Adaptive Motion Synthesis and Motor
Invariant Theory

BU

Bournemouth
University

Fangde Liu
NCCA,Media School

Bournemouth University

A thesis submitted for the degree of

Doctor of Philosophy

Yet to be decided



This work is dedicated to my loving parents, who are alwagslyeo
sacrifice everything for me.



Acknowledgements

At first, | must thank Prof Zhang for introducing me the insgneg world
of computer animation research. Prof Zhang is a great sigoerwho
gives the students freedom to pursue their own researafestte

I’'m very grateful to Dr Xiaosong Yang, my second supervisBesides
the knowledge and advice, it must have cost your and Dr Rerofagffort
to take care of every trouble during my study in UK.

I would also never forget my best friend at NCCA, Richard $eut; your
critical questions greatly reshaped my thoughts. Withauryhelp, so
much research work may lie unproven or unnoticed. Even sometay
still find the thesis still hard to understand, it is all my fawMy original
draft is awful, by asking me hundreds of embarrassing qoestiRichard
has taught me how should | present my work. Richard Soutlseheifirst
and maybe the only one who fully understand my work at currémd
your encouragement is crucial during the time of misundexst disap-
pointment and loneliness.

Also | must express my gratitude to Lady Jie Zhang. Your supdhe
most valuable thing during my hardiest time.

Dr You and Ms Sue Court have taken great effort in refine thdiEmgf
the thesis.

Also many thanks go to Jon Macey, Phil Spicer, lan StepheasdrAri
Sarafopoulos for the wonderful lectures.

Thanks goes to Peter Comninos for providing the casual j@opnity
to finance the last days of my PhD.

I must also thank many researchers such as Dr Jian Chang,igydHoan



Yu, Dr Hammadi Nait-Charif, Dr Zhidong Xiao, Dr Oleg Fryamw for
the discussion during the reading group.

Thanks go to Prof Martijn Wisse from Delft University of Tealogy,
Dr Robert Gregg from Rehabilitation Institute of Chicagal&r Ambar-
ish Goswami of Honda Research Institute for the discussibmmssive
walking robotics.

Also many PhD students provide every kinds of help in theaedework

and my study. | would thank Denis Kravtsov for his insight®iGraphics
and Programming, after your leave, coding at lab becomesra amd

more boring task. Dr Olusola Aina is encouraging and verpfoéfor the

latex. Dan Shepherd have given very valuable advice wheartest my
PhD study. Shihui Guo, Huiwen Zhao, Meili Wang, Wenxi Li andnM
Jiang, Xinzhen, Dr Jiao , Dr Pan and many others PhDs cardidatd
masters for bringing fun into my busy study life.

| would also thank Craig Senior for maintain my computer aofive&are
over these years. Jan Lewis , Dan Cox for the administratioic wANd
many more people at NCCA and Bournemouth University thainl roat
name who help me understand CG and Film in UK.

Im also thankful to the China Scholar Council for their finahéunding
and Mr Quanshen Chang and Ms Li Zhu for the administration.



Abstract

Generating natural-looking motion for virtual characters challenging

research topic. It becomes even harder when adapting Syréldeamotion

to interact with the environment. Current methods are tesito use, com-
putationally expensive and fail to capture natural looKeatures. These
difficulties seem to suggest that artificial control techusig are inferior to
their natural counterparts.

Recent advances in biology research point to a new motoralgsinci-
ple: utilizing the natural dynamics. The interaction of @hd environ-
ment forms some patterns, which work as primary elementfiéomotion
repertoire: Motion Primitives. These elements serve aplkates, tweaked
by the neural system to satisfy environmental constrainteation pur-
poses. Complex motions are synthesized by connecting mptimitives
together, just like connecting alphabets to form sentences

Based on such ideas, this thesis proposes a new dynamiarmsgtithesis
method. A key contribution is the insight into dynamic reaseehind
motion primitives: template motions are stable and eneffigient. When
synthesizing motions from templates, valuable propelitesstability and
efficiency should be perfectly preserved. The mathemdicalalization

of this idea is theévlotor Invariant Theoryand the preserved properties are
motor invariant

In the process of conceptualization, new mathematicastaxa introduced
to the research topic. The Invariant Theory, especiallyheragtical con-
cepts of equivalence and symmetry, plays a crucial role idvi@daptation
iIs mathematically modelled as topological conjugacy: adfarmation
which maintains the topology and results in an analogougsys



TheNeural OscillatorandSymmetry Preserving Transformaticarg pro-
posed for their computational efficiency. Even without refese motion
data, this approach produces natural looking motion inties. Also the
new motor invariant theory might shed light on the long tineegeption
problem in biological research.
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Chapter 1

INTRODUCTION

1.1 The Challenge

Character Motion SynthesiCMS) research aims at generating motion for virtual
characters. Itis a topic of significant value in terms of tiyeand application. Besides
major applications in the media industry, where both compgames and animation
films depend heavily upon character motion for storytelligrent research also has
applications in user interface design, psychology, spuitraedicine.

The challenge ofCMS is not to make characters move, but to make them lifelike.
Underlying this challenge is the marvellous human abilityrmtion perception. In
real life, people’s motion is very similar, yet individualary considerably. From the
varieties in motion details, humans can infer mental st&ieslth conditions or the sur-
rounding environment. Human motion perception has some peculiar properties.
When watching a film with computer generated characters esmwkward artefacts
are spotted instantly even though they are physically iéasivhile many physically
impossible motions are accepted as realistic and entergain

Nowadays in industry, high quality motions are mainly geted manually. Very of-
ten, characters are complex and contain a large numberrgaéjanaking animation
tedious work. To make it worse, reusing motion animatioriss difficult and prone
to artefacts. Therefore high level animation tools are padkeded.



Real life motions interact extensively with the environme@urrently, the most im-
portant research endeavour is the physics based approastieB the addition of the
dynamic interactive responses, it is expected that thermdition of artefacts that vio-
lates physics will make motions more natural looking. Hogrethere is a key problem
in applying this method foEMS: dynamics of biological systems are much more com-
plex than artificial systems; attempts to dynamically seellbiological system face
prohibitive computational costs and modelling difficudtieln fact, this problem has
already been identified by biological researchers.

Motor Control and Motion Perception are close related. Bifties inCMS reflect

the inferiority of artificial control method. The peculigriof motion perception and
control suggests biological systems may adopt a very éiffieprinciple. To keep
motions natural looking, it is worthwhile to synthesize roatfollowing the biological

motor control principle. This thesis is founded on biol@jiesearch findings.

1.2 Agile Animals

Although animals have fascinated us for thousands of yaastill do not fully un-
derstand how they move. Animals are very different fronfiarél machines and such
comparisons may reflect the biological motor control piphei

e Degrees of freedom (DOFs) From a mechanical perspective, animals have
many moreDOFs than their artificial counterparts. An artificial ship caa b
approximated by a simple rigid body; whereas the flexibleespmf a fish is
made up of tens dDOFs.

In principle, the extrdOFs allows for more variations in adapting the environ-
ment. However, for the control system, too many eki@Fs become a disaster
because of the computational burden. For a human to taketepgtse neural
system controls more thai0 muscles. Even with nowadays computers, solv-
iﬁihis problem directly would cost thousands of hdu_rs(ﬂmm_aﬂd_Panhy,

).

e \ersatility Most artificial machines are designed with a single purpodgle




animals are capable of unlimited tasks. Many biologicattions which are of-

ten neglected b€MS research, such as feeding, breeding, language and vision,
depend on motor control. Besides walking, swimming and n@thgr styles

of locomotion, we utilize many tools, such as cars, skateyches and tennis
rackets.

Following traditional control methods, it seems that uniéd resources need to
be allocated for motor control, while biological researtiows motor control
requires very few mental resources.

e Performance Although the problem of biological motor control is more com
plex, the resulting performance surpasses artificial nmshin many aspects.
Natural motions are more

1. Robust: A human can maintain walking stability on rough terrains ethi
would be inaccessible for vehicles.

2. Manoeuvrability and speed: Typical modern aeroplanes travel at a maxi-
mum of 32 body length/sec and yaw atr20 deg/sec. While pigeons may
travel at75 body length/sec, yaw at about000 deg/sec(Byl, ;géé)

3. Energy Efficiency: The energy consumed by a walking human is arily
of that for the world famous humanoid ASI lliesal ,|;O_O$).

1.3 Motor Invariant Theory

1.3.1 Utilizing Natural Dynamics

Biological motor control has achieved a delicate balana®bfistness, controllability
and energy efficiency. The real-time performance may fudhggest that the biolog-
ical method is simple and requires little computationatilodhese are the dreaming
properties folCMS research and the explanation that how biological systeimgs\ae
this forms the genesis of this thesis.

At first, the natural dynamics of interactions between thdyband environment is



very complex. In mos€MS research studies, some complex non-linear properties of
natural dynamics are treated perturbations for planning,ae cancelled by control
effort. However from an evolutionary perspective, the nabal structures are a
product of natural selection, which has evolved alongsida e environment for
millions of years. These structures are an advantage rtthera handicap. Without
the need to consider stability, energy efficiency and neaé-tconstraints, motion can
be synthesized by natural dynamics without any controlreffdhus a new idea is
that motor control is based on natural dynamics. The neysa¢m plays a minor role
in planning; it simply utilizes natural dynamic propertidsrom this perspective, the
key guestion to be answered by Motor Invariant ThedipkT ) is how to utilize the
natural dynamics in a systematic manner.

1.3.2 Motor Invariant Theory

This thesis proposes a new idea for the underlying reasosujoeriority of biologi-
cal motor control. It seems that in the process of motion t&d&m, some valuable
properties of natural dynamics are kept invariant. The ectoye is that: instead of
the detection and cancellation all kinds of perturbatidnslogical systems rely the
success of motor control on certain invariant propertiesattiral dynamics. This is
Motor Invariant Theoryi1ol T).

MolIT incorporates the motion primitive conjecture. In dynamiosariant proper-

ties are stable properties. From a dynamic perspectivealhtite motions generated
by natural dynamics are stable, only a few are stable, whachbe utilized as tem-
plates and become motion primitives. The following quesigchow the motor control
system utilizes these templates to synthesize new motion.

MolT proposes that when facing a new situation, humans do no¢ sobtor control
problems from the ground up. Instead, our control systelizesi successful expe-
rience in similar situations. In dynamics, adapted motiaresqualitatively the same
with the motion primitives or templates, and there is a or@® mapping relationship
between the adapted motion and the motion primitive. Thislarity in dynamics is
called topological conjugacy.



This idea can be illustrate in FigureL..1.

A B

Figure 1.1: The Transformation Idea of Motion Invariant Theory

In dynamicCMS research, a motion is represented by a cuf(¢¢ parameterized by
x(t) is the solution to the equation (Equatibn]1.1) that dessribe dynamics between
the body and environment.

T = F(x) (1.2)

The stater must be defined in some coordinate system. Supposésitdefined on
coordinate system, and the curve of Equatidn 1.1 is the blue(left) one.

To illustrate adaptation, we define a transformafiotinat translate the state value

T ="T(x)

In this way, each equation can be described in two coordisygeems. Suppose
Is the state value on coordinateand 7 is the state value on coordinate As an
example, the red(right) curbe can be described by Equati@rarid Equatiori_1]2.

T = F(%) (1.2)

i = F(x) (1.3)



Since such two equations describe the same motion, tha@ohitone equation can
be achieved by transforming the solution of the other. Saejpypc’(¢) is the solution
to Equatioi LB and(¢) is the solution to the Equatién1.2, then we have

Then we have

By transformation, we obtain a new motief{t) from x(t).

The transformation method has many advantages: it is mgsiclemputationally ex-
pensive and leaves many important properties untouchedexXample, if the original
systemF is stable, then the transformed systérshould also be stable. In mathemat-
ical language, if there exists a continuous one-one magmhgeen the two dynamic
systems, then the two atepological conjugate This relationship is presented by
F ~ F. F and [ are calledanalogous systemsvhich share the same topological
structure. The existence of one-one mapping is a necessaigudficient condition for
sharing topological structure. Based on this, two appresébr motion adaptation are
developed. Transformation can be specified explicitly gsliaitly by maintaining the
topology.

If the perturbation does not violate the topology, the cgpmnding one-one mapping
will modify the motion without changing it qualitatively.nldynamics, the topology
preserving ability is an intrinsic property of many dynamystemsstructural stabil-

ity.
One strategy of motor control is to enhance the structuadlildly. By this approach,
when the qualitative property is preserved by the contrsiesy, the one-one mapping

that transforms motions is automatically specified. Howgwemany cases, working
out the details of one-one mapping maybe be difficult or camadpnally expensive.



Therefore this approach is qualitative.

In MolT , this approach models involuntary motion adaptations wiaie low level
functions of the neural control system. The topologicalicire is one important
property that should be kept invariant, and it becomes a miotariant inMolT : the
Global Motor Invariant

Also if the transformation is known, then the two systemsthegopologically equiv-
alent. Therefore, another approach is to directly spedify ttansformation. This
method modifies motion with precision aibIT applies it to high level voluntary
motor control. In many situations, to achieve a desiredsfiamation?’, control effort
needs to be applied. When applying this method, how to seleiper transformation
T is the most challenging question.

In MolT , the selection of " is based on two principles.
e Parameters of transformati@hshould be easy to detect and formulate.

e The transformatiorf” should be energy efficient. For a differential dynamic
system, some transformation explores the natural dynaansequires little or
no energy input.

When specifying transformation directly, some quantragiroperties will be unchanged
during transformation, they ateocal Motor Invariant This idea is similar to motion
parametrization, but there is a clear difference. Trad#&lanotion parameterization
paramterize motion curves in the configuration space, vitniMolIT , transformations
are applied on the dynamic system. The dynamic system aengserized with a
concern of energy efficiency and stability.

Although the new mathematical language seems obscuretajléirsce, the properties
that it describes are universal in physical world, with otheut life. The underlying
idea is intuitive and can be explained well through commatigerved phenomena.

1.3.3 The Floating Ship: An Example of Stability

The floating ship example shows the idea of structural stalaihd topological conju-
gacy. In real life, typical ships have bigger height thantijds shown in Figurie 1.2.



An interesting question is when floating on waves, how thp sfaintains its configu-
ration or “posture”.

Through analysing the topology and structural stabilitg, see that it requires little
effort to maintain this posture. This conclusion applieglifferent ships since their
dynamics are qualitatively the same, or topologically agage.

Dynamics

i

i

Figure 1.2: The Floating Ship Example
The sway motion of the ship shown in Figure 1.2 can be desthlyeEquation 14

JGi+dq="1(q)g +7(q)s + Tu (1.4)

whereg is the swaying angle] is the inertia/ is the damping coefficient, ang, 7,7,
are the corresponding torques of gravity, buoyancy andrexteontrol.

When a ship is at sea, its motion is mainly governed by the oeefs, buoyancly and
gravity g. If 7, = 0, the ship motion is totally governed by the natural dynararcés.
Such a system igutonomous



To make it consistent with the discussions in the followihgguters, Equation 1.4 is
reformulated. By defining thstatevariablex = [q¢, |, Equatior.I¥ becomes

x = Fj4(x)+ Du

where F' is a function ofx, the subscripts/ andd are system parameterd) is a
matrix, which describes how the control effort is appliedd a is control input For
this example: is 7,,, which is0.

Equilibrium Postures

A ship will only rest at the postures whetgt-7,+7, = 0, which are calle&Equilibrium
Postures. The only two possible ones are shown in Figureajla®@ Figuré 1.3(b).

WA

(a) The Stable Equilibrium Posture (b) The Unstable Equilibrium Posture

R

Figure 1.3: The Equilibrium Postures



However, the two postures are different, which is illusttatvith thephase plot On
the phase plot, the horizontal axis representnd the vertical axis represents velocity
4. On the phase plot, the motion of the ship is shown as a curviejwvis calledflow.

The posture in Figur¢_1.3(a) &tractiveor stable If a small perturbation moves the
ship away from the left posture, it will return to the equiliom posture automatically
as shown in Figurg 1.4(a).

Whereas the posture in Figyre 1.3(bjgpellingor unstableif the ship is moved away
from the equilibrium posture, by natural dynamics, it wilbue away even further, as

shown in Figuré 1.4(b).

(a) The Stable Equilibrium Posture (b) The Unstable Equilibrium Posture

Figure 1.4: Phase Plots of The Equilibrium Postures

A Simple Task

All the flows form thephase portraitof the dynamic system, which illustrates all the
possible motions. The discovery is that all the flows stamnfithe repelling posture
and end at the attractive posture. Several curves are shokigure (1. This means
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that no matter what the current posture, the ship will retathe normal stable posture
automatically.

This is an intrinsic property of natural dynamics, and ttsatakthis, balancing is a sim-
ple task which requires no control effort. This propertyesatmined by the qualitative
structure design criterion which demands the centre of ooy is above the centre of
gravity.

O

Figure 1.5: Global Properties of the Flows: All the curves start from tiepelling
posture (Red) and end at the attractive one(Blue)

Generalization of the Ship Example

This conclusion is independent of the shape, size, weightaierial of the ship. In
general cases, the same wave perturbation will result fierdifit sway motions for
different ships. However, as long as the qualitative stmectesign criterion is main-
tained, balancing remains “easy”. The phase portraits lo§haps share following
properties.

e one repelling point
e One attractive point
¢ all flows start from repelling point and end at the attracpeat.

In mathematical terms, all the phase portraits share the sapological structure of
Figure[1.6.

This phenomenon illustrates the principal idea of motioapdtion inMolT . When
the variations among individuals or situations result intioovariations, the qualita-
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tive dynamics or topological structure of the dynamic systemains invariant.

Unstable Equilibrium

Stable Equilibrium

Figure 1.6: the topology of the phase portraits of ship dynamic

1.3.4 The Mass Spring System: Symmetry Transformation

Despite the complexity of the body structure, biologicatonaontrol is fast and ac-
curate. Such quantitative properties pose another puzztetor control research, as
solving the complex dynamics directly would require pratively long computational
time and excessive mental resources.

MolT proposes a new method to achieve speed and accuracy in nootoolc This

efficient strategy is based on the ideas of transformationsgmmetry. New motions
are achieved through transforming template motions,witBolving the dynamics. To
keep the motion natural looking, the control system chotdsesransformation direc-
tions that are energy efficient, or using an alternativeyad by the natural dynamics.

Such ideas can be illustrated by the following mass spriregrgte, shown in Fig-
ure[1.T. The mass spring system is selected because it eastume important prop-
erties of biological dynamics. The compliant actuators osoles work like springs,
and rigid bones are modelled as mass.

12



Figure 1.7: the mass spring system

Dynamics
The canonical equation of a mass spring system is Equatibn 1.
+q=0. (1.5)

whereq is the offset distance.

By defining thestate variablex = [q, ], Equatior L.b can also be reformulated in the

form as
x = F(x)

Figure[ 1.8 shows two flows passing through different statasdz’ on the phase plot.

Symmetry and Transformation

The mass spring system has some “symmetrical propertiesanTintuitive eye, dif-
ferent flows share the same circle “Shape”. Without solvimg Equatioi_1]5, new
flows (the solid one) can be obtained by scaling the origitie {lotted) flow.

From a mechanical viewpoint, this is because the flows of asrspsng system pre-
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Figure 1.8: Mass Spring Phase Plot: two flows pass through differenesté&t and
x’)

serve energy. To see this, we can define the energy function
_ 1 ) 2
E = 2(mq + kq%)

wherek is the stiffnessyn is the mass. Sinc# is a constant, we maké = ¢, When
m = 1,k = 1, we obtain
¢+ =2

The equation above is the implicit function of a circle.

Therefore, given a template flow that passes thraughe flow passes througti can
be obtained by enlarging the original template flow. In thenmer, we determine the
future motion aftex’, without solving the dynamics.

Dynamic Perception and Local Motor Invariant

The idea of “transformation and symmetry” may shed lightledynamic perception
problem. It is highly unlikely that animals solve Equatiofd 1o understand the the
mass spring system. As an alternative, the dynamics can dmled in a different
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manner: a motion template and the symmetry property. If ssenred motions can be
validated by checking them against our memorized motiomptates.

To make it better, it is even unnecessary to work out the toamgtion. In fact, it is

enough just to check some properties invariant under wamsftion. For the exam-
ple of mass spring system, we can check the “shape” of the flaw.a mechanical
perspective, this means to check the energy preservinggyop

The invariant properties like preserving energy or shapehm quantitatively mea-
sured. Since they are invariant only when flows move in a §ipatirection, they are
calledLocal Motor Invariant

1.3.5 The Rimless Wheel

The third example is a mechanical system with a more comptextsre, the rimless
wheel. The complexity of the mechanical structure providesopportunity to test
various control ideas and compare them.

Dynamics
The Simple 2D model is shown in Figure_11.9. Wherés the angle between the
spokes;y is the angle of the slopé,; is the length of the spokejs gravity.

The dynamics of the system includes two phases: the rollivage and the striking
phase.

During the rolling phase, the rimless wheel works like aremwd pendulum, the dy-
namics is as follows:

= %sin(@—fy)

When another spoke hits the ground, a strike happens. Thdsmpquation is
0% = cos(a)f~

-+, — means after and before collision.
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Figure 1.9: The Rimless Wheel

Comparing with the mass spring system, the motion of a risntdseel is more com-
plex. Depending on the initial condition, rimless wheel calh uphill, roll downhill,
stand with one spoke or stand with two spokes. As the rimldsselvcontinues its
motion, the final results of motion may be any of the following

e rolling down the hill at a constant speed.

¢ rolling down the hill at ever increasing speed.
e stopping with one spoke as support.

e stopping with two spokes as support.

The first one is of much interest. In dynamics, constantnglBpeed means the flow
forms a limit cycle. Figur&1.10 shows the limit cycle on a gdalot.

The Qualitative Approach

The motion of a rimless wheel can be controlled by many methdtie first method
explores the topological invariant property. For the risslevheel system, the angle
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Figure 1.10: The Limit Cycle of The Rimless Wheel

between spokes and the slope anglean be changed. By doing this, we can change
the stable rolling speed of the rimless wheel. This will ilesBua series of dynamic
systems analogous to the original one. By gradually chantjia parameter, on the
phase plot, the limit cycle changes its shape accordindig [imit cycles of different
mechanical parameters are shown in Figure]1.11.

1

0.9

o
@

o
3

Angle Velocity the Rimless Wheel | rad/s
o o
@ @

o
=
T

o
w

0.2 I I I I I I ]
-0.8 -0.6 -0.4 -0.2 0 0.2 0.4 0.6
Angle of the Rimless Wheel| rad

Figure 1.11: Different Mechanical Parameters result in Different RisiaVheel

This is the qualitative approach; motion can be adapted apging the parameter of
the mechanical system. This method requires no controbgneput to maintain the

new motion; it is energy efficient and easy to implement. Havgethe relationship

between system parameters and the deformation of the el ¢s hard to find, which

prevents applying this method for tasks that require pi@tis
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For example, given a state on the state space, it is difficuttdake the limit cycle pass
through the state by changing the parameters.

The Quantitative Approach

Another approach to control the rolling speed is by applyingtrol force. For ex-
ample, we apply contral to the dynamic system, this can be achieved by adding a
rotating motor to the center of the rimless wheel, then theaggn becomes

Hz%sin(9+’y)+u

if we setu = ¢%sin(0 + ), wheree is a parameter, then the rolling speed of the
rimless wheel will be a parameter of Figure[1.1P shows limit cycles of different
parameters on a phase plot.
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Figure 1.12: Different Limit Cycles with Different Control

As shown in Figuré 1.12, the limit cycle is stretched velticaThe relationship be-
tweene and the rolling speed is simple, making this method computally efficient
and suitable for precise tasks. To make the limit cycle pasaigh a statéd, 9), if the
state of samé on the limit cycle is(d, ¢), then we have

52(@)2—1
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The disadvantage of this method is it require energy inpog&réfore for a large defor-
mations,this method is not energy efficient.

The Difference and Comparison

These two methods are different but related. Neither methaltichange the dynamics
qualitatively. The systems after parameter modificatiorthe controlled systems are
still able to run uphill, down hill, stop with one or two spakand roll at a constant
speed.

This demonstrates the underlying topology is not changedth Biethods try to trans-
form the phase portrait. The different transformation regjdifferent computational
or energy cost.

There is another reason for choosing the rimless wheel asmmg, its dynamics
resemble that of animals’ locomotion behaviour. As furttievelopment, we propose
this idea for motion control of dynamic characters.

1.4 Contribution

Based on the biological idea, this research proposes an efitcent framework for
animation production. Natural motion features are mangdiby adopting biological
inspired control techniques.

In application, the new framework is capable of synthesiagans automatically with-
out any manual key frame work or motion capture.

MolIT introduces topological conjugacy as the foundational théwat unifies differ-
ent biomechanic research ideas in a new frameworkadiirl , Motion Primitives are
identified by thestructural stabilityproperty. Entrainment and Lie Group Transforma-
tion are introduced as control techniques efficient in teofrenergy and computation.

This combination implies a new control hierarchy framewank has a good biolog-
ical meaning: CPG comes from the research of spinal cord, the low level control
system; and the transformation idea comes from researd¢teafrtex, which models
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the high level control system. The low level system maintaestability utilize some
robust and qualitative measures like entrainment; whil hevel system control the
precision, which adapts the stable motion for specific psepo

Compared with currer€@MS methods, the new approach has several advantages:

1. More Types of Adaptation. Most dynamic methods only focus on generating
responsive motions to dynamic perturbations. Adaptatangss different char-
acters are treated as an independent research topic (metiargeting) and are
tackled with very different methodsMoIT solves the two problems with one
approach. The mathematical idea of topological conjugacgrporates both
motion re-targeting and perturbation responses in a unifedework. Thus
MolIT is capable of generating more types of adaptation.

2. Better Usability. For manyCMS methods, eacldOF is controlled indepen-
dently. When modifying motions, the animator has to modédghleDOF, which
is tedious work.

In MolIT , adaptation is achieved by applying transformation. Egph of trans-
formations can be parameterized by one parameter, and énerenly a few
types of transformations available for a specific motiok t&8y specifying very
a few parameters for the transformation, control inputdldD®Fs are modified
automatically, making this method easier to use.

3. Noval Motion Generation. MolT relies on the dynamics of body and environ-
ment. Motion Capture Data are not needed as reference ihpgome situa-
tions, this method can generate new motion that cannot lareap

4. Computationally Efficient. This motion synthesis approach requires little com-
putation time and memory, therefore it suits real-time ajpilons.

5. Dynamic Motion Transition. Transitional motions can also be simulated dy-
namically, and in this research such methods have beenapeeupon solid
theoretical foundation.

Because of its biological foundation, algorithms and satioh results oMolT might
shed light on biology research questions. Some conclusindscontrol techniques
developed in this thesis provide alternative ideas fordgimal motor control, and have
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potential theoretical value.

1. The Motion Primitive Hypothesis is an old idea in biolagicesearch, but there
is no agreement on the definition and underlying reasonslo@iwal research
has tried to identify motion primitives by exploring neuealatomy, EMG sig-
nals or muscle activation patterns.

MoIT examines motion primitives from the dynamic viewpoint. Thecovery
and conclusion are more logical and complete. Besidesipgiout a motion
primitive, MoIT also explains why certain motions become primitive, howynan
primitives exist, and how they are formed.

2. Many biological research ideas lik#G and invariant based perception are pro-
posed empirically. For a complete theory, much necessdaylel@ information
is still missing. As a contrasMolT is based on rigid mathematical theory, for
many biological ideagylolT provides workable mathematical machinery.

1.5 Organization of the Thesis

This thesis is organised as follows.

In Chapter 2, previous research on motion synthesis anddaal motor control
which are the motivation and justification fdtolT are discussed, .

In Chaptet B;The Qualitative Dynamics Theoiyintroduced to explain motion prim-
itives. Biological based methods for maintaining the globator invariant are devel-
oped.

Chaptef ¥ focuses on the idea of Local Motor Invariant and8gtry. Lie Group the-
ory is introduced to analyse the symmetrical propertiesotiom dynamics. Symmetry
Controllers are developed to provide necessary energy fopadapting motions.

Chaptei b discusses the combination problems. For a singli@mprimitive, strate-
gies are developed to preserve both the global and localmmetriant simultaneously.
Motion primitive transition is discussed. Methods for camibg motion elements into
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more complex motions are developed. Finally, in oder to bgvan animation system,
the software architecture and work flow are discussed.

ChaptefB ¥ arld 5 lay down the theoretical foundatioMofT . The following chapter
provides experimental verification.

Chapter 6 focuses on the synthesizing adaptive motionsrferpsimitive. Bipedal
walking, which is commonly observed but poses great chgésrfor currenCMS
research,is chosen as the example,. Methods basétbbh successfully boost the
stability and generate adaptive gaits, and further vabdathows the synthesized gaits
comply with natural observation.

In Chapter .7, motion transition is discussed. A new balapeiotion primitive is
developed. Adaptive transitional motions from stance ttkvaad walk to stance are
generated dynamically.

In Chaptef 8, motor invariant theory is extended to more dempharacters. Three
strategies are developed to simplify the problem for déffeersituations.

This thesis ends with Chaptelr 9. After discussion of new figdarising from this
research, some new questions and ideas for graphics anal sei@nce are proposed
for further research.
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Chapter 2

BACKGROUND

CurrentCMS methods have different ideas of motor control. Many cur@mS
research studies adopted the control hierarchy of artiBgstems. No matter whether
the control method is based on tracking or optimization,uahssystems, there is a
clear separation of planning and execution. The body idddeas the mechanical
apparatus, which execute the motor commands from the neystam.

Motor Invariant Theory{1olT ) is based on the integrative theory of motor control(Diskin
et al, [ZQ_OJ)): It does not separate motion execution from motianiply. For biologi-

cal systems,it is believed that the planning and executimmot be separated distinc-
tively. In the integrative theory framework, neural systplays a limited role in the
planning. Body and environment are taken into considanadizd motor control can
only be understood from a broader perspective.

In this chapter, limitations of curre@MS methods are discussed first, which motivate
this research. New theory is developed because thesetiongacan not be overcome
without breaking the current theoretical framework. Supipg biological research
studies are discussed later, which serve as justificat@mmdaéIT .
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2.1 Asurveyof CMS

Many methods are developed @MS, making it impossible to include all the work
in this chapter. For a short discussi@iyIS methods are categorized by the principal
control model: memory based or computation based. Memaosgdaontrol ideas
are the foundation of the many data-driven techniques;entribcedural methods are
computation based. Pros and cons of methods are discussgdryaby category.

2.1.1 Data Driven

Data-driven methods are based on ready motion data, geddmtKey-frame or Mo-
tion Capture(Mocap). In practice, motion data are segnaeinte short time clips. An
animation is synthesized by selecting motion clips and eoting them together(Kovar

and Gleiche ,;O_d):i; Par}en_LAbOZ).

Like other example based methods, data driven methods carage good results if

similar motion clips are available, but difficult to generadaptation or novel mo-
tion, either for a different character or scenario. Thet&rgeting” problem is a big
challenge inCMS research.

In practise, motion versatility requires a large data b&sea consequence data man-
agement becomes another problem. Due to this reason, thet#imum Database

(Arikan et aIL |;O_0_:h) and the Motion Graplj (Kovat aIL |;0_0j3) were proposed. Cur-

rently, the problem of catalogue and search of motion daanat trivial and remain

open[(Le_ng_aﬂ, |;O_0M Miulleret aIL |;0_0$).

2.1.2 Procedural Method

For physics base@MS, different procedural approaches have been proposed.

e Tracking Controllers.

Some early research applied classieBl controller for dynamic motion synthe-

sis lLRaLbﬁLt_and_I:Ingms._lf:{M). Later reseaL'_Qh_ﬂ:IngquJ, [19.9.%) applied
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the same method for different tasks like running, bicyclweylting and balanc-
ing. For high dimensional characteRD controllers need to track predefined

motion curvesL(Yim]; aIL |;0_0_'l’) in configuration space.

A PD controller is shown in Equatidn 2.1.

w=K(q— q4) +dg (2.1)

wherew is the control effort, K is the stiffnessg, is the desired or reference
position, and! is the damping efficientPD based methods can run in real-time
and generate adaptive responses to small perturbationlaie perturbation
responses or deviations from the reference trajectoryifireudt to achieve.

Most PD based controllers use motion capture data as referencean Akter-

native,l Laszlcet all _LQ_QAS) introduced Limit Cyclel(C) as tracking reference
for periodic locomotion animation. Current research safiLor L, ZQld),

|20_0_éJ_La§zI@1£zJJ [19_9;([3) track fixed limit cycles. Limit cycles are defined oa th

phase space, thus such method can be seen as curve trackkiegplmse space.
Phase space curve tracking methods share many characsasigh PDtracking
controller of configuration space, which promise real-tspeed but lack adap-
tation, and the results are stereotype looking.

Optimization. The redundanDOFs make motion planning non-deterministic.
Optimization has been introduced @MS for this problem. The idea is to
choose the “best” one among all the possible motions.

Many merits have been proposed @¥S. For dynamic methods, a reasonable
merit is the energy cost.

E= /tl fa(t)dt (2.2)

wheref, is the active force generated by actuators like motors orctessThis
is introduced taCMS research as the influential Spacetime Constraints(Witkin
and Kasi_19_é8). It is based on the hypothesis that the h&dokang trajectory
costs minimum energy, which closely relates to the idea afMdes Theory of
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Evolution.

Optimization based methods produced believable motionydadable tasks.

Jainet all _;0_0_4)) provided an example of Iocomotk{n. Magghi@lmll _10_0:4))
found a method for balance maintaining movemem ‘JLT_(}ZQﬂ@posed a
method for object manipulation.

Drawbacks of Optimization

Optimization is a popular method for physics based animatlbgenerated the best
motion results in current research. But this method hasakdewbacks.

e Numerical Stability Optimization methods promise the energy efficiency of the
motion results. But in practise, it is difficult to design alse numeric scheme
to find optimal motion solution.

The motion results are sensitive to the accuracy of the mandkhe proximity
of the initial guessu@S) points out that the origisphcetime constraint
methods only suit high energy motions, like jumping and ragnFor low en-
ergy tasks (such as walking) the results are not naturalrgok

e Computational Complexity: Optimization methods like spacetime constraints
is a variational optimization problem in nature. For a coempdharacter, it might
take prohibitively long time,thus the applications is lied to problems which
are computationally feasible. In addition, little is kno@hout how to reuse a
computation result for motion adaptation.

2.1.3 Hybrid Methods

There are many research attempts to make tracking comgratiere adaptive or op-
timization faster. One popular idea is to mix the two methagstimization is done
offline for planning the reference trajectory, while tragkicontrollers are adopted as
online real-time controllers. Many methods start to trdia tontroller with motion

capture datw,mw,mﬁﬂmﬁd, [ZQlD_lS[L)LLEMan_aJJ
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and Liu,@D).

Also new research propose use simplified dynamic modelgpfimization planning(Mordatch
et aI.,M).

These attempts may remove some limitations of tracking @imopation, and make
them feasible for certain applications. BOMS problems can not be solved com-
pletely in this manner. Learning based methods are compléxsansitive to training
examples, the stability of such controllers can not betstrgroved. In addition, of-
fline optimization does not reduce the computational burderature.

2.1.4 Biological Constraints

The problems ofCMS has also been spotted earlier in biological motor contrel re
search. Biological researchers have dropped traditiomidicel control ideas long
ago, because they violate the biological constraints. cAdtjn the mechanism behind
information processing remains obscure, some charatsrisf biological informa-

tion processing are well recognized, mak@iglS methods above questiona!@ynn,

2003).

e Sensing and Control Limitations: Motor control is not only a mechanical prob-
lem, but also a complex process involving chemical, elegkrand mechanical
changes. Many crucial mechanical parameters and variabtdsas mass, iner-
tia, force, are inaccessible to the neural system and canbendpproximated.
Some important control variables (such as torque) are clbedrindirectly by
the neural system through a complex process. Also body avidoemental
measurements are noisy and time varying, making methotarthaensitive to

errors unsuitable for control biological system.

e Neural Computation: The neural system is powerful, but inferior in speed
and accuracy when compared with digital computers. Neugabss are of only
hundreds of Hz and their transmission speed is slow. In addibere is a long
delay between firing a neural signal and generating forckemtuscles. It may
cost about half a second from seeing an object to force gemera arm h,
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M). This makes it impossible for the neural system toycaut the complex
computation necessary for realtime optimization.

Following the idea of optimization control, the dynamicsfloid environment
and deformable body are more difficult to optimize. But masinfive life
forms live in the sea and have limited intelligence.

e Memory Capacity: Some argue that motion control is not based on computa-
tion, but based on memory. This idea avoids the questionmpecation speed,
but it faces another problem of the memory capacity. Sinceamearies greatly,
if we store every variation of motion in our brain, brain wilin out of memory
space.

Because of such constraints, researchers have startezkttolodifferent strategies.

2.2 Motion Primitives

At first, researchers are reminded that logical think or rlezdnscious plays little role
in motor planning. Animals including human exhibit compfartion behaviours after
birth or at early ages, abilities like breathing, heat beaéind child bearing are inborn
without learning.

Some suggests that motor ability are inborn and organizbhbhkskBizzie]; aIL|LO_OJZ,
). Strong evidences come from the experiment whereikttmg of a single spinal
l, ). A new theory,

motor afferent triggers a complete sweeping motio
Motion Primitive Conjecture, was proposed. In this theamgtion is built from a lim-
ited number of building blocks, which are calletbtion primitives Complex motions
are combinations of motion primitives, just like we connelgthabets into sentences.
Motion Primitive Conjecture also provides insight into thetion perception. Gallese
et al. _19_9_45) have found action and perception trigger similactieas in a group of
neurons.
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2.2.1 Dynamic Motion Primitives

The Conjecture of motion primitive is supported by both trehdviour study and
anatomy of natural animals. For dynan@®/S, the puzzle is how motion primitives
idea can simplify dynamic motor control.

A proposed answer is that every motion primitive has someaaldé dynamic proper-
ties, like stability and efficiency, which is determined I thatural dynamics. Some
researchers point out that motion style is closely relabeiti¢ body structure and en-
vironment. They have not been changed much by the evolufioewral system, for
example, the whales swim more like fish than other mammalgnals do not move
the way they want, but rather the way they can. A further engtian is that the body
and the environment play the most important role in mototrarthey form the basic
pattern of motionL(MsMaMJ;O_O_' ). For neural control, the responsibility is not
to plan the trajectory from ground up, but modifying or twejdbasic patterns to meet

specific purpose. Several theories are proposed for thalnsamtrol mechanism.

Experiments have shown that even under the same condittmsyotions still vary.
SomeDOFs are not controlled and freely influenced by the environmétur this
phenomenonyUncontrolled Manifold HypothesigM H).@ 8) proposes that
only the final results is the concern of motor control, tregegis not.

Equilibrium Point HypothesiﬁPH)_FeIdmaHﬁ@ explained below can be seen as a
specification olUMH . This idea comes from properties of differential equatidfer
a dynamic system

x = F(x)

the equilibrium points, satisfies the conditiof’(x.) = 0. EPH suggests the neural
system does not control motion trajectory, but the positibtie equilibrium point.

Impedance ContrMS) refines the idea BPH by providing a model for
effects of the extr®OFs as explained below. At an equilibrium posat,

F(x.)=0

Impedance Control proposed that the eXdf@Fs provide a way to control the stability
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and admittance of the equilibrium poixt. The mathematical description is
F(x.+ E,) = KE, (2.3)

where E, is the offset error vectork is stiffness matrix or impedance,which deter-
mines the stability. The extl2aOFs provide the neural system a way to tune the direc-
tion of K according to the purpose. This mechanism will provide theraa way for

avoiding obstacles or risks. Experimer{Ls_LELaaHimIJ, [20_0j’) have proved this idea

by showing that the measured matfixhas anisotropic properties.

2.2.2 Neural Control Mechanism

Motor control involves little mental work, and current idefineural science is that
motor control is a low level intelligent activity and can bentrolled without brain

input. Research studies have proposed several neuraitiastirelated to its role in
“tweak” motion primitives.

¢ In vertebrate animals, Central Pattern Generd@®@) serves important func-
tions in locomotion, respiration, swallowing and othertting behaviours. Co-
hen (1988) argues that locomotion is the result of the icteya between neural
and mechanical oscillators via a process ca#attainment. Neural systems
modify the motion by adjusting frequency and amplitude ef thythmic neural
signal.

e Some research studies find out that motion will change infatmimanner(Viviani
and Stucchi, 19¢ ZB.FIash and Handzel (2007) proposed troglelotion adap-
tation througtaffine transformationThis idea is inspiring for the fact that affine
transformation group is closely related to vision peraap8ystem. This theory
implies a close relationship between motor control ancowisi
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2.2.3 Bionic Robotic Research

Ideas from biological research also inspired many robetigreeering experiments,which
show the feasibility of new control principles. Such robatitize the natural dynamic
rather than the tracking or optimization strategy. Heresam@e important research
studies reported.

e Limit Cycle in Walking. A very important discovery is the bipedal walking
can happen without any contmeQ%O). Under specdnditions, a
mechanic structure can walk down a slope passively, withrahlooking gaits.
Further research have shown that such a mechanical systewatlaon a plane

with a very simple control strategu(Q_QLL'Lm_aJJ, ).

e CPG and entrainment The CPG based entrainment is applied for robotic re-
searct{(WiIIiamsdmg), the results show @RG will boost the system sta-
bility and can maintain motion in unpredictable situatidzlﬁﬂkugkml_aﬂ .ZM)
has appliedCPG for quadrupedal walking.

————
Taga @5) had applied the idea for bipedal walking contitile is known
about how to tuning the parameters to generate desired madiaptations.

e Passive based ControlThe control and mechanics community also starts think-
ing about passive based control methods that utilize thealatynamics. Many
techniques such als (Asano and YamH(_ita._bb_OL_Etaﬂ, |L9_9_'7) have been de-
veloped to control redundant systems, However early mathoel usually lim-
ited to its application or may be not efficent in computatidime or energy.

These techniques are generalized as a systematic Hﬂmédsmabuade),

which provides a solid mathematical theory and can be appbemechanic

systems with more complex propert 2005
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Chapter 3

GLOBAL MOTOR INVARIANT

Motions are similar but vary greatly. For example, diffarpeople will walk with
different gaits. An interesting question is how the word Iktaefers to different
gaits. Motor Invariant Theory{olT ) proposes an answer: despite differences in gaits,
we agree on the word “walk” because in essence, we all walkensame manner.
Intuitively, the gaits are periodic, energy efficient andbd¢. The variations come
from the differences in body, environment or purpose. Frgmathic perspective, all
the gaits dynamics share the same structure, or the quadipabperties of walking are
invariant. InMolIT , the qualitative invariant properties a&obal Motor Invariant

For the biological perspective, we believe the walkingibis inborn and encoded in
the body structure. What “Walk” means is one motion prinatiin MoIT , the motion
primitives are identified by the global motor invariant. Sktaim will be justified in

Sectiof3.D.

In theory, it is difficult to define the gait similarity mathaically. Topology is intro-
duced for a clear definition of global invariant. Topolodigaquivalent means that the
dynamic systems are qualitatively the same. Basic ideagpaiidgy and qualitative
dynamics are introduced in Section]3.1.

Entrainment is the biologically based method to maintaendglobal motor invariant.
We will discuss the theory and experiments in Sections 3d3S&ttion 3.14.
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3.1 Introduction to Qualitative Dynamics

Motion Primitives are “trivial” motion tasks. The evolutigorocess equips animals
with a body structure that suits many motion tasks. As a tesuth motion tasks can
be accomplished by exploring the natural dynamics withoatrhuch control effort.
For the dynamic perspective, the delicate design of bodiire permits several pat-
terns when animals interact with the living environmentcispatterns exists across
detailed variations in body structure such as the tall amdtstharacters and environ-
ment like rough or plane ground. They are robusttoucturally stabldn the dynamic
term. InMolT , the identification of motion primitives and adaptation based on the
structural stability. This section serves as a short intatidn to concepts and prepared
mathematics.

Qualitative dynamic properties are analysed with the tbdifterential topology. This

idea can be traced back to PoincLiLeLP_oinHa.r_'eJJ iB_&S__Etmmmi_MﬁQﬁI 9) and

was laterly developed by the Smale &Mlgmmwo enough space to

include the whole subject, please refer to bwmmmuﬂs) for more

details. Throughout this thesis, the geometrical persgerst adopted as it is more in-

tuitive. Some primary knowledge of topology and manifoldaguired which can be
found in kAbLanam_amMaLs_de). For the sake of compésis, this thesis will
provide a rough and intuitive explanation below. Intuitiwepeakingtopologystud-
ies the geometry properties that are preserved througincmnis deformations, such
as twistings and stretchings of objects. Discontinuousrdeditions like tearing will

break the topology. Due to this reason, in the topologicatspa circle is topologi-
cally equivalent to an ellipse because stretching a ciratedeform it into an ellipse
and a sphere is equivalent to an ellipsoid.

A manifoldis a topological space that locally looks like the Euclidspace of a spe-
cific dimension. A line and a circle are one-dimensional rfidds, a plane and sphere
are two-dimensional manifolds, and so on into high-dimemsi space.

A dynamic system is usually described as a differential #qonafrom the geometrical
perspective, the differential equation also describedfardntiable manifold. Qual-
itative properties can be obtained by analysing the topcédgroperty of geometry.
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Global Motor Invariantsare identified by the topological structure.

3.1.1 Dynamic Systems and Differentiable Manifold

Motions of a mechanical system are determined by its cordtgurg in configuration
space() and generalized speedin the tangent spacé,(). Define the state value
x = [q,q] € M, whereM is the state space, or state manifold. A motion is a trajgctor
t — q(t) in the configuration space parameterized by ttm&or a dynamic system,
q(t) usually is derived from the state trajectott ), which is described by a differential
equation.

For every pointx € M, F andu determine a derivative vector in the Tangent
Spacel, M. Vectors over the full space of form thevector fieldV, described by

Equatiori 3.11.

x=F,(x)+u (3.1)

whereu is the control effortyy is the system parameters, afds determined by the
system’s natural property. i = 0, no control effort is applied. Such systems are
autonomous systems

A solution to Equation 3]1 is aimtegral curve Flow ®(x) of V is theintegral curve
throughx. Flows are usually visualized by@hase plot All the flows make up the
phase portraitwhich illustrates all the possible motions of the dynanystem.

Example

For a mass-spring system, state variable [q, ¢| is defined, and Equatidn1.5 can be
transformed into Equatidn 3.2.

X:[O 1]){ (3.2)
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3.1.2 Basin of Attraction

Intersections of flows arequilibria. At eachequilibria, the local space can be divided
into subspacesentre manifoldstable manifoldandunstable manifold

centre manifold For a flow¢,. passing through a poist. on centre sub manifoldd/,
¢. will remain on the Centre Manifold.

¢o(t) € W, t €R

stable manifold For a flow¢, passing through a poist, on stable sub manifoldV/,
¢s will finally converge to a flowy,. on centre manifold.

¢S(+OO) = ¢c

unstable manifold For a flow ¢, passing through a point, on unstable manifold
W.., ¢ Will be repelled fromp,. on centre manifold, the inverse ¢f converges
to ¢..
Pu(—00) = ¢c

Attractors are the equilibria where the whole local space is stableh@dimension
of unstable manifold is zerd?epellorsare the equilibria where the whole local space
is unstable, or the dimension of stable manifold is zero.

In theory, only the attractors of the dynamic systems carblserwed and are of interest
in motor control:

1. Fixed Point or equilibrium point, a phase plot is show igufe[1.4(3).

2. Limit Cycle, a phase plot is shown in Figurel3.1. The atomof a limit cycle
has the shape of a cycle, which implies self sustained atiofis or periodic
behaviours. An attractive limit cycle will attract the nklgpuring flows spirals
into it over the time. Such a system is stable, if any pertimbanove the state
off the limit cycle, the system will return to the limit cyckutomatically.
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Limit Cycle

Basin Of Attraction

Figure 3.1: Limit Cycle

Figure 3.2: Cellular Structure of Phase Space

For non-linear dynamic systems, there may exist many avrsic The phase plane
is divided into different regions, resulting in a cellularusture. Within each region,
all the flows converge to one attractot, and the corresponding region is thasin

of attraction B(A). Figure[3.2 shows the landscape of phase portrait of a dynmami
system, in which the basins of attraction are coloured dfidy.

3.1.3 Topological Conjugacy

The topological structure of a dynamic system can be de=tiidy the type of equi-
libria and the connectivity of their basins of attractional dynamic systems share
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same the topological structure. For example, the Duffinesgstescribed by Equation
[3.3 is different from the mass-spring system.

i+q+q¢ =0 (3.3)

However, the two systems share the same topology. Phaseoplbie two systems are
shown in Figuré 3.3(a) and Figyre 3.3(b). Flows of the twadesyss are similar, and we
can “deform ” one into another. This equivalent relatiopskitopological conjugacy

Duffin System

Start From X=0 Y=1

Start From X=0.5,Y=0.

Speed

(a) Mass Spring System (b) Duffin System
Figure 3.3: Topological Conjugacy

Definition. Let M and M’ be topological spaces, and |ét: M — M andF’: M’ —

M’ be continuous functions. We say thais topologically conjugateéo F”, if there
exists a continuous one-one continuous and invertible mngpp M — M’ such that
h(F(M)) = F'(h(M)). his atopological conjugatiobetweent’ and F’. if two

systems are topological conjugate, they amalogous systems

3.2 Global Motor Invariant and Motion Adaptation

Qualitative dynamic properties are determined by the etira and their basins of
attraction.MolT establishes the relationship between motion primitivesdmamic
theory. InMolT , each attractor and its basin of attraction define a motionifwe.
“ triviality” of primitive tasks relies on the attractionf the attractor is a fixed point,
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then the motion will be terminated. If the attractor is a limycle, then the motion
will be periodic. Larger basin of attraction means motiomisre stable, while narrow
basin of attractions means the fragile stability. Qualiegproperty is th&lobal Motor
Invariant

Definition. Global Motor Invarianis the tuple of attractors and their basin of attrac-
tion

Motions vary because of different perturbationsMalT , perturbations are classified
in two categories and treated with different control sgags.

e State perturbation

Perturbations that only affect the statareState PerturbationsState Perturba-
tions change the current state, but not the underlying dynhaystem.

If the perturbed stat&’ remains in the basin of attraction, the perturbed flow
will converge to the same attractor. For the walking exangikge perturbations
can model the push and recovery motion. Such a kind of motiaptation is
Responsive adaptation

To make the character more responsive without motion &jllihe motion con-
troller should enlarge the basin of attraction.

e Structure Perturbation Structure Perturbations affect the dynamic system. For
biological systems, such perturbations are very commorgnnd man puts a
heavy box on his shoulder or has been injured, the walkinguiyos will change
due to the structural perturbations.

For some dynamic systems, structural perturbations orftyreiethe phase por-
trait and result in an analogous system. This will result wtion variations but
will not change motion stability. This kind of motion adajiba is calledsys-
tem adaptation For CMS, “ motion retargeting” can be seen as an example of
system adaptation.

In some cases, topological structure may not be maintaf®eche perturbations
will result in bifurcatiors that violates the topology of the underlying dynamic
system. Such an example is that the damping perturbatiotiseomass spring
system will change the dynamics qualitatively. As show iguFe[3.4, damping
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Pendulum System
1

Start From X=0 Y=1
Start From X=0.5,Y=0.
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Figure 3.4: damping perturbation on mass spring system

changes the topology the periodic flows into a fixed pointattr.

The ability of a dynamic system maintaining its topologysture isstructural
stability. To make motions adaptive to environment and body changagsaler
should boost the structural stability of the motion and pré\bifurcations.

These ideas can be seen as a different mathematical irtegrpneof biological re-
search principles. For the Uncontrolled Manifold Hypoik@$MH ), the basin of
attraction of an motion primitive can serve as the uncol@domanifold of UMH .
State Perturbations are not controlled and motion is frieéliyenced. For Equilibrium
Point Hypothesi€tPH), attractor of motion primitive is a generalization of el
rium points. Impedance control can be seen as adjustingatia bf attraction.

3.2.1 Biological Meaning of Structural Stability

ForCMS research, Structural Stability is a new idea , but there aoelgeasons behind
it. In natural environment, perturbations and uncertaary everywhere. Because of
the sensing and computation limitations, feedback ide& cape with all types of
perturbations. I'MoIT , the alternative idea is such perturbations can be neglelfte
the motion primitive is structurally stable, even withoohtrol effort, motion and the
underlying dynamics will not change qualitatively. Suchi@®a can reduce much of
the computational burden and provide a framework for madidaptation.
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For biological research questions, the structural stgbdiea and the qualitative per-
spective provide better explanations than optimizatiahfaedback theory.

The first is the control difficulty and evolution of swimmingawalking. From the
guantitative perspective, fluid dynamics is more difficolcompute than rigid body
dynamics. This seems to suggest that the swimming is mdreulifand walking.

But in biological evolution, swimming seems easier, forsitdeveloped earlier and
many primitive life forms inhabitant in fluid environment.

The qualitative perspective comply with the biologicaltfadluid is continuous and
uniform, the dynamics have simple topological structuréabfiity control for such

dynamic systm may become trivial and fish can maintain itsyveswith little neural

effort.

On the other side, although the rigid body dynamics for wagkare quantitatively
easier, the topological structure of walking dynamics isimmore complex. On the
phase plane, there exist many equilibria, and the basirtraiciibn of walking primi-
tive has limited area, thus the stability of walking is flagand needs more complex
control measures.

MolIT also explains the body similarity for animals that move tlgio similar envi-
ronment in a similar manner despite their far distance ineb@ution chain. The
similarity in body structure promises the same dynamic lkegp We are also re-
minded that motion primitive is closely related to the eamment. It is meaningless
to talk about walking when the character floating on wateznewith the same control
strategy, body and environment cannot form the desiredrdig@pology.

FurtherMolT suggests the direction of evolution. For one motion priveitbody may
evolve to make the primitive more structurally stable.

3.3 Global Motor Invariant Control

In real-life, natural dynamics can be extremely complex.e Torresponding mani-
folds have a complex topological structure, which providesy motion primitives.
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For CMS applications, the question arises whether different nmgbiemitives can be
controlled with a simple and unified method. The idea is tvanethere are many
motion primitives, attractors can be catalogued in veryteoshnumber of types. Also
even the dimension of dynamic system is large, the dimereditme attractors is not.

e Fix point is of zero dimension.
¢ Limit cycle is of one dimension.

It is still under hot debate which type of attractor servethasfoundations for motor
controItD_egaLLiﬂLa.nd_Uipﬁgé 10). The current idethé limit cycle is necessary.
Based on a limit cycle, a fix point can be achieved by:

1. terminate a limit cycle.
2. approximated by a limit cycle with small amplitude.
3. bifurcate a limit cycle.

Currently only the limit cycle is considered Mol T , mainly due to the following two
reasons:

e periodic behaviour is commonBesides the periodic motions such as swimming
and running, other biological activities like heart begtivaking and sleeping
are periodic. A periodic system has the potential to sineutadre types of mo-
tion and integrate with other biological simulation.

e similar results For animations, periodic motions look similar to the terated
motion when the amplitude of limit cycle is small. If the dition amplitude
can be controlled, both types of motion trajectories canymehesized within
one framework.

Control strategies are designed based on the type of attrdair the fix point attrac-
tors, traditionalPD controllers are simple and efficient. For the limit cyclegattors,
entrainment controllers are proposed as an efficient method
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3.3.1 Neural Oscillator and its Stability

3.3.2 CPG and Entrainment

Biology research suggested that motions are mainly cdatroly the organ calleGen-
tral Pattern Generatar CPG is a small autonomous network that generates rhythmic
signals. From the dynamic perspective, the idea of complnotion by rhythmic

signals can be modelled as entrainménL(Q_ané.lﬁz;Mj}, ). When coupling
two oscillation system together, entrainment happens vilvensystems oscillate in
synchronize. This effect is also known as a resonant whitifremihance the oscillating
behaviour.

Only two neurons are needed with mutual inhibitive propesyshown in Figurie 3.5.

self inhibition

Si

S

Figure 3.5: Neural Oscillator Structure

One oscillation model was developed by MalsLlJJ)Laﬁl%S) aaslextensively studied
later on. This model can be described as Equatidn 3.4.
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where[t]* = max(0,¢), [t = min(0,t) . s;2 andl;, are state variables:,cs,c3

are parameters of the oscillator which are kept congtamt, c3] = [1,2,2] in this
research. Values af, , control the oscillation frequency, and their ratio corgrtile

shape of waves. In this researéh= 0.5. The output signal, is defined in Equa-
tion[3.5:

to = ho([s1]" — [s2]") (3.5)

whereh, is the output amplifying coefficient.

Matsuoka oscillator is an autonomous oscillator, which s&amt to oscillate without
any control effort. Figuré_316 shows the natural oscillatoiput.

Natural Frequency
T T T

0.6

output

-0.6

-0.8
0

L L L L L L L L
5 10 15 20 25 30 35 40 45 50
time

Figure 3.6: Natural Oscillation

Matsuoka oscillator is adaptive; entrainment can happesmttis coupled with differ-
ent oscillators. Figurle 3.7 shows the entrainment ositiiaivhere Matsuoka oscillator
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synchronises with the input signal.
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Figure 3.7: Entrainment Oscillation

Because of the non-linear properties, its behaviour hadeenh completely under-

stood.lMaI&u_o_IJLaL(LQb?) analysed the adaptive properti@svegtigating the location
of the roots of the characteristic equati il Panalysed the properties
in frequency domain aki provided a rigialysis of energy effi-

ciency and stability for some specific examples. This reseatudy investigates the
qualitative property with empirical methods.

After examining many simulation results, the Matsuoka @=or shows three impor-
tant properties:

e Simple Topological Structure. The topology structure ofeainal oscillator is
simple: it includes one attractive limit circle and one fipedor.

e Large Basin of Attraction. All the simulations which we dad out converge to
the same limited circle.

e Fast Converging Speed. In most cases, the flow will convergfeet limit circle
within one period time.

The above features are shown in Figlre] 3.8.

The large area of basin of attraction means the final behaisdatally determined by
the system parameters. The initial conditions will have ffiecé on the stable oscilla-
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neural osilation with differnt initial Condition
T T T
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°

L L L L L L L L L _ L L L L
0 5 10 15 20 25 30 35 40 45 50 -1 -05 0 05 1 15 2
time inner state vi-v2

(a) state plot (b) Phase Plane

Figure 3.8: Neural output with different initial positions

tion behaviour. Matsuota oscillator can be treated as desingut single output(SISO)
system. The output signal is controlled by three systemmpat@rs and input signal.
Equation[3.4 can be reformed as Equalion 3.6.

Uo = S[hi,ho,r](ui) (36)

whereu; = . hj[w;], is the weighted sum of all the input signal.

The converging speed can be seen as a quick recovery abititgh is very valuable
for motor control. When an impulse perturbation happengillitecover in one period
time.

3.4 Example:Maintain Ball Bouncing Height

The Bouncing Ball system is shown in Figlre]3.9, where a b&lbuncing on a moving
paddle. This system is of simple dynamics, but difficult tatcol with optimization
or PD methods.

The bouncing ball system captures the complex discontsdgnamics of body and
environment interaction. It can be treated as a templateeshfodmany motion tasks
like jumping, running and ball playing. This example dentoaigs how limit cycle
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Figure 3.9: The Bouncing Ball System

arises through entrainment.

Dynamics

The bouncing ball system is of hybrid dynamic, which invelv&o phases.

e The Continuous Flying Phase:When the ball is flying, it is only affected by
the gravity.

e The Discontinuous Strike Phase:When the ball hits the paddle, the speed of
the ball is changed instantly.

The natural dynamics of bouncing ball system are descrilpdebjniatior 3.17.

Gball = —8 if Qpanr > Qpadaie (free flying)
quan - q;—addle = €(Goan — q;addle) if @bt < Gpadare (paddle strike) (3.7)
whereg,,; is the acceleratiory is the gravity,gu, gpaaqe are the positions of the ball

and paddleg,; ... are the speed after a paddle strike afg ... are the speed
before the strikes is collision coefficient-1 < e < 0.

Figure[3.1D shows plots of the system. After each strikeptikewill bounce with a
smaller height.
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Figure 3.10: Original Bouncing Ball System

Emergence of Limit Cycle

The bouncing ball system has only one fixed point attractdrisnbasin of attraction
covers the whole phase space. However, its behaviour igpeeadic. Or alternatively,
it can be seen as a bifurcation of a limit cycle. Neural Oatll can be applied to
recover the limit cycle through entrainment.

The input of the neural oscillator is the velocity= ¢,.;;, the output drives the paddle
positiong,q4ae = uo. Neural controller will move the paddle up and down. The move
ment of the paddle is limited to a small range).1, 0.1], compared with the bouncing
height of the ball (more thah), the height variation of the paddle can be almost ne-
glected. Dropped from different positions, the ball willimain the bouncing height
of 5 units after several strike, as shown in Figure B.11.
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Figure 3.11: The Attractive Limited Circle of the Coupled Bouncing Baiem
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Chapter 4

LOCAL MOTOR INVARIANT

It is not enough that animals are able to maintain the glolmbninvariant. For a fish,
preservingslobal Motor Invariantmeans the swimming is stable and can be sustained.
However, a fish also needs to adjust the speed and directrorgdiwimming, which is

of crucial importance for survival. In real-life, an aningn adapt motion primitives
according to its purpose precisely. In this chapter, wedallelop the control strategies
for tweaking motion patterns according to the motion puegsos

It is important to remember that such tweaking strategiesadso constrained by the
computation and memory capacity of the neural system, aadldlexplore natural

dynamics as the basic motion primitive theory. EMS, it is of no meaning develop-
ing walking pattern by exploring natural dynamics but usapgimization to adjust the

walking speed. To meet such requiremeMs]T adopted different ideas.

At first, when tweaking motion patterns, stability should he violated. As stated in

the previous chapter, a topological conjugation (one-amgicuous invertible map-

ping) maintains the topology thus maintains the qualigasitability. Thus the “tweak-

ing” action should be a topology conjugation. In an altexgperspective, such oper-
ations form a group and permit a combination operation.

According to Group Theory, this means if two tweaking actigneserve the stability
separately, the combination of the two actions also preste stability. The space of
topology conjugation is very large. CurrentMplT only investigates a subset called
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The Lie Transformation Groughat is supportehLELa.ih_a.nd_HamlﬂeLiOOﬂ by the bi-

ological research studies and can be calculated efficiefithe selected groups can
be divided into orthodox subgroups, each of which is comtirsuand can be param-
eterized by one parameter. @MS, such parameters are closely related to motion
purposes such as walking speed or swimming direction.

From the dynamic perspective, “tweaking” should also esglwatural dynamics (pas-
sive based) as primitives. Methods adopteMw T belong to a popular passive-based
control principle, which carries many names: Controlledn8yetry, Controlled La-
grange, or Potential Shaping. Different names reflect tbetfeat this method can be
developed through different ways. Roughly speaking, thgiral dynamic system is
transformed according to motion purpose, the kinematiesiisuched and control is
applied by modifying the potential energy. Such methodstsalogical actuators like
muscles and are also computationally efficient: Closed fonrmula are developed for
converting tweaking parameters to control effort.

This chapter is laid out in this way: Section}4.1 introdudeshasic idea of group and
symmetry from intuitive geometry examples to more abstadgebraic formulation.

Section[4.R investigates application of the Controlledreage Method. At last an
example is provided in Sectign 4.3 to illustrate the idea.

In theory the ideas of group and invariant are closely rdlali&e the two sides of
a coin. Group are the transformations which keep certaipgtyg invariant. When
searching for the group transformation, the invariant propis also determined.

In Motor Invariant Theory, the quantitative propertiesttaee preserved during group
transformation are calleldocal Motor Invariant

4.1 Group and Symmetry

For the more traditional geometrical perspective, “Symyigheans a geometry is the
same after certain transformation. For example, a squarains the same shape after
90 degree clockwise rotation, as shown in Figure 4.1.

Actions that preserve the square shape can be combinedx&opée, if the action of
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Figure 4.1: Symmetry of The Square

90 degree clockwise rotation preserves the shape, then tioa @trotating twice, i.e.,
180 degree clockwise rotation also preserves the shape.

All the actions that can preserve the symmetry form a grGupA group has the
following properties.

1. For anyg,, g, in G, g, * g, belongs ta&. (The operation£” is closed).
2. For anyga, gs, 9. € G, (ga * ) * 9. = ga * (g» * g.). (Associativity of the
operation).

3. There is an element € G such thatg, x e = e x g, = g, for any g, € G.
(Existence of identity element).

4. For anyg, € G there exists an element such thatg, x g, = g, * 9. = e.
(Existence of inverses).

For the square example, all the actions preserve the squape $orm the group:. ¢
is 90 degree clockwise rotation, identity elemenis the action of no rotatiorny, =
g1*¢; is the action of rotatin@0 degree clockwise twice. Singg preserves symmetry,

g2 IS an element of the grou@,

From the algebraic perspective, “Symmetry” means the vafdanction is invariant
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after transformation. For a functiaf{x), the group transformation is define by—=
ga(x). By symmetry, we mean(z) = I(z). I(z) is an invariant function of groug.

Note that shapes invariant by actiongdrare not unique. Many shapes are invariant,
and their combinations are also invariant, as shown in EiguR. In the algebraic
sense, invariant functions of grodpform a space, the invariant spafe.

Figure 4.2: Two invariant Shapes and the invariant combination

4.1.1 Lie Group and Differential Equation

Physically-based motions are usually described by diffieequations, and motion
is the solution of the equation. Same as the square shape, dhe also symmetry
groups that keep the differential equations invariant. lpartant property of such a
group is that its elements can transform the solution oédiffitial equations from one
into anothek@mﬂ_ad, [19_8:([3). ForCMS, this property can potentially help reduce
computational burden: new motions can be achieved thropglyiag transformation

to the dynamic equations of motion primitives.

In mathematical theory,ie Groupis continuous group, which is also a manifold. Since
it is a manifold, coordinate system can be assigned to a LeaiGand each elements
can be parameterized. For example, the symmetry rotatmupgef square is discrete,
while symmetry group of circle is continuous. For the synmperoup of the circle,
each element can be parameterized by the the rotation dnglee following discus-
sions is the parameter of a elemenin the groupG.

Theory of Lie group comes from the study of differential etiras. For the differential
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equation in Equation4.1.
x = F(x) (4.1)

Invariant function/ can be defined as:
I(t,x,%x) = F(x) — %
Solutions of the differential equation are the kernel ofithariant function/ :

I(t,x,%x) =0

The group transformation will act on all the variables of ineariant function. There-
foret, x andx are all transformed.

(t,x,%) — ({,%,X)

If the groupG is symmetrical, then value of the functidrwill be invariant. Therefore
the kernel is transformed into kernel, and the transfornegthbsles are still solutions
to the original differential equations.

Note that thex is not independent which depends on tlandx,

dx
dt

X =

From the geometrical perspective, it is not easy to predentransformation of.
Instead, we define two actions on the state space and tangpe®. dn the state space,
we define the actiop that transforms the state.

g(x) =x
In the tangent space, we define tlieaction T'g

Tg(x) =x
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Tg can be worked out by formatting the derivatives in the oagcoordinate system.
For example, the translatian

(z,y) = (z 4,y +e)
Tg.is
(#,9) = (&,9)
Tg is the identity element.

In the general caseg transforms Equation 4.1 into Equation4.2

Tg(x) = F(g9(x)) (4.2)

If ¢ is symmetrical, Equatidn 4.1 and Equation/4.2 are equivalen

For example, The scaling action is applied to the state spltbe mass spring system
of Equatiori3.P.
X = g.(x) = [eq, (]

then the lift action is
x = Tg.(x) = [gq, €]

by substitutionx — x, the original system becomes

oo 1]
X = X
-1 0
which is _ )
0 1
EX = £X (4.3)
-1 0

Equation[4.B is equivalent to EquationI3.2xl[f) is a solution, so is(t).

To verify the group property. defineas:

Je1 * Gey (X) = [6152(]75162(1]
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The inverse is:
g-'=giecR"

Definition. For a groupG, the invariant function of staté(x) is called alocal motion
invariantof G.

Invariant functiond (x) has important meaning in dynamics. Accordind\ether’s
Theorem, each/(x) corresponds to a conservative law.

4.2 Lie Group and Controlled Lagrange

It is not enough for animals only to explore symmetry groupsatural dynamics
for motion adaptation. For a dynamic system, the symmewym@is quite restricted.
Working out the symmetry group might be a non-trivial task réal-life, animals
usually exert control effort during motion adaptations.

MolIT theory proposes the idea that control effort can make a nomstrical group
become symmetrical, and introduce t@entrolled Lagrangeechnique. Based on

biological researclg(FIash and HaanJc_eLjOO?), some sigwaleps are selected the

symmetry group for motor control. When such group is apgheitie dynamic system,

control efforts are applied to ensure the symmetry.

Usually a dynamic system is represented as by Euler-LagrBngation 44(Goldstein

etal, 2).

22— (4.4)

whereL, = K — V, L is the Lagrangek is the kinetic energy})/ is the potential
energy, is the generalized coordinates, ajid the generalized velocity.

By applying the group transformatian both the generalized coordinates and general-
ized velocity will be changed:

9(x) =x=1q,q]

The Euler-Lagrange equation for the transformed dynamstesy is described by
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EquatiorL4.b. If control is applied, the Euler-Lagrangeaton of the controlled dy-
namics is described by Equatibn4.6. If symmetry is persslethe two equation
should be equivalent. Then symmetry control inputan be calculated by comparing
the two equations.

doL 0L
aoL oL 4.5
dt 9g 904 0 (4-3)
d oL OL

When the two equations are equivalent, their LagrabgKinetic EnergyK and po-
tential energyy” should be the same or of the same scale factor. Thus in th=ary,
strategies exist and will result in two differemt we can calibrate the kinetic by scaling
and apply control effort to compensate the difference ireptal energy, or calibrate
potential energy and compensate the kinetic endplT adopts the potential shap-
ing strategy, for it is computational efficient and suitafide muscle like biological
actuators. As a special case, potential energy shapingfobgeneous group or affine
group promises a close form formulation. Several groupsthen potential shaping
control effort are as below:

Offset Action

Offset actions modify the generalized coordinat®y a constant, while speed and time
remain unchanged. Given the offset parametéine mapping will be in the following
form:

(t,q,q) = (t,qa+¢.9)
The corresponding state transformation and lift action are

9t(x) = [g+¢,4] (4.7)
Tgi(x) =x = [q, ] (4.8)

On the phase plot, the configuratigris usually represented by the horizontal axis,
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and the generalized speeds represented by the vertical axis. From the geometri-
cal perspective, offset actions will move the phase pdrtrarizontally as shown in

Figure[4.3.

Figure 4.3: Offset Action

Substituting the transformegand g into Equatior 4.5 and Equatién 4.6, the control
input can be worked out in the following closed form formula:

0

= % (V(g) = V(a)- (4.9)

u(q)

Taking the mass spring system of Equation 1.5 as an exarhplgainsformed equation
and control equation are as follows.

By comparing the two equations, we work out that:

w(g) =
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Time Scaling

Time scaling actions divide the time variable by a faetoFhe generalized coordinates
are kept unchanged, and the generalized speed will be niedtipy =. For the action
of parametet, the action mapping is:

. t .
(ta q, q) = (gv q, SQ)

The corresponding state transformation and lift action are

9:(x) = [q, 4]
Tgt(x) = [5(]'752(.].]

From a geometrical perspective, time scaling will stretahphase portrait vertically,
as shown in Figure4.4.

Figure 4.4: Time Scaling Action

The control input can be worked out in the same manner astaftsmns. There is
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also a closed form formula for control input.

w(q) = (1 — 52)8‘({;7((;]). (4.10)

Again, taking the mass spring system of Equakion 1.5 as amjgbea the transformed
and controlled equations are

Q..
? + q = 0
Gg+qg=wu
The local control input is:
u = (1 —¢%)q

Energy Scaling

For the dynamic system of the conservative field, the enesgyraeserved in motion
and different motions are characterized by their energyskoh a system, motion can
be adapted by modifying the energy of the dynamic system.

Energy Scaling action is introduced to adapt motions. Tladirsg transformation has
the following property:

whereE is the energy, defined d5(x) = K + V, K is the kinetic energy, andl is
the potential energy.

Further suppose that both the potential and kinetic enaggyransformed uniformly.

K(x) = ?K(x)
V(x) =e*V(x)

M

When mass inertia matrix is constant, the energy scalingstoamation is linear as
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follows:
f(e)

3

t, f(e)g, €q)

f(e) is a function ofz, which is determined by the conservative field. Geometsical
an energy scaling action enlarges the phase portrait,amshd-igure 4.b.

(t,q,q) — (

Figure 4.5: Energy Scaling Action

The corresponding state transformation and lift action are

ge(x) = (f(€)g,£4)

82

Tge(%) = (&4, %d) (4.11)

u; can by worked out in the same manner as the above actionseRa#m write down

the closed form formula, the thesis prefers an alternatreegss. Energy Scaling
can be seen as a combined action of two actions: scaling trergezed coordinates
and scaling the time variable. Separate formula can be ogsdlfor two actions

independently. This principle generates modular codegire.

The mass spring system of Equalionl.5 is selected againesaanple. For the mass
spring system, Energy is defined Bs= 1(¢* + ¢*). If the energy is scaled up hy,
the potential energy is scaled up by Becausd’ = 1¢?, ands?V = 1(f(g)q)?, thus
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Figure 4.6: Offset Action

f(e) =e.

The control input can be worked out in the same manner as theeagtions. However,
when object moved in the conservative field, energy scasimgsymmetry group of the
original dynamic system, thus no control effort is needed.

U1:0

Time Offset

Time offset actions modify the time variabteby the parametet. The map is as
follows

(t.q,q) — (t+¢,q,9)
For a system oscillating with limit cycle, time offset actiwill modify the phase, as
shown in Figuré 416.

For a dynamic system, time offset is symmetrical for all dpiasystem. At the first
look, no control effort is needed. In practise, time offseachieved by applying time
scaling twice, after applying time scalirgfor sometime, and then apply the inverse
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action(time scaling of).

4.2.1 Action Selection

There are many actions available for motion adaptation. eltat situations, there
are many different ways to satisfy the motion constrairasisog the problem which
action should be applied. Different groups will result iffelient motion styles. This
idea is supported by lots of examples in Chapler 6. In pmrctisis is left for the
animator to decide. Usually, the symmetry of natural dymamipreferred, for such
actions are energy efficient.

4.3 Example: Symmetry of the Bouncing Ball System

Symmetry is a common property among many dynamic systeres, fev the hybrid
systems like the bouncing ball system of Equalion 3.7. Ih@ in this section that
by utilizing the symmetry group, complex motions can be fted in an computa-
tionally efficient way.

The bouncing ball system bf 3.7 has a energy scaling symmetry

The energy function of the bouncing ball system is
1,
E=gq+5mq

If the energy is scaled up ky, potential energy is scaled up by. Becausé’ = %gq,
ande?V = 1 f(e)q, thus:
fle)=¢’

the energy scaling transformation is
ge(x) = [£°g, £d]

For the bouncing ball system, the energy of a system can vactkazed by the initial

62



dropping height.

Given the motion of a ball dropped &as shown in Figure 4.7, we set= /2 and ob-
tained the motion dropped froi through the transformation as shown in Figuré 4.8.
Figure motion dropped from0 is shown in Figuré 419.
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Figure 4.7: Drop at 5
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Chapter 5

MOTION SYNTHESIS
FRAMEWORK

The principal ideas oMolT are discussed in previous two chapters. The stability of
motion is controlled by maintaining the topology. For theipeic motions, neural
oscillator can be used to enhance the structural stabiihd group Transformation
provides a mechanism to modify motion with precision.

Questions arise when these ideas are being appli€iA8. The first question comes
from combining the controller of neural oscillator and syetmg controller. We must
ensure that the combination will violate neither the synmgnabr the topology. This
guestion is discussed in details in Secfiod 5.1.

Section 5.8 provides more detailed information of the pifeelor the procedure of
applying this idea irCMS applications.
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5.1 Combined Invariant Control

5.1.1 Combine Invariant Control
Neural control,, maintains the topology, and local contiglmaintains the symmetry.
Combining two controllers must violate neither the globallozal invariant.

In order to adjust the combined controller for practical laggtions, CPG is applied
first to maintain the topology against the structural pd&dtion. Then symmetry con-
trollers are applied afterwards to meet application specdnstraints.

From the perspective in Chapiér 3, the inclusion of symmaintrol must not violate
the topology. It is easy to prove that controlled symmetryntaéns the topology. For
the controlled symmetry’s effect on topology, we have tHe¥fang theorem:
Theorem. Transformation of Control Symmetry is Topological Conjliga

From the perspective in Chapfdr 4, we must ensure the incluineural oscillator
controlw,; will not break the controlled symmetry.

For this, the parameters 6fPG need to be modified accordingly to maintain the sym-
metry property. This is calleddjoint Transformation

5.1.2 Adjoint Transformation of CPG

Adjoint Transformatiormodifies the parameters of neural oscillator to maintain the
symmetry.

For a dynamic system
x = F(x)

when controlled by neural oscillator, it becomes
x = F(x) + Du, (5.1)

where D is the connection matrix, which describes how the neurallatmr is con-
nected to mechanical system.
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When group action is applied, Equatioris 5.1 is transformed into

Tg(x) = F(g(x)) + DTg(u,) (5.2)

If symmetry is preserved, the Equation|5.3 and Equétion ko2ilsl be equivalent.
x = F(x) + u + D, (5.3)

whereu, is the output of neural system after adjoint transformation

As shown in Equatioh 316, sinag, is a complex function ofi;, it is difficult and not
computational efficient to develop a closed form formula. aiksalternative, the idea
is to utilize the symmetry property of Matsuoka Oscillatbr.this way, CPG can be
transformed by modifying the parameters. The transfoilmnacheme is based on the
following proposition.

Proposition. By modifying parameter; ,

Ti2 F2 €T 2

is equivalent to time scaling of the neural oscillator by a@ueter-.

This proposition can be easily proved by substituting = 715, andf = g into

the Matsuoka Oscillator( Equation 8.4), the equation weithain the same. Based on
above the proposition, a scheme of the adjoint transfoomagiproposed that modifies
the parameters, »,h;,h, and maintains the symmetry of the coupled system. The input
and output of neural are chosen to maintain the shape.

1. Modify 7 by the time scaling parameter— 7.

2. the input variablev and input efficienth; are modified to make sure the input
function satisfies the time scaling symmeiiyt) — u;(%)

3. Parameters ok, are modified according to the connection matkix or how
the mechanical system is driven. df drives the position variable then, i,
should be multiplied by the position scale factor. ulf drives the velocity;,
should be multiplied by the speed scale factor. If thas force and acting on
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the acceleration, thenh, should be multiplied by the acceleration scale factor.

According to this adjoint transformation strategy, we cantfe following theorem
Theorem. For a transformation groug-, if the parameters of the neural oscillator are
modified according to the adjoint transformation, combisgdtem preserves symme-
try 1€,

To prove it, readers can check the symmetry by substitutiamgstormed variables
into the original system. With such a treatment, both thealddotor Invariant and
Global Motor Invariant are maintained. For the specific syetmntypes proposed in
Chaptef 1, several examples of adjoint transformationparaded

Offset Symmetry.

For offset symmetry:

(t,q,q) = (t,qa+¢.9)
there is no time scaling effect. To maintain the symmetmy dimplest way is to select
u; andu, from the functions in the invariant spad€. For example, when al} is
transformed by a constant, the difference and the velociliynat be transformed.

Thus, the input of the neural oscillator is chosen to be tlygeattifference between the
joints or velocity.

Time Scaling

For time scaling:
. 13 :
(ta q, Q) = (gv q, SQ)
Adjoint Transformation- — 7. The input coefficient; and output coefficient, are
scaled accordingly. if the output, is applied as a force, then it should be scaled by

the acceleration factor
he — €2h,
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Energy Scaling

Energy Scaling is a combined action of time scaling and pescaling:

f(e)

(ta q, Q) = (Tta f(e)% SQ)

. . .
the time scaling factor IS5,
The parameters, , are transformed

€
T2 77712

f(€)
The input coefficient is scaled to make the amplitude of tipeiirsignal maintained.

hi'—>—

The output coefficient is scaled according to the connectidhe control, if the output
drive the velocity, then the output ig,

he — €hyg

5.1.3 Example: Height Control of Bouncing Ball

The bouncing ball system has the energy scaling symmeityadimit cycle emerged
when coupled with a neural oscillator. When energy tramsédion is applied to the
limit cycle, the bouncing height can be adjusted accordirtiyé purpose. By combin-
ing both motor invariant controllers, stability is maintad and motion can be adjusted
precisely.
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Adjoint Transformation

Supposing the coupled system is bouncing at heightrdr the energy scaling:
(t.q.4) = (et,€%q,4)

the time scaling factor is, and we have:

Ti2 2 €T 2

The input to the neural oscillator is

hi'—>—

Neural Oscillator drives the position of the paddle, thepatit,, needs to be scaled by
the position scale value. Fgr— =2¢, we have

he — €2h,

Whene? = 3, the ball will bounce at height of5, and it maintains its topological
structure, which is a limit cycle, as shown in Figure]5.2. Wthis method, arbitrary
bouncing height can be controlled.
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5.2 Combine Motion Primitives

5.2.1 Dynamic Motion Graph

Virtual characters are capable of many types of motions avittls between them
fluently. Motion GrapHJsoALa.r_el_aJL lzopjb) is proposed for data-drivéeMS: basic
motion tasks are recorded, and a graph describes how a t#raran change from one

motion into another motion. For the transitional motiom® most popular synthesiz-
ing method is blending.

MolT implies an idea similar to the motion graph but from a différéirection. Usu-

ally, traditionalmotion grapls are manually designed, whiMoIT proposes an idea
which generates the motion graph from the dynamics autcaiBti In theory, the

topological structure of a dynamic system can be repreddayt@ graph. Each motion
primitive is represented as a node, and two nodes are cathenty if their basins of

attractionBoAs) are in neighbour.

In dyanmic research, many methods have been proposed tifydine topological
structure of a dynamic system automaticm 980gyIdan be used iNoIT
to identify motion primitives and their connectivity.

For example, Figure 5.3 shows the phase portrait of a hygo#helynamic system.
Its phase space is divided into four regions of differenbcsl The fourBoAs, within
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Figure 5.3: Phase Plot of Motion Primitives

Figure 5.4: The Graph Structure of A Dynamic System
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each region, there is an attractor(red). The graph in Figidrehows the corresponding
graph structure, in which each node representBibw, the connecting edge means
the basin oBoAs of connected motion primitives are in neighbour, which aso be
verified by Figuré 5.13.

5.2.2 Dynamic Motion Transition
In real life, the transition of motion is an adaptive and resting phenomenon. How-
ever, Blending techniques tend to generate motions with rariations.

While based on the control method for maintaining motiomtives,MolT proposes
a physics based method for generation of transitional motio

Figure 5.5: Motion Primitive Transition

From the geometrical perspective, motion transition meartisng the currenk out of
oneBoA into another. This process is illustrated in Figurd 5.5 wttbe current state
represented by the black dot lies in the left regioBoA and will converge to the red
limit cycle over time.

The neighbouring region is tHgoA of another primitive, in which if the current state
lies, will converge to the green limit cycle. Because twoibg®f attractions do not
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overlap, the transition will not happen automatically et effort. From a geometri-
cal viewport, to make motion transition happens, a smaibads needed to push the

state across the boundary, represented by the red line.c@hibe achieved by many
efficient methods.

Entrainment Overlap

Empirically,when aCPG is applied for one motor primitiveél, the basin of attraction
B(A) is enlarged. Supposing the enlarged basin of attracticepieesented bB(A’),

if CPGs are applied for two motion primitives, A, in neighbour, the enlarged basins
of attraction B(A}) andB(A5) ) will overlap.

0 = B4} B4y # &

whereQ is the overlapping region.

Figure 5.6: Motion Transition based on Motion Primitives Overlap
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If statex lies in theO, the dynamic system will converge to a different attractpr b
switching theCPG controller. Figurd 5]6 shows the idea through an examples Th
phase plot shows two motion primitives which are connecBakins of attraction of
natural dynamics are separated by the dotted line, whichotloverlap. WherCPG

is applied, two basins of attraction are enlarged, and theeshregion is coloured in
yellow color. When the current state liesdn the state will converge to the left limit
cycle if theCPG of the left region is activated and converge to the righttioyicle if
the rightCPG is activated. Motion Primitive can be switched in this manne

Transform Method

Controlled Symmetry can also be applied for motion pringittvansition. We can
change th&oA where the current state lies by transforming the phasegortr

Figure 5.7: Offset Transition

As shown in Figuré 517, the phase portrait of natural dynasystem is the same as
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that of Figuré 5.6. The current state converges to the led) (imit cycle. By applying
offset action to the dynamic system, the phase portrait swaféward, which makes
current state lie in the righBoA. Over time, current state will converge to the right
limit cycle, the motion primitive is changed accordingly.

5.2.3 Combined Method

Both methods utilize the natural dynamics and result in ssayly realistic transition.
However, both methods requitdies in the overlapping region. In the motor invariant
theory, the current state x is not directly controlled. Theasure is to make the overlap
region O cover part of both attractors.

As shown in Figuré€ 518, the overlap region covers both atiraci, .A’, bidirectional
transitions are possible when motion converge to to the byule.

More importantly, when transformation is applied, the@tis applied to the dynamic
system. Thus both motion primitives are transformed, dalh theconnection trans-
formation. As shown in Figuré 5]8, when a speed action transformasi@pplied,
both motion primitives are modified.

Figure 5.8: Combined Method
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5.3 Motion Synthesis Framework

While this procedure may appear mathematically compleglyapg this method for
motion synthesis is straightforward.

CMSonly requires:

1. amechanical oscillatdr(x) which describes the body and environment dynam-
ics.

2. a neural oscillator (for example, the Matsuoka oscitlatoEquation 3.4) and
associated parameters that generate entrainment.

3. an actiory € G which adapts the problem to the current environment (those p
sible operators are proposed in Secfion 4.1). The adjostesytransformation
is applied to the neural oscillator.

4. an integrator to solve the system (we use the fourth ordegB-Kutta method
provided in the MATLAB functionode45).

In the following chapters, this method is applied to genegaadaptive motions.
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Chapter 6

MOTION PRIMITIVE
TWEAKING:BIPEDAL WALKING

The examples of bouncing ball and mass spring systems explaidea well. How-
ever, they are are too simple f&MS applications. This chapter focus on controlling
more complex mechanical systems which have great applicaalue. Detalils are
given about how to adapt a motion primitive for environméatad application spe-
cific constraints. Combination and transitions of motioimptives are discussed in the
next chapter.

The motion primitive under study in this chaptebipedal walkingwhich is a topic of
great application value for both the graphic and robotidmegying. Although many
methods have been applied to the bipedal walking in the gastdes, human bipedal
walking ability still has not been achieved. The early Hekethat bipedal walking
Is unstable in nature, and many control methods are dew&lbpsed on trajectory
tracking principle. The turning point is the discovery oétbassive dynamic walking
machine, which shows that under specific conditions, waglidan happen naturally
without the need of any control effort. This makes us belitat the walking abil-
ity is inborn, and most control problems have already beéreddoy the mechanical
structure.

From the perspective d¥lolT , bipedal walking is a motion primitive. In this chap-
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ter, the passive walking gait is treated as the motion tetapldeural Oscillator and

Symmetry Control efforts are applied to tweaking the terigplghile maintaining the

global and local motor invariants. This method is capablgesferating adaptive and
stable gaits in real-time. This process may provide a cleamgle of application of

theMolT idea.

6.1 the Bipedal Walking Primitives

The word “Bipedal” comes from Latin which means “two feet” eté, “bi” for “two”
and “ped” for "foot”. With two legs, animals can walk, run ajuinp. Relatively few
modern animals use two legs for normal locomotion. Biolabiesearch believes that
human bipedalism is developed well before the large humaim lor the development
of stone tools, so human are capable of bipedal walking l@igrb the age of intelli-
gence, and bipedal walking ability is not closely relatethishuman mental power.

The walking of human is characterized by the switch of thi¢stipporting leg, which
moves like an “inverted pendulum”. Walking is identified tbés a two leg supporting
phase during each step.

As for secondary motion in walking, the hip rotates arourel dlxis of the spine to
increase stride length, and also rotates around the haailzaxis to improve balance
during stance.

In MolIT, walking is treated as an independent motion pattern. Tstilate the idea
without unnecessary complexity, the walking dynamicsngsified.

As shown in Figuré 611, motion is projected into three spdlcesagittal plane, coronal
plane and transverse plane. For bipedal walking, yaw andnalion are relatively

small and usually treated as secondary motion or totallyeaégd, the main motion
happens in theagittal plane

This chapter focuses on the lower body motion in sagittai@lanly. The motion of
upperbody in figures are added simply for visualization pagy of which the simu-
lation and control will not dicussed in this chapter. AlonghwotherDOFs, such as
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Figure 6.1: Sagittal Plane, courtesy of Yassine Mrabet

turning motion in coronal plane and sway motion in transggisne, torso and arm
simulations are discussed in Chayjter 8.

This is because it is more convenient to explain ideas in avghmple model and per-
fect symmetrical properties. The motions of soD@Fs are treated as perturbations,
for they make the “symmetry” not so perfect An ealy discussi@ay cause confusion.

Dynamics

The simplified walking model is shown in Figure 6.2.

The walking model of Figure 6.2 is based on rigid body dynamide supporting leg
is kept straight. In the figurd, is the length of the legy, is the angle of the supporting
leg, m; andm, are the mass of the shank and thighandg; are the corresponding
angles of the swinging shank and thigh,a; andb,, a; describe the relative position
of gravity centermn,, represents sum mass of the body and hip .

Like the bouncing ball system, this dynamic system is hMﬂmndiasﬂr L_ZQbG)

and includes both continuous and discrete dynamics. Rassilking with knees in-

cludes four phaséﬂEbO?).

e Free Swing Phaserhe support leg (the blue one) is kept straight. During this
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Figure 6.2: A Passive Walking Model with Knee

phase, the knee of the swing leg is bended, and the thigh amd skving freely.

e Knee Strike PhaseThe knee joint of the swing leg has a limit. When the knee
angle reaches the limit, a collision happens. After theigiol, the swing leg is
kept straight.

e Knee Lock Swing PhaseDuring this swing phase, both the swing and support
leg are kept straight.

¢ Heel Strike PhaseWhen the heel of the swing leg hits the ground, a collision
happens. After that the swing and support legs are switched.

Figurel6.8 shows the gaits of four phases.

e Flying PhasesBoth the free and locked knee swing phases are describeaby th
continuous dynamics. Both equations are in the form of EquHE].

M(q)q+ C(q,q4)q+ N(q) =0 (6.1)

whereq = [q1, G2, 3], ¢ = [, G2, G3], M is the initial mass matrix, and and N
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Figure 6.3: The four phases in Walking

are the centrifugal force matrix and gravity respectivélgr Knee Free Phase,
M and(C are3 by 3 matrix, andN is 3 by 1 vector. for Knee Lock Phasé/
andC' are2 by 2 matrix, andN is 2 by 1 vector. Putting them into the standard
form, and definex = [q, ¢|, Equatiori 6.1l is transformed into Equatfon|6.2 Then
the function is in the form.

~1
. 1 0
X = —

0 M

e The Strike PhasesThe knee strike and heel strike phases are modelled based
on discrete dynamics. Collision equations are developeddan momentum
preserving principle. Both collision equations are in thenf of Equatiod 6.3.

01
0 C

0
X — [N] (6.2)

Jrat = Jd (6.3)

whereJ is the matrix of angular momentum inertia, and the supgyscH, —
represent those after and before collision respectivaly Kihees Strike/~ is a
3 by 2 matrix, J* is 2 by 2 matrix; For Heel Strike, botl ™~ are2 by 2 matrix.

Dynamic equations are developed based on Lagrange Mesh@ﬁdsleinel_alj,
). For details of calculating the dynamic equationapéerefer toO7)

For the components of each matrix, please refer to the append

With special initial condition]i(_c_hﬁel_a.lj, IZQ_O_JY), the passive walker can walk down
the slope with a stable gait. On the phase plot, a limit cyaierges. Figuré 6.4 shows
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Figure 6.4: Four Phases Marked on a Walking Cycle

the phase plot of one thigh for a stable walking cycle. whbeeesdvents that separate
the four phases are marked.

In theory, the generalized coordinates for walking hawegrees of freedom, with
angle for shank and thigh for each leg. Since the state spacdimension, it is not
possible to draw the phase portrait on a picture. Qnhgriables can be plotted.

Considering that motions of the two legs are almost the san®enough to show
one leg motion, thus the state space is reduceddimnensions. Chaptét 8 shows that
the knee motion is not very important since the motion of thgh captures the most
valuable information. The phase plot of the thigh of one tegalected to illustrate the
walking. Other selection is possible since all D@Fs are simulated and controlled.

Figure [6.4 only shows the motion of the right leg. The greeast gphows the stance
phase. During this phase, the right leg is supporting the.bblde blue parts show the
swing phase. During this phase, the right leg is swingingtaedeft leg is supporting

the body. The yellow lines mark the collision events during walking. Note that
during the collision, the walking dynamics is discontinapand the speed of walking
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is changed suddenly without changing the position. Thisnmaghe yellow segments
are not on the limit cycle. If the walker starts from the siatthe middle of the yellow
segment, it will fall.

6.2 Global Motor Control and Adaptive Gaits

The Passive Dynamic Walker exhibits a natural looking gllibwever, the walking
motion is not stable. IMolIT , the repetitive walking motion suggests that the natural
walking dynamic forms a limit cycle. It is believed that hunsautilize the limit cycle

for walking for energy efficiency(Callins and RukhlbOS).

To overcome the fragile stabilit¢;PG is applied with the hope to make the walking
more stable through entrainment. Experiments have shoatrsthbility is enhanced
and different perturbations result in varied and naturakiog responsive motions.

6.2.1 Entrainment

For walking, only one neural oscillator is applied to maintae stability of limit cycle.
The output of neural oscillator works as torque applied poamgle (angle between the
two thighs). The dynamics are shown in Equafion 6.4

M(q)q+ C(q,q)q + N(q) = Du, (6.4)

For the knee lock phasé) = [1, —1]7. For the knee free phasB, = [1, —1,0]”. This
means the neural oscillator controls the thigh, and the ikt to swing freely.

CPG prefers periodic, continuous signals, the hip angle is &&oient choice.

u; = hi(q1 — ¢2)

71, T are set to make the oscillating frequency close to the wglkiaquency. The
output coefficient:, is set to a small value to make the walking energy efficient.
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Figure 6.5: Limit Circle And Different Phase in Passive Walking
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Figure 6.6: The gait with neural controller
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When the drive force is small, the limit cycle of entrainmepstem is similar to the
original passive one. Both limit cycles are shown in FiguEeahd Figuré616. Walking
gaits are shown in Figufe 6.8 and Figlre]6.7. Both figures amgpked by the same
time interval. The controlled gait looks a little sparsdrmieans that with the neural
control input, the character walks a bit quicker.

Figure 6.7: The Passive Walking Gait

Figure 6.8: Passive Walking with Neural Control

By comparing the limit cycles and the walking gaits, we find that the controlled
gait and passive gait are quite similar. The controlledsgaié a bit faster and the step
size is slightly bigger. Visually, the two gaits are almdst same. Although both are

natural looking and very hard to detect control effort, tigaamics has been changed
greatly, especially the stability.
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Structural Stability

Entrainment boosts the structural stability of walking eTgassive walking can not be
maintained on plane, because such a structure perturlzdtsdope angle has violated
the topology. The consequence is that limit cycle does nist ary more.

When passive walker walks on a plane, the step-size desrefise each step. After
several steps, the walker will stop or fall over, as showniguFe[6.9.

After coupling with a neural oscillator, the walker maimtsiwalking with a small step
size, as shown in Figufe_ 6J10. To maintain the energy effiqgieoperty of natural
motion,u, is limited to small, leading to a small step size accordingly

Figure 6.9: The Passive Gait On Plain

In Figure[6.11, the walking cycle is kept shrinking over timesulting in a gait of
walking to stop intention. But after several steps, the wajlgaits reach a limit cycle
(shown in red). The new walking limit cycle is of a smallerssizhich means a smaller
step.

Area of Basin of Attraction

Another measurement for stability is to size of the basintiwhetion. Passive walking
is fragile, which means the basin of attraction is very narrd the walker is pushed,
it will fall.
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Figure 6.10: Entrainment Gait On Plane
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Figure 6.11: Limit Cycle of entrainment gait on plane
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Entrainment greatly enlarges the basin of attraction ofwiaéking limit cycle. In
Figure[6.11, the initial position is far from the limit cycl indicates that the basin of
attraction has been enlarged.

A better test is to push or pull the walking character. Wheshpand pull are applied
to the character, the state is moved away from the limit cy€hee harder the push or
the pullis, the further it moves away. The gaits of being @asbr pulled are shown in
Figure[6.12 and Figuife 6.113. The push and pull are applidueagnd of the first step,
the moment when the leftmost character figures are renderdue@ictures. For both
cases, the characters start walking with normal stabls.gait

When the character is pushed, the supporting leg move fdrwéile the motion of
the swing leg remain almost the same. As a result, the pushteffcreases the hip
angle, which is the input signal of the neural oscillator.eDa the increase of input,
the neural oscillator will generate a bigger torque outpiich increase the hip angle
and drive the character to take a big step. As time goes orstétte will converge
to limit cycle and the character will return to the normaltgdhen the character is
pulled backward, the character will take a smaller step enetep backwards for one
or two steps. After that it will gradually return to the nordmaalking gait.

Figure 6.12: The Push Perturbated Gait

Figure[6.1% and Figurle 6.115 show the flow converging towdrddimit cycle. When
the character is pushed, it takes a big walking cycle. Howegeause of the entrain-
ment, hiconverges to the limit cycle within next a few peridtie pull effects make the
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Figure 6.13: The Pull Perturbated Gait

character take a smaller step size in the next several siéswalker takes a bigger
or smaller step to adjust walking and finally returns to thenred walking gait.
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Figure 6.14: The Pushed Gait Phase Plot

The initial step size can also be changed, and the walkeragjlist it automatically.
Figure[6.16 and Figure 6.17 show the gaits. Fidurel6.18 aguré&ic.19 show the

phase plots.
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Figure 6.15: The Pulled Gait Phase Plot

Figure 6.16: Big Initial Step Size
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Angle Velocity Of the Red Thigh | rad/s

Figure 6.17: Small Initial Step Size
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Figure 6.18: Big Initial Step Initial Phase Plot
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Figure 6.19: The Small Initial Step Gait Phase Plot

The entrainment o€PG greatly enlarges the basin of attraction. If the walkertstar
with very different postures, the character will return tomal walk.

6.2.2 Walking Re-targeting

Transferring the gait of one character to another is a ahgilhgy job.MolIT theory pro-
vides a method for physics based motion re-target@#G will maintain the topology
of the dynamics. When the dynamic parameters are changedppblogical conju-
gacy will result in a varied motion.

The passive walker has many parameters, like mass and lgthleDifferent param-
eters will result in a different dynamics systems. But aigé dynamic systems share
the same topology. There is a limit cycle and the charactersapable of periodic
gaits. Some interesting gaits are shown and discussed lreltwg section.

If all the parameters are scaled uniformly, the gait will emthe same, only the
velocity will be changed. To demonstrate different gai® parameters are modified
relatively. The motion variation is generated by adjustihg mass ratio and mass
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distribution ratio, the total mass and total leg length beabhmples are kept the same.

Mass Distribution Ratio

When the total mass is maintained, Mass Distribution Rataefined as the hip mass
over leg mass.

[ 7
Mg

wherem,, is the mass of the hip and, is mass of the thigh. The mass ratios of shank
and thigh is kept unchanged.

Different «,,, will result in different gaits. Biggety,, result in gaits to that look bur-
dened. The different limit cycles are shown in Figlire_6.20.
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-0.4 -0.3 -0.2 -0.1 0 0.1 0.2 0.3 0.4 0.5 0.6
Angle of the Red Thigh| rad

Figure 6.20: Different Gait Resulting from the Different Mass Ratio

For biggera,,,, the walker will walk with a bigger step but a slow spegd lower).
For smaller,,, character will walk more quicklyj(is bigger), the swing leg will swing
with a bigger amplitude.

Different gaits are shown in Figuke 6121, Figlre 6.22 andife(5.23.
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Figure 6.21: Gait with «,,, = 0.3

Figure 6.22: Gait witha,,, = 5

95



Figure 6.23: Gait with«,,, = 14
Leg Length Distribution Ratio
Except for the change of the ratio parametgr~ f—t the leg length is kept unchanged.

By changingn; motion for different characters are generated. This deinates the
motion re-targeting results.
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Figure 6.24: Different Gait Resulting from the Different Mass Ratio

The limit cycle in Figuré 6.24 implies something importaboat leg length in walking.
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Basically, the motions of the supporting leg and the step aie almost kept the same,
while different leg length rations will result in differestving motions. The longer the
shank, thigh has to swing quickly and with a bigger amplitutieere are also bigger
impulses during the strike phase. For both the knee and trded,darger impulse is
generated. This result may indicate the effects of high sleeés for walking.

Figure[6.2b, Figure6.26 and Figlire 8.27 show the differaitsg

Figure 6.25: gait ofa; = 0.5

Figure 6.26: gait ofa; = 0.7
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Figure 6.27: gait ofa; = 1.3

Unbalanced Mass Ratio

Also define thddnbalanced Mass Ratio

_ LeftLeg Mass
~ Right Leg Mass

ay

As shown in Figuré 6.28, when, is increased, two legs swing differently and the
limit circle is splitted into two. Biggery, will result in a cripple like gait, as shown in
Figure[6.29

Different Slopes

Usually, changing the angle of the slope may not seen as magitargeting. But in
MolIT , changing slope means changing the parameter of the dymauéation, which
can be analysed in the same manner as as changing body permmet

Figure [6.30 shows the limit cycle of walking on differentfsés. For different slopes,
entrainment maintains the limit cycle, but the limit cycleaages its shape. Different
stable limit cycles are show in Figufe_6130. Basically, tiggbr the slope, the bigger
the step size, and the higher the speed. Slope changingrhiar ®ffects to energy
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Figure 6.28: Different Leg Mass Stable Gaits

Figure 6.29: Gait of oy, = 1.3
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Figure 6.30: Walking on Different Slopes

Figurel6.31,Figure 6.32 and Figlire 8.33 show differentsgait

Figure 6.31: Gait On Slope 1
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Figure 6.32: Gait On Slope 2

Figure 6.33: Gait On Slope 3
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6.3 Local Motor Invariant Control

Neural Oscillator boosts the stability. Sometimes stgbliecomes a limitation in
motion. For the walking example, if the basin of attractiomers the whole space, then
the passive walker can't walk upslope. If the walker is tgyto walk upslope, he or
she will begin to walk backward down slope after a few stepshasvn in Figuré 6.34.
In addition, it is not convenient to adjust the speed of walksince the limit cycle is
fixed.

Figure 6.34: Failure of walking upslope

Local Motor Invariant provides a mechanism to adapt motmoading to the environ-
ment and application-specific purpose. For the bipedaliwgligroup actions provides
a mechanism to adjust the walking slope and walking speeteirigion.

The original system does not have energy scaling symmetnerdy Scaling is ap-
proximated by a combined method as discussed in secfiofl. 6.4.

When active group actions are applied to the passive wailkeray require all the
DOFs to be actuated. This involves actuating theq, andgs. With our dynamic
model, ¢, andgs are controllable by actuating the knee and hip joints. H@akey

is not controllable. To actuatg, the walker needs feet and motors to drive the ankle
joint. The feet are neglected mainly to simplify the cobiisiand contact dynamics.
This control scheme is achievable with real human like wallkeis transform action
will not result in visually artifects for normal walking cdition. However, such sim-
plification will result dyanmic artefacts in extreme cadescause the limited friction
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force, the toque applied at the ankle should be limited withiange. For a large slope,
real human can not generate enough ankle torque mainly ecdlimited friction.

6.3.1 Group Actions
EquatiorL6.b describes walking with local control.

M(q)q+ C(aq,q)q + N(q) = w (6.5)

Lie group actions are developed for two types of symmetry.

e Offset Action. Offset Action moves the phase plot horizontally. This \mihke
the passive walking on terrains of different slopes. Forhhgedal walking,
according the Equatidn 4.9, the offset action is:

w = N(q) = N(q+e)

wheree is the slope angle change.
e Speed ActionSpeed Action maintains the gait, but modifies the walkingedpe
According to Equation 4.10, the local control is:

uy = (1 — 62)N

wheree is the time scaling factor.

For the original system, energy scaling is not a simple glirteansformation. Energy
Scaling is approximated by a combined method discussed late

Figure[6.35 demonstrates different limit cycles after gjmg Lie group actions. The
red one is the original limit cycle. Green ones are appliéskedfactions and blue ones
are applied speed actions.

By applying the offset action, the passive walker can walglope, as shown in Fig-
ure[6.36
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Figure 6.35: Lie Group Actions on the Phase Plot

Figure 6.36: Up slope Gait Generate by Lie Group offset Action

104



6.4 Application of Combined Method

Global Motor Invariant Control boosts the walking staliliHowever, the resulting
motion does not meet application’s needs sometimes. LocabMnvariant Control
can adapt the walking to application purpose, but it canidbthe stability. Combining
the two controllers make it possible to take the strengthie@fwo methods.

The combined method is described by Equaliioh 6.6

M(q)q + C(q,4)q + N(q) = Du, +u (6.6)

In applications, animator can generate different gaitsubh adjusting parameters of
the neural oscillator and the body first, and then transfdrendifferent gaits by Lie
group actions. For animators, this method is efficient, dlooking and easy to use.

Such combinations will achieve unlimited variations oftgaiWe will demonstrate
below how gait variations can be achieved in this manner.

6.4.1 Step Size Adjust

The first example shows how a character can adjust his stepesafistically. When
the character walks down different slopes, a steeper slapesgult in a bigger step
size as shown in Figute 6130. If offset Lie group actions a@iad, we can transform
the gaits of different slopes on the plane. In this way we aaniexe different step
gaits on the plane.

Figurel6.3V shows limit cycles of different step size on tlamgp.
And the different gaits are shown in Figlre 8.38,Fidure &80 Figuré 6.40.

6.4.2 Varying Slopes

Neural Oscillator can maintain walking on varying slopas, dan’t make a character
walk up slope. An offset Lie Group action will allow the cheter to walk up a slope
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Figure 6.37: Limit Cycles of Different Step Size Gaits

Figure 6.38: gait with step size 1
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Figure 6.39: gait with step size 2

Figure 6.40: gait with step size 4
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with a constant angle. However varying the slope will regulivalking failure. By
combining the two methods, the passive walker can walk oaites of varying slopes.

The control strategy is straight forward, basin of atti@actf the walking limit cycle

is transformed to capture the current state. When walkingaoying slopes, the off-
set action remains constant when the slope is constantn@slope transitions, the
controller looks ahead and sets offset parameter accotditing slope of next step.

It is at the moment of transition, the state will move far avimym the stable limit
cycle. The character needs to take a few steps to return toalgait.

After the first step in transition, the state will be farthastay form the limit cycle.

This is the time when character may fail. More complex cdnimethod can be de-
signed transformation the basin of attraction to captueestate. However, in our
experiment, the basins of attraction provided by entraimrieealready big enough. In
our experiments, the state has never escaped from it.

Figure[6.41 and Figufe 642 show the gaits on smooth sloges pihase plot of gaits
in Figure[6.41 is shown in Figufe 6J43.

Figure 6.41: Continuous Varying Slope

Figure6.44 show gaits on non-smooth terrain. The slopesanigkadians are.08,0.17,0.28,0.4.
Figure[6.45 shows the phase plot of gaits in Fiqurel6.44, evitrex phase plots on dif-
ferent slopes are marked with different colors .
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Figure 6.44: Non-smooth Terrain coloured
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Figure 6.45: The Phase Plot of non-smooth terrain

6.5 Verification

In this section, we discuss stability, energy efficiency tedbiological justification for
the proposed approach. The stability is demonstrated byernoally approximating
the basin of attraction of the passive walking model undeirenmental perturbations
and under different initial conditions. The energy cost atle controller is evaluated
with various gradient and offset action conditions. In ergtelink our results to the
biological observations, we will analyse the captured protiata of a human walker
adapting to environmental perturbations which are sinbddhose demonstrated in the
above sections.

6.5.1 Stability analysis

The stability is analysed numerically by considering theibaf attraction of the pas-
sive dynamic walking model. The improved stability of ouoposed approach is
demonstrated in Figute 646 . The simulation runs from tlo¢ $trike phase (the bot-
tom left corner of the plot) until it either converges towatte limit cycle or diverges.
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The initial conditions, which are the starting angular e#thp of the leg for this case,
are incrementally increased and decreased and the reseHplstted until the motion
is unstable. Only stable cycles are displayed. The passllewis stable when walks
down a slope of 0.06 radians (Figure_8.46 (a)) but considigtess stable when walks
down a slope of 0.03 radians (Figure_6.46 (b)).

In Figure[6.46 (c) the stability of the system (as demonstraty the size and shape of
the basin of attraction) is greatly improved by coupling @fG.

By applying the offset group action with= 0.03 to the system in Figuré_6.46 (d),
the step size is adjusted to compensate for the change ia atggle, which improves
the stability further.

6.5.2 Energy efficiency

Since the passive walker uses no energy, the energy consuarttezlsystem depends
on the control variables, andwu, only. We compute the individual cost of transport

.Q_O_ll'LD_S_a.Dd_RLdeéLZ_Oj)S) of each controller Agvu,(x.)| for the neural controller

and [ |wu(x)| for the local controller, where,(x.) andw(x) are local and global

invariant control effort and is the angular velocity.

Since these may affect each other, the resultant cost magsbe¢Han the total energy
applied by the controllers. If these two controllers hawependent actuators, then we
should consider the sum of the absolute controller torquputdrom the controllers.
We assume that there is only a single actuator, implyingdhltthe resultant torque is
appropriate. Therefore the resultant (net) cost of trarigpaapplied by the controllers
in our method is described by the following formula:

Cot = / lw (to(xc) + wi(x)) |dt. (6.7)

We evaluate this energy over a stable limit cycle by varyhegdradient and the value
of the offset controller in Table 68.1. Applying the offsetiaa corresponds to altering
the step size of the walking model. We observe that the ensygiyassociated with
applying the Lie group action increases linearly with thisetf value. The energy cost
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Figure 6.46: Sensitivity analysis demonstrating the stability of thékive model un-
der perturbations of initial angular velocity.

Cost of transport c;
Gradient (rads)| Offsetr | Action cost | Neural cost | Net cost
-0.060 0.000 0.000 0.021 0.021
-0.030 0.000 0.000 0.020 0.020
-0.030 0.030 0.030 0.021 0.028
0.000 0.000 0.000 0.029 0.028
0.000 0.030 0.030 0.020 0.026
0.000 0.060 0.061 0.021 0.047
0.000 0.080 0.081 0.021 0.068
+0.020 0.080 0.081 0.021 0.065

Table 6.1: Cost of transport for the global and local controllers andtbé system as
awhole.
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of applying the neural controller seems to be relativelystant. Note that the optimal
solution for planar walking is to use an offset action witk= 0.03, which results in

a smaller step size. Compared with a state of the art reak ngalking on a plane

.Q_Qlllns_and_BujﬂaL_Zoﬂ)S) with no local controller, our medhuses approximately
half the energy, probably due to the lower dimensionality Etk of damping in our
system. Such results is not enough to prove our method is emesgy efficient one,
but it shows the new method belongs to the energy efficiesscla

6.5.3 Biological justification

In order to provide a biological justification, we performadsimple experiment by
capturing the walking motion of a single person using a consirakgrade motion cap-
ture system The participant walked on a calibrated mechhtieadmill under two
separate environmental conditions in three incrementsvaiied the speed using the
treadmill settings and the elevation by lifting one side o treadmill. The motion
of the walker was captured for a minute under each condifitve. resulting data was
cleaned from noise and smoothed before analysis. In Figufé, &e show the results
of plotting the angle against angle gradient in the sagitaig between a vertical di-
rection and the line from the hip to the ankle of the partinipavhich approximately
corresponds to the variables ¢», g3 in our dynamic system. Minimal data processing
was necessary to tease out this result a standard 1-D filtentove small local peaks,
and the entire path was divided into motion segments andedidpy finding peaks in
the cycle corresponding to the foot striking the ground.

In Figure[6.1(b,d), The motion flows vary and cover an areaherphase plot. which
can be seen as states moves around the limit cycles becaasei@nmental noise.
For a different setup, the area shift its postion and shagbktsbut maintain its basic
shape. This phenomenon agrees with idea of global invanaviolT .

For biological system, the precise limit cycle is unattaiea The mean cycle of the
walking motion flows are treated as an approximation limiley Figurd 6.1L(c,e) are
the mean cycles of Figute .1(b,d).

Changes in treadmill speed clearly caused the participanttease the energy in the
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Figure 6.47: On the phase plot, we can demonstrate how a real human adjsts
changes in the environment. The red, green and blue linegsept data captured
under different elevation or speed conditiongis the angle in radians between an
orthogonal to the horizon and the line from the hip to the arddlone leg.

dynamic system, analogous to the energy scaling action. nWie elevation of the
treadmill was altered, the participant adapted by botheiasing the step size transfor-
mation (presumably in order to maintain the same speed)@aated to the change in
gradient by applying an offset operator.

There are distinct differences between a fully actuatetbgioal human system and
the passive walking model. A human will adopt an ankle stpat® minimize the

strike momentum and therefore reduce energy loss, whicla@spwhy there is no
significant spike in the real limit cycle when the foot stskidne ground. In spite of
this, the experiment result support the idea of invariadttaansformation oMolIT .

6.6 Animation Practise

Based on the realistic walking patterns generated by dymamiulation, animators
can further tweak various parameters for the animationgaep This process can be
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done in a systematic manner.

The first step is to adjust the walking periold. This involgpgcifying the height and
mass of the character. Thgparameters of th€PG can be adjusted automatically by
the computer, becauses propotional to;:.

For the second step, animator needs to spécifgnd h, of CPG to determine the
coupling intensity of theCPG and the walker. Smaller values mean weak coupling,
resultin unstable but efficient looking gait; while biggatwes means strong coupling,
the motion will be more stable but energy consumming.

For the third step, animators can specify the speed, ste@sit direction by applying
a single or comibnations of group actions.

For the last step, animator may add style variation for tregatter by modifying the
mass ratiom,,,,mass distribution ratia; and etc.

Animation will be an iterative process. However, becausdaiv computation cost of
the method, computer can provide motion feedback in realtim
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Chapter 7

MOTION PRIMITIVE
TRANSITION:WALK AND STANCE

This chapter focuses on synthesizing transitional motioAsother motion primi-
tive:the stance is developed in Sectlon| 7.1. The trangtiamtions from walking
to stance and from stance to walking are discussed in S€&ion

7.1 The Stance Primitives

For passive walkers, if the walking velocity is not big enbuajter a heel strike, the
passive walker will stop walking and rest at the double supposture. This stable
posture is shown in Figure_7.1.

On phase plot, such motions have the topology of a fixed patracior, which is
another motion primitive: the stance.

7.1.1 Simplified Dynamics

When people stand, the two legs are almost straight. Instetdee four linked rigid
body model, the stance for this case can be simplified as d pw@as supported by
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Figure 7.1: The Stance Motion Primitives
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two straight IegsLSLephﬂns_and_AlkeHgn_(ioog) proposeiktight of waist is almost

constant and can be neglected. Therefore, the simplifiedrdigmodel has only one
degree of freedom, i,e. the horizontal displacement. Githenhorizontal displace-
ment, configurations of shank and thigh can be worked outiiirowerse kinematic
methods.

The stance dynamic is not continuous and the phase spacesdadivided into three
regions. The postures of different regions are shown inrei@L2.

/ \ / \

Figure 7.2: discontinuous dynamics of stance

e Double Support When the off center displacement is small, the body is sup-
ported by two legs. the motion is governed by the gravity.
. g

i=7a—v)+ 7 a—u)

whereq is the off center displacement,is the height of the mass point, apds
gravity.

Torques are generated by the two legs to maintain stabihtuitively, the left
torque is increased when the centre moves left, and the satneei with the
right torque. We suppose the relationship between torqueésentre position is
linear. Dynamic Equatioln 7.1 incorporates the controkteta

T, + TR

mL

j= %wr(q — ) + %wz(q —y) +

(7.1)
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wherew,; andw, are the weight of the two torques. We havet+ w, = 1.

¢ Single Leg SupportFor a big horizontal displacement, people stand on a single

leg. The passive dynamic is

éj:gq
L

Equatiori Z.R incorporates the torque generated by legs.

q= %q + yLT’RTL,R (7.2)
e Fall and Walk For even bigger displacement, the stance posture can not be
maintained. The phase space region where human can mdheatand posture
is called “support region”. The width of the “support regiatepends on the
height and the step size. When moving out of the “supporbrégithe stance
posture can’t be maintained, and a human will either wallabr f

Without damping effects, the original system is similar tamass spring system. It
will vibrate endlessly, and the flow is a cycle, as shown inuFe§Z.3. If the speed is
high, then the state will move out of the basin of attractibfaintaining stance is to
maintain the horizontal displacement within the suppaytae.

2c

15F

s
05} X\
ok . i )
-0.5F
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-0.5 -0.4 -0.3 -0.2 -0.1 0 01 0.2 03 0.4 0.5

Figure 7.3: uncontrolled motion

The support region is propotional to the distance betweerstipporting legs. Figure
[7.4 shows the phase plot and supporting regions with diffestep size.
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Figure 7.4: Topological Conjugacy

7.2 Motor Invariant Control

7.2.1 Entrainment

By coupling the dynamic system with the neural oscillatbg position of the centre
is fed into the neural oscillator and the output of the neasaillator drives the torque
generated by the legs.

wi = hi(q);uo =T R

Entrainment happens and a limit cycle is formed. Howevacesentrainment will no
modify the boundary of the support region, entrainment degsoost the stability.
Because it is impossible for mechanical system to convergee limit circle within
1/4 period, and the neural oscillator will not modify the bdary.

7.2.2 Local Invariant Control

All the three group actions can be applied. However, only gnamup actions among
the three are useful and affect the stability.
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Time Scaling

Time scaling action will stretch the phase plot in the velpdirection, as shown in
Figure[Z.5. It will enlarge the basin of attraction to inaiutigh speed state.

0.8

0.6

04r

0.2

ok

-0.2

L L L L L L L
0.2 -0.15 -0.1 -0.05 0 0.05 0.1 0.15 0.2

Figure 7.5: Time Scaling

Energy Control

Energy scaling action will modify the size of the limit cyclghich modifies the wob-
bling amplitude. Figuré 716 shows the energy action effecth@ limit cycle. When
energy action is applied, the limit cycle shrinks.

— L L L L L L L L L
-0.05 -0.04 -0.03 -0.02 -0.01 0 0.01 0.02 0.03 0.04 0.05

Figure 7.6: Energy Scaling
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Fast Convergence Control

By applying speed and energy scaling actions sequentiedlgbling can converge to
the limit cycle and stop quickly. In Figuré _T.7, the speedaacts first applied to
include the high speed state for 1/4 period. When the statéhrie pos that the speed
is zero, the energy scaling is applied for néxt period to shrink the limit cycle size.
For the nextl /4 period, the speed action is applied, and so on.

0.8

0.6

0.4

0.2

ok

Figure 7.7: Fast Converge

7.2.3 Stability
Motions of stance are put together for comparison. Withoytantrol, the character
fails as shown in Figurle7.8.

In Figure[7.9, the speed action is applied, and the charaartains its stance motion,
but wobbles endlessly.

In Figure[7.10, both speed action and energy action are eahpdind the character
maintains the stance and vibrates with a shrinking ampitud
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Figure 7.8: Balance Motion without Neural Control

7.3 Walking and Stance Transition

Both limit cycles of walking and stance are shown in Figur€l7. The phase plot
here shows the supporting leg, and the swing leg is indidatedadow red. Motion
transition means make the state transform from one limiiecyto another.

7.3.1 Walk to Stance

Walk to stance transition happens at the heel strike phagouy control effort, the
bipedal machine will continue to walk. As shown in FiglreTf.& we switch on the
stance motion primitive controller, the current state ¥eill into the basin of attraction
of stance with a proper group transform action. Two legs stirt to vibrate with
smaller amplitude, this is the walk to stance transition.

The walking step length is closely related the supportilggomefor stancing. A bigger
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Figure 7.9: Wobbling Stance
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Figure 7.10: Stable Stance

Walk limit cycle

Walk to balance

Figure 7.11: Walk to Stance Transition
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stepsize will result in a bigger supporting region for stagcWhile a smaller stepsize
will result a narrow supporting region for stancing. Witlcdd invariant controller,
stance can be maintained no matter how big the stepsize vgeWw, a smaller stepzie
will require a bigger time scalling or more control effort.

Knee Bending Scheme

During walk to stance transition, the two legs are straighémthe heel strikes. At this
time, the support region is very small. Any push of the figitrejill move out of the
two support region. To enlarge the basin of attraction, théers have to bend legs
and lower the height. There are many ways for bending the legs

e One Leg Bendingwalker can bend one leg while keeping the other leg straight.
e Double Leg Bendingwalker can make the two leg bend.

Since the knees is not necessary straight when a human wialkeiry difficult to tell
which one is more realistic. These two schemes are extresgs ciotion of Double
Leg Bending is shown in Figute 7J12.

Figure 7.12: Stop Walking with Two Legs Bend
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7.3.2 Stance to Walk

When the stance to walk transition happens, the currerg staduld be close to the
walking limit cycle. Due to this reason, stance to walk hapgpwhen the legs are
moving forward at maxim speed and the position of the hip hexmiddle. At this
time, we switch on the walker controller, and the charadstswalking. Figuré7.13
shows the process on phase plot.

Balance
to walk

2 Balance basin
of attraction

,| Balance
limit cycle

Walk to balance

_ L L L L . L )
-08 -06 -n4 -n2 0 02 na 06

Figure 7.13: The Phase Plot for Stance to Walk

From stance to walk, the height has to be increased. Only dnense exists for
straightening the knees. The scheme which we use is to keefraht leg straight
and make the hind leg from bend to straight.

Another non-trivial problem is is that when switching startio walk, it is impossible
to put both legs on the limit cycle. The supporting leg haslggeen the priority, for
the supporting leg is more important for maintaining siapil

7.3.3 Smooth Transition by Speed Action

When transiting from walk to stance, the basin of attracthurst include the heel strike
state. However, the original basin of attraction of stanseschot. A speed action is
needed to enlarge the basin of attraction. As an alternatigecan lower the walker
speed. In this way, walking to stance may become easier.
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For the transition from stance to walk, if little effort iserxed, the initial position will
be far from the walking limit cycle. To maintain the walkinigbility, speed actions are
applied to decrease the walking speed. To make both limiesyaonnected each other,
the speed action of stance and walking mus have a constamtTrais phenomenon is
common for our daily experienc®1olT gives it a mathematical meaning.
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Chapter 8

TOWARDS HIGH DIMENSION

8.1 Introduction

In the previous chapters, motions are dynamically syntieelsior characters with sim-
plified dynamics. A question arises whether the motor imrdrtheoryf/olT) is ap-
plicable to characters with higher degrees of freedom. Fdkiwg and stance exam-
ples, high degree systems will incorporate the motions®tdinso and arms. Also for
snakes and fishes, synthesising motion for a flexible spineats® be challenging.
MolT provides a different perspective, and some of the challenga be solved in a
very different manner.

RedundanDOF is the key challenge in motion synthesis. From the theakger-
spective ofMolT , redundanDOFs do not increase the computational burden expo-
nentially. MoIT explores the natural dynamics of the body and the reduridl@ftcan
move passively. The computation cost of one neural osoill@mains constant when
coupling with different mechanical models. As long as thekglic equations of a
dynamics is given, symbolic expression for each group aaten be derived. Thus
the computation of controlled symmetry action is triviatlancrease linearly with the
number ofDOFs.

However, the symmetrical controller requires symbolicresgion of the dynamic sys-
tems. With high dimensional systems, obtaining the synalet{pression is not trivial
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and finding the basin of attractions is even more challengfings chapter focuses on
techniques that avoid developing hiBiOF symbolic equations. Different strategies
are developed to utilized low dimensional dynamic equattorsimulate high dynamic
systems.

¢ Negligible DOFsFor characters with higpOFs, someéDOFs can be simply ne-
glected.MolIT is based on two concepts, the qualitative property and symme
actions.DOFs can be neglected for two reasons: first for s@@s in some
motion primitives, their motion is minor and has little effe@n the system’s dy-
namic property. For sucBOFs, controller systems can be designed according
to the simple model. The high dimensional model can be usesdlriculation,
but will not affect the burden of control calculation.

Second for some oth@OFs, their effects are equivalent to some group trans-
formation. If a group action controller is developed, thizets of suchDOFs
can also be neglected.

e Mechanical Coupling In certain circumstances, the divide and conquer strat-
egy works. Instead of simulating and developing contrslfer a complex me-
chanical system, the complex system is divided into manypmrants with low
DOFs, and controllers are developed for each of them.

e Time Offset In some cases, the motions of SoDOFs are similar or mimic
each other, the dynamics can be simplified as controllinggaus DOF, and
synthesizing otheDOFs by mimicking it.

8.2 Negligible DOFs and Reduction

8.2.1 Negligible DOF

Although biological mechanical structures have high degi& freedom, manpOFs
will not affect the topology or qualitative properties. Fbe walking example, Raibert
et al. (1986) pointed out that walking is the same as a ball rolliogyd a slope while
running is the same as a ball bouncing down a slope. In ouarelsea control strategy
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is developed based on the compass gait model, as shown ireBgl. The degree
of knees in Figur€ 612 and foot in Figure18.2 will have littiéeet on the qualitative
properties.

Figure 8.1: Compass Gait

Although the compass gait and arc foot model are differembfour walker with knees,
the three models are all capable of passive walking and simoivdycles of similar
shapes, as shown in Figurel8.3 and Figuré 8.4.

From geometry perspective, the low dimensional phase gabdan be seen as the
skeleton of the a high dimension phase portrait, the intbdn of newDOFs will
provide space for possible new attractors or motion pruagi However, if the motion
range of the extr®OF is very limited, then the extra space will be very small and
cover only a small area. Furthermore by applying contrargfbasins of attraction of
the original attractors are enlarged and may use up any n@gesp

Motions of soméDOFs are relatively small, or have little effect on the topologgom
an alternative perspective, such motions are treated asripations, which can be

processed by the perturbation or averaging technihu_e;ﬁ[lemm,mb). As

an example, the equation of the walker with knee is very difiefrom the compass
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Figure 8.2: Arc Foot Walker

Figure 8.3: the limit cycle of compass gait
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Figure 8.4: the Limit Cycle of arc foot

gait model. However, from a different perspective, thetrneddy small motion of the
knee can be seen as perturbations to the leg length and tlsgpositon parameters.

Feet are added to the original walker following this prineip For normal walking,
the motion range of the ankle is very small. According to egree, the feet will
boost the stability. At current, we did not taken the complst shape and collision
dynamics into account. However, the bigger contact regidhprolong the double
supporting time, which allows the walker adjust the stapfior the next step.

For simulation, for each step, after heel collsion, we gettbw statéy,, ¢2, g3, G1, G2, G3)-
Feet actuations will push the current state towards thée tyale.

The effect of ankle actuation is modelled by the simplifieteli model, as shown in
Equatiorf 8.1.
¢" = (1 —7r)q +rg™" (8.1)

where theqg is the state after the heel strik, is the state after foot actuatiom. is
the linear ratio.j?¢*"" is the desired state, or the state on the limit cycle. If faiom
pushes the walker towards the limit cycle perfectly, thea 1,

It is easy to prove that with foot actation

qf o qdesir — (1 o T)((] o q'desire)
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This can been as the distance from the current state to titecliole is scaled down by
1 — r, or can be also intepreted as the basin of attraction isgaddy a scale factor
of ;1 at the heel strike time. Both explanation shows the walkingestable.

Adding feet will change the shape of the limit cycle slightlige gait is shown in
Figure[8.5.

Figure 8.5: Walking with Feet

8.2.2 Symmetry Reduction

For a dynamic system of high dimension, in some casesP®Es can be divided
in a specific manner: a lower dimensional dynamic system hwhaptures the key
properties of motion, and some exP®Fs that place the lower dimensional dynamics
in higher dimensional spaJ:eLMﬁ.Lsdena.lJ, [19_9_(1)). The extrdOFs have the same
effect as group actions, and the dynamics can be controligdatower dimensional
model.

This idea helps to extend the 2D walker into 3 dimensions.h&athan developing
the full 3D dynamics, a 3D walker is developed based on the 2lkev. Motions in
the coronal plane and transverse plane transform sagiiad glynamics. The motion
in the coronal plane and transverse plane can be simplifiedjidsbody simulation,
which places the 2D walker at a correct position in 3D space.
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Lateral Motions

An illustrative example shows the sway motions in the corptane.

Figure 8.6: Sideway

As shown in Figuré 816, when the passive 2D walker walks onraitewith a sway
anglea. The gravity force on the sagittal plane is decreased.

g’ = cos(a)g

whereg’ is the projected gravity force on the sagittal plane. By §tuigg the pro-
jected gravity in the dynamic equations, we have

M(a)d+ C(q,q)q+ N'(q) =0 (8.2)

The external forcéV becomesV’ = cos(a) N

This has the same effect as applying speed action of the pagasmwheres? — 1 =
cos(a). The effects of sway motion on the 2D dynamics can be simailayeadjusting
the speed action parametersFor a walker with a speed action controller, this effect
can be totally compensated.
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The sway motion on the coronal plane is not based on passnenugs and unstable

in nature m- 9) Great effort is executed at the anktewaaist for maintaining
posture. Such motions are closely related to the charaatastion purpose and not
mainly governed by natural dynamics, thus are left to thenators. For procedural
method, we can use RD based method to make the walker sway about the centre
position.

The passive walker is put to walking on the plane. When walkin the plane, sway
motion will result in an early heel collision, which may tted as a noise to the 2D
passive walker.

Figure[8.Y show the lateral way motion and walking motione Tateral sway angle
synchronizes with walker motion. Figure B.8 the lateraliomeffects on the walking
limit cycle. The walking limit cycle split in two and seemsgast that the period of
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Figure 8.7: Sway Motion and Leg Motion

Turning Motion

The rotation on the transverse plane has no effect on the 2Brdiz walking model.
If the ground is rotating around the transverse plane attaohspeed, the dynamics
on the sagittal plane will remain the same. In three dimarssithe difference is that
centrifugal force is generated perpendicular to the sagithne, which is compensated
by the friction of the foot.
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Figure 8.8: Lateral Sway Motion Effects on Walking Limit Cycle

For the walker, a turning means rotating the sagittal pléme, can be achieved by
actuating the hip joint of the supporting leg, as shown iruFegB8.9.

Figure 8.9: Turn Actuation

The same as for the lateral motion, turning is not achieveakipjoring natural dynam-
ics, but determined by the animator’'s purpose. The aningdt@rmines the turning
angle and speed. As a simplification, during the turningdyreamic equations of 2D
walker remain the same. Turning gaits are showh in ]8.10.
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Figure 8.10: Walk And Turn
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8.3 Mechanical Coupling

Many highDOFs systems have a tree topology, which is composed of mangean
For such systems, the divide-and-conquer strategy izedilio avoid the difficulty of
developing a complex dynamic equation of high dimensions.

The mechanical system can be seen as many different simpiparents connected
together. Different components can be simulated indepehgd@nd the interactions
between different parts form mechanical coupling.

If a mechanical system is in the following form
x = F(x)

the state ik = [¢1, g2, ¢1, ¢2] we can reform the dynamic equation in a different manner

X = [X1,X2] wherex; = [fha (il] Xg = [Q27 (12]

and the original system can be seen as two systems coupleithéog

x; = Fi(x1) + C1(x1,X2)
Xy = Fy(x3) + Co(x1, X2),

if C12 < Fi, then the dynamic will be dominated &y » andC » can be treated as
perturbations. Controllers are designed according to

Mechanical Structure with Branches

In fact any mechanical system can be reformulated as anmmiat network, a proper
division should separate the system at the places wheretipdieg is weak. The weak
coupling joints can be identified through the mechanicaicstire. Usually, the joints
where the system branches are a good choice.

If the mechanical system has the structure shown in Figdr 8.

139



q

% Body 5

Body 4

Body 1 D

pot?

Figure 8.11: Mechanical Structure with Branches

140



The 5DOFs dynamic system is in the following form

Q1 ¢ Ni(q1) u1
2 ¢ Na(g2) Uz
Mg |+C| g |+ | Ns(gz) | = | us
da a Nu(qa) Uy

| 5 | G5 | | Ns(gs) | G

wheregq; » 3 45 are the configuration coordinates®links, and the mass matrix is

myp My M1z Mig Mas
M2 Moz Moz TMM24 Mas
M = mi3 Moz 133 M34 M35

Myg Mg MM3g4 Myqg M4y

mis Maos M35 Mas Mgy

and
[0 CiaGo  Ci3ds  cuds  Cisds |
—C12q1 0 C23G3  Co4Gs  Ca5(s
C=| —cisqi —cazdo 0 C34Gs €350
—C14Gq1  —Co4(2  —C34(3 0 Ca55
| —Ci5G1 —Ca5G2 —C35G43 —C45q4 O

For the branch structure in Figure 8.11, the coefficient afammected links will be
zero, thus

myp My MMz Mig Mas
My Moz 1MM23 0 0
M= miz mos mss 0 0

myy 0O 0 mys mMus

mis 0 0 Mys  Mss
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and

0 C12¢2 €133 C14Gs  C15Q5

—C12G1 0 2343 0 0

C=1| —ci3q1 —cn¢@ O 0 0
—C1G1 0 0 0 4505

| —ci5q1 0 0  —csq 0

This matrix of dynamic equation can be grouped in the follmyynanner: where
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The coupling network of two dynamic equations is
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Mss | Go | +Cs3 | Go |+ | No(qe) | = | w2 |— 0 — 0
43 3 N3(g3) U3 0 0
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qa
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v =] )

From a mechanical perspective, this is equivalent to sitimg&vo branches of the me-
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chanical structure independently and coupling is treasqueaturbation effects. Figure
[B.12 shows how the mechanical structure is decoupled.

Body 4

-
o1
1
1
1
1
1

o=
¢

O
2

Body Y

_——
-
_——
e

e

Figure 8.12: mechanical coupling

8.3.1 Torso And Arm

Using this mechanical coupling idea, the arm and torso metare incorporated in
our simulation. Three variables are added for the torsoatiggeq;,,., the massn;,,

and the distance from the hip is,. With the upper body, the equation for walking
becomes

Myor ltor LCOS(CH — Gtor )(jtor Myor ltorL Sin(q1 — Gtor )q1520r
M{i+C¢+N = u—

(8.3)
From the Equation 813, if the torso is kept still, lower bodglking will not be effected.

In real life walking, the upper body is usually kept straigipivard, so the coupling
input from the upper body is very small.
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The dynamics of the torso can be modelled as an inverted handeerturbed by the
lower body dynamics, as follows.

mtO?“thOréjtor = mtorltor(QSin(Qtor) - LCOS(CH - Qtor)éjl - LSin(‘h - Qtor)(ﬁ)) (84)

by analysing the Equatidn 8.4, torso motion is unstable faneaso control effort must
be exerted to maintain its posture. Such a control taskveltriPD controllers will
work for maintaining stability, but the resulting swayin@ynbe not natural looking.

The control method adopted by this research is based on thteotled Lagrange
method. Although an inverted pendulum is not stable, a pendis stable. Through
shaping the potential energy by control effort, we turn theesited pendulum into a
pendulum. The control input for the torso is

u = —kmtorltor (gSiTL(qwr))

wherek is a constant. Wheh > 1, it will turn the upper body dynamic from inverted
pendulum to a pendulum. A biggémwill make the sway motion smaller, and keep the
lower body motion untouched. A smallérwill make the upper body motion swing
more and generate more perturbations to the lower body.t&blesvalking, the upper
body motion is restricted to a small value.

When the stable pendulum is coupled with the walking motsiaple entrainment
happens, so the torso and walking motion coordinate niuFagure [8.18 shows the
entrainment of the torso motion and walking, where the bagigysand walking are
synchronized. To keep the stability, we gétto make the torso vibrate with a small
amplitute. Figuré 8.14 shows the effects of torso movemanwvalking. In our test,
walking motion never converge to the limit cycle, but wobateund it.

Note that in real-life, the torso is closely related to thetigm purpose and not gov-
erned by natural dynamic properties. For animation apjinait is unnecessary to
control the upper body dynamically. We can use procedurdhmardlK” methods to
generate primary motion of the upper body; walking dynarparsurbations are added
for secondary motions. The motion of arms can be incorpdiaydollowing the same
principle, it is just another level of complexity.
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Figure 8.13: The Mechanical Entrainment of Leg And Torso
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Figure 8.14: The Torso Motion Effects on Walking

145



8.4 Time Shift

For reptiles and fish, the main challenge rests in synthesihe flexible spine which
is composed of manpOFs. SuchDOFs are similar and equally important, it is not
appropriate to reduce ayOF through symmetry or mechanical coupling.

For such mechanical structures, an ad-hoc method is prdp&sech controller con-
trols just one joint. The hypothesis states that since timgare similar, their dynam-
ics and motion should also be similar. Thus the same contirateg)y is applied for
every joint. Motions of each joints are differentiated bg ffime Shift group action.

Fish Swimming

These ideas are applied to synthesising the fish swimmingpmdt this application,
the group action is the Time Shift. The fish is made u® dinks, and eactDOF

is controlled by a neural oscillator. TleeCPG have the same parameters, but have
different initial positions. Thus they have the same linyitle, but different phases, as
shown in Figuré 8.15

Figure 8.15: CPG for Fish
A simplified dynamic model is used. Each joint is modelled ap@ng system, as in

Equatiori8.b
q=Kq (8.5)
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whereq is the joint angle.

Figure[8.1V shows the gait of a fish swimming in line.

Figure 8.16: Swimming Motion by our method

8.4.1 Swimming Motion Tweaking

The swimming motion is divided into two space, the world sp@ovhich the position
and orientation are specified, the local space in which tapesbf the fish is specified.
A simple fluid dynamic model is adopted for the relationshepaAeen local space and
world space.

In the world space, the swimming trajectory is describedcimeatureX” and length
L. The trajectory curvaturés is proportional to the sum of the joint anglds =
¢, ¢; The swimming velocity is proportional to the velocity of fuént oscillation

v = C(Z?:1 QZQ)

When a group action is chosen, the action is applied to alDIb€s. There are many
group actions available for tweaking the fish swimming moti®ffset Action will
result in the turning, Speed Action will make the fish swimtéas Energy Action
will modify the swimming intensity. Figure_8.17 show the swning in line gait.
Figure[8.18 shows the phase plotbtegments, as time goes, the phase plot of the
4 DOFalmost overlap. Figurle 8.19 shows the state evolution o, twhere all the
state oscilate with the same amplitute but differentiata liyne offset.

Figure[8.20 show the turning gait, where an offset actiorpidiad. This will make
the body bend and turn the swimming direction. FigePeshows the phase plot when
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Figure 8.18: Phase Plot oft segments
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Figure 8.19: The State of segment

all the DOFare applied offset action. Figure 8122 show the state oDi®&after the
offset action.

//

Figure 8.20: Fish Swim Turn
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Figure 8.22: Fish Swim
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Chapter 9

CONCLUSION AND FURTHER
WORK

9.1 Conclusion

Physics based methods for synthesizing character animiagiee attracted much re-
search interest in recent years. However, efficient metfardsatural looking motion
are still out of reach. This is mainly because of the comptaxcsure of body dynam-
ics. For physics based methods, the planning and inversanaigrproblems are very
challenging. Optimization or Data Driven based methodpeasposed, but such meth-
ods often require prohibitive computational time or extemsnotion data that easily
runs out of memory.

Taking a different perspective, the underlying questiomotor synthesis research is
how animals move in a complex and variable environment. fOp& is more valuable
and interesting, and, in fact, attracts even more reseaybra the computer graphics
community. Biological and robotic researcher investidatetor control from a very
different perspective, and discovered some more progasrech may be more crucial
for understanding animal motions than the visual propethat are the main concern
of graphic researchers. They have identified the limitedaleactivity, stability and
energy efficiency of motor control.

The current idea from biological science and robotic engyiimg experience rejects the
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popular ideas of graphic researchers, because the sensmgutation and actuation
systems of real animals are not suitable for optimizatiotiedabase management. An-
imals in nature must adopt a very different strategy for mgviThe inspiration from
biology and robotic research is an explanation of the corityief body dynamic. The
complexity of body dynamics is not to challenge the neuratia system, on the con-
trary, the complexity reflects the sophistication of natukesophisticate mechanical
system may ease the control difficulties of many daily motasks. The new idea is
that in fact most of the motion problems have already beeveddby nature. Evolu-
tion has equipped animals with very handy mechanical apysgrso that many motion
tasks can be accomplished without any effort. To meet aBpearpose, animals only
need to modify basic motion behaviours in a clever way.

These ideas inspired this research to develop animatiohadgtconsidering of the
biological facts. The belief is that if our animation metsdollow the biological
principle, potentially our characters in the virtual wowdl move and react in a more
natural manner. Such a goal has been partly achieved iredearch. In addition, more
valuable results arise from this process. To develop sitimmagrograms, intuitive
biological ideas are tested for their computational efficieand logical soundness. As
a consequence, a new mathematical interpretation and nhgmytms are proposed
in this research. These new ideas are summarized as the Madoiant Theory. The
new theory is more detailed and accurate compared withmubielogical ideas, and
is applicable to controlling real robots. If it can be prowgdurther biological research
and experiment, this theory may have significant meaning.

Motor Invariant Theory is composed of several interconingadeas. The theory uni-
fies these ideas in a very different perspective of dynamidse traditional force -
motion perspective is not insightful for understandingunait dynamics, because it
provides little information about the stability and enegdficiency of motion.

Motor Invariant Theory adopts the geometrical perspectifé@e concept of phase
space is introduced and the dynamic system is transformediigeometrical struc-
ture: the phase portrait. After this transformation, metdynamics can be studied
with many geometrical tools. On a phase plot, the dynamitesyss divided into dif-

ferent regions. There is an attractor in each region whitlaas all the states in the
surrounding states toward it. Motor Invariant Theory pregmthat animal motion uti-
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lizes these attractors for motor control. Because attragimmise stability and energy
efficiency, they will greatly reduce control difficulties.

This idea has support from biological research. The ideargarized motions in
blocks is proposed as the motion primitive hypothesis. Areddea of utilizing attrac-
tors has been proposed by the equilibrium point hypoth&lish ideas may be new
for graphic researchers, but the principles are long astada in biological research.

The novelty of Motor Invariant Theory is the idea of the adaipih mechanism. Given
that the attractors are the starting point for motion plagnthe following question is
how the neural control system tweaks the dynamics to aclsiggeific motions. Dur-
ing this process, the challenge is that stability must bentaaied, energy cost must
be minimized and the computation should not last long. Ogation based methods
are not suitable. Also the tracking controllers are not appate for motor control,
because motions vary greatly. The idea of local stabilityticd that constrains the
motion within a small error range from the reference will makotion lack varia-
tion. Motor Invariant Theory proposes that the stabilitggerty should be controlled
qualitatively. Large deviations from the reference shdaddallowed while stability is
controlled. In the geometrical perspective, this meanssttape and position of the
attractor does not matter, the controller only needs to tamirthe attractor and the
current state within the basin of attraction. This idea iglgiled by the mathematical
language of topology. Maintaining the attractor withoutsidering the shape and po-
sition means the topology remained the same. In motor iamatheory, changing the
shape and position of attractors is not only allowed buizetil as a powerful tool. The
idea of changing the shape and position of the attractoremigtgenerates adaptive
motions, but also promises stability and energy efficiemzy @mputation efficiency.

Two methods have been developed following this principlee Tirst idea is entrain-
ment. This idea applies to almost all periodic systems. Rthaenment systems, the
periodic behaviour will be enhanced and perturbationsejeeted. From the geomet-
rical perspective, the entrainment will maintain the tagy of limit cycle and enlarge
the basin of attraction. In addition, the idea of entraintmerwell supported by bi-
ological research. Also the method is computationally ieffit  Another method is
based on symmetry and the preserving law of mechanicalmagstdlatural dynamic
systems tend to preserve many properties during motioa,ditergy or momentum.
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Transforming motions in a way that preserves such invapaoperties will promise
energy efficiency. Such transformation actions form arnoing@ortant mathematical
structure, the Lie group.

It is easy to prove that a Lie group transformation will naealthe topology, thus
the stability of transformed motions is guaranteed. Th®vigles animators with a
direct method for modifying the motion without concerns aibstability. Also this
method is easy to use. Because Lie group transformationeaatameterized with a
few parameters. Animators can modify motions by specifyiary few parameters of
Lie group, instead of eacBOF of the character. As examples, three Lie groups are
developed, the offset group which changes the locatoripasitwhich changes the
direction of motion; the time scaling group which modifies gpeed of motion, and
also the energy scaling group which modifies the energy ofanoWith such tools,
given a motion primitive, animators are allowed to modifg ghosition, speed and
amplitude of motion, without worrying about the stabili®s for the computation cost,
this research found that for rigid body systems, controutrngf each group element
has a close form formula, and the computational cost isalrbe compute. The idea
of Lie Group is also supported by biological research, whHalmd that the motion
trajectory has many transformation invariant properties.

Because th€PG entrainment and Lie Group transformation are based on e to
logical invariant principles, these two controllers candoeenbined. Such operations
will change the shape and location of the locator, resuitingany types of variations

in motion. If the basin of attraction is modified to capture turrent state, the current
motion primitive can be maintained. However, there are aftgwortant applications

for changing the shape and position of the locator to avordeot state. As a result,
the motion will diverge, and finally converge to a differetiractor. The important

application is in motion transition. We can tweak the neminattractor to capture the
current state, which will generate stable transitionaliorot This shows how motor

invariant theory can be easily extended to explain morerahtoiotion phenomena.

Such methods have been applied to control various mechagstams and characters.
The bouncing ball example shows how the entrainment fornattaactive limit cycle
and how group action changes the shape. In this process timeibg height is main-
tained and can be stabilized against many perturbationsthén example is bipedal
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walking. Although bipedal walking seems difficult to coritrib can happen naturally
because a limit cycle exists. With the entrainment methoel periodic behaviour is
enhanced and the basin of attraction is enlarged. This nzé&sive walking more

stable. This qualitative control approach can generaferdiit gaits with different

body structures and environment conditions. When Lie geutns are applied, the
passive walker is capable of walking on different terraiofésgt action), at different

speeds (time scaling) or with different step sizes (eneogyirsy). For the balancing
motion primitive, entrainment will turn the dynamic systefiractive and group oper-
ators will adjust the size of basin of attraction and the timaeded to stabilize. Also the
transitional motion of walking and balance can be syntleekizith an energy efficient
method requiring little control effort.

Such simulation results are compared with real life data theg comply with the
observed facts.

This research provides an answer to the way animals achoerputational efficiency,
energy efficiency and stability against various pertudoeti For animation researchers,
motor invariant theory proposes a method that generatgaiae@nd natural looking
motions in a computationally efficient and reliable way.

9.2 Unsolved Question

But as a new theory, there are still many unanswered quastion

Finding the attractors in a high dimension dynamic systenotsan easy task. At the
end of the research, several methods are proposed to sirtipdifdynamic space to
make the task of finding locators easier. We propose negtedegrees of freedom in
minor motions; dynamic space can be reduced according ®ythenetrical properties
or exploring the similarity and time shift properties in ngamechanical structures.
Such methods help to add more detail to the synthesized mdti@ the rotation,

body and arm swing motions. Also the method can be extendeddoe applications
like crowd and swimming simulation. But this question is answered completely in
this research.
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Nature seems to outsmart us. Even though we have learnedrartohature, we still
have much to learn.

For computer animation, current method$4dIT are capable of generating physically
realistic motion adaptation in real-time, however, at entrstage, this method have
several drawbacks preventing its production application.

The method is fully automatics, but requries symbolic défdial equations. For an-
imators, adjust animation by tweaking the aparameters afferehtial equation is
not an intuitive process. Also at current, number of motiampives is very limited.
However, the idea of Lie group transformation and topolalpponjugacy is generative
that can be applied to any differential system.

In theory, symbolic equations are not necessary. From tbenggecal perspective, as
long as the phase portrait can be obtained, this method capdied.

In the further work, more types of animation systems can lveldped based on dif-
ferent models of the dynamic system. Key frame and motiotucamlate maybe in-
coporate to genearate dynamic systems by machine leasthgdlogy. Also intutive
tools can be developed which allow the animator to sculpptiese portrait directly.

9.3 Further Work

Motor Invariant Theory is not an improvement on existi@lylS techniques, it is a

different paradigm. This thesis does not explore the fuplioation and potential of

this new theory. There is room for improvement, new techesqo be developed and
even new questions to be answered. This section lists $@waemtial topics that may

interest computer graphic or biological research commesit

9.3.1 Stable Templates of Motion Primitives

This research started with a unstable system, where s$yaisilenhanced by adding
control effort. Motor control is a complex task. In many casi is impossible to
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model all the control efforts that turn an unstable systeim @nstable one.

An alternative method is to start from a stable system andifyndd shape to match

the observation. Such methods may lose the details of mbtibprovide better sta-

bility and controllability. For games or film production,ishdea may be important,
animators require controllability and stability over plogd realism. For characters
performing acrobatics, the characters must not fall eveagh the dynamic system is
unstable in nature. Compared with traditional method Rk&ontroller, this method

will be more robust.

9.3.2 More Types Of Symmetry

More types of symmetry will generate more types of transtdrom that can be applied
to adapt motion. All the group actions adopted in this redeare linear transformation
group, which are easy to compute. But the types of transfiiomare very limited.
Exploring further types of symmetry may provide differeniaptation schemes and
may expand the theory to different motion primitives.

e Discrete Symmetry PropertiesBipedal walking motions is synthesized in this
research, an interesting idea is motions for four or mors leg synthesized
based on the bipedal walking strategy.

This can be done by exploring another type of symmetry: discsymmetry.
For dogs, the hind leg and font leg will move in synchronizator in antiphase.

e Non-linear Symmetry from Structural Parameter Tuning Non-linear sym-
metry preserving transformation will generate more typeadaptation. Since
non-linear transformation is more difficult to find, it remaiquestionable how
a biological system perceives it and applies it to motionptation. However
non-linear transformation is suitable for modelling thengformation resulting
from tweaking system parameters. From the idea of structtahility we know
the results of tweaking system parameters are equivalemaviimg a one-one
mapping transformation. Further research results fromlmaar transforma-
tion may potentially completely solve the motion re-tanggtroblem
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e Symmetry of Partial Differential System

All the methods developed are for ordinary differential &ipns, which is good
enough for rigid body dynamics. In fact the topological prdes and symmet-
rical properties also apply to partial differential eqoas. A famous example is
the Lorenz transformation group and Maxwell equation.

Symmetries of partial differential equations are impattan they may extend
the control strategy to control the motion of elastic boddesocomotions in
fluids. Such motions are more expensive and are rarely asilidsy current
CMS research.

To explore more types of symmetry, reformulating the fornegfiations may ease the
task. Current dynamic equations are based on a fixed cooediframe. It is helpful
to formulate the equations in a coordinate free manner draridcal frame.

9.3.3 Transform the Motion Capture Data

For computer animation, even though methods for simuldtig dimensional char-
acters are proposed. It may be impractical to synthesizgpdk of motions by proce-
dural methods. An alternative method is to use dynamic stiar to modify motion
capture data, which is well addressed in many researchestudthe computer graph-
iCS community.

Based on the idea of topological equivalence, motion prmmiof different persons
or motions of different situations should have the propeftipopological equivalence.
In state space, there should exist a one-one mapping tramstion function. Motion

Data can be converted into the state space and transformaukebgne mapping.

We can use the low dimensional model to find the one to one mgppgiationship,
which is applied to transform the high dimensional motioptoge data. Potentially,
this method may retain the motion details and involve littbenputational work.

158



9.3.4 Muscle Actuation

In the thesis, control effort is applied directly to ed2®F of the mechanical system.
In biological research, this process is not so direct. Thealesystem generates some
chemicals which affect the material properties of musaed,force is generated as an
indirect side effect.

The question of muscle actuation is untouched in this rebehut with further thought,
MolT could also provide an alternative idea of muscle actiorralisformation is the
reason for applying control effort, the actuation of musaan be calculated directly
from the transformation, without considering the forcegyated. From this perspec-
tive, muscle actuation can be easier than calculating tree$o The reason is trans-
formation can be achieved by two methods, either contraretir by changing the
system parameters.

For the simple mass spring system, offset can be implemdntethanging the rest
length parametedl. Speed action can be implemented by changing the stiffiess
and energy scaling can be achieved by adjusting the stifliesnd then restoring it.

For biological systems, the method of changing parametaysa better as it will help
motor control system get rid of the necessary feedback amghatation. In fact most
control effort in the thesis is potential energy shapingicltonly involves modifying
the potential energy. If muscles are modelled as springs, plotential energy shaping
can also be achieved through modifying spring parameters.

The complex muscle structure may provide a mechanism fotdimeg the deforma-
tion of the phase portrait and the attractor can be changedamy possible shape.
This idea may provide a conjecture for further biologicaaarch. For graphic re-
search, incorporating muscles in this manner will have fecebn motion synthesis
or computational work. The potential benefit is that the peaters of muscles can
affect the skin deformation.
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9.3.5 Perception based Dynamics

Motion perception is a high level capacity; it is based upan abject recognition
ability and our dynamic reasoning ability. Many physiolcgjiquestions in computer
graphics may ultimately rely on recognition and perceptasearch in neural science.
The introduction of a motion synthesis method also touchgk@question of dynamic
motion perception and encoding problems in intelligendee Dpological equivalence
and symmetry may also provide an understanding of the peocgproblem.

Based on the idea of topology equivalence, the neural systaymnot need to encode
the details of dynamic system, the neural system can forrmalogous dynamic sys-
tems in our brain which is analogous to the real dynamic systeSuch model will
lack the detailed accuracy, but get the qualitative progeright.

Based on the idea of symmetry, neural system may store sopegierce and the
symmetrical property of dynamics in the memory. Our brairy merify dynamics by
transforming our experience to match our observation.

We are still not sure which method is better, but for our hrawth methods are more
practical than forming a symbolic equation solving it nuroalty. Maybe a new dy-
namic simulator can be designed to test this hypothesis.

A dynamic simulator can be built upon the topology and symynatoperty. Anima-
tors can animate by specifying the attractor and the tramsfion being applied. If the
hypothesis is true, even though the method will generatsipalyy inaccurate results,
the audience will not notice it.
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Appdx A:Dynamic Equation for

Passive Walking

Knee Free Phase

During the knee free swing phase, the passive walker candyeasea triple inverted
pendulum. The dynamic system is a constrained rigid bodwaaya system.

It will takes the following form.
M(q)i+Cl¢,q)i+ N =7

whereM is mass-inetia matrixC' is the centrifugal matrix/V is the gravity force.
7 is the external control inputy is the configuration vectar = (g1, g2, q3)-

Each symbol is illustrate in Figute 6.2, is the supporting leg angle, is the angle
of the swinging thighgs is the angle of the swing shatft. is the leg lengthay, b1, as,
b, specify the position of gravity centre.

mpy 1S the mass of the hipn, is the mass of the shaft:, is the mass of the thigh.

In certain situations, the mass of legs are not symmetridals for mass of the thigh
and shaft, upperscript is used to specify whether the ldgeiswing onef1l) or the
supporting one{T).
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The mass matrix is definite and symmetrical:
Mll M12 M13

M(Q): My My Mos
Mg My Mss

The elements are as follows.

M, = mjta% + mft(ls + a2)2 + (mp +mi" + miw)L2

My = —(m;*by + m3"li) Leos(g2 — q1)

Mz = —m;“bicos(qs — q1)

o sw1.2 swi2
Mgz—mt b2—|—ms lt

Mz = m:¥libicos(qs — qa)

M33 = miwb%
The centrifugal matrix is anti-symmetrical.
0 Craga Chzgs

Clq,q) = | —Ciagu 0 U343
—Ci3¢t —Casge 0
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where the elements are as follows:

Cio = —(m;"by + m3¥ly) Lsin(q — go)

Ciz = —m." b Lsin(q1 — g3)

Coz = m3“l;bysin(qs — qa)

The N is the generalized force generated by gravity.

—(mgtar +mi*(ls + az) + (my + m3 +mi™) L)gsin(q)
N = (m*by + m¥ly)gsin(qz)

m3bygsin(gs)

whereg is the gravity coefficient.

Knee Strike

Knee Strike happens when the swing knee joint reaches the [irhe dynamic as-
sumption is that after the knee strike, the knee joinst walllbcked and the triple
inverted pendulum system of knee free dynamics will becordeuble inverted pen-
dulum system.

The following equations are established based on the ootatomentum preservation
property of the dynamic system.

. + G
aHEa
2
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J are the rotation inertia matrix/* is the rotation inertia after the collisiod.” is the
rotation inertia before the collision.

After the collision, the knee joinst is locked, the swinggthiand shank will rotate
together, thus we have

ds = 4o

Because during the collision, only rotation moment of twotoe ( the hip centre and
supporting toe centre) are preserved, two rotation monnenare preserved. Sb is

an3 by 2 matrix
J_:[Jﬁ T Jf:»,]
o oy Jag

andJ* is an2 by 2 matrix.

The elements are as follows:

I I
21 22

Jg = —(miwlt—l—mfwbg)Lcos(q1—qg)—miwblcos(ql—q3)+(mfw—i—miw—l—mh)Lz—l—mgtaf—i—mft(ls+a2)2

Jp = —(m*l, +m") Leos(qr — q2) + mEUbilycos(qa — q3) + mi by +ms* 12

Ji3 = —mibyLeos(qr — q3) + mibilicos(ga — qs) + mi " bybs

Jyy = — (Ml + mi¥by) Leos(qn — qa) — mi“by Leos(qr — q3)
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Jon = mEb1lycos(qo — q3) + mEUL2 + miUbs

Jog = mibilicos(qa — q3) + mj“’b?
Ji = T A mt (s + az)? + (my +m3Y +mY)L* + milad
Jh = T+ mE (1, + by)? 4+ miUbs

J2+1 = —(m*(by + l;) + m;*“bs) Leos(q1 — ¢2)

oy = m (by + 1,)* + mi" b3

Knee Locking Phase

For the knee locking swing phase, the walker can be seen astédedaverted pendu-
lum system. The equation of this rigid body dynamic systeso &las the following

M(q)i+Clq,q)g+N =7

The mass inertia matrix isaby 2 symmetrical matrix.

M(q) =

Mll M12
M12 M22
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The elements are as follows:

Mll = mzta% + mit(ls + a2)2 + (mh + miw + miw)Lz

My = —(m$®by + my(ly + b1)) Leos(qz — q1)

The centrifugal matrix i€ by 2 and anti-symmetrical.

0 Crage

Clq,q) =
(g,9) Chi 0

and the only non-zero element is:

012 = (mfwbg + ms(lt + bl))LSZTL(ql — QQ)

The general force vector of gravity has only two elements:

—(mstay +m (I, + az) + (my +me® +m;™)L)gsin(q:)
(mi*by +m3¥(l; + b1))gsin(ge)

N =

Heel Strike Phase

The heel strike happens when the swing heel touch the grotimelimpact dynamics
equation is also based on the rotation momentum consemaiio Thus we have the
dynamic equation as the following form:

Tttt =J7¢

After the heel strike, the passive walker will start in the&riree phase, At the begin-
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ning, although the walker walks in knee free model, the slzantkthigh have the same
rotating speed.
a5 = do

ThusJ* is 3 by 2 matrix There is a switch between the supporting and swingdeg
the J* is:

Jt =

T )
o O =

Based on rotation momentum preservation,.thds:
Ji Iy
Jﬁ _ 11 22
Jyy 0
The elements of ~ are:

Ji = Jy + (maL +mi (ag + 1) +msay +m"(ag + ls) + mgay) Leos(qr — g2)

Jo = —m2%ar(ly + bi) — m;¥ba(ls + as)
Iy = —mai(l; + by) — mi'ba(ls + as)
Th = J5 4 (m3 +mit 4+ mp) L+ mi"a; +mi" (az + 1)’

I = Jo + (m 4+ mst 4 mp) L2 4+ ma? + mi(as + 1)

167



Jh = —(m(by + 1) + miby) Leos(qr — qo)

J =m(ly + b1)” + mi'b;
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