages of roach, primarily a lack of nursery areas for 

juvenile fish (Perrow, 1998).  

 

In recognition of the importance of the river for angling and through this 

increasing concern regarding reduced fish stock abundance (in relation to some fish 

stock assessment exercises; cf. Chapter 2), a Fisheries Action Plan (FAP) was 

developed for the river by the Environment Agency in 2004. It was developed in 
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partnership with angling club representatives and other stakeholders within the 

catchment and set out plans to identify and deal with the underlying fish population 

and fisheries issues associated with the apparent fishery decline, particularly as 

regards R. rutilus. As a response to concerns raised by the FAP, the Environment 

Agency commissioned an initial study to investigate the past and present fish 

populations on the River Wensum that documented that eutrophication, 

sedimentation of gravels and constant low level inputs of ammonia were likely to 

have been responsible for the apparent declines in fish stocks (Roche, 2007). The 

factors were identified as causing long-term chronic problems in fish health, 

ultimately leading to increased mortality through disease (Roche, 2007). 

 

In 2006, Natural England commissioned the Geomorphological Appraisal of the 

River Wensum Special Area of Conservation. This report provided insight into the 

physical processes determining sediment transport within the Wensum necessary to 

develop a tool for river restoration, whilst taking into account the constraints of flood 

risk management. It stated that the Wensum‟s gravel bed substrate is left behind as a 

relic of past geomorphological processes that no longer function in the current flow 

regime of the river. Through the widespread input of fine sediment and nutrients 

from road and field run-off, the ecological function of the gravel substrate for 

spawning activity is greatly reduced. The capacity of the gravel to store fine 

sediment combined with the lack of gravel flushing is thought to have detrimental 

effects on the fish populations through the reduction in suitable habitat required by 

the various life stages of certain lithophylic fish species. Whilst the focus of that 

particular study was not specific to fish stocks within the Wensum, it does provide an 
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insight into how the channel form and function has changed over time that then had 

an interaction effect with aspects of the ecology of the fish community. 

 

Whilst the initial investigation into the adult roach community was completed by 

Roche (2007), this did not consider any aspects of the population dynamics and life 

history traits of this fish and how these may have changed temporally and in 

response to environmental change. There were also no data available on the 

recruitment of the fish, whether from information derived from the adult stock or 

through targeted surveys on the 0 group fishes. Whilst other studies have surmised 

that changes in water quality, river management and lack of suitable habitat on fish 

populations have caused issues, these have been piecemeal and failed to test 

important relationships between fish population metrics and available environmental 

data (Ros Wright, personal communication). Consequently, further research was 

necessary to determine and understand the long-term factors affecting the fish 

populations (in both adult and juvenile life phases) of the River Wensum, and how 

these may have resulted in reduced population abundance of some species in the last 

30 years that then impacted aspects of fishery performance.  This is the focus of this 

study. 

 

1.6.  Thesis objectives 

 

The aim of this thesis is to determine the long-term population status of R. rutilus, L. 

leusiscus and L. cephalus in the River Wensum, and identify the important 

environmental variables that influence the population processes that determine their 
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abundance. This may quantify temporal shifts in aspects of the adult stock in relation 

to other species in the fish community.  

The management implications of the outputs of these aims will be discussed. The 

specific objectives are to: 

(1) Identify spatial and temporal changes in the fish community composition and 

population abundance of angler-targeted cyprinid species and identify the 

potential biotic and abiotic factors that may be influencing them (Chapter 2); 

(2) Analyse the age structure and somatic growth rates of angler-targeted cyprinid 

species between 1970 and 2009, with identification of the role of abiotic and 

biotic variables in their determination (Chapter 3); 

(3)  Determine the temporal trend in recruitment of R.rutilus in the river and identify 

the influences of climate, hydrology and growth in their first year of life on the 

recruitment process (Chapter 4); 

(4) Evaluate the key habitat features for the presence and abundance of 0 group roach 

and other fishes in the community. Ascertain the effect of river management on 0 

group fishes, with emphasis on roach through a case-study testing the effects of 

weed-cutting on 0 group fish abundance, biota and physical characteristics of the 

river (Chapter 5); 

(5) Design a series of management recommendations that aim to maintain the 

requirements for flood defence operations but without further compromising the 

roach (Chapter 6). 

The rationale and specific hypotheses for each of these objectives will be outlined in 

the introduction to each relevant chapter.  
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       Figure 1.1. The River Wensum catchment; the area shaded in green shows the drainage area.
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a)  

 

b) 

Figure 1.2. (a) Top: Lenwade Mill by-pass channel and (b) Bintree Mill by-pass 

channel. (Photos: Atkins, 2010).   
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Chapter 2: Spatial and temporal relationships in fish community structure and 

population abundance 

 

2.1 Introduction 

 

A complex array of interacting physical, chemical and biological factors have been 

considered as important in influencing the distribution and abundance of fish 

populations (Symons & Heland, 1978; Bagliniere & Champigneuille, 1982; Cowx, 

2001). Biological factors, such as availability of food resources, population density, 

predation, competition and disease, and chemical factors associated with water 

quality such as eutrophication, are fundamentally important in regulating riverine 

fish populations (Bagliniere & Champigneuille, 1982; Grenouillet et al., 2001). 

However, underpinning these factors in temperate rivers is the density-independent, 

abiotic factor of climate that plays a key regulatory role in the population dynamics 

of cyprinid fishes (e.g. Mills & Mann, 1985; Grenouillet et al., 2001; Nunn et al., 

2003, 2007; Britton et al., 2004; Chapter 3, 4).  

 

The relative importance of different abiotic factors on the abundance, growth and 

recruitment of riverine cyprinid fish populations varies spatially and temporally, 

suggesting that significant shifts in these variables may cause significant shifts in 

abundance, growth and recruitment rates (Nunn et al., 2003, 2007).  However, no 

single factor is directly responsible for constraining the development of coarse fish 

populations but it is their interactions that may be more important (Cowx, 2001; 

Nunn et al., 2003). Additional anthropogenic factors have also been found to 

impinge on fish populations, including past and present river management. For 

example, Mann (1988) suggested that the construction of canals and interconnecting 
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waters during the 18
th

 and 19
th

 Centuries facilitated the spread of some fish species 

between catchments. 

 

Water quality is perhaps one of the main factors determining fish communities 

with rivers in heavily industrialised areas being prone to chronic and acute pollution 

events (Nolan & Guthrie, 1998). Other human impacts affecting fish populations 

include acidification, introduced species, eutrophication and barriers to migration 

(e.g. Byers, 2002; Pont et al., 2006). Resident fish communities will thus respond to 

the consequent shifts in their environmental conditions, for example showing 

changes in their reproductive and recruitment rates that will subsequently affect their 

abundance (Maitland, 2004). In many lowland rivers, including the River Wensum 

(Section 1.3.3), intensive agricultural practices have had long-term impacts on 

riverine ecosystems via accelerated drainage processes through wetland removal and 

changes in floodplain land use that, in combination, inhibit productivity of the 

natural resources through changes in habitats and water quality (Bayley, 1995). 

Habitats become less heterogeneous and connected (Britton & Pegg, 2011), diffuse 

pollution increases and the water chemistry becomes more eutrophic (Kronvang et 

al., 1995; Sliva & Williams, 2001). For fish, this may be reflected by shifts in the 

species composition of their community to more generalist and pollution tolerant 

species (Noble et al., 2007), and declines in pollution sensitive species‟ distribution 

and abundance, such as barbel (Britton & Pegg, 2011). Water-borne diseases in the 

River Wensum by the late 19
th

 Century, were rife and the beauty of the river 

destroyed” (Countryside Agency, 2006), although the catchment was not subject to 

heavy industrial discharges, inputs of phosphates and nitrates from agricultural and 

sewage waste were commonplace throughout the catchment, thus an understanding 
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of the physical, chemical and biological factors and their interactions within the 

River Wensum is vital.  

In the last 50 years, many European rivers have undergone significant 

improvements in their biological and chemical water quality following long periods 

of decline that were initiated by pollutants discharged via new industrial processes in 

the Industrial Revolution (Amisah, 2000a,b). For example, in England, rivers running 

through heavily industrialised areas, such as the Rivers Trent, Mersey and Don, had 

fish populations that were severely impacted (to the point of their complete absence) 

by a range of pollutants including ammonia and heavy metals, yet in recent years all 

are considered as „recovering‟, being recognised as major fisheries based on cyprinid 

fishes, with Atlantic salmon Salmo salar also known to be increasingly present, 

especially in the Mersey and Trent (APEM, 2007; Cowx & Broughton, 1986; 

Amisah, 2000a,b; Lyons et al., 2007).  

 In the last decade, many rivers including the River Wensum have been further 

improved through decreasing the extent of their eutrophication by reducing their 

nutrient loading (Wade et al., 2002). For example, reduced phosphate loadings of 

sewage effluents have been achieved through phosphate stripping, resulting in 

reduced concentrations in the rivers concerned (House et al., 1995; Neal et al., 

2002). This may be important given that eutrophication can have profound effects on 

fish communities and populations, with cyprinid fishes such as roach dominating 

communities in highly eutrophicated systems (Willemsen, 1980; Winfield, 1992).  

Given these long-term declines and then subsequent improvements in many of the 

physical and chemical characteristics of lowland rivers then it is important that the 

temporal and spatial relationships in their fish communities are understood in order 

to provide underlying knowledge of how fish interact with their environment (Mann, 
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1988). Understanding the processes and factors that influence the community 

structure are thus fundamental to the management of fisheries and aquatic 

ecosystems in general. For example, comprehension of the complex relationship 

between underlying geology, nutrient input, respiration and photosynthesis of aquatic 

plants governing the River Kennet has been vital for its management (Neal et al., 

2000). Once the influences of these factors have been identified then appropriate 

remediation and/ or mitigation measures may be implemented if they are deemed 

necessary. In lowland rivers, measures may include schemes that rehabilitate the 

river habitat for fish (such as for spawning and nursery areas etc), re-establishing the 

lateral and longitudinal connectivity of the river to facilitate fish migration and 

enhancing fish populations through restocking programmes (Britton & Pegg, 2011). 

 

For any of these management measures to be successfully implemented requires 

some understanding of the current constraints on the fish stock that would be 

typically gained through stock assessment exercises using appropriate methodologies 

(Cowx, 1991). In England and Wales, under Section 6.6 of the 1995 Environment 

Act, the Environment Agency (EA) has a statutory duty to maintain, improve and 

develop fisheries with an associated policy that aims to maximise the social, 

recreational and economic benefits arising from the sustainable exploitation of the 

fish stocks that underpin fisheries. It is obliged to ensure the conservation and 

maintenance of the diversity of freshwater fish, salmon, sea trout and eels and to 

conserve their aquatic environment (Environment Agency, 2003). Part of this is 

reliant on the long-term monitoring of river fisheries and their fish stocks across 

England and Wales, including the River Wensum, where stock assessment exercises 

have been carried out by the Environment Agency and its predecessor organisations 
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since 1983, providing information about the long-term status of its fish populations 

for over 25 years. The rationale for completing these surveys has been strengthened 

through the internal requirements of the EA‟s National Fisheries Monitoring 

Programme (NFMP) that was implemented in 2001, and especially the Water 

Framework Directive (WFD) that requires fish to be monitored as a metric of 

ecological status (Noble et al., 2007). Fish are recognised as strong indicators of 

ecological status as they occupy a wide range of ecological niches and operate over a 

wide range of ecological scales (Simon, 1999).  

 

This long-term monitoring of the fish stocks enables the temporal and spatial 

relationships in aspects of their populations to be determined and so allows temporal 

trends and changes in fish stocks and fishery performance to be identified. In the 

River Wensum, these surveys have been completed, on average, every three years 

when assessments of the fish populations present at 18 sites are completed. The aim 

of this chapter is to thus provide an overview of the outputs from these fish stock 

surveys between 1986 and 2009 in order to provide a temporal perspective of 

changes in the fish populations and how these may relate to angler perceptions of 

fishery decline. Note that data on the age, growth and recruitment of the fishes are 

the subject of Chapters 3 and 4. Allied to these outputs is the identification of the 

long-term trends in metrics of water quality of the river (where data were available). 

Thus, the objectives of this Chapter were to: (i) describe the long-term trends in 

aspects of the chemical water quality of the River Wensum, particularly regarding 

nutrient enrichment; and (ii) identify the long-term patterns in the fish species 

composition and abundance in the river. 
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2.2 Materials and Methods  

 

2.2.1 Water chemistry  

 

Aspects of the water chemistry of the River Wensum have been monitored by the EA 

and its predecessor organisations since at least 1981. Monitoring has been through 

data collected by a combination of automated recording stations and water samples 

collected by officers from across the catchment that were subsequently sent to EA 

laboratories for analysis. Consequently, the first step of this exercise was to access 

the EA water quality archive for the River Wensum and source all of the water 

quality data available between 1981 and the present. During this exercise, it was 

found that in 1996, general improvement works were made at two of the largest 

Sewage Treatment Works (STW) serving the catchment at Fakenham and East 

Dereham (Table 2.1), followed by the implementation of phosphate stripping 

technology shortly afterwards. It may thus be anticipated that declines in phosphate 

concentrations may be apparent from 1997. 

 

This data mining exercise provided chemical water quality data for phosphate (as 

biologically available orthophosphate), biochemical oxygen demand (BOD), total 

oxidized nitrogen (TON) and ammonia (all units in mg l
-1

) for the river between 

1981 and 2010. As these data were collected regularly throughout each year but not 

daily, mean annual values were determined with their standard deviation. Subsequent 

analyses aimed to determine whether their mean annual values changed temporally 

and if so, whether these were statistically significant (linear regression with ANOVA 

tests). For linear regression, the independent variable from taken as the number of 
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years from the first data recording, rather than the actual year; the dependent variable 

was the mean annual value of the chemical parameter concerned. Central England 

Temperature (CET) data was also collected between 1981 to 2010.   

 

2.2.2 Temporal and spatial relationships of the River Wensum fish populations  

 

Fish stock assessment surveys of the River Wensum were completed at 18 sites on 

average every 3 years by the EA (Table 2.1; Fig 2.1). Sites range in width from 7 to 

23 m in width, 0.5 to 3 m in depth (Table 2.1), with habitat comprising of riffle and 

pool reaches, with some lengths of deeper glides.  Note there were no surveys 

completed on the river between 1997 and 2002 due to changes in the survey 

programme, and some data were available from surveys collected in 1989 and 1991 

(Chapter 3). Thus, data were available from 1986, 1990, 1994, 2003, 2006 and 2009 

(with supplementary data from 1983, 1989 and 1991 in the form of scale packets 

obtained from the National Fish Laboratory archives).  
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Table 2.1 Locations of the River Wensum stock assessment sites, 1986 to 2009. The 

site number refers to those on Figure 2.1. Please note site dimensions were specific 

to surveys undertaken in 2006. 

Sii  Length  

(m) 

Width  

(m) 

Area  

(m
2
) 

Upstream  

NGR 

1  Fakenham Common 210 9.5 1995 TF9250629236 

2 Pensthorpe Hall 180 7.5 1350 TF9444928804 

3 U/S Gt Ryburgh 170 6.0 1020 TF9638827484 

4 D/S Gt Ryburgh 170 7.5 1275 TF9659426837 

5 D/S Guist Mill 180 13.0 2340 TF9976124933 

6 U/S Bintree Mill 240 15.0 3600 TF9968824479 

7 County School 180 7.0 1260 TF9922622732 

8 D/S Billingford Bridge  200 11.0 2200 TG0075119866 

9 Swanton Morley 200 11.0 2200 TG0180179361 

10 D/S Elsing Mill  200 18.0 3600 TG0510217838 

11 Lyng Pits 200 13.1 2620 TG0616218693 

12 U/S Lenwade Mill 205 23.0 4715 TG1009517902 

13 Attlebridge Hall Farm 180 13.0 2340 TG1387515572 

14 D/S Ringland Bridge 200 14.6 2920 TG1393113259 

15 Alders Spinney 170 9.0 1530 TG1667612847 

16 Blakes Meadow 180 10.6 1908 TG1770113206 

17 U/S Drayton Green Lane 210 10.0 2100 TG1854512884 

18 Hellesdon Rd (Albert‟s)  150 15.3 2295 TG1991409798 
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When each site was surveyed, the fish populations were isolated by stop-nets 

positioned across the width of the channel at the up- and downstream boundaries, 

with these marked out according to the length of the site. If site dimensions differed 

due to conditions present on the survey day, lengths and widths were updated for the 

specific site and survey year on the National Fisheries Populations Database (NFPD) 

in order that the actual area surveyed each year was used in subsequent 

density/biomass calculations (Table 2.1). Sampling was completed using electric 

fishing and occurred in August and September of each survey year, when the fish 

populations were considered well dispersed (Jordan & Wortley, 1985). Until the 

1990 surveys, the electric fishing was completed using 50Hz Alternating Current 

(AC). After that time, 50 Hz Pulsed Direct Current (PDC) was used on account of it 

being less harmful to fish (Allen-Gil, 2000). The electric fishing was completed 

using two 0.6 m diameter hand-held anodes powered by a 2.5KVA generator that 

produced between 3-8 amps. The effect of the electricity in the water was to 

temporarily immobilise the fish within the electric field, enabling their removal by 

hand nets. The fish were then held in water-filled holding bins whilst the rest of the 

survey was completed. The physical conditions at each site (width, depth etc.) 

dictated whether the electric fishing took place from a boat or a combination of boat 

and wading.    

 

In each survey, the fishing consisted of three consecutive hauls („runs‟) of equal 

fishing effort. At their conclusion, the captured fish were counted, identified to 

species level, measured (fork length, nearest mm) and a sample of between three and 

five scales removed for the purposes of the ageing the fish (Chapter 3) with data for 

each survey recorded on NFPD. Individual weights were not recorded but were 
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reconstructed later using standard EA length-weight equations (Froese, 2006). After 

their processing, the fish were then returned alive to the river. Quantitative 

population estimation using the Carle & Strub population model (Carle & Strub, 

1978) enabled the calculation of mean biomass and density estimates with 95 % 

confidence limits for each fish species that were > 99 mm present during the surveys, 

where biomass was determined from the predicted weights. The maximum weighted 

likelihood equation of Carle & Strub provides robust population estimates from data 

derived from sequential catches, even under circumstances with no or very poor 

catch depletion (Carl & Strub, 1978). Density and biomass estimates for only 

individuals > 99 mm in fork length are reported. Fish below this length were not 

considered in the estimates as although electric fishing is one of the most efficient 

and least selective methods of fish capture, it is biased against catching small fish 

(Zalewski & Cowx, 1990). Examination of data of surveys from 1986 to 1997 

revealed that Carle & Strub density and biomass estimates for fish < 99mm were 

invalid, for this reason outputs for fish > 99mm were utilised.   

 

The electric fishing surveys enabled the relationships in the spatial and temporal 

patterns in mean density and biomass of species and surveys, along with their 95 % 

confidence limits, to be identified and examined. Long term means for both density 

and biomass (using spatial survey data) were calculated and plotted to ascertain with 

95 % confidence whether a particular year‟s density/biomass estimate differed 

significantly from the long term mean. Species specific trends in total mean density 

and biomass were tested against their long-term means for the angler-target species 

of roach, chub, dace in order to identify any temporal shifts in their population 

abundances.   
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2.3 Results 

 

2.3.1 Temporal relationships of water chemistry parameters 

 

The major change in the water chemistry of the river relates to the change in its 

nutrient enrichment that occurred in the late 1990s after the implementation of the 

phosphate stripping on the catchment‟s major sewage works (Section 2.2.1). From 

1981 to 1997, the mean annual orthophosphate concentrations were relatively high, 

albeit with high variability within and between years, but with the highest mean 

recorded in 1996 at 0.72 ± 0.46 mg l
-1

 versus the long-term mean concentration of 

0.32 mg l
-1 

(Fig. 2.1). Since 1997, the general pattern of orthophosphate 

concentration in the river has been of progressive decline (Fig. 2.2), with the 

temporal trend being significant (R² = 0.45, F1,28 = 23.2,  p < 0.01). By 2000, the 

mean annual concentration had reduced to 0.13 ± 0.02 mg 1
-1

, a reduction of 59 % 

from the long-term mean. By 2005, the mean was 0.07 ± 0.02 mg 1
-1

 (78 % below 

the long-term mean value). From 2005 to 2010 annual mean orthophosphate 

concentrations have remained consistently stable, approximately 0.07 mg 1
-1

 (Fig. 

2.2). Grouping the data into the period before phosphate stripping (1981 to 1996) and 

after (1997 onwards) enabled use of ANOVA to compare the mean concentrations of 

orthophosphate between the periods. Pre-stripping, the mean concentration was 0.47 

±0.15 mg 1ˉ¹ (range 0.13 to 0.72 mg 1ˉ¹) compared to 0.19 ± 0.14 mg 1ˉ¹ post 

stripping, with this difference being significant (F1,24 = 21.05,  p < 0.01). 

 

Concentrations of ammoniacal nitrogen (as N) and biological oxygen demand 

(BOD) followed a similar pattern to that described for orthophosphate (Fig. 2.2). 
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Prior to stripping and improvement works to the main STW serving the catchment, 

both parameters displayed much variability in their annual mean concentrations from 

1981 to 1996. After 1996, levels for both reduced consistently below their associated 

long-term means, with this overall temporal decline being significant (ammonia: R² = 

0.60, F1,24 = 25.81,  p < 0.01; BOD: R² = 0.60, F1,24- = 29.87, p < 0.01). The annual 

mean for ammoniacal nitrogen in the period 1981 to 1996 was 0.10 mg  ± 0.03 mg 

1ˉ¹ ranging from 0.06 to 0.15 mg 1ˉ¹, compared to the period from 1997 to 2005 

where the annual mean concentration reduced to 0.05 ± 0.01 mgˉ¹ with a range of 

0.03 to 0.07 mg 1
-1

, (Fig. 2.2b). The annual means pre- and post-stripping were 

significantly different (F1,24 = 25.81,  p < 0.01). Annual mean BOD during the period 

1981 to 1996 was 1.80 ± 0.21 mg 1ˉ¹ (range 1.43 to 2.23 mg 1ˉ¹; (Fig. 2.2c). As with 

orthophosphate and ammonia, annual mean BOD in the period 1981 to 1996 was 

significantly lower than 1997 to 2005 (F1,24 = 29.87,  p < 0.01). 

 

The mean annual concentration of total oxidized nitrogen (TON) during 1981 to 

1996 (7.03 ± 0.69 mg 1ˉ¹) was not significantly different to the period from 1997 

(7.18 ± 0.44 mg 1ˉ¹) (F1,24 = 0.31,  p > 0.05); Fig. 2.3), with the overall temporal 

trend also being non-significant (R² = 0.03, F1,24 = 0.31,  p > 0.05). Thus, the source 

of TON into the river does not appear to relate to the discharges of treated sewage 

effluents and so are more likely to be from diffuse sources associated with 

agriculture. Between 2005 and 2010, mean annual TON concentrations were 

significantly below the long-term mean value of 6.98 mg 1ˉ¹ (F1,28 = 6.24, p < 0.05) 

suggesting that a reduction in TON entering the river from diffuse sources was taking 

place (Fig. 2.3a). Mean annual air temperature throughout the period has varied 

considerably around the long-term mean of 10.1ºC (Fig. 2.3b). 
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Figure 2.2 Annual mean (± SD) values of (a) orthophosphate, (b) ammoniacal 

nitrogen and (c) Biological Oxygen Demand in the River Wensum from 1981 to 

2010. Long-term mean values represented by dashed line.  

 

b)

0.00

0.05

0.10

0.15

0.20

0.25

0.30

0.35

0.40

19
81

19
82

19
83

19
84

19
85

19
86

19
87

19
88

19
89

19
90

19
91

19
92

19
93

19
94

19
95

19
96

19
97

19
98

19
99

20
00

20
01

20
02

20
03

20
04

20
05

20
06

20
07

20
08

20
09

20
10

 A
m

m
on

ia
   (

N
  m

g
 1

ˉ¹
)

c)

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

19
81

19
82

19
83

19
84

19
85

19
86

19
87

19
88

19
89

19
90

19
91

19
92

19
93

19
94

19
95

19
96

19
97

19
98

19
99

20
00

20
01

20
02

20
03

20
04

20
05

20
06

20
07

20
08

20
09

20
10

B
io

lo
gi

ca
l O

xy
ge

n 
D

em
an

d 
   

 
(m

g
 1

ˉ¹
) 

   
 

a)

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

19
81

19
82

19
83

19
84

19
85

19
86

19
87

19
88

19
89

19
90

19
91

19
92

19
93

19
94

19
95

19
96

19
97

19
98

19
99

20
00

20
01

20
02

20
03

20
04

20
05

20
06

20
07

20
08

20
09

20
10

O
rt

ho
ph

os
ph

at
e  

(m
g

 1
ˉ¹

) 



 

 49 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2.3 Annual mean (± SD) values of (a) Total Oxidized Nitrogen in the 

River Wensum from 1981 to 2010 and (b) air temperature using Central 

England Temperature (CET) records. Long-term mean values represented by 

dashed line.  
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2.3.2 Temporal and spatial relationships in fish species composition and 

abundance 

 

Overview of section 

Due to the amount of survey information collated during the EA surveys, this section 

provides only an overview of the data relevant to the thesis, focusing on data from 

roach, dace and chub, with mention of other species perch Perca fluviatilis (L.), pike 

Esox lucius (L.) and eels only where appropriate. In Figure 2.5 and Appendix 1, 

„others‟ constitute gudgeon Gobio gobio (L.), stoneloach Barbatula barbatula (L.), 

brown trout, brook lamprey, bullhead, 3-spined stickleback Gasterosteus aculeatus 

(L.), 10-spined stickleback Pungitius pungitius (L.) and minnow Phoxinus phoxinus 

(L.) The focus of this chapter is primarily on temporal changes although differences 

between specific sites over time are discussed. Data on site differences by survey 

year are provided in Appendix 1. 

 

Fish species composition 

The fish community of the River Wensum is relatively diverse for a temperate 

lowland river, with 20 fish species encountered in surveys over the entire period. 

Although European eel Anguilla anguilla (L.) was a dominant species in surveys 

between 1986 and 1997, particularly of the mid to upper sites, their proportion in 

recent surveys throughout, has declined significantly (density: R² = 0.61, F1,5  = 7.79,  

p < 0.05; biomass R² = 0.55, F1,5  = 6.05,  p < 0.01), (Fig. 2.5a-b; Fig. 2.6f; App. 1a-

b).  
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Of the angler target species, the percentage contributions to survey catches of roach, 

dace and chub within the surveys have varied temporally. Nevertheless, roach 

maintained a minimum contribution of 20 % to the total density during all survey 

years, with the exception of 1986 (8 %) and 1997 (2 %). Dace and chub have both 

upheld 10 % minimum contributions to all surveys, with chub remaining at 

consistent values throughout the period. (Fig 2.5a-b). 

 

Estimates of fish abundance and biomass  

The long-term mean density of fish (all species > 99 mm) across the 18 sites and 

surveys (Table 2.1) was 3.8 100mˉ ². Overall, from 1986 (5.34 fish.100mˉ ²) to 2009 

(3.63 fish.100mˉ ²) there has been a significant temporal decline in total fish density 

(R² = 0.55, F1,5  = 6.06,  p < 0.05; (Fig. 2.4a). Peak density of fish was recorded in 

1986 at 5.34 100mˉ ² (41 % above the long-term mean), with eel (2.0 fish.100mˉ ²), 

dace (1.8 fish.100mˉ ²) and roach (0.5 fish.100mˉ ²) dominating the catch (Fig. 2.5a; 

Fig. 2.6).  

 

The long-term mean biomass of fish (>99mm) was 1045.0 g.100mˉ ², with an 

overall decline of 13 % from 1986 levels to those of 2009 (Fig. 2.4b). Peak biomass 

was recorded in 1986, although it was dominated by eel (415.4 g.100mˉ ²), chub 

(347.2 fish.100mˉ ²) and pike (165.3 fish.100mˉ ²) rather than roach (Fig 2.5.b). This 

overall pattern of fish biomass decline was not significant (R² = 0.45, F1,5  = 4.03,  p 

> 0.05).  
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Roach 

Roach were a major component of the fish community of the river across the surveys 

with a long-term mean density of 0.68 fish.100m² and mean biomass of 77.1 g.100mˉ 

² (Fig. 2.6a).  Estimates of density and biomass of roach were highest  in 1990 (1.39 

fish.100mˉ ² and 136.4 g.100mˉ ² respectively). The survey of 1997 recorded the 

lowest density (0.08 fish.100mˉ ²) and biomass (8.2 g.100mˉ ²) estimates (Fig. 2.6a). 

Overall, there was no significant difference in roach density or biomass over the 

entire study period (F1,125  = 1.23, p > 0.05;  F1,125  = 0.25, p > 0.05 respectively). 

Post-hoc Tukey‟s HSD tests also showed no significant differences between surveys. 

Furthermore, analysis of surveys before and after phosphate stripping installations 

revealed also that there is no consequent and significant change to roach density 

(ANOVA  F1,125  = 0.99,  p > 0.05) or biomass (ANOVA  F1,125  = 0.45,  p > 0.05).  

 

Dace  

Dace populations have exhibited considerable change over the study period with 

recent surveys recording relatively low population estimates. The species was a 

major component of the uppermost survey sites between 1986 to 1990. Most recent 

surveys of the same sites in 2006 and 2009 reveal significantly lower densities of 

dace, now being dominated by pike and „other‟ species, namely bullhead, stoneloach 

and brook lamprey (App. 1a-b). The long-term mean density was 0.7 fish.100mˉ ² 

and biomass at 50.4 g.100mˉ ² (Fig. 2.6b). In 2006 and 2009, mean densities reduced 

to 0.4 fish.100mˉ ² and 0.3 fish.100mˉ ² respectively compared with 1.8 fish.100mˉ ² 

in 1986. The biomass in 1986 was 146.8 g.100mˉ ² compared to 13.5 g.100mˉ ² in 

2009.  
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Whilst the overall pattern of total mean density of dace is significant according to 

linear regression (R² = 0.63, F1,5 = 8.64, p < 0.05), when analysed using survey year 

as the grouping variable then across the 18 survey sites there was sufficient intra-year 

variability between sites that significant differences could not be detected between 

surveys (ANOVA F1,125 = 1.78, p > 0.05). For biomass, however, both their overall 

trend was one of significant temporal decline (R² = 0.69, F1,5 = 11.34, p < 0.05), with 

significant differences observed between the survey groupings (ANOVA F1,125 = 

2.61, p < 0.05). Post-hoc Tukey‟s HSD tests revealed the biomass of dace in 2009 

was significantly lower than 1986.  

 

Chub 

The chub population estimates remained relatively stable throughout the duration of 

the study period, with mean density and biomass exhibiting little deviation around 

the long-term mean value (density R² = 0.6, F1,5 = 0.02, p>0.05; biomass R² = 0.19, 

F1,5 = 1.25, p > 0.05). The long-term mean density for chub was 0.4 100mˉ ² and 

biomass at 275.6 g 100mˉ ² (Fig. 2.6c). Peak density was observed in 1990 at 0.47 

fish.100mˉ ². Chub have expanded in range from the early surveys where from 1986 

to 1997 they were not captured above Billingford Bridge, in 2009 they were captured 

at Pensthorpe Hall (App. 1a-b). As with roach, the chub population estimates 

suggested their abundance was cyclic and so likely to be associated with long-term 

recruitment patterns, although this is purely speculative. There were no significant 

changes in chub density and biomass over the study period or between surveys (p > 

0.05).  
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Perch and pike 

Both perch and pike significantly increased in density and biomass during the survey 

period (perch density: R² = 0.54, F1,5 = 5.90, p < 0.05 and biomass R² = 0.59, F1,5 = 

7.11, p < 0.05; pike density: R² = 0.77, F1,5 = 17.11, p < 0.05 and biomass R² = 0.80, 

F1,5 = 20.61, p < 0.05) (Fig. 2.6d-e). Post-hoc Tukey‟s HSD tests in ANOVA 

revealed the mean density and biomass of perch observed in 2009 was significantly 

higher than that recorded in all other survey years (p < 0.05).  For pike, the mean 

density and biomass recorded in 2003, 2006 and 2009 was significantly higher than 

in other surveys (p < 0.05). Surveys from 1986 to 1997 pike were captured in 

surveys primarily in the lowermost reaches of the Wensum. 2003 to 2009 surveys 

reveal their increased distribution throughout the survey sites particularly the 

uppermost sites (App. 1a-b).  It was apparent that increased density and biomass of 

both species were captured in the post phosphate stripping survey period (perch 

density: ANOVA F1,125  = 10.24, p < 0.01 and biomass ANOVA F1,125  = 13.23, p < 

0.01; pike density: ANOVA F1,125  = 32.37, p < 0.01 and biomass ANOVA F1,125  = 

19.34, p < 0.01.  

 

   



 

 

5
5
 

 
Fig 2.1. Site locations of the fish stock assessment exercises of the River Wensum, the area highlighted in green shows the drainage 

area. Numbers relate to Table 2.1. Red shows temporal survey sites, green sites show spatial survey sites. 
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Figure 2.4 Estimated (mean ± 95% CI) density (a) and biomass (b), of total fish 

sampled (>99mm) in the River Wensum between 1986 to 2009, in comparison 

to the long-term means, (represented by dotted line). 
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Figure 2.5 Estimated mean density (a) and biomass (b), of fish species sampled 

(>99mm) in the River Wensum between 1986 to 2009. 
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Figure 2.6. a-c. Estimated (mean ± 95% CI) density  and biomass of (a) roach, (b) 

dace and (c) chub (>99mm) sampled in the River Wensum between 1986 to 2009, 

in comparison to the long-term means, (represented by dotted line). 
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Figure 2.6. d-f. Estimated (mean ± 95% CI) density and biomass of (d) perch, (e) 

pike and (f) eel (>99mm) sampled in the River Wensum between 1986 to 2009, in 

comparison to the long-term means, (represented by dotted line). 
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2.4 Discussion 

 

2.4.1 Temporal patterns in the water chemistry parameters of the River 

Wensum 

 

The general improvements made to two of the largest sewage treatment works 

serving the Wensum catchment at Fakenham and East Dereham (Fig. 2.1) and the 

implementation of phosphate stripping technologies resulted in significant changes in 

the nutrient loading of the river from 1997. Significant reductions in orthophosphate, 

ammonia and BOD were detected, suggesting a reduction in the anthropogenic 

eutrophication of the river. That total oxidized nitrogen did not reduce after STW 

improvements suggests that their source is mainly from diffuse sources associated 

with agricultural activity. Recent improvements may relate to local government 

schemes put in place to reduce point and diffuse agricultural run-off from 

agricultural operations, such as Nitrate Vulnerable Zones (NVZs) initially designated 

in 1996 and the England Catchment Sensitive Farming Delivery Initiative (ECSFDI) 

implemented in 2006. Evaluation into the effectiveness of (ECSFDI) using water 

quality data from 2007 to 2010 has been a success in priority catchments across the 

country, with evidence of reducing nitrate and total oxidized nitrogen concentrations 

the River Wensum (Environment Agency, 2011).           

 

This reduction in nutrient loading and so the level of anthropogenic eutrophication 

was likely to have been beneficial in enabling the River Wensum to support more 

diverse aquatic communities comprising of a range of pollution tolerant and sensitive 

species (Wade et al., 2002). Moreover, in the River Wensum species such as 
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bullhead, brook lamprey and brown trout were observed to be increasingly 

contributing to the composition of the upper reaches after 2003 (App. 1a-b), 

following significant improvements to water quality. A study of Swedish rivers and 

streams found anthropogenic eutrophication responsible for the increasingly 

homogenised biota encountered during fish surveys from the 1960s to the 1990s, 

with significant reductions in salmonid species (Eklov et al., 1998). Following the 

improvement in waste-water treatment from STW and industrial effluent, re-

colonization by species such as brown trout Salmo trutta was observed. Winfield et 

al., (2007) documented the decline of Arctic Charr Salvelinus alpinus (L.) from Lake 

Windermere in north-west England over a 30 year period and related this to 

increased eutrophication within the catchment. This has also been coincident with an 

increase in roach populations that are apparently thriving on the increased 

productivity of the lake (Winfield et al., 2007).  

 

 Nevertheless, the reduced phosphate loading may have limited productivity, as 

studies suggest that within aquatic ecosystems with reduced nutrient input, the 

carrying capacity of the fish biomass declines that is associated with reduced food 

supply (Winfield & Townsend, 1988; Perrow et al., 1997; Phillips & Moss, 1994; 

Meijer, 1994). Moreover, in rivers that are either clean or mildly polluted then an 

increase in organic matter or nutrient enrichment can actually improve the fishery by 

increasing fish growth rates without causing community changes. In reality this 

delicate balance is rarely achieved, with such additions more often causing detriment 

to the fishery (Moss et al., 1979). These aspects are explored further in Chapter 3.  

In lowland rivers, the impact of organic enrichment on fish populations can 

conversely cause a reduction in diversity of the aquatic fauna (with communities 
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dominated by more tolerant species such as roach) alongside an increase in total 

biomass (Mason, 1981). Shifts in community composition therefore occur following 

the improvement of water quality, with the fish assemblage shifting from one 

previously dominated by more tolerant species to one dominated by a greater number 

of sensitive species such barbel. Such change was observed on the River Trent 

following improvements to water quality (Cowx & Broughton, 1986). This shift was 

documented in the Independent: “the removal of sewage and other suspended solids 

has made the water clearer and less rich in organic matter, thus making small fish 

more vulnerable to predators whilst having less to feed on. The result has been the 

disappearance of much aquatic life, especially the spectacular shoals of roach,” 

(McCarthy, 1999b).  Despite these apparent declines in roach stocks since the 1970s 

and 1980s, ultimately the water quality of many lowland rivers, including the River 

Wensum, is considerably higher today than at any time since the onset of the 

Industrial Revolution. “Fish are now thriving in once polluted rivers. The Tyne has 

seen record numbers of migrating salmon, while the Thames recorded its highest 

number of sea trout since many species were wiped out in parts of the river by 

pollution in the 1830s” (Sample, 2010). The increase in predator species in the River 

Wensum may be related to water quality improvements, in particular the improved 

clarity of water following phosphate stripping may have facilitated the ease of 

capture of prey species, enabling perch and pike populations to thrive. It is therefore 

possible that the current levels of roach and dace populations (Section 2.4.2) and are 

thus more representative of those prior to anthropogenic influences on lowland rivers 

that result in organic enrichment. The exception here is chub given their introduction 

into the Wensum in the 1950‟s (Section 1.4). 
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2.4.2 Temporal and spatial relationships in fish species composition and 

abundance 

 

It was apparent in the survey data that considerable shifts have occurred within the 

fish community of the river, with reductions in mean total density and biomass (32 

and 13 % respectively). Allied to this have been considerable temporal changes in 

the fish species composition. During the initial surveys from 1986 to 1994, the fish 

community was numerically dominated by eel, dace and roach, whereas biomass was 

dominated by eel and chub (a reflection of their larger body size). In more recent 

surveys, the density is largely comprised of roach and smaller species (including 

bullhead and brook lamprey) and pike, with biomass now dominated by pike and 

chub. Minimal numbers of dace and eel have been caught in recent surveys. Thus, 

the reduction in the overall total fish density and biomass observed in the river in 

recent years is actually associated more with significant declines in eel and dace 

populations, and not roach. 

 

The total mean density and biomass of roach throughout the study period has 

displayed considerable variation around the long-term mean for the species, 

reflecting the many biotic and abiotic factors determining their temporal patterns in 

somatic growth and recruitment (Chapter 3, 4) that may help explain the cyclical 

patterns of population peaks and troughs within the data. For example, in 2009 the 

mean density and biomass of roach was above that of the long-term mean for the 

species, following on from levels below the long-term mean in 2006. Thus, the 

combination of changes in water chemistry and roach population dynamics (Chapter 
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3) have not necessarily resulted in the long-term decline in roach populations as 

postulated by the angling community.  

 

In addition to these temporal shifts within the community, some spatial changes 

are also evident. Species such as dace and eel that once dominated the mid to upper 

reaches of the river are now largely absent from these areas (Appendix 1). Chub have 

become increasingly prevalent in more recent surveys, expanding their distribution 

within the river by colonising areas further upstream of the mid reaches. It has been 

hypothesised by many anglers that the „decline‟ of roach is directly related to the 

introduction of chub into the Wensum in 1956. Indeed, they are a known predator of 

coarse fish eggs and juveniles, being described as opportunistic omnivores (Mann, 

1976). This claim may be also substantiated through personal observation of large 

aggregations of spawning roach within the Wensum, that are watched closely by 

large numbers of chub taking advantage of the food source after spawning has taken 

place.  Nevertheless, there was no evidence to suggest that the roach population has 

declined overall, despite the apparent predation pressure (albeit unmeasured) being 

exerted by the chub. 

 

Eel was once widespread throughout the catchment, contributing particularly 

heavily to the overall fish abundance in the lower reaches of the river, but are now 

largely absent throughout, being caught infrequently in recent surveys. This 

significant decline is a reflection of their Europe-wide decline, as they have 

undergone a sharp decline in recruitment, yield and stock, and is likely to continue 

for years to come (ICES, 2006; Freyhof & Kottelat, 2010). Although the exact cause 

of the decline is not known, the species has many threats including; unsustainable 
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harvesting, the parasitic nematode of the swim bladder Anguillicoloides crassus that 

may compromise their ability to migrate to their spawning grounds in the South 

Atlantic (Kirk, 2003), high mortality of downstream migrating eels into hydropower 

turbines and pumping stations, barriers to migration routes, predation, pollution, loss 

of habitat and climate change (Starkie, 2003; Laffaille et al 2005; Feunteun, 2002). 

In 2008, the International Union for Conservation of Nature (IUCN) classified 

European eels within the „Red List of Threatened Species‟ as „Critically Endangered‟ 

(Freyhof & Kottelat, 2008).  Similarly advice from the International Council for the 

Exploration of the Sea (ICES) in 2006 indicated that the stock of European eel was 

outside of the safe biological limits across European waters. 

 

2.4 Conclusions 

 

To conclude, this chapter revealed a series of changes and shifts in the spatial and 

temporal relationships of the fish community and their abundance as the fish 

responded to changes in their environment. In the most recent fish surveys, the major 

changes detected were in the populations of eel and dace, with more chub present. 

When viewed across 23 years (1986 to 2009) then the population abundance of roach 

has not actually changed per se, with abundances in 2009 being favourable to those 

of the 1980s and early 1990s.  

 



 

 66 

2.6 References 

 

Allen-Gil, SM 2000, New Perspectives in electrofishing. US, EPA, Office of 

Research and Development. EPA/600/R-99/108, pg 27. 

Amisah, S & Cowx, IG 2000a, „Impacts of abandoned mine and industrial discharges 

on fish abundance and macro-invertebrate diversity of the upper River Don in 

South Yorkshire, UK‟. Journal of Freshwater Ecology, vol. 15, pp 237-250. 

Amisah, S & Cowx IG, 2000b, „Response of the fish populations of the River Don in 

South Yorkshire to water quality and habitat improvements‟. Environmental 

Pollution, vol. 108, pp 191-199. 

APEM 2007, Manchester Ship Canal: Strategic review of fish populations. Project 

report: 410039.  

Bagliniere, JL & Champigneuille, A 1982, „Population estimates of juvenile Atlantic 

salmon, Salmo salar, as indices of smolt production in the R. Scorff, Brittany‟. 

Journal of Fish Biology, vol. 29, pp 467-482. 

Bayley, PB. 1995, „Understanding large river: floodplain ecosystems‟. Bioscience, 

vol. 45, pp 153-158. 

Britton, JR, Cowx, IG, Axford, SN & Frear PA  2004, ‘An overview of recruitment 

patterns of roach Rutilus rutilus (L.) between 1969 and 2001 in the rivers of 

England and their influence on population abundance‟. Ecohydrology and 

Hydrobiology, vol. 4, pp 91–102. 

Britton, JR & Pegg, J 2011, „Ecology of European Barbel Barbus Barbus: 

Implications for River, Fishery, and Conservation Management‟. Reviews in 

Fisheries Science, 19: 321-330. doi: 10.1080/10641262.2011.599886x. 



 

 67 

Byers, JE 2002, „Impact of non-indigenous species on natives enhanced by 

anthropogenic alteration of selection regimes‟. Oikos, vol. 97, pp 449–458. 

doi: 10.1034/j.1600-0706.2002.970316.x 

Campana, SE 2001, „Accuracy, precision and quality control in age determination, 

including review of the use and abuse of age validation methods‟.  Journal of Fish 

Biology, vol. 59, pp 197-242. 

Carle, FL & Strub, MR 1978, „A method for estimating population size from 

removal data‟. Biometrics, vol. 34, pp 621-630. 

Coggins, LG & Pine, WE 2010, „Development of a Temperature-Dependent Growth 

Model for the Endangered Humpback Chub Using Capture-recapture Data‟. Open 

Fish Journal, vol. 3, pp 122-131. 

Cowx, IG 1991, „Catch effort sampling strategies: their application in freshwater 

fisheries management‟. Fishing News Books. 9780852381779. 

Cowx, IG 2001, ‘Factors Influencing Coarse Fish Populations in Rivers‟. R & D 

Publication 18, Environment Agency, Bristol. 

Cowx, IG & Broughton, NM 1986, „Changes in the species composition of anglers' 

catches in the River Trent (England) between 1969 and 1984.‟ Journal of Fish 

Biology, vol. 28, pp 625–636. doi: 10.1111/j.1095-8649.1986.tb05197.x 

DEFRA, 2011. Impacts of predation by fish-eating birds on inland fisheries 2011. 

Review in England, Aims-Scope. June 2011. Available from: 

www.defra.gov.uk/publications/files/impacts-predation-fish-eating-birds.pdf 

Eklöv, AG, Greenberg, LA, Brönmark, C, Larsson, P & Berglund, O 1998, 

„Response of stream fish to improved water quality: a comparison between the 

1960s and 1990s‟. Freshwater Biology, vol. 40, pp 771–782. doi: 10.1046/j.1365-

2427.1998.00370.x 

http://www.defra.gov.uk/publications/files/impacts-predation-fish-eating-birds.pdf


 

 68 

Environment Agency, 2003. Our Nations‟ Fisheries. Environment Agency, Bristol. 

Available from: 

www.environmentagency.gov.uk/static/documents/Leisure/Fisheries_sum_ENG.p

df 

Environment Agency, 2011. „Catchment Sensitive Farming, ECSFDI Phase 1 & 2 

full evalution report‟. Evidence Team, June 2011. Available at: 

     www.naturalengland.org.uk/Images/csf-evaluationreport_tcm6-27149.pdf 

Faulks, LK, Gilligan, DM & Beheregaray, LB, 2011. The role of anthropogenic vs. 

natural in-stream structures in determining connectivity and genetic diversity in an 

endangered freshwater fish, Macquarie perch (Macquaria australasica). 

Evolutionary Applications, vol. 4, pp 589–601. doi: 10.1111/j.1752-

4571.2011.00183.x 

Feunteun, E 2002. „Management and restoration of European eel population 

(Anguilla anguilla): An impossible bargain‟. Ecological Engineering, vol. 18, pp 

575-591. 

Freyhof,  J & Kottelat,  M 2010, Anguilla anguilla. In: IUCN 2011. IUCN Red List 

of Threatened Species. Version 2011.2. 

Froese, R 2006, „Cube law, condition factor and weight–length relationships: history, 

meta-analysis and recommendations‟. Journal of Applied Ichthyology, vol. 22, 

pp 241–253. doi: 10.1111/j.1439-0426.2006.00805.x 

Grenouillet, G, Hugueny, B, Carrel, GA, Olivier, JM & Pont, D 2001, „Large-scale 

synchrony and inter-annual variability in roach recruitment in the Rhone River: 

the relative role of climatic factors and density-dependent processes.‟ Freshwater 

Biology vol. 46, pp 11–26. 

http://www.environmentagency.gov.uk/static/documents/Leisure/Fisheries_sum_ENG.pdf
http://www.environmentagency.gov.uk/static/documents/Leisure/Fisheries_sum_ENG.pdf
http://www.naturalengland.org.uk/Images/csf-evaluationreport_tcm6-27149.pdf


 

 69 

House, WA, Denison, FH &  Armitage, PD 1995, „Comparison of the uptake of 

phosphorus to a suspended and stream bed-sediment‟. Water Resources. Vol. 29, 

pp 767-779. 

Joint Nature Conservation Committee, 2011. River Wensum. Available from: 

www.jncc.defra.gov.uk/protectedsites/sacselection/sac.asp?EUCode=UK0012647 

Jordan, DR & Wortley, JS 1985, „Sampling strategy related to fish distribution, with 

particular reference to the Norfolk Broads‟. Journal of Fish Biology, vol. 27, pp 

163-173. 

Kirk, RS 2003, „The impact of Anguillicola crassus on European eels‟. Fisheries 

Management and Ecology, vol. 10, pp 385–394. doi: 10.1111/j.1365-

2400.2003.00355.x 

Kronvang, B, Grant, R, Larsen, SE, Svendsen, LM & Kristensen, P 1995, „Non-

point-source nutrient losses to the aquatic environment in Denmark: impact of 

agriculture‟. Marine and Freshwater Research, vol. 46, pp 167–177. doi: 

10.1071/MF9950167. 

Laffaille, P, Acou, A, Guillouet J & Legault A 2005, „Temporal changes in European 

eel, Anguilla anguilla, stocks in a small catchment after installation of fish 

passes‟. Fisheries Management and Ecology, vol. 12, pp 123–129. 

doi: 10.1111/j.1365-2400.2004.00433.x 

Lyons, J., Hickley, P & Gledhill, S. 2007. An Evaluation of Recreational Fishing in 

England and Wales, in Recreational Fisheries: Ecological, Economic and Social 

Evaluation (eds T. J. Pitcher and C. E. Hollingworth), Blackwell Publishing Ltd, 

Oxford, UK. doi: 10.1002/9780470995402.ch12 

http://www.jncc.defra.gov.uk/protectedsites/sacselection/sac.asp?EUCode=UK0012647


 

 70 

 Mainstone, CP, Barnard, S & Wyatt, R 1994a, „Development of a Fisheries 

Classification Scheme‟. Report to NRA 244/7/Y. National Rivers Authority.  

Mainstone, CP, Barnard, S & Wyatt, R 1994b, „The NRA National Fisheries 

Classification Scheme‟. A guide for users. R&D Note 206. National Rivers 

Authority. 

Maitland, PS 2004, „Evaluating the ecological and conservation status of freshwater 

fish communities in the United Kingdom‟. Scottish Natural Heritage 

Commissioned Report No. 00. 

Mann, RHK 1976, „Observations on the age, growth, reproduction and food of the 

chub Squalius cephalus (L) in the River Stour, Dorset‟. Journal of Fish Biology. 

Vol. 8, pp 265-288. 

Mann, RHK 1988, „Fish and fisheries of regulated rivers in the UK‟. Regulated 

Rivers Research & Management, vol. 2, pp 411-424. 

doi: 10.1002/rrr.3450020315. 

Mason, CF 1981, „Biology of Freshwater Pollution‟. London and New York: 

Longman. 250pp. 

McCarthy, M 1999a, „Salmon lured back to cleaned up Mersey after 100 year 

absence‟. The Independent, Monday 31
st
 May 1999. 

McCarthy, M 1999b, „The disappearing roach: River Trent is too clean for its fish‟. 

The Independent, Tuesday 04 May 1999. 

Meijer, ML, de Boois, I, Scheffer, M, Portielje, R & Hosper, H 1999, 

„Biomanipulation in shallow lakes in The Netherlands: an evaluation of 18 case 

studies‟. Hydrobiologia, vol. 408-409, pp 13-30. 



 

 71 

Mills, CA & Mann, RHK 1985, ‘Environmentally-induced fluctuations in year class 

strength and their implications for management‟. Journal of Fish Biology, vol. 

27(Suppl. A), pp 209–226. 

Moss, B, Leah, RT & Clough, B 1979, ‘Problems of the Norfolk Broads an their 

impact on freshwater fisheries’. Proceedings of the 1st British Freshwater 

Fisheries Conference, University of Liverpool, pp67-85.  

Natural England, 2011. Reducing the impact of cormorants: the use of fish refuges. 

Natural England Technical Information Note: TIN028. Available from: 

http://naturalengland.etraderstores.com/NaturalEnglandShop/UserFiles/Files/tin02

8.pdf 

Neal, C, Williams, RJ, Jarvie, HP, Neal, N, Wickham, H & Hill, L 2002, 

„Phosphorus-calcium carbonate solubility relationships in a lowland chalk stream 

impacted by sewage inputs and phosphorus remediation: an assessment of 

phosphorus self cleansing mechanisms in natural waters‟. Science of the Total 

Environment, vol. 282-283, pp 295-310. 

Neal, C, Jarvie, HP, Howarth, SM, Whitehead, PG, Williams, RJ, Neal, M., Harrow, 

M & Wickham, H 2000, „The water quality of the River Kennet: initial 

observations on a lowland chalk stream impacted by sewage inputs and 

phosphorus remediation.‟ Science of The Total Environment, vol. 251–252, pp 

477-495. DOI:10.1016/S0048-9697(00)00400-9. 

Noble, RAA, Cowx, IG, Goffaux, D & Kestemont, P 2007, „Assessing the health of 

European rivers using functional ecological guilds of fish communities: 

standardising species classification and approaches to metric selection‟. Fisheries 

Management and Ecology, vol. 14, pp 381–392. doi: 10.1111/j.1365-

2400.2007.00575.x 

http://naturalengland.etraderstores.com/NaturalEnglandShop/UserFiles/Files/tin028.pdf
http://naturalengland.etraderstores.com/NaturalEnglandShop/UserFiles/Files/tin028.pdf


 

 72 

Nolan, P & Guthrie, N 1998, „River rehabilitation in an urban environment: 

examples from the Mersey Basin, North West England‟. Aquatic Conservation: 

Marine and Freshwater Ecosystems, vol. 8, pp 685–700. 

Nunn, AD, Cowx IG, Frear PA & Harvey, JP 2003, ‘Is water temperature an 

adequate predictor of recruitment success in cyprinid fish populations in lowland 

rivers?‟ Freshwater Biology, vol. 48, pp 579–588.  

Nunn, AD, Harvey JP & Cowx, IG 2007, ‘Variations in the spawning periodicity of 

eight fish species in three English lowland rivers over a 6 year period, inferred 

from 0+ year fish length distributions‟. Journal of Fish Biology, vol. 70, pp 1254–

1267. 

Perrow,  MR, Meijer, ML, Dawidowicz, P & Coops, H 1997, „Biomanipulation in 

shallow lakes: state of the art‟. Hydrobiologia, vol. 1, pp 355-365. 

Philips, G & Moss, B 1994, „Is biomanipulation a useful technique in lake 

management?‟ National Rivers Authority, UK, R&D note 276: 48 pp. 

Pont, D, Hugueny, B, Beier, U, Goffaux, D, Melcher, A, Noble, R, Rogers, C, Roset, 

N & Schmutz, S 2006, „Assessing river biotic condition at a continental scale: a 

European approach using functional metrics and fish assemblages‟. Journal of 

Applied Ecology, vol. 43, pp 70–80. doi: 10.1111/j.1365-2664.2005.01126.x 

Postnote, 2008. Postnote December 2008, Number 320: River Basin Management 

Plans. Parliamentary Office of Science and Technology.  

Ricker, WE 1975, „Computation and interpretation of biological statistics of 

biological statistics of fish populations‟. Bulletin of the Fisheries Research Board 

of Canada, vol. 191, pp 1-382. 

Sample, I 2010, „Freshwater wildlife thrives in cleanest rivers since Industrial 

Revolution‟. The Guardian. Friday 31
st
 December, 2010. 



 

 73 

http://www.guardian.co.uk/environment/2010/dec/31/freshwater-wildlife-

thriving-clean-rivers/print 

Simon, TP (ed.) 1999, „Assessing the Sustainability and Biological Integrity of 

Water Resources Using Fish Communities‟. Washington, DC: CRC Press, 671 pp. 

Sliva, L & Williams, D 2001, „Buffer Zone versus Whole Catchment Approaches to 

Studying Land Use Impact on River Water Quality‟. Water Research, vol. 35, pp 

3462 – 3472.  

Starkie, A 2003, „Management issues relating to the European eel, Anguilla 

anguilla’. Fisheries Management and Ecology, vol. 10, pp 361–364. 

doi: 10.1111/j.1365-2400.2003.00351.x 

Symons, PEK & Helland, M 1978, „Stream habitats and behavioral interactions of 

under-yearling and yearling Atlantic salmon‟. Journal for the Fisheries Research 

Board of Canada. vol. 35. pp 175-183. 

Wade, AJ, Whitehead, PG, Hornberger, GM, Jarvie, HP & Flynn, N 2002, „On 

modelling the impacts of phosphorus stripping at sewage works on in-stream 

phosphorus and macrophyte/ epiphyte dynamics: a case study for the River 

Kennet‟. Science of the  Total Environment, vol. 282-283, pp 395-415. 

Water Framework Directive. 2000. Directive 2000/60/EC of the European 

Parliament and the Council of 23 October 2000 establishing a framework for 

community action in the field of water policy. Official Journal of the European 

Communities (22.12.2000)  

Willemsen, J 1980, „Fishery aspects of eutrophication‟. Aquatic Ecology, vol. 14, pp 

12-21. 

Wilson, J 1985, „The wonderful Wensum‟. The coarse fishing handbook, June/July: 

1985, pp 58-62. 

http://www.guardian.co.uk/environment/2010/dec/31/freshwater-wildlife-thriving-clean-rivers/print
http://www.guardian.co.uk/environment/2010/dec/31/freshwater-wildlife-thriving-clean-rivers/print


 

 74 

Winfield, IJ 1992, „Threats to the lake fish communities of the UK arising from 

eutrophication and species introductions‟. Netherlands Journal of Zoology, vol. 

42, pp 233-242. 

Winfield, IJ & Townsend, CR 1988, „The role of cyprinids in ecosystems‟. In: I.J 

Winfield & J.S. Nelson (eds.) Cyprinid fishes, systematics, biology and 

exploitation. London: Chapman and Hall. 552-572. 

Winfield, IJ, Fletcher, JM &  James, JB 2007, „The Arctic charr (Salvelinus alpinus) 

populations of Windermere, UK: population trends associated with 

eutrophication, climate change and increased abundance of roach (Rutilus 

rutilus).‟ Environmental Biology of Fishes, vol. 83, pp 25-35. 

Zalewski, M, Puchalski, W, Frankiewicz, P & Bis, B 1994, „Riparian ecotones and 

fish communities in rivers - intermediate complexity hypothesis‟. In 

Rehabilitation of Freshwater Fisheries (ed. I. G. Cowx), pp. 152-160. Fishing 

News Books, Oxford. 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

 75 

Chapter 3. Temporal variation in the growth rate of roach, dace and chub in the 

River Wensum 

 

Aspects of this chapter are published in the following paper: 

 

Beardsley, H & Britton, JR 2011, „Contribution of temperature and nutrient loading 

to growth rate variation of three cyprinid fishes in a lowland river‟. Journal of 

Aquatic Ecology, vol. 46, pp 143-152.  

 

3.1 Introduction 

 

Estimating fish growth in order to understand the processes and factors that influence 

them remain integral and fundamental components of fisheries biology (Bagenal & 

Tesch, 1978; Francis, 1990; Coggins & Pine, 2010). These data remain crucial in 

addressing the questions on basic ecological management of fisheries specifically 

and aquatic ecosystems more generally. Consequently, understanding temporal and 

spatial patterns of fish growth rates is important in developing knowledge on how 

fish interact with their environment, applying this knowledge to environmental 

problems and issues, and to models capable of predicting responses of fish growth to 

environmental change (Ricker, 1975; Campana, 2001; Coggins & Pine, 2010).  

 

In temperate river systems, the growth of cyprinid fishes, and their population 

dynamics generally, tend to be density-independent and determined largely by 

abiotic factors (e.g. Mills & Mann, 1985; Nunn et al., 2003, 2007; Britton et al., 

2004). For example, climatic effects are increasingly recognised as being important 
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in causing inter-annual variability in the production and abundance of fish in lowland 

rivers, with broad-scale climatic effects having strong underlying effects on the 

growth and recruitment of juvenile fishes (Grenouillet et al., 2001; Nunn et al., 

2003). Moreover, the relative importance of different abiotic factors on the growth 

and recruitment of riverine cyprinid fish populations varies spatially and temporally, 

suggesting that significant shifts in these variables will cause significant shifts in 

growth and recruitment rates (Nunn et al., 2003, 2007). The importance of 

understanding the role of temperature in determining fish growth rates is also 

reflected in the number of growth meta-analyses that use latitude as a surrogate of 

temperature in order to understand variability in species‟ growth rates over their 

distribution ranges. For this, studies have been completed on both native (e.g. 

Lappalainen et al., 2008) and introduced fishes (Cucherousset et al., 2009; Benejam 

et al., 2009; Britton et al., 2010a). In general, faster growth rates and earlier maturity 

tend to be coincident with habitats located at more southerly latitudes due to 

increased water temperatures that result in longer and warmer growth seasons (New 

et al., 1999; Lappalainen et al., 2008). 

 

Temperature is, however, only one factor affecting the growth of riverine cyprinid 

fishes, with water chemistry also a key determinant for some species (Persson, 1991; 

Schindler et al., 2000). The chemistry of a waterbody (including nutrient 

concentrations, dissolved oxygen levels, ammonia concentrations and pH) can play 

an important role in determining the productivity of the water and so regulate 

productivity in the fish populations. For example, even relatively pristine riverine 

habitats that suffer from periodic failures in dissolved oxygen levels, the biota would 

reflect this pressure through depressed populations of salmonid fishes and other 
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species requiring highly oxygenated waters. Fish communities would comprise of 

more tolerant and generalist species such as roach. The mid to upper reaches of the 

River Tas in Norfolk possess reduced populations of brown trout Salmo trutta 

despite suitable physical habitat, with abundant cyprinid species primarily due to 

such periodic failures in dissolved oxygen (Environment Agency, 2011).  

 

Following World War II, the requirement for the UK to become self-sufficient 

and increase food production led to the intensification of agricultural practises, 

including addition of fertilizers to support the production of higher yields. In lowland 

areas, such as East Anglia, impacts from such practises resulted in the deterioration 

of water quality through diffuse run-off containing elevated levels of nutrients 

including nitrates and phosphates (Croll & Hayes, 1988; Mainstone & Parr, 2002; 

Ulén et al., 2007). Allied with effluent discharges from sewage treatment works, the 

nutrient loadings of rivers increased sufficiently for the riverine fish communities to 

be dominated by pollution tolerant species such as roach and gudgeon (Cowx & 

Broughton, 1986).  

 

In recent years, legislative measures to reduce the input of organic and industrial 

effluents into watercourses has been introduced by many countries in Western 

Europe and has entailed that many rivers have undergone significant improvements 

in their biological and chemical water quality following long periods of decline (e.g. 

Firth, 1996; Amisah & Cowx, 2000a,b). Moreover, many rivers have been further 

improved through decreasing the extent of their eutrophication by reducing nutrient 

loading in sewage effluents (Wade et al, 2002). For example, reductions of 

phosphates in sewage effluents can be achieved through phosphate stripping, 
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resulting in reduced concentrations being discharged (House et al., 1995; Neal et al., 

2002). This may be important given that eutrophication can have profound effects on 

fish communities and populations, with cyprinid fishes such as roach dominating 

communities in highly eutrophicated systems (Willemsen, 1980; Winfield, 1992). 

Thus, in considering the growth rates of cyprinid fish in lowland rivers, the 

respective roles of temperature and water chemistry (as nutrient loading) should be 

examined. 

 

The aim of this chapter is to identify the temporal growth patterns of the roach, 

chub and dace populations of the river between 1975 and 2006. Growth patterns 

were obtained using scale data collected from the 1986 to 2006 surveys. These will 

be tested against the shifts already outlined in the nutrient loading of the river since 

the implementation of the phosphate stripping on the two major sewage treatment 

works in the catchment (Section 2.3.1). In addition, growth patterns will be tested 

against annual flow rates and water temperature, enabling their respective effects to 

be also measured on growth and in relation to the changes in organic loading.  It is 

predicted that growth of fishes will be dependant on temperature and discharge (and, 

hence, growth is climatically driven), with years of higher temperatures and lower 

flow rates resulting in increased growth increments in the fishes.  Objectives were to 

(i) identify any temporal shifts in the growth rates of each of the species between 

1975 and 2006; (ii) identify the effects of the implementation of phosphate stripping 

in 1997 on the phosphate loading of the river in the pre and post stripping periods (cf. 

Section 2.3.1); and (iii) test the influence of phosphate loadings, temperature and 

river discharge on the temporal growth rate patterns of the fish between these two 

periods.  
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3.2 Materials and methods 

 

3.2.1 Study area 

 

As in Chapter 2 which detailed spatial and temporal perspectives on the EA fish 

population surveys, this chapter concentrates on growth analysis of fish captured 

during all surveys on the River Wensum from 1986 to 2006 (sites 1 to 18, Table 2.1, 

Figure 2.1), where channel dimensions ranged from 7 to 23 m in width, 0.5 to 3 m in 

depth (Table 2.1), with habitat comprising of riffle and pool reaches, with some 

lengths of deeper glides. Scale data obtained from the National Fish Laboratory 

archives was also used, providing additional information regarding growth rates of 

roach, dace and chub captured from the Wensum in 1983, 1989 and 1991.  

 

3.2.2 Scale collection, ageing and initial analysis 

 

Scales were available for analysis from data obtained during 1986, 1990, 1994, 1997, 

2003 and 2006 using electric fishing from boats (Section 2.2.2). Supplementary 

ageing data available from 1983, 1989 and 1991 where appropriate has been added to 

the dataset providing further information into the growth rates of Wensum roach, 

dace and chub. For example, roach captured in 1983 were aged up to 13 years old, 

thus corresponding to the year class of 1970. During sampling of each population, 

fish were captured, identified, measured (fork length, mm) and scale samples taken 

for ageing. At least three scales were removed from each fish from body area as 

described by Steinmetz & Müller (1991). In general, scales were taken from all 

individuals sampled. When large numbers of fish were sampled, however, scales 



 

 80 

were only collected from a sub-sample of 10 fish per 5-mm length increment per 

species.  These were then stored in a cool and dry scale archive room. For the 

purposes of this study, the scales were retrieved from their archive in 2009 and then 

aged using a projecting microscope. The scales were aged by the author in 

conjunction with Gareth Davies of the Environment Agency. An example of an aged 

scale is shown in Figure 3.1. Following ageing of scales, they were measured to 

allow lengths at age to be derived by back-calculation using the scale proportional 

method (Equation 3.1) with the underlying assumption that growth of the scales is in 

direct proportion to the growth of the fish (Francis, 1990):  

 

n = (Cr/Tr) x L    (Equation 3.1) 

 

where    n =  Length of fish at age 

Cr =  Radius of the scale to annual check (n),  

Tr =  Total radius 

L  =  Length of the fish.  

 

To analyse the temporal growth rates of the fish by species, the initial step was to 

plot the back-calculated length at the last annulus of each fish (due to their sampling 

in their growth season) against its age on a scatter plot to identify the extent of the 

variability in the lengths at age across the study period. The relationship between 

these back-calculated lengths and ages were then determined using a quadratic 

model, as length increments decreased with age. To enable the growth rates of the 

fish to be compared between surveys and over the 25 year period, the standardized 

residuals of these lengths at age were stored. For each species, these residuals were 
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compared between surveys using ANOVA with Tukeys post-hoc tests, and their 

means and 95 % confidence limits were determined and plotted. 

 

3.2.3 Influence of phosphate reductions, temperature and river flow on fish 

growth 

 

Data on the phosphate loading (as orthophosphate, mg l
-1

) were used as annual 

means from 1981. There was significant co-correlation between orthophosphate, total 

oxidised nitrate and biochemical oxygen demand (Section 2.3.1), hence the latter two 

parameters were not included in analyses. Differences in the orthophosphate 

concentration of the study reach before and after implementation of phosphate 

stripping was determined using ANOVA.  Water temperature data (WT) were 

available for only 756 days in the entire study period, rather than daily. 

Consequently, the relationship between air temperature (AT;Central England 

Temperature dataset; Meteorological Office 2009) and the water temperature was 

determined according to linear regression (R
2
 = 0.87; F1,754 = 879.2, P < 0.001) and 

the used to convert daily air temperature data into water temperature data via the 

regression equation (WT = AT  0.90 + 1.95; R
2
 = 0.87; F1,754 = 879.2, P < 0.001). 

These water temperature data were then used to determine the annual number of 

degree-days >12°C (Nunn et al. 2003), as this temperature is generally required for 

growth of temperate cyprinid fishes (Britton, 2007). Data on daily river flows were 

available from a monitoring station (established in 1969) within the study section and 

used to determine the annual numbers of flow days above the mean flow rate (Nunn 

et al. 2003). The hydrological values of Q10 (flow exceeded 10 % of the time) and 

Q90 (flow exceeded 90 % of the time) were also determined. Both air temperature 
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and flow data were also tested for differences between the pre- and post-stripping 

periods using ANOVA. 

 

These abiotic data from the pre- and post-phosphate stripping periods were then 

tested against data on the temporal growth patterns of the fish. To avoid statistical 

complications (e.g. auto-correlation, pseudo-replication) from using repeated 

measurements from individual fish in the same test (i.e. all growth increments gained 

from back-calculated lengths), the analysis used one growth increment per fish. The 

increment used was that produced between age 1 and 2 years, the rationale being 

that: (i) using length at age 1 as the increment may be impacted by the timing of 

adult spawning and multiple spawning events in chub (Bolland et al., 2007), causing 

variability in the duration of the growth season for 0 group fish between years that 

could not be accounted for by degree-days; and (ii) between age 1 and 2, roach tend 

to be sexually immature at this latitude (Lappalainen et al., 2008) and so energy 

resources for growth are used primarily for somatic growth, rather than gonad growth 

(in contrast to fish of age > 2 years).  Thus, the temporal growth pattern was 

determined by taking the back-calculated lengths at age 1 and 2 of each fish and 

determining the annual increment. The year in which this increment was produced 

(the „growth year‟) was also determined. For each species, the mean increments and 

standard deviation was calculated and the standardized residuals stored. Differences 

in the standardized residuals were determined between the pre- and post-stripping 

periods using ANOVA. The annual means per incremental age for the pre- and post-

phosphate stripping periods were then tested against the temperature and flow data 

using multiple regression. The dependent variable was the mean standardized 

residuals of the annual growth increments; the independent variables were degree-
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days > 12 
o
C, flow days above the mean and mean annual orthophosphate 

concentration. The effects of the independent variables on the growth of the species 

were compared using their standardized beta coefficients () and their significance; 

those variables with the largest  values made the strongest singular contribution to 

explaining the dependent variable when all the other model variables were 

controlled. 

 

Statistical tests were completed in SPSS v16.0 and 17.0, testing for normality was 

completed prior to using parametric tests, ANOVA tests were used only when 

Levene‟s test indicated equal variances between the groups (indicated by P > 0.05), 

and error bars represent 95 % confidence limits unless stated otherwise. 

 

3.3 Results  

 

3.3.1 Initial growth analyses 

 

In the scale ageing data analysed from 1983 and 2006, roach were aged up to age 13 

(n = 592), dace to age 10 (n = 502) and chub to age 18 years (n = 1095). Back-

calculated length at age plots revealed temporal changes in fish growth over the 

study period for roach, dace and chub, with a decline in length at age for roach 

caught during the most recent surveys in 2003 and 2006 (Figure 3.2). These age-

length relationships according to the quadratic model were significant (roach: R² = 

0.89, F2,558 = 2162.1, P < 0.01; dace: R² = 0.94, F2,472 = 3901.4, P < 0.01; chub: R² = 

0.95, F2,1090 = 7797.7, P < 0.01).  
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Comparison between the surveys of the mean standardized residuals of back-

calculated length at the last annulus revealed some significant differences between 

surveys. In this analysis, due to generally low numbers of roach above 8, dace above 

age 5, and chub above age 14 years, and their reducing annual growth increments by 

age (almost negligible in some cases), then data from fish of these ages have been 

omitted from the quadratic model, which was run subsequently with the standardized 

residuals stored. In total, they comprised < 10 % of the sample sizes. Comparison 

between the surveys of the mean standardized residuals of back-calculated length at 

the last annulus revealed some significant differences between surveys. For roach, 

length at age was significantly depressed in surveys completed in 2003 and 2006 

compared with those completed between 1983 and 1994 (Figure 3.3a). For dace and 

chub, whilst some significant differences in lengths at age were apparent between 

surveys, mean values in 2003 and 2006 were similar to those from the 1983 survey 

(Figure 3.3b,c and Figure 3.4 a-c). 

 

3.3.2 Influence of phosphate loading, temperature and river flow on fish growth 

 

In the period before phosphate stripping (1981 to 1996), the mean annual phosphate 

concentration in the study reach was 0.47 ± 0.15 mg lˉ¹ (range 0.31 to 0.72 mg 1ˉ¹) 

and after stripping had been implemented the period 1997 to 2008 it reduced to 0.19 

± 0.14 mg 1ˉ¹ (range of 0.07 to 0.45 mg 1ˉ¹). This difference between the two periods 

was found to be highly significant (F1,26 = 40.40, P < 0.01). Between the same 

periods, differences were not significant for degree days > 12°C (F1,26 = 2.18, P > 

0.055) and flow days above mean rate (F1,26 = 2.53, P > 0.05). There was also no 

relationship between orthophosphate and degree-days (R² = 0.07, F1,26 = 0.87, P > 
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0.05) and orthophosphate and flow days (R² = 0.04, F1,26  = 0.48, P > 0.05) in the 

period 1981 to 2008. 

 

The mean daily flow of the study reach across this period was 2.77 ± 2.10 mˉ³sˉ¹, 

Q90 was 1.09 mˉ³sˉ¹ and Q10 was 5.11 mˉ³sˉ¹. In the months between June and 

October (i.e. the approximate fish growth season), the mean flow was only 1.24 ± 

0.27 mˉ³sˉ¹, with only 18 days where Q10 was exceeded between 1981 and 2008. As 

the majority of high flow events occurred in the months of November to March, i.e. 

outside of the fish growth season, with little flow variability within the fish growth 

season between 1981 and 2008 (ANOVA, F1,26 = 0.78, P > 0.05), then the influence 

of flow on fish growth rates was not considered further.  

 

The temporal pattern of growth increment production between age 1 and 2 were 

then tested for all species versus the abiotic data (except flow). For roach, growth 

increments were significantly larger in the pre-stripping period than post stripping 

(F1,490 = 77.61, P < 0.01; Fig 3.5a). In the pre-stripping period, degree-days >12°C 

had a significant influence on the roach growth increments, with warmer years 

producing higher increments (β = 0.75, P < 0.05), but with no relationship of 

increment production with phosphate in this period (β = -0.13, P > 0.05). However, 

in the post stripping period the relationship between temperature and growth was lost 

(β = 0.33, P > 0.23), with the phosphate loading now being significantly related to 

increment production (β = 0.78, P < 0.05). For dace, there was no difference in their 

growth increments between the pre and post stripping periods (Figure 3.5b). The 

growth increments of chub were significantly faster in the pre-stripping phase 
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compared with post stripping (F1,665 = 44.01, P < 0.01; Figure 3.5c), although this 

pattern was not significantly associated with either phosphate or temperature.   
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Figure 3.1 Scale image of a 101 mm River Wensum roach, age 1+ years, where the 

white circle denotes the 1
st
 annulus. 
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Figure 3.2. Von-Bertalanffy growth curves of (a) Roach, (b) Dace and (c) Chub from 

the River Wensum, sampled between 1983 and 2006. 
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Figure 3.3. Fork length at age (back-calculated to last annulus) of (a) Roach, (b) 

Dace and (c) Chub from the River Wensum, sampled between 1983 and 2006. Note: 

Extended x axis in (c) to reflect older ages reached by chub. 
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Figure 3.4. Mean standardised residuals of length at age (back-calculated to last 

annulus) for (a) Roach, (b) Dace and (c) Chub from the River Wensum in surveys 

completed between 1983 and 2006. Note that in the 1997 survey, data were available 

for chub only. Error bars denote 95 % confidence limits. 
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Figure 3.5. Mean standardised residuals of annual length increments between age 1 

and 2 years in the pre (○) and post (●) phosphate stripping periods for (a) Roach, (b) 

Dace and (c) Chub. Error bars = 95% confidence limits, and where ∆ = mean annual 

phosphate concentration, for which 95 % confidence have been omitted for clarity. 
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3.4 Discussion 

 

There have been numerous studies in both lacustrine and lotic systems on the growth 

rates of roach (e.g. Hellawell, 1972; Mann, 1973; Horppila, 1994; Volta & Jepsen, 

2008), dace (e.g. Mann, 1974; Weatherley, 1987) and chub (e.g. Cragg-Hine & 

Jones, 1969; Mann, 1976; Koç et al., 2007). However, only a few of these studies 

provide analysis on their long-term growth patterns in a single location, despite 

temporal studies into other aspects of their life history, such as timing of 

reproduction, providing key insights into changes that may be related to, for 

example, increased temperatures due to climate change (e.g. Nŏges & Järvet, 2005; 

Gillet & Quétin, 2006). Here, it was demonstrated that there was substantial variation 

in the growth of these fish over a 30 year period that were able to be at least partially 

explained by changes in abiotic parameters. For roach, there were significant 

temporal changes that were at least partly explained by shifts in abiotic parameters. 

For much of the period, temperature appeared to be the key determinant of roach 

growth (as per the prediction, Section 3.1) but more recently, the reduction in 

orthophosphate loading in the river following phosphate stripping (so indicating a 

shift to less eutrophic conditions) appeared to have a major slowing effect on the 

growth rates of roach. As anecdotal evidence strongly suggests the performance of 

the river‟s roach fishery (based on catch and release angling) has declined in recent 

years (Chapter 1), their growth rate decline may have inhibited individuals from 

attaining large sizes and so caused the decreased presence of specimen roach in 

angler catches.  

 



 

 93 

Whilst the role of river productivity in determining growth rates tends to be 

overlooked (especially in ages above 0), studies on lacustrine roach populations have 

found strong causal associations between biological productivity and roach growth 

rates. For example, Persson (1983) found slow roach growth rates when diet was 

mainly composed of detritus and algae due to a shortage of animal food. Cryer et al., 

(1986) found both juvenile and adult roach had depressed growth when their prey 

populations (primarily zooplankton) were depressed. In combination, this suggests 

that river productivity may actually be ecologically significant in determining roach 

growth rates and population dynamics, particularly in systems that have previously 

been subjected to high nutrient loadings that are now being significantly reduced. 

This also suggests that water quality improvements will result in a range of 

consequences for riverine fish communities, from shifts in the strength of inter-

specific interactions such as competition, through to more subtle changes, such as in 

the expression of life history traits. Further research into prey availability and 

stomach content analysis of 0 group roach in the River Wensum would be 

recommended.  

 

Other studies suggest that roach tend to dominate fish communities in eutrophic 

waters (e.g. Willemsen, 1980; Winfield, 1992; Kennedy, 1996; Lappalainen et al., 

2001), with this dominance being adversely impacted when water quality 

improvements occur (Cowx & Broughton, 1986), although information on their 

corresponding growth rates tend to be lacking.  Moreover, growth (and recruitment) 

studies of riverine roach populations have tended to focus on the role of density-

independent, abiotic factors (e.g. Mills & Mann 1985; Nunn et al. 2003, 2007; 
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Britton et al. 2004). Periods of elevated growth tend to be significantly associated 

with the direct and/or indirect effects of increased temperature (Mills & Mann 1985).  

 

That temperature was able to explain much of the variation in the growth of all 

species in the more eutrophic, pre-phosphate stripping period is consistent with other 

studies that demonstrate significant relationships between faster growth rates and 

increased temperatures (Kitchell et al., 1977; Magnuson et al., 1979). For roach, this 

relationship is apparent at both large spatial scales, such as over their biogeographic 

distribution where the relationship is non-linear (Lappalainen et al., 2008), and 

within individual rivers, where the growth of juvenile fish is significantly correlated 

to water temperatures, resulting in annual variability that impacts recruitment 

patterns (Nunn et al., 2003, 2007; Britton et al., 2004).  

 

Although decreases in growth rate early in life is usually associated with an 

increased lifespan (Metcalfe & Monaghan, 2003) and a corresponding ability to 

attain larger sizes than fast growing fish (Britton, 2007), this was not apparent within 

the dataset. Whilst it was beyond the scope of this study to also determine whether 

the other traits of the roach population, such as survivorship, age at maturity and 

fecundity, were also impacted by reduced orthophosphate levels, this may be 

considered likely given these traits are more closely linked to size than age 

(Kirkpatrick, 1984). Thus, it is suggested that this shift to less eutrophic conditions in 

the river was likely to have had a profound effect on their life history traits, with not 

only slower growth but also later maturity and reduced fecundity at age.  
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For dace, although some significant differences in lengths at age were apparent 

between surveys, mean values in 2006 were similar to those from the 1983 scale 

ageing data. That growth rates of dace in the pre and post phosphate stripping periods 

was not significantly different may be a reflection of prey choice, being mainly 

carnivorous in both juvenile and adult stages (Weatherley, 1987).  

    

When compared with roach and dace, the growth of chub appeared to be less 

variable and with the exception of temperature in the pre-phosphate stripping period, 

did not show any significant relationships with the abiotic parameters. This may be 

partially explained by their multiple spawning strategies in riverine habitats (Nunn et 

al., 2002; Hladik & Kubecka, 2003; Fredrich et al., 2003) which have been detected 

in the River Wensum (Bolland et al., 2007). The multiple spawning strategy is also 

the most logical explanation for the higher than expected back-calculated length at 

age 1 ranging between 60 and 80mm (Fig. 3.1). In this instance it is likely that the 

first annulus has been missed during the ageing process. This reproductive trait is 

selected as it confers advantages through reduced spawning stress, reduced 

competition for spawning grounds, reduced spawning mortality, increased longevity 

and elevated fecundity (Mann, 1976; Karlsen et al., 1995). However, as it results in 

an extended spawning period, larvae may emerge as early as June and as late as 

August of each year (Nunn et al., 2002). Thus, fish at the end of their first year of life 

show considerable variance in their lengths (irrespective of abiotic factors) which 

then has a significant influence on their subsequent growth over their lifetime. Fish 

of smaller lengths at age 1 producing smaller annual growth increments throughout 

life compared with the larger individuals in the cohort (Bolland et al., 2007). Thus, 

this reproductive strategy has important implications for the growth of chub over 
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their life span and may have inhibited further elucidation of how the abiotic factors 

influenced their growth. 

 

3.5 Conclusions 

 

In summary, the growth rates of these three cyprinid fish were revealed to be 

significantly variable over time, with much of this variability in roach able to be 

explained by environmental parameters, especially temperature, and in more recent 

years, by a shift to less eutrophic conditions. This roach growth suggests the 

anthropogenic pressure of organic enrichment (and reversal) was an important driver 

of change, with shifts in water quality potentially having important ecological 

consequences for fish populations that may then negatively impact aspects of fishery 

performance. 
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Chapter 4. Factors affecting the temporal variation in the recruitment rate of 

roach in the River Wensum 

 

This chapter is published in the following paper: 

Beardsley, H & Britton, JR 2012, „Recruitment success in a roach Rutilus rutilus 

population of a hydrologically stable chalk river: relative influences of 

temperature and flow‟. Ecology of Freshwater Fish. doi: 10.1111/j.1600-

0633.2011.00549.x 

 

4.1 Introduction 

 

Populations of cyprinid fishes in temperate lowland rivers tend to be dominated by 

small numbers of year classes that are over-represented in the population (Mills & 

Mann, 1985). These relatively strong year classes are important because they may 

comprise a substantial proportion of the population (Mills & Mann, 1985) and so, for 

example, contribute strongly to the spawning stock (Britton et al., 2004). Strong year 

classes tend to be produced when a range of biotic and abiotic factors combine to 

make conditions sufficiently favourable in the first year of life of the cohort to 

maximise larval and juvenile survival rates (Grenouillet et al., 2001; Nunn et al., 

2003). These factors appear strongly associated with weather, particularly those of 

temperature and rainfall (Mills & Mann, 1985; Britton et al., 2004; Nunn et al., 

2007).  

 

Summers that are relatively cool tend to produce 0 group cohorts that recruit 

weakly into the population, with the converse for warm summers (Mills & Mann, 
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1985; Britton et al., 2004). These patterns have also been related to the growth of 

fish in the year class during their first year of life, with strong recruitment positively 

correlating with the faster growth rates and larger body lengths of fish that occur in 

warmer summers (Nunn et al., 2007, 2010). River discharge has also been reported 

as important in regulating recruitment rates through causing increased mortality and 

displacement during episodes of elevated discharge (Nunn et al., 2007). Indeed, 

Nunn et al., (2003) argued that whilst temperature may determine potential 

recruitment strength, discharge determines the actual strength. However, these 

studies on cyprinid recruitment have tended to focus on relatively large rivers with 

high flow rates and variable discharge patterns, such as the Yorkshire Ouse, England 

(Nunn et al., 2003, 2007) and the River Rhône, France (Piffady et al., 2010).  

 

To date, studies of roach recruitment in rivers of less variable discharge, such as 

chalk rivers that have relatively stable hydrology, have received less recent attention, 

with few other studies other than those outlined by Mills & Mann (1985) on the 

River Frome, Dorset. Thus, temporal trends in recruitment and the factors affecting 

the recruitment processes of the roach population of the River Wensum are 

determined in this chapter. Through the scale analysis process fish were aged 

alongside their associated year class, with some individuals from the initial surveys 

corresponding to the 1970 year class. The objective of this chapter was to identify 

their long-term (1970 to 2006) recruitment pattern in relation to climatic factors, 

hydrology and growth in the first year of life. Scale ageing data from the Wensum in 

1983 possessed roach up to 13 years old from the 1970 year class, hence growth rates 

from 1970 to 2006 were available. It was predicted that years characterised by higher 

than average temperatures and lower than average flow rates produced 0 group fish 
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of relatively large sizes and resulted in relatively strong recruitment of the 0 group 

cohort. These cohorts would then be highly represented in subsequent population 

samples and have higher values of year class strength.  

 

4.2 Materials and Methods 

 

4.2.1 Study area 

This study was conducted on the same reach as Chapter 3 (sites 1 to 18, Table 2.1, 

Figure 2.1), where channel dimensions ranged from 7 to 25 m in width and 0.5 to 3 

m in depth (Table 2.1). Data was available from surveys conducted in 1986, 1990, 

1994, 1997, 2003, 2006 and 2008 (Section 2.2.1). Scale data obtained from the 

National Fish Laboratory archives was also used, providing additional information 

regarding growth rates of roach captured from the Wensum in 1983, 1989 and 1991. 

Note the recruitment rates of dace were not determined due to issues of a lack of year 

classes represented in some later surveys than impacted analysis, and chub were not 

determined as samples tended to be dominated mainly by fish over the age of 5 years 

old, with relatively low number of juvenile fish that made determination of an 

accurate mortality rate difficult (Equation 4.1). 

 

4.2.2 Calculation of Year Class Strength 

As detailed in Chapter 3.2.2 the data used in this chapter were taken from the scales 

taken from each fish during the fish surveys that were removed from their archive 

and aged in 2009 on a projecting microscope. The data used in this chapter from the 

process was the estimated age of each fish in each survey as it enabled the year class 

of the fish to be recorded, the number of fish in each age and year class and the 
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measured distance to the first annulus and the scale radius to provide the back-

calculated length at age 1 to be determined (Section 3.2.1; Francis, 1990). Variation 

in recruitment between 1970 and 2006 was then able to be estimated using the year 

class strength (YCS) method of Cowx & Frear (2004). This method has the 

capability of showing the dominance of certain year classes in the population 

structure and  is determined by back-calculating the number of fish (N0) that would 

have been recruited to the population at time t0 (Cowx & Frear, 2004), assuming 

constant mortality throughout life (Equation 4.1).  Although mortality is known to be 

higher in the juvenile life stages, this was irrelevant for this procedure because a 

comparative index of YCS was generated based on mortality in >1 year old fish: 

 

N0 = NtexpZt   (Equation 4.1) 

 

where Z = Total mortality rate 

N0 = Numbers in starting population 

Nt = Numbers at time t 

t = time 

 

Year class strength was then calculated as the number of fish recruited divided by 

the mean number recruited from all year classes, multiplied by 100. The YCS values 

for each year class per sample were then expressed as standardized residuals, where 

the residual was calculated as the difference between the YCS value for that year 

class and the mean YCS for the sample. Where a year class was present in two 

surveys, the mean YCS standardised residual for each year class was determined. 
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Mean values above zero thus represented strong recruitment, values below zero 

represented weaker recruitment. 

 

Once the mean YCS per year class had been determined, the influence of the 

abiotic variables on YCS was tested. The relationship between YCS and temperature 

was tested by using estimates of water temperature. Water temperature data (as 

degree-days > 12ºC) were determined as described in Section 3.2.3. The influence of 

river flow on YCS was tested by obtaining daily flow data within the study reach 

(Section 3.2.3) and constructing the flow duration curve, and determining the annual 

number of flow-days above the mean annual flow (Nunn et al., 2003) and coefficient 

of variation of flow per year (CV/ standard deviation/ mean flow).  

 

The final test was to test YCS against the mean back-calculated length at age 1 

(Section 3.2.1) to identify whether growth in the first year of life had a significant 

influence on recruitment success.  Statistical tests were completed in SPSS v16.0 and 

17.0, testing for normality was completed prior to using parametric tests, ANOVA 

tests were used only when Levene‟s test indicated equal variances between the 

groups (indicated by P > 0.05), and error bars represent 95 % confidence limits 

unless stated otherwise. 

 

4.3 Results 

 

The YCS output revealed the long-term recruitment pattern of roach in the River 

Wensum study area (Section 3.2.1; Figure 2.1) was short periods of strong 

recruitment, generally two or three consecutive years, interspersed by several years 
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of poorer recruitment (Figure 4.1). The relationship between degree-days >12 
o
C and 

year class strength was then also positive and significant (linear regression: R² = 

0.36, F1,33 = 10.97, P < 0.01; Figure 4.2).The flow duration curve revealed a 

relatively stable hydrological regime with a mean daily flow of 2.772.10 m
-3

s
-1

 

(Figure 4.3); comparison with the duration curve for the Yorkshire Ouse of Nunn et 

al., (2007) reveals considerable differences, with flows in the Ouse exceeding 10 m
-

3
s

-1
 for approximately 80 % of the time, compared with 5 % for the Wensum. The 

association between the number of flow days above the annual mean flow and YCS 

was not significant (linear regression: R² = 0.01, F1,33 = 0.01, P > 0.05, Figure 4.4). 

There was also no significance between flow CV and YCS (linear regression: R² = 

0.02, F1,33 = 0.72, P > 0.05). As temperature and river flow may be closely related for 

a given year due to their association with weather, multiple linear regression then 

tested YCS against both degree-days >12 
o
C and annual flow days above the mean.  

Degree-days >12 
o
C was the only significant variable in the model (R

2
 = 0.31, F2,32 = 

7.05, P = 0.03; degree-days: standardised β = 0.58, P = 0.01; flow-days: standardised 

β = 0.20, P = 0.22). This multiple regression model was then used to test YCS 

against mean monthly temperature and flow for June, July, August and September of 

each year. These revealed the models were only significant in July and August, with 

water temperature the only significant explanatory variable (Table 4.3). For each 

month, the relationship between water temperature and flow was not significant 

(linear regression, P > 0.05). 

 

The relationship between length at age 1 and YCS was then tested by using the 

back-calculated lengths at age 1 data. There was a significant relationship between 

age-at-capture and back-calculated length at age 1 (linear regression: R
2
 = 0.24; F1,558 
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= 66.99, P < 0.01), with smaller fish at age 1 tending to be longer-lived. Decreased 

levels of orthophosphate have also been shown to influence growth of roach at above 

age 1 in the river (Chapter 3). Thus, to control for the influence of both age at capture 

and orthophosphate in the relationship between length at age 1 and YCS, ANCOVA 

was used. This revealed a significant association between length at age 1 and year 

class strength, with mean lengths in strong year classes being significantly smaller 

(R² = 0.29, F1,33 = 11.39, P < 0.01; Figure 4.5). Both covariates were significant in 

the model (P < 0.05). The lengths at age 1 were also compared by grouping the data 

into weak (mean value below 0) and strong (mean value above 0) year classes and 

using ANCOVA outputs to test for differences between the groups using pair wise 

comparisons with Bonferroni adjustments for multiple comparisons. Mean-adjusted 

fish lengths from ANCOVA were then significantly smaller in strong year classes 

(mean adjusted difference = 2.53 ± 0.65 mm; P < 0.01).   
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Figure 4.1 Mean year class strengths of roach in the River Wensum between 1970 

and 2006. 
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Figure 4.2 Relationship of YCS with annual water temperature, expressed as degree-

days > 12 
o
C. 
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Figure 4.3 Flow duration curve of the River Wensum 1970 to 2004. 
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Figure 4.4 Relationship of YCS with annual flow, expressed as the number of flow 

days above the basal rate. 
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Figure 4.5 Relationship of mean-adjusted length at age 1 of the year classes with 

their YCS. Solid lines represent the significant relationship between the variables 

according to linear regression (P < 0.05). Horizontal dashed lines denote the position 

of zero on the Y-axis. 
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Table 4.1. Outputs of multiple regression models testing the effect of mean monthly 

temperature and mean river flow between June and September of each year on year 

class strength between 1970 and 2004. β = values of the standardised beta 

coefficient. 

 Overall regression model Mean water               

temperature (
o
C) 

Mean flow (m
3
s

-1
) 

 R
2
 F2,32 P β P β P 

June 0.10 1.95 > 0.05 0.30 > 0.05 0.21 > 0.05 

July 0.24 5.05    0.01 0.51 < 0.01 0.26 > 0.05 

August 0.42 11.33 < 0.01 0.66 < 0.01 0.11 > 0.05 

September 0.02 0.27 > 0.05 0.12 > 0.05 0.07 > 0.05 
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4.4 Discussion 

 

Long-term population data from the adult roach population revealed years of strong 

recruitment were infrequent and were related to years of higher temperatures. That 

river discharge had no apparent influence on recruitment success is in contrast to 

most studies that suggest periods of elevated discharge in critical periods can have 

sufficient deleterious effects on 0 group fish abundance to result in weaker 

recruitment (Grenouillet et al., 2001; Nunn et al., 2003, 2007; 2010). The lack of 

relationship between discharge and recruitment in the River Wensum was likely to 

be connected to its relatively stable hydrology, as the difference between the Q10 

and Q90 flows was only 4.2 m
-3

s
-1

 and the maximum flow recorded over a 35 year 

period was only 31.40 m
-3

s
-1

. By contrast, Nunn et al. (2003, 2007) demonstrated 

that the Yorkshire Ouse, a river where periods of high flow have negative 

consequences for cyprinid recruitment, has a discharge rate ranging between 3 and 

300  m
-3

s
-1

, with Johnson et al., (2009) revealing a 38-fold difference between the Q5 

and Q95 flows of the river. Thus, the highly variable hydrological regime has 

substantial effects on the survival of the 0 group cohorts (Nunn et al., 2003). These 

findings are also corroborated by other studies that demonstrate hydrological 

variables play a key role in the recruitment of cyprinid fishes in lotic systems (e.g. 

Cattaneo et al., 2001; Konecna et al., 2009; Olden & Naimen, 2010; Piffady et al., 

2010) and even lentic systems (Kahl et al., 2008). Thus, the relatively stable 

hydrology of the River Wensum that is provided through its chalk geology may 

provide its 0 group roach cohorts with an apparent buffer from the deleterious effects 

of large, relatively rapid increases in discharge that are observed in other temperate 

rivers.  
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The only significant abiotic variable on the recruitment strength of the roach 

cohorts in this study was temperature. Whilst this is a common finding in cyprinid 

recruitment studies, this tends to correspond with the increased growth of fish within 

the 0 group cohort that promotes their survival and subsequent recruitment into the 

adult population (Mills & Mann, 1985; Nunn et al., 2003; 2007). Yet, in this study, 

there was a negative relationship between mean back-calculated length at age 1 and 

recruitment strength, even when the effects of the age at capture of the fish had been 

accounted for in the analysis. This negative correlation, whilst being counter-

intuitive, may have resulted from the higher 0 group fish densities - that would be 

apparent in years that produce strong year classes - resulting in increased competition 

within the cohort as it may be that their habitat is limited (Chapter 5). Irrespective, 

this suggests fish length at the end of the first growth season was not an important 

determinant of the proportion of the 0 group fish that successfully over-wintered, 

presumably because of the negligible effect of flow that has been already outlined. 

 

4.5 Conclusion 

 

In conclusion, the factors determining the recruitment pattern of roach in the River 

Wensum was primarily temperature dependent, with years of warmer temperatures 

resulting in stronger recruitment. Fish length at age 1 and aspects of river flow were 

not, however, important determinants of recruitment success. Thus, factors affecting 

the recruitment success of roach in temperate lowland rivers appear to be context 

dependent, with variation in patterns between rivers being determined by climatic 

factors and their specific interactions of river geology, hydrology and biology.  
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Chapter 5. Interactions of 0 group roach with the littoral habitat of the River 

Wensum and the effects of river management 

 

5.1 Introduction 

 

It was established in Chapter 4 that the recruitment of roach into the adult population 

was environmentally determined, with years of strong recruitment having a high 

dependency on water temperature. Strong recruitment is dependent upon the number 

of 0 group fish surviving their first year of life, with critical periods affecting their 

mortality rate and so the number of surviving fish (Nunn et al., 2003; 2007a). Whilst 

no relationship was detected between flow and year class strength (Chapter 4), the 

role of physical habitat may still be a limiting feature for YoY fishes in the river. 

Indeed, environmental conditions, such as river discharge rates and macrophyte 

cover may still be important in determining the amount of available habitat for the 0 

group cohort (Souchon, 1994; Lamouroux et al., 1999). Habitat for these life stages 

tend to be areas of slack water that provide areas of refuge from predation, even for 

rheophilic species like European barbel that only tend to seek faster water flows once 

body lengths above 50 mm are achieved (Britton et al., 2011).  Even in the River 

Wensum, it may still be the case that brief episodes of elevated discharge may 

increase mortality and displacement in some years, even though this could not 

necessarily be detected within the adult fish data in Chapter 4. Indeed, critical 

periods such as this are common in the early life of the cohort when the larval stages 

have low swimming abilities (Catteneo et al. 2001; Grenouillet et al., 2001; Nunn et 

al., 2003, 2007a; Piffady et al., 2010). Moreover, the ability to differentiate between 

the effects of elevated discharge in the recruitment process may also be difficult to 
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separate from its effect on water temperature, given that this will be reduced during 

inclement weather in the early summer (Nunn et al., 2003).  

 

The relationship between the 0 group fish cohorts and their available habitat is 

important in the context of not only environmental conditions and river discharge but 

also river management (Section 1.3.3). For example, long-term flood management 

methods tend to involve channel straightening that has the general effect of reducing 

the area of favourable larval and juvenile habitat in the littoral areas, with this often 

compensated by increasing the availability of connected off-channel refuges (Nunn 

et al., 2007b, 2010; Janac et al., 2010). In some rivers, excessive macrophyte growth 

in the main channel elevates flood risk and so weed cutting programmes are 

executed, despite their usefulness as a source of refugia for 0 group fish (Jurajda, 

1995; Copp, 1997). For example, a study on the Great River Ouse in Eastern England 

showed that weed cutting had a substantial consequence for the river biota generally 

as well as the 0 group fish specifically (Garner et al., 1996). Prior to weed-cutting, a 

significant relationship between 0 group fish, macrophyte cover and zooplankton 

density was found, with elevated densities of zooplankton and fish in the macrophyte 

zone.  The removal of much of this macrophyte cover through weed cutting resulted 

in a rapid decline in the mean densities of zooplankton present as a result of 

increased washout that was accompanied by increased 0 group fish displacement, 

predation and starvation. This resulted in reduced growth rates in the fish as their diet 

shifted from zooplankton to the less nutritious detrital aufwuchs (Garner et al., 

1996). Other studies have examined the diet of 0 group roach and have all concluded 

that variations in zooplankton prey abundance is found to influence the initial growth 

rates of roach larvae, with shifts from small invertebrates to one dominated by 
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detrital aufwuchs, found to offer minimal nutritional value and is of poor digestibility 

(Persson, 1983; Garner et al., 1996; Mann & Bass, 1997 & Nunn et al., 2007b). 

Thus, river management schemes, such as those that reduce flood risk through 

channel straightening and weed removal may be a significant factor of the 0 group 

fish survival rates and so also upon the recruitment success of the cohort.  

 

Consequently, the aim of this chapter is to build on the recruitment data from the 

adult roach produced in Chapter 4 by looking at the 0 group fish population of the 

River Wensum in relation to habitat and river management strategies. Objectives 

were to (i) determine the important micro-habitat variables that determine the 

presence and abundance of 0 group roach in the littoral zone; and (ii) determine the 

effect of weed cutting (as a river management exercise) and its associated 

disturbance on the distribution and abundance of the 0 group roach.  

 

5.2 Materials and methods 

 

5.2.1 Study area 

 

The study was carried out at five sites on the River Wensum, within a 40 km stretch 

between Bintree (52°46‟57.05”N, 0°57‟37.94”E) and Hellesdon (52°38‟25.49”N, 

1°14‟58.03”E) where the rivers dimensions vary from 10 to 25m in width and 0.5 to 

3m in depth (Table 5.1; Fig. 5.1). Unsympathetic river management schemes in the 

last century have resulted in changes in channel form and function throughout the 

watercourse via; straightening, dredging, loss of backwaters causing reduced lateral 
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connectivity between the river and its floodplain, and regular removal of in-stream 

habitat such as woody debris and macrophyte control.  

 

Table 5.1. Location and frequency of River Wensum point abundance electrofishing 

surveys, 2007 to 2008 with X denoting survey conducted. The site number refers to 

those on Figure 2.1. 

 

 2007 2008 

Jul 

 

Aug 
 

Sept Oct Nov Jul Aug Sept Oct Nov 

6 U/S Bintree 

Mill 
 

X 

 

X 

 

X 

 

X 

 

X 

 

X 

 

X 

 

X 

 

X 

 

X 
9 Swanton 

Morley 
X X X X X X X X X X 

11 Lyng Pits 

 
X X X X X X X X X X 

12 U/S 

Lenwade 

Mill 

 

X 

 

X 

 

X 

 

X 

 

X 

 

X 

 

X 

 

X 

 

X 

 

X 

18 Hellesdon 

Rd (Albert‟s) 
 

X 

 

X 

 

X 

 

X 

 

X 

 

X 

 

X 

 

 

X 

 

X 

 

X 
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5.2.2 Juvenile fish sampling and data analysis 

 

Point abundance electric fishing was used to assess the relationship between 0 group 

fish and littoral habitat variables. This method was used in preference to micromesh 

seine netting due to the lack of littoral areas suitable for seine netting arising from 

channelization (cf. Cowx et al., 2001). For example, there were few suitable 

backwaters and shallow bays present for sampling. To optimise the opportunity to 

representatively capture the 0 group fish population at each point, the electric fishing 

gear was specifically adapted to catching these fish using the method of Copp & 

Garner (1995). This covered the use of a 10cm diameter anode ring and a 20 metre 

long cathode to reduce energy loss from the area.  A Honda EU 10i, 1.0 KW 

electrofishing generator was used with an Electrocatch control box, producing 

approximately 0.5 to 1.0 amps of Pulsed Direct Current at 50 Hz. This enabled an 

effective fishing area around the anode of approximate radius 0.5 m. The surveys 

were generally conducted monthly from July to November between the years of 2007 

and 2008 and comprised the fishing in each location of 60 random points per site, as 

in the study by Garner (1997) it was suggested that to produce reliable estimates, a 

minimum of 50 points is required. Sampling took place in the littoral areas of the 

river as these habitats tend to be favoured by 0 group fish (Copp & Garner 1995; 

Pilcher & Copp, 1997; Welcome & Cowx, 1998; Copp 2010). Two additional point 

abundance samples also took place in August 2009 prior and subsequent to weed-

cutting operations. Access issues meant these surveys were restricted to being 

completed in daylight hours only, so diel patterns were unable to be determined 

(Copp, 2010). Each point was fished for a standard period of 10 seconds and all fish 

immobilized within the electric field were captured with a hand net. These fish were 
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then identified (species, larval stage, juvenile) and measured (nearest mm). The 

environmental variables of depth (m), flow (mˉ³sˉ¹), estimated macrophyte cover 

(%), substrate and location (GPS) were then recorded. 

 

5.2.3 Effect of weed cutting on juvenile fish 

 

During the juvenile fish sampling surveys of 2007 and 2008 (Table 5.1) a stark 

contrast in presence and abundance of juvenile fish prior to and subsequently after 

annual weed-cutting practice took place, was observed. Consequently, to test the 

effect of weed-cutting on the juvenile fish populations of the river in August 2009, 

two separate point abundance surveys were conducted in a 1.6 km reach of the study 

area at Lenwade (52°43‟10.47”N, 1°05‟43.11”E), where the dimensions of the river 

ranged from 15 to 20m in width and 0.5 to 3m in depth, in what is an impounded 

stretch of the river (Site 12; Table 5.1, Fig. 5.1). The first survey was conducted 24 

hours prior to a weed-cutting operation and the second was conducted 24 hours 

following that weed-cutting operation. Additional surveys had been intended to take 

place every week for one month following weed-cutting operations, however 

following organisational change within the Environment Agency this was not 

possible and only one survey 24 hours after weed-cutting took place. In both surveys, 

120 point samples were taken due to the reach length of weed-cut being 

approximately twice the length of a typical point abundance survey for the river (1.6 

km stretch). Data for each point was also recorded, as outlined above.   

 

 

 



 

 129 

5.2.4 Data analysis 

 

The data from the point abundance surveys were analysed for the habitat variables 

affecting roach presence and abundance during daylight hours. For analysis of their 

presence/absence, logistic regression was used to test for a relationship between the 

probability of capturing at least one roach in a point sample, measured as the binary 

yes (detection) or no (non-detection), against the depth, flow and macrophyte cover 

of those points. This revealed the significant variables contributing to the 

determining of their presence in a point and enabled the probability of capture (P) to 

be determined from P = e
(a+bF+cM)

 / 1+ e
(a+bF+cM)

 (Equation 1; Britton et al; 2011), 

where a, b and c were the regression coefficients of the habitat variables flow (F) and 

cover (M) (cf. Results). From this model, the habitat variables required to have a high 

probability of capturing at least one roach from a point were determined and 

displayed on a contour plot. In the points where roach were present, multiple 

regression analysis was then used to identify the variables that explained most of the 

variation in the model through looking at the standardized β values. For the point 

samples from the pre and post weed-cutting in 2009, changes in the habitat variables 

of the points were tested using ANOVA and Mann-Whitney U tests (depending on 

the distribution of the data) followed by testing of changes in the proportion of points 

with roach present and their abundance. All statistics were completed in SPSS v16.0. 

Parametric tests were used only after successfully testing for normality.  
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5.3 Results 

 

5.3.1 Overview of point sample data  

 

During the point abundance sampling for the 0 group component, a total of 10 fish 

species were encountered, with a typical survey of the river possessing around 5 

species (Table 5.2). At the majority of the survey sites, minnow Phoxinus phoxinus 

was the most abundant juvenile species present with other cyprinid species 

encountered infrequently. Roach were present in only 6.2 % of the 2163 points 

sampled. Other species occasionally encountered during sampling included 

stoneloach Barbatula barbatula, bullhead Cottus gobio, three spined-stickleback 

Gasteroseus aculeatus, gudgeon Gobio gobio, pike Esox lucius and perch Perca 

fluviatilis. Monthly length frequency distributions for roach, dace and minnow for 

the lower most survey site (No. 18) are included in Appendix 2. Given the amount a 

data collected, this site was chosen at random to display length-frequencies.  
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Table 5.2. Fish species present during point abundance surveys at the 5 sites 

surveyed during 2007 and 2008 on the River Wensum. X denotes confirmed 

presence of species at given site. Site numbers in brackets denote location in Table 

2.1 and Figure 2.1.  

 

Sites 

 

 

Fish 

species 

Bintree 

Mill 

 

(6) 

Swanton 

Morley  

 

(9) 

Lyng Pits 

 

 

(11) 

U/S 

Lenwade 

Mill  

(12) 

Hellesdon 

Rd 

 

(18) 

2007 2008 2007 2008 2007 2008 2007 2008 2007 2008 

Roach X X X X X X X X X X 

Dace   X X   X X X X 

Chub   X X X X X X X X 

Bullhead    X X       

Stoneloach    X X   X X   

3 Spined 

Stickleback  

X X   X X     

Minnow X X X X     X X 

Gudgeon    X X X X     

Perch         X X 

Pike X X         

 

 

 

5.3.2 Relationship of 0 group roach with littoral habitat features 

Across all of the point samples (n = 2163), roach were only caught in 133 points. The 

fish captured were generally above 25 mm and either larval stage 5 or the juvenile 

stage, with mean fish length generally increasing with sampling month (Appendix 2). 

There were significant differences in the environmental variables between the points 

in which 0 group roach were present and absent. Points with fish were deeper (mean 

1.07 vs. 0.99m; ANOVA F1,2163 = 6.20, P < 0.02), slower flowing (mean 0.03 vs. 
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0.06 m
3
 s

-1
; ANOVA F1,2163 = 21.56, P < 0.01) and had increased macrophyte cover 

(median 60 vs. 5 % Mann Whitney U test Z = -19.52, P < 0.01). As these 

relationships were independent of fish length (Regression, P > 0.05) and 

larval/juvenile stage (ANOVA, P > 0.05) then data from monthly samples were 

combined for the subsequent habitat-based analyses.  

 

The use of these point sample data in logistic regression revealed that both flow 

and macrophyte cover were significant variables in the model, but depth was not 

significant (Model 1, Table 5.3). Consequently, depth was omitted and the model 

was run again; flow (F in Equation 1) and macrophyte cover (M in Equation 1) 

remained significant in the model (Model 2, Table 5.3). These were then used in 

Equation 1 to give the probability of recording at least 0 group roach in a point 

sample according to flow and macrophyte cover. It revealed that the probability of a 

roach being present in a point was only above 0.80 (i.e. 80 %) when flow was below 

0.34 mˉ³sˉ¹ in conjunction with macrophyte cover being above 60 % (Fig. 5.2). 

Validation of the model through calculation of the probability of capture in the points 

where roach were actually present and absent revealed that the median probability in 

points where roach were captured was 0.86 compared to 0.01 where roach were not 

captured, with the difference being significant (Mann Whittney U test: Z=-18.79, P < 

0.01). Thus, the model was considered robust.  In the points where roach were 

present, multiple regression revealed that variation in their abundance was mainly 

explained by macrophyte cover, where points with increased cover had significantly 

increased abundance (Table 5.4). The variables of depth and flow were not 

significant variables in this model (Table 5.4). 
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5.3.3 Effect of weed cutting on the littoral habitat and presence and abundance 

of 0 group roach 

 

The effect of weed-cutting on the characteristics of the point samples was marked. 

Although there were no significant differences in the mean depth and flow of the 

points pre and post-cutting (ANOVA: depth F1,239 = 0.67, P > 0.05; flow F1,239 = 

0.14, P > 0.05), there was a significant reduction in macrophyte cover (pre-cut 

median: 60 %, post-cut: 30 %; Mann Whitney U test Z =-6.54, P < 0.01). In the 

point-samples prior to weed-cutting, 39 of 120 points had 0 group roach present 

(32.5 %), whereas this reduced to 21 of 120 points post cutting (17.4 %). In the 

points where they were present, their abundance was significantly higher in the pre-

cut samples compared with the post-cut samples (mean 3.61 ± 2.3 vs. 2.2 ± 0.9; 

ANOVA F1,58 = 6.79, P < 0.02).  



 

 

1
3

4
 

 

Figure 5.1. Site locations of the point abundance surveys on the River Wensum; numbers relate to Table 5.1. The area 

shaded in green shows the drainage area of the catchment. 
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Figure 5.2 Contour plot of predicted probability of capturing a 0 group roach 

according to the variables of flow and macrophyte cover, where colours represent: 

white P < 0.19; light grey: P = 0.20 to 0.39; medium grey: P = 0.40 to 0.59; dark 

grey: P = 0.60 to 0.79; black P = 0.80 - 0.99. 
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Table 5.3. Logistic regression coefficients and their statistical significance for the 

environmental variables of the point samples, where values in (2) were used in 

equation 1 to calculate the probability of capturing a 0 group roach at a point sample 

according to values of the variables. 

Model Variable Symbol in 

equation 1 

Coefficient Standard 

error 

P 

(1)  

Flow (F), depth 

and macrophyte 

cover (M). 

Constant n/a - 5.90 0.31 < 0.01 

Flow n/a -16.53 4.52 < 0.01 

Cover n/a    0.13 0.01 < 0.01 

Depth n/a    0.26 0.44 0.55 

(2)  

Flow (F) and 

macrophyte 

cover (M). 

Constant a - 5.65   0.45 < 0.01 

Flow b -15.82   4.31 < 0.01 

Cover c    0.13   0.01 < 0.01 

 

Table 5.4 Outputs of multiple regression analysis for the contribution of flow, depth 

and macrophyte cover to the number of 0 group roach sampled from points 

(excluding points where roach were absent).  

 

Overall model: R
2
 = 0.07; F3,129 = 3.25; p < 0.03 

Variable  (standardised) p 

Flow -0.096    0.28 

Depth   0.126    0.16 

Macrophyte cover  0.229 < 0.01 
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5.4 Discussion 

 

5.4.1. The importance of physical habitat for 0 group fish  

 

The survival and recruitment of 0 group fish through critical periods occurring 

during their early life stages have been suggested as the major determinants of 

recruitment strength (Mills & Mann, 1985; Garner et al., 1996; Nunn et al., 2007a, 

2010).  In the study of a regulated stretch of the River Great Ouse, Copp (1997) 

observed that the common place practice of weed-cutting for navigation and flood 

risk management purposes was detrimental to the survival and recruitment of young 

fish through removal of refuge from flow and predators and the associated food 

source. Following weed-cutting operations, a significant decrease in the frequency of 

samples in the main channel containing fish was observed suggesting their 

downstream displacement. In the River Wensum, to prevent the backing-up of water 

during episodes of high flows, removal of in-channel obstructions such as large 

woody debris has been a commonplace management activity by the Environment 

Agency and its predecessor organisations for many years. The importance of woody 

debris as habitat and refuge for small fish, and the impact of its removal 

demonstrated by Angermeier & Karr (1984) who found significant associations 

between the presence of woody debris and fish, with avoidance of areas lacking such 

habitat features.  

 

In the River Wensum, macrophyte cover was shown to be the most influential 

variable in determining both the probability of a 0 group roach being present during 

the daylight hours in a point sample and their abundance at a point. Thus, it may be 
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that in years of elevated temperatures, there is increased macrophyte cover available 

for 0 group roach enhancing their survival but reducing their growth through density 

dependant mechanisms such as increased competition for food (cf. Chapter 4). This, 

however, must remain speculative given that it was unable to be tested explicitly 

within the study. Moreover, it is acknowledged that a shortcoming in this aspect of 

the study is the lack of opportunity to determine the diel activity of the 0 group 

cohort; in darkness, an increased fish abundance and greater spatial dispersion may 

have been apparent and have been related to other habitat variables. For example, the 

study by Copp (2010), observed the shortcoming of the point abundance sampling 

method in daylight hours through inadequately representing benthic and nocturnal 

species, instead finding increased sample densities of 0 group fish during hours of 

darkness.  

  

The importance of macrophyte cover to the presence and abundance of the 0 

group roach cohorts over two successive years, and the deleterious effects of the 

weed-cutting that was observed, strongly suggests that recruitment rates in the river 

have been adversely impacted by unsympathetic weed cutting regimes. Given that 

the point sampling data already suggested that only a small proportion of the 

marginal areas of the river were suitable nursery habitat (low flow, high macrophyte 

cover), then any habitat disruption would be a concern from a recruitment 

perspective. Indeed, marginal macrophytes are known refuges from flow for 

phytoplankton, zooplankton and fish (Copp 1990; Mann & Bass 1997) and their 

removal through physical cutting for reducing flood risk is common practice in many 

lowland rivers in England (Frigburg, 2009). Despite the deleterious consequences for 

both invertebrate and 0 group fish populations, indiscriminate weed cutting that 
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leaves only small buffer areas remains common. It must however be acknowledged 

that within the scope of study only one point abundance electro fishing survey 

subsequent to weed-cutting operations was conducted with no further repeat surveys. 

This is a shortfall of the study as although weed-cutting was confirmed as deleterious 

to the presence and abundance of 0 group roach, it is not known if fish were 

displaced due to habitat disturbance or displacement through removal of habitat. 

Consequently, and following Garner et al. (1996), it is recommended that more 

experimental weed cutting trials are conducted in the River Wensum to identify how 

modified practices may reduce the risk of 0 group fish displacement and mortality, 

and enhance subsequent recruitment success.  

 

In order to maintain fish populations in modified and regulated river systems, 

suitable spawning and nursery habitat, and in- and off-river refuges are of vital 

importance (Mills & Mann, 1985; Jurajda, 1999; Nunn et al., 2007b). It is recognised 

that water bodies maintaining lateral connectivity with their floodplains enhance the 

successful recruitment of riverine fish populations through increased availability of 

food sources such as plankton that cannot persist in flowing conditions and refuge 

from high flows (Nunn et al., 2007b). The importance of suitable nursery habitat to 

the 0 group cohort was further highlighted in Copp (1997) where in the River Great 

Ouse the absence of side-channels and natural backwaters meant the only off-river 

refuges available were man-made marinas which were found to be heavily utilized 

by juvenile fishes.  However the limited size of the connection between the main 

river and such marinas compromised their use, as the young fish may be have been 

unable to find these during seasonal flooding events.  
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The point abundance surveys completed here suggested that suitable nursery 

habitat was limiting as only 6 % of sampling points in the littoral zone were occupied 

by juvenile roach (in daylight hours). Thus, this suggests the majority of habitat 

present within the littoral zone was inappropriate as nursery habitat. Section 4.3 

revealed that years of strong recruitment were associated with years of elevated 

temperature that were negatively correlated with mean lengths at age 1. Thus, this 

nursery habitat limitation may be causing more intense competition for food 

resources for the juvenile roach in the river and resulting in their depressed growth in 

years of high abundance and survival (and so subsequent recruitment). Further 

investigation into available food resources and competition are therefore necessary.  

 

5.5 Conclusion 

 

To conclude, this chapter revealed nursery habitat was limiting for juvenile roach in 

the river, with these habitats best described by their macrophyte cover. The river 

management scheme of weed cutting revealed a deleterious effect on juvenile roach. 

Although it could not be ascertained whether this was just a short-term impact, other 

studies suggest that longer term consequences are also apparent.   
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Chapter 6.  Discussion 

 

6.1 Overview   

 

6.1.1 Water quality 

 

“By the late 19
th

 Century water-borne diseases were rife and the beauty of the river 

(Wensum) destroyed” (Countryside Agency, 2006).   

 

The location of the River Wensum in Eastern England that provides a relatively rural 

catchment means that the water quality of the river has never experienced the type of 

industrial pollution experienced by rivers such as the Trent and Don (Amisah & 

Cowx 2000a,b). Nevertheless, it was noted in Chapter 2 that deterioration in the 

water quality of the Wensum had been evident, particularly in relation to the input of 

the nutrients phosphate and nitrate. The phosphate levels in the river only began to 

decrease in the 1990s as improvements to sewage treatment works, particularly 

phosphate stripping, resulted in significantly decreased inputs thereafter. This 

decrease in phosphate levels is a common and desirable effect of such improvements 

to sewage effluents (Jarvie et al. 2000; Wade et al. 2002).  

 

Improvements to the nitrate levels in the river have been more difficult to reduce, 

with much of this likely to result from diffuse pollution occurring via agricultural 

practises. Whilst some improvements have been apparent, nitrate levels remain 

elevated. Nevertheless, the river today is cleaner and less eutrophic when compared 
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to the 1960s, 70s and 80s having consequences on aspects of the fish community 

(Section 6.1.2). 

Monitoring of the status of the River Wensum now falls under the Water 

Framework Directive, 2000 (WFD). Within the WFD, there is the stipulation that all 

inland, estuarial and coastal waters must aim to achieve “good ecological status” by 

2015. More than 80 % of water bodies in England and Wales currently fail and are 

likely to still fail in 2015 to achieve this status, (Postnote, 2008).  The River Wensum 

is included in the 80 % of water bodies that will fail to meet this required status. 

There are three parts to the classification of a water body; ecological, chemical and 

hydro-morphological designation. Any status that is less than „good‟ is considered to 

be failing. Ecological classification takes into account the biological status of four 

key elements; diatoms, macrophytes, invertebrates and fish. Although much 

improved in recent years, the Wensum is currently failing for diatoms and fish, is 

designated as „heavily modified‟ (as such is only able to meet good ecological 

potential) and has a chemical failure for the presence of isoproturon. The reasons for 

failure of ecological status according to fish relates primarily to sites where the 

abundance of roach and dace were lower (and were occasionally zero) than the 

abundances predicted according to their environmental and water chemistry 

characteristics (Environment Agency, 2011a). The decline in dace populations of the 

river has already been detected in this thesis and the roach population has been noted 

as being influenced by a number of environmental factors that may be influencing 

their cyclic patterns of abundance (Section 6.1.2) 
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6.1.2. Adult fish populations 

 

A series of changes and shifts in the spatial and temporal relationships of the 

Wensum fish community have occurred between 1986 and 2009 (cf. Chapter 2) with 

fish abundances apparently responding to, for example, shifting environmental 

conditions. Most recent surveys suggest a significant decline in the presence and 

abundance of eel and dace, with chub increasingly present. Also noted was the 

significant increase in both density and biomass of pike in the river following 

phosphate stripping. Although not substantiated, it is possible that this occurrence is 

coincident with increased water clarity due to fewer nutrients entering the waterbody, 

thus facilitating their sight feeding predatory behaviour and ultimately, their fitness. 

Further analysis of water quality parameters such as suspended solids (mg lˉ¹) and 

chlorophyll a (µg lˉ¹) would be good indicators of temporal changes in turbidity. This 

could be examined alongside changes in the abundance and growth rates of perch 

and pike.    

 

Contrary to the views and anecdotal opinions of anglers, the electric fishing 

surveys suggested the population abundance of roach has not changed significantly 

between 1986 and 2009. Indeed, abundances in 2009 were similar to those of the 

1980s and early 1990s. There are similar instances of reported declines in angler 

catches not always being matched by patterns in the fish population or even the 

angler catch data (e.g. Cowx et al., 1986; Lyons et al., 2007). There were, however, 

two aspects that may have provided this perception of roach population decline: 
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(i) The climate-driven, cyclical nature of their recruitment success would have 

resulted in temporally variable roach abundance and as the abundance of roach in the 

angler catchable cohort (generally fish of > 120 mm) would have consequently 

changed over time then so would the angler catch rates. This cyclic pattern of 

recruitment in roach is common in temperate riverine cyprinid fish generally, 

although in other rivers, growth of the 0 group fish and episodes of high flows can 

have a stronger role in determining recruitment success (e.g. Grenouillet et al., 2001; 

Nunn et al., 2003, 2007).  

 

(ii) The somatic growth rates of roach temporally and significantly declined over the 

study period, with individuals now growing slower than in the 1970s, 80s and early 

90s. This slowing of growth would inhibit individuals growing to „specimen‟ sizes 

and given that the Wensum was previously famed for these roach, rather than for its 

roach population generally, then it may be the paucity of these fish that is being most 

noticed by anglers. The significant changes observed in roach growth suggests the 

anthropogenic pressure of organic enrichment (and reversal post 1996) were 

important drivers of change, with shifts in water quality potentially having important 

ecological consequences for fish populations that may then negatively impact aspects 

of fishery performance through inhibiting individuals from attaining their former 

specimen sizes.  

 

6.1.3 Juvenile fish populations and habitat 

 

Successful years of recruitment in the River Wensum were largely temperature 

driven (cf. Chapter 4), with warmer years resulting in stronger recruitment despite 
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the significantly smaller mean sizes of the recruits - a counter-intuitive outcome 

(Grenouillet et al., 2001; Nunn et al., 2003; 2007a).  This reduced growth in good 

recruitment years may be indicative of a lack of suitable littoral and nursery habitat 

for juvenile cohorts that resulted in a situation where a strong spawning year for 

roach resulted in higher competition for resources, decreasing their growth but not 

necessarily impacting their recruitment (density-dependent growth but density-

independent survival). To substantiate this theory further, stomach content analysis 

of the 0 group component in relation to fork length and aspects of physical habitat 

would be useful and may confirm the hypothesis that sub-optimal physical habitat is 

present in the Wensum for juvenile fish.   

 

The presence and abundance of the 0 group roach was significantly associated 

with areas of increased macrophyte cover and deeper, slow flowing water where the 

fish could take refuge from the main flow. This was found to be in accordance with 

aspects of Garner‟s (1996) study of the River Great Ouse in Cambridgeshire, Eastern 

England, that described the optimum habitat conditions for determining juvenile 

roach presence as 1m in depth, with a coarse substratum, negligible velocity and 

presence of floating and submerged broadleaved cover. That only 6 % of points 

throughout the 2-year point abundance sampling period had 0 group roach present in 

the Wensum suggests that nursery habitat may have been a limiting factor 

constraining the overall population. Furthermore, an experiment on current weed-

cutting practices within the river revealed a deleterious effect on the presence and 

abundance of 0 group roach through removal of macrophyte habitat, associated cover 

and food supply. Additional investigation is strongly recommended here to further 

the findings of weed-cutting activities and ascertain if the effect observed in this 
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study was caused through initial disturbance of weed-cutting or through removal of 

habitat and therefore displacement. Moreover, investigation into diel patterns of 

juvenile density within the Wensum would be valuable to compare distribution and 

abundance of juveniles in daylight hours (the focus of this study) to those of darkness 

(Copp, 2004).   

In order to maintain fish populations in modified and regulated river systems, 

suitable spawning and nursery habitat, and in- and off-river refuges, are of vital 

importance (Mills & Mann, 1985; Jurajda, 1999; Nunn et al., 2007a). It is recognised 

that water bodies maintaining lateral connectivity with their floodplains enhance the 

successful recruitment of riverine fish populations through increased availability of 

food sources such as plankton that cannot persist in flowing conditions and refuge 

from high flows (Nunn et al., 2007b). The importance of suitable nursery habitat to 

the 0 group component was further highlighted in Copp (1997) where in the River 

Great Ouse the absence of side-channels and natural backwaters meant the only off-

river refuges available were man-made marinas which were found to be heavily 

utilized by juvenile fishes.   

 

6.2 Management recommendations and implications 

 

This study has demonstrated that much of the issue relating to roach in the River 

Wensum may be explained by a combination of changes in the nutrient status of the 

river and natural fluctuations in aspects such as climatic factors. These have resulted 

in roach remaining relatively abundant in some reaches of the river - as numerous as 

the 1980s but also sometimes resulting in failure of good ecological status in the 

Water Framework Directive. These roach are now, however, generally slower 
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growing and less likely to reach angler „specimen‟ size (1 kg). For juvenile roach, 

habitat also appeared limiting, with few areas in the littoral zone of the river 

providing optimum areas for refugia and especially when in-stream macrophytes are 

cut. Consequently, the aim of this particular section is to identify how some of these 

aspects may be remedied within current river management practises and aspects such 

as the Water Framework Directive. 

 

6.2.1. Water Framework Directive legislation 

 

The effect that the shift to less eutrophic conditions following improving water 

quality has been well documented within this study. Although roach growth is 

reduced as a result, importantly now the river achieves the General Quality 

Assessment grade, although this has now been superseded by EU Water Framework 

Directive legislation for phosphate concentrations (Environment Agency, 2011b). 

Levels are set to decrease further still under Habitats Directive legislation for Special 

Areas of Conservation (SAC) rivers before 2015 (Riley, 2010). As such, any 

suggestions to increase phosphate inputs as a means to improve roach growth is not a 

desired or feasible management option. Sustainable management options to help 

improve roach populations would therefore be to improve, restore and create 

adequately sized and suitable areas for important life-stages of the roach (e.g. 

spawning, larval and juvenile stages, adult over-wintering).   

 

Physical modification to the River Wensum over the years, whether via 

straightening, removal of meanders or loss of backwaters, combined with insensitive 

river management practices such as dredging, macrophyte removal and removal of 
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woody debris, have been contributed to the relative lack of suitable habitat available 

for the 0 group roach. This in turn means that in years when environmental factors 

are favourable to recruitment success, this too is perturbed by increased intraspecific 

competition within the cohort for sufficient resources, highlighted by the smaller 

mean lengths of roach at age 1 present in stronger year classes. Should the 0 group 

component successfully recruit and survive into adulthood, recent growth per each 

annual increment is also perturbed compared to annual incremental growth obtained 

prior to phosphate stripping, due in part to reduced productivity from improved water 

quality and to lack of nutritional food supply able to persist in conditions within the 

main channel. The limited areas of lateral connectivity and minimal off-river refuges 

where appropriate food sources such as zooplankton populations can develop and 

persist within the water column, often means that fish utilize the abundant aufwuchs 

that have little nutritional value (Garner et al., 1996; Mann & Bass, 1997; Nunn et 

al., 2007b). In order to test the possibility of this occurrence within the River 

Wensum it is recommended that stomach content analysis of 0 group fish in relation 

to food availability in marginal areas is examined. Furthermore, it is recognised 

under WFD that the river is heavily modified and failing to meet good ecological 

potential, highlighted through the depressed observed densities of roach and dace. 

Improvements to the current failing fish element are unlikely to be achieved without 

channel form and function and issues first being addressed. 

 

6.2.2 Sustainable management options 

 

This study has highlighted the most significant factors responsible for recent survey 

catches and the status of the River Wensum roach population and the fishery it 
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supports being the complex interactions between abiotic and biotic factors that were 

exacerbated by limited suitable habitat for critical life stages. This limited habitat 

relates to the main river management activity in the catchment of flood defence 

operations. Ideally, any flood preventative works should be completed in a manner 

that provides flood protection but minimises the damage to the fish habitat. Past 

modifications are currently being addressed through the River Wensum Restoration 

Strategy to facilitate restoring the physical functioning of the river enabling it to 

sustain the wildlife and fisheries characteristic of a Norfolk chalk river (Environment 

Agency, 2008).  

The management recommendations that follow are designed to improve and 

create habitat within the river that is lacking at present with the overall aim of 

improving the overall abundance of the roach population which in turn will help 

rectify the current failing fish status.    

 

 Creation of off-river refuges 

In light of the knowledge that suitable juvenile habitat appears to be limited in the 

river, the creation of widespread off-river refuges help provide greater areas of 

suitable habitat. Currently, few stretches along the river possess adequately sized off-

river areas and where they are available they are often poorly connected. Previous 

attempts have been made to create off-river refuges for juvenile fish in the River 

Wensum including Schemes at Swanton Morley and Attlebridge (Figure 2.1) where 

enhancement has taken place. Although better than nothing, these off-river refuges 

are very limited in their distribution and are therefore likely to have minimal effect, 

particularly in high flow events when juveniles would be unlikely to locate such 

areas. Widespread provision of these areas would create suitable nursery habitat for 
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juveniles to grow and potentially reach larger sizes at the end of their first year of 

life. Connection of man-made water-bodies where habitat is lacking has been found 

to be of benefit to enhance juvenile recruitment (Nunn et al., 2007a). The size range 

of zooplankton species able to persist in off-river refuges was also found to be 

greater than that present in main river stretches, providing suitable prey items for the 

various developmental stages of juvenile fish species, thus enhancing their 

recruitment success (Nunn et al., 2007a).  

Alongside control methods, including human disturbance; roost removal, 

automated scarecrows and shooting to scare, the creation of fish refuges and addition 

of in-channel features offering overhead cover could potentially be of use in the 

provision of cover and protection from avian predators. The suspected increase in 

predation of cyprinid fishes in the Wensum by cormorants Phalacrocorax carbo 

carbo and Phalacrocorax carbo sinensis has been widely rumoured by anglers, with 

the reported „decimation‟ of river and adjacent lake stocks being of increasing 

concern (Paisley, 2011). As a response to lobbying from Angling Trust campaigners, 

calling for action to limit the impacts of cormorants on fisheries all over the UK, 

Fisheries Minister Richard Benyon has ordered a review into current controls on 

cormorant numbers (Angling Trust, 2012).  Nevertheless, studies on cormorant 

predation on riverine fish stocks rarely demonstrate unequivocal damage to stocks 

due to the complexity of factors influencing riverine fish population dynamics and 

the utilisation of multiple foraging sites by the birds (Britton et al., 2002, 2003; 

Davies et al., 2003). Thus, evidence that cormorants have adversely impacted the 

roach population of the Wensum is lacking, is currently only anecdotal and is not 

supported by fish population data. 
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 Re-connection with floodplain and lowering of banks 

Re-connecting the river with it‟s floodplain through lowering of banks and allowing 

the river to naturally meander and utilize the floodplain is a widely regarded 

restoration technique proven to increase habitat diversity and thus potentially 

improve fish stocks. If the channel was able to overtop into surrounding marginal 

land during peak flows, natural off river refuges would be present where young fish 

could escape such conditions thus preventing their displacement downstream (Copp, 

1997; Bass et al., 1997; Nunn et al., 2007a). For example on the village green at 

Ringland (Figure 2.1) the Wensum is not constrained to the channel and is therefore 

able to regularly flood. During peak events a shallow, slack-water refuge is created 

and can frequently be observed to be densely occupied (personal observation). It 

would therefore be beneficial to the Wensum fishery as a whole to create more of 

these areas where possible throughout the length of the waterbody. However, given 

the importance of the adjacent land for both agriculture and urban settlement, then it 

is debatable as to whether this is feasible option.  

 

 Addition of in-channel habitat features 

The addition of woody debris could be a significant improvement to uniform reaches 

lacking habitat diversity. Use by various age classes within cyprinid populations is 

well documented (Angermeier & Karr, 1984; Everett & Ruiz, 1993; Robertson & 

Crook, 1999), offering cover from predators, refuge from flow in the areas of slack 

water created immediately downstream, as well as potential spawning substrate.  It is 

recognised that woody debris can be beneficial to the in-stream biota in many ways 

through variation of flow and shape of the channel, and creating physical habitat for 

many species of plants, invertebrates and fish. The Environment Agency promotes its 
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use in river restoration projects, as a rapid and cost-effective method for creating or 

restoring morphological diversity as required under WFD, assisting rivers in 

achieving good ecological status or potential. It creates lower water velocity 

upstream and encourages deposition of fine sediments in marginal zones, ideal 

habitat for juvenile brook lamprey Lampetra planeris, and emergent vegetation 

important for fly life. Fish refuges during flooding are created, whilst the scour pools 

and areas of slack water are important during drought. Furthermore, the importance 

of woody debris to regulate flow is likely to increase as a result of climate change, 

with greater flow variability predicted from lower summer flows to more rapid and 

extreme floods (Environment Agency, 2012).  

 

 Habitat enhancement in straightened sections 

The creation and enhancement of riffle and pool sequences to reaches with limited 

habitat and flow diversity have been proven as a worthwhile restoration technique, 

being of benefit to both rheophilic species (e.g. chub, dace and barbel) that require 

riffles for spawning and limnophilic species able to take refuge in the deeper, slower 

flowing waters (e.g. roach). Flow deflectors in stretches where diversity is lacking 

aid the narrowing of the channel, creating flow diversity through increase of current 

immediately downstream of the narrowing with small pools scoured out further 

downstream (River Restoration Centre, 1999). In 2010, the restoration and re-

connection of a meander loop in the River Wensum, previously by-passed and 

straightened during the 1950s, transformed the previously low fish abundance in the 

reach to a diverse habitat for a variety of chalk stream communities including fish, 

macrophytes and invertebrates. Post-work electric fishing surveys confirmed the 
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presence of 11 fish species (n = 384) compared to 8 fish species (n = 31) in the 

survey undertaken prior to the works commencing. (Environment Agency, 2011c).       

 

 Less harmful annual river maintenance practices  

The flood defence maintenance practice of weed-cutting was shown to be deleterious 

to the presence and abundance of 0 group roach in the Wensum (Chapter 4). With 

growth in the early life stages found to be already limited through inadequate nursery 

habitat, this annual practice occurring at a critical time of year for cohorts is likely to 

affect their survival and recruitment. The study by Garner et al., (1996) found that 

the removal of the macrophyte zone during weed-cutting operations resulted in rapid 

decline in zooplankton populations resulting from increased wash-out, predation and 

starvation. This too was followed by rapid decline in the growth rate of roach, forced 

to feed on the less nutritious aufwuchs.  It is therefore important that this practice is 

conducted as sensitively and un-intrusively as possible. Reducing impacts of weed-

cutting to 0 group fish is recommended through ensuring operations are only 

undertaken after being deemed absolutely necessary in the interest of flood risk 

management. Similarly if off-river refuges were more widespread throughout the 

river, the impact of weed-cutting might not be so detrimental, through other suitable 

habitat being available to 0 group fish.   

The practice of de-silting, whilst no longer widespread, is also slowly becoming 

recognised as detrimental to both channel form and function, and the biota present, 

with restoring original channel features aimed at self regulation preferable to harsh 

maintenance practices. The WFD recognises the impact of past river management on 

current aquatic communities, with the impetus focussing on „un-doing‟ much of the 

over-zealous works that until recently were commonplace activities.  
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6.3 Final comments 

 

A true reflection of fish populations within the River Wensum prior to the impacts of 

any anthropogenic modification is unattainable due the absence of evidence pre-

dating the impact of human activity on the catchment. What was apparent throughout 

the study was that the river is physically, chemically and biologically very different 

today than even 50 years ago. Whilst it has been determined that roach face a 

challenging existence in the river from both biotic and abiotic factors, it is possible to 

mitigate against at least some of these through provision of suitable habitat that will 

encompass their various life stage requirements.  
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Estimated mean density of fish species (>99mm), site by site on the River 

Wensum (a) 1986, (b) 1990 and (c) 1994.  
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Estimated mean density of fish species (>99mm), site by site on the River 

Wensum (d) 1997, (e) 2003 and (f) 2006.  
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Estimated mean density of fish species (>99mm), site by site on the River 

Wensum (g) 2009. 
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Appendix 1b. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Estimated mean biomass of fish species (>99mm), site by site on the River 

Wensum (a) 1986, (b) 1990 and (c) 1994.  
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Estimated mean biomass of fish species (>99mm), site by site on the River 

Wensum (d) 1997, (e) 2003 and (f) 2006.  
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Estimated mean biomass of fish species (>99mm), site by site on the River 

Wensum (g) 2009. 
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Appendix 2. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Appendix 2a-b. Length frequency distributions of (a) roach and (b) dace sampled during point abundance surveys on the River Wensum at 

Hellesdon Rd (Albert‟s), site 18, Figure 5.1 during 2007. 
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Appendix 2c. Length frequency distributions of (c) minnow sampled during point abundance surveys on the River Wensum at Hellesdon Rd 

(Albert‟s), site 18, Figure 5.1 during 2007. 
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