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Abstract

Generating natural-looking motion for virtual charactersis a challenging

research topic. It becomes even harder when adapting synthesized motion

to interact with the environment. Current methods are tedious to use, com-

putationally expensive and fail to capture natural lookingfeatures. These

difficulties seem to suggest that artificial control techniques are inferior to

their natural counterparts.

Recent advances in biology research point to a new motor control princi-

ple: utilizing the natural dynamics. The interaction of body and environ-

ment forms some patterns, which work as primary elements forthe motion

repertoire: Motion Primitives. These elements serve as templates, tweaked

by the neural system to satisfy environmental constraints or motion pur-

poses. Complex motions are synthesized by connecting motion primitives

together, just like connecting alphabets to form sentences.

Based on such ideas, this thesis proposes a new dynamic motion synthesis

method. A key contribution is the insight into dynamic reason behind

motion primitives: template motions are stable and energy efficient. When

synthesizing motions from templates, valuable propertieslike stability and

efficiency should be perfectly preserved. The mathematicalformalization

of this idea is theMotor Invariant Theoryand the preserved properties are

motor invariant

In the process of conceptualization, new mathematical tools are introduced

to the research topic. The Invariant Theory, especially mathematical con-

cepts of equivalence and symmetry, plays a crucial role. Motion adaptation

is mathematically modelled as topological conjugacy: a transformation

which maintains the topology and results in an analogous system.



TheNeural OscillatorandSymmetry Preserving Transformationsare pro-

posed for their computational efficiency. Even without reference motion

data, this approach produces natural looking motion in real-time. Also the

new motor invariant theory might shed light on the long time perception

problem in biological research.
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Chapter 1

INTRODUCTION

1.1 The Challenge

Character Motion Synthesis (CMS) research aims at generating motion for virtual

characters. It is a topic of significant value in terms of theory and application. Besides

major applications in the media industry, where both computer games and animation

films depend heavily upon character motion for storytelling, current research also has

applications in user interface design, psychology, sport and medicine.

The challenge ofCMS is not to make characters move, but to make them lifelike.

Underlying this challenge is the marvellous human ability of motion perception. In

real life, people’s motion is very similar, yet individualsvary considerably. From the

varieties in motion details, humans can infer mental states, health conditions or the sur-

rounding environment. Human motion perception has some very peculiar properties.

When watching a film with computer generated characters, some awkward artefacts

are spotted instantly even though they are physically feasible, while many physically

impossible motions are accepted as realistic and entertaining.

Nowadays in industry, high quality motions are mainly generated manually. Very of-

ten, characters are complex and contain a large number of joints, making animation

tedious work. To make it worse, reusing motion animation is also difficult and prone

to artefacts. Therefore high level animation tools are badly needed.
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Real life motions interact extensively with the environment. Currently, the most im-

portant research endeavour is the physics based approach. Besides the addition of the

dynamic interactive responses, it is expected that the elimination of artefacts that vio-

lates physics will make motions more natural looking. However, there is a key problem

in applying this method forCMS: dynamics of biological systems are much more com-

plex than artificial systems; attempts to dynamically simulate biological system face

prohibitive computational costs and modelling difficulties. In fact, this problem has

already been identified by biological researchers.

Motor Control and Motion Perception are close related. Difficulties inCMS reflect

the inferiority of artificial control method. The peculiarity of motion perception and

control suggests biological systems may adopt a very different principle. To keep

motions natural looking, it is worthwhile to synthesize motion following the biological

motor control principle. This thesis is founded on biological research findings.

1.2 Agile Animals

Although animals have fascinated us for thousands of years,we still do not fully un-

derstand how they move. Animals are very different from artificial machines and such

comparisons may reflect the biological motor control principle.

• Degrees of freedom (DOFs). From a mechanical perspective, animals have

many moreDOFs than their artificial counterparts. An artificial ship can be

approximated by a simple rigid body; whereas the flexible spine of a fish is

made up of tens ofDOFs.

In principle, the extraDOFs allows for more variations in adapting the environ-

ment. However, for the control system, too many extraDOFs become a disaster

because of the computational burden. For a human to take one step, the neural

system controls more than600 muscles. Even with nowadays computers, solv-

ing this problem directly would cost thousands of hours(Anderson and Pandy,

2001).

• Versatility Most artificial machines are designed with a single purpose,while
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animals are capable of unlimited tasks. Many biological functions which are of-

ten neglected byCMS research, such as feeding, breeding, language and vision,

depend on motor control. Besides walking, swimming and manyother styles

of locomotion, we utilize many tools, such as cars, skates, bicycles and tennis

rackets.

Following traditional control methods, it seems that unlimited resources need to

be allocated for motor control, while biological research shows motor control

requires very few mental resources.

• Performance Although the problem of biological motor control is more com-

plex, the resulting performance surpasses artificial machines in many aspects.

Natural motions are more

1. Robust: A human can maintain walking stability on rough terrains which

would be inaccessible for vehicles.

2. Manoeuvrability and speed: Typical modern aeroplanes travel at a maxi-

mum of32 body length/sec and yaw at720 deg/sec. While pigeons may

travel at75 body length/sec, yaw at about5000 deg/sec(Byl, 2008).

3. Energy Efficiency: The energy consumed by a walking human is only5%

of that for the world famous humanoid ASIMO(Collinset al., 2005).

1.3 Motor Invariant Theory

1.3.1 Utilizing Natural Dynamics

Biological motor control has achieved a delicate balance ofrobustness, controllability

and energy efficiency. The real-time performance may further suggest that the biolog-

ical method is simple and requires little computational load. These are the dreaming

properties forCMS research and the explanation that how biological systems achieve

this forms the genesis of this thesis.

At first, the natural dynamics of interactions between the body and environment is
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very complex. In mostCMS research studies, some complex non-linear properties of

natural dynamics are treated perturbations for planning, and are cancelled by control

effort. However from an evolutionary perspective, the mechanical structures are a

product of natural selection, which has evolved alongside with the environment for

millions of years. These structures are an advantage ratherthan a handicap. Without

the need to consider stability, energy efficiency and real-time constraints, motion can

be synthesized by natural dynamics without any control effort. Thus a new idea is

that motor control is based on natural dynamics. The neural system plays a minor role

in planning; it simply utilizes natural dynamic properties. From this perspective, the

key question to be answered by Motor Invariant Theory (MoIT ) is how to utilize the

natural dynamics in a systematic manner.

1.3.2 Motor Invariant Theory

This thesis proposes a new idea for the underlying reason forsuperiority of biologi-

cal motor control. It seems that in the process of motion adaptation, some valuable

properties of natural dynamics are kept invariant. The conjecture is that: instead of

the detection and cancellation all kinds of perturbations,biological systems rely the

success of motor control on certain invariant properties ofnatural dynamics. This is

Motor Invariant Theory(MoIT).

MoIT incorporates the motion primitive conjecture. In dynamics, invariant proper-

ties are stable properties. From a dynamic perspective, notall the motions generated

by natural dynamics are stable, only a few are stable, which can be utilized as tem-

plates and become motion primitives. The following question is how the motor control

system utilizes these templates to synthesize new motion.

MoIT proposes that when facing a new situation, humans do not solve motor control

problems from the ground up. Instead, our control system utilizes successful expe-

rience in similar situations. In dynamics, adapted motionsare qualitatively the same

with the motion primitives or templates, and there is a one toone mapping relationship

between the adapted motion and the motion primitive. This similarity in dynamics is

called topological conjugacy.
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This idea can be illustrate in Figure 1.1.

A

Figure 1.1: The Transformation Idea of Motion Invariant Theory

In dynamicCMS research, a motion is represented by a curvex(t) parameterized byt.

x(t) is the solution to the equation (Equation 1.1) that describes the dynamics between

the body and environment.

ẋ = F (x) (1.1)

The statex must be defined in some coordinate system. Suppose itx is defined on

coordinate systemA, and the curve of Equation 1.1 is the blue(left) one.

To illustrate adaptation, we define a transformationT that translate the state valuex.

x̃ = T (x)

In this way, each equation can be described in two coordinatesystems. Supposex

is the state value on coordinateA and x̃ is the state value on coordinateB. As an

example, the red(right) curbe can be described by Equation 1.3 and Equation 1.2.

˙̃x = F (x̃) (1.2)

ẋ = F̃ (x) (1.3)
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Since such two equations describe the same motion, the solution of one equation can

be achieved by transforming the solution of the other. Supposingx′(t) is the solution

to Equation 1.3 and̃x(t) is the solution to the Equation 1.2, then we have

x′(t) = T−1(x̃(t))

Equation 1.2 and Equation 1.1 have the sameF , thus:

x̃(t) = x(t)

Then we have

x′(t) = T−1(x(t))

By transformation, we obtain a new motionx′(t) from x(t).

The transformation method has many advantages: it is much less computationally ex-

pensive and leaves many important properties untouched. For example, if the original

systemF is stable, then the transformed systemF̃ should also be stable. In mathemat-

ical language, if there exists a continuous one-one mappingbetween the two dynamic

systems, then the two aretopological conjugate. This relationship is presented by

F ≃ F̃ . F and F̃ are calledanalogous systems, which share the same topological

structure. The existence of one-one mapping is a necessary and sufficient condition for

sharing topological structure. Based on this, two approaches for motion adaptation are

developed. Transformation can be specified explicitly or implicitly by maintaining the

topology.

If the perturbation does not violate the topology, the corresponding one-one mapping

will modify the motion without changing it qualitatively. In dynamics, the topology

preserving ability is an intrinsic property of many dynamicsystems:structural stabil-

ity.

One strategy of motor control is to enhance the structural stability. By this approach,

when the qualitative property is preserved by the control system, the one-one mapping

that transforms motions is automatically specified. However, in many cases, working

out the details of one-one mapping maybe be difficult or computationally expensive.
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Therefore this approach is qualitative.

In MoIT , this approach models involuntary motion adaptations which are low level

functions of the neural control system. The topological structure is one important

property that should be kept invariant, and it becomes a motor invariant inMoIT : the

Global Motor Invariant.

Also if the transformation is known, then the two systems must be topologically equiv-

alent. Therefore, another approach is to directly specify the transformation. This

method modifies motion with precision andMoIT applies it to high level voluntary

motor control. In many situations, to achieve a desired transformationT , control effort

needs to be applied. When applying this method, how to selecta proper transformation

T is the most challenging question.

In MoIT , the selection ofT is based on two principles.

• Parameters of transformationT should be easy to detect and formulate.

• The transformationT should be energy efficient. For a differential dynamic

system, some transformation explores the natural dynamicsand requires little or

no energy input.

When specifying transformation directly, some quantitative properties will be unchanged

during transformation, they areLocal Motor Invariant. This idea is similar to motion

parametrization, but there is a clear difference. Traditional motion parameterization

paramterize motion curves in the configuration space, whilein MoIT , transformations

are applied on the dynamic system. The dynamic system are parameterized with a

concern of energy efficiency and stability.

Although the new mathematical language seems obscure at first glance, the properties

that it describes are universal in physical world, with or without life. The underlying

idea is intuitive and can be explained well through commonlyobserved phenomena.

1.3.3 The Floating Ship: An Example of Stability

The floating ship example shows the idea of structural stability and topological conju-

gacy. In real life, typical ships have bigger height than width, as shown in Figure 1.2.

7



An interesting question is when floating on waves, how the ship maintains its configu-

ration or “posture”.

Through analysing the topology and structural stability, we see that it requires little

effort to maintain this posture. This conclusion applies todifferent ships since their

dynamics are qualitatively the same, or topologically conjugate.

Dynamics

bC

g

bC

b

lg
lb

q

bC

b

bC

g

Figure 1.2: The Floating Ship Example

The sway motion of the ship shown in Figure 1.2 can be described by Equation 1.4

Jq̈ + dq̇ = τ(q)g + τ(q)b + τu (1.4)

whereq is the swaying angle,J is the inertia,d is the damping coefficient, andτg,τb,τu
are the corresponding torques of gravity, buoyancy and external control.

When a ship is at sea, its motion is mainly governed by the two forces, buoyancyb and

gravityg. If τu = 0, the ship motion is totally governed by the natural dynamic forces.

Such a system isautonomous.
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To make it consistent with the discussions in the following chapters, Equation 1.4 is

reformulated. By defining thestatevariablex = [q, q̇], Equation 1.4 becomes

ẋ = FJ,d(x) +Du

whereF is a function ofx, the subscriptsJ and d are system parameters, D is a

matrix, which describes how the control effort is applied, and u is control input. For

this exampleu is τu, which is0.

Equilibrium Postures

A ship will only rest at the postures whereτg+τb+τu = 0, which are calledEquilibrium

Postures. The only two possible ones are shown in Figure 1.3(a) and Figure 1.3(b).

bC

b

bC

g

(a) The Stable Equilibrium Posture

bC

b

bC

g

(b) The Unstable Equilibrium Posture

Figure 1.3: The Equilibrium Postures
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However, the two postures are different, which is illustrated with thephase plot. On

the phase plot, the horizontal axis representsq; and the vertical axis represents velocity

q̇. On the phase plot, the motion of the ship is shown as a curve, which is calledflow.

The posture in Figure 1.3(a) isattractiveor stable. If a small perturbation moves the

ship away from the left posture, it will return to the equilibrium posture automatically

as shown in Figure 1.4(a).

Whereas the posture in Figure 1.3(b) isrepellingor unstable, if the ship is moved away

from the equilibrium posture, by natural dynamics, it will move away even further, as

shown in Figure 1.4(b).
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(a) The Stable Equilibrium Posture

b
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bCbC bC

(b) The Unstable Equilibrium Posture

Figure 1.4: Phase Plots of The Equilibrium Postures

A Simple Task

All the flows form thephase portraitof the dynamic system, which illustrates all the

possible motions. The discovery is that all the flows start from the repelling posture

and end at the attractive posture. Several curves are shown in Figure 1.5. This means
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that no matter what the current posture, the ship will returnto the normal stable posture

automatically.

This is an intrinsic property of natural dynamics, and thanks to this, balancing is a sim-

ple task which requires no control effort. This property is determined by the qualitative

structure design criterion which demands the centre of buoyancy is above the centre of

gravity.

bC bC bCbC
bC
bC
bC

bC bC

Figure 1.5: Global Properties of the Flows: All the curves start from therepelling
posture (Red) and end at the attractive one(Blue)

Generalization of the Ship Example

This conclusion is independent of the shape, size, weight ormaterial of the ship. In

general cases, the same wave perturbation will result in different sway motions for

different ships. However, as long as the qualitative structure design criterion is main-

tained, balancing remains “easy”. The phase portraits of all ships share following

properties.

• one repelling point

• one attractive point

• all flows start from repelling point and end at the attractivepoint.

In mathematical terms, all the phase portraits share the same topological structure of

Figure 1.6.

This phenomenon illustrates the principal idea of motion adaptation inMoIT . When

the variations among individuals or situations result in motion variations, the qualita-
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tive dynamics or topological structure of the dynamic system remains invariant.

bC
Unstable Equilibrium

bC
Stable Equilibrium

Figure 1.6: the topology of the phase portraits of ship dynamic

1.3.4 The Mass Spring System: Symmetry Transformation

Despite the complexity of the body structure, biological motor control is fast and ac-

curate. Such quantitative properties pose another puzzle in motor control research, as

solving the complex dynamics directly would require prohibitively long computational

time and excessive mental resources.

MoIT proposes a new method to achieve speed and accuracy in motor control. This

efficient strategy is based on the ideas of transformation and symmetry. New motions

are achieved through transforming template motions,without solving the dynamics. To

keep the motion natural looking, the control system choosesthe transformation direc-

tions that are energy efficient, or using an alternative, allowed by the natural dynamics.

Such ideas can be illustrated by the following mass spring example, shown in Fig-

ure 1.7. The mass spring system is selected because it captures some important prop-

erties of biological dynamics. The compliant actuators of muscles work like springs,

and rigid bones are modelled as mass.
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q

Figure 1.7: the mass spring system

Dynamics

The canonical equation of a mass spring system is Equation 1.5

q̈ + q = 0. (1.5)

whereq is the offset distance.

By defining thestate variable, x = [q, q̇], Equation 1.5 can also be reformulated in the

form as

ẋ = F (x)

Figure 1.8 shows two flows passing through different statesx andx′ on the phase plot.

Symmetry and Transformation

The mass spring system has some “symmetrical properties”. To an intuitive eye, dif-

ferent flows share the same circle “Shape”. Without solving the Equation 1.5, new

flows (the solid one) can be obtained by scaling the original (the dotted) flow.

From a mechanical viewpoint, this is because the flows of a mass spring system pre-
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Figure 1.8: Mass Spring Phase Plot: two flows pass through different states (x and
x′)

serve energy. To see this, we can define the energy function

E =
1

2
(mq̇2 + kq2)

wherek is the stiffness,m is the mass. SinceE is a constant, we makeE = c, When

m = 1, k = 1, we obtain

q2 + q̇2 = 2c

The equation above is the implicit function of a circle.

Therefore, given a template flow that passes throughx, the flow passes throughx′ can

be obtained by enlarging the original template flow. In this manner, we determine the

future motion afterx′, without solving the dynamics.

Dynamic Perception and Local Motor Invariant

The idea of “transformation and symmetry” may shed light on the dynamic perception

problem. It is highly unlikely that animals solve Equation 1.5 to understand the the

mass spring system. As an alternative, the dynamics can be encoded in a different
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manner: a motion template and the symmetry property. If so, observed motions can be

validated by checking them against our memorized motion templates.

To make it better, it is even unnecessary to work out the transformation. In fact, it is

enough just to check some properties invariant under transformation. For the exam-

ple of mass spring system, we can check the “shape” of the flow.For a mechanical

perspective, this means to check the energy preserving property.

The invariant properties like preserving energy or shape can be quantitatively mea-

sured. Since they are invariant only when flows move in a specific direction, they are

calledLocal Motor Invariant.

1.3.5 The Rimless Wheel

The third example is a mechanical system with a more complex structure, the rimless

wheel. The complexity of the mechanical structure providesan opportunity to test

various control ideas and compare them.

Dynamics

The Simple 2D model is shown in Figure 1.9. Whereα is the angle between the

spokes,γ is the angle of the slope,L is the length of the spoke,g is gravity.

The dynamics of the system includes two phases: the rolling phase and the striking

phase.

During the rolling phase, the rimless wheel works like an inverted pendulum, the dy-

namics is as follows:

θ̈ =
g

L
sin(θ − γ)

When another spoke hits the ground, a strike happens. The impulse equation is

θ̇+ = cos(α)θ̇−

+,− means after and before collision.
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Figure 1.9: The Rimless Wheel

Comparing with the mass spring system, the motion of a rimless wheel is more com-

plex. Depending on the initial condition, rimless wheel canroll uphill, roll downhill,

stand with one spoke or stand with two spokes. As the rimless wheel continues its

motion, the final results of motion may be any of the following:

• rolling down the hill at a constant speed.

• rolling down the hill at ever increasing speed.

• stopping with one spoke as support.

• stopping with two spokes as support.

The first one is of much interest. In dynamics, constant rolling speed means the flow

forms a limit cycle. Figure 1.10 shows the limit cycle on a phase plot.

The Qualitative Approach

The motion of a rimless wheel can be controlled by many methods. The first method

explores the topological invariant property. For the rimless wheel system, the angleα
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Figure 1.10: The Limit Cycle of The Rimless Wheel

between spokes and the slope angleγ can be changed. By doing this, we can change

the stable rolling speed of the rimless wheel. This will result in a series of dynamic

systems analogous to the original one. By gradually changing the parameter, on the

phase plot, the limit cycle changes its shape accordingly. The limit cycles of different

mechanical parameters are shown in Figure 1.11.
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Figure 1.11: Different Mechanical Parameters result in Different Rimless Wheel

This is the qualitative approach; motion can be adapted by changing the parameter of

the mechanical system. This method requires no control energy input to maintain the

new motion; it is energy efficient and easy to implement. However, the relationship

between system parameters and the deformation of the limit cycle is hard to find, which

prevents applying this method for tasks that require precision.
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For example, given a state on the state space, it is difficult to make the limit cycle pass

through the state by changing the parameters.

The Quantitative Approach

Another approach to control the rolling speed is by applyingcontrol force. For ex-

ample, we apply controlu to the dynamic system, this can be achieved by adding a

rotating motor to the center of the rimless wheel, then the equation becomes

θ̈ =
g

L
sin(θ + γ) + u

if we setu = ε g
L
sin(θ + γ), whereε is a parameter, then the rolling speed of the

rimless wheel will be a parameter ofu. Figure 1.12 shows limit cycles of differentε

parameters on a phase plot.
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Figure 1.12: Different Limit Cycles with Different Control

As shown in Figure 1.12, the limit cycle is stretched vertically. The relationship be-

tweenε and the rolling speed is simple, making this method computationally efficient

and suitable for precise tasks. To make the limit cycle pass through a state(θ, θ̇), if the

state of sameθ on the limit cycle is(θ, θ̇′), then we have

ε = (
θ̇

θ̇′
)2 − 1
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The disadvantage of this method is it require energy input. Therefore for a large defor-

mations,this method is not energy efficient.

The Difference and Comparison

These two methods are different but related. Neither methods will change the dynamics

qualitatively. The systems after parameter modification, or the controlled systems are

still able to run uphill, down hill, stop with one or two spokes and roll at a constant

speed.

This demonstrates the underlying topology is not changed. Both methods try to trans-

form the phase portrait. The different transformation require different computational

or energy cost.

There is another reason for choosing the rimless wheel as a example, its dynamics

resemble that of animals’ locomotion behaviour. As furtherdevelopment, we propose

this idea for motion control of dynamic characters.

1.4 Contribution

Based on the biological idea, this research proposes an moreefficient framework for

animation production. Natural motion features are maintained by adopting biological

inspired control techniques.

In application, the new framework is capable of synthesize motions automatically with-

out any manual key frame work or motion capture.

MoIT introduces topological conjugacy as the foundational theory that unifies differ-

ent biomechanic research ideas in a new framework. InMoIT , Motion Primitives are

identified by thestructural stabilityproperty. Entrainment and Lie Group Transforma-

tion are introduced as control techniques efficient in termsof energy and computation.

This combination implies a new control hierarchy frameworkand has a good biolog-

ical meaning:CPG comes from the research of spinal cord, the low level control

system; and the transformation idea comes from research of the cortex, which models
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the high level control system. The low level system maintainthe stability utilize some

robust and qualitative measures like entrainment; while high level system control the

precision, which adapts the stable motion for specific purpose.

Compared with currentCMS methods, the new approach has several advantages:

1. More Types of Adaptation. Most dynamic methods only focus on generating

responsive motions to dynamic perturbations. Adaptationsacross different char-

acters are treated as an independent research topic (motionre-targeting) and are

tackled with very different methods.MoIT solves the two problems with one

approach. The mathematical idea of topological conjugacy incorporates both

motion re-targeting and perturbation responses in a unifiedframework. Thus

MoIT is capable of generating more types of adaptation.

2. Better Usability. For manyCMS methods, eachDOF is controlled indepen-

dently. When modifying motions, the animator has to modify eachDOF, which

is tedious work.

In MoIT , adaptation is achieved by applying transformation. Each type of trans-

formations can be parameterized by one parameter, and thereare only a few

types of transformations available for a specific motion task. By specifying very

a few parameters for the transformation, control inputs of all DOFs are modified

automatically, making this method easier to use.

3. Noval Motion Generation. MoIT relies on the dynamics of body and environ-

ment. Motion Capture Data are not needed as reference input.In some situa-

tions, this method can generate new motion that cannot be captured.

4. Computationally Efficient. This motion synthesis approach requires little com-

putation time and memory, therefore it suits real-time applications.

5. Dynamic Motion Transition. Transitional motions can also be simulated dy-

namically, and in this research such methods have been developed upon solid

theoretical foundation.

Because of its biological foundation, algorithms and simulation results ofMoIT might

shed light on biology research questions. Some conclusionsand control techniques

developed in this thesis provide alternative ideas for biological motor control, and have
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potential theoretical value.

1. The Motion Primitive Hypothesis is an old idea in biological research, but there

is no agreement on the definition and underlying reasons. Biological research

has tried to identify motion primitives by exploring neuralanatomy, EMG sig-

nals or muscle activation patterns.

MoIT examines motion primitives from the dynamic viewpoint. Thediscovery

and conclusion are more logical and complete. Besides pointing out a motion

primitive,MoIT also explains why certain motions become primitive, how many

primitives exist, and how they are formed.

2. Many biological research ideas likeCPG and invariant based perception are pro-

posed empirically. For a complete theory, much necessary detailed information

is still missing. As a contrast,MoIT is based on rigid mathematical theory, for

many biological ideas,MoIT provides workable mathematical machinery.

1.5 Organization of the Thesis

This thesis is organised as follows.

In Chapter 2, previous research on motion synthesis and biological motor control

which are the motivation and justification forMoIT are discussed, .

In Chapter 3,The Qualitative Dynamics Theoryis introduced to explain motion prim-

itives. Biological based methods for maintaining the global motor invariant are devel-

oped.

Chapter 4 focuses on the idea of Local Motor Invariant and Symmetry. Lie Group the-

ory is introduced to analyse the symmetrical properties in motion dynamics. Symmetry

Controllers are developed to provide necessary energy input for adapting motions.

Chapter 5 discusses the combination problems. For a single motion primitive, strate-

gies are developed to preserve both the global and local motor invariant simultaneously.

Motion primitive transition is discussed. Methods for combining motion elements into
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more complex motions are developed. Finally, in oder to develop an animation system,

the software architecture and work flow are discussed.

Chapter 3, 4 and 5 lay down the theoretical foundation ofMoIT . The following chapter

provides experimental verification.

Chapter 6 focuses on the synthesizing adaptive motions for one primitive. Bipedal

walking, which is commonly observed but poses great challenges for currentCMS

research,is chosen as the example,. Methods based onMoIT successfully boost the

stability and generate adaptive gaits, and further validation shows the synthesized gaits

comply with natural observation.

In Chapter 7, motion transition is discussed. A new balancing motion primitive is

developed. Adaptive transitional motions from stance to walk and walk to stance are

generated dynamically.

In Chapter 8, motor invariant theory is extended to more complex characters. Three

strategies are developed to simplify the problem for different situations.

This thesis ends with Chapter 9. After discussion of new finding arising from this

research, some new questions and ideas for graphics and neural science are proposed

for further research.
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Chapter 2

BACKGROUND

CurrentCMS methods have different ideas of motor control. Many currentCMS

research studies adopted the control hierarchy of artificial systems. No matter whether

the control method is based on tracking or optimization, in such systems, there is a

clear separation of planning and execution. The body is treated as the mechanical

apparatus, which execute the motor commands from the neuralsystem.

Motor Invariant Theory(MoIT ) is based on the integrative theory of motor control(Dickinson

et al., 2000): It does not separate motion execution from motion planing. For biologi-

cal systems,it is believed that the planning and execution can not be separated distinc-

tively. In the integrative theory framework, neural systemplays a limited role in the

planning. Body and environment are taken into consideration and motor control can

only be understood from a broader perspective.

In this chapter, limitations of currentCMS methods are discussed first, which motivate

this research. New theory is developed because these limitations can not be overcome

without breaking the current theoretical framework. Supporting biological research

studies are discussed later, which serve as justifications for MoIT .

23



2.1 A survey of CMS

Many methods are developed inCMS, making it impossible to include all the work

in this chapter. For a short discussion,CMS methods are categorized by the principal

control model: memory based or computation based. Memory based control ideas

are the foundation of the many data-driven techniques; while procedural methods are

computation based. Pros and cons of methods are discussed category by category.

2.1.1 Data Driven

Data-driven methods are based on ready motion data, generated by Key-frame or Mo-

tion Capture(Mocap). In practice, motion data are segmented into short time clips. An

animation is synthesized by selecting motion clips and connecting them together(Kovar

and Gleicher, 2003; Parent, 2002).

Like other example based methods, data driven methods can generate good results if

similar motion clips are available, but difficult to generate adaptation or novel mo-

tion, either for a different character or scenario. The “re-targeting” problem is a big

challenge inCMS research.

In practise, motion versatility requires a large data base.As a consequence data man-

agement becomes another problem. Due to this reason, the Annotation Database

(Arikan et al., 2003) and the Motion Graph (Kovaret al., 2008) were proposed. Cur-

rently, the problem of catalogue and search of motion data are not trivial and remain

open(Keoghet al., 2004; Mülleret al., 2005).

2.1.2 Procedural Method

For physics basedCMS, different procedural approaches have been proposed.

• Tracking Controllers.

Some early research applied classicalPD controller for dynamic motion synthe-

sis (Raibert and Hodgins, 1991). Later research (Hodginset al., 1995) applied
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the same method for different tasks like running, bicycling, vaulting and balanc-

ing. For high dimensional characters,PD controllers need to track predefined

motion curves(Yinet al., 2007) in configuration space.

A PD controller is shown in Equation 2.1.

u = K(q − qd) + dq̇ (2.1)

whereu is the control effort,K is the stiffness,qd is the desired or reference

position, andd is the damping efficient.PD based methods can run in real-time

and generate adaptive responses to small perturbation. Butlarge perturbation

responses or deviations from the reference trajectory are difficult to achieve.

Most PD based controllers use motion capture data as references. Asan alter-

native, Laszloet al. (1996) introduced Limit Cycle (LC ) as tracking reference

for periodic locomotion animation. Current research studies(Coroset al., 2010,

2009; Laszloet al., 1996) track fixed limit cycles. Limit cycles are defined on the

phase space, thus such method can be seen as curve tracking inthe phase space.

Phase space curve tracking methods share many characteristics withPDtracking

controller of configuration space, which promise real-timespeed but lack adap-

tation, and the results are stereotype looking.

• Optimization. The redundantDOFs make motion planning non-deterministic.

Optimization has been introduced toCMS for this problem. The idea is to

choose the “best” one among all the possible motions.

Many merits have been proposed forCMS. For dynamic methods, a reasonable

merit is the energy costE.

E =

∫ t1

t0

fa(t)
2dt (2.2)

wherefa is the active force generated by actuators like motors or muscles. This

is introduced toCMS research as the influential Spacetime Constraints(Witkin

and Kass, 1988). It is based on the hypothesis that the natural looking trajectory

costs minimum energy, which closely relates to the idea of Darwin’s Theory of
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Evolution.

Optimization based methods produced believable motions for variable tasks.

Jainet al. (2009) provided an example of locomotion. Macchiettoet al. (2009)

found a method for balance maintaining movement. Liu (2009)proposed a

method for object manipulation.

Drawbacks of Optimization

Optimization is a popular method for physics based animation. It generated the best

motion results in current research. But this method has several drawbacks.

• Numerical Stability Optimization methods promise the energy efficiency of the

motion results. But in practise, it is difficult to design a stable numeric scheme

to find optimal motion solution.

The motion results are sensitive to the accuracy of the modeland the proximity

of the initial guess. Liu (2005) points out that the originalspacetime constraint

methods only suit high energy motions, like jumping and running. For low en-

ergy tasks (such as walking) the results are not natural looking.

• Computational Complexity: Optimization methods like spacetime constraints

is a variational optimization problem in nature. For a complex character, it might

take prohibitively long time,thus the applications is limited to problems which

are computationally feasible. In addition, little is knownabout how to reuse a

computation result for motion adaptation.

2.1.3 Hybrid Methods

There are many research attempts to make tracking controllers more adaptive or op-

timization faster. One popular idea is to mix the two methods: optimization is done

offline for planning the reference trajectory, while tracking controllers are adopted as

online real-time controllers. Many methods start to train the controller with motion

capture data (Coroset al., 2010; de Lasaet al., 2010; Leeet al., 2010a,b; Levineet al.,
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2011; Liuet al., 2010; Wanget al., 2010; Weiet al., 2011; Wu and Popović, 2010; Ye

and Liu, 2010).

Also new research propose use simplified dynamic models for optimization planning(Mordatch

et al., 2010).

These attempts may remove some limitations of tracking or optimization, and make

them feasible for certain applications. ButCMS problems can not be solved com-

pletely in this manner. Learning based methods are complex and sensitive to training

examples, the stability of such controllers can not be strictly proved. In addition, of-

fline optimization does not reduce the computational burdenin nature.

2.1.4 Biological Constraints

The problems ofCMS has also been spotted earlier in biological motor control re-

search. Biological researchers have dropped traditional artificial control ideas long

ago, because they violate the biological constraints. Although the mechanism behind

information processing remains obscure, some characteristics of biological informa-

tion processing are well recognized, makingCMS methods above questionable(Glynn,

2003).

• Sensing and Control Limitations: Motor control is not only a mechanical prob-

lem, but also a complex process involving chemical, electrical and mechanical

changes. Many crucial mechanical parameters and variablessuch as mass, iner-

tia, force, are inaccessible to the neural system and can only be approximated.

Some important control variables (such as torque) are controlled indirectly by

the neural system through a complex process. Also body and environmental

measurements are noisy and time varying, making methods that are sensitive to

errors unsuitable for control biological system.

• Neural Computation: The neural system is powerful, but inferior in speed

and accuracy when compared with digital computers. Neural signals are of only

hundreds of Hz and their transmission speed is slow. In addition there is a long

delay between firing a neural signal and generating force in the muscles. It may

cost about half a second from seeing an object to force generation in arm (Latash,
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2008). This makes it impossible for the neural system to carry out the complex

computation necessary for realtime optimization.

Following the idea of optimization control, the dynamics offluid environment

and deformable body are more difficult to optimize. But most primitive life

forms live in the sea and have limited intelligence.

• Memory Capacity: Some argue that motion control is not based on computa-

tion, but based on memory. This idea avoids the question of computation speed,

but it faces another problem of the memory capacity. Since motion varies greatly,

if we store every variation of motion in our brain, brain willrun out of memory

space.

Because of such constraints, researchers have started to look for different strategies.

2.2 Motion Primitives

At first, researchers are reminded that logical think or mental conscious plays little role

in motor planning. Animals including human exhibit complexmotion behaviours after

birth or at early ages, abilities like breathing, heat beating and child bearing are inborn

without learning.

Some suggests that motor ability are inborn and organized inblocks(Bizziet al., 2002,

1995). Strong evidences come from the experiment where stimulating of a single spinal

motor afferent triggers a complete sweeping motion(Bizziet al., 1995). A new theory,

Motion Primitive Conjecture, was proposed. In this theory,motion is built from a lim-

ited number of building blocks, which are calledmotion primitives. Complex motions

are combinations of motion primitives, just like we connectalphabets into sentences.

Motion Primitive Conjecture also provides insight into themotion perception. Gallese

et al. (1996) have found action and perception trigger similar reactions in a group of

neurons.
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2.2.1 Dynamic Motion Primitives

The Conjecture of motion primitive is supported by both the behaviour study and

anatomy of natural animals. For dynamicCMS, the puzzle is how motion primitives

idea can simplify dynamic motor control.

A proposed answer is that every motion primitive has some valuable dynamic proper-

ties, like stability and efficiency, which is determined by the natural dynamics. Some

researchers point out that motion style is closely related to the body structure and en-

vironment. They have not been changed much by the evolution of neural system, for

example, the whales swim more like fish than other mammals. Animals do not move

the way they want, but rather the way they can. A further explanation is that the body

and the environment play the most important role in motor control: they form the basic

pattern of motion (Nishikawaet al., 2007). For neural control, the responsibility is not

to plan the trajectory from ground up, but modifying or tweaking basic patterns to meet

specific purpose. Several theories are proposed for the neural control mechanism.

Experiments have shown that even under the same conditions,the motions still vary.

SomeDOFs are not controlled and freely influenced by the environment. For this

phenomenon,Uncontrolled Manifold Hypothesis(UMH)(Latash, 2008) proposes that

only the final results is the concern of motor control, trajectory is not.

Equilibrium Point Hypothesis(EPH)(Feldman, 1986) explained below can be seen as a

specification ofUMH . This idea comes from properties of differential equations. For

a dynamic system

ẋ = F (x)

the equilibrium pointsxe satisfies the conditionF (xe) = 0. EPH suggests the neural

system does not control motion trajectory, but the positionof the equilibrium point.

Impedance Control(Hogan, 1985) refines the idea ofEPH by providing a model for

effects of the extraDOFs as explained below. At an equilibrium pointxe,

F (xe) = 0

Impedance Control proposed that the extraDOFs provide a way to control the stability
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and admittance of the equilibrium pointxe. The mathematical description is

F (xe + Er) = KEr (2.3)

whereEr is the offset error vector,K is stiffness matrix or impedance,which deter-

mines the stability. The extraDOFs provide the neural system a way to tune the direc-

tion of K according to the purpose. This mechanism will provide the actors a way for

avoiding obstacles or risks. Experiments (Franklinet al., 2007) have proved this idea

by showing that the measured matrixK has anisotropic properties.

2.2.2 Neural Control Mechanism

Motor control involves little mental work, and current ideaof neural science is that

motor control is a low level intelligent activity and can be controlled without brain

input. Research studies have proposed several neural activities related to its role in

“tweak” motion primitives.

• In vertebrate animals, Central Pattern Generator (CPG) serves important func-

tions in locomotion, respiration, swallowing and other rhythm behaviours. Co-

hen (1988) argues that locomotion is the result of the interaction between neural

and mechanical oscillators via a process calledentrainment. Neural systems

modify the motion by adjusting frequency and amplitude of the rhythmic neural

signal.

• Some research studies find out that motion will change in a uniform manner(Viviani

and Stucchi, 1992).Flash and Handzel (2007) proposed modelling motion adap-

tation throughaffine transformation. This idea is inspiring for the fact that affine

transformation group is closely related to vision perception system. This theory

implies a close relationship between motor control and vision.
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2.2.3 Bionic Robotic Research

Ideas from biological research also inspired many robotic engineering experiments,which

show the feasibility of new control principles. Such robotsutilize the natural dynamic

rather than the tracking or optimization strategy. Here aresome important research

studies reported.

• Limit Cycle in Walking. A very important discovery is the bipedal walking

can happen without any control(McGeer, 1990). Under specific conditions, a

mechanic structure can walk down a slope passively, with natural looking gaits.

Further research have shown that such a mechanical system can walk on a plane

with a very simple control strategy(Collinset al., 2005).

• CPG and entrainment The CPG based entrainment is applied for robotic re-

search(Williamson, 1999), the results show theCPG will boost the system sta-

bility and can maintain motion in unpredictable situations. Fukuokaet al.(2003)

has appliedCPG for quadrupedal walking.

Taga (1995) had applied the idea for bipedal walking control, little is known

about how to tuning the parameters to generate desired motion adaptations.

• Passive based Control.The control and mechanics community also starts think-

ing about passive based control methods that utilize the natural dynamics. Many

techniques such as (Asano and Yamakita, 2001; Prattet al., 1997) have been de-

veloped to control redundant systems, However early methods are usually lim-

ited to its application or may be not efficent in computational time or energy.

These techniques are generalized as a systematic method(Spong, 1998, 1996),

which provides a solid mathematical theory and can be applied to mechanic

systems with more complex properties(Spong and Bullo, 2005)
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Chapter 3

GLOBAL MOTOR INVARIANT

Motions are similar but vary greatly. For example, different people will walk with

different gaits. An interesting question is how the word “walk” refers to different

gaits. Motor Invariant Theory(MoIT ) proposes an answer: despite differences in gaits,

we agree on the word “walk” because in essence, we all walk in the same manner.

Intuitively, the gaits are periodic, energy efficient and stable. The variations come

from the differences in body, environment or purpose. From dynamic perspective, all

the gaits dynamics share the same structure, or the qualitative properties of walking are

invariant. InMoIT , the qualitative invariant properties areGlobal Motor Invariant.

For the biological perspective, we believe the walking ability is inborn and encoded in

the body structure. What “Walk” means is one motion primitive. InMoIT , the motion

primitives are identified by the global motor invariant. This claim will be justified in

Section 3.2.

In theory, it is difficult to define the gait similarity mathematically. Topology is intro-

duced for a clear definition of global invariant. Topologically equivalent means that the

dynamic systems are qualitatively the same. Basic ideas of topology and qualitative

dynamics are introduced in Section 3.1.

Entrainment is the biologically based method to maintain the global motor invariant.

We will discuss the theory and experiments in Sections 3.3 and Section 3.4.
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3.1 Introduction to Qualitative Dynamics

Motion Primitives are “trivial” motion tasks. The evolution process equips animals

with a body structure that suits many motion tasks. As a result, such motion tasks can

be accomplished by exploring the natural dynamics without too much control effort.

For the dynamic perspective, the delicate design of body structure permits several pat-

terns when animals interact with the living environment. Such patterns exists across

detailed variations in body structure such as the tall and short characters and environ-

ment like rough or plane ground. They are robust orstructurally stablein the dynamic

term. InMoIT , the identification of motion primitives and adaptation arebased on the

structural stability. This section serves as a short introduction to concepts and prepared

mathematics.

Qualitative dynamic properties are analysed with the tool of differential topology. This

idea can be traced back to Poincare(Poincaré, 1885; Poincaré and Magini, 1899) and

was laterly developed by the Smale School(Smale, 1970). There is no enough space to

include the whole subject, please refer to book (Abraham andMarsden, 1978) for more

details. Throughout this thesis, the geometrical perspective is adopted as it is more in-

tuitive. Some primary knowledge of topology and manifold isrequired which can be

found in (Abraham and Marsden, 1978). For the sake of completeness, this thesis will

provide a rough and intuitive explanation below. Intuitively speaking,topologystud-

ies the geometry properties that are preserved through continuous deformations, such

as twistings and stretchings of objects. Discontinuous deformations like tearing will

break the topology. Due to this reason, in the topological space, a circle is topologi-

cally equivalent to an ellipse because stretching a circle can deform it into an ellipse

and a sphere is equivalent to an ellipsoid.

A manifoldis a topological space that locally looks like the Euclideanspace of a spe-

cific dimension. A line and a circle are one-dimensional manifolds, a plane and sphere

are two-dimensional manifolds, and so on into high-dimensional space.

A dynamic system is usually described as a differential equation, from the geometrical

perspective, the differential equation also describes a differentiable manifold. Qual-

itative properties can be obtained by analysing the topological property of geometry.
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Global Motor Invariantsare identified by the topological structure.

3.1.1 Dynamic Systems and Differentiable Manifold

Motions of a mechanical system are determined by its configurationq in configuration

spaceQ and generalized speeḋq in the tangent spaceTqQ. Define the state value

x = [q, q̇] ∈ M , whereM is the state space, or state manifold. A motion is a trajectory

t 7→ q(t) in the configuration space parameterized by timet. For a dynamic system,

q(t) usually is derived from the state trajectoryx(t), which is described by a differential

equation.

For every pointx ∈ M , F and u determine a derivative vectoṙx in the Tangent

SpaceT
x
M . Vectors over the full space ofx form thevector fieldV, described by

Equation 3.1.

ẋ = Fα(x) + u (3.1)

whereu is the control effort,α is the system parameters, andF is determined by the

system’s natural property. Ifu = 0, no control effort is applied. Such systems are

autonomous systems.

A solution to Equation 3.1 is anintegral curve. Flow Φ(x) of V is theintegral curve

throughx. Flows are usually visualized by aphase plot. All the flows make up the

phase portrait, which illustrates all the possible motions of the dynamic system.

Example

For a mass-spring system, state variablex = [q, q̇] is defined, and Equation 1.5 can be

transformed into Equation 3.2.

ẋ =

[

0 1

−1 0

]

x (3.2)
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3.1.2 Basin of Attraction

Intersections of flows areequilibria. At eachequilibria , the local space can be divided

into subspaces:centre manifold, stable manifold, andunstable manifold.

centre manifold For a flowφc passing through a pointxc on centre sub manifoldWc,

φc will remain on the Centre Manifold.

φc(t) ∈ Wc, t ∈ R

stable manifold For a flowφs passing through a pointxs on stable sub manifoldWs,

φs will finally converge to a flowφc on centre manifold.

φs(+∞) = φc

unstable manifold For a flowφu passing through a pointxu on unstable manifold

Wu, φu will be repelled fromφc on centre manifold, the inverse ofφu converges

to φc.

φu(−∞) = φc

Attractors are the equilibria where the whole local space is stable, or the dimension

of unstable manifold is zero.Repellorsare the equilibria where the whole local space

is unstable, or the dimension of stable manifold is zero.

In theory, only the attractors of the dynamic systems can be observed and are of interest

in motor control:

1. Fixed Point or equilibrium point, a phase plot is show in Figure 1.4(a).

2. Limit Cycle, a phase plot is shown in Figure 3.1. The attractor of a limit cycle

has the shape of a cycle, which implies self sustained oscillations or periodic

behaviours. An attractive limit cycle will attract the neighbouring flows spirals

into it over the time. Such a system is stable, if any perturbation move the state

off the limit cycle, the system will return to the limit cycleautomatically.
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Limit Cycle

Basin Of Attraction

Figure 3.1: Limit Cycle

Figure 3.2: Cellular Structure of Phase Space

For non-linear dynamic systems, there may exist many attractors. The phase plane

is divided into different regions, resulting in a cellular structure. Within each region,

all the flows converge to one attractorA, and the corresponding region is thebasin

of attraction B(A). Figure 3.2 shows the landscape of phase portrait of a dynamic

system, in which the basins of attraction are coloured differently.

3.1.3 Topological Conjugacy

The topological structure of a dynamic system can be described by the type of equi-

libria and the connectivity of their basins of attraction. Many dynamic systems share
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same the topological structure. For example, the Duffin system described by Equation

3.3 is different from the mass-spring system.

q̈ + q + q3 = 0 (3.3)

However, the two systems share the same topology. Phase plots of the two systems are

shown in Figure 3.3(a) and Figure 3.3(b). Flows of the two systems are similar, and we

can “deform ” one into another. This equivalent relationship is topological conjugacy.
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Figure 3.3: Topological Conjugacy

Definition. LetM andM ′ be topological spaces, and letF : M → M andF ′ : M ′ →
M ′ be continuous functions. We say thatF is topologically conjugateto F ′, if there

exists a continuous one-one continuous and invertible mappingh : M → M ′ such that

h(F (M)) = F ′(h(M)). h is a topological conjugationbetweenF and F ′. if two

systems are topological conjugate, they areanalogous systems.

3.2 Global Motor Invariant and Motion Adaptation

Qualitative dynamic properties are determined by the attractors and their basins of

attraction.MoIT establishes the relationship between motion primitives and dynamic

theory. InMoIT , each attractor and its basin of attraction define a motion primitive.

“ triviality” of primitive tasks relies on the attraction. If the attractor is a fixed point,
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then the motion will be terminated. If the attractor is a limit cycle, then the motion

will be periodic. Larger basin of attraction means motion ismore stable, while narrow

basin of attractions means the fragile stability. Qualitative property is theGlobal Motor

Invariant

Definition. Global Motor Invariantis the tuple of attractors and their basin of attrac-

tion

Motions vary because of different perturbations. InMoIT , perturbations are classified

in two categories and treated with different control strategies.

• State perturbation

Perturbations that only affect the statex areState Perturbations. State Perturba-

tions change the current state, but not the underlying dynamic system.

If the perturbed statex′ remains in the basin of attraction, the perturbed flow

will converge to the same attractor. For the walking example, state perturbations

can model the push and recovery motion. Such a kind of motion adaptation is

Responsive adaptation.

To make the character more responsive without motion failure, The motion con-

troller should enlarge the basin of attraction.

• Structure Perturbation Structure Perturbations affect the dynamic system. For

biological systems, such perturbations are very common, when a man puts a

heavy box on his shoulder or has been injured, the walking dynamics will change

due to the structural perturbations.

For some dynamic systems, structural perturbations only deform the phase por-

trait and result in an analogous system. This will result in motion variations but

will not change motion stability. This kind of motion adaptation is calledsys-

tem adaptation. For CMS, “ motion retargeting” can be seen as an example of

system adaptation.

In some cases, topological structure may not be maintained.Some perturbations

will result in bifurcations that violates the topology of the underlying dynamic

system. Such an example is that the damping perturbations onthe mass spring

system will change the dynamics qualitatively. As show in Figure 3.4, damping
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Figure 3.4: damping perturbation on mass spring system

changes the topology the periodic flows into a fixed point attractor.

The ability of a dynamic system maintaining its topology structure isstructural

stability. To make motions adaptive to environment and body changes, controller

should boost the structural stability of the motion and prevent bifurcations.

These ideas can be seen as a different mathematical interpretation of biological re-

search principles. For the Uncontrolled Manifold Hypothesis(UMH ), the basin of

attraction of an motion primitive can serve as the uncontrolled manifold ofUMH .

State Perturbations are not controlled and motion is freelyinfluenced. For Equilibrium

Point Hypothesis(EPH), attractor of motion primitive is a generalization of equilib-

rium points. Impedance control can be seen as adjusting the basin of attraction.

3.2.1 Biological Meaning of Structural Stability

ForCMS research, Structural Stability is a new idea , but there are good reasons behind

it. In natural environment, perturbations and uncertaintyare everywhere. Because of

the sensing and computation limitations, feedback idea can’t cope with all types of

perturbations. InMoIT , the alternative idea is such perturbations can be neglected. If

the motion primitive is structurally stable, even without control effort, motion and the

underlying dynamics will not change qualitatively. Such anidea can reduce much of

the computational burden and provide a framework for motionadaptation.
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For biological research questions, the structural stability idea and the qualitative per-

spective provide better explanations than optimization and feedback theory.

The first is the control difficulty and evolution of swimming and walking. From the

quantitative perspective, fluid dynamics is more difficult to compute than rigid body

dynamics. This seems to suggest that the swimming is more difficult and walking.

But in biological evolution, swimming seems easier, for it is developed earlier and

many primitive life forms inhabitant in fluid environment.

The qualitative perspective comply with the biological facts, fluid is continuous and

uniform, the dynamics have simple topological structure. Stability control for such

dynamic systm may become trivial and fish can maintain its posture with little neural

effort.

On the other side, although the rigid body dynamics for walking are quantitatively

easier, the topological structure of walking dynamics is much more complex. On the

phase plane, there exist many equilibria, and the basin of attraction of walking primi-

tive has limited area, thus the stability of walking is fragile and needs more complex

control measures.

MoIT also explains the body similarity for animals that move through similar envi-

ronment in a similar manner despite their far distance in theevolution chain. The

similarity in body structure promises the same dynamic topology. We are also re-

minded that motion primitive is closely related to the environment. It is meaningless

to talk about walking when the character floating on water, even with the same control

strategy, body and environment cannot form the desired dynamic topology.

FurtherMoIT suggests the direction of evolution. For one motion primitive, body may

evolve to make the primitive more structurally stable.

3.3 Global Motor Invariant Control

In real-life, natural dynamics can be extremely complex. The corresponding mani-

folds have a complex topological structure, which providesmany motion primitives.
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For CMS applications, the question arises whether different motion primitives can be

controlled with a simple and unified method. The idea is that even there are many

motion primitives, attractors can be catalogued in very limited number of types. Also

even the dimension of dynamic system is large, the dimensionof the attractors is not.

• Fix point is of zero dimension.

• Limit cycle is of one dimension.

It is still under hot debate which type of attractor serves asthe foundations for motor

control(Degallier and Ijspeert, 2010). The current idea isthat limit cycle is necessary.

Based on a limit cycle, a fix point can be achieved by:

1. terminate a limit cycle.

2. approximated by a limit cycle with small amplitude.

3. bifurcate a limit cycle.

Currently only the limit cycle is considered inMoIT , mainly due to the following two

reasons:

• periodic behaviour is commonBesides the periodic motions such as swimming

and running, other biological activities like heart beating, waking and sleeping

are periodic. A periodic system has the potential to simulate more types of mo-

tion and integrate with other biological simulation.

• similar results For animations, periodic motions look similar to the terminated

motion when the amplitude of limit cycle is small. If the oscillation amplitude

can be controlled, both types of motion trajectories can be synthesized within

one framework.

Control strategies are designed based on the type of attractor. For the fix point attrac-

tors, traditionalPD controllers are simple and efficient. For the limit cycle attractors,

entrainment controllers are proposed as an efficient method.
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3.3.1 Neural Oscillator and its Stability

3.3.2 CPG and Entrainment

Biology research suggested that motions are mainly controlled by the organ calledCen-

tral Pattern Generator. CPG is a small autonomous network that generates rhythmic

signals. From the dynamic perspective, the idea of controlling motion by rhythmic

signals can be modelled as entrainment (González-Miranda, 2004). When coupling

two oscillation system together, entrainment happens whentwo systems oscillate in

synchronize. This effect is also known as a resonant which will enhance the oscillating

behaviour.

Only two neurons are needed with mutual inhibitive property, as shown in Figure 3.5.
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Figure 3.5: Neural Oscillator Structure

One oscillation model was developed by Matsuoka (1985) and was extensively studied

later on. This model can be described as Equation 3.4.
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τ1ṡ1 = c1 − s1 − c2l1 − c3[s2]
+ −

∑

j

hij [wj]
+

τ2 l̇1 = [s1]
+ − l1

τ1ṡ2 = c1 − s2 − c2l2 − c3[s1]
− −

∑

j

hij [wj]
−

τ2 l̇2 = [s2]
+ − l2 (3.4)

where[t]+ = max(0, t), [t]− = min(0, t) . s1,2 and l1,2 are state variables.c1,c2,c3
are parameters of the oscillator which are kept constant[c1, c2, c3] = [1, 2, 2] in this

research. Values ofτ1,2 control the oscillation frequency, and their ratio controls the

shape of waves. In this researchτ1
τ2

= 0.5. The output signaluo is defined in Equa-

tion 3.5:

uo = ho([s1]
+ − [s2]

+) (3.5)

whereho is the output amplifying coefficient.

Matsuoka oscillator is an autonomous oscillator, which canstart to oscillate without

any control effort. Figure 3.6 shows the natural oscillatoroutput.
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Figure 3.6: Natural Oscillation

Matsuoka oscillator is adaptive; entrainment can happen when it is coupled with differ-

ent oscillators. Figure 3.7 shows the entrainment oscillation,where Matsuoka oscillator
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synchronises with the input signal.
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Figure 3.7: Entrainment Oscillation

Because of the non-linear properties, its behaviour has notbeen completely under-

stood. Matsuoka (1987) analysed the adaptive properties byinvestigating the location

of the roots of the characteristic equation. Williamson (1998) analysed the properties

in frequency domain. Futakata and Iwasaki provided a rigid analysis of energy effi-

ciency and stability for some specific examples. This research study investigates the

qualitative property with empirical methods.

After examining many simulation results, the Matsuoka Oscillator shows three impor-

tant properties:

• Simple Topological Structure. The topology structure of a neural oscillator is

simple: it includes one attractive limit circle and one fix repellor.

• Large Basin of Attraction. All the simulations which we carried out converge to

the same limited circle.

• Fast Converging Speed. In most cases, the flow will converge to the limit circle

within one period time.

The above features are shown in Figure 3.8.

The large area of basin of attraction means the final behaviour is totally determined by

the system parameters. The initial conditions will have no effect on the stable oscilla-
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Figure 3.8: Neural output with different initial positions

tion behaviour. Matsuota oscillator can be treated as a single input single output(SISO)

system. The output signal is controlled by three system parameters and input signal.

Equation 3.4 can be reformed as Equation 3.6.

uo = S[hi,ho,τ ](ui) (3.6)

whereui =
∑

j hj [wj], is the weighted sum of all the input signal.

The converging speed can be seen as a quick recovery ability,which is very valuable

for motor control. When an impulse perturbation happens, itwill recover in one period

time.

3.4 Example:Maintain Ball Bouncing Height

The Bouncing Ball system is shown in Figure 3.9, where a ball is bouncing on a moving

paddle. This system is of simple dynamics, but difficult to control with optimization

or PD methods.

The bouncing ball system captures the complex discontinuous dynamics of body and

environment interaction. It can be treated as a template model for many motion tasks

like jumping, running and ball playing. This example demonstrates how limit cycle
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Figure 3.9: The Bouncing Ball System

arises through entrainment.

Dynamics

The bouncing ball system is of hybrid dynamic, which involves two phases.

• The Continuous Flying Phase:When the ball is flying, it is only affected by

the gravity.

• The Discontinuous Strike Phase:When the ball hits the paddle, the speed of

the ball is changed instantly.

The natural dynamics of bouncing ball system are described by Equation 3.7.

q̈ball = −g if qball > qpaddle (free flying)

q̇+ball − q̇+paddle = ǫ(q̇−ball − q̇−paddle) if qball ≤ qpaddle (paddle strike) (3.7)

whereq̈ball is the acceleration,g is the gravity,qball, qpaddle are the positions of the ball

and paddle,̇q+ball,paddle are the speed after a paddle strike andq̇−ball,paddle are the speed

before the strike,ǫ is collision coefficient−1 < ǫ < 0.

Figure 3.10 shows plots of the system. After each strike, theball will bounce with a

smaller height.
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Figure 3.10: Original Bouncing Ball System

Emergence of Limit Cycle

The bouncing ball system has only one fixed point attractor and its basin of attraction

covers the whole phase space. However, its behaviour is nearperiodic. Or alternatively,

it can be seen as a bifurcation of a limit cycle. Neural Oscillator can be applied to

recover the limit cycle through entrainment.

The input of the neural oscillator is the velocityui = q̇ball, the output drives the paddle

positionqpaddle = uo. Neural controller will move the paddle up and down. The move-

ment of the paddle is limited to a small range[−0.1, 0.1], compared with the bouncing

height of the ball (more than5), the height variation of the paddle can be almost ne-

glected. Dropped from different positions, the ball will maintain the bouncing height

of 5 units after several strike, as shown in Figure 3.11.
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Figure 3.11: The Attractive Limited Circle of the Coupled Bouncing Ball System
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Chapter 4

LOCAL MOTOR INVARIANT

It is not enough that animals are able to maintain the global motor invariant. For a fish,

preservingGlobal Motor Invariantmeans the swimming is stable and can be sustained.

However, a fish also needs to adjust the speed and direction during swimming, which is

of crucial importance for survival. In real-life, an animalcan adapt motion primitives

according to its purpose precisely. In this chapter, we willdevelop the control strategies

for tweaking motion patterns according to the motion purposes.

It is important to remember that such tweaking strategies are also constrained by the

computation and memory capacity of the neural system, and should explore natural

dynamics as the basic motion primitive theory. ForCMS, it is of no meaning develop-

ing walking pattern by exploring natural dynamics but usingoptimization to adjust the

walking speed. To meet such requirements,MoIT adopted different ideas.

At first, when tweaking motion patterns, stability should not be violated. As stated in

the previous chapter, a topological conjugation (one-one continuous invertible map-

ping) maintains the topology thus maintains the qualitative stability. Thus the “tweak-

ing” action should be a topology conjugation. In an alternative perspective, such oper-

ations form a group and permit a combination operation.

According to Group Theory, this means if two tweaking actions preserve the stability

separately, the combination of the two actions also preserve the stability. The space of

topology conjugation is very large. Currently,MoIT only investigates a subset called
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The Lie Transformation Groupthat is supported(Flash and Handzel, 2007) by the bi-

ological research studies and can be calculated efficiently. The selected groups can

be divided into orthodox subgroups, each of which is continuous and can be param-

eterized by one parameter. InCMS, such parameters are closely related to motion

purposes such as walking speed or swimming direction.

From the dynamic perspective, “tweaking” should also explore natural dynamics (pas-

sive based) as primitives. Methods adopted inMoIT belong to a popular passive-based

control principle, which carries many names: Controlled Symmetry, Controlled La-

grange, or Potential Shaping. Different names reflect the fact that this method can be

developed through different ways. Roughly speaking, the original dynamic system is

transformed according to motion purpose, the kinematics isuntouched and control is

applied by modifying the potential energy. Such methods suit biological actuators like

muscles and are also computationally efficient: Closed formformula are developed for

converting tweaking parameters to control effort.

This chapter is laid out in this way: Section 4.1 introduces the basic idea of group and

symmetry from intuitive geometry examples to more abstractalgebraic formulation.

Section 4.2 investigates application of the Controlled Lagrange Method. At last an

example is provided in Section 4.3 to illustrate the idea.

In theory the ideas of group and invariant are closely related, like the two sides of

a coin. Group are the transformations which keep certain property invariant. When

searching for the group transformation, the invariant property is also determined.

In Motor Invariant Theory, the quantitative properties that are preserved during group

transformation are calledLocal Motor Invariant.

4.1 Group and Symmetry

For the more traditional geometrical perspective, “Symmetry” means a geometry is the

same after certain transformation. For example, a square remains the same shape after

90 degree clockwise rotation, as shown in Figure 4.1.

Actions that preserve the square shape can be combined. For example, if the action of
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Figure 4.1: Symmetry of The Square

90 degree clockwise rotation preserves the shape, then the action of rotating twice, i.e.,

180 degree clockwise rotation also preserves the shape.

All the actions that can preserve the symmetry form a groupG. A group has the

following properties.

1. For anyga, gb in G, ga ∗ gb belongs toG. (The operation “∗” is closed).

2. For anyga, gb, gc ∈ G, (ga ∗ gb) ∗ gc = ga ∗ (gb ∗ gc). (Associativity of the

operation).

3. There is an elemente ∈ G such thatga ∗ e = e ∗ ga = ga for any ga ∈ G.

(Existence of identity element).

4. For anyga ∈ G there exists an elementgh such thatga ∗ gh = gh ∗ ga = e.

(Existence of inverses).

For the square example, all the actions preserve the square shape form the groupG. g1
is 90 degree clockwise rotation, identity elemente is the action of no rotation,g2 =

g1∗g1 is the action of rotating90 degree clockwise twice. Sinceg2 preserves symmetry,

g2 is an element of the groupG,

From the algebraic perspective, “Symmetry” means the valueof function is invariant
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after transformation. For a functionI(x), the group transformation is define byx̃ =

ga(x). By symmetry, we meanI(x) = I(x̃). I(x) is an invariant function of groupG.

Note that shapes invariant by actions inG are not unique. Many shapes are invariant,

and their combinations are also invariant, as shown in Figure 4.2. In the algebraic

sense, invariant functions of groupG form a space, the invariant spaceIG.

Figure 4.2: Two invariant Shapes and the invariant combination

4.1.1 Lie Group and Differential Equation

Physically-based motions are usually described by differential equations, and motion

is the solution of the equation. Same as the square shape, there are also symmetry

groups that keep the differential equations invariant. An important property of such a

group is that its elements can transform the solution of differential equations from one

into another(Olveret al., 1986). ForCMS, this property can potentially help reduce

computational burden: new motions can be achieved through applying transformation

to the dynamic equations of motion primitives.

In mathematical theory,Lie Groupis continuous group, which is also a manifold. Since

it is a manifold, coordinate system can be assigned to a Lie Group and each elements

can be parameterized. For example, the symmetry rotation group of square is discrete,

while symmetry group of circle is continuous. For the symmetry group of the circle,

each element can be parameterized by the the rotation angle.In the following discus-

sions,ε is the parameter of a elementg in the groupG.

Theory of Lie group comes from the study of differential equations. For the differential
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equation in Equation 4.1.

ẋ = F (x) (4.1)

Invariant functionI can be defined as:

I(t,x, ẋ) = F (x)− ẋ

Solutions of the differential equation are the kernel of theinvariant functionI :

I(t,x, ẋ) = 0

The group transformation will act on all the variables of theinvariant function. There-

fore t, x andẋ are all transformed.

(t,x, ẋ) 7→ (t̃, x̃, ˙̃x)

If the groupG is symmetrical, then value of the functionI will be invariant. Therefore

the kernel is transformed into kernel, and the transformed variables are still solutions

to the original differential equations.

I(t,x, ẋ) = I(t̃, x̃, ˙̃x) = 0

Note that thėx is not independent which depends on thet andx,

˙̃x =
dx̃

dt̃

From the geometrical perspective, it is not easy to present the transformation oft.

Instead, we define two actions on the state space and tangent space. In the state space,

we define the actiong that transforms the state.

g(x) = x̃

In the tangent space, we define thelift action Tg

Tg(ẋ) = ˙̃x
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Tg can be worked out by formatting the derivatives in the original coordinate system.

For example, the translationgε

(x, y) 7→ (x+ ε, y + ε)

Tgε is

(ẋ, ẏ) 7→ (ẋ, ẏ)

Tg is the identity elemente.

In the general cases,g transforms Equation 4.1 into Equation 4.2

Tg(ẋ) = F (g(x)) (4.2)

If g is symmetrical, Equation 4.1 and Equation 4.2 are equivalent

For example, The scaling action is applied to the state spaceof the mass spring system

of Equation 3.2.

x̃ = gε(x) = [εq, εq̇]

then the lift action is

x̃ = Tgε(x) = [εq̇, εq̈]

by substitutionx 7→ x̃, the original system becomes

˙̃x =

[

0 1

−1 0

]

x̃

which is

εẋ =

[

0 1

−1 0

]

εx (4.3)

Equation 4.3 is equivalent to Equation 3.2. Ifx(t) is a solution, so is̃x(t).

To verify the group property. define∗ as:

gε1 ∗ gε2(x) = [ε1ε2q, ε1ε2q̇]
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The inverse is:

g−1
ε = g 1

ε

ε ∈ R+

Definition. For a groupG, the invariant function of stateI(x) is called alocal motion

invariantofG.

Invariant functionsI(x) has important meaning in dynamics. According toNoether’s

Theorem, eachI(x) corresponds to a conservative law.

4.2 Lie Group and Controlled Lagrange

It is not enough for animals only to explore symmetry groups of natural dynamics

for motion adaptation. For a dynamic system, the symmetry group is quite restricted.

Working out the symmetry group might be a non-trivial task. In real-life, animals

usually exert control effort during motion adaptations.

MoIT theory proposes the idea that control effort can make a non symmetrical group

become symmetrical, and introduce theControlled Lagrangetechnique. Based on

biological research(Flash and Handzel, 2007), some simplegroups are selected the

symmetry group for motor control. When such group is appliedto the dynamic system,

control efforts are applied to ensure the symmetry.

Usually a dynamic system is represented as by Euler-Lagrange Equation 4.4(Goldstein

et al., 2002).
d

dt

∂L

∂q̇
− ∂L

∂q
= 0 (4.4)

whereL = K − V , L is the Lagrange,K is the kinetic energy,V is the potential

energy,q is the generalized coordinates, andq̇ is the generalized velocity.

By applying the group transformationg, both the generalized coordinates and general-

ized velocity will be changed:

g(x) = x̃ = [q̃, ˙̃q]

The Euler-Lagrange equation for the transformed dynamic system is described by
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Equation 4.5. If control is applied, the Euler-Lagrange equation of the controlled dy-

namics is described by Equation 4.6. If symmetry is persevered, the two equation

should be equivalent. Then symmetry control inputul can be calculated by comparing

the two equations.

d

dt

∂L

∂ ˙̃q
− ∂L

∂q̃
= 0, (4.5)

d

dt

∂L

∂q̇
− ∂L

∂q
= ul. (4.6)

When the two equations are equivalent, their LagrangeL, Kinetic EnergyK and po-

tential energyV should be the same or of the same scale factor. Thus in theory,two

strategies exist and will result in two differentul: we can calibrate the kinetic by scaling

and apply control effort to compensate the difference in potential energy, or calibrate

potential energy and compensate the kinetic energy.MoIT adopts the potential shap-

ing strategy, for it is computational efficient and suitablefor muscle like biological

actuators. As a special case, potential energy shaping for homogeneous group or affine

group promises a close form formulation. Several groups andtheir potential shaping

control effort are as below:

Offset Action

Offset actions modify the generalized coordinateq by a constant, while speed and time

remain unchanged. Given the offset parameterε, the mapping will be in the following

form:

(t, q, q̇) 7→ (t, q + ε, q̇)

The corresponding state transformation and lift action are

gf(x) = [q + ε, q̇] (4.7)

Tgf(ẋ) = ẋ = [q̇, q̈] (4.8)

On the phase plot, the configurationq is usually represented by the horizontal axis,
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and the generalized speedq̇ is represented by the vertical axis. From the geometri-

cal perspective, offset actions will move the phase portrait horizontally as shown in

Figure 4.3.

q

q̇

ε

Figure 4.3: Offset Action

Substituting the transformedq and q̇ into Equation 4.5 and Equation 4.6, the control

input can be worked out in the following closed form formula:

ul(q) =
∂

∂q
(V (q)− V (q̃)) . (4.9)

Taking the mass spring system of Equation 1.5 as an example, the transformed equation

and control equation are as follows.

¨̃q + q̃ − ε = 0

q̈ + q = ul

By comparing the two equations, we work out that:

ul(q) = ε
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Time Scaling

Time scaling actions divide the time variable by a factorε. The generalized coordinates

are kept unchanged, and the generalized speed will be multiplied by ε. For the action

of parameterε, the action mapping is:

(t, q, q̇) 7→ (
t

ε
, q, εq̇)

The corresponding state transformation and lift action are

gt(x) = [q, εq̇]

Tgt(ẋ) = [εq̇, ε2q̈]

From a geometrical perspective, time scaling will stretch the phase portrait vertically,

as shown in Figure 4.4.

q

q̇

Figure 4.4: Time Scaling Action

The control input can be worked out in the same manner as offset actions. There is
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also a closed form formula for control input.

ul(q) = (1− ε2)
∂V (q)

∂q
. (4.10)

Again, taking the mass spring system of Equation 1.5 as an example, the transformed

and controlled equations are

¨̃q

ε2
+ q̃ = 0

q̈ + q = ul

The local control input is:

ul = (1− ε2)q

Energy Scaling

For the dynamic system of the conservative field, the energy is preserved in motion

and different motions are characterized by their energy. For such a system, motion can

be adapted by modifying the energy of the dynamic system.

Energy Scaling action is introduced to adapt motions. The scaling transformation has

the following property:

E(x̃) = ε2E(x)

whereE is the energy, defined asE(x) = K + V , K is the kinetic energy, andV is

the potential energy.

Further suppose that both the potential and kinetic energy are transformed uniformly.

K(x̃) = ε2K(x)

V (x̃) = ε2V (x)

When mass inertia matrix is constant, the energy scaling transformation is linear as
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follows:

(t, q, q̇) 7→ (
f(ε)

ε
t, f(ε)q, εq̇)

f(ε) is a function ofε, which is determined by the conservative field. Geometrically,

an energy scaling action enlarges the phase portrait,as shown in Figure 4.5.

q

q̇

Figure 4.5: Energy Scaling Action

The corresponding state transformation and lift action are:

ge(x) = (f(ε)q, εq̇)

Tge(ẋ) = (εq̇,
ε2

f(ε)
q̈) (4.11)

ul can by worked out in the same manner as the above actions. Rather than write down

the closed form formula, the thesis prefers an alternative process. Energy Scaling

can be seen as a combined action of two actions: scaling the generalized coordinates

and scaling the time variable. Separate formula can be developed for two actions

independently. This principle generates modular code structure.

The mass spring system of Equation1.5 is selected again as anexample. For the mass

spring system, Energy is defined asE = 1
2
(q2 + q̇2). If the energy is scaled up byε2,

the potential energy is scaled up byε2. BecauseV = 1
2
q2, andε2V = 1

2
(f(ε)q)2, thus
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Figure 4.6: Offset Action

f(ε) = ε.

The control input can be worked out in the same manner as the above actions. However,

when object moved in the conservative field, energy scaling is a symmetry group of the

original dynamic system, thus no control effort is needed.

ul = 0

Time Offset

Time offset actions modify the time variablet by the parameterε. The map is as

follows

(t, q, q̇) 7→ (t+ ε, q, q̇)

For a system oscillating with limit cycle, time offset action will modify the phase, as

shown in Figure 4.6.

For a dynamic system, time offset is symmetrical for all dynamic system. At the first

look, no control effort is needed. In practise, time offset is achieved by applying time

scaling twice, after applying time scalingε for sometime, and then apply the inverse
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action(time scaling of1
ε
).

4.2.1 Action Selection

There are many actions available for motion adaptation. In certain situations, there

are many different ways to satisfy the motion constraints, causing the problem which

action should be applied. Different groups will result in different motion styles. This

idea is supported by lots of examples in Chapter 6. In practise, this is left for the

animator to decide. Usually, the symmetry of natural dynamic is preferred, for such

actions are energy efficient.

4.3 Example: Symmetry of the Bouncing Ball System

Symmetry is a common property among many dynamic systems, even for the hybrid

systems like the bouncing ball system of Equation 3.7. It is shown in this section that

by utilizing the symmetry group, complex motions can be predicted in an computa-

tionally efficient way.

The bouncing ball system of 3.7 has a energy scaling symmetry.

The energy function of the bouncing ball system is

E = gq +
1

2
mq̇2

If the energy is scaled up byε2, potential energy is scaled up byε2. BecauseV = 1
2
gq,

andε2V = 1
2
f(ε)q, thus:

f(ε) = ε2

the energy scaling transformation is

ge(x) = [ε2q, εq̇]

For the bouncing ball system, the energy of a system can be characterized by the initial
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dropping height.

Given the motion of a ball dropped at5 as shown in Figure 4.7, we setε =
√
2 and ob-

tained the motion dropped from10 through the transformation as shown in Figure 4.8.

Figure motion dropped from10 is shown in Figure 4.9.
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Figure 4.7: Drop at 5
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Figure 4.8: Drop at 10 by transformation
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Figure 4.9: The simulation result of dropped from 10
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Chapter 5

MOTION SYNTHESIS

FRAMEWORK

The principal ideas ofMoIT are discussed in previous two chapters. The stability of

motion is controlled by maintaining the topology. For the periodic motions, neural

oscillator can be used to enhance the structural stability.And group Transformation

provides a mechanism to modify motion with precision.

Questions arise when these ideas are being applied toCMS. The first question comes

from combining the controller of neural oscillator and symmetry controller. We must

ensure that the combination will violate neither the symmetry nor the topology. This

question is discussed in details in Section 5.1.

Section 5.3 provides more detailed information of the pipeline, or the procedure of

applying this idea inCMS applications.
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5.1 Combined Invariant Control

5.1.1 Combine Invariant Control

Neural controluo maintains the topology, and local controlul maintains the symmetry.

Combining two controllers must violate neither the global or local invariant.

In order to adjust the combined controller for practical applications,CPG is applied

first to maintain the topology against the structural perturbation. Then symmetry con-

trollers are applied afterwards to meet application specific constraints.

From the perspective in Chapter 3, the inclusion of symmetrycontrol must not violate

the topology. It is easy to prove that controlled symmetry maintains the topology. For

the controlled symmetry’s effect on topology, we have the following theorem:

Theorem. Transformation of Control Symmetry is Topological Conjugation

From the perspective in Chapter 4, we must ensure the inclusion of neural oscillator

controlul will not break the controlled symmetry.

For this, the parameters ofCPG need to be modified accordingly to maintain the sym-

metry property. This is calledAdjoint Transformation.

5.1.2 Adjoint Transformation of CPG

Adjoint Transformationmodifies the parameters of neural oscillator to maintain the

symmetry.

For a dynamic system

ẋ = F (x)

when controlled by neural oscillator, it becomes

ẋ = F (x) +Duo (5.1)

whereD is the connection matrix, which describes how the neural oscillator is con-

nected to mechanical system.
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When group actiong is applied, Equations 5.1 is transformed into

Tg(ẋ) = F (g(x)) +DTg(uo) (5.2)

If symmetry is preserved, the Equation 5.3 and Equation 5.2 should be equivalent.

ẋ = F (x) + ul +Dũo (5.3)

whereũo is the output of neural system after adjoint transformation.

As shown in Equation 3.6, sinceuo is a complex function ofui, it is difficult and not

computational efficient to develop a closed form formula. Asan alternative, the idea

is to utilize the symmetry property of Matsuoka Oscillator.In this way, CPG can be

transformed by modifying the parameters. The transformation scheme is based on the

following proposition.

Proposition. By modifying parameterτ1,2

τ1,2 7→ ετ1,2

is equivalent to time scaling of the neural oscillator by parameterε.

This proposition can be easily proved by substitutingτ̃1,2 = ετ1,2, and t̃ = t
ε

into

the Matsuoka Oscillator( Equation 3.4), the equation will remain the same. Based on

above the proposition, a scheme of the adjoint transformation is proposed that modifies

the parametersτ1,2,hi,ho and maintains the symmetry of the coupled system. The input

and output of neural are chosen to maintain the shape.

1. Modify τ by the time scaling parameterτ 7→ ετ .

2. the input variablew and input efficienthi are modified to make sure the input

function satisfies the time scaling symmetryui(t) 7→ ui(
t
ε
)

3. Parameters ofho are modified according to the connection matrixD, or how

the mechanical system is driven. Ifuo drives the position variableq then,ho

should be multiplied by the position scale factor. Ifuo drives the velocity,ho

should be multiplied by the speed scale factor. If theho is force and acting on
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the acceleration̈q, thenho should be multiplied by the acceleration scale factor.

According to this adjoint transformation strategy, we can get the following theorem

Theorem. For a transformation groupG, if the parameters of the neural oscillator are

modified according to the adjoint transformation, combinedsystem preserves symme-

try IG.

To prove it, readers can check the symmetry by substituting transformed variables

into the original system. With such a treatment, both the Local Motor Invariant and

Global Motor Invariant are maintained. For the specific symmetry types proposed in

Chapter 4, several examples of adjoint transformations areprovided

Offset Symmetry.

For offset symmetry:

(t, q, q̇) 7→ (t, q + ε, q̇)

there is no time scaling effect. To maintain the symmetry, the simplest way is to select

ui anduo from the functions in the invariant spaceIG. For example, when allq is

transformed by a constant, the difference and the velocity will not be transformed.

Thus, the input of the neural oscillator is chosen to be the angle difference between the

joints or velocity.

Time Scaling

For time scaling:

(t, q, q̇) 7→ (
t

ε
, q, εq̇)

Adjoint Transformationτ 7→ ετ . The input coefficienthi and output coefficientho are

scaled accordingly. if the outputuo is applied as a force, then it should be scaled by

the acceleration factor

ho 7→ ε2ho
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Energy Scaling

Energy Scaling is a combined action of time scaling and posture scaling:

(t, q, q̇) 7→ (
f(ε)

ε
t, f(ε)q, εq̇)

the time scaling factor isε
f(ε)

,

The parametersτ1,2 are transformed

τ1,2 7→
ε

f(ε)
τ1,2

The input coefficient is scaled to make the amplitude of the input signal maintained.

hi 7→
hi

ε

The output coefficient is scaled according to the connectionof the control, if the output

drive the velocity, then the output isho

ho 7→ εho

5.1.3 Example: Height Control of Bouncing Ball

The bouncing ball system has the energy scaling symmetry, and a limit cycle emerged

when coupled with a neural oscillator. When energy transformation is applied to the

limit cycle, the bouncing height can be adjusted according to the purpose. By combin-

ing both motor invariant controllers, stability is maintained and motion can be adjusted

precisely.
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Adjoint Transformation

Supposing the coupled system is bouncing at height of5 For the energy scaling:

(t, q, q̇) 7→ (εt, ε2q, εq̇)

the time scaling factor isε, and we have:

τ1,2 7→ ετ1,2

The input to the neural oscillator iṡq,

hi 7→
hi

ε

Neural Oscillator drives the position of the paddle, the outputuo needs to be scaled by

the position scale value. Forq 7→ ε2q, we have

ho 7→ ε2ho

Whenε2 = 3, the ball will bounce at height of15, and it maintains its topological

structure, which is a limit cycle, as shown in Figure 5.2. With this method, arbitrary

bouncing height can be controlled.

−5 0 5 10 15 20
−20

−15

−10

−5

0

5

10

15

20

height| m

ve
lo

ci
ty

|m
/s

Figure 5.1: Energy Scalling
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Figure 5.2: Energy Scaling

5.2 Combine Motion Primitives

5.2.1 Dynamic Motion Graph

Virtual characters are capable of many types of motions and switch between them

fluently. Motion Graph(Kovar et al., 2008) is proposed for data-drivenCMS: basic

motion tasks are recorded, and a graph describes how a character can change from one

motion into another motion. For the transitional motions, the most popular synthesiz-

ing method is blending.

MoIT implies an idea similar to the motion graph but from a different direction. Usu-

ally, traditionalmotion graphs are manually designed, whileMoIT proposes an idea

which generates the motion graph from the dynamics automatically. In theory, the

topological structure of a dynamic system can be represented by a graph. Each motion

primitive is represented as a node, and two nodes are connected only if their basins of

attraction(BoAs) are in neighbour.

In dyanmic research, many methods have been proposed to identify the topological

structure of a dynamic system automatically (HSU, 1980). They can be used inMoIT

to identify motion primitives and their connectivity.

For example, Figure 5.3 shows the phase portrait of a hypothetical dynamic system.

Its phase space is divided into four regions of different colors. The fourBoAs, within
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Figure 5.3: Phase Plot of Motion Primitives

Figure 5.4: The Graph Structure of A Dynamic System
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each region, there is an attractor(red). The graph in Figure5.4 shows the corresponding

graph structure, in which each node represents theBoA, the connecting edge means

the basin ofBoAs of connected motion primitives are in neighbour, which canalso be

verified by Figure 5.3.

5.2.2 Dynamic Motion Transition

In real life, the transition of motion is an adaptive and interesting phenomenon. How-

ever, Blending techniques tend to generate motions with little variations.

While based on the control method for maintaining motion primitives,MoIT proposes

a physics based method for generation of transitional motion.

Figure 5.5: Motion Primitive Transition

From the geometrical perspective, motion transition meansputting the currentx out of

oneBoA into another. This process is illustrated in Figure 5.5 where the current state

represented by the black dot lies in the left region ofBoA and will converge to the red

limit cycle over time.

The neighbouring region is theBoA of another primitive, in which if the current state

lies, will converge to the green limit cycle. Because two basins of attractions do not
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overlap, the transition will not happen automatically without effort. From a geometri-

cal viewport, to make motion transition happens, a small action is needed to push the

state across the boundary, represented by the red line. Thiscan be achieved by many

efficient methods.

Entrainment Overlap

Empirically,when aCPG is applied for one motor primitiveA, the basin of attraction

B(A) is enlarged. Supposing the enlarged basin of attraction is represented byB(A′),

if CPGs are applied for two motion primitivesA1,A2 in neighbour, the enlarged basins

of attraction (B(A′

1) andB(A′

2) ) will overlap.

O = B(A′

1)
⋂

B(A′

2) 6= ∅

whereO is the overlapping region.

Figure 5.6: Motion Transition based on Motion Primitives Overlap
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If statex lies in theO, the dynamic system will converge to a different attractor by

switching theCPG controller. Figure 5.6 shows the idea through an example. The

phase plot shows two motion primitives which are connected.Basins of attraction of

natural dynamics are separated by the dotted line, which do not overlap. WhenCPG

is applied, two basins of attraction are enlarged, and the shared region is coloured in

yellow color. When the current state lies inO, the state will converge to the left limit

cycle if theCPG of the left region is activated and converge to the right limit cycle if

the rightCPG is activated. Motion Primitive can be switched in this manner.

Transform Method

Controlled Symmetry can also be applied for motion primitive transition. We can

change theBoA where the current state lies by transforming the phase portrait.

Figure 5.7: Offset Transition

As shown in Figure 5.7, the phase portrait of natural dynamicsystem is the same as
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that of Figure 5.6. The current state converges to the left (red) limit cycle. By applying

offset action to the dynamic system, the phase portrait moves leftward, which makes

current state lie in the rightBoA. Over time, current state will converge to the right

limit cycle, the motion primitive is changed accordingly.

5.2.3 Combined Method

Both methods utilize the natural dynamics and result in a physically realistic transition.

However, both methods requirex lies in the overlapping region. In the motor invariant

theory, the current state x is not directly controlled. The measure is to make the overlap

region O cover part of both attractors.

As shown in Figure 5.8, the overlap region covers both attractorsA, A′, bidirectional

transitions are possible when motion converge to to the limit cycle.

More importantly, when transformation is applied, the action is applied to the dynamic

system. Thus both motion primitives are transformed, called the theconnection trans-

formation . As shown in Figure 5.8, when a speed action transformation is applied,

both motion primitives are modified.

Figure 5.8: Combined Method
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5.3 Motion Synthesis Framework

While this procedure may appear mathematically complex, applying this method for

motion synthesis is straightforward.

CMSonly requires:

1. a mechanical oscillatorF (x) which describes the body and environment dynam-

ics.

2. a neural oscillator (for example, the Matsuoka oscillator in Equation 3.4) and

associated parameters that generate entrainment.

3. an actiong ∈ G which adapts the problem to the current environment (three pos-

sible operators are proposed in Section 4.1). The adjoint system transformation

is applied to the neural oscillator.

4. an integrator to solve the system (we use the fourth order Runge–Kutta method

provided in the MATLAB functionode45).

In the following chapters, this method is applied to generating adaptive motions.
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Chapter 6

MOTION PRIMITIVE

TWEAKING:BIPEDAL WALKING

The examples of bouncing ball and mass spring systems explain the idea well. How-

ever, they are are too simple forCMS applications. This chapter focus on controlling

more complex mechanical systems which have great application value. Details are

given about how to adapt a motion primitive for environmental and application spe-

cific constraints. Combination and transitions of motion primitives are discussed in the

next chapter.

The motion primitive under study in this chapter isbipedal walking, which is a topic of

great application value for both the graphic and robotic engineering. Although many

methods have been applied to the bipedal walking in the past decades, human bipedal

walking ability still has not been achieved. The early belief is that bipedal walking

is unstable in nature, and many control methods are developed based on trajectory

tracking principle. The turning point is the discovery of the passive dynamic walking

machine, which shows that under specific conditions, walking can happen naturally

without the need of any control effort. This makes us believethat the walking abil-

ity is inborn, and most control problems have already been solved by the mechanical

structure.

From the perspective ofMoIT , bipedal walking is a motion primitive. In this chap-
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ter, the passive walking gait is treated as the motion template. Neural Oscillator and

Symmetry Control efforts are applied to tweaking the template while maintaining the

global and local motor invariants. This method is capable ofgenerating adaptive and

stable gaits in real-time. This process may provide a clear example of application of

theMoIT idea.

6.1 the Bipedal Walking Primitives

The word “Bipedal” comes from Latin which means “two feet” , Here, “bi” for “two”

and “ped” for ”foot”. With two legs, animals can walk, run andjump. Relatively few

modern animals use two legs for normal locomotion. Biological research believes that

human bipedalism is developed well before the large human brain or the development

of stone tools, so human are capable of bipedal walking long before the age of intelli-

gence, and bipedal walking ability is not closely related tothe human mental power.

The walking of human is characterized by the switch of the stiff supporting leg, which

moves like an “inverted pendulum”. Walking is identified there is a two leg supporting

phase during each step.

As for secondary motion in walking, the hip rotates around the axis of the spine to

increase stride length, and also rotates around the horizontal axis to improve balance

during stance.

In MoIT , walking is treated as an independent motion pattern. To illustrate the idea

without unnecessary complexity, the walking dynamics is simplified.

As shown in Figure 6.1, motion is projected into three spaces:the sagittal plane, coronal

plane and transverse plane. For bipedal walking, yaw and roll motion are relatively

small and usually treated as secondary motion or totally neglected, the main motion

happens in thesagittal plane.

This chapter focuses on the lower body motion in sagittal plane only. The motion of

upperbody in figures are added simply for visualization purpose, of which the simu-

lation and control will not dicussed in this chapter. Along with otherDOFs, such as
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Figure 6.1: Sagittal Plane, courtesy of Yassine Mrabet

turning motion in coronal plane and sway motion in transverse plane, torso and arm

simulations are discussed in Chapter 8.

This is because it is more convenient to explain ideas in witha simple model and per-

fect symmetrical properties. The motions of someDOFs are treated as perturbations,

for they make the “symmetry” not so perfect An ealy discussion may cause confusion.

Dynamics

The simplified walking model is shown in Figure 6.2.

The walking model of Figure 6.2 is based on rigid body dynamics. The supporting leg

is kept straight. In the figure,L is the length of the leg,q1 is the angle of the supporting

leg,mt andms are the mass of the shank and thigh,q2 andq3 are the corresponding

angles of the swinging shank and thigh,b1, a1 andb2, a2 describe the relative position

of gravity center,mh represents sum mass of the body and hip .

Like the bouncing ball system, this dynamic system is hybrid(Ames and Sastry, 2006)

and includes both continuous and discrete dynamics. Passive walking with knees in-

cludes four phases(Chen, 2007).

• Free Swing PhaseThe support leg (the blue one) is kept straight. During this
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Figure 6.2: A Passive Walking Model with Knee

phase, the knee of the swing leg is bended, and the thigh and shank swing freely.

• Knee Strike PhaseThe knee joint of the swing leg has a limit. When the knee

angle reaches the limit, a collision happens. After the collision, the swing leg is

kept straight.

• Knee Lock Swing PhaseDuring this swing phase, both the swing and support

leg are kept straight.

• Heel Strike PhaseWhen the heel of the swing leg hits the ground, a collision

happens. After that the swing and support legs are switched.

Figure 6.3 shows the gaits of four phases.

• Flying PhasesBoth the free and locked knee swing phases are described by the

continuous dynamics. Both equations are in the form of Equation 6.1.

M(q)q̈ + C(q, q̇)q̇+N(q) = 0 (6.1)

whereq = [q1, q2, q3], q̇ = [q̇1, q̇2, q̇3], M is the initial mass matrix, andC andN
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Figure 6.3: The four phases in Walking

are the centrifugal force matrix and gravity respectively.For Knee Free Phase,

M andC are3 by 3 matrix, andN is 3 by 1 vector. for Knee Lock Phase,M

andC are2 by 2 matrix, andN is 2 by 1 vector. Putting them into the standard

form, and definex = [q, q̇], Equation 6.1 is transformed into Equation 6.2 Then

the function is in the form.

ẋ = −
[

1 0

0 M

]

−1 [

0 1

0 C

]

x−
[

0

N

]

(6.2)

• The Strike PhasesThe knee strike and heel strike phases are modelled based

on discrete dynamics. Collision equations are developed based on momentum

preserving principle. Both collision equations are in the form of Equation 6.3.

J+q̇+ = J−q̇− (6.3)

whereJ is the matrix of angular momentum inertia, and the superscripts+,−
represent those after and before collision respectively. For Knees Strike,J− is a

3 by 2 matrix,J+ is 2 by 2 matrix; For Heel Strike, bothJ+,− are2 by 2 matrix.

Dynamic equations are developed based on Lagrange Mechanics (Goldsteinet al.,

2002). For details of calculating the dynamic equation, please refer to (Chen, 2007)

For the components of each matrix, please refer to the appendix.

With special initial conditions(Chenet al., 2007), the passive walker can walk down

the slope with a stable gait. On the phase plot, a limit cycle emerges. Figure 6.4 shows
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Figure 6.4: Four Phases Marked on a Walking Cycle

the phase plot of one thigh for a stable walking cycle. where the events that separate

the four phases are marked.

In theory, the generalized coordinates for walking have4 degrees of freedom, with

angle for shank and thigh for each leg. Since the state space is 8 dimension, it is not

possible to draw the phase portrait on a picture. Only2 variables can be plotted.

Considering that motions of the two legs are almost the same,it is enough to show

one leg motion, thus the state space is reduced to4 dimensions. Chapter 8 shows that

the knee motion is not very important since the motion of the thigh captures the most

valuable information. The phase plot of the thigh of one leg is selected to illustrate the

walking. Other selection is possible since all theDOFs are simulated and controlled.

Figure 6.4 only shows the motion of the right leg. The green plot shows the stance

phase. During this phase, the right leg is supporting the body. The blue parts show the

swing phase. During this phase, the right leg is swinging andthe left leg is supporting

the body. The yellow lines mark the4 collision events during walking. Note that

during the collision, the walking dynamics is discontinuous, and the speed of walking
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is changed suddenly without changing the position. This means the yellow segments

are not on the limit cycle. If the walker starts from the statein the middle of the yellow

segment, it will fall.

6.2 Global Motor Control and Adaptive Gaits

The Passive Dynamic Walker exhibits a natural looking gait.However, the walking

motion is not stable. InMoIT , the repetitive walking motion suggests that the natural

walking dynamic forms a limit cycle. It is believed that humans utilize the limit cycle

for walking for energy efficiency(Collins and Ruina, 2005).

To overcome the fragile stability,CPG is applied with the hope to make the walking

more stable through entrainment. Experiments have shown that stability is enhanced

and different perturbations result in varied and natural looking responsive motions.

6.2.1 Entrainment

For walking, only one neural oscillator is applied to maintain the stability of limit cycle.

The output of neural oscillator works as torque applied to hip angle (angle between the

two thighs). The dynamics are shown in Equation 6.4

M(q)q̈ + C(q, q̇)q̇+N(q) = Duo (6.4)

For the knee lock phase,D = [1,−1]T . For the knee free phase,D = [1,−1, 0]T . This

means the neural oscillator controls the thigh, and the kneeis left to swing freely.

CPG prefers periodic, continuous signals, the hip angle is a convenient choice.

ui = hi(q1 − q2)

τ1, τ2 are set to make the oscillating frequency close to the walking frequency. The

output coefficientho is set to a small value to make the walking energy efficient.
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Limit Cycle of Passive Walking

Figure 6.5: Limit Circle And Different Phase in Passive Walking
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Limit Cycle of Entrainment

Figure 6.6: The gait with neural controller
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When the drive force is small, the limit cycle of entrainmentsystem is similar to the

original passive one. Both limit cycles are shown in Figure 6.5 and Figure 6.6. Walking

gaits are shown in Figure 6.8 and Figure 6.7. Both figures are sampled by the same

time interval. The controlled gait looks a little sparser. It means that with the neural

control input, the character walks a bit quicker.

Figure 6.7: The Passive Walking Gait

Figure 6.8: Passive Walking with Neural Control

By comparing the limit cycles and the walking gaits, we find out that the controlled

gait and passive gait are quite similar. The controlled gaits are a bit faster and the step

size is slightly bigger. Visually, the two gaits are almost the same. Although both are

natural looking and very hard to detect control effort, the dynamics has been changed

greatly, especially the stability.
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Structural Stability

Entrainment boosts the structural stability of walking. The passive walking can not be

maintained on plane, because such a structure perturbationof slope angle has violated

the topology. The consequence is that limit cycle does not exist any more.

When passive walker walks on a plane, the step-size decreases after each step. After

several steps, the walker will stop or fall over, as shown in Figure 6.9.

After coupling with a neural oscillator, the walker maintains walking with a small step

size, as shown in Figure 6.10. To maintain the energy efficient property of natural

motion,uo is limited to small, leading to a small step size accordingly.

Figure 6.9: The Passive Gait On Plain

In Figure 6.11, the walking cycle is kept shrinking over time, resulting in a gait of

walking to stop intention. But after several steps, the walking gaits reach a limit cycle

(shown in red). The new walking limit cycle is of a smaller size, which means a smaller

step.

Area of Basin of Attraction

Another measurement for stability is to size of the basin of attraction. Passive walking

is fragile, which means the basin of attraction is very narrow. If the walker is pushed,

it will fall.
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Figure 6.10: Entrainment Gait On Plane

−0.2 −0.1 0 0.1 0.2 0.3 0.4
−3

−2.5

−2

−1.5

−1

−0.5

0

0.5

1

1.5

2

Angle of the Red Thigh| rad

A
ng

le
 V

el
oc

ity
 O

f t
he

 R
ed

 T
hi

gh
 | 

ra
d/

s

 

 

flow
Limit Cycle of Passive Walking

Figure 6.11: Limit Cycle of entrainment gait on plane
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Entrainment greatly enlarges the basin of attraction of thewalking limit cycle. In

Figure 6.11, the initial position is far from the limit cycle. It indicates that the basin of

attraction has been enlarged.

A better test is to push or pull the walking character. When push and pull are applied

to the character, the state is moved away from the limit cycle. The harder the push or

the pull is, the further it moves away. The gaits of being pushed or pulled are shown in

Figure 6.12 and Figure 6.13. The push and pull are applied at the end of the first step,

the moment when the leftmost character figures are rendered on the pictures. For both

cases, the characters start walking with normal stable gaits.

When the character is pushed, the supporting leg move forward while the motion of

the swing leg remain almost the same. As a result, the push effect increases the hip

angle, which is the input signal of the neural oscillator. Due to the increase of input,

the neural oscillator will generate a bigger torque output,which increase the hip angle

and drive the character to take a big step. As time goes on, thestate will converge

to limit cycle and the character will return to the normal gait. When the character is

pulled backward, the character will take a smaller step or even step backwards for one

or two steps. After that it will gradually return to the normal walking gait.

Figure 6.12: The Push Perturbated Gait

Figure 6.14 and Figure 6.15 show the flow converging towards the limit cycle. When

the character is pushed, it takes a big walking cycle. However because of the entrain-

ment, hlconverges to the limit cycle within next a few period. The pull effects make the
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Figure 6.13: The Pull Perturbated Gait

character take a smaller step size in the next several steps.The walker takes a bigger

or smaller step to adjust walking and finally returns to the normal walking gait.
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Figure 6.14: The Pushed Gait Phase Plot

The initial step size can also be changed, and the walker willadjust it automatically.

Figure 6.16 and Figure 6.17 show the gaits. Figure 6.18 and Figure 6.19 show the

phase plots.
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Figure 6.15: The Pulled Gait Phase Plot

Figure 6.16: Big Initial Step Size
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Figure 6.17: Small Initial Step Size
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Figure 6.18: Big Initial Step Initial Phase Plot
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Figure 6.19: The Small Initial Step Gait Phase Plot

The entrainment ofCPG greatly enlarges the basin of attraction. If the walker starts

with very different postures, the character will return to normal walk.

6.2.2 Walking Re-targeting

Transferring the gait of one character to another is a challenging job.MoIT theory pro-

vides a method for physics based motion re-targeting.CPG will maintain the topology

of the dynamics. When the dynamic parameters are changed, the topological conju-

gacy will result in a varied motion.

The passive walker has many parameters, like mass and leg length. Different param-

eters will result in a different dynamics systems. But all these dynamic systems share

the same topology. There is a limit cycle and the characters are capable of periodic

gaits. Some interesting gaits are shown and discussed belowin this section.

If all the parameters are scaled uniformly, the gait will remain the same, only the

velocity will be changed. To demonstrate different gaits, the parameters are modified

relatively. The motion variation is generated by adjustingthe mass ratio and mass
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distribution ratio, the total mass and total leg length of all examples are kept the same.

Mass Distribution Ratio

When the total mass is maintained, Mass Distribution Ratio is defined as the hip mass

over leg mass.

αm =
mh

ms

wheremh is the mass of the hip andmt is mass of the thigh. The mass ratios of shank

and thigh is kept unchanged.

Different αm will result in different gaits. Biggerαm result in gaits to that look bur-

dened. The different limit cycles are shown in Figure 6.20.
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Figure 6.20: Different Gait Resulting from the Different Mass Ratio

For biggerαm, the walker will walk with a bigger step but a slow speed(q̇ is lower).

For smallerαm, character will walk more quickly(̇q is bigger), the swing leg will swing

with a bigger amplitude.

Different gaits are shown in Figure 6.21, Figure 6.22 and Figure 6.23.
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Figure 6.21: Gait withαm = 0.3

Figure 6.22: Gait withαm = 5
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Figure 6.23: Gait withαm = 14

Leg Length Distribution Ratio

Except for the change of the ratio parameterαl =
lt
ls

, the leg length is kept unchanged.

By changingαl motion for different characters are generated. This demonstrates the

motion re-targeting results.
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Figure 6.24: Different Gait Resulting from the Different Mass Ratio

The limit cycle in Figure 6.24 implies something important about leg length in walking.
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Basically, the motions of the supporting leg and the step size are almost kept the same,

while different leg length rations will result in differentswing motions. The longer the

shank, thigh has to swing quickly and with a bigger amplitude. There are also bigger

impulses during the strike phase. For both the knee and heel strike, larger impulse is

generated. This result may indicate the effects of high heelshoes for walking.

Figure 6.25, Figure 6.26 and Figure 6.27 show the different gaits.

Figure 6.25: gait ofαl = 0.5

Figure 6.26: gait ofαl = 0.7

97



Figure 6.27: gait ofαl = 1.3

Unbalanced Mass Ratio

Also define theUnbalanced Mass Ratio

αb =
Left Leg Mass

Right Leg Mass

.

As shown in Figure 6.28, whenαb is increased, two legs swing differently and the

limit circle is splitted into two. Biggerαb will result in a cripple like gait, as shown in

Figure 6.29

Different Slopes

Usually, changing the angle of the slope may not seen as motion re-targeting. But in

MoIT , changing slope means changing the parameter of the dynamicequation, which

can be analysed in the same manner as as changing body parameters.

Figure 6.30 shows the limit cycle of walking on different slopes. For different slopes,

entrainment maintains the limit cycle, but the limit cycle changes its shape. Different

stable limit cycles are show in Figure 6.30. Basically, the bigger the slope, the bigger

the step size, and the higher the speed. Slope changing has similar effects to energy

98



−0.4 −0.3 −0.2 −0.1 0 0.1 0.2 0.3 0.4 0.5 0.6
−5

−4

−3

−2

−1

0

1

2

3

4

5

Angle of the Red Thigh| rad

A
ng

le
 V

el
oc

ity
 O

f t
he

 R
ed

 T
hi

gh
 | 

ra
d/

s

 

 

m
l
/m

r
=1

m
l
/m

r
=1.2

m
l
/m

r
=1.3

Figure 6.28: Different Leg Mass Stable Gaits

Figure 6.29: Gait ofαb = 1.3

99



scaling.
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Figure 6.30: Walking on Different Slopes

Figure 6.31,Figure 6.32 and Figure 6.33 show different gaits.

Figure 6.31: Gait On Slope 1
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Figure 6.32: Gait On Slope 2

Figure 6.33: Gait On Slope 3

101



6.3 Local Motor Invariant Control

Neural Oscillator boosts the stability. Sometimes stability becomes a limitation in

motion. For the walking example, if the basin of attraction covers the whole space, then

the passive walker can’t walk upslope. If the walker is trying to walk upslope, he or

she will begin to walk backward down slope after a few steps asshown in Figure 6.34.

In addition, it is not convenient to adjust the speed of walking,since the limit cycle is

fixed.

(1) (2) (3) (4)

(5) (6) (7) (8)

Figure 6.34: Failure of walking upslope

Local Motor Invariant provides a mechanism to adapt motion according to the environ-

ment and application-specific purpose. For the bipedal walking, group actions provides

a mechanism to adjust the walking slope and walking speed in precision.

The original system does not have energy scaling symmetry. Energy Scaling is ap-

proximated by a combined method as discussed in section 6.4.1.

When active group actions are applied to the passive walker,it may require all the

DOFs to be actuated. This involves actuating theq1, q2 andq3. With our dynamic

model,q2 andq3 are controllable by actuating the knee and hip joints. However, q1
is not controllable. To actuateq1, the walker needs feet and motors to drive the ankle

joint. The feet are neglected mainly to simplify the collision and contact dynamics.

This control scheme is achievable with real human like walker, thus transform action

will not result in visually artifects for normal walking condition. However, such sim-

plification will result dyanmic artefacts in extreme cases,because the limited friction
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force, the toque applied at the ankle should be limited within a range. For a large slope,

real human can not generate enough ankle torque mainly because of limited friction.

6.3.1 Group Actions

Equation 6.5 describes walking with local control.

M(q)q̈ + C(q, q̇)q̇ +N(q) = ul (6.5)

Lie group actions are developed for two types of symmetry.

• Offset Action. Offset Action moves the phase plot horizontally. This willmake

the passive walking on terrains of different slopes. For thebipedal walking,

according the Equation 4.9, the offset action is:

ul = N(q)−N(q + ε)

whereε is the slope angle change.

• Speed ActionSpeed Action maintains the gait, but modifies the walking speed.

According to Equation 4.10, the local control is:

ul = (1− ε2)N

whereε is the time scaling factor.

For the original system, energy scaling is not a simple, linear transformation. Energy

Scaling is approximated by a combined method discussed later.

Figure 6.35 demonstrates different limit cycles after applying Lie group actions. The

red one is the original limit cycle. Green ones are applied offset actions and blue ones

are applied speed actions.

By applying the offset action, the passive walker can walk upslope, as shown in Fig-

ure 6.36
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Figure 6.35: Lie Group Actions on the Phase Plot

Figure 6.36: Up slope Gait Generate by Lie Group offset Action
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6.4 Application of Combined Method

Global Motor Invariant Control boosts the walking stability. However, the resulting

motion does not meet application’s needs sometimes. Local Motor Invariant Control

can adapt the walking to application purpose, but it can’t boost the stability. Combining

the two controllers make it possible to take the strengths ofthe two methods.

The combined method is described by Equation 6.6

M(q)q̈ + C(q, q̇)q̇+N(q) = Duo + ul (6.6)

In applications, animator can generate different gaits through adjusting parameters of

the neural oscillator and the body first, and then transform the different gaits by Lie

group actions. For animators, this method is efficient, natural looking and easy to use.

Such combinations will achieve unlimited variations of gaits. We will demonstrate

below how gait variations can be achieved in this manner.

6.4.1 Step Size Adjust

The first example shows how a character can adjust his step size realistically. When

the character walks down different slopes, a steeper slope will result in a bigger step

size as shown in Figure 6.30. If offset Lie group actions are applied, we can transform

the gaits of different slopes on the plane. In this way we can achieve different step

gaits on the plane.

Figure 6.37 shows limit cycles of different step size on the plane.

And the different gaits are shown in Figure 6.38,Figure 6.39and Figure 6.40.

6.4.2 Varying Slopes

Neural Oscillator can maintain walking on varying slopes, but can’t make a character

walk up slope. An offset Lie Group action will allow the character to walk up a slope
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Figure 6.37: Limit Cycles of Different Step Size Gaits

Figure 6.38: gait with step size 1
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Figure 6.39: gait with step size 2

Figure 6.40: gait with step size 4
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with a constant angle. However varying the slope will resultin walking failure. By

combining the two methods, the passive walker can walk on terrains of varying slopes.

The control strategy is straight forward, basin of attraction of the walking limit cycle

is transformed to capture the current state. When walking onvarying slopes, the off-

set action remains constant when the slope is constant. During slope transitions, the

controller looks ahead and sets offset parameter accordingto the slope of next step.

It is at the moment of transition, the state will move far awayfrom the stable limit

cycle. The character needs to take a few steps to return to normal gait.

After the first step in transition, the state will be farthestaway form the limit cycle.

This is the time when character may fail. More complex control method can be de-

signed transformation the basin of attraction to capture the state. However, in our

experiment, the basins of attraction provided by entrainment is already big enough. In

our experiments, the state has never escaped from it.

Figure 6.41 and Figure 6.42 show the gaits on smooth slopes. The phase plot of gaits

in Figure 6.41 is shown in Figure 6.43.

Figure 6.41: Continuous Varying Slope

Figure 6.44 show gaits on non-smooth terrain. The slope angles in radians are0.08,0.17,0.28,0.4.

Figure 6.45 shows the phase plot of gaits in Figure 6.44, where the phase plots on dif-

ferent slopes are marked with different colors .
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Figure 6.42: Continous Varying Slope
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Figure 6.43: Continous Varying Slope

Figure 6.44: Non-smooth Terrain coloured
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Figure 6.45: The Phase Plot of non-smooth terrain

6.5 Verification

In this section, we discuss stability, energy efficiency andthe biological justification for

the proposed approach. The stability is demonstrated by numerically approximating

the basin of attraction of the passive walking model under environmental perturbations

and under different initial conditions. The energy cost of each controller is evaluated

with various gradient and offset action conditions. In order to link our results to the

biological observations, we will analyse the captured motion data of a human walker

adapting to environmental perturbations which are similarto those demonstrated in the

above sections.

6.5.1 Stability analysis

The stability is analysed numerically by considering the basin of attraction of the pas-

sive dynamic walking model. The improved stability of our proposed approach is

demonstrated in Figure 6.46 . The simulation runs from the foot strike phase (the bot-

tom left corner of the plot) until it either converges towards the limit cycle or diverges.
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The initial conditions, which are the starting angular velocity of the leg for this case,

are incrementally increased and decreased and the result isre-plotted until the motion

is unstable. Only stable cycles are displayed. The passive walker is stable when walks

down a slope of 0.06 radians (Figure 6.46 (a)) but considerably less stable when walks

down a slope of 0.03 radians (Figure 6.46 (b)).

In Figure 6.46 (c) the stability of the system (as demonstrated by the size and shape of

the basin of attraction) is greatly improved by coupling theCPG.

By applying the offset group action withε = 0.03 to the system in Figure 6.46 (d),

the step size is adjusted to compensate for the change in slope angle, which improves

the stability further.

6.5.2 Energy efficiency

Since the passive walker uses no energy, the energy consumedin the system depends

on the control variablesuo andul only. We compute the individual cost of transport

(Collins and Ruina, 2005) of each controller as
∫

|ωuo(xc)| for the neural controller

and
∫

|ωul(x)| for the local controller, whereuo(xc) andul(x) are local and global

invariant control effort andω is the angular velocity.

Since these may affect each other, the resultant cost may be less than the total energy

applied by the controllers. If these two controllers have independent actuators, then we

should consider the sum of the absolute controller torque output from the controllers.

We assume that there is only a single actuator, implying thatonly the resultant torque is

appropriate. Therefore the resultant (net) cost of transport cet applied by the controllers

in our method is described by the following formula:

cet =

∫

|ω (uo(xc) + ul(x)) |dt . (6.7)

We evaluate this energy over a stable limit cycle by varying the gradient and the value

of the offset controller in Table 6.1. Applying the offset action corresponds to altering

the step size of the walking model. We observe that the energycost associated with

applying the Lie group action increases linearly with the offset value. The energy cost
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(a) Passive walker (0.06 radians) (b) Passive walker (0.03 radians)

(c) +Neural control (d) +Group action

Figure 6.46: Sensitivity analysis demonstrating the stability of the walking model un-
der perturbations of initial angular velocity.

Cost of transport cet
Gradient (rads) Offset r Action cost Neural cost Net cost
-0.060 0.000 0.000 0.021 0.021
-0.030 0.000 0.000 0.020 0.020
-0.030 0.030 0.030 0.021 0.028
0.000 0.000 0.000 0.029 0.028
0.000 0.030 0.030 0.020 0.026
0.000 0.060 0.061 0.021 0.047
0.000 0.080 0.081 0.021 0.068
+0.020 0.080 0.081 0.021 0.065

Table 6.1: Cost of transport for the global and local controllers and ofthe system as
a whole.
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of applying the neural controller seems to be relatively constant. Note that the optimal

solution for planar walking is to use an offset action withε = 0.03, which results in

a smaller step size. Compared with a state of the art real robot walking on a plane

(Collins and Ruina, 2005) with no local controller, our method uses approximately

half the energy, probably due to the lower dimensionality and lack of damping in our

system. Such results is not enough to prove our method is mostenergy efficient one,

but it shows the new method belongs to the energy efficient class.

6.5.3 Biological justification

In order to provide a biological justification, we performeda simple experiment by

capturing the walking motion of a single person using a commercial grade motion cap-

ture system The participant walked on a calibrated mechanical treadmill under two

separate environmental conditions in three increments. Wevaried the speed using the

treadmill settings and the elevation by lifting one side of the treadmill. The motion

of the walker was captured for a minute under each condition.The resulting data was

cleaned from noise and smoothed before analysis. In Figure 6.47, we show the results

of plotting the angle against angle gradient in the sagital plane between a vertical di-

rection and the line from the hip to the ankle of the participant, which approximately

corresponds to the variablesq1, q2, q3 in our dynamic system. Minimal data processing

was necessary to tease out this result a standard 1-D filter toremove small local peaks,

and the entire path was divided into motion segments and aligned by finding peaks in

the cycle corresponding to the foot striking the ground.

In Figure 6.1(b,d), The motion flows vary and cover an area on the phase plot. which

can be seen as states moves around the limit cycles because ofenvironmental noise.

For a different setup, the area shift its postion and shape slight, but maintain its basic

shape. This phenomenon agrees with idea of global invariantin MoIT .

For biological system, the precise limit cycle is unattainable. The mean cycle of the

walking motion flows are treated as an approximation limit cycle. Figure 6.1(c,e) are

the mean cycles of Figure 6.1(b,d).

Changes in treadmill speed clearly caused the participant to increase the energy in the
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(c) Mean speed cycle
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(d) Elevation change
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(e) Mean elevation cycle

Figure 6.47: On the phase plot, we can demonstrate how a real human adjuststo
changes in the environment. The red, green and blue lines represent data captured
under different elevation or speed conditions.q is the angle in radians between an
orthogonal to the horizon and the line from the hip to the ankle of one leg.

dynamic system, analogous to the energy scaling action. When the elevation of the

treadmill was altered, the participant adapted by both increasing the step size transfor-

mation (presumably in order to maintain the same speed) and adapted to the change in

gradient by applying an offset operator.

There are distinct differences between a fully actuated biological human system and

the passive walking model. A human will adopt an ankle strategy to minimize the

strike momentum and therefore reduce energy loss, which explains why there is no

significant spike in the real limit cycle when the foot strikes the ground. In spite of

this, the experiment result support the idea of invariant and transformation ofMoIT .

6.6 Animation Practise

Based on the realistic walking patterns generated by dynamic simulation, animators

can further tweak various parameters for the animation purpose. This process can be

114



done in a systematic manner.

The first step is to adjust the walking periold. This involvesspecifying the height and

mass of the character. Theτ parameters of theCPG can be adjusted automatically by

the computer, becauseτ is propotional tom
L

.

For the second step, animator needs to specifyhi andho of CPG to determine the

coupling intensity of theCPG and the walker. Smaller values mean weak coupling,

result in unstable but efficient looking gait; while bigger values means strong coupling,

the motion will be more stable but energy consumming.

For the third step, animators can specify the speed, step size and direction by applying

a single or comibnations of group actions.

For the last step, animator may add style variation for the character by modifying the

mass rationam,mass distribution ratioal and etc.

Animation will be an iterative process. However, because the low computation cost of

the method, computer can provide motion feedback in realtime.
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Chapter 7

MOTION PRIMITIVE

TRANSITION:WALK AND STANCE

This chapter focuses on synthesizing transitional motions. Another motion primi-

tive:the stance is developed in Section 7.1. The transitional motions from walking

to stance and from stance to walking are discussed in Section7.3.

7.1 The Stance Primitives

For passive walkers, if the walking velocity is not big enough after a heel strike, the

passive walker will stop walking and rest at the double support posture. This stable

posture is shown in Figure 7.1.

On phase plot, such motions have the topology of a fixed point attractor, which is

another motion primitive: the stance.

7.1.1 Simplified Dynamics

When people stand, the two legs are almost straight. Insteadof the four linked rigid

body model, the stance for this case can be simplified as a point mass supported by
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Figure 7.1: The Stance Motion Primitives
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two straight legs. Stephens and Atkeson (2009) proposed theheight of waist is almost

constant and can be neglected. Therefore, the simplified dynamic model has only one

degree of freedom, i,e. the horizontal displacement. Giventhe horizontal displace-

ment, configurations of shank and thigh can be worked out through inverse kinematic

methods.

The stance dynamic is not continuous and the phase space can be divided into three

regions. The postures of different regions are shown in Figure 7.2.

Fl

bC

F
l Fr

bC

F
l Fr

bC

Fr

bC

Double SupportLeft Support Right Support FallFall

Figure 7.2: discontinuous dynamics of stance

• Double Support When the off center displacement is small, the body is sup-

ported by two legs. the motion is governed by the gravity.

q̈ =
g

L
(q − yr) +

g

L
(q − yl)

whereq is the off center displacement,L is the height of the mass point, andg is

gravity.

Torques are generated by the two legs to maintain stability.Intuitively, the left

torque is increased when the centre moves left, and the same is true with the

right torque. We suppose the relationship between torques and centre position is

linear. Dynamic Equation 7.1 incorporates the control strategy.

q̈ =
g

L
wr(q − yr) +

g

L
wl(q − yl) +

τL + τR
mL

(7.1)

118



wherewl andwr are the weight of the two torques. We havewl + wr = 1.

• Single Leg SupportFor a big horizontal displacement, people stand on a single

leg. The passive dynamic is

q̈ =
g

L
q

Equation 7.2 incorporates the torque generated by legs.

q̈ =
g

L
q +

yL,R
L

τL,R (7.2)

• Fall and Walk For even bigger displacement, the stance posture can not be

maintained. The phase space region where human can maintainthe stand posture

is called “support region”. The width of the “support region” depends on the

height and the step size. When moving out of the “support region”, the stance

posture can’t be maintained, and a human will either walk or fall.

Without damping effects, the original system is similar to amass spring system. It

will vibrate endlessly, and the flow is a cycle, as shown in Figure 7.3. If the speed is

high, then the state will move out of the basin of attraction.Maintaining stance is to

maintain the horizontal displacement within the support region.
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Figure 7.3: uncontrolled motion

The support region is propotional to the distance between the supporting legs. Figure

7.4 shows the phase plot and supporting regions with different step size.
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(a) Wider Supporting Region
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(b) Narrow Suporting Region

Figure 7.4: Topological Conjugacy

7.2 Motor Invariant Control

7.2.1 Entrainment

By coupling the dynamic system with the neural oscillator, the position of the centre

is fed into the neural oscillator and the output of the neuraloscillator drives the torque

generated by the legs.

ui = hi(q); uo = τL,R

Entrainment happens and a limit cycle is formed. However, since entrainment will no

modify the boundary of the support region, entrainment doesnot boost the stability.

Because it is impossible for mechanical system to converge to the limit circle within

1/4 period, and the neural oscillator will not modify the boundary.

7.2.2 Local Invariant Control

All the three group actions can be applied. However, only twogroup actions among

the three are useful and affect the stability.
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Time Scaling

Time scaling action will stretch the phase plot in the velocity direction, as shown in

Figure 7.5. It will enlarge the basin of attraction to include high speed state.
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Figure 7.5: Time Scaling

Energy Control

Energy scaling action will modify the size of the limit cycle, which modifies the wob-

bling amplitude. Figure 7.6 shows the energy action effect on the limit cycle. When

energy action is applied, the limit cycle shrinks.
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Figure 7.6: Energy Scaling
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Fast Convergence Control

By applying speed and energy scaling actions sequentially,wobbling can converge to

the limit cycle and stop quickly. In Figure 7.7, the speed action is first applied to

include the high speed state for 1/4 period. When the state reach the pos that the speed

is zero, the energy scaling is applied for next1/4 period to shrink the limit cycle size.

For the next1/4 period, the speed action is applied, and so on.
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Figure 7.7: Fast Converge

7.2.3 Stability

Motions of stance are put together for comparison. Without any control, the character

fails as shown in Figure 7.8.

In Figure 7.9, the speed action is applied, and the charactermaintains its stance motion,

but wobbles endlessly.

In Figure 7.10, both speed action and energy action are applied, and the character

maintains the stance and vibrates with a shrinking amplitude.
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Figure 7.8: Balance Motion without Neural Control

7.3 Walking and Stance Transition

Both limit cycles of walking and stance are shown in Figure 7.11. The phase plot

here shows the supporting leg, and the swing leg is indicatedin shadow red. Motion

transition means make the state transform from one limit cycle into another.

7.3.1 Walk to Stance

Walk to stance transition happens at the heel strike phase. Without control effort, the

bipedal machine will continue to walk. As shown in Figure 7.11, if we switch on the

stance motion primitive controller, the current state willfall into the basin of attraction

of stance with a proper group transform action. Two legs willstart to vibrate with

smaller amplitude, this is the walk to stance transition.

The walking step length is closely related the supporting region for stancing. A bigger
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Figure 7.9: Wobbling Stance
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Figure 7.10: Stable Stance

Figure 7.11: Walk to Stance Transition
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stepsize will result in a bigger supporting region for stancing. While a smaller stepsize

will result a narrow supporting region for stancing. With local invariant controller,

stance can be maintained no matter how big the stepsize is. However, a smaller stepzie

will require a bigger time scalling or more control effort.

Knee Bending Scheme

During walk to stance transition, the two legs are straight when the heel strikes. At this

time, the support region is very small. Any push of the figure,it will move out of the

two support region. To enlarge the basin of attraction, the walkers have to bend legs

and lower the height. There are many ways for bending the legs.

• One Leg Bendingwalker can bend one leg while keeping the other leg straight.

• Double Leg Bendingwalker can make the two leg bend.

Since the knees is not necessary straight when a human walk, it is very difficult to tell

which one is more realistic. These two schemes are extreme cases. Motion of Double

Leg Bending is shown in Figure 7.12.

(1) (2) (3) (4) (5)

(6) (7) (8) (9) (10)

Figure 7.12: Stop Walking with Two Legs Bend
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7.3.2 Stance to Walk

When the stance to walk transition happens, the current state should be close to the

walking limit cycle. Due to this reason, stance to walk happens when the legs are

moving forward at maxim speed and the position of the hip is inthe middle. At this

time, we switch on the walker controller, and the character starts walking. Figure 7.13

shows the process on phase plot.

Figure 7.13: The Phase Plot for Stance to Walk

From stance to walk, the height has to be increased. Only one scheme exists for

straightening the knees. The scheme which we use is to keep the front leg straight

and make the hind leg from bend to straight.

Another non-trivial problem is is that when switching stance to walk, it is impossible

to put both legs on the limit cycle. The supporting leg has been given the priority, for

the supporting leg is more important for maintaining stability.

7.3.3 Smooth Transition by Speed Action

When transiting from walk to stance, the basin of attractionmust include the heel strike

state. However, the original basin of attraction of stance does not. A speed action is

needed to enlarge the basin of attraction. As an alternative, we can lower the walker

speed. In this way, walking to stance may become easier.
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For the transition from stance to walk, if little effort is exerted, the initial position will

be far from the walking limit cycle. To maintain the walking stability, speed actions are

applied to decrease the walking speed. To make both limit cycles connected each other,

the speed action of stance and walking mus have a constant ratio, This phenomenon is

common for our daily experience.MoIT gives it a mathematical meaning.
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Chapter 8

TOWARDS HIGH DIMENSION

8.1 Introduction

In the previous chapters, motions are dynamically synthesized for characters with sim-

plified dynamics. A question arises whether the motor invariant theory(MoIT ) is ap-

plicable to characters with higher degrees of freedom. For walking and stance exam-

ples, high degree systems will incorporate the motions of the torso and arms. Also for

snakes and fishes, synthesising motion for a flexible spine may also be challenging.

MoIT provides a different perspective, and some of the challenges can be solved in a

very different manner.

RedundantDOF is the key challenge in motion synthesis. From the theoretical per-

spective ofMoIT , redundantDOFs do not increase the computational burden expo-

nentially.MoIT explores the natural dynamics of the body and the redundantDOF can

move passively. The computation cost of one neural oscillator remains constant when

coupling with different mechanical models. As long as the symbolic equations of a

dynamics is given, symbolic expression for each group action can be derived. Thus

the computation of controlled symmetry action is trivial and increase linearly with the

number ofDOFs.

However, the symmetrical controller requires symbolic expression of the dynamic sys-

tems. With high dimensional systems, obtaining the symbolic expression is not trivial
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and finding the basin of attractions is even more challenging. This chapter focuses on

techniques that avoid developing highDOF symbolic equations. Different strategies

are developed to utilized low dimensional dynamic equations to simulate high dynamic

systems.

• Negligible DOFsFor characters with highDOFs, someDOFs can be simply ne-

glected.MoIT is based on two concepts, the qualitative property and symmetry

actions.DOFs can be neglected for two reasons: first for someDOFs in some

motion primitives, their motion is minor and has little effect on the system’s dy-

namic property. For suchDOFs, controller systems can be designed according

to the simple model. The high dimensional model can be used for simulation,

but will not affect the burden of control calculation.

Second for some otherDOFs, their effects are equivalent to some group trans-

formation. If a group action controller is developed, the effects of suchDOFs

can also be neglected.

• Mechanical Coupling In certain circumstances, the divide and conquer strat-

egy works. Instead of simulating and developing controllers for a complex me-

chanical system, the complex system is divided into many components with low

DOFs, and controllers are developed for each of them.

• Time Offset In some cases, the motions of someDOFs are similar or mimic

each other, the dynamics can be simplified as controlling just one DOF, and

synthesizing otherDOFs by mimicking it.

8.2 Negligible DOFs and Reduction

8.2.1 Negligible DOF

Although biological mechanical structures have high degrees of freedom, manyDOFs

will not affect the topology or qualitative properties. Forthe walking example, Raibert

et al. (1986) pointed out that walking is the same as a ball rolling down a slope while

running is the same as a ball bouncing down a slope. In our research, a control strategy
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is developed based on the compass gait model, as shown in Figure 8.1. The degree

of knees in Figure 6.2 and foot in Figure 8.2 will have little effect on the qualitative

properties.

gxn,yn

γ

bC

bC

Figure 8.1: Compass Gait

Although the compass gait and arc foot model are different from our walker with knees,

the three models are all capable of passive walking and show limit cycles of similar

shapes, as shown in Figure 8.3 and Figure 8.4.

From geometry perspective, the low dimensional phase portrait can be seen as the

skeleton of the a high dimension phase portrait, the introduction of newDOFs will

provide space for possible new attractors or motion primitives. However, if the motion

range of the extraDOF is very limited, then the extra space will be very small and

cover only a small area. Furthermore by applying control effort, basins of attraction of

the original attractors are enlarged and may use up any new space.

Motions of someDOFs are relatively small, or have little effect on the topology. From

an alternative perspective, such motions are treated as perturbations, which can be

processed by the perturbation or averaging techniques(Khalil and Grizzle, 2002). As

an example, the equation of the walker with knee is very different from the compass
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Figure 8.2: Arc Foot Walker
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Figure 8.3: the limit cycle of compass gait
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Figure 8.4: the Limit Cycle of arc foot

gait model. However, from a different perspective, the relatively small motion of the

knee can be seen as perturbations to the leg length and the mass position parameters.

Feet are added to the original walker following this principle. For normal walking,

the motion range of the ankle is very small. According to experience, the feet will

boost the stability. At current, we did not taken the complexfeet shape and collision

dynamics into account. However, the bigger contact region will prolong the double

supporting time, which allows the walker adjust the stability for the next step.

For simulation, for each step, after heel collsion, we get the new state[q1, q2, q3, q̇1, q̇2, q̇3].

Feet actuations will push the current state towards the limit cycle.

The effect of ankle actuation is modelled by the simplified liner model, as shown in

Equation 8.1.

q̇f = (1− r)q̇ + rq̇desir (8.1)

where theq̇ is the state after the heel strike,q̇f is the state after foot actuation.r is

the linear ratio.q̇desir is the desired state, or the state on the limit cycle. If foot action

pushes the walker towards the limit cycle perfectly, thenr = 1,

It is easy to prove that with foot actation

q̇f − q̇desir = (1− r)(q̇ − q̇desire)
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This can been as the distance from the current state to the limit cycle is scaled down by

1 − r, or can be also intepreted as the basin of attraction is enlarged by a scale factor

of 1
1−r

at the heel strike time. Both explanation shows the walking more stable.

Adding feet will change the shape of the limit cycle slightly, the gait is shown in

Figure 8.5.

Figure 8.5: Walking with Feet

8.2.2 Symmetry Reduction

For a dynamic system of high dimension, in some cases, theDOFs can be divided

in a specific manner: a lower dimensional dynamic system which captures the key

properties of motion, and some extraDOFs that place the lower dimensional dynamics

in higher dimensional space(Marsdenet al., 1990). The extraDOFs have the same

effect as group actions, and the dynamics can be controlled with a lower dimensional

model.

This idea helps to extend the 2D walker into 3 dimensions. Rather than developing

the full 3D dynamics, a 3D walker is developed based on the 2D walker. Motions in

the coronal plane and transverse plane transform sagittal plane dynamics. The motion

in the coronal plane and transverse plane can be simplified asrigid body simulation,

which places the 2D walker at a correct position in 3D space.
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Lateral Motions

An illustrative example shows the sway motions in the coronal plane.

bC

bC

g ′

Sagittal Planeg

bC

bC

Sagittal Plane

α

Figure 8.6: Sideway

As shown in Figure 8.6, when the passive 2D walker walks on a terrain with a sway

angleα. The gravity force on the sagittal plane is decreased.

g′ = cos(α)g

whereg′ is the projected gravity force on the sagittal plane. By substituting the pro-

jected gravity in the dynamic equations, we have

M(q)q̈ + C(q, q̇)q̇+N ′(q) = 0 (8.2)

The external forceN becomesN ′ = cos(α)N

This has the same effect as applying speed action of the parameterε, whereε2 − 1 =

cos(α). The effects of sway motion on the 2D dynamics can be simulated by adjusting

the speed action parametersε. For a walker with a speed action controller, this effect

can be totally compensated.
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The sway motion on the coronal plane is not based on passive dynamics and unstable

in nature(Kuo, 1999). Great effort is executed at the ankle and waist for maintaining

posture. Such motions are closely related to the character’s motion purpose and not

mainly governed by natural dynamics, thus are left to the animators. For procedural

method, we can use aPD based method to make the walker sway about the centre

position.

The passive walker is put to walking on the plane. When walking on the plane, sway

motion will result in an early heel collision, which may treated as a noise to the 2D

passive walker.

Figure 8.7 show the lateral way motion and walking motion. The lateral sway angle

synchronizes with walker motion. Figure 8.8 the lateral motion effects on the walking

limit cycle. The walking limit cycle split in two and seems sugest that the period of

walking is doubled
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Figure 8.7: Sway Motion and Leg Motion

Turning Motion

The rotation on the transverse plane has no effect on the 2D dynamic walking model.

If the ground is rotating around the transverse plane at constant speed, the dynamics

on the sagittal plane will remain the same. In three dimensions, the difference is that

centrifugal force is generated perpendicular to the sagittal plane, which is compensated

by the friction of the foot.
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Figure 8.8: Lateral Sway Motion Effects on Walking Limit Cycle

For the walker, a turning means rotating the sagittal plane,this can be achieved by

actuating the hip joint of the supporting leg, as shown in Figure 8.9.
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Figure 8.9: Turn Actuation

The same as for the lateral motion, turning is not achieved byexploring natural dynam-

ics, but determined by the animator’s purpose. The animatordetermines the turning

angle and speed. As a simplification, during the turning, thedynamic equations of 2D

walker remain the same. Turning gaits are shown in 8.10.
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Figure 8.10: Walk And Turn
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8.3 Mechanical Coupling

Many highDOFs systems have a tree topology, which is composed of many branches.

For such systems, the divide-and-conquer strategy is utilized to avoid the difficulty of

developing a complex dynamic equation of high dimensions.

The mechanical system can be seen as many different simple components connected

together. Different components can be simulated independently, and the interactions

between different parts form mechanical coupling.

If a mechanical system is in the following form

ẋ = F (x)

the state isx = [q1, q2, q̇1, q̇2] we can reform the dynamic equation in a different manner

x = [x1,x2] wherex1 = [q1, q̇1] x2 = [q2, q̇2]

and the original system can be seen as two systems coupled together

ẋ1 = F1(x1) + C1(x1,x2)

ẋ2 = F2(x2) + C2(x1,x2),

if C1,2 ≪ F1,2, then the dynamic will be dominated byF1,2 andC1,2 can be treated as

perturbations. Controllers are designed according toF1,2.

Mechanical Structure with Branches

In fact any mechanical system can be reformulated as an entrainment network, a proper

division should separate the system at the places where the coupling is weak. The weak

coupling joints can be identified through the mechanical structure. Usually, the joints

where the system branches are a good choice.

If the mechanical system has the structure shown in Figure 8.11.
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Figure 8.11: Mechanical Structure with Branches
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The 5DOFs dynamic system is in the following form

M

















q̈1

q̈2

q̈3

q̈4

q̈5

















+ C

















q̇1

q̇2

q̇3

q̇4

q̇5

















+

















N1(q1)

N2(q2)

N3(q3)

N4(q4)

N5(q5)

















=

















u1

u2

u3

u4

u5

















whereq1,2,3,4,5 are the configuration coordinates of5 links, and the mass matrix is

M =

















m11 m12 m13 m14 m15

m12 m22 m23 m24 m25

m13 m23 m33 m34 m35

m14 m24 m34 m44 m45

m15 m25 m35 m45 m55

















and

C =

















0 c12q̇2 c13q̇3 c14q̇4 c15q̇5

−c12q̇1 0 c23q̇3 c24q̇4 c25q̇5

−c13q̇1 −c23q̇2 0 c34q̇4 c35q̇5

−c14q̇1 −c24q̇2 −c34q̇3 0 c45q̇5

−c15q̇1 −c25q̇2 −c35q̇3 −c45q̇4 0

















For the branch structure in Figure 8.11, the coefficient of unconnected links will be

zero, thus

M =

















m11 m12 m13 m14 m15

m12 m22 m23 0 0

m13 m23 m33 0 0

m14 0 0 m44 m45

m15 0 0 m45 m55
















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and

C =

















0 c12q̇2 c13q̇3 c14q̇4 c15q̇5

−c12q̇1 0 c23q̇3 0 0

−c13q̇1 −c23q̇2 0 0 0

−c14q̇1 0 0 0 c45q̇5

−c15q̇1 0 0 −c45q̇4 0

















This matrix of dynamic equation can be grouped in the following manner: where

M =

















m11 m12 m13 m14 m15

m12 m22 m23 0 0

m13 m23 m33 0 0

m14 0 0 m44 m45

m15 0 0 m45 m55

















=

[

M33 Mc32

Mc32 M22

]

and

C =

















0 c12q̇2 c13q̇3 c14q̇4 c15q̇5

−c12q̇1 0 c23q̇3 0 0

−c13q̇1 −c23q̇2 0 0 0

−c14q̇1 0 0 0 c45q̇5

−c15q̇1 0 0 −c45q̇4 0

















=

[

C33 Cc32

Cc32 C22

]

The coupling network of two dynamic equations is

M33







q̈1

q̈2

q̈3






+C33




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q̇1

q̇2

q̇3






+







N1(q1)

N2(q2)

N3(q3)






=







u1

u2

u3






−







m14q̈4 +m15q̈5

0

0






−







c14q̇
2
4 + c15q̇

2
5

0

0







M22

[

q̈4

q̈5

]

+ C22

[

q̇4

q̇5

]

+

[

N4(q4)

N5(q5)

]

=

[

u1

u2

]

−
[

m14

m15

]

q̈1 −
[

−c14

−c15

]

q̇21

From a mechanical perspective, this is equivalent to simulating two branches of the me-
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chanical structure independently and coupling is treated as perturbation effects. Figure

8.12 shows how the mechanical structure is decoupled.
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Figure 8.12: mechanical coupling

8.3.1 Torso And Arm

Using this mechanical coupling idea, the arm and torso motions are incorporated in

our simulation. Three variables are added for the torso, theangleqtor, the massmtor

and the distance from the hip isltor. With the upper body, the equation for walking

becomes

Mq̈+Cq̇+N = u−







mtorltorLcos(q1 − qtor)q̈tor

0

0






−







mtorltorL sin(q1 − qtor)q̇
2
tor

0

0







(8.3)

From the Equation 8.3, if the torso is kept still, lower body walking will not be effected.

In real life walking, the upper body is usually kept straightupward, so the coupling

input from the upper body is very small.
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The dynamics of the torso can be modelled as an inverted pendulum perturbed by the

lower body dynamics, as follows.

mtorl
2
tor q̈tor = mtorltor(gsin(qtor)− Lcos(q1 − qtor)q̈1 − Lsin(q1 − qtor)q̇

2
1)) (8.4)

by analysing the Equation 8.4, torso motion is unstable in nature, so control effort must

be exerted to maintain its posture. Such a control task is trivial, PD controllers will

work for maintaining stability, but the resulting swaying may be not natural looking.

The control method adopted by this research is based on the controlled Lagrange

method. Although an inverted pendulum is not stable, a pendulum is stable. Through

shaping the potential energy by control effort, we turn the inverted pendulum into a

pendulum. The control input for the torso is

u = −kmtorltor(gsin(qtor))

wherek is a constant. Whenk > 1, it will turn the upper body dynamic from inverted

pendulum to a pendulum. A biggerk will make the sway motion smaller, and keep the

lower body motion untouched. A smallerk will make the upper body motion swing

more and generate more perturbations to the lower body. For stable walking, the upper

body motion is restricted to a small value.

When the stable pendulum is coupled with the walking motion,stable entrainment

happens, so the torso and walking motion coordinate naturally. Figure 8.13 shows the

entrainment of the torso motion and walking, where the body sway and walking are

synchronized. To keep the stability, we setK to make the torso vibrate with a small

amplitute. Figure 8.14 shows the effects of torso movement on walking. In our test,

walking motion never converge to the limit cycle, but wobblearound it.

Note that in real-life, the torso is closely related to the motion purpose and not gov-

erned by natural dynamic properties. For animation application, it is unnecessary to

control the upper body dynamically. We can use procedure or other “IK” methods to

generate primary motion of the upper body; walking dynamicsperturbations are added

for secondary motions. The motion of arms can be incorporated by following the same

principle, it is just another level of complexity.
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Figure 8.13: The Mechanical Entrainment of Leg And Torso
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Figure 8.14: The Torso Motion Effects on Walking

145



8.4 Time Shift

For reptiles and fish, the main challenge rests in synthesizing the flexible spine which

is composed of manyDOFs. SuchDOFs are similar and equally important, it is not

appropriate to reduce anyDOF through symmetry or mechanical coupling.

For such mechanical structures, an ad-hoc method is proposed. Each controller con-

trols just one joint. The hypothesis states that since the joints are similar, their dynam-

ics and motion should also be similar. Thus the same control strategy is applied for

every joint. Motions of each joints are differentiated by the Time Shift group action.

Fish Swimming

These ideas are applied to synthesising the fish swimming motion. In this application,

the group action is the Time Shift. The fish is made up of8 links, and eachDOF

is controlled by a neural oscillator. The8 CPG have the same parameters, but have

different initial positions. Thus they have the same limit cycle, but different phases, as

shown in Figure 8.15

Figure 8.15: CPG for Fish

A simplified dynamic model is used. Each joint is modelled as aspring system, as in

Equation 8.5

q̈ = Kq (8.5)

146



whereq is the joint angle.

Figure 8.17 shows the gait of a fish swimming in line.

Figure 8.16: Swimming Motion by our method

8.4.1 Swimming Motion Tweaking

The swimming motion is divided into two space, the world space in which the position

and orientation are specified, the local space in which the shape of the fish is specified.

A simple fluid dynamic model is adopted for the relationship between local space and

world space.

In the world space, the swimming trajectory is described thecurvatureK and length

L. The trajectory curvatureK is proportional to the sum of the joint angle.K =

c
∑n

i=1 qi The swimming velocity is proportional to the velocity of thejoint oscillation

v = c(
∑n

i=1 q̇i
2).

When a group action is chosen, the action is applied to all theDOFs. There are many

group actions available for tweaking the fish swimming motion. Offset Action will

result in the turning, Speed Action will make the fish swim faster. Energy Action

will modify the swimming intensity. Figure 8.17 show the swimming in line gait.

Figure 8.18 shows the phase plot of4 segments, as time goes, the phase plot of the

4 DOFalmost overlap. Figure 8.19 shows the state evolution over time, where all the

state oscilate with the same amplitute but differentiate bya time offset.

Figure 8.20 show the turning gait, where an offset action is applied. This will make

the body bend and turn the swimming direction. Figure?? shows the phase plot when
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Figure 8.17: Fish Swim
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Figure 8.18: Phase Plot of4 segments
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Figure 8.19: The State of4 segment

all theDOFare applied offset action. Figure 8.22 show the state of theDOFafter the

offset action.

Figure 8.20: Fish Swim Turn
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Figure 8.21: Offset Action on All theDOF
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Figure 8.22: Fish Swim
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Chapter 9

CONCLUSION AND FURTHER
WORK

9.1 Conclusion

Physics based methods for synthesizing character animation have attracted much re-

search interest in recent years. However, efficient methodsfor natural looking motion

are still out of reach. This is mainly because of the complex structure of body dynam-

ics. For physics based methods, the planning and inverse dynamic problems are very

challenging. Optimization or Data Driven based methods areproposed, but such meth-

ods often require prohibitive computational time or extensive motion data that easily

runs out of memory.

Taking a different perspective, the underlying question ofmotor synthesis research is

how animals move in a complex and variable environment. Thistopic is more valuable

and interesting, and, in fact, attracts even more research beyond the computer graphics

community. Biological and robotic researcher investigated motor control from a very

different perspective, and discovered some more properties which may be more crucial

for understanding animal motions than the visual properties that are the main concern

of graphic researchers. They have identified the limited neural activity, stability and

energy efficiency of motor control.

The current idea from biological science and robotic engineering experience rejects the
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popular ideas of graphic researchers, because the sensing,computation and actuation

systems of real animals are not suitable for optimization ordatabase management. An-

imals in nature must adopt a very different strategy for moving. The inspiration from

biology and robotic research is an explanation of the complexity of body dynamic. The

complexity of body dynamics is not to challenge the neural control system, on the con-

trary, the complexity reflects the sophistication of nature. A sophisticate mechanical

system may ease the control difficulties of many daily motiontasks. The new idea is

that in fact most of the motion problems have already been solved by nature. Evolu-

tion has equipped animals with very handy mechanical apparatus, so that many motion

tasks can be accomplished without any effort. To meet a specific purpose, animals only

need to modify basic motion behaviours in a clever way.

These ideas inspired this research to develop animation methods considering of the

biological facts. The belief is that if our animation methods follow the biological

principle, potentially our characters in the virtual worldwill move and react in a more

natural manner. Such a goal has been partly achieved in this research. In addition, more

valuable results arise from this process. To develop simulation programs, intuitive

biological ideas are tested for their computational efficiency and logical soundness. As

a consequence, a new mathematical interpretation and many algorithms are proposed

in this research. These new ideas are summarized as the MotorInvariant Theory. The

new theory is more detailed and accurate compared with current biological ideas, and

is applicable to controlling real robots. If it can be provedby further biological research

and experiment, this theory may have significant meaning.

Motor Invariant Theory is composed of several interconnecting ideas. The theory uni-

fies these ideas in a very different perspective of dynamics.The traditional force -

motion perspective is not insightful for understanding natural dynamics, because it

provides little information about the stability and energyefficiency of motion.

Motor Invariant Theory adopts the geometrical perspective. The concept of phase

space is introduced and the dynamic system is transformed into a geometrical struc-

ture: the phase portrait. After this transformation, motion dynamics can be studied

with many geometrical tools. On a phase plot, the dynamic system is divided into dif-

ferent regions. There is an attractor in each region which attracts all the states in the

surrounding states toward it. Motor Invariant Theory proposes that animal motion uti-
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lizes these attractors for motor control. Because attractors promise stability and energy

efficiency, they will greatly reduce control difficulties.

This idea has support from biological research. The idea of organized motions in

blocks is proposed as the motion primitive hypothesis. And the idea of utilizing attrac-

tors has been proposed by the equilibrium point hypothesis.Such ideas may be new

for graphic researchers, but the principles are long established in biological research.

The novelty of Motor Invariant Theory is the idea of the adaptation mechanism. Given

that the attractors are the starting point for motion planning, the following question is

how the neural control system tweaks the dynamics to achievespecific motions. Dur-

ing this process, the challenge is that stability must be maintained, energy cost must

be minimized and the computation should not last long. Optimization based methods

are not suitable. Also the tracking controllers are not appropriate for motor control,

because motions vary greatly. The idea of local stability control that constrains the

motion within a small error range from the reference will make motion lack varia-

tion. Motor Invariant Theory proposes that the stability property should be controlled

qualitatively. Large deviations from the reference shouldbe allowed while stability is

controlled. In the geometrical perspective, this means theshape and position of the

attractor does not matter, the controller only needs to maintain the attractor and the

current state within the basin of attraction. This idea is modelled by the mathematical

language of topology. Maintaining the attractor without considering the shape and po-

sition means the topology remained the same. In motor invariant theory, changing the

shape and position of attractors is not only allowed but utilized as a powerful tool. The

idea of changing the shape and position of the attractors notonly generates adaptive

motions, but also promises stability and energy efficiency and computation efficiency.

Two methods have been developed following this principle. The first idea is entrain-

ment. This idea applies to almost all periodic systems. For entrainment systems, the

periodic behaviour will be enhanced and perturbations are rejected. From the geomet-

rical perspective, the entrainment will maintain the topology of limit cycle and enlarge

the basin of attraction. In addition, the idea of entrainment is well supported by bi-

ological research. Also the method is computationally efficient. Another method is

based on symmetry and the preserving law of mechanical systems. Natural dynamic

systems tend to preserve many properties during motion, like energy or momentum.
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Transforming motions in a way that preserves such invariantproperties will promise

energy efficiency. Such transformation actions form another important mathematical

structure, the Lie group.

It is easy to prove that a Lie group transformation will not alter the topology, thus

the stability of transformed motions is guaranteed. This provides animators with a

direct method for modifying the motion without concerns about stability. Also this

method is easy to use. Because Lie group transformation can be parameterized with a

few parameters. Animators can modify motions by specifyingvery few parameters of

Lie group, instead of eachDOF of the character. As examples, three Lie groups are

developed, the offset group which changes the locator positions, which changes the

direction of motion; the time scaling group which modifies the speed of motion, and

also the energy scaling group which modifies the energy of motion. With such tools,

given a motion primitive, animators are allowed to modify the position, speed and

amplitude of motion, without worrying about the stability.As for the computation cost,

this research found that for rigid body systems, control input of each group element

has a close form formula, and the computational cost is trivial to compute. The idea

of Lie Group is also supported by biological research, whichfound that the motion

trajectory has many transformation invariant properties.

Because theCPG entrainment and Lie Group transformation are based on the topo-

logical invariant principles, these two controllers can becombined. Such operations

will change the shape and location of the locator, resultingin many types of variations

in motion. If the basin of attraction is modified to capture the current state, the current

motion primitive can be maintained. However, there are alsoimportant applications

for changing the shape and position of the locator to avoid current state. As a result,

the motion will diverge, and finally converge to a different attractor. The important

application is in motion transition. We can tweak the neighbour attractor to capture the

current state, which will generate stable transitional motion. This shows how motor

invariant theory can be easily extended to explain more natural motion phenomena.

Such methods have been applied to control various mechanical systems and characters.

The bouncing ball example shows how the entrainment forms anattractive limit cycle

and how group action changes the shape. In this process the bouncing height is main-

tained and can be stabilized against many perturbations. Another example is bipedal
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walking. Although bipedal walking seems difficult to control, it can happen naturally

because a limit cycle exists. With the entrainment method, the periodic behaviour is

enhanced and the basin of attraction is enlarged. This makespassive walking more

stable. This qualitative control approach can generate different gaits with different

body structures and environment conditions. When Lie groupactions are applied, the

passive walker is capable of walking on different terrains (offset action), at different

speeds (time scaling) or with different step sizes (energy scaling). For the balancing

motion primitive, entrainment will turn the dynamic systemattractive and group oper-

ators will adjust the size of basin of attraction and the timeneeded to stabilize. Also the

transitional motion of walking and balance can be synthesized with an energy efficient

method requiring little control effort.

Such simulation results are compared with real life data andthey comply with the

observed facts.

This research provides an answer to the way animals achieve computational efficiency,

energy efficiency and stability against various perturbations. For animation researchers,

motor invariant theory proposes a method that generates adaptive and natural looking

motions in a computationally efficient and reliable way.

9.2 Unsolved Question

But as a new theory, there are still many unanswered questions.

Finding the attractors in a high dimension dynamic system isnot an easy task. At the

end of the research, several methods are proposed to simplify the dynamic space to

make the task of finding locators easier. We propose neglecting degrees of freedom in

minor motions; dynamic space can be reduced according to thesymmetrical properties

or exploring the similarity and time shift properties in many mechanical structures.

Such methods help to add more detail to the synthesized motion, like the rotation,

body and arm swing motions. Also the method can be extended for more applications

like crowd and swimming simulation. But this question is notanswered completely in

this research.
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Nature seems to outsmart us. Even though we have learned a lotfrom nature, we still

have much to learn.

For computer animation, current methods ofMoIT are capable of generating physically

realistic motion adaptation in real-time, however, at current stage, this method have

several drawbacks preventing its production application.

The method is fully automatics, but requries symbolic differential equations. For an-

imators, adjust animation by tweaking the aparameters of a differential equation is

not an intuitive process. Also at current, number of motion primitives is very limited.

However, the idea of Lie group transformation and topological conjugacy is generative

that can be applied to any differential system.

In theory, symbolic equations are not necessary. From the geomtrical perspective, as

long as the phase portrait can be obtained, this method can beapplied.

In the further work, more types of animation systems can be developed based on dif-

ferent models of the dynamic system. Key frame and motion capture date maybe in-

coporate to genearate dynamic systems by machine learning technology. Also intutive

tools can be developed which allow the animator to sculpt thephase portrait directly.

9.3 Further Work

Motor Invariant Theory is not an improvement on existingCMS techniques, it is a

different paradigm. This thesis does not explore the full implication and potential of

this new theory. There is room for improvement, new techniques to be developed and

even new questions to be answered. This section lists several potential topics that may

interest computer graphic or biological research communities.

9.3.1 Stable Templates of Motion Primitives

This research started with a unstable system, where stability is enhanced by adding

control effort. Motor control is a complex task. In many cases, it is impossible to
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model all the control efforts that turn an unstable system into a stable one.

An alternative method is to start from a stable system and modify its shape to match

the observation. Such methods may lose the details of motionbut provide better sta-

bility and controllability. For games or film production, this idea may be important,

animators require controllability and stability over physical realism. For characters

performing acrobatics, the characters must not fall even though the dynamic system is

unstable in nature. Compared with traditional method likePDcontroller, this method

will be more robust.

9.3.2 More Types Of Symmetry

More types of symmetry will generate more types of transformation that can be applied

to adapt motion. All the group actions adopted in this research are linear transformation

group, which are easy to compute. But the types of transformation are very limited.

Exploring further types of symmetry may provide different adaptation schemes and

may expand the theory to different motion primitives.

• Discrete Symmetry PropertiesBipedal walking motions is synthesized in this

research, an interesting idea is motions for four or more legs be synthesized

based on the bipedal walking strategy.

This can be done by exploring another type of symmetry: discrete symmetry.

For dogs, the hind leg and font leg will move in synchronization or in antiphase.

• Non-linear Symmetry from Structural Parameter Tuning Non-linear sym-

metry preserving transformation will generate more types of adaptation. Since

non-linear transformation is more difficult to find, it remains questionable how

a biological system perceives it and applies it to motion adaptation. However

non-linear transformation is suitable for modelling the transformation resulting

from tweaking system parameters. From the idea of structural stability we know

the results of tweaking system parameters are equivalent tohaving a one-one

mapping transformation. Further research results from non-linear transforma-

tion may potentially completely solve the motion re-targeting problem
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• Symmetry of Partial Differential System

All the methods developed are for ordinary differential equations, which is good

enough for rigid body dynamics. In fact the topological properties and symmet-

rical properties also apply to partial differential equations. A famous example is

the Lorenz transformation group and Maxwell equation.

Symmetries of partial differential equations are important for they may extend

the control strategy to control the motion of elastic bodiesor locomotions in

fluids. Such motions are more expensive and are rarely addressed by current

CMS research.

To explore more types of symmetry, reformulating the form ofequations may ease the

task. Current dynamic equations are based on a fixed coordinates frame. It is helpful

to formulate the equations in a coordinate free manner or in the local frame.

9.3.3 Transform the Motion Capture Data

For computer animation, even though methods for simulatinghigh dimensional char-

acters are proposed. It may be impractical to synthesize alltypes of motions by proce-

dural methods. An alternative method is to use dynamic simulation to modify motion

capture data, which is well addressed in many research studies in the computer graph-

ics community.

Based on the idea of topological equivalence, motion primitive of different persons

or motions of different situations should have the propertyof topological equivalence.

In state space, there should exist a one-one mapping transformation function. Motion

Data can be converted into the state space and transformed byone-one mapping.

We can use the low dimensional model to find the one to one mapping relationship,

which is applied to transform the high dimensional motion capture data. Potentially,

this method may retain the motion details and involve littlecomputational work.
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9.3.4 Muscle Actuation

In the thesis, control effort is applied directly to eachDOF of the mechanical system.

In biological research, this process is not so direct. The neural system generates some

chemicals which affect the material properties of muscles,and force is generated as an

indirect side effect.

The question of muscle actuation is untouched in this research, but with further thought,

MoIT could also provide an alternative idea of muscle action. If transformation is the

reason for applying control effort, the actuation of muscles can be calculated directly

from the transformation, without considering the force generated. From this perspec-

tive, muscle actuation can be easier than calculating the forces. The reason is trans-

formation can be achieved by two methods, either control effort or by changing the

system parameters.

For the simple mass spring system, offset can be implementedby changing the rest

length parameterd. Speed action can be implemented by changing the stiffnessK.

and energy scaling can be achieved by adjusting the stiffnessK and then restoring it.

For biological systems, the method of changing parameters may be better as it will help

motor control system get rid of the necessary feedback and computation. In fact most

control effort in the thesis is potential energy shaping, which only involves modifying

the potential energy. If muscles are modelled as springs, then potential energy shaping

can also be achieved through modifying spring parameters.

The complex muscle structure may provide a mechanism for finetuning the deforma-

tion of the phase portrait and the attractor can be changed into any possible shape.

This idea may provide a conjecture for further biological research. For graphic re-

search, incorporating muscles in this manner will have no effect on motion synthesis

or computational work. The potential benefit is that the parameters of muscles can

affect the skin deformation.
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9.3.5 Perception based Dynamics

Motion perception is a high level capacity; it is based upon our object recognition

ability and our dynamic reasoning ability. Many physiological questions in computer

graphics may ultimately rely on recognition and perceptionresearch in neural science.

The introduction of a motion synthesis method also touches on the question of dynamic

motion perception and encoding problems in intelligence. The topological equivalence

and symmetry may also provide an understanding of the perception problem.

Based on the idea of topology equivalence, the neural systemmay not need to encode

the details of dynamic system, the neural system can form an analogous dynamic sys-

tems in our brain which is analogous to the real dynamic systems. Such model will

lack the detailed accuracy, but get the qualitative properties right.

Based on the idea of symmetry, neural system may store some experience and the

symmetrical property of dynamics in the memory. Our brain may verify dynamics by

transforming our experience to match our observation.

We are still not sure which method is better, but for our brain, both methods are more

practical than forming a symbolic equation solving it numerically. Maybe a new dy-

namic simulator can be designed to test this hypothesis.

A dynamic simulator can be built upon the topology and symmetry property. Anima-

tors can animate by specifying the attractor and the transformation being applied. If the

hypothesis is true, even though the method will generate physically inaccurate results,

the audience will not notice it.
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Appdx A:Dynamic Equation for

Passive Walking

Knee Free Phase

During the knee free swing phase, the passive walker can be seen as a triple inverted

pendulum. The dynamic system is a constrained rigid body dynamic system.

It will takes the following form.

M(q)q̈ + C(q, q̇)q̇ +N = τ

whereM is mass-inetia matrix.C is the centrifugal matrix.N is the gravity force.

τ is the external control input.q is the configuration vectorq = (q1, q2, q3).

Each symbol is illustrate in Figure 6.2.q1 is the supporting leg angle.q2 is the angle

of the swinging thigh.q3 is the angle of the swing shaft.L is the leg length.a1, b1, a2,

b2 specify the position of gravity centre.

mH is the mass of the hip.ms is the mass of the shaft.mt is the mass of the thigh.

In certain situations, the mass of legs are not symmetrical.Thus for mass of the thigh

and shaft, upperscript is used to specify whether the leg is the swing one(SW ) or the

supporting one(ST ).
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The mass matrix is definite and symmetrical:

M(q) =







M11 M12 M13

M12 M22 M23

M13 M23 M33







The elements are as follows.

M11 = mst
s a

2
1 +mst

t (ls + a2)
2 + (mh +msw

t +msw
s )L2

M12 = −(msw
t b2 +msw

s lt)Lcos(q2 − q1)

M13 = −msw
s b1cos(q3 − q1)

M22 = msw
t b22 +msw

s l2t

M23 = msw
s ltb1cos(q3 − q2)

M33 = msw
s b21

The centrifugal matrix is anti-symmetrical.

C(q, q̇) =







0 C12q̇2 C13q̇3

−C12q̇1 0 C23q̇3

−C13q̇1 −C23q̇2 0






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where the elements are as follows:

C12 = −(msw
t b2 +msw

s lt)Lsin(q1 − q2)

C13 = −msw
s b1Lsin(q1 − q3)

C23 = msw
s ltb1sin(q3 − q2)

TheN is the generalized force generated by gravity.

N =







−(mst
s a1 +mst

t (ls + a2) + (mh +msw
s +msw

t )L)gsin(q1)

(msw
t b2 +msw

s lt)gsin(q2)

msw
s b1gsin(q3)







whereg is the gravity coefficient.

Knee Strike

Knee Strike happens when the swing knee joint reaches the limit. The dynamic as-

sumption is that after the knee strike, the knee joinst will be locked and the triple

inverted pendulum system of knee free dynamics will become adouble inverted pen-

dulum system.

The following equations are established based on the rotation momentum preservation

property of the dynamic system.

J+

[

q̇1

q̇2

]+

= J−







q̇1

q̇2

q̇3







−
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J are the rotation inertia matrix.J+ is the rotation inertia after the collision.J− is the

rotation inertia before the collision.

After the collision, the knee joinst is locked, the swing thigh and shank will rotate

together, thus we have

q+3 = q+2

Because during the collision, only rotation moment of two centre ( the hip centre and

supporting toe centre) are preserved, two rotation momentums are preserved. SoJ− is

an3 by 2 matrix

J− =

[

J−

11 J−

12 J−

13

J−

21 J−

22 J−

23

]

andJ+ is an2 by 2 matrix.

The elements are as follows:

J+ =

[

J+
11 J+

12

J+
21 J+

22

]

J−

11 = −(msw
s lt+msw

t b2)Lcos(q1−q2)−msw
s b1cos(q1−q3)+(msw

t +msw
s +mh)L

2+mst
s a

2
1+mst

t (ls+a2)
2

J−

12 = −(msw
s ls +msw

t )Lcos(q1 − q2) +msw
s b1ltcos(q2 − q3) +msw

t b22 +msw
s l2t

J−

13 = −msw
s b1Lcos(q1 − q3) +msw

s b1ltcos(q2 − q3) +msw
s b1b2

J−

21 = −(msw
s lt +msw

t b2)Lcos(q1 − q2)−msw
s b1Lcos(q1 − q3)
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J−

22 = msw
s b1ltcos(q2 − q3) +msw

s l2t +msw
t b22

J−

23 = msw
s b1ltcos(q2 − q3) +msw

s b21

J+
11 = J+

21 +mst
t (ls + a2)

2 + (mh +msw
t +msw

s )L2 +mst
s a

2
1

J+
12 = J+

21 +msw
s (lt + b1)

2 +msw
t b22

J+
21 = −(msw

s (b1 + lt) +msw
t b2)Lcos(q1 − q2)

J+
22 = msw

s (b1 + lt)
2 +msw

t b22

Knee Locking Phase

For the knee locking swing phase, the walker can be seen as a double inverted pendu-

lum system. The equation of this rigid body dynamic system also has the following

form:

M(q)q̈ + C(q, q̇)q̇ +N = τ

The mass inertia matrix is a2 by 2 symmetrical matrix.

M(q) =

[

M11 M12

M12 M22

]
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The elements are as follows:

M11 = mst
s a

2
1 +mst

t (ls + a2)
2 + (mh +msw

t +msw
s )L2

M12 = −(msw
t b2 +ms(lt + b1))Lcos(q2 − q1)

The centrifugal matrix is2 by 2 and anti-symmetrical.

C(q, q̇) =

[

0 C12q̇2

−C12q̇1 0

]

and the only non-zero element is:

C12 = (msw
t b2 +ms(lt + b1))Lsin(q1 − q2)

The general force vector of gravity has only two elements:

N =

[

−(mst
s a1 +mst

t (ls + a2) + (mh +msw
s +msw

t )L)gsin(q1)

(msw
t b2 +msw

s (lt + b1))gsin(q2)

]

Heel Strike Phase

The heel strike happens when the swing heel touch the ground.The impact dynamics

equation is also based on the rotation momentum conservation law. Thus we have the

dynamic equation as the following form:

J+q̇+ = J−q̇−

After the heel strike, the passive walker will start in the knee free phase, At the begin-
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ning, although the walker walks in knee free model, the shankand thigh have the same

rotating speed.

q̇+3 = q̇+2

ThusJ+ is 3 by 2 matrix There is a switch between the supporting and swing leg, so

theJ+ is:

J+ =







0 1

1 0

1 0







Based on rotation momentum preservation, theJ− is:

J− =

[

J−

11 J−

22

J−

21 0

]

The elements ofJ− are:

J−

11 = J−

21 + (mhL+mst
t (a2 + ls) +mst

s a1 +msw
t (a2 + ls) +msa1)Lcos(q1 − q2)

J−

12 = −msw
s a1(lt + b1)−msw

t b2(ls + a2)

J−

21 = −mst
s a1(lt + b1)−mst

t b2(ls + a2)

J+
11 = J+

21 + (mst
s +mst

t +mh)L
2 +msw

s a21 +msw
t (a2 + ls)

2

J+
12 = J+

21 + (mst
s +mst

t +mh)L
2 +msw

s a21 +msw
t (a2 + ls)

2
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J+
21 = −(mst

s (b1 + lt) +mst
t b2)Lcos(q1 − q2)

J+
22 = mst

s (lt + b1)
2 +mst

t b
2
2
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Pures et Appl.(4. śerie), 1, 167–244.
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