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Abstract In this work we consider an application of physically–inspired so-
ciodynamical model to the modelling of the evolution of email–based social
network. In contrary to the standard approach of sociodynamics, which as-
sumes expressing of system dynamics with heuristically-defined simple rules,
we postulate the inference of these rules from the real data and their ap-
plication within a dynamic molecular model. We present how to embed the
n–dimensional social space in Euclidean one. Then, inspired by the Lennard–
Jones potential, we define a data–driven social potential function and apply
the resultant force to a real e–mail communication network in a course of
a molecular simulation, with network nodes taking on the role of interacting
particles. We discuss all steps of the modelling process, from data preparation,
through embedding and the molecular simulation itself, to transformation from
the embedding space back to a graph structure. The conclusions, drawn from
examining the resultant networks in stable, minimum–energy states, empha-
size the role of the embedding process projecting the non–metric social graph
into the Euclidean space, the significance of the unavoidable loss of informa-
tion connected with this procedure and the resultant preservation of global
rather than local properties of the initial network. We also argue applicabil-
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ity of our method to some classes of problems, while also signalling the areas
which require further research in order to expand this applicability domain.

Keywords Complex systems ∙ Link prediction ∙ Molecular modelling ∙ Social
networks

1 Introduction

The emergence of complex behaviour in a system composed of many inter-
acting elements is one of the most fascinating phenomena and recently also a
prominent area of research. There are many types of complex networked sys-
tems, which can be classified in many different ways. One of the approaches
distinguishes infrastructural (Internet, WWW, energy and transportation net-
works) and natural complex systems (biological networks, social systems and
ecosystems) [3]. Another classification divides complex networks into techno-
logical, social, biological, and information networks [27]. There is no commonly
accepted definition of a complex networked system but there is an agreement
that such structure consists of multiple interacting components whose global
behaviour cannot be simply inferred from the behaviour of the individual com-
ponents [20,3]. The elements of the network are not independent but are rather
connected via relationships and in consequence they influence each other. The
number of nodes in these networks can differ from hundreds to millions [43].
One of the challenges is to identify, which component influences the behaviour
of other components, which is directly connected with the dynamics of such
structures.

Complex systems that are investigated in this paper are social networks
where nodes represent people (but can also be other social entities such as
departments or even whole organisations), connected by different types of so-
cial relationships (e.g. friendship, co–working, family) [15,41]. Although the
general concept of social networks seems to be simple, the fact that the under-
lying structure is a network implies a set of characteristics, which are typical
to all complex systems, i.e. the sum of the interactions between the users does
not allow to draw conclusions about the behaviour of the social system as a
whole. The consequence of this is that tracking changes in social networks is
a very challenging and resource consuming task, especially that the number
of edges of the graphs representing social networks that are nowadays at our
disposal can be counted in millions.

Due to the scale and complexity of such systems, computer simulations
became an increasingly popular tool for investigating the dynamics of com-
plex systems including social networks. Simulations supplement traditional
approaches — formal theories and empirical studies, and serve as analytical
models enabling making certain predictions about the future behaviour of com-
plex systems. In this research, we focus on the predicting the changes in the
network structure. This is especially important as the network structure af-
fects the functions of the network [39]. We also face a typical trade–off between
simulations that take into account the detailed, microscopic description of the
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system (an approach, which in theory assures the most accurate predictions,
often with an unacceptable computational overhead) and the minimal set of
rules that allows to model the evolution of the system [35].

It should be emphasized that many properties of complex systems are
hardly definable in terms of any analytical model. Therefore, computer simu-
lations seem to be the only way to gain insight into global system dynamics [35,
6]. So far, physics has provided several methodological approaches to tackle this
issue. We hence argue that the spatial mobility and concentration of interact-
ing particles can be modelled by employing the molecular dynamics paradigm,
leading to many interesting extensions of standard approaches, based on the
reinterpretation of potentials and distance in a given space [44]. One proposi-
tion of such modification is described in detail in this work. Another family of
approaches successfully applied to physics, biology, evolutionary biology and
social sciences are cellular automata [45], starting from the famous Game of
Life artificial life model of Conway. One of the first researchers who applied the
particle–based approach to social dynamics was Dirk Helbing, who in [17] pro-
posed a fundamental dynamic model which includes many established models
as special cases, (e.g. logistic equation, gravity model, some diffusion models,
the evolutionary game theory and the social field theory), and also implies
numerous new results.

However, in this work we argue that the rapid development of social portals
and social media gives us an unique opportunity of the investigation of social
systems on the basis of real data. When we consider inferring social relations
from the records gathered from systems providing communication and recom-
mendation services, the relations may be quantified and directly measured. On
the other hand, a standard approach of sociodynamics assumes a global (and
relatively simple) definition of social potential (which reflects the character of
”social force” driving the changes in the relations between the system compo-
nents) which is used to simulate and analyze the collective behavior of system
components [13]. This approach has been proved useful for many classes of
social systems and the modeling of opinion dynamics [32].

Taking the above into account, we propose to infer the character of social
potential from the real–life social system data (using an email–based social
network as an example) and to verify the possibility of using it to determine
the evolution of the system. This requires embedding n–dimensional social
space in Euclidean space in order to apply the physically inspired methods.
According to the best of our knowledge no computational models for assessing
the evolutionary schemes of real–world internet–based social structures, in
which the edges can not only be formed but can also fade, were developed
so far. Hence, in this paper, we propose application of molecular dynamics
to modelling the evolution of email–based social network. We focus on the
equilibrium state of a network, i.e. the state after the molecular simulation
has converged, and discuss various issues and challenges encountered during
this research. Moreover, we argue that, in the presence of the data coming
from real system, the verification of such a model should be done by means of
checking if it is possible to recreate the social network from simulation results
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and comparing it with the real network structures which have evolved in the
period of time covered by the simulation.

The rest of the paper is structured as follows: in Section 2 related work in
the fields of social networks dynamics, graph embedding, and dynamic molecu-
lar modelling are presented. In Section 3 methodology followed in this paper is
outlined and Section 4 explains the experimental set–up. Section 5 is devoted
to the molecular simulation and its outcomes. Section 6 aims at presenting the
concept of social network recreation from the simulation results and Section
7 includes the analysis of the retrieved social networks. Finally in Section 8
results arising from the conducted research are summed up and the future
work is presented.

2 Related Work

2.1 Dynamics of Social Networks

In the last few years the problem of predicting the future interactions between
users in social networks has become an important research challenge. Due
to the availability of datasets of online activities and communication between
people, scientists try to describe both structure and evolution of such networks.
Most of the approaches addressing the complex networks growth take into
consideration a limited set of global characteristics of the networks and develop
models that reproduce only these characteristics, e.g. node degree distribution
[2], clustering coefficient [42] or network diameter [7].

There are some approaches that aim at developing specific models for on-
line social networks and take into consideration some information characteris-
tic to such networks [29], [30], [9], [8], [31], [12], [25]. Different models propose
different methods of network growth. In [29], on the basis of the analysis of
real–world networks such as Flickr and Yahoo 360!, the users have been di-
vided into three different types: passive, linkers and inviters. The members of
the first group (passive users) join the network out of curiosity or because of
being invited by a friend. These users, as their name suggests, never engage
in any significant activities within the network and do not interact with other
users. Inviters on the other hand, are interested in migrating the group that
they have in the real world into a virtual world, thus their actions focus on
inviting their friends to participate in an online social network. Linkers ac-
tively connect themselves to other members within the online social network.
Based on the analysis of datasets the authors define a rule-based system that
follows specific rules used for evolution of the social network. The method that
describes the network growth can be defined as the set of steps: (i) at each
time step, a node arrives, and one of the statuses: passive, linker, or inviter is
randomly assigned to it; (ii) during the same time step, x edges arrive and the
source of each of the edges is chosen at random from the existing inviters and
linkers in the network using preferential attachment. Depending on the chosen
type of the source node (inviter or linker) different actions are performed. If
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the source is an inviter, then it invites a non-member to join the network, and
so the destination is a new node. If the source is a linker, then the destination
is chosen from among the existing linkers and inviters, again using preferential
attachment [29]. This model represents the growth of a network, i.e. it takes
into account adding new nodes and edges. However, the problem of link pre-
diction covers not only the creation of new links but also fading of existing
relations.

In [9] the authors have presented another approach that defines a set of
rules regarding how the network evolves. They focus on discovering patterns of
interactions between users and their evolution over time. The authors propose
to create a single graph that represents social network, which is supplemented
with additional information – a time-stamp, added to each relation when it
appears in the network for the first time. The experiments were performed on
the DBLP database [9]. Similarly to the previous presented study, also this one
assumes that the users and the relations between them can only be added to
the system and will never be deleted. Moreover, both of approaches presented
so far allow to investigate the creation of new edges but do not allow to follow
the dynamics of the relationships strengths between users, which is one of their
limitations.

Yet another framework for the network growth was developed in [30] where
the authors studied four online social networks: Flickr, Delicious, Answers and
LinkedIn. They proposed to apply the maximum-likelihood estimation princi-
ple to compare a family of parameterised models in terms of their probability
of generating the observed data, and as a result to select the model that re-
flects the data in the best possible way. The task in this framework was to
predict which nodes will a new edge connect. For every edge arriving to the
network the likelihood that it will connect two given nodes under some model
is assessed. The product of these values over all edges gives the likelihood of
the model and the model with the highest likelihood is chosen. Similarly to
the previously presented methods this one also does not consider the strength
of the relation as well as the fact that an edge can disappear from the network.

A survey of other link prediction methods can be found in [31], where the
approaches like common neighborurs, Jaccard’s coefficient and Adamic/Adar
method, preferential attachment, Katz method, PageRank and its variants,
low-rank approximation, unseen bigriams, and clustering, are discussed.

A set of approaches that take into consideration the fact that links can
disappear from the network have been proposed in [19,8] where the authors
have detected a dramatic time dependance in network centrality and the role
of nodes, something not apparent from static analysis of node connectivity and
network topology. Their experiments studied a large-scale email networks con-
sisting of 57,000 users based on data gathered over a period of 113 days. They
found that although the daily networks were scale-free, the well-connected
nodes in these networks changed from day to day.

A recent method also accounting for the disappearing links has been pro-
posed and investigated in [21,23,24], where based on the changes in the local
structure, a 1st order probabilistic model of transitions between various triad
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types has been derived. The model results from an observation that there
exist distinctive patterns which drive the evolution of connections between
nodes. Node disappearance has also been addressed in [34], but in a somewhat
different the context of disruption of the information flow.

Our approach differs from these presented above as we do not propose a
model for network growth per se but we investigate the limitations of sociody-
namic model verified on data coming from real system. Our proposition takes
into account both creation and vanishing of the relationships. Additionally, the
network investigated in this work is a structure where strength of the relation-
ships changes over time, which is an important factor in social networks due
to the cognitive limitations of people [18]. In our approach, we do not assign
roles to users as this may be misleading. We rather assess, based on the current
interactions between users, how the relations strength and the structure of the
network may look like in the future.

2.2 Distance Preserving Graph Embedding

Following the in-depth discussion presented in [42] we cannot expect the social
space to be metric i.e. the triangle inequality between any three nodes does not
hold. On the other hand, as it was mentioned above, molecular modelling as-
sumes the interaction between the particles embedded in the Euclidean space.
For this reason, in order to apply molecular modelling we must first perform
embedding of the social network graph in a metric, Euclidean space. Numerous
embedding methods exist, an overview of is presented below.

The Big Bang embedding algorithm (BBE) presented in [36] simu-
lates an explosion of particles that represent network users under a force field
that is derived from the embedding error. Each particle is the geometric im-
age of a vertex. The force field reduces the potential energy of the particles
which is related to the total embedding error of all particle pairs. In the Big
Bang Simulation (BBS) all particles are initially placed in the same location in
space. The whole process is performed in an iterative manner and each itera-
tion moves the particles in discrete time intervals. Every iteration begins with
calculation the field force on each particle at the current particles’ positions
(for the first iteration forces are chosen randomly). As it was mentioned, the
forces are derived from the potential energy. In the next step, the positions
and velocities at the next time step are calculated. The final step of each it-
eration is to evaluate the new potential energy. This method allows to embed
the network into a freely selected number of dimensions.

Another method that can be used to embed a graph in Euclidean space is
called the Multidimensional Scaling (MDS) ([40]). MDS defines a suite of
methods often used in information visualization and exploration of similarities
or dissimilarities in data. There are two variations of MDS, i.e. classical multi-
dimensional scaling (CMDS) algorithm and standard MDS [10], [28]. Classical
metric MDS develops the metric as a symmetric bilinear form and calculates
the leading d eigenvalues of the corresponding matrix [40]. An MDS algorithm
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starts with a matrix of similarities between objects (similarity relation does
not have to be symmetrical), then assigns a location of each item in a low-
dimensional space. It hence estimates the coordinates of a set of objects in
a space of specified dimensionality on the basis of measuring the distances
(which, however do not have to be metric) between pairs of objects. A vari-
ety of models can be used that include different ways of computing distances
and various functions relating the distances to the actual data. Both meth-
ods allow to embed graph into different numbers of dimensions. However, the
problem that we faced during our experiments with MDS was that the compu-
tational overhead was very high and we were not able to obtain results within
reasonable time.

In High–Dimensional Embedding [16], which is a fast method for cre-
ating 2D representations of large graphs, the graph is first embedded into a
very high dimensional space — usually associated with the number of nodes
— and then projected into a 2D plane using Principal Components Analysis.
This method is used for undirected graphs. It will not be useful from the per-
spective of our experiments as one of the goals of this study is to embed the
graph into different dimensions and verify which number of dimensions helps
to achieve best results from the link prediction perspective.

Minimum Volume Embedding (MVE) presented in [37,38] is an algo-
rithm for non–linear dimensionality reduction that uses semi–definite program-
ming (SDP) and matrix factorization to find a low–dimensional embedding
that preserves local distances between points while representing the dataset
in fewer dimensions. Authors of MVE emphasise that in all cases MVE in
comparison with Semi-definite Embedding and Kernel Principal Component
Analysis is able to capture more of the variance of the data in the first two
eigenvectors, providing a more accurate 2-dimensional embedding [37,38]. The
main features of the minimum volume embedding approach are: (i) MVE for
a given dataset returns always the same set of coordinates, (ii) isolated nodes
are neglected in the embedding process, and (iii) MVE is stable, i.e. adding
one node with very weak connections does not influence significantly the posi-
tions of the remaining nodes. Enumerated characteristics of MVE means that
the graph can be embedded only into 2D space which is not enough from the
perspective of the proposed in this paper experiments as one of the goals is to
find out what is the best number of dimensions to which the graph should be
embedded. Moreover in the case of not connected graphs the algorithm does
not work.

2.3 Dynamic Molecular Modelling and Simulation

Dynamic molecular modelling is one of the simulation methods applicable to
large ensemble of interacting objects. It was historically used to model physical
systems with huge number of particles. In its most classical version the parti-
cles are identical and indistinguishable, and interact with each other through
two–particle mutual symmetrical potential, which is identical for every pair of
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interacting particles and only distance–dependent. This model can be further
extended and modified and it has already proven its applicability to more com-
plex systems. The exact form of the interaction potential can differ depending
on the details of the modelled system. In some cases it can be obtained ex-
perimentally if two–particle interaction can be separated, extracted and the
dependence on their basic properties (e.g. mass, charge etc.) and inter–particle
distance can be determined or is known from theoretical considerations. Unfor-
tunately it is not always the case. Usually the microscopic details of interaction
potential are not directly accessible experimentally and only the macroscopic
characteristics (which can be described as the statistical mean values) of the
whole particle ensemble are known (e.g. temperature, energy, entropy etc.).
Although the behaviour of each particle on a microscopic scale is fully deter-
ministic due to the inter–particle interaction being driven and governed by the
second Newton’s dynamics principle, it is only possible in very limited num-
ber of cases to deduce the form of interaction potential from the macroscopic
behaviour of the particle ensemble, i.e. if sub–ensembles, characteristic clus-
tering effects or short–range ordering can be observed. In most cases one has
to assume a form of interacting potential (basing on the boundary behaviour
of analysed system or some descriptive characteristics that can be deduced
from macroscopic observations or general features of two–particle behaviour),
perform the simulations of the system of interest and check if the behaviour of
macroscopic observables can be reproduced. The problem of finding the inter-
action potential, in the case when the trajectory/time–dependence of particle
position is known, is solvable by a number of differentiation and integration
steps. Although, this procedure is well defined mathematically it cannot be
conducted in the case of many interacting particles as the trajectory is not
a simple analytical function but rather seems random (similar to Brownian
motion) due to the complexity of analysed system, in which every particle
responds to a force originating from all other particles. Based on the poten-
tial, the force acting between particles can be calculated using the following
formula:

F = −∇U (1)

where U is the interaction potential.
If the force is known, the time evolution of the system can be obtained

by solving for each particle separately the classical equation of motion (2nd

Newton’s principle of dynamics):

F =
dp
dt

(2)

where p denotes the momentum of the particle and F is a vector sum of forces
from all other particles in the system. For objects with constant mass this
formula takes the following familiar form:

F = ma = m
d2s
dt2

(3)
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by using the definition of the momentum and acceleration a, defined as a
second derivative of the position vector s. The above equation must be solved
for every particle in every simulation step. In order to start the algorithm, the
initial positions of all particles, the formula for the force which is identical for
all particle pairs and the interacting potential need to be specified. One of the
standard potential functions used to describe the many-particle problems is
Lennard–Jones potential which is given by:

V (r) = 4ε

[(σ

r

)12

−
(σ

r

)6
]

(4)

where r denotes the distance between particles. The Lennard–Jones potential,
which has been depicted in Figure 1, is fully defined by two parameters: the
depth of the potential ε – responsible for the strength of interactions between
particles and σ – related to the minimum distance between two particles.
As it can be seen the potential has a global minimum equal to ε for rmin =
21/6, σ = 1.12σ. An important characteristic of this potential is that the nature
of interaction between two particles depends on their distance. Namely, for
distances bigger than σ the particles attract each other, while for distances
smaller then σ the character of the potential changes to strongly repulsive.

Fig. 1 Lennard–Jones potential

Having the analytical formula for the interaction potential one can easily
obtain the formula for the force by simple differentiation, which should be
performed analytically to avoid accumulation of numerical approximations.
As a first approximation all particles are assumed to have unit mass. Knowing
the forces, the Verlet’s algorithm may be used to obtain the position and the
velocity of each particle in consecutive time steps [22].

The concept of molecular modelling and simulation is used in this study
to model the dynamics of a social network. The users who are the nodes of
the network become particles in Euclidean space and the distance between
particles will be determined based on the relationship strength between the
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users. The changes in the distances between particles over time will be the basis
for inferring the potential in a purely data-driven way and in consequence for
determining the force between particles.

3 Methodology

The approach proposed in this paper is to reformulate the problem of time
evolution in social networks and interpersonal relations into the language of
multiple–particle interacting system. This is achieved by assigning the position
of the node in the social network graph to the position of the particle in a
metric space, so that the inter–particle distance reflects the strength of the
relation.

In our previous attempts the form of the interacting potential was assumed
to reflect the tendency of two particles (nodes) to change their distance in
social space. The experimental data was used to extract some characteristic
features of the interaction and a modified Lennard–Jones potential was used
to reproduce the time evolution at the macroscale. Another possibility to gain
an insight into the character of social interaction is to examine in details
the distance between each pair of nodes in consecutive time windows. The
experimental data i.e. the positions of each particle (node) in each time window
are sufficient to obtain the dependence of the variation of the distance between
two particles on their distance (see Section 4.2 where the distance matrix is
created from the adjacency matrix).

Using only this dependence it is possible to simulate the behaviour of in-
teracting particle ensemble in the following way. Knowing the initial distances
between all pairs of particles the change of two-particle distance can be read
from the experimental curve. The change of the distance between each two
particles can be easily transformed into the displacement vector. The dis-
placement vector has its beginning at initial position of the particle and its
end in its final position (it is defined as a difference between the initial and
final position vector). Its direction coincides with the direction of a line con-
necting two particles under consideration and it is pointing into the direction
of the centre of mass when the distance between two particles is decreasing,
and in opposite direction if the distance is increasing. Because of the equal
masses of both interacting particles each of them changes its position by the
half of the calculated distance change between them. This procedure allows
to define the displacement vector for a considered particle and one of all the
other particles from the ensemble. Such an operation should be repeated for
all other particles to obtain all displacement vectors for a given particle. Since
the displacement vectors calculated in this way represent the forces exerted
by other particles, their superposition determines the direction, in which the
particle under consideration should be moved. We ignore the magnitude of
the total force, as moving any particle by this value, which is the length of a
negative gradient of the field potential, would most likely result in overshoot-
ing and lack of convergence. Instead, we optimize our system in an iterative
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manner, shifting all particles by a small, fixed step at a time until it reaches a
steady state. In that way we are able to simulate the time dependence of the
position of each particle knowing only the initial positions of all particles and
experimentally obtained relation between the change of the distance between
two particles and their distance.

The methodology followed in this study is summarised in Figure 2. The
consecutive stages of this research are presented below.

Fig. 2 Methodology followed in this paper

Data preparation: As the real–world evolving network is investigated in
this paper, the first step is to prepare data in a way that they can be used in
further parts of the experiments. This includes extraction of the interactions
and time stamps of their occurrence from email logs dataset and dividing this
set into time windows of a given size. From each time frame a single social net-
work is created. Note, that in the case of email communication the underlying
social network is directed and weighted. However, adjacency matrix feeded to
the embedding process has to be symmetrical. Thus the directed social net-
work is transformed into undirected one by aggregating the communication
between every two nodes.

Distance Matrix Creation: Creating a distance matrix for each social
network snapshot, in which the distances between nodes reflect the intensity
of communication between them, is the next step. The distance needs to be
calculated for all pairs of nodes, including the pairs which are not connected
directly or at all. In our approach the distance between two particles reflects
the length of the shortest weighted path linking the two nodes in question.

Embedding Distance Matrices in Euclidean Space: The goal of this
step is to project the created distance matrices into the Euclidean space in
a way that the distances between nodes are reflected in the best possible
way. After a review of existing embedding methods, Big Bang Simulation and
Classic Multidimensional Scaling were chosen. These two methods facilitate
embedding of non-metric spaces into almost arbitrary number of dimensions,
limited by characteristics of the network under consideration, with moderate
computational requirements.

Definition of Molecular Model: In this step the potential field describ-
ing the evolution of interactions between nodes is defined. On this basis the
whole molecular model of email based social network is created. The potential
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function is determined from the changes in distances between two consecu-
tive network snapshots. As the shape of the potential function depends on
past data, the force governing the molecular simulation is different for each
dataset.

Molecular Simulation: This part of the experiments utilizes the outputs
of the previous steps: the embedded social network windows and the potential
force which is used to move particles in the Euclidean space. The simulation
terminates when the set of particles achieve a stable state.

Recreation of Network Snapshots and Analysis of the Results:
The study aims at assessing the characteristics of a network in a stable state,
which is an outcome of the molecular simulation. In order to do that, the
reverse process to the embedding has to be performed. For each time window
the results of simulation, which are the set of nodes’ positions in Euclidean
space, are taken and the network graph is created based on the distances
between nodes (particles) after simulation. This process is straightforward: if
the distance between two particles is lower than a given threshold value, the
link between these particles in social network is created. The experiments were
performed for different values of the distance threshold. Finally, the properties
of these retrieved networks are investigated. Two main properties were taken
into account: node degree distribution and clustering coefficient.

4 Experiment setup

4.1 Data Preparation — Creating Email based Social Network

The network that has been chosen for experiments, was extracted from the
email logs of the Wroclaw University of Technology (WrUT). The experimental
data were collected during the period of 21 months (February 2006 – October
2007). The network was created in the course of the data cleansing process
and removing fake and external email addresses. The employees of WrUT are
the nodes of the network, whereas email messages exchanged between them
were used to infer their relationships (edges in the network). Although every
single email message provides information about the sender’s activity, it can
simultaneously be sent to many recipients. An email sent to only one person
reflects strong attention of the sender directed to this recipient, while the
same email sent to 20 people does not. For that reason, the intensity of email
communication I(x, y) between email user x and y has been defined as:

I(x, y) =
card(EM(x,y))∑

i=1

1
ni(x, y)

(5)

where EM(x, y) is the set of all email messages sent between x and y and
ni(x, y) denotes the number of all recipients of the ith email sent between x
and y [26].
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In consequence, every email with more than one recipient is treated as 1/n
of a regular one (n is the number of its recipients). Although ‘to–list’ recipients
are likely to be of much greater message–network importance than the ‘cc-list’
recipients, both groups are treated in the same way, i.e. the total number of the
recipients of an email is always taken into account. Such approach results from
the fact that the obtained data does not include information if the recipient
of the email is on the ‘to–list’ or ‘cc–list’.

The resulting social network SN = 〈N, I〉 is defined as a tuple consisting of
a set of network nodes N and a set of relationships that are described by their
mean intensity I : N × N → R+ ∪ {0}, given by Equation 5. Note that the
resulting structure is a non–directed graph with intensity I as a label assigned
to the relationships.

It should be emphasized that the social network derived from the email logs
does not have a static structure. The existence of any link in such a graph (i.e.
relationship) is a result of a series of discrete events (email messages) which
occur in certain time instants and usually with changing frequency. We may
also think of the computed relationships’ intensity as of the social distance
between network members (nodes). Greater I reflects smaller distance in the
social space. In order to track changes in relationship strength we have used
a sliding window approach.

For the experiments the data from a period of 84 days was selected and
divided into frames covering seven days each. This allowed to create 12 social
network graphs SN(t0), SN(t1), ∙ ∙ ∙SN(tn) where t0, t1, ∙ ∙ ∙ , tn are discrete
instants of time. Each network is created according to the procedure defined
above on the basis of seven–day period starting in t0, t1,∙ ∙ ∙ , tn. The networks
SN(t0), SN(t1), ∙ ∙ ∙SN(tn) are temporal images of evolving social structure
which was build on the basis of email communication. In addition only users
who were active in all time windows were taken into account as they constitute
the core of the network.

4.2 Distance Matrix Creation

The distance between two nodes should reflect their proximity. The most ob-
vious choice – graph distance expressed as the length of the shortest path
between the nodes, does not really fit the problem of modelling the dynamics
of an email network, especially if the graph is weighted.For example, suppose
that the shortest path between nodes x and y has a total weight of 0.7, but
it passes through 2 intermediate nodes. At the same time the shortest path
between v and w has a total weight of 0.3, but there are no intermediate nodes
at all. In the context of an email network it means that v and w communicate
directly, but not very often. On the other hand x and y do not communi-
cate directly with each other, but their nearest neighbours do it frequently,
and x and y communicate with the neighbours frequently too. In practice it
means that x and y may not even know each other, while v and w certainly
do. Hence in this case the standard graph distance is misleading and for our
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experiments we propose an alternative definition of social distance. Denoting
by DEC(x ↔ y) the number of edges in the shortest undirected path between
nodes x and y and by DEW (x ↔ y) the sum of weights along the same path,
normalized to the (0, 1) range, the total distance between nodes x and y is
given by the following formula:

D(x ↔ y) =

{
DEC(x ↔ y) + DEW (x ↔ y) if ∃(x ↔ y)

max(DEC) + max(DEW ) + 1 if @(x ↔ y)
(6)

As a result the distance will always fall into the (1, 2) interval for directly
connected nodes, (2, 3) if there is one intermediate node etc. Note, that in this
setting the number of edges in the shortest path contributes the most, while
the additional information given by the edge weights is also taken advantage
of. Equation 6 also assigns some finite distance value to all pairs of nodes not
connected by any path, as one of the requirements imposed by the embedding
algorithm we have used was that the distance should be defined for every pair
of nodes.

4.3 Embedding Networks in the Euclidean Space

With the distance matrices in place the graphs SN(t0), SN(t1), ∙ ∙ ∙ , SN(tn)
can be embedded in the Euclidean space (two or more dimensional), where
each node is represented by a point with given coordinates. The resulting sets
of points SN0, SN1, ∙ ∙ ∙ , SNn represent the temporal network images.

An important issue, which should be discussed here, is the dimensional-
ity of the embedding space. Most embedding algorithms have been designed
for the purpose of graph visualization. This naturally implies a two or three
dimensional embedding. However, the higher the dimensionality of the embed-
ding, the more accurately the social distances are mapped into the Euclidean
space. Figure 3 depicts the average distance distortion1 of the embedding as a
function of dimensionality for the WrUT email network and for (a) BBS, (b)
CMDS methods. As expected, in both cases the accuracy of the embedding
grows with dimensionality. Please note that the scales on the vertical axes in
the Figure 3 are different. It should be emphasized that the pace of accuracy
growth with increasing dimensionality is much faster in the case of BBS than
CMDS. Intuitively we should choose the number of dimensions to be as high
as possible. There is a limit however, which results from the so called ‘curse of
dimensionality’ [5], and especially the ‘distance concentration‘ phenomenon,
which as demonstrated in [11] is particularly relevant in the context of dynamic
molecular simulation of potential fields in the Euclidean space.

It has been observed that as the number of dimensions grows, the Euclidean
distance looses its discriminative power, regardless of the characteristics of
the dataset [1,14]. The reason for this is that under a broad set of conditions

1 The distance distortion is defined for each pair as the maximum of the ratio between
the original and Euclidean distance and its inverse.
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Fig. 3 Distance distortion as a function of dimensionality

the mean value of the L2−norm distribution grows with data dimensionality
while the variance remains approximately constant (Figure 4) [14]. As a result,
the nearest and furthest neighbours of any molecule appear to be at approx-
imately the same distance, which makes the ratio of distances to the nearest
and farthest neighbour tend to converge to 1. As argued in [4], it can occur
even for sets with as few as 10 dimensions and the decrease in the ratio be-
tween the farthest and nearest neighbour distance is steepest in the first 20
dimensions. The effect is additionally magnified by the limited precision of
calculations a computer can handle and often leads to the molecular simula-
tion failing to converge [11]. Hence in practice the embedding dimensionality
needs to be a compromise between the distance distortion and negative ef-
fects of high dimensionality. For this reason we have decided to embed each
graph into 2, 3, . . . , 20 dimensions to investigate the mapping between graph
distances and distances in embedded graph.

Embedding algorithm has to assure that the Euclidean distances between
points (nodes) fit in the best possible way the distances in a social space (re-
lation strengths in original graphs). As a result one obtains the representation
of social system in which the network is seen as an assembly of N particles,
representing the nodes of a social network.

After reviewing several embedding methods, it has been decided that two
sets of experiments will be performed: (i) the Big-Bang Simulation and (ii)
CMDS as these methods enable to embed graph into an arbitrary number of
dimensions. Additionally, BBS models the network nodes as a set of particles,
which is consistent with the next part of the experiments where molecular
modelling approach is used to determine the dynamics of a social network.

Embedding was performed on 12 extracted previously social networks.
Each of the networks was embedded into 2, 3, . . . , 20 dimensions using BBS.
CMDS inherently selects the best number of dimensions (in excess of 400 in
our case), so in this case the parameter was not set during the experiments,
but only first 2, 3, . . . , 20 dimensions produced by CMDS have been used in
our simulations.
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Fig. 4 Distance concentration for the Euclidean norm, for a random vector drawn from
a unit hypercube (solid line denotes the mean value, shaded region denotes the mean +/−
2 standard deviations).

For each of the dimensionalities given above we have analysed how well
the distances between particles from the social networks (graph) are reflected
in the embedded space. To avoid negative effects of high dimensionality we
decided to select the lowest number of dimensions that allowed to embed the
graph in a way that the mean values of the distances after embedding, which
correspond to the graph distances in the ranges < 1; 2), < 2; 3), < 3; 4) etc.
were well separated. This has been achieved for 12 dimensions, where for both
BBS (Figure 5) and CMDS (Figure 6) the the distributions of distances in the
embedding space are approximately unimodal and their expected values are
in the required range.

Due to the above, the actual molecular simulation has been performed in
12–dimensional space. However, for the visualisation purposes, where appro-
priate and to present general idea, the figures were presented for the two–
dimensional embedding and molecular simulation.

After selecting the number of dimensions, the next stage of the experiments
was to embed the created social networks snapshots into Euclidean space. As
discussed in Section 3, embedded graphs serve as an input to the molecular
simulation process.

4.4 Setting up the Dynamic Molecular Model

Because the sets of network nodes in SN(t0), SN(t1), ∙ ∙ ∙ , SN(tn) are equal,
each point (node) is represented in any of the sets SN0, SN1, ∙ ∙ ∙ , SNn and is
active in each of the windows. We may think of these points as of particles
moving as a result of interactions (email communication) between them. At
this point we use the formalism of molecular dynamics to associate a potential
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Fig. 5 Mapping between graph distance and distances after embedding graph into 12 di-
mensions using BBS algorithm.

U with every particle (network node). The actual characteristic of this poten-
tial depends on the behaviour of the particles changing their positions in time
instants t0, t1, ∙ ∙ ∙ , tn.

First experiments were performed using standard Lennard–Jones potential
function [22,33]. The analysis of server logs has revealed some features of the
dynamics of email communication – the growing intensity of communication is
always followed by the periods of less frequent email activity. This resembles
the repelling force emerging between particles when their distance becomes
less then some minimum. We noticed that intense email communication (which
results in very small distances in social graph) is never sustained for a longer
period of time. On the other hand fading communication is (in most cases)
followed by frequent message exchanges.

It should be stressed that the Lennard–Jones potential was used only for
the first experiments and did not accurately fit the underlying data. In the
experiments presented in this paper the social network–specific potential func-
tion on the basis of available data was developed. In order to do that, first the
distance transition probability defined as the probability that a given distance
in one window will change into another given distance in the next time frame,
was calculated. For the 12 time windows, 11 transition probability matrices
were obtained. The matrices were then averaged. The resulting final matrix
is presented in Figure 7a. The force that governs the changes of the location
of the particles in the Euclidean space is proportional to the distance change.
Hence the third degree polynomial presented in Figure 7b, inferred from the
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Fig. 6 Mapping between graph distance and distances after embedding graph into 12 di-
mensions using CMDS algorithm.

distance transition probability, describes the force used in the molecular sim-
ulation. Please note that the force will be different for different datasets.
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Fig. 7 Graph distance transition probability and expected graph distance change for the
WrUT email network

The presented force allows to simulate the changes between communication
patterns in consecutive time instants. The potentials associated with the nodes
reflect their abilities and tendency to establish future connections with their
neighbours – the nodes which are close in terms of social space (thus changing
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the distances in social space which is analogous to the behaviour of particles
moving under influence of electrical/gravitational forces).

5 Molecular Simulation

After the network graphs have been embedded in the Euclidean space and the
force function has been established the molecular simulation can be performed.
The goal of the simulation is to obtain the network that is in a stable state,
i.e. does not change from one simulation step to another. In practice it means
that the particles oscillate around the point of equilibrium. The whole process
is performed iteratively until oscillation is detected by checking if the mean
displacement of all particles between two non–consecutive steps of the simula-
tion is below a threshold value (0.0005 in our experiments). Figure 8 presents
the mean displacement changes during the simulation of the first time window,
embedded using CMDS. This is just one example of the obtained during the
experiments; for each time window and for each embedding algorithms this
function will have a different shape and the stop condition will be met for
different number of iterations. The common feature of all simulations is that
mean displacement converges to 0.
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Fig. 8 Mean displacement of all particles between two non–consecutive steps of the simula-
tion as a function of number of simulation steps for social network from Window 1 embedded
using CMDS method

Figures 9 and 10 present the results of the molecular simulation in 2D space
for windows 2 and 4 respectively (the windows have been selected for illus-
tration purposes). For each of these windows the BBS and CMDS embedding
as well as the result of the simulation are presented. Although the embedded
graphs look differently for CMDS and BBS, the final outcomes of simulations
are similar. These two windows were chosen to present how different shapes
of embedded graphs behave during the simulation process.
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Fig. 9 Window 2 before and after molecular simulation
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Fig. 10 Window 4 before and after molecular simulation

6 Reconstruction of Social Networks

The result of the molecular simulation is a set of particle collections in their
stable states. In order to investigate the characteristics of obtained structures a
reverse–embedding process needs to be performed. During this phase the social
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non–metric graph is created from the particles embedded in Euclidean space
whose positions were determined during the molecular simulation. The graph
is recreated using the pairwise Euclidean distances between the particles.

First, the distance between each pair of particles is calculated. After that
a threshold for the distance is set and a link is created between pairs of nodes
for which the distance is below this threshold. Each social network was re-
constructed using 100 different threshold values. First the difference between
maximum and minimum distance in a given time window was calculated and
then this number was divided in 99 equal parts. Different values of distance
threshold influence the number of links in the recreated network. Figure 11
shows the number of links in the 1st window of social network (embedded using
CMDS) as a function of distance threshold. Note that, most of the distances
is in the range (0; 8). For each time window and embedding method, 100 net-
works with different distance threshold were created and these networks and
their characteristics are investigated in the next section.
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Fig. 11 Number of links in the 1st window of social network (embedded using CMDS) as
a function of distance threshold

7 Analysis of the Experimental Results

The recreated networks have been examined with respect to node degree dis-
tribution, clustering coefficient and shortest paths. Although there were 1,100
reconstructed networks (100 threshold values times 11 windows) and all three
characteristics were calculated for each of them, only a subset of networks was
selected for subsequent analysis . As it was pointed out, during the recon-
struction process, the value of the distance threshold directly influences the
number of links in the recreated network. The general and intuitive rule is
that the higher the threshold the denser the reconstructed network. Because
the structures analysed in this study are social networks, and according to
Dunbar’s number every human being can on average maintain 150 meaningful
social relations [18], in further analysis we have selected a threshold for each
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embedding method and for each time window for the average node degree to
be as close to 150 as possible. Please note that the average node degree is
meaningful in this case as the node degree distributions follow Poisson distri-
bution. In Figure 12 the node degree distributions for Window 2 for all 100
distance thresholds are presented, with different colours denoting distributions
for different distance thresholds. It is clearly visible that the average node de-
gree increases with the growth of the threshold. On the left side of the plot,
for threshold equal to 1 the recreated network is empty (probability that a
node has 0 edges is 1) and on the other hand for threshold 100 the network is
represented by a fully connected graph (probability that a node is connected
to all other nodes in a network is 1). For all intermediate thresholds the node
degrees oscillate insignificantly around a given number which grows together
with the distance threshold. Hence the value of the average node degree can
be used to select networks for further analysis.
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Fig. 12 Node degree distributions for reconstructed social networks from Window 2 for all
100 distance thresholds (different colours represent node degree distributions for different
thresholds; distance threshold increases from 1 to 100 looking from left to right).

The distance thresholds chosen for further analysis are presented in Table 1.
For all of them, for a given embedding method and for each time window the
mean value of node is closest to 150.
Table 1 Distance thresholds for each time window in which average node degree is closest
to 150 in comparison to other thresholds.

Window no. 1 2 3 4 5 6 7 8 9 10 11
BBS threshold no. 51 45 47 52 49 51 52 51 53 54 52

CMDS threshold no. 17 51 50 56 53 55 56 53 55 16 54



Molecular Model of Dynamic Social Network Based on E-mail Communication 23

0 50 100
0

200

400

600

800

1000

distance threshold

av
er

ag
e 

no
de

 d
eg

re
e

BBS

0 50 100
0

2

4

6

8

distance threshold

st
an

da
rd

 d
ev

ia
tio

n

BBS

0 50 100
0

200

400

600

800

1000

distance threshold

av
er

ag
e 

no
de

 d
eg

re
e

CMDS

0 50 100
0

50

100

150

200

distance threshold

st
an

da
rd

 d
ev

ia
tio

n

CMDS

 

 

W1

W2

W3

W4

W5

W6

W7

W8

W9

W10

W11

Fig. 13 Average node degree distribution for recreated social networks after the BBS and
CMDS embedding and the molecular simulation as a function of distance threshold. Results
for Time Window 2.

The mean node degree values for each threshold together with their stan-
dard deviation are depicted in Figure 13 for both BBS and CMDS. There is
not much variation for the BBS embedding. In the case of CMDS, windows 1
and 10 can be perceived as outliers, which follow a different node degree dis-
tribution than the remaining windows. This difference is also visible in Table 1
where in the case of these two windows, the threshold values which result in the
average node degree of 150, are considerably smaller then for other windows.
The reason for this is that CMDS, due to its dependence on eigendecompo-
sition of the dissimilarity matrix, is very sensitive to outliers, i.e. nodes that
are at the periphery of the social network. The result of the embedding and
molecular simulation in such a case is that most of the nodes are very close
to each other, while a few are very far away. This explains the trend in node
degree distributions for Windows 1 and 10 when CMDS was used.

Node degree distributions for the reconstructed networks for previously
selected thresholds for each window are presented in Figure 14 (BBS) and in
Figure 15 (CMDS). All of the networks (except Windows 1 and 10 for CMDS
discussed before) follow Poisson distribution of the node degree. It means that
the reconstructed networks that are in the stable state, in terms of node degree
distribution, behave like random or small–world network (see Table 4) and not
scale–free networks that have power–law node degree distribution. There are
no hubs in the the reconstructed networks and the standard deviation of the
node degree is low as it does not exceed 8 in the case of BBS and 50 in
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Fig. 14 Node degree distribution for recreated social networks after BBS embedding and
the molecular simulation for distance thresholds from Table 1 in different time windows
(x axis – node degree; y axis – probability).
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Fig. 15 Node degree distribution for recreated social networks after the CMDS embedding
and the molecular simulation for distance thresholds from Table 1 in different time windows
(x axis – node degree; y axis – probability).

the case of CMDS (neglecting Windows 1 and 10 where standard deviations
peeks at 200). This indicates that the active core of the organisational email-
based social network in its equilibrium states resembles a community where
everybody has similar number of connections.

Next, we investigate the clustering coefficient (CC). Suppose a node v has
neighbours N (v), with |N (v)| = kv. At most kv(kv − 1)/2 edges can exist
between them (this occurs when v is part of a kv–clique). The clustering coef-
ficient of a vertex, CCv, is defined as the fraction of these edges that actually
exist. The clustering coefficient of the graph is defined as the average clustering
coefficient of all the vertices in the graph. The distributions of the clustering



Molecular Model of Dynamic Social Network Based on E-mail Communication 25
Table 2 Average clustering coefficient (ACC) and its standard deviation for the recon-
structed networks

Window no. 1 2 3 4 5 6 7 8 9 10 11
ACC (BBS) 0.35 0.36 0.35 0.35 0.35 0.35 0.35 0.36 0.38 0.35 0.35

Std. Dev. (BBS) 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01
ACC (CMDS) 0.70 0.35 0.34 0.35 0.34 0.34 0.35 0.35 0.35 0.70 0.35

Std. Dev. (CMDS) 0.16 0.08 0.07 0.02 0.07 0.07 0.07 0.01 0.01 0.16 0.06
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Fig. 16 Clustering coefficient distribution for recreated social networks after the BBS em-
bedding and the molecular simulation for distance thresholds from Table 1 in different time
windows (x axis – node degree; y axis – probability).
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Fig. 17 Clustering coefficient distribution for recreated social networks after the CMDS
embedding and the molecular simulation for distance thresholds from Table 1 in different
time windows (x axis – node degree; y axis – probability).
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coefficient for the selected networks are presented in Figure 16 (BBS) and
Figure 17 (CMDS). Similarly to the node degree distributions, this one also
follows Poisson distribution, i.e. most of the users have similar clustering coef-
ficient (at the level of 0.35 for both BBS and CMDS – see Table 2). Moreover,
the standard deviation of the clustering coefficient is low – 0.01 for BBS for
all windows, for CMDS it mostly varies between 0.01 and 0.08 and reaches its
maximum – 0.16 – for Windows 1 and 10. The clustering coefficient at this
level is characteristic for real–world social network. Comparing these results
with random and ordered networks of the same size (Table 4), it is clear that
all of the recreated networks share the features of both these types of net-
works: their clustering coefficient is larger than the one for random network,
which is 0.18 and smaller than in the ordered network – 0.74. We can conclude
by saying that the analysed networks follow a small–world network model in
terms of clustering coefficient.
Table 3 Average path length and its standard deviation for the reconstructed networks

Window no. 1 2 3 4 5 6 7 8 9 10 11
APL (BBS) 1.82 1.82 1.84 1.83 1.83 1.84 1.83 1.82 1.82 1.84 1.83

Std. Dev. (BBS) 0.41 0.41 0.41 0.41 0.41 0.41 0.41 0.41 0.41 0.41 0.41
APL (CMDS) 2.06 1.81 1.82 1.82 1.82 1.81 1.87 1.83 1.82 2.04 1.87

Std. Dev. (CMDS) 0.71 0.42 0.41 0.41 0.41 0.41 0.48 0.41 0.41 0.73 0.48
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Fig. 18 Shortest paths distribution for recreated social networks after the BBS embedding
and the molecular simulation for distance thresholds from Table 1 in different time windows
(x axis – node degree; y axis – probability).

Last analysed characteristic that describes the reconstructed networks in
a comprehensive manner is the length of the shortest path. The experiments
were performed in the same way as in the case of clustering coefficient and
the histograms are presented in Figure 18 (BBS) and Figure 19 (CMDS). The
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Fig. 19 Shortest paths distribution for recreated social networks after the CMDS embed-
ding and the molecular simulation for distance thresholds from Table 1 in different time
windows (x axis – node degree; y axis – probability).

results indicate that the average path lengths (APL) are short for both BBS
and CMDS as they are in the range [1.82; 1.84] for BBS and [1.81; 2.06] for
CMDS. Also their standard deviation is rather modest: 0.41 for BBS and in
the range [0.41; 0.72] for CMDS (see Table 3). This low value of average path
length indicates that small-world phenomena, where two people are separated
just by few intermediates, is present. Similarly to the clustering coefficient,
average path length puts the analysed networks somewhere in between order
and randomness. APL is longer than in the case of random network (1.34) and
shorter than in an ordered network (2.75), which means that also in regards
to average path length the recreated networks are in fact small-worlds (see
Table 4).

Table 4 Network models characteristics; N = 825 – number of nodes; k = 150 – average
node degree

Feature Random Small–world Ordered
Network Network Network

Clustering Low Between order and randomness High

Coefficient k
N

= 0.18 BBS: [0.35; 0.38]
3(k−2)
4(K−1)

= 0.74

CMDS: [0.34; 0.70]
Average Short Between order and randomness Long

Path Length ln N
lnk

= 1.34 BBS: [1.82; 1.84] N
2k

= 2.75
CMDS: [1.81; 2.06]

The performed analyses revealed that the networks recreated after the
molecular simulation are small–world networks. They follow Poisson node de-
gree distribution, have big clustering coefficient and small average path length.
Molecular simulation terminates when the system achieves stable state. We
showed that networks reconstructed after the simulations feature the three,
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enumerated above characteristics of social networks. The fact that the final
networks are small–world ones and resemble typical characteristics of real-
world social networks can be an indication that molecular simulation can be
a new way of generating this type of networks and may be effectively applied
in sociodynamical analysis.

8 Conclusions

We have proposed to model the dynamics of a complex social system using
molecular simulation, where the interactions between the individuals are de-
termined from the data in a form of a social force, which corresponds to the
particle interaction force used in the simulation. In our case the social rela-
tion was defined on the basis of communication events (message exchange)
recorded in the computer system (email server). This allowed to define a so-
cial distance as inversely proportional to the number of messages sent between
users and to estimate the character of the social force determining the changes
of social distance. It was also shown, that the global dynamics of such system
may be modeled by treating the users as interacting particles embedded in an
Euclidean social space. The movement of particles is determined by the social
force and their trajectories are determined by their initial positions, derived
from the email server logs and allowing to create the social network.

To the best of our knowledge this is the first attempt to apply a molec-
ular modelling approach to the problem of social network dynamics. It has
hence required careful verification, especially with respect to representation of
the network evolutionary processes and chosen network structural properties,
commonly used in network analysis. The experiments have shown that the
proposed approach allows to reason about structural properties of evolving
social network, while benefitting from the algorithmic simplicity of molecular
modelling.

In this study we have presented the whole process of building and using a
molecular model, while identifying the following key points:

– The embedding procedure projecting the non-metric social graph into the
Euclidean space should be chosen with care, taking into account the inher-
ent trade-off between preserving the distances from social graph with the
required accuracy and limiting the dimensionality of the Euclidean space.
This has proven to be especially difficult for network hubs, regardless of
the embedding method used.

– The character of social force leading to changes in social distances can be
generalized, however this process is inherently connected with the loss of
information in the case of individuals who behave statistically differently
from the mean pattern (typical behaviour) derived from the whole network
data.

– The molecular model of social dynamics allows to reconstruct the social
network from positions of the users (moving particles) in an Euclidean
social space. While the reconstructed network preserves some of the global
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characteristics, local properties at the level of individual nodes usually
cannot be recovered.

– The reconstructed social network follows the small–world network model
with large clustering coefficient and small average path length.

Our work aimed to show and demonstrate the possibilities and limitations
of constructing an evolving sociodynamic model which is inherently data-
driven and shows explanatory power. The key challenge was to establish a
link between various approaches used in sociodynamics and network mining
techniques which are based on the data acquired directly from contemporary
computer-based social systems. We conclude that, using a modified molecular
dynamic method, it is possible to create the evolutionary model of complex
computer-based social network, but its applicability is restricted only to certain
network properties measured in social network analysis. Taking into account,
that there are few works dealing with the predictive modeling of complex social
networks, we find these results promising and forming a basis for the future ex-
periments and development of data-driven evolutionary network models. The
obedience of Internet-based social networks provides a huge amount of data for
the analysis, changing the paradigms for the description of behavioral changes
based on computer-supported social interaction processes.
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