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Abstract 

On 22 September 2000, the French, Belgian and Dutch stock exchanges merged and 

formed the Euronext N.V., the first pan-European exchange. The creation of Euronext 

was a response to changes in the political and economic environment in Europe. The 

benefits to market participants are easier access to a wider range of financial products, 

increase in liquidity and lower transaction costs. Indeed, since its incorporation, 

Euronext has the second largest capitalization in Europe.  

 

The aim of this thesis is to investigate the consequences of Euronext integration on 

the French, Belgian and Dutch stock markets. It raises two questions: 1. has the 

merger improved the information efficiency of the markets; and 2. has the level of 

integration between the markets increased following the incorporation of Euronext? 

The study uses daily prices for the markets’ main indices for the period 01/01/1990 to 

10/12/2010. The original sample is divided into three periods: pre-integration, 

integration and post-integration period. Two types of returns are computed: log-

returns and excess returns. A dummy variable and a control variable, the German 

main index DAX, are included in the analysis to account for the effect of the 

introduction of the Euro.  

 

Unit root and stationarity tests show that prices series are integrated of the first order 

and that the returns series are stationary. Moreover, the volatility of returns exhibits 

long-memory patterns. The data generating process of all the returns series is captured 

with ARMA-GARCH models. The returns exhibit volatility clusters in all sub-

periods. Hence, the information efficiency of the market has not increased following 

Euronext integration. However, GARCH models do not include an asymmetric 

component for the post-integration period, indicating that the returns do not display 

leverage effects after the creation of Euronext. Finally, a Euro dummy variable was 

significant only for the Belgian returns. 

 

Cointegration tests show that the three indices experience long-run equilibrium during 

the integration and the post-integration periods. Moreover, the conditional correlation 

between the markets increases and stabilises after 2000. Overall, the evidence 

supports wider financial integration between these markets. However, it is difficult to 
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determine to what degree this change can be attributed to the creation of Euronext as 

opposed to the introduction of the Euro or to a combination of both. A Granger 

causality test shows that EMU has Granger caused market financial integration. On 

the other hand, a system comprised of the three indices and the control variable, 

DAX30, does not display long-run equilibrium for the post-integration period, 

highlighting the role of Euronext. These results are important for market participants.                
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1. Introduction 

1.1  Euronext  

On 22 September 2000, the French, Belgian and Dutch stock exchanges merged and 

formed the Euronext N.V., a Dutch law holding company. The ambition of these 

historical exchanges, (Amsterdam is often viewed as the oldest exchange of the 

modern world), is to create the first pan-European exchange: 

Upon completion of Euronext’s planned integration process, Euronext will be the first 
fully integrated, cross-border, European market for equities, bonds, derivatives and 
commodities. (Euronext Annual Report 2000, p.1)   

 

The Euronext expansion continued with the inclusion of the London International 

Future and Options Exchange (LIFFE) in January 2002 and the Portuguese exchange 

Bolsa de Valores de Lisboa e Porto (BVLP) at the end of the same year. Finally, 

Euronext merged with the New York Stock Exchange (NYSE) to form the NYSE 

Euronext in 2007.  

 

The incorporation of Euronext was a strategic move to take advantage of different 

changes in the competitive environment: an increased competition resulting from the 

globalization of the financial markets; radical changes in information and 

communication technology; diversification of the market participants. The changes in 

the European political and currency environment were also instrumental. Indeed, the 

company’s original mission statement states: 

Euronext was created…in response to growing demand from the market, a political 
environment favorable to further consolidation in the European capital market and a 
desire to capitalize on greater liquidity and lower costs resulting from the introduction 
of the Euro. (Euronext Annual Report 2000, p. 1)        

 

Euronext N.V is therefore a holding company that operates through local subsidiaries, 

e.g. Euronext Paris in France. It provides a single trading platform for equities and 

derivatives, a single order book for securities or financial products, a single clearing 

house and a unified settlement system. Furthermore, as there is a unique trading 

platform for cash securities, the trading rules of each subsidiary are harmonized: the 

most liquid securities are traded continuously and the other securities are traded at call 

auctions held twice a day. By the same logic, the trading hours were also 

synchronised. The national regulatory authorities continue to have power over the 

local subsidiaries, e.g. The Commission Bancaire et Financière for Euronext Brussels 
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and the listing criteria can be different for each subsidiary, especially in terms of the 

size of the companies.  

 

The national market indices, CAC40 for France, BEL20 for Belgium, AEX, PSI20 for 

Holland, continued to be calculated and disseminated as before the integration. 

Additionally, a new index was created to represent the Euronext list: Euronext 100, 

which is comprised of the 100 largest companies by market capitalization. (Euronext 

organisation and procedures 2002)        

 

According to Euronext, the benefits from the merger for the market participants are 

easier access to a wider range of financial products, an increase in liquidity and lower 

transaction costs. In December 2000, just a couple of months after its incorporation, 

Euronext was the second exchange in Europe in terms of market capitalization of 

shares, directly after the London Stock Exchange and the first in terms of average 

trading volume in the cash market (Euronext Annual Report 2000, p.11).  

 

The following three figures present market indicators2 for the New York Stock 

Exchange (NYSE Euronext US), the Euronext exchanges (NYSE Euronext Europe), 

The London Stock Exchange (London SE/London SE Group) and the German, 

Frankfurt based, Stock Exchange (Deutsche Börse). The London Stock Exchange 

merged with the Italian Borsa Italia to form the London Stock Exchange Group in 

2010. However, the data of both exchanges appeared consolidated as per 2009.  

 

Figure 1.1 shows the market capitalization for each exchange for the period 2000 to 

2010. The difference between NYSE and the European exchanges is striking. Since its 

incorporation, Euronext has the second largest market capitalization in Europe, 

shadowing closely the London Stock Exchange. Indeed, Euronext achieved a higher 

capitalization than London in 2007 only. However, in 2009 and 2010 the gap with the 

now London Stock Exchange Group increased. The Deutsche Börse consistently 

presents the smallest capitalization of the group. It is worth noting that the financial 

crises of 2007 and 2008 had a remarkable impact on the capitalization of all markets: 

NYSE felt by 41.1%, from 15,650,832 in 2007 to 9,208,934 USD millions in 2008. 

                                                 
2
 Data are presented in appendix 1 (see section 10.1). Data were retrieved from the World Federation 

of Exchanges.  
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Similarly, Euronext’s capitalisation decreased by 50.2%, from 4,222,679 to 

2,101,745, London Stock Exchange by 51.5%, from 3,851,705 to 1,868,153 and the 

Deutsche Börse by 47.2%, from 2,105,197 to 1,110,579 USD millions (see appendix 

1, section 10.1). Although more impressive in New York in terms of absolute number, 

the drop in capitalization was proportionally more important for the London and 

Euronext stock exchanges than for NYSE or the Deutsche Börse.   

 

Figure 1.1: Market capitalisation in USD millions (main and parallel markets) 

 
Source: adapted from World Federation of Exchanges 
 

The total number of shares listed in the stock markets is presented in figure 1.2. 

Euronext is the third in importance in the group of exchanges, far from the London 

and New York stock exchange levels. The number of shares appears more or less 

stable throughout the period, roughly between 1,100 and 1,400 shares every year.   

 

Figure 1.3 presents the value of shares traded every year. The period covered runs 

only from 2001 to 2008, as data were not available for Euronext for the year 2000 and 

the measurement of the indicator changed in 2009. Again, NYSE’s performance is the 

most important and Euronext appears in third place, following the London Stock 

Exchange. The 2007-2008 financial crisis did not affect the value of share trading for 

NYSE, unlike Euronext and London, both of which experienced a drop in share 

trading.    
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Figure 1.2: Number of listed companies 

 
Source: adapted from World Federation of Exchanges 

 

  

Figure 1.3: Value of share trading in USD millions (electronic order book and negotiated deals) 

 
Source: adapted from World Federation of Exchanges 
 

 

From these market indicators, it is evident that the Euronext incorporation created the 

second largest stock exchange in Europe, just behind the London Stock Exchange. 

However, the size distance between the European and American stock exchanges 

remains considerable.    
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In the non-confidential version of a report prepared for Euronext, Pagano and Padilla 

(2005) presented their conclusions on the efficiency gains from the Euronext 

experiment. They classify these gains into two categories: cost savings and direct user 

benefits. The cost savings come mostly from the “elimination of duplication of costly 

infrastructure” (p. 3) in terms of information technology and staffing costs. The direct 

user benefits are:  

1. a single trading platform access, allowing market professionals to save by 

reducing the hardware, software and skilled human capital needed to 

access numerous trading platforms; 

2. integration allows trade in more diversified portfolios; 

3. integration of national exchanges increases liquidity; 

4.  an increase in liquidity can reduce the price concession an investor may 

be forced to accept for executing a large order, and can result in lower 

volatility. (p.3) 

Using regression analysis, the authors researched the impact of integration on 

liquidity for the period December 1999 to December 2004. They found a statistically 

significant reduction of the bid-ask spreads for the French and Belgian national stock 

indices (40%-48% for CAC40 and 23%-30% for BEL20) but not for the Dutch 

market. Also, the trading volume in each market increased significantly and the 

volatility of the large cap securities decreased (p. 50). The authors controlled their 

results for exogenous events and for common trends with other European exchanges, 

such as the UK or German exchanges and attributed them to the integration of 

Euronext. 

 

More than a decade after the integration of Euronext, few academic papers have 

researched the impacts of the integration of the Pan-European exchange.  

1.2 Aim of the Thesis  

The aim of the present study is to investigate the consequences of the Euronext 

integration on the French, Belgian and Dutch stock exchanges. It does not look at the 

impact on the exchanges themselves, analyzing their increased efficiency in terms of 

operating costs, but rather focuses on the consequences for the market participants. 
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Essentially, it intends to answer the following research question: was the integration 

of the Euronext beneficial for the market participants? 

 

To answer this broad research question, two specific research objectives are set: 

1. To test the information efficiency of the French, Belgian and Dutch 

exchanges before and after Euronext integration. 

2. To assess the level of market integration between the three exchanges 

before and after the Euronext integration. 

 

Information efficiency is essential for market participants. Equal access to 

information ensures that the market is a fair game. Participants can make appropriate 

investment decisions based on equally available information and no participant can 

make excess returns using information not accessible to the rest of the market. The 

problems of fair access to information and information efficient markets are so 

important in finance that an entire theory, the Efficient Market Hypothesis (EMH) 

was developed in the 1960’s. It defined the level of efficiency of a stock market as a 

function of the quality of information widely available in that market. EMH 

definitions have changed since, but it remains an important conceptual framework for 

testing the information efficiency of stock markets and it is adopted for the first 

research objective of this study.  

 

The second research objective relates to the problem of choice of investment for 

market participants, and more specifically to portfolio diversification. The access to 

different stock exchanges from one unique platform allows the participants to choose 

their investment from a wide range of securities and financial products. Moreover, 

they can do this at a lower cost. According to Euronext (2000) and Pagano and Padilla 

(2005), these are direct benefits for the participants from the merger. This increased 

choice of investment should help participants to diversify and build efficient 

portfolios: modern portfolio theory posits that investing in securities which are not 

perfectly positively correlated allows investors to diversify the risk and to invest in 

efficient portfolios. However, what if the merger of the exchanges increases their 

integration and therefore reduces the real choice of diversification for the participants 

instead of increasing it? Stock market integration is an important subject in the 
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finance literature, but unlike EMH, there is no theory dedicated to the phenomenon, 

just a set of definitions and numerous results from empirical research. It is an 

important process, seen by many as a part of economic integration, itself generated by 

the globalization of the economy. 

 

 The study will focus on the three original Euronext stock markets: the French, 

Belgian and Dutch exchanges. However, it is impossible to assess the impact of the 

Euronext integration on these exchanges, analysing all the securities listed in these 

exchanges. Hence, the main index of each exchange is used in the study: CAC40 for 

the French, BEL20 for the Belgian and AEX for the Dutch market. As the mode of 

computation of these indices was not altered by the merger, these indices are valid 

measurements before and after the integration.  

 

The CAC40 index is comprised of the 40 most representative companies in terms of 

market capitalization and liquidity (turnover) in the Paris stock exchange. Its base 

value is 1,000 as of 31 December 1987. 

     

The BEL20 includes the 20 largest companies in terms of market capitalization in the 

Brussels stock exchange.  Its base value is 1,000 as of 30 December 1990. However, 

Datastream provides data for this index for the whole year 1990.  

 

The Dutch AEX index includes the 25 most traded shares listed in the Amsterdam 

stock exchange. Its base is 45.38 as of 3 January 1983. 

 

Constructed according to criteria of market capitalizations and/or liquidity, these 

indices are blue-chip indices for each market. They also serve as underlying for 

derivatives and are the bases for structured financial products.  

 

The time window for this study is 21 years, from January 1990 to December 2010. 

This choice of a large window should allow for robust results and avoid biases 

coming from short run momentum or crashes and/or exogenous events. Moreover, it 

includes a long period of observations before and after the merger.   
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However, the integration of the Euronext was a long process. Indeed, after the 

incorporation of the pan-European exchange in September 2000, each subsidiary had 

to move its operations to a unique platform, order book, clearing and settlement 

system.  This migration process stretched over a couple of years. For the three stock 

exchanges of interest in this study, the migration to the unique cash trading system 

was completed in October 2001 and to the cash clearing system (Clearing 21) one 

year later, at the end of October 2002. Based on these key dates, the original time 

window is divided into three sub-periods:  

1. Pre-integration period: 01/01/1990 -31/08/2000,  

2. Integration period: 01/09/2000-30/10/2002, 

3. Post-integration period: 01/11/2002-10/12/2010. 

From 1990 to 2010, the composition of each national index has changed. Some stocks 

were withdrawn from the indices and replaced by new ones. Other stocks split. Also, 

some companies merged into new ones and sometimes these were then kept in the 

index. However, over a long period of time, the impact of these events is tempered.    

 

The approach adopted in this study is deductive in nature. The literature review will 

help transform the research objectives into testable hypotheses, design sound research 

methods and assist in the choice of appropriate econometric tools.  

1.3 Outline of the Thesis 

Overall, this thesis is comprised of a review of the literature (chapters two and three), 

a discussion of the methodology adopted (chapter four), a presentation of the data 

used (chapter five), empirical work (chapters six and seven) and a section of 

conclusions (chapter eight).  

 

The scope of chapter two is to provide a theoretical framework for the first research 

objective. It starts with a review of the different definitions of the EMH and the 

arguments of the behavioural finance school. It then looks at the problem of the 

identification of the Data Generating Process (DGP) in finance, beginning with the 

problem of stationarity of an economic time series and the unit root testing procedures 

and concludes with a robust testing procedure. It finishes by exploring different types 

of nonlinear models.  
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In chapter three, the literature is reviewed from the perspective of the second research 

objective. As in the previous chapter, it starts with a review of definitions and 

concepts which are related to the process of market integration and its consequences 

on portfolios. It is then followed by a review of empirical work surveying market 

integration. The main tools used can be classified into two categories: the static and 

the dynamic models.  

 

Chapter four presents the philosophical questions related to this research, and 

potential alternatives. It opens with a discussion regarding the research paradigm and 

research approach. It then reviews the strategy adopted and concludes with the threats 

to reliability and validity.  

 

In chapter five, the data are presented. From the original closing price series, two new 

series are created for each index: log-returns and excess returns. The series are tested 

for stationarity using a robust procedure combining unit root and stationarity tests. 

Finally, the problem of long memory and fractional integration is tested using Hurst 

Rescale Range test.  

 

Chapter six opens with the empirical work related to the first research objective: the 

information efficiency of the markets. Based on the findings of the literature reviewed 

in chapter two, hypotheses are stated and a research framework is designed in order to 

identify the DGP of each series for the different periods. Linear models such as 

random walk or general auto-regressive moving-average (ARMA) models do not 

capture the DGP. More complex processes, modelling both the mean and the variance 

of each series, are more appropriate. The choice of model is based on the iid or white 

noise criterion, i.e. the fact that the residuals from the estimated model are 

independent identical distributed, hence that there is no more information in the 

residuals. The potential effect of the introduction of the Euro was controlled using a 

dummy variable. Results presented in this chapter are therefore from univariate 

analysis.                      

 

Chapter seven continues the empirical work and investigates the second research 

objective: the market integration of the three exchanges. The findings from chapter 

three show the importance of the market integration process which may be a problem 
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for proper diversification. The hypotheses tested in this chapter are therefore related 

to increased integration of three Euronext subsidiaries. The research design includes 

two types of multivariate econometric tools: one static in nature, cointegration; and 

one more dynamic, conditional correlation. In order to ensure robust results, two 

cointegration techniques are used: the Engle-Granger (EG) and the Johansen Juselius 

(JJ) methods. The introduction of the Euro is controlled by including a new variable, 

the German DAX main index, as control variable, as well as by a dummy variable. 

Finally, the results of the conditional correlation analysis are discussed in view of 

some major political and economic events.  

 

Chapter eight presents the conclusions from all chapters, as well as possible further 

research paths. 

 

The two main hypotheses examined in the thesis are the following: ��: The French, Belgian and Dutch stock markets are more efficient following the 

Euronext merger. 

This hypothesis is related to the first research objective and it is addressed in chapter 

six. �	: Euronext has increased the integration of the French, Belgium and Dutch stock 

markets. 

Related to the second research objective, this hypothesis is tested in chapter seven. It 

is broken down into three achievable hypotheses. �	.�: Euronext integration has created long-run equilibrium between the French, 

Belgian and Dutch markets.  �	.	: Euronext integration has intensified information flows between the French, 

Belgian and Dutch markets. �	.�: Euronext integration has increased the correlation between the French, Belgian 

and Dutch markets.       

1.4 Contribution of the Thesis 

The Euronext integration was an important event in European and world finance: it 

integrated four national stock exchanges and one derivative exchange into one 

platform, with a unique clearing system and created the second most important 

exchange in Europe. However, few articles have researched the consequences of the 
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merger for the market participants. The survey of Pagano and Padilla (2005), prepared 

for Euronext, focuses mainly on the cost efficiency for investors and intermediaries 

(p.7). Moreover, its time window, 2000 to 2004, is relatively small. As discussed 

above, the migration of Paris, Brussels and Amsterdam into a common cash and 

clearing system only ended in October 2002.  

 

The main contribution of this thesis is therefore to address the gap in the literature. 

Indeed, its scope is to research the impact of Euronext integration on market 

participants in terms of information efficiency and market integration. Moreover, this 

study uses a large time window (1990-2010) allowing for robust results.   

 

The second contribution of this thesis is the use of a wide range of univariate models 

and the iid criterion to identify the DGP of the market indices. The algorithm itself 

has been used in many papers (See for example Hsieh 1991; Willcocks 2009). 

However, this is the first time it is used in this context. Moreover, the algorithm is 

applied to two different types of return: log- and excess returns. 

 

The third contribution of this thesis is the joint use of a “static” multivariate 

econometrics tool (cointegration) and a “dynamic” multivariate model (conditional 

correlation). These two techniques are widely used separately, but they are not often 

used jointly as part of a research design.  
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2 Literature Review Related to Market Efficiency  

2.1 Introduction 

The scope of this chapter is to build an appropriate theoretical framework for the first 

research objective of this study: to assess the information efficiency of the stock 

exchanges. This chapter is divided into two parts. The first reviews the concept of the 

Efficient Market Hypothesis (EMH) and its critics. It begins with Fama’s first 

propositions and ends with the arguments of the behavioural finance school. The 

second part reviews the methods to test EMH, with a focus on univariate models that 

capture a series data generating process (DGP). It first investigates the matter of 

random walk and stationarity. Different unit root tests and their limitations are 

presented. A robust testing method promoting the joint use of unit root and 

stationarity test is discussed. The review turns then to an algorithm that uses the 

criterion of the independent and identically distributed (iid) residuals to ascertain that 

a model fully captures the DGP of a series. The application of different linear and 

non-linear models in finance is then discussed. The chapter ends with an outline of the 

main findings of the discussion.              

2.2 Efficient Market Hypothesis 

2.2.1 Definitions 

The Efficient Market Hypothesis (EMH) is one of the most important but also one of 

the most criticised paradigms in modern finance. The EMH was first defined formally 

by Eugene Fama in the late 60s. In his Foundations of Finance (1976), Fama wrote: 

An efficient capital market is a market that is efficient in processing information. The 
prices of securities observed at any time are based on a “correct” evaluation of all 
information available at that time. In an efficient market, prices “fully reflect” 
available information. (p.133)  

 

Fama wrote three articles reviewing work on EMH. Each article has a specific scope. 

The first one (Fama 1970) establishes the theory. The second one, published twenty 

years later (Fama 1991), addresses the critics coming from empirical works, mainly 

findings of evidence of predictability in the market. The third article (Fama 1998) 

answers critics coming from a radically different school of thought: the behavioural 

finance school. These articles are used as the main thread for the above discussion.     
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In his first review of publications on EMH, Fama (1970) presented three forms of 

market efficiency, each reflecting the quality of information included in security 

prices: 

1. The weak form: security prices reflect all historic market information (past 

prices, returns trading volume, odd-lot transactions, etc.). The weak form 

voids the possibility of excess returns through the use of technical analysis, 

as all historic information is already incorporated in security prices. 

2. The semi-strong form: security prices quickly change to new public 

information (weak-form information, earnings and dividend 

announcements, common ratios, political and economic information). If 

the semi-strong form holds, then fundamental analysis cannot provide 

excess returns, as all public information is already reflected in the asset 

prices.  

3. The strong form: security prices incorporate all public and private 

information. Private information is therefore useless in a strong form 

environment. 

He argued that empirical evidence is largely supportive of the weak and semi-strong 

forms of EMH.  

 

However, in the growing literature focusing on testing EMH, different market 

anomalies contradicting the original understanding of market efficiency are presented. 

Consequently, other definitions, more pragmatic, were formulated. For Jensen (1978, 

cited in Timmerman and Granger 2004): 

…a market is efficient with respect to information set Θ if it is impossible to make 
economic profit by trading on the basis of this information set Θ. (p.17) 
 

This definition, focusing on the importance of economic profit, is shared by many 

EMH supporters (e.g. Malkiel, 1992).  

 

In his second review of the literature on EMH, Fama (1991) adopted a similar 

approach to Jensen’s and included a sustained economic profit element in his new 

definition. He also changed the categories of market efficiency: the weak-form tests 

were now presented as tests for return predictability, the semi-strong tests as event 

studies, and the strong form tests as tests for private information.  
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Addressing the event studies, Fama (1991) concluded that on average prices adjusted 

efficiently to firm-specific information such as investment decisions, dividend 

changes, changes in capital structure and corporate control transactions. Regarding 

private information, he depicted a shallower picture and insisted on the importance of 

the choice of the model, as different models resulted in different findings. But the core 

of Fama’s review focused on return predictability which can be based on past returns 

or on other variables. He concluded that short-horizon predictability based on past 

returns, especially first order autocorrelation, does exist but seems minimal and that 

higher autocorrelation in portfolios may be the spurious result of non-synchronous 

trading. Furthermore, he questioned the statistical power of the long-horizon 

predictability surveys. On the other hand, Fama seemed to be interested by cross-

sectional return predictability. He argued that size and capitalization are variables that 

can be used to forecast long-horizon returns. 

  

More recently Malkiel (2003b), in a similar review addressing EMH critics, 

recognised the evidence of some predictability in empirical studies, what he called the 

short-term momentum. However, he argued that these anomalies may be statistically 

but not economically significant, i.e. he did not believe that investors can create 

portfolios enabling them to earn extraordinary risk adjusted returns. He therefore 

defined efficient markets as markets that do not allow investors to earn above-average 

returns without accepting above-average risks. Moreover, Malkiel also noted that as 

soon as anomalies are public, they fade away. 

 

Timmerman and Granger (2004), in an article on forecasting methods, presented an 

excellent summary of the important elements of all current definitions of EMH. These 

elements are: the information set; the ability to exploit the information in a trading 

strategy; and the economic profit, risk adjusted and net of transaction costs, that the 

strategy could yield.  

 

The theoretical underpinning of EMH is Muth’s (1961) rational expectation concept. 

According to this argument, the market is comprised of rational investors who 

independently analyse information regarding securities in order to maximize their 

utility function. Should a security be mispriced, an opportunity for arbitrage will 

open. Rational investors will seize this opportunity and act as arbitrageurs, correcting 
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the anomalies of the market. Because new information enters the market randomly, 

the market is believed to be best described as a random walk.  

 

It is worth noting that the assumptions of the rational expectations models were 

criticised early in economic literature. For example, Darby (1974) sees two flaws in 

rational expectations: 1. that each individual has identical expectations and 2. that 

information is costless. Indeed, he argues that even if the cost of acquiring and 

digesting data is difficult to quantify, it is not trivial. Moreover, he understands these 

two problems as interrelated: “if information were really free, everyone would have 

identical ‘rational expectations’” (p. 11). Hence, he concludes that the nontrivial cost 

of information leads to different expectations and therefore challenges the efficient 

market theory. For Verrecchia (1982), in a market with costly information, there is an 

inverse relationship between the cost of information and the ‘informativeness’ of 

prices: “as technological improvements permit more information to be obtained at the 

same cost, trader’s increased information acquisition results in prices revealing more 

information” (1427). However, as price informativeness is only partial, he believes 

that there is still an incentive to acquire costly information. In a more recent paper, 

Milani and Rajbhandari (2012) also challenge the rational expectations hypothesis 

that economic agents have extreme knowledge and capacity to process information. 

They argue that economic models, especially on the short run, should assume agents 

have limited knowledge, news about future shocks, adaptive learning, and/or 

subjective expectations from survey. However for longer horizons, Milani and 

Rajbhandari (2012) believe that rational expectations models are appropriate.    

 

The most sophisticated critics of EMH are presented by the behavioural finance 

school, for they not only presented empirical evidence of market inefficiencies, but 

they also argued against the theoretical assumption of rational expectations and 

provided an alternative paradigm.  
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2.2.2 Behavioural finance  

Behavioural finance proponents challenged the belief that the market is comprised of 

rational agents.  In a recent survey on behavioural finance, Barberis and Thaler (2002) 

explained: 

…it (behavioural finance) argues that some financial phenomena can be better 
understood using models in which agents are not fully rational. More specifically, it 
analyses what happens when we relax one, or both of the tenets that underline the 
finance view of rationality. In some behavioural finance models, agents hold beliefs 
that are not completely correct, most commonly because of failure to apply Bayes’ 
law properly. In other models, agents hold correct beliefs but make choices that are 
normatively questionable, in that they are incompatible with SEU (Subjective 
Expected Utility). (p.4) 

 

For them, behavioural finance is based on two building blocks. First, following the 

work of behaviouralist and economist Kahneman and Tversky (1974, 1979), they 

believed that investors’ psychology is not rational, but can be better described in 

terms of beliefs such as overconfidence in their own judgement, optimism about their 

abilities, the use of conservatism and representativeness heuristics, confirmation 

biases, anchoring, memory biases, etc. Furthermore, investors’ preferences seem to be 

best explained by the prospect theory, whereby agents tend to overweight small 

probability events, rather than by the traditional expected utility framework.  

 

The second building block is the limit to arbitrage. Behavioural finance sees arbitrage 

as a risky process and therefore believes in its limited effectiveness (Bareberis and 

Thaler 2002). The main reason for this stems out of the “noise traders risk”: “the risk 

that the mispricing being exploited by the arbitrageur worsens in the short run” (p.7). 

This is further accentuated by the fact that many real world arbitrageurs have short, 

rather than long, horizons (Barberis and Thaler 2002; Shleifer and Vishny 1997). 

Finally, Barberis and Thaler also insisted on what they call the “model risk”: “…even 

once a mispricing has occurred, arbitrageurs will often still be unsure as to whether it 

really exists or not” (p.8).  

2.2.3 The Rational - Behavioural finance debate 

These last two decades, a wide range of articles were published supporting the views 

of behavioural finance. They focused essentially on identifying and explaining 

predictability patterns and market anomalies, such as stock prices mean reversion and 

contrarian investments strategies (for example: DeBondt and Thaler 1985; 
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Lakonishok et al. 1994), or over or under-reaction to events (for example: Daniel et 

al. 1998).  

 

Fama (1998) presented a third review of studies challenging the efficiency hypothesis, 

addressing especially the findings from behavioural finance. He concluded that the 

long-term return anomalies are chance results, a finding consistent with EMH. He 

explained: 

 …the expected value of abnormal returns is zero, but chance generates apparent 
anomalies that split randomly between overreaction and underreaction ( p.287).  

 

Furthermore, he argued that the anomalies presented by behavioural finance surveys 

may be related to the choice of methodology. Therefore, with a change in technique 

(model, sample, return metrics), these long-term returns anomalies tend to disappear. 

 

Methodology is an important point of divergence between the two schools. According 

to Fama (1991) market efficiency cannot be tested directly, but it needs to be tested 

with some model of asset-pricing. The problem then is that the choice of model for 

testing the market will depend on assumptions about this market.  

 

Echoing Fama’s “joint hypothesis problem”, Barberis and Thaler (2002) wrote:  

In order to claim that the price of a security differs from its properly discounted future 
cash flows, one needs a model of “proper” discounting. Any test of mispricing is 
therefore inevitably a joint test of mispricing and of a model of discount rates, making 
it difficult to provide definitive evidence of inefficiencies. (p.10) 

 

This problem was also pinpointed by Findlay and Williams (2001). In an article 

reviewing the critical literature on market efficiency, they presented three categories 

of arguments against EMH: the essence of the efficient market hypothesis, the nature 

of the empirical work used to test the hypothesis, and the statistical framework of the 

empirical work. More specifically, they argued that EMH “is not a well-defined and 

empirically refutable hypothesis” (p.196) and that it assumes integrity of the pricing 

mechanism and the predominance of rational speculators in the market. Hence testing 

EMH does not explain pricing mechanisms and is therefore not informative about the 

market’s mechanism. They advocated that the best way to assess the efficiency of a 

market is to test its relative efficiency against another market. Using an analogy from 

engineering, they stated:  
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Few engineers would ever consider performing a statistical test to determine whether 
or not a given engine is perfectly efficient - such an engine exists only in the idealised 
frictionless world of the imagination. But measuring relative efficiency - relative to a 
frictionless ideal - is commonplace” (p.196-197).         

 

Along the same lines, Timmerman and Granger (2004) believed that an important 

weakness of the EMH definitions based on an information set is that they do not 

account for investor’s uncertainty about the best model to use. They argued that if the 

agents do not know the true forecasting model then the practice of using mathematical 

expectation in the definition becomes less attractive.  

 

However, over time, the two schools of thought appear to converge on certain 

elements. In a very interesting discussion, Malkiel and Mullainathan (Malkiel et al. 

2005) compared their views on the financial world and found some common ground, 

such as the existence of weak predictability in the market, the existence of noise 

traders, and the importance of excessive trade volumes. However, they proposed 

different explanations for these findings. For Mullainathan, predictability is a sign of 

inefficiency, as arbitrageurs should have entered the game and stripped out the 

anomalies. On the other hand, Malkiel believed that these examples of weak 

predictability have no practical application as it is not economically sound for one to 

enter an arbitrageur position. 

  

Other market characteristics are explained differently by the two researchers. The 

influence of noise traders is important in behavioural finance. However, Malkiel 

believed that with as little as 10% of rational traders, all the arbitrage positions are 

undertaken, a view not shared by Mullainathan. Excessive trading is seen as market 

inefficiency by behaviouralists as there is no reason to trade excessively if prices are 

correct. But Malkiel explained excessive trading by money managers’ incentives. 

However, the most important argument supporting EMH put forward by Malkiel is 

the fact that professionals (i.e. investment funds) do not make excess returns on the 

long run.  

 

This argument is presented in detail, with empirical evidence, in Malkiel (2003a) 

which analysed the performance of mutual and equity funds for the period 1970-2001. 

Malkiel’s conclusions were: “the evidence strongly supports passive investment 
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management in all markets – small-capitalisation stocks as well as large capitalisation 

equities, US markets as well as international markets, and bonds as well as stocks” 

(p.1).  

2.2.4 Regime shift in the EMH paradigm 

The debate between proponents of rational and behavioural finance will certainly 

continue. The two schools of thoughts see and understand the market differently: on 

one side rational expectation, on the other the human element. However, the findings 

of behaviouralists pressured the EMH side to develop a more pragmatic approach. 

They now recognise the existence of market anomalies. Malkiel (Malkiel et al. 2005) 

even agrees with the overconfidence belief, dear to behaviouralists.  The concept of 

efficiency has shifted from “prices fully reflecting information” (Fama 1970) to 

economically (in)significant anomalies (Jensen 1978; Malkiel 1992; Fama 1991). 

Furthermore, behavioural finance has enriched the field of finance research. In the 

words of Shiller (2006), the behavioural finance revolution “is best described as a 

return to a more eclectic approach to financial modelling” (p.1). Despite this paradigm 

shift, EMH remains an extremely helpful conceptual framework to analyse the 

market.  

2.3 Modeling the Data Generating Process  

The second part of this chapter looks at methods to test EMH. In order to avoid the 

joint hypothesis problem, i.e. the choice of asset valuation model, it focuses only on 

methods based on capturing the data generating process (DGP) of a series. These 

methods look at the weak form tests (Fama 1970), or test for return predictability 

(Fama 1991).     

2.3.1 Random walk 

In the weak form of information efficiency, share prices include all past information. 

Should new information be available, prices should incorporate it immediately. As 

new information enters the market randomly, the behaviour of the share prices is 

therefore believed to follow a random walk. Timmermann and Granger (2004) 

credited Louis Bachelier, a French mathematician who wrote a thesis entitled 

“Theorie de la Speculation” in 1900, as being the first to model the behaviour of share 
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prices using the random walk theory.  But it is not before the 1960s that this theory 

was recognized and tested in empirical surveys.  

 

A random walk is a martingale, i.e. a discrete-time stochastic process, such as: � � ��� � �, 
where: 

ty is the price in the current period, 

1ty
−

 is the price in the previous period, and  

tε   is the disturbance term in the current period. 

Applied to financial time series, the model implies that stock prices are random, that 

they cannot be predicted. In practice, stock prices are thought to be non-stationary and 

their data generating process is characterized by a unit root. The random walk 

hypothesis also requires that the residuals remaining from the linear model be 

independent and identically distributed (iid) (Fama 1970, 1991).  

 

Many researchers, when testing a series for the random walk hypothesis, believe that 

the non-stationarity of the stock price series is a sufficient condition to support the 

EMH weak form. Others argue that a random walk test should also include a close 

examination of the residuals. If all researchers agree on the importance of the 

martingale process, they have a different understanding of the utility of the residuals 

to create potential arbitrage positions.   

2.3.2 Stationarity  

Most macroeconomic time series appear to be non-stationary in levels, thus current 

shocks have permanent effects on the levels of the series (Nelson and Plosser 1982). 

Therefore, regressions using these data are spurious. Hence, testing for the order of 

integration of the series, i.e. the number of times one needs to difference a series for it 

to be stationary, is a common practice in macroeconomic and financial empirical 

research.   

 

The vast majority of the studies in finance conclude that share prices are integrated of 

order 1, I(1), that is that share prices are non-stationary but share returns are 
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stationary. In that sense, share prices, like many financial time series, behave as most 

macroeconomic data.   

 

However, some economic variables, such as nominal wages or nominal consumer 

prices, remain non-stationary after being differenced once (Johansen 1992; Paruolo 

1996; etc.). Tahai et al. (2004), using monthly index prices for the period March 1978 

to December 1997, showed that the Morgan Stanley Capital International (MSCI) 

indices for the G7 countries were integrated of the second order, I(2). It is worth 

noting that in this research the authors used solely the Augmented Dickey-Fuller 

(ADF) approach to test for the presence of unit root in the series.  

2.3.3 Unit root testing 

Dickey and Fuller (1979, 1981) first presented tests to detect the presence of a unit 

root in a series. The test consists of regressing a series on its past values. A trend 

and/or an intercept can be included in the regression equation. The residuals of the 

regression are assumed to be identically and independently distributed (iid). The 

original Dickey-Fuller (DF) test is appropriate to analyse a series that is an 

autoregressive process of the first order, AR(1). If the series is correlated at higher 

order lags, then the Augmented Dickey-Fuller (ADF) test is to be used, as it includes 

further lags of difference values in the regression in order to correct the higher-order 

correlation. Dickey and Fuller (1979) using Monte Carlo simulation, have computed 

critical values for the t-ratio as the statistics of the test do not follow the conventional 

Student’s t-distribution. Today, the response surfaces computed by MacKinnon 

(1996) using a larger set of simulations, are widely used.  

 

Phillips and Perron (PP) (1988) adopted an alternative non-parametric approach to 

control serial correlation. The Phillips and Perron (PP) test is based on the original DF 

test, but the t-ratio is modified in order to take into consideration potential serial 

correlation.  

 

The DF, ADF, and PP tests are called unit root or non-stationary tests as their null 

hypothesis is that of the presence of a unit root in the series. Thus the null hypothesis 

is rejected only with extreme values. In an attempt the reverse the “burden of proof”, 
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Kwiatkowski, Phillips, Schmidt, and Shin (KPSS) (1992) proposed an alternative test 

which assumes a series to be stationary under the null hypothesis.  

 

These three procedures are very popular for testing series in the financial economics 

literature. 

2.3.4 Limitations of the traditional unit root tests and alternative strategies 

Investigating the order of integration of a series is often a more complex procedure 

than just applying a unit root test. Traditional unit root tests have limitations, which 

include the low power of the tests, the assumption of linearity of a series and the 

structural breaks in mean or variance of a series. The following section reviews these 

problems and presents alternative strategies.   

 

A widely recognised weakness of the traditional unit root tests, such as the ADF and 

PP tests, is that their power is low if the data generating process is stationary but with 

a root close to the non-stationary boundary (See for instance: Abidir 1993; Schlitzer 

1995; Mahadeva and Robinson 2004; Cook 2004). Furthermore, these tests suffer 

from size distortions, as the distribution of the test statistics is both non-standard and 

conditional on the order of the integration of the series, the time series properties of 

the errors, whether the series is trended or not, etc (Mahadeva and Robinson 2004). 

Likewise, stationary tests like the KPSS procedure can also suffer from low power 

and size distortion (Schlitzer 1996). 

 

Schlitzer (1996) argued that the problems of low power and size distortions of the 

ADF and PP tests are more acute for small sample sizes. For this reason, it is argued 

that the best way to observe a unit root process is in the long-term behavior of the 

process (Hamilton 1998). Recognizing the importance of the long-term approach, 

Sanchez (2003) developed a unit root test based on prediction errors which exploits 

the relationship between the long-run behavior of a process and the presence of a unit 

root. 

 

Shin and So (1999) pointed out that the ordinary least-square (OLS) estimator, used in 

unit root tests such as the Dickey Fuller test, can be very sensitive to outliers. Because 

many financial time series include outliers, the inference drawn on the basis of the 
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OLS estimator can be misleading. They proposed an alternative test for autoregressive 

processes with possibly infinite variance innovations, based on modified M-estimators 

in which the signs of the regressors rather than the regressors themselves are used as 

instrumental variables in estimating unit roots.  

 

Mahadeva and Robinson (2004) also underlined the difficulty of differentiating a 

difference-stationary from a highly autoregressive series or a trend from a difference-

stationary series, especially for small samples. They concluded that unit root tests are 

not definitive information and urged for the statistical tests to be used in conjunction 

with economic theory.  

 

A strategy which allows controlling the low power and size distortions of the 

traditional tests is the combined use of unit root and stationary test when analyzing a 

series for the presence of a unit root (Amano and van Norden 1992; Schiltzer 1996; 

Brooks 2002). This strategy, called joint hypothesis testing or joint confirmation 

testing by the authors, allows for robust conclusions. 

  

Schlitzer (1996) tested a set of annual time series of the post-war Italian economy for 

stationarity, applying the ADF and the KPSS tests. He concluded that while the ADF 

test strongly supported the unit root hypothesis, the KPSS or the combined procedure 

(ADF and KPSS) provided less definite conclusions. Furthermore, he stressed the fact 

that the power of both tests is highly sensitive to the way one parameterizes each test. 

The strategy reaches a conclusive answer when both tests agree on the nature of the 

stochastic process. 

 

When applying this joint strategy, Schlitzer (1996) used the conventional critical 

values of each test. This approach is not shared by others. For example, Charemza and 

Syzewska (1998) argued that when the DF and KPSS statistics are jointly used, the 

critical values for those tests should not be taken into consideration. They proposed 

symmetric critical values via Monte Carlo experiments, which correspond to the 

probability of type 1 error for the DF test and power of the KPSS test in the case 

where both cumulative marginal distributions are equal. Therefore, the probabilities of 

making a wrong decision, that is accepting the null of DF and rejecting the null of 

KPSS, are identical. 
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Carrion-i-Silvestre et al. (2001) agreed with Charemza and Syzewska (1998) 

concerning the need for specific critical values when unit root and stationarity tests 

are jointly used. However they proposed new critical values for the combined 

frameworks (DF and KPSS or PP and KPSS) assuming that the joint combined 

hypothesis of a unit root depends only on the elements that are presumed to be in the 

deterministic component of the time series, that is, the no-constant, no trend, and 

with-trend statistics.  

 

However, Keblowski and Welfe (2004) noted that the values computed by Charemza 

and Syczewska (1998) and Carrion-i-Sylvestre et al. (2001) are mainly for large 

samples while in the empirical work samples are usually limited. Thus, they computed 

values via Monte Carlo experiments for the joint ADF-KPSS test for small samples 

(n= 20 to 45). Furthermore, they explored the power of the joint test.  

 

Another limitation of the unit root test is related to the assumption of linearity of a 

series. Narayan (2005) proposed an alternative procedure to test for the random walk 

hypothesis, using a threshold autoregressive (TAR) model. He first examined the 

linearity of the data generating process of the Australian stock price index (ASX all 

ordinaries) and New Zealand’s stock price index (NZSE capital index). As the 

processes appeared to be non-linear, he tested for the presence of a unit root using the 

Carner and Hansen (2001) tests and found that both ASX and NZSE indexes were 

non-stationary at levels. He concluded that the Australian and New Zeeland stock 

markets are efficient. Along the same lines, Menezes et al. (2004), who wanted to take 

into consideration the asymmetric adjustment of the Portuguese stock market over the 

business cycle in their model, applied a threshold autoregressive model (TAR) and a 

momentum threshold autoregressive model (M-TAR) to address the problem of 

asymmetry as well as the low power of the unit root test in the presence of 

asymmetry. They mainly observed that the Johansen method did not find 

cointegrating vectors when the M-TAR model indicated asymmetry (the Johansen 

cointegration method is essentially a test for a unit root).  

 

A further limitation stems from the fact that economic time series often exhibit 

structural breaks (Cook, 2004). The presence of structural breaks in the deterministic 

trend component can reduce the power of unit root tests (Perron 1989; Leybourne et 
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al. 1998). Likewise, standard unit root tests have low power when the series is subject 

to a stochastic trend break (Balke and Fomby 1991). On the other hand, Cook (2004) 

mentioned that the original DF test can have high power when a break in mean occurs 

at the start of the sample period. He also stressed the fact that the DF test can suffer 

from severe size distortion when applied to unit root series subject to a structural 

break.   

 

These structural breaks also make it difficult to ascertain whether the true DGP is 

stationary or not. Contradicting the Nelson and Plosser (1982) unit root hypothesis for 

macroeconomic data, Perron (1989) argued that macroeconomic series, including 

stock prices, are more likely to be stationary when the trend function is allowed to 

exhibit occasional change. In a recent study, Perron and Rodriguez (2003), using the 

GLS detrending unit root test and considering two models, a change in the slope and a 

change both for the slope and the intercept, tested a sample of common stock prices 

for the period 1871-1970. They found some evidence, though non-unanimous, against 

the null hypothesis of a unit root.  

 

Taking the opposite view, Hsieh (1991) believes that in the long run stock returns are 

not stationary:  

Over a long time period, it is difficult to make a case that the behavior of stock 
returns remains unchanged. Changes in economic fundamentals, e.g., wars, can shift 
the mean return (represented by ‘2-mean’ model). Change in the operating procedure 
of the Federal Reserve, e.g., switching from an interest rate to a  money supply target 
during 1979-1982, can shift the volatility of financial markets (represented by the ‘2-
variance’ model). (p. 1856-1857) 

  
The stock prices series may therefore include structural breaks. Cavaliere (2003) 

investigated the effects of Markov regime switches on the asymptotic behavior of unit 

root and stationarity tests. He focused on switches in linear trend components, in the 

mean of transitory components, and in the variance of both permanent and transitory 

components. He concluded that unit root and stationarity tests (such as KPSS) are not 

reliable in the presence of structural breaks in linear trends. He therefore suggested 

that a statistical model allowing for Markov-switching trends should be used in order 

to reduce the spurious acceptance of the unit root hypothesis.  
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Using a Monte Carlo experiment instead of asymptotic theory, Cook (2004) examined 

the finite-sample properties of modified unit root tests based upon weighted 

symmetric estimation and recursive mean adjustment in the presence of structural 

breaks. He found out that these modified tests have high power in the absence of 

structural change. However, when applied to a series with a single break in mean, the 

size of the tests may be robust but at the expense of an important loss of power.   

 

Similarly Carrion-i-Silvestre (2003) investigated the effect of misspecification error in 

the determination of a level shift for the KPSS test applying Monte Carlo simulation. 

He concluded that the rate of divergence of the KPSS test is higher than that of the 

associated error due to failure to allow for structural break, stressing therefore the 

importance of the correct specification of the breaking date for the KPSS test. 

 

It is clear from the literature that testing for stationarity can be a complex procedure 

and that the problems of the power of the tests, linearity and structural break in the 

series need to be taken into consideration.   

2.3.5 Nonlinearity 

A model captures all the information included in a series if its residuals are 

independently and identically distributed (iid), i.e. the residuals do not include any 

further information. This criterion is one of the assumptions of a well-specified 

model. In the literature, however, the iid of the residuals is often assumed but not 

tested, especially when assessing the order of integration of a series is a prelude to 

further investigation (for example cointegration) or the use of  a vector auto-

regressive (VAR) model. But, if the linear trend of a series is modelled and the 

residuals do not comply with the iid assumption, this indicates the presence of 

nonlinear dependencies in the series. The consequences of the nonlinearity in stock 

market returns are twofold.  

 

First, at least theoretically, the residuals may include important information for 

predicting future share prices, which would be in breach of the weak-form EMH. 

However, Hsieh (1991) argued that nonlinearity does not necessarily contradict 

market efficiency: ‘the fact that returns themselves are not iid (and therefore 
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potentially predictable) says nothing about the predictability of forecast errors’ 

(p.1856; see also Sewel et al. 1996).  

 

Second, nonlinear dependencies raise questions about asset pricing models, such as 

the Capital Asset Pricing Model (CAPM), which are usually linear in nature (Sewel et 

al. 1996). 

 

It is therefore important to identify the nature of nonlinearity of a series. In finance, 

two types of nonlinearity are considered: nonlinear stochastic processes and nonlinear 

deterministic or chaotic processes. 

 

Hsieh (1991), Sewel et al. (1996) and Al-Loughani and Chappel (1997) used a similar 

multi-step strategy to model the data generating process of a series. This strategy is 

based on the formal testing of the iid residuals as decision criterion. In their paper, 

they used  the Brock, Dechert and Scheinkman (BDS) test (Brock et al., 1987), a 

procedure that tests for the serial correlation of a series, to ascertain whether the 

residuals of a model are iid. As noted by Hsieh (1991), the ‘BDS has good power to 

detect at least four types of non-iid behaviour: ‘linear dependence, nonstationarity, 

chaos, and nonlinear stochastic processes’ (p.1856).  

 

The first step of the strategy is to estimate an auto-regressive moving average 

(ARMA) process to capture all the linear dependence of a series. The BDS test is then 

used to test the residual of the model for serial correlation. If the null hypothesis of iid 

is accepted, then the model is believed to appropriately represent the data generating 

process of the series. If however the null is rejected, then a stochastic nonlinear 

process, the general auto-regressive conditional heteroskedastic (GARCH) model is 

estimated to capture the nonlinear dependences in the series. The BDS test is again 

applied on the residuals of the new estimates. In the case of non-rejection of the null, 

the data generating process is identified with the joint modeling of the linear 

dependencies (ARMA process) and the conditional variance (GARCH process).  

If the null hypothesis is rejected again, then this might indicate that the data 

generating process of the series is not stochastic but deterministic in nature. The 

strategy continues then with the estimation of chaotic processes, until the null of the 

BDS test is not rejected and an appropriate model chosen.  
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The problem with nonlinearity in the data generating process is the diversity of 

nonlinear stochastic or deterministic models. In finance, the nature of the nonlinearity 

in data is often thought to be stochastic in nature and caused by a heteroskedastic 

variance, i.e. a non-stable conditional variance. This type of nonlinearity can be 

captured with a GARCH model, which estimates the variance of a series as 

conditional on its previous realisations. First developed by Engle (1982), the auto-

regressive conditional heteroskedastic (ARCH) model was generalised by Bollerslev 

(1986) into the GARCH model. Heteroskedastic variance models can effectively 

represent volatility clustering, a stylised fact in finance. When combined, an ARMA-

GARCH model jointly estimates the first and second moments of a series.  

 

Modelling and forecasting volatility is extremely important in finance, especially as 

volatility is an essential component of options valuations. Hence, the finance literature 

is comprised of numerous examples of applications of ARMA-GARCH models. The 

next section reviews some characteristic methods and presents evidence of stochastic 

nonlinearity in stock returns.    

2.3.6 Stochastic nonlinearity: volatility clustering 

Triggered by the fact that the frequency of large moves in stock markets is greater 

than would be expected under a normal distribution, Hsieh (1991) explored the nature 

of stock returns and more specifically whether the nonlinearity exhibited by these 

returns is stochastic or dynamic. After an overview of different types of chaotic 

processes that might be relevant in financial economics, Hsieh looked first at the 

power of the BDS test, the diagnostic procedure he intended to use to choose a model. 

Using Monte Carlo simulations of 2000 replications of 1000 observations, he tested 

11 non-iid processes: first order auto-regression (AR1), first order moving average 

(MA1), a ‘2-mean’model, a ‘2-variance’ model, a nonlinear moving average (NMA), 

the threshold autoregression (TAR), an autoregressive conditional heteroskedasticity 

(ARCH) model, a generalised autoregressive conditional heteroskedascity (GARCH) 

model, an exponential generalised autoregressive conditional heteroskdascity 

(EGARCH) model, a Mackey–Glass and a Sine model; the latter two being chaotic 

processes. The results showed that the BDS test easily detects nonlinearity in all 

processes but EGARCH. He then looked at the size of the test for residuals instead of 

raw data, asking the following question: ‘will linear filtering change either the 
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asymptotic or the finite sample distribution of the test statistics?’ (p.1854). Using the 

same Monte Carlo procedure, he examined the residuals generated by five processes: 

AR(1), MA(1), NMA, GARCH and EGARCH. He discovered that asymptotic 

distributions approximate well the finite sample distribution when using the residuals 

of the three first processes; however it rejected too infrequently in the case of 

standardized residuals from GARCH and EGARCH models. He concluded therefore 

that overall the BDS procedure is an appropriate diagnostic test. 

 

After investigating the size and power of the BDS test, Hsieh (1991) turned to stock 

returns. The sample is comprised of weekly returns for value-weighted index and the 

equally weighted index from the Center for Research in Securities Prices (CRSP) for 

the period 1963 to 1987. Filtering them with an autoregressive process whose lag 

lengths were determined by the Schwarz information criterion, he found strong 

evidences of nonlinearity in the series. Continuing, he applied different models to the 

residuals. He found that there was no evidence in favour of low complexity chaotic 

behaviour and that traditional ARCH-type models (ARCH, GARCH, EGARCH) did 

not fully capture the nonlinearity. He finally chose a specifically built conditional 

heteroskedasticity flexible model. Hsieh’s conclusions emphasised the importance of 

nonlinearity in the conditional density functions of stock returns. Moreover, he argued 

that the nature of nonlinearity was to be found in conditional heteroskedasticity rather 

than in conditional mean changes (chaotic dynamic).  

 

Sewel et al. (1996) used a similar algorithm to analyse the weekly returns of six major 

stock indices (the US, Korea, Taiwan, Japan, Singapore, and Hong Kong) and the 

world index for the period 1980 to 1994. They first filtered the returns using an 

autoregressive moving average (ARMA) model to remove all linear dependencies and 

applied the BDS test on the residuals. As they were not iid, they used a GARCH (1,1) 

model to remove the conditional heteroskedasticity from the residuals of the ARMA 

process. The result from the BDS test indicated that the nonlinearity in the Japanese 

and Korean indices was stochastic and captured with an ARMA-GARCH model. 

However, the BDS test showed mixed evidence for the S&P 500, Hong Kong, Taiwan 

and Singapore indices, leaving the possibility that these series were generated by 

chaotic processes. Hence, they used a K-map to identify potential nonlinear 

deterministic behaviour. The nature and the results of this research are described in 
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section 2.3.8 which focuses on chaotic models. This strategy was also applied to UK 

indices by Al-Loughani and Chapell (1997) and Opong et al. (1999). 

 

Al-Loughani and Chappell (1997) focused on the daily returns of the FTSE 30 for the 

period June 1983 to November 1989. They tested the index returns for stationarity 

using the DF and ADF procedures but found that the residuals were not iid as the 

BDS null hypothesis was rejected at 5% level, suggesting that there was some further 

unexplained structure in the data. A GARCH-M (1,1) model was finally chosen as it 

satisfied the iid decision criterion.  

 

In the same spirit, Opong et al. (1999) also examined the behaviour of UK indices. 

Their sample was the daily prices of the FTSE All Share, FTSE 100, FTSE 250, and 

FTSE 350. They also found that a GARCH (1,1) process captured all the nonlinearity 

in the series, a conclusion in line with Al-Laghouni and Chappel (1997) and Sewel et 

al. (1996). However, their article included two interesting results. First, they applied 

two diagnostic tests, the Hurst modified Rescaled Range procedure (R/S) and the 

BDS test, and they found that the R/S analysis was not powerful enough to detect 

non-iid residuals. Second, they believed that ‘structural change in the mean or the 

variance of an otherwise iid series could lead to rejection of iid by the BDS test 

(p.279; see also Hsieh 1991). To overcome this problem, they suggested dividing the 

series into two periods and conducting the analysis again. 

 

The data generating process of other stock markets have also been researched using 

this strategy. For example Panagiotidis (2005) attempted to test the efficiency of the 

Greek stock exchange after the introduction of EMU, as well as the effect of market 

capitalization on market efficiency. An interesting element of his research is that he 

used five different tests for assessing the distribution of the residuals: the BDS, the 

McLeod-Li, the Engle LM, the Tsay, and the Bicovariance tests. Like the papers 

described above, he choose a GARCH (1,1) process to parsimoniously model the data 

generating process of the daily prices of the “high capitalization” FTSE-ASE20, the 

“medium size companies” FTSE-Mid40 and the “small capitalization” FTSE-Small 

Cap for the period June 2000 to March 2003. Because of the presence of volatility 

clustering in the three series after the introduction of the common currency, he 

concluded that the EMU did not increase the efficiency of the Greek stock market. 
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This result is in line with results of similar studies for the Greek market (Apergis and 

Elptheriou 2001; Siourounis 2002). He also found that past volatility is important for 

the FTSE20 and FTSE Mid40 series, but not for the Small cap series, indicating that 

the lower capitalization component of the market tends to be more efficient. 

 

Lim and Brooks (2009) also used five diagnostic tests, the McLeod-Li, the Engle LM, 

the BDS, the Hinich bispectrum and the Tsay tests, to analyse the DGP of the 

Shanghai and Shenzhen stock exchanges. They found strong evidence of nonlinear 

serial dependence in the returns, but did not attempt to model further the series. They 

concluded that the Chinese markets were not weakly efficient. They argued that the 

behaviour of the Chinese investors, who trade like noise traders, explains the findings.  

 

The strategy presented above and based on the iid criterion is simple and effective to 

identify the data generating process of a series. Different diagnostic tests can be used, 

but the BDS test is widely recognized as appropriate. From the articles reviewed, 

there is strong evidence of nonlinearity in stock market index returns as linear models 

fail to fully identify their data generating processes. In all the cases, this nonlinearity 

was stochastic in nature and simple low order GARCH models seemed appropriate to 

capture it. This nonlinearity is caused by the volatility clustering of the index returns, 

a stylized fact recognized in finance literature. This volatility clustering is often 

interpreted as an anomaly and therefore understood as a sign of inefficiency.  

 

However, the nature of nonlinearity can be caused by other factors, such as long 

memory process or chaos. The next two sections are dedicated to these processes.  

2.3.7 Stochastic nonlinearity: long memory 

For a series exhibiting a unit root at price levels, the rejection of the iid residuals 

hypothesis in the returns can be caused by a long memory pattern. Such a 

phenomenon is characterized by autocorrelation which implies some level of 

predictability and therefore invalidates the weak form of EMH. 

  

This section is divided into two parts. The econometric techniques testing for the 

presence of long memory are first presented briefly, followed by a discussion of the 

results of long memory studies.    
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Testing for long memory:  

A long memory process can be modeled using fractional integration. Close to an 

ARIMA process, an autoregressive fractionally integrated moving average model,  

ARFIMA (p, d, q), allows for the level of integration be defined by any real non-

integer number: �����1 � ���� � �����, 
where: � � ����0,  	�,  and �1 � ��� is the fractional differencing operator. 

 

A time series tX  is said to be fractionally integrated of order (d), if d is a non-integer 

(Granger and Joyeux 1980, cited in Sowell 1992). A time series is covariance 

stationary if d takes values between -0.5 and 0.5.  If d is greater than zero but smaller 

or than 0.5, then a series is said to have a long memory or to be persistent. For equity, 

it means that stock or index returns would return to their long-term trends in the 

future. If d equals zero, the series is said to have no memory. Stock or index returns 

would never return to the long-term trend, except by pure chance. Finally, if d lies 

between 0 and -0.5, the series is said to be anti-persistent (Assaf 2006).  

 

Equity returns exhibiting long memory behaviour have therefore an important 

implication for traders as they may include some level of predictability. Common 

procedures to detect the presence of a long memory process are the Hurst-Mandelbrot 

rescaled range analysis (R/S) (Hurst 1951; Mandelbrot 1972) and the Lo modified 

rescaled range test (MRR) (Lo 1991). Procedures to estimate the order of fractional 

integration, d, are the Geweke-Porter-Hudak test (GPH) (Geweke and Porter-Hudak 

1983) and the Robinson tests (Robinson 1994). Baillie (1996) presents an extensive 

discussion of the different tests of fractional integration and their properties.   

 

It is worth noting that in certain cases, the interpretation of outliers can be important 

when testing for long memory. Tolvi (2003) demonstrated that in some cases, mainly 

for the smaller stock markets, outliers biased the estimated fractional integration 

parameter to zero. 
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Evidence of long memory:  

Different stock market indices have been tested for long memory, with contradicting 

results. Outcomes of long memory studies are presented in the following pages, first 

looking at evidence of long memory in returns series, then in returns volatility.     

 

Cajueiro and Tabak (2004) analyzed daily returns of 6 indices from the Asian market 

(China, Hong Kong, Singapore, and Shanghai and Shenzhen class A and B shares) for 

the period October 1992 to December 2000. They used the classical Hurst R/S 

approach but also provided a dynamic analysis of the Hurst exponent, using a rolling 

sample, to account for the time evolvement of the market efficiency. They concluded 

that the three markets presented evidence of a long memory process and suggested 

that market capitalization and liquidity may explain the difference in the intensity of 

these processes. On the other hand, Cheung and Lai (1995) used the MRR and the 

GPH analysis to investigate long memory patterns in 18 national indices for the 

period 1970 to 1992. Their sample was comprised of the monthly returns and excess 

returns of these indices. The results of the MRR procedure provided no evidence of 

long memory in the return series. However, the results of the GPH analysis indicated 

long memory in four of the 18 indices. They concluded that “the results on the whole 

are not supportive of the presence of long memory in stock returns.” (p.612)      

 

On the other hand, Blasco and Santamaria (1996) did not find strong evidence of long 

memory for the Spanish stock market. Testing first the daily returns for the period 

January 1980 to December 1993 of the Madrid Stock Exchange General Index and 

different sectoral indices with the BDS and the Hurst Mandelbrot R/S analysis, they 

concluded that the series were not iid. They then applied the modified rescaled range 

(MRR) and the GPH tests on the Spanish indices. The results indicated the possible 

presence of short term predictability but seemed sensitive to the choice of the tests’ 

parameters. However, the authors concluded that the Spanish market is not weakly 

efficient as the iid assumption is not corroborated by their analysis. It is worth noting 

that the authors applied the BDS analysis without filtering first for linear dependence.  

 

Using a more recent procedure for fractional integration, the Robinson tests (1994), 

Caporale and Gil-Alana (2004a) analysed the daily prices of the S&P 500 index for 

the period 1928 to 1991. Dividing the overall sample of 17,000 observations into 10 
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subsamples, they found that ‘the degree of dependence remains relatively constant 

over time, with the order of integration of stock returns fluctuating slightly around 

zero’(p. 382). Arguing the size of the sample, they concluded that ‘a standard model 

in first differences rather than a fractionally integrated one might be appropriate for 

stock returns’. (p. 382). In an article published two years earlier (Caporale and Gil-

Alana 2002), the authors had used the S&P 500 as well, however with annual 

frequency and for a large time span, 1890-1993. Applying the Robinson (1994) 

spectral analysis, they had already concluded that the returns were I(0).   

 

 Tolvi (2003) showed that in certain cases, the interpretation of outliers can be 

important when testing for long memory. Using a sample of monthly stock price 

indices for 16 OECD countries, he demonstrated that in some cases, mainly for the 

smaller stock markets, outliers biased the estimated fractional integration parameter to 

zero. 

 

Long memory patterns can be found in the first and second moments. Assaf (2006) 

looked for long memory behaviour in returns and in volatility. He studied stock 

markets of the Middle East and North Africa (NEMA) region: Egypt, Morocco, 

Jordan and Turkey. Using daily returns for the period 1997 to 2002, he first applied 

the MRR (Lo, 1991) and the rescaled variance test (Giraitis et al. 2003, cited in Assaf 

2006). Then, using the Sowell (1992) procedure, he estimated the degree of fractional 

integration. The results were that Egypt and Morocco presented long memory 

evidence in returns, Jordan and Turkey exhibited antipersistence, and all four markets 

displayed strong persistence in their volatility. Assaf showed that an ARFIMA 

process provided a superior forecasting model for Egypt and Morocco, but that 

ARIMA process was sufficient for Jordan and Turkey.  The author concluded that 

evidence of a long memory was strong in the MENA region, with evident 

consequences for equity derivatives trading.  

 

Lobato and Savin (1998) also tested for the presence of long memory process in stock 

market returns and volatility. Using the daily returns for the S&P500 index for the 

period 1932 to 1994, they apply the semi-parametric method of Lobato and Robinson 

(1998). They found no evidence of long memory in returns, but evidence in the 

squared returns, i.e. in volatility. They argued that theory suggests that long memory 
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in stock volatility can be spurious and caused by nonstationarity of stock returns or, in 

the case of stock index, based on aggregation. In order to strengthen their results, they 

tested for long memory the returns and squared returns of the 30 individual stocks 

comprising the Dow Jones Industrial Average for the period 1973-1994. Again, they 

found no evidence of long memory in the individual stock returns and mixed evidence 

for the squared returns. They concluded therefore that their results pointing long 

memory in volatility are not spurious.   

 

Similarly, Po (2000) tested the daily returns of the S&P 500 index, Dow Jones 

Industrial Average index and its 30 constituent stocks for volatility long-term memory 

for the period July 1962 to June 1995. He used the MRR and GPH tests and three 

proxies for volatility: the absolute mean deviation, the squared deviation and the 

logarithm of the absolute deviation. He concluded that these indices and stocks 

present strong evidence of long memory in their volatility.  

 

On the other hand, Vougas (2004), when modelling volatility using a GARCH model, 

showed that evidence of long memory, otherwise present in returns, disappeared.  

Specifically, he first found strong evidence of long memory in the daily returns of the 

Athens main index (ASE) for the period 1990 to 2000, applying an ARFIMA process 

and using the AIC information criterion. However, he found weaker evidence when 

investigating with the SBC information criterion. He then decided to model volatility 

and estimated a GARCH-ARFIMA process, following the procedure of Baillie et al. 

(1996). He concluded that, for the data under consideration, ‘long memory evidence is 

weaker (if not absent) when volatility of returns is modelled properly’ (p. 459). 

 

There is therefore mixed evidence for long memory patterns in the mean or the 

variance of a series. But fractional integration is still a stochastic process. 

Nonlinearity can be generated by a deterministic process, such as chaos.   

2.3.8 Deterministic nonlinearity: chaos 

There are theoretical arguments to consider chaotic processes in finance, mainly 

related to the assumption regarding the non-rational nature of the economic world and 

its agents. Moreover, stylized facts of financial time series, such as volatility 
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clustering, may be generated by a chaotic process. In any case, evidence of chaos in 

financial markets would invalidate EMH.    

Hsieh (1991) put forward two main reasons for the interest in chaos in financial 

economics. First, with the Box-Jenkins models, i.e. in the ‘stochastic world’, the 

economy has a stable equilibrium, but is constantly perturbed by external shocks, 

which create the dynamic behaviour of the economy. On the other hand, ‘in the 

chaotic growth models, the economy follows nonlinear dynamics, which are self-

generating and never die down. The fact that economic fluctuations can be internally 

generated has a certain intuitive appeal’ (p. 1840).  

 

The second reason is related to the incapacity of linear models to represent the 

observed sudden burst of volatility and occasional large movements in stock returns. 

Chaotic dynamics, which are nonlinear by nature, can therefore be more appropriate 

to represent the data generating process of stock returns (Hsieh 1991).    

 

Kyrtsou and Terazza (2002) argued that the chaotic behaviour of stock markets is 

related to complex systems which are the consequence of markets being comprised of 

heterogeneous agents: ‘a system is said to be complex when it exhibits some types of 

order as a result of the interactions of many heterogeneous actors’ (p. 408). In their 

view, the rational expectations hypothesis in economics, where all agents are assumed 

rational, hence homogeneous, does not hold:  

…traders differ in many aspects. For example, they face transactions costs, have 
different information sets, use different equilibrium models, work with different time 
scale and time horizons, and have different opinions or expectations about 
tomorrow’s dividends and stock prices. (p.412).  

 

There are different models explaining how interaction between heterogeneous agents 

produces complex dynamics.  

In these nonlinear models, complex asset-price fluctuations are triggered by an 
interaction between a stabilizing force driving prices back towards their fundamental 
value when the market is dominated by fundamentalists and a destabilizing force 
driving prices away from their fundamental value when market is dominated by 
speculative noise traders. (Kyrtsou and Terazza 2002, p.408) 
 

However, it may be difficult to differentiate between nonlinear stochastic and 

deterministic processes. Kyrstou and Terraza (2002) explained that a noisy chaotic 

process, which is believed to capture the behaviour of stock returns, presents 

similarities with an ARCH process, in terms of high kurtosis, nonlinear structure, 
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fractional integration coefficient equal to zero and high correlation dimension. Using 

the CAC40 daily returns series for the period 1987 to 1999, they applied different 

procedures, including the GPH fractional integration test and the Lyapunov Exponent 

(LE) to test for chaotic behaviour. They concluded that ‘complex systems, such as 

stock markets, cannot be described by a purely deterministic system…’and that ‘the 

Paris Stock Exchange can be modeled as a nonlinear system buffeted with noise 

(noisy chaos)’ (p.426).   

 

To identify chaotic behaviour is therefore not straightforward. Hsieh (1991) believes 

that the interest in chaos in finance should focus on low complexity chaotic behavior, 

as highly chaotic behaviour cannot be detected using a finite amount of data. 

Moreover, only a not-too-complex chaotic process allows for short-term complexity. 

Hommes and Manzan (2006) identified two main procedures to test time series for 

chaos: to ‘estimate the correlation dimension measuring the fractal nature of a 

possibly underlying strange attractor’…or… to ‘estimate the largest Lyapunov 

exponent (LE) which, when found to be positive, measures the sensitive dependence 

on initial conditions so characteristic of a chaotic system.’(169-170). However, the 

authors noted that these procedures are highly sensitive to noise. Hommes and 

Manzan (2006) echoed here an issue raised by Kyrtsou and Serletis (2006): the 

interpretation of outliers. Are the outliers exogenous phenomena which therefore 

should be neglected in empirical work or are they endogenous to the system and 

should be kept as they are informative about the generating mechanism? For example, 

Kyrtsou and Serletis (2006) tested daily Canadian exchange rates for a period of 30 

years. When outliers were kept in the sample, there was evidence of noisy chaotic 

structures; however if the outliers were removed, the best performing model was a 

GARCH (1,1).   

 

The BDS analysis does not test directly for nonlinearity or chaos. The null hypothesis 

of the test is that the values of the variable are iid. However, it can be used as indirect 

evidence about nonlinear dependence, whether chaotic or stochastic (Kyrtsou and 

Serletis 2006). It is therefore a first step in searching for chaotic behaviour in a series. 

However, Kramer and Runde (1997) showed that rounding in prices may result in 

rejection of a correct null hypothesis of iid returns. They therefore concluded that 
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evidence in favour of chaos in stock returns may be caused by the fact that prices 

change only in discrete ticks. 

 

With reference to the potential weaknesses of the BDS analysis, related to the choice 

of the parameters and the sensitivity to noise, McKenzie (2001) decided to look for 

chaotic behaviour in major stock market indices applying both the BDS and the close 

return tests, a procedure that searches for unstable periodic orbits embedded in the 

strange attractor. The results of the two analyses were sometimes conflicting, but the 

author did not find evidence of chaos: ‘the results furnished strong evidence of 

nonlinearity although it (the data) was not found to exhibit sensitive dependence on 

initial conditions, and was not chaotic’ (p. 51). McKenzie concluded that the close 

return test gives stronger evidence of nonlinearity in the data than the BDS procedure. 

 

In section 2.3.6, it was noted that the multistep strategy first developed by Hsieh 

(1991) also included deterministic nonlinearity as one class of models. Indeed Hsieh 

(1991) and Sewel et al. (1996) investigated the hypothesis that stock returns are 

generated by chaos. Hsieh concluded that nonlinearity is best captured by stochastic 

processes. On the other hand, the results of Sewel et al. presented mixed evidence. 

They used a procedure inspired by Larrain (1991): the K-map and Z-map. The K-map 

captures the nonlinear dynamics and the Z-map represents the behavioural elements. 

In this analysis, they estimate an equation comprised of the K-map, which expresses a 

series as a nonlinear function of its lag values and the Z-map, which is a proxy for 

market integration, as represented by the Morgan Stanley World Index. If the K-map 

overpowers the Z-map, then there is evidence of erratic behaviour. Sewel et al. used 

data from six major stock indices. Two of these proved to be generated by a stochastic 

process whereas the remaining showed mixed results (see section 2.3.6). The findings 

of the K and Z-map showed that ‘those stock markets not found to be stochastic are 

integrated with the World Market to varying degrees’ (p. 99). Moreover, ‘nonlinearity 

could arise from a representation of the time series as a nonlinear function of prior 

observations.’(p.101). This finding might be consistent with chaos but does not prove 

its existence.  
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2.4 Summary  

2.4.1 Efficient market hypothesis 

The Efficient Market Hypothesis is an important theory in modern finance. Based on 

the economic concept of rational expectations, it classifies markets according to their 

level of information efficiency.  

 

The critics of EMH and the rational school can be organised in three categories: 

critics of the rational expectation assumption, the theoretical foundation of EMH; 

critics of the methods used to test EMH in finance; and empirical evidence supporting 

the existence of market anomalies.  

 

The Behavioural Finance school questioned the notion of rationality in financial 

markets. For them, markets are driven by the psychology of the investors which they 

describe as non-rational. Their research put forward evidence of this lack of 

rationality in markets. The rational school acknowledges some of the behavioural 

school’s findings but still believes that on an aggregate level the rational investors’ 

actions are sufficient to render markets efficient.  

  

Testing EMH involves a methodological issue: the joint hypothesis problem. Indeed, 

testing EMH using an asset valuation model implies testing the model itself. The joint 

hypothesis problem remains an important hurdle, recognized by the rationalists.  

 

Finally, the finance literature includes a lot of evidence of market anomalies. These 

findings challenge directly the weaker form of EMH. The position of the rational 

school is that this evidence of predictability is based on short term momentum, which 

fades away once public, and that much of it is statistically but not economically 

significant.     

 

Following these critics, the EMH has undergone a paradigm shift. The understanding 

of efficiency tends to be more flexible and the new definition addresses some of the 

criticisms. For example, the description of information efficiency moved from a strict 

‘full reflection of information’ to the concept of ‘abnormal economic profit’.   
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2.4.2 Data generating process 

One way to circumvent the joint hypothesis problem is to analyze directly a financial 

series and to identify its data generating process, rather than using a method based on 

asset-valuation models.  

 

According to the weak form of EMH, the price of a share is expected to follow a 

random walk process. This type of DGP translates the concept that in an efficient 

market, the price of a share cannot be predicted using past information. 

 

A financial series that follows a random walk process is usually integrated of order 

one, i.e. it is nonstationary in levels and stationary after being differentiated. 

Therefore, an important first step is to test a series for stationarity. There are many 

unit root tests and each of them has limitations. Overall, the problems related to the 

unit root tests are usually their low power, the assumption of linearity of the series 

tested, the presence of outliers and structural breaks in the series. Each testing 

procedure addresses a specific problem, but none of the tests is superior to the others. 

A robust strategy involves the joint use of unit root tests (e.g. ADF) and stationarity 

tests (e.g. KPSS) as it addresses the problem of low power of the tests.    

 

However, the DGP of a financial series is often more complex than a simple random 

walk process. An interesting algorithm uses the iid residuals as a decision criterion to 

choose the best model to capture the DGP of a series. It first looks at linear models 

from the ARMA class. If the iid residuals criterion is rejected by the diagnostic tests, 

then it investigates nonlinear models. The strategy stops once a model satisfies the 

decision criterion.  

 

The general outcome from this strategy is that most of the financial series includes 

some elements of nonlinearity. This nonlinearity can be modelled using stochastic or 

deterministic behaviour.  

 

A natural first direction for finance investigation is the stochastic road where 

nonlinearity can have two causes: long memory and volatility clustering. Models to 

capture long memory are from the fractional integrated autoregressive moving 
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average (ARFIMA) class, and for volatility clustering, models from the general 

autoregressive conditional heteroskedastic (GARCH) class. Findings show strong 

evidence supporting GARCH models to capture DGP and weaker evidence in favour 

of long memory processes. Structural breaks and outliers can again be an issue when 

using these models. A solution is to divide the initial sample into subsamples around 

the expected break date.           

   

Deterministic nonlinear processes are also considered in finance. However, there are 

two main problems related to this approach. The first issue is to identify the 

appropriate model as there numerous types of nonlinear deterministic processes. The 

second issue is the difficulty of differentiating in practice between some chaotic and 

stochastic nonlinear models.  

 

Overall, empirical evidence shows that the data generating process of financial time 

series are best captured with ARMA-GARCH, modelling both the mean and the 

conditional variance. The volatility clustering is interpreted by many as a breach of 

the weak form of EMH. Others argue that no abnormal return can be yielded from 

strategies based on these anomalies and therefore conclude that the weak form of 

EMH is still valid.      

2.5 Implications of the Literature Review on the First Research Objective 

The scope of the first research objective is to assess the impact of Euronext 

integration on the efficiency of the Dutch, Belgian and French stock markets. The 

EMH paradigm has been evaluated these last decades, but it remains an important 

paradigm in finance research and is used as the theoretical framework for the first 

research question. 

 

The two main research schools in finance, the Rational and the Behavioural schools, 

have different approaches to research which stems from their different understanding 

of the market. Behaviouralists, who believe in the lack of rationality of the market, 

tend to research the market and its participants qualitatively. The rationalists, who 

have adopted the rational expectation paradigm, focus more on quantitative research 

involving financial and macro-economic time series. The rationalist approach is 

adopted for the first research objective and second objective of this thesis. 
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Consequently, the empirical work presented is quantitative and the methodology is 

inspired from the review of the literature.  

 

There are two main approaches to test the EMH of a market. One way is to use an 

asset-valuation model, but then the joint-hypothesis problem occurs. The other way is 

to adopt a model-free approach which concentrates on the identification of the DGP. 

This popular approach applies an algorithm based on model fitting and the use of a set 

of diagnostic tests. The methodology for the empirical work for the first research 

objective is based on this algorithm.     
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3 Literature Review Related to Market Integration 

3.1 Introduction 

This chapter reviews the literature relating to the second research objective: to assess 

the market integration between the three stock exchanges following the Euronext 

incorporation. It is divided into three sections. Market integration is not a complete 

theory, rather a set of propositions and concepts. Hence the chapter opens with a 

discussion of different definitions of market integration from the finance literature. 

The next section investigates the consequences of market integration and its potential 

impact on international portfolio diversification. The last section reviews the different 

methods used to assess the level of integration. The econometric methods presented 

are classified into two categories: static models where one model is estimated over a 

period, such as cointegration, and dynamic models where processes capture changes 

in all observations, such as conditional correlations. The chapter ends with a summary 

of the main findings section.   

3.2 Definitions  

A common definition of stock markets integration is that integration is a function of 

the degree of co-movement in asset prices (Bekaert and Harvey 1995; see also Tahai 

et al. 2004; Choudhry et al. 2007). A broader definition includes non-synchronous 

movements between markets: ‘if two markets demonstrate greater co-movement on 

the same day, or a stronger lead/lag relationship across days, we interpret this to 

represent greater integration between the two stock markets’ (Bracker et al. 1999, 

p.2). 

 

There are also more complex definitions. For example, Baele et al. (2004): 

The market for a given set of financial instruments and/or services is fully integrated 
if all potential market participants with the same relevant characteristics: 

1. face a single set of rules when they decide to deal with those financial 
instruments and /or services;  

2. have equal access to the above-mentioned set of financial instruments 
and/or services; and  

3. are treated equally when they are active in the market. (p.6) 
 

The authors stressed that their definition has three important components: 1. financial 

integration is independent of the financial structures within regions; 2. frictions can 

subsist in integrated markets as long as frictions affect the markets symmetrically; and 
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3. full financial integration entails that market participants and firms listed have the 

same access to financial intermediaries and clearing platforms.   

This latter definition is interesting because it describes financial integration as a 

complex phenomenon. However, because of its complexity, it is difficult to relate it to 

a clear testing framework. Hence, this study adopts the definition of financial 

integration as an increase in markets co-movements as a theoretical framework.     

 

An important discussion in the literature is whether stock market integration is an 

isolated trend or part of a wider reality. In an introductory article of a special issue of 

the International Review of Financial Analysis on international equity market 

integration, Kearney and Lucey (2004, p. 572) placed stock market integration in the 

general context of capital market integration, itself a part of economic integration.  

 

Bekeart and Harvey (1995) believed that the degree of integration, or segmentation, of 

a market with world capital markets is greatly influenced by the economic and 

financial policies followed by its government or other regulatory institutions. In other 

words, the degree of economic integration affects the degree of capital integration 

(Tahai et al. 2004, p. 327).   

 

The factors influencing market integration were also debated. Masih and Masih 

(2004) believed that legal and economic common frameworks play an important role. 

They argued that European Union membership, EU institutional agreements 

concerning equity markets, the growth of Euro-equity markets, the common monetary 

policies, as well as other global trends, all explain European stock market integration 

(p. 21).  

 

Fratzcher (2001), Adjaoute and Danthine (2003), Baele et al. (2004) and Hardouvelis 

et al. (2006) focused their research on financial integration in the Euro area. Fratzcher 

and Hardouvelis et al. argued that financial integration in the Euro-zone began in the 

mid-1990s but that the European Monetary Union (EMU) has increased the 

phenomenon. For Fratzcher, “a high degree of financial integration in Europe may at 

least in part be explained through the convergence of monetary policies among 

European and in particular Euro area countries” (p. 27). Hardouvelis et al. put forth 

two main findings to support their conclusion that EMU was the driver for stock 
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markets integration in the Euro-zone: 1. the UK stock market does not show increase 

integration with the other European stock markets; and 2.financial integration is a 

Euro-zone-specific phenomenon, independent of world-market integration (p. 390).  

 

Baele et al. (2004) examined the impact of EMU introduction on five types of markets 

in the Euro area: money, government bond, corporate bond, banking/credit and equity 

markets. Their findings indicated that the integration of each market has attained 

different levels: the money market is the most integrated whilst the equity market is 

the least integrated of the five types of markets in the Euro area. This outcome can be 

related to the study of Adjaoute and Danthine (2003) who also found that the equity 

markets in the Euro area are only partially integrated. They argued that EMU 

facilitated integration but that other barriers continue to exist for a truly integrated 

financial area to exist. 

 

Choudhry et al. (2007) collected reasons for integration into three categories: the 

economic ties and policy coordination between countries; the real interest rate 

linkages between countries due to international capital flows, as real interest rates 

affect stock prices; and the increased importance of international investors. An 

excellent resume is given by Kim et al. (2005): ‘…integration of the financial markets 

is fundamentally linked to economic growth through risk sharing benefits, and 

reductions in macroeconomic volatility’ (p. 2476.. See also Prasad et al. 2003). 

 

However, the relationship between economic and financial integration is not always 

straightforward. For example, Bekaert and Harvey (2002a, p. 430) differentiated 

between economic integration, which is characterized by a decrease in barriers to 

trade in goods and services, and financial integration, which is related to the free 

access of foreigners to the local capital market and of local investors to foreign capital 

markets.  

 

Another interesting difference is raised by Kearney and Lucey (2004) who noted that 

the pace of financial markets activities grows faster than the pace of real output. They 

also argued that the actions of international investors looking for the best risk-return 

investments in increasingly integrated financial markets have an effect on 

governments’ ability to pursue independent policies.  



58 

 

In particular, they impact directly and forcefully on the determination of exchange 
rates, they influence the levels of national income and employment, and they may 
eventually curtail the potential benefits of international diversification. (Kearney and 
Lucey, 2004, p. 572) 
 

Empirical evidence regarding the relationship between economic and financial 

integration is mixed. For Cheng (1998), economic integration and stock market 

integration are closely related. Using factor analysis and canonical correlation, he first 

showed that the US economic cycles lead the UK’s and the US economic indicators 

explained the variance in the UK economy. Then, looking at the relationship between 

the two stock markets, he found high co-movements as well as evidence of feedback 

relationships between the two markets. Overall, Cheng concluded that the US 

financial market and economy seem to have a stronger influence on the UK’s than 

vice versa.  

  

A similar approach and results were presented by Phylaktis and Ravazzolo (2002). 

Focusing on Pacific-Basin countries (PBC), they found evidence that economic 

integration provides a channel for financial integration. Moreover, the authors could 

not observe a difference in the degree of integration among countries even when they 

displayed different degrees of stock market openness during the nineties; restrictions 

such as foreign exchange controls seemed not to isolate capital markets from world 

influences. Finally, Phylaktis and Ravazallo, explained the high regional contagion 

effect of the Asian crisis with the important regional economic interdependence and 

the milder effect of the crisis on the global financial markets by the less important 

financial integration of the PBCs at the global level.  

 

Cheung and Lai (1999) also looked at the relationship between economic and market 

integration, but their conclusions were different and contradicted both Cheng (1998) 

and Phylaktis and Ravazzolo (2002). Using cointegration they found that the French, 

German and Italian stock markets displayed long term co-movements. They attempted 

to explain this relationship with macroeconomic determinants including money 

supply, production and dividends. Here too, these variables were also found to be 

cointegrated. However, when looking at the relationship between common permanent 

components in stock prices and macroeconomic variables, the authors found that 

macroeconomic variables have a limited role in accounting for the relative stock 
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market movements. They explained the results with the “missing-variable 

perspective”, i.e. that the French, German and Italian stock markets co-movements 

could be influenced by economic variables other than the three macroeconomic 

determinants taken into consideration in their study.   

 

Other authors tried to identify the legal or macroeconomic factors that may impact the 

financial integration. For example, Dickinson (2000) assessed the integration of the 

US, UK, French and German stock indices for the period 1980-1995. He found 

evidence of long run equilibrium between all but the US indices for the period 1988-

1995 only. He attempted to explain this result with macroeconomic variables 

including: real interest rate, real exchange rate and industrial production. His findings 

showed that real interest rates explained the stock return variability best. However, the 

interaction seemed to be bidirectional: stock indices may affect real interest rates. He 

explained the latter finding by the fact that stock market performance can be seen as 

an indicator of future activity.   

 

Chay and Eleswarapu (2001) looked at the impact of deregulatory reforms on the 

New Zealand stock markets: they wanted to assess whether the removal of direct 

barriers to capital flows lead to an increased degree of market integration. They found 

evidence that the New Zealand market was segmented before the reforms of 1984, 

with conditional returns only affected by domestic business conditions and more 

globally integrated following the reforms. Along the same lines, Chelley-Steeley et al. 

(1998) examined the impact of the removal of exchange controls, a direct barrier, on 

major European stock markets. They found evidence that the reform increased the 

interdependence between most of the European stock markets.  

 

These findings contradicted Bekaert (1995) who insisted on the predominant role of 

indirect barriers, as he found that the correlation between integration and direct 

barriers to foreign investments (ownership restrictions and control of capital flows) is 

weak.   

 

Bekaert and Harvey (2002a) argued that one has to be careful to distinguish between 

the concept of liberalization and integration. Focusing on emerging markets, they 

provided the example of a country that passes a law to seemingly drop all barriers to 
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foreign participation in local capital markets. They argued that this might not be an 

effective liberalization measure. Foreigners might have had access to the market using 

other means or they might not believe in the new regulations. Therefore, integration is 

not directly related to liberalization measures. For the authors, integration is therefore 

a gradual process and the speed of the process is specific in each individual country, 

as it is unlikely that all barriers to foreign investments (legal barriers, access to 

information, economic policy risk, currency risk among others) disappear at the same 

time (on the distinction between market liberalization and market integration, see also 

Bekaert and Harvey 2002b).  

 

Finally, Ayuso and Blanco (2000) also insisted on the fact that, parallel to the 

liberalization of capital movements, technological innovation has provided means to 

move huge amounts of capital quickly and safely across countries, so helping market 

integration.   

3.3 Methods for Analysis of Market Integration 

There exist many approaches to research market integration. Kearney and Lucey 

(2004) provided an interesting theoretical framework, linking definition and 

measurement of international financial market integration. Reviewing the literature on 

financial market integration, they classified the different approaches in two broad 

categories: direct and indirect measures.  

 

In the direct measures, they included one approach related to the law of one price, 

according to which the rates of return on financial assets with similar risk 

characteristics and maturities should be equalized across political jurisdictions. The 

assumption being that, because of theoretically unrestricted international cash flows, 

seeking the best available return should lead to an equalization of returns across 

countries; i.e. “assets with identical cash flows should command the same return” 

(Kearney and Lucey 2004, p. 573). More specifically, using the covered interest parity 

condition (CIP), unrestricted international capital flows tend to equalize nominal 

interest rates across countries when they are contracted in a common currency. Ayuso 

and Blanco (2001) suggested that for the law of one price to hold, there should be 

perfect cross-market integration, i.e. a situation with no barriers of any kind to 
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international financial transactions. If this is true, then there are no cross-market 

arbitrage opportunities.  

 

 According to Kearney and Lucey (2004), the main problem in applying this approach 

empirically is that of finding financial assets with similar enough risk profiles across 

countries for a meaningful comparison. Among their direct measures of integration, 

Kearney and Lucey also included the analysis of equity market correlations or the 

common stochastic trend in returns. However, these studies have the difficulty of 

testing ex ante expectations using ex post realized returns (p. 574).  Moreover, 

disagreeing with the previous authors, Ayuso and Blanco (2001) argued that “the law 

of one price or the absence of arbitrage opportunities cannot be assessed from the 

analysis of the co-movement of the levels of financial asset prices or of their 

volatilities”. (p. 269)  

 

In the category of indirect measures, Kearney and Lucy (2004) included two 

approaches. The first one is related to the concept of international capital market 

completeness. According to Stockman (1988, cited in Kearney and Lucey 2004, p. 

573) “financial integration is perfect when there exists a complete set of international 

financial markets that allow economic and financial market participants to insure 

against the full set of anticipated states of nature”. The second indirect measure is 

based on the extent to which domestic investment is financed from international 

savings rather than domestic savings. This approach is related to perfect capital 

mobility whereby for a country that is small in world finance markets, exogenous 

changes in national savings can be financed from abroad, with no changes in real 

interest rates. It is directly related to the findings of Feldstein and Horioka (1980, 

cited in Kearney and Lucey, 2004) who stated that national savings and domestic 

investment correlate well. However, Kearney and Lucey do not believe that the 

correlation of these variables have implications for the degree of international cash 

flows. The authors concluded their review of the theoretical framework by proposing 

that the two most helpful definitions of financial market integrations are CIP and 

capital market completeness. 
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3.4 Consequences of Market Integration 

In an article on emerging markets finance, Bekaert and Harvey (2002a) looked at the 

impact of market integration on security prices. Using the framework of the Capital 

Asset Pricing Model (Sharpe 1964; Lintner 1965), they explained that in a completely 

segmented market, assets are priced off the local market return: ‘the local expected 

return is a product of the local beta times the local market risk premium’ (p. 431). 

Because local returns exhibit high volatility, it is likely that local expected returns will 

be high. Now, if markets are integrated, then the expected returns will be a function of 

a beta estimated with respect to the world market portfolio multiplied by the world 

risk premium. In this case, the expected returns will be lower. Thus, theoretically, 

when a segmented market changes into an integrated market, prices should rise and 

expected return should decrease. To verify this statement, the authors examined the 

average annual geometric returns of 20 emerging markets, the International Finance 

Corporation (IFC) composite portfolio and the Morgan Stanley Capital International 

MSCI World market portfolio, for the period pre-1990 and post-1990. The 1990 

breaking point is chosen as capital market liberalizations are clustered around that 

date. As expected, they observed a sharp decline of the returns for the post-1990 

period. On the other hand, volatility measured as the average annualized standard 

deviation seemed not to be affected by market liberalizations: it increased for some 

countries and decreased for others. Recognizing that market integration is a gradual 

and complex process which is difficult to date exactly, they referred to studies 

applying more complex models but yielding essentially similar conclusions (for 

example: Bekaert and Harvey 2000; Kim and Singal 2000). Moreover, the authors 

insisted that emerging market returns remain not normally distributed for both 

periods: despite liberalization, markets are skewed and have fat tails.   

 

In a similar spirit, de Jong and de Roon (2005) examined market integration of 30 

emerging stock markets for the period 1988 to 2000 and using a time-varying beta to 

measure the gradual process. They found that the emerging markets have become 

more integrated with the world stock markets. According to their estimation, the 

segmentation decreases at an average annual rate of 0.055 on a scale !0, 1". Similarly 

to Bekeart and Harvey (2002a), they argued that “integration with the world market 

leads to lower expected returns and hence lower cost of capital” (p.608). Indeed, they 
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estimated that the decrease of segmentation induce an average decrease of 4.5% for 

the 30 emerging stock markets of the sample.     

  

Bekaert and Harvey (2002a) also examined the impact of integration on market 

correlation. Interestingly, they believed that, in theory, integration should not 

necessarily lead to higher correlation with the world: ‘a country with an industrial 

structure much different than the world’s average structure might have little or no 

correlation with world equity returns after liberalization’ (p. 434). However, their 

research showed that on average, correlations of the emerging markets with the world 

market has increased post-1990, as well as correlation among emerging markets. They 

provided the same picture when estimating emerging markets beta with respect to the 

world market returns: for most of the markets, the beta increased during the post-1990 

period.   

 

An increase in market correlation might harm the benefits of international 

diversification. Indeed, stock market integration implies that markets are subjected to 

the same set of risk factors (Ahlgren and Antell 2004, Tahai et al. 2004). This can be 

an important drawback for international portfolio.  

 

The modern portfolio theory (MPT) originally developed by Markowitz (1952) is 

based on diversification of risks which in a mean-variance framework is related to the 

correlation structure among assets: the lower the correlation among assets, the greater 

the diversification. Fundamentally, MPT asserts that an investor should look at the 

portfolio rather than at individual assets, as a portfolio will yield a higher return for a 

specific level of risk. More specifically, a portfolio allows for the reduction of 

unsystematic risk, the risk specific to each asset. A carefully chosen portfolio should 

leave the investor with only the systematic risk, the risk of the market. Asset 

allocation might include assets from different industries, as they will be less 

correlated with each other than assets coming from the same industry. But, when 

possible, investors should also choose assets from different countries, international 

diversification, as they are less correlated than assets from the same country, domestic 

diversification (Longin and Solnik 1995 ; Solnik 1974, reprinted in 1995). Of course, 

when including international assets in their portfolio, investors also expose 

themselves to potential exchange risks. They can choose to hedge and remove 
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exchange risks by buying, for example, forward exchange contract. However, they 

may decide to keep their position unhedged and then also speculate on the currency. 

Solnik (1974, reprinted in 1995) compared the riskiness of three portfolios: one 

domestic comprised of only US stocks, one international unhedged and an 

international hedged portfolio. The domestic portfolio presented the highest level of 

risk, followed by the international unhedged and the international hedged portfolio. 

He concluded that the benefits of international diversification offset the risks of the 

non-protection against currency exchange.  

 

Market integration has two consequences on stock markets relations: an increase in 

correlation and an increase of short and long term dependences. For Masih and Masih 

(2004), long-term equilibrium may have an impact and thus potential abnormal profit 

from diversification in cointegrated European markets is limited to the long-term. 

However, they did not rule out the possibility of profit from diversification in the 

short-term. Tahai et al. (2004) who assessed the degree of financial integration of G7 

equity for the period 1978 to 1997 reached a similar conclusion. On the other hand, 

Bekaert and Harvey (2002a) argued that correlations of emerging markets’ returns are 

still sufficiently low to provide opportunities for diversification.  

 

In an interesting follow-up study, Solnik et al. (1996) investigated the relationship 

between volatility and international market correlations. More specifically, they raised 

two questions. Has market integration raised international correlation? Is correlation 

increasing in periods of high market volatility? The sample was comprised of weekly 

and monthly data for stocks and bonds of German, French, UK, Switzerland, Japan 

and US index during the period 1958 to 1995. They computed the standard deviation 

and correlation using a rolling window of 36 months. They found that an increase 

correlation between stock markets, in particular between France and the UK which 

they explained with the leading role these countries play in the EU. Moreover, they 

found evidence that international correlation increases in periods of high market 

volatility, which they assessed as bad news for the global money managers: “when the 

domestic market is subject to a strong negative shock is precisely when the benefits of 

international risk diversification are needed most, but the increased correlation 

reduces that benefit” (p.33). They concluded however that the benefits of international 

risk reduction are still robust.         
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Partially agreeing with Solnik et al. (1996), Karolyi (2003) believed that an increase 

in co-movements can be explained by two hypotheses. He claimed that co-movements 

can reflect innovations in common, i.e. unobservable global factors. However,  he 

also argued that co-movements can be related to noise traders, where “increases in 

correlation  especially around stressful, bear market periods, represent the work of 

uninformed investors who overreact to news in one market relative to another or who 

respond to shifts in sentiments regardless of fundamentals in those markets” (p. 191).         

 

Other studies have presented an increase in predictability as an important 

consequence of market integration. Bhattacharyya and Banerjee (2004) who looked at 

the integration of 11 developed and emerging stock markets for the period 1990 to 

2001 used the Granger causality test to assess the causal relationship between the 

markets. They found that the Hong Kong market led other Asian markets. A similar 

strategy was adopted by Huang et al. (2000). They also found that, for the period 1992 

to 1997, the US stock market Granger caused the South China Growth Triangle region 

stock market. They concluded that US price changes could be used to predict changes 

in the Hong Kong and Taiwan markets. Similarly, Yang et al. (2003) used an impulse 

response function to evaluate the short-run dynamic linkage between the US and 

eleven Asian markets for the period 1995-2001. They found that the US market 

substantially influenced the Asian markets but was not influenced by them. 

Furthermore, it appeared that the Singapore market led the Asian region.  Along the 

same lines, Masih and Masih (2004), using variance decomposition and impulse 

response analysis, demonstrated that the British stock market explained shocks in the 

French, German, Dutch and Italian stock markets.  

 

Thus, market integration has impacted on the interaction of stock markets. It has 

tended to increase their correlation and their short and long-term relationships. 

Consequently, there is an increase in predictability between stock markets. This factor 

may affect portfolio diversification. 

3.5 Empirical Models for Market Integration 

The previous sections reviewed the definitions of market integration, the different 

approaches to research the trend, and the consequences on portfolio diversification.  

This section looks at different models developed to empirically research market 
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integration. They mainly fall into the direct measures category proposed by Kearney 

and Lucey (2004). The presentation is divided into static and dynamic models. Static 

models, such cointegration, are estimated over one period and dynamic models, such 

as conditional correlation, try to capture the changes in each observation.      

3.5.1 Market integration: static models 

Markets integration was first researched using different approaches, such as spectral 

analysis to research markets’ co-movements, or cluster analysis to look for correlation 

among equity markets (Tahai et al. 2004; Masih and Masih 2004).  

 

An example of this approach can be found in Asimakopoulos et al. (2000). In their 

article, the authors analysed the interdependence of the US and some major European 

equity markets using spectral analysis. In this approach, each time series is first 

described in terms of its cyclical components and their relative importance: the 

univariate spectrum. Then the relationship between the different series is assessed by 

comparing the cycles of each series. The coherence spectrum is the equivalent of a 

square correlation in the time domain and estimates, within a frequency band, the 

percentage variance in one series that is predictable from another series. Finally, the 

phase spectrum looks at the phase relationship between series within each frequency: 

does the change in one series occur at the same time as in the other series or is there a 

lead/lag effect?  

 

Assimakopoulos et al. (2000) used daily returns from the indices of the three largest 

European markets in terms of market capitalisation: London (FTSE 100), Franfurt 

(DAX 30), Paris (CAC 40); and the New York market (S&P 500) for the period 

01/01/1990 to 31/10/1996.  Analysis shows a high-level of contemporary correlation 

between the returns of the three European indices: 0.447 between DAX 30 and FTSE 

100; 0.597 between DAX 30 and CAC 40; 0.618 between FTSE 100 and CAC 40. 

There is a lower contemporary correlation between the European indices and S&P 

500 than among the European indices, but a stronger link between current European 

returns and lagged returns of S&P 500. This pattern translates the non-synchronous 

trading on the European and US markets. It also reflects the responses of the 

European markets to changes from the previous trading day in the US market. 

Univariate spectra for the four returns showed that the CAC 40 has the largest 
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variance, followed by DAX 30, FTSE 100 and S&P 500 (in the time domain, the 

standard deviation showed the same finding). Moreover, the four indices presented 

similar patterns at low frequency with cycles of between 11 to 13 days duration. For 

the European indices, there is also an important cycle of duration of approximately 

four days. At higher frequency (shorter duration cycles), there is no clear pattern. 

Coherence analysis showed important correlation between the three European indices 

across the entire range of frequency. The highest coherence was between the CAC 40 

and the DAX 30, a finding that the authors attributed to the high level of integration 

between the German and the French economies. When comparing the European and 

the US markets, the coherence is high at the lowest frequencies, but decreases rapidly 

beyond frequencies of about 1.5, corresponding to cycles of duration between four 

and five days. This indicates that there are some similarities between the US and 

European markets over the longer duration cycles (low frequencies), but less over the 

shorter duration cycles (one day to one week, higher frequencies). Moreover, phase 

spectra showed that within Europe, the DAX 30 had a tendency to lag both the FTSE 

100 and the CAC 40 at all frequencies, whereas there was no clear pattern between 

FTSE 100 and CAC 40. Finally, the US market had a tendency to lead all the 

European markets. Asimakopoulos et al. explained the latter finding in terms of non-

synchronous trading: ‘the European markets respond to developments affecting the 

US after the close of the previous days- trading in Europe’ (p. 46).   

 

Another empirical tool used in the early literature is the correlation structure of the 

equity markets’ returns. A predominant view is that if the correlation structure shows 

instability over time, then, assuming the trend is towards increased correlation, there 

is evidence of integration (Kearney and Lucey 2004, p. 575). Another view is 

developed by Kasa (1995 cited in Ragunathan et al. 2004) who believed that 

integrated markets should display a minimum level of correlation. His hypothesis 

states that if markets are integrated, then ‘the unobserved stochastic discount rate in 

the two markets should be the same’ (p.1168). This hypothesis was tested using the 

Hansen and Jagannathan’s (1991) bound on the volatility of the discount factor which 

Kasa modified into  the measurement of a lower bound on correlations: if markets’ 

bilateral correlations fail to satisfy the bound, then markets are believed not to be 

integrated. In his initial study, Kasa limited his sample to three countries. Ragunathan 

et al. applied Kasa’s methodology but extended the sample to 18 countries. Moreover, 
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they decided to use two different proxies for the risk-free rate: one-month Certificate 

of Deposit (CD) and the US three-month Treasury bill rates. Their results 

demonstrated that the choice of the risk-free proxy had an impact on their findings. 

More specifically, the Sharpe ratios, used as the coefficient of variation in the 

calculation of the bound, are consistently lower if measured as an excess on  one-

month CDs than as an excess on three-month Treasury bill rates. The authors 

explained this fact by the risk premium included in CDs. Overall, Ragunathan et al. 

found evidence in favour of integration of the 18 countries with the US and the World 

markets.  

 

Leong and Felmingham (2003) performed a similar survey.  They looked at the co-

movement of five major Asian stock markets around the Asian Crisis, using daily data 

for the period 1990 to 2000 and broke down the original sample into two sub-periods. 

They found that overall the correlation between indices has strengthened since the 

Asian crisis.  

 

Unconditional correlation structure as a measurement of market integration has been 

criticized. Ayuso and Blanco (2001) pointed out that higher correlation is neither a 

necessary nor a sufficient condition for greater market integration: 

If markets are completely integrated and, therefore, there are no arbitrage 
opportunities, returns on different assets can be divided into a common component 
and an idiosyncratic one. The latter, however, maybe sufficiently important as to 
render ex-post correlation rather low. (Ayuso and Blanco 2001, p.266)  
 

To illustrate their points, they estimated the correlation structure of seven stock 

exchanges (New York, London, Paris, Madrid, Frankfurt, Milan, and Tokyo) for the 

period 1995-1999. On average, correlation between these markets was 0.54. During 

the same period, they analysed the correlation between seven sub-indices of the New 

York Stock Exchange and found that, on average, it was 0.47. Arguing that it was not 

reasonable that the degree of integration should be higher across stock exchanges than 

within any of them, they concluded that the static correlation approach is flawed. 

Increased correlation provides evidence of increased financial market linkages, not 

higher integrations. (Ayuso and Blanco 2001).   
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A popular approach that can be included in the static model is cointegration analysis. 

Kearney and Lucey (2004) noted that cointegration has an intuitive appeal to assess 

integration. If equity markets are integrated, then stock prices are expected to have 

long-run relationships, i.e., they share common stochastic trend(s).  Therefore, 

cointegration is a method often used, as it helps to capture long-term relationships and 

provides understanding of short-run market interaction using the error correction 

models (see also Choudhry et al. 2007; Masih and Masih 2004). 

 

The remainder of this section is organised as follows: first the concept of the 

cointegration analysis and related techniques are presented, and then three 

applications which exemplify the use of the cointegration analysis in stock markets 

are discussed in detail. 

 

Testing for cointegration: 

Different tests for cointegration exist, but the method developed by Johansen, and its 

various improvements, is very popular in the literature (Ahlgreen an Antell 2002, p. 

851). 

 

Evidence of cointegration between markets can be interpreted differently. Dickey et 

al. (1994 cited in Ahlgreen and Antell 2002) explained that cointegrating vectors can 

be thought of as representing constraints that an economic system imposes on the 

movement of the variables in the system in the long-run. Consequently, the more 

cointegrating vectors there are, the more stable the system. For Bernard (1991 cited in 

Kearney and Lucey 2004, p. 576), a necessary condition for complete integration is 

that there are # � 1 cointegrating vectors in a system of # indices. 

 

Some authors (Choudhry et al. 2007; Granger 1986 cited in Huang and Fok 2001; 

Baillie and Bollerslev 1989 cited in Ahlgreen and Antell 2002) argued that if markets 

are cointegrated, potential prediction of future stock prices based on past returns is 

possible. This would be in breach of the efficient market definition which states that 

stock prices are unpredictable. Other authors (Baffes 1994; Engel 1996) rejected this 

idea as they understand EMH as ruling out arbitrage opportunities from prediction 

returns rather than stock predictability return. For example, Misah and Misah (1999, 

2004) also believed that cointegration does not necessarily mean inefficiency and that 
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an inefficient market exists only when predictability can lead to risk adjusted excess 

returns. In the same vein, Climent and Meneu (2003) explained that incompatibility 

between cointegration and efficiency depends on the definition of efficiency. If an 

efficient market is defined as a market without arbitrage, then cointegration between 

markets alone does not imply inefficiency, but rather the existence of abnormal 

returns yielded from the cointegration predictability. Moreover, Chelley-Steeley et al. 

(1998) argued that cointegration among European indices allowed prediction of only a 

small proportion of the variation of the equity markets they surveyed. For Dickinson 

(2000), cointegration between stock indices alone is not a sufficient analysis:  

…international stock index co-movement seems to depend upon more general 
financial market linkages than is apparent from an analysis of stock index 
cointegration alone and that equivalently international linkage extend beyond 
interaction between stock indices. (p.273) 

 

Finally, Kasa (1992) questioned the fact that cointegration reflects the integration of 

stock markets. He argued that stock market prices can be cointegrated for other 

reasons than stock market integration.  

 

A popular methodology to assess the relationship between markets is therefore based 

on multivariate cointegration, impulse-response function (IRF), and forecast error 

variance decomposition (FEVD), capturing both long and short run dependence 

between series. More specifically, the cointegration analysis looks at potential long 

run equilibrium between variables, IRF reflects to what degree the shocks in the 

variables are transitory, or persistent, and FEVD evaluates the relative importance of 

random changes in the explanation of the FEVD of the returns of other variables (For 

a good overview of the approach, see Climent and Meneu 2003).  

 

Evidence from cointegration analysis in stock markets: 

Presented here are three examples of research following the above approach (for more 

examples, see also Masih and Masih 1997; Cheung and Lai 1999; Dickinson 2000; 

etc.). 

 

The aim of Masih and Masih (2004) was not to measure directly market integration, 

but to assess the dynamic linkages among five European stock markets and the effect 

of the October 1987 crash on their transmission mechanism. The data for the research 
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is comprised of end-of-month closing share price indices for the French, German, 

Dutch, and United Kingdom stock exchanges for the period January 1979 and June 

1994. To account for the October 1987 crash, the original sample was divided into 

two panels (pre-crash: January 1979 to September 1987 and post-crash: November 

1987 to June 1994).  Moreover, the raw indices have been transformed into real US 

dollars in order to adopt the point of view of US investors, but also to damp out ‘the 

noise from exchange market fluctuations upon stock price without distorting the 

exchange rate influence upon stock markets’ (p.5). The Augmented Dickey Fuller 

(ADF) and the Phillips-Perron (PP) tests showed that the series were integrated of the 

first order, I(1). The Johansen-Juselius (JJ) test for multiple cointegration indicated 

that there existed at most a single cointegrating vector in each of the models over the 

pre and post-crash samples. However, the null hypothesis of no -cointegrating vector 

for the entire sample period could not be rejected. Using the Vector Error Correction 

Model (VECM) and the Granger (1969) causality test to model the short term 

linkages among the stock markets, they discovered that the lead-lag relationships 

changed from the pre- to the post-crash panels. During the pre-crash period, short-run 

changes in the German index Granger caused changes in all other indices, except for 

Italy. Likewise, the French and the Dutch indices have the same causality on the 

Italian and the United Kingdom indices respectively. For the period after the crash, 

the picture changed: the relationship between the German and the United Kingdom 

was inversed, with UK now leading the German index whilst the German continued to 

lead the French market, but all other causal linkages disappeared. Information from 

the Error Correction Term (ECT) indicated that in the pre-crash period, changes in the 

German and French indices adjusted in the short-run for the deviation from the long-

run equilibrium, and in the post-crash period, it was the French and the Italian indices 

that bore the brunt of short-run adjustments. Finally, the main finding from the 

impulse response and variance decomposition analysis was that, especially for the 

post-crash period, the UK and Dutch market had a leading role in picking up 

information and passing it to the rest of the market. Masih and Masih explained the 

leading role of the UK market by the fact that it had high liquidity and capitalization 

and low transaction costs, but also an independent monetary policy. This explanation 

did not hold for the Netherlands that had low absolute capitalization. However, 

compared to the other four markets, it had a high equity capitalization to GDP and the 

highest proportion of foreign firms listed. Masih and Masih noted that temporal 



72 

 

causality and the propagation mechanism among stock markets should be addressed 

‘in a multivariate and, if possible, cointegrated framework, particularly since the 

fluctuations in the financial markets are so interactive and interdependent’. (p.21) 

 

Another representative example of this methodology can be found in Climent and 

Meneu (2003), who researched whether the 1997 Asian crisis increased information 

flows between international markets. They used daily stock indices prices for 7 South 

East Asian major markets, the UK, Euro-zone, North America, and Latin America, for 

the period January 1995 to May 2000, and dividing the original sample into two 

subsamples (Pre- and Post-crash). They applied two multivariate cointegration 

procedures, a parametric approach (Johansen 1988) and a nonparametric approach 

(Bierens 1997). The results from both tests showed noncointegration between the 7 

Asian markets and each of the major international stock markets, in both subperiods. 

The authors explained the results with the high number of markets and the small 

sample period.  

 

However, Climent and Meneu (2003) argued that the absence of a long-term 

relationship does not imply the lack of short-run dynamics among the markets. Using 

a Vector Autoregressive (VAR) model, they first examined bivariate Granger 

Causality (Granger 1969) between the Asian series and the international markets. 

They found that in the pre-crash periods, the US, as well as the Latin markets, 

influenced all the Asian markets, except South Korea, but in the post-crash periods, 

all the international markets showed unidirectional causality towards the South East 

markets, except for Malaysia. According to the authors, South East markets displayed 

a greater dependence to information flow from international markets after the crisis.  

Willing to explore further the dynamics of these relationships, Climent and Meneu 

(2003) then applied an impulse-response function (IRF) and forecast error variance 

decomposition (FEVR). The results showed that during the pre-crash period, Asian 

markets responded from a shock from the US market, while during the post-crash 

period, the Asian market’s response from a US shock grew. Moreover, the 

responsiveness of all international markets from a US shock seemed relatively more 

important, and all international markets, including the US, displayed a strong response 

to shocks from Asian markets. Climent and Meneu concluded then the degree of 

integration between the markets increased after the crisis. Finally, the results of the 
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FEVR underlined the exogeneous character of the US market, as well as its 

explicative capacity to events in the Asian markets. Overall, during the post-crash 

period, most of the markets reduced the explicative capacity of their own forecast 

error deviation variance which, according to the authors, translated the contagion 

effect of the crisis.  

 

Choudhry et al. (2007) applied a slightly different methodology. The scope of their 

article was to assess the impact of the Asian financial crisis on the relationship 

between nine major Asian and the US stock markets. Their sample was comprised of 

the daily prices for the main index in each market for the period 1988-2003. They 

divided their original sample into three sub-periods: the pre-crisis, the crisis, and the 

post-crisis periods. In order to assess the long-run relationships between the markets, 

they applied the Johansen multivariate cointegration analysis. For each sub-periods, 

they perfomed three tests: one excluding Japan and the US in the VAR, one including 

Japan in the VAR, and one including the US in the VAR. This approach allowed them 

to separately assess the importance of Japan or the US on the other Asian stock 

markets. They found evidence of long-run relationships in each of the sub-periods, but 

the crisis periods included the highest number of nonezero cointegrating vectors. The 

authors argued therefore that diversification and minimising portfolio risk was harder 

during that period. More specifically, they argued that “including the Japanese or the 

US index in a portfolio of Far East stock markets may not help reduce portfolio risk” 

(p. 252).  

 

The originality of the paper of Choudhry et al. (2007) is that they decided to assess 

the short-run relationship in the frequency domain rather than in the time domain, 

using the Band spectrum regression (BSR). The reason for not investigating the short-

run interactions using a classic error correction model is that it depicts only one-step 

forward. However, the authors wanted to research the interactions of the market at 

different cycles: “the most attractive element of BSR is its ability to discriminate 

between the long-run and the short-term relationship among variables” (p.254). 

Indeed frequency domain can separate different frequency bands corresponding to 

specific time periods. Their results showed an increased influence of the US and 

Japanese index on the Asian markets during and after the crisis.         
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3.5.2 Market integration: dynamic models 

You and Daigler (2010) showed that using constant correlation measurements to 

model the relationship among international stock indices is too simplistic. They 

computed the constant correlation between 15 stock indices then tested their stability, 

applying the Tse (2000) test. The results indicated that 50% of the pairwise 

correlations were not constant at the 15% significance level or above. They therefore 

advocated the usage of the Dynamic Conditional Correlation (DCC), as developed by 

Engle (2002), to capture the time-varying nature of international stock market 

correlations.  

 

Similarly, Kim et al. (2005) questioned the use of cointegration based models to 

assess integration. They argued that the long-run stable relationships assumed by 

cointegration analysis are not suitable to capture the dynamic process of stock market 

integration as the process is not complete and exhibits strong variation over time. 

Moreover, they proposed that this model looks at the existence of an equilibrating 

process and not the forces behind the long-run equilibrium. In the words of Bekaert 

and Harvey (2002a, p. 441): ‘our theoretical models are characterized as static models 

of integrated / segmented economies. The true process is dynamic and much more 

complicated than our current models’.  

 

Similarly, Kearney and Lucey (2004) believed that the main weakness of the static 

models which focus on comparative statistics is that they do not take into 

consideration time variation in equity risk premia, an important element of asset 

returns. For example, Chue (2002) argued that time-varying investor risk preferences 

impact on shocks transmission across international financial markets:  

…when emerging markets become increasingly integrated internationally, domestic 
equity returns can be affected by foreign shocks which do not directly hit the home 
market, but affect the common stochastic discount factor that prices all assets in the 
integrated international market .(p.1069).  

 

Indeed, even studies using static models recognized that the degree of integration 

among markets is not static but tends to move over time, especially during a financial 

crisis. For example, Yang et al. (2003) and Roca and Bunsic (2002), looked at the 

impact of 1997-1998 Asian financial crisis, Dickinson (2000) and Masih and Masih 

(2004) focused on the European stock markets during the October 1987 crash. They 
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all found evidence that the relationship between markets changes over time. By the 

same token, Chatrath et al. (1997) examined the long run relationship of the national 

prime rate and the negotiable CD rates for six industrialized countries. Whilst they 

found evidence of integration in bank lending and borrowing markets, the nature and 

the strength of the results are related to the time period investigated.  

 

Therefore, the approach taken to recognize the dynamic characteristics of the 

processes while analyzing them with a static model is to divide an original sample 

into subsamples (see Yang et al. 2003; Roca and Bunsic 2002; Dickinson, 2000; 

Masih and Masih 2004; Climent and Meneu 2003, Phylaktis and Ravazollo 2002; 

Choudhry et al. 2007). This is the method adopted by Bracker et al. (1999). The scope 

of their study was to investigate how and why different pairs of national equity 

markets exhibit different degrees of co-movement over time. The data were daily 

national stock indices for nine countries: Japan, Australia, Hong Kong, Singapore, 

Switzerland, Germany, UK, US and Canada. The sample was 22 years (1972 to 1993) 

and was split into 22 subsamples of one year each. They applied the Geweke (1982) 

measures of feedback for each of the 36 possible pairs in order to assess the nature 

(contemporary, lead or lag) of the relationship of the returns and how they vary over 

time. Their analysis took into consideration non-synchronous trading across markets. 

Their results showed important co-movement across all eight pairs of markets within 

the same day (24 hours period) in all 22 years of sample. These measures tend to 

increase over the year, indicating a strengthening of co-movements. Lead-lag 

relationships among returns seemed overall weaker, with the US more likely to lead 

other markets than vice-versa. The author concluded that this lead is the translation of 

the US leadership in capital, goods and services global markets, as well as in the 

global political arena (p.14).   

 

However, all the above examples remain based on static models. Interesting examples 

of the application of time varying models can be found in the articles of Kim, 

Moshirian and Wu (2005, 2006). In the first article, the authors looked at the stock 

market integration driven by the European Monetary Union (EMU), and in the second 

they looked at the integration of stock and bond markets under the influence of the 

EMU. 
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In Kim et al. (2005), the sample is comprised of the national price indices of the 

twelve Euro zone members (Austria, Belgium, Finland, France, Germany, Greece, 

Ireland, Italy, Luxembourg, Netherlands, Portugal and Spain), the three non Euro- 

zone European countries (Denmark, Sweden, the UK), and Japan and the US. They 

used the daily prices from 2 January 1989 to May 2003 and computed the local 

currency returns as they wanted to research the impact of the changes in exchange rate 

risk induced by the introduction of the Euro; the daily frequency being important to 

track down co-movements in equity returns. They also estimated stock market returns 

for the Euro-zone (regional return index) as the market value-weighted average return 

of the twelve EMU members. However, when estimating a bivariate model including 

the regional index and an EMU member’s index, the regional returns were computed 

exclusive of that EMU member, in order to filter out idiosyncratic market shocks in 

the regional return index. Descriptive statistics showed that all returns were non-

normal, exhibiting skewness and excess kurtosis. The Ljung-Box Q test presented 

evidence of linear and non-linear serial correlation in all return series and the presence 

of heteroscedasticity. To assess the impact of the currency union on stock market 

integration, they estimated bivariate ARMA (p, q) EGARCH (1,1) models. The 

parsimonious ARMA (p,q) model captures the dynamic mean stock returns for each 

individual country and the Euro-zone and the EGARCH model includes the 

interdependencies in the innovations. The results of the bivariate Ljung-Box Q test 

showed that ARMA-EGARCH-t models captured successfully all joint linear and 

non-linear serial correlations in the returns. Moreover, using the EGARCH models, 

the authors estimated conditional correlation between national markets and regional 

markets. 

 

The results of the conditional correlations showed that the integration of the EU 

countries varied over time and was volatile for the period prior to mid 1990s. The 

European Monetary System (EMS) crisis pushed stock markets towards further 

segmentation. However, during the period 1996-1997, the trend changed towards 

integration. The authors noted that this period coincided with the Treaty of 

Amsterdam, which amended and reinforced the Maastricht Treaty. The period 

beginning in 1999 showed a further integration with a damped volatility in all 

conditional correlation, a fact that the authors related to stabilization in 

macroeconomic fundamentals through EMU convergences process. However, 
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conditional correlations did not show the same pattern of co-movements between the 

Euro-zone and the non Euro-zone markets.  

 

To further research the relationship between the markets, Kim et al. (2005) split the 

original sample into three sub-samples: a. 1989 to 1995 (period before major changes 

in integration process of equity markets); b. 1996 to 1998 (period of intense pre-Euro 

integration); and c. 1998 to 2003 (post-Euro period), and looked at the mean and 

volatility spillover effects.  They discovered that linkages between all stock markets 

under scrutiny strengthened with the currency unification, return and volatility 

spillovers increased in most of the countries in the period of the introduction of the 

Euro. Moreover: ‘the significant spillover coefficients indicate the EMU members are 

crucial both to each other’s and to the stability of the world economy as a whole’ 

(p.2489). 

 

Using a similar approach, Kim et al. (2006) examined the dynamic change in inter-

stock-bond market integration for the period 2/3/1994 to 19/9/2003. Data included 

daily national market return indices and total return government bond indices (bonds 

with more than 10 years to maturity) in local currency for France, Germany, Italy, 

Spain, UK, Japan, and the US.  They also estimated a value weighted average for the 

Euro zone. The original sample was divided into two sub-samples: a. 1994 to 1998 

and b. 1999 to 2003.  

 

The result of conditional correlation analysis between stock and bond markets showed 

that, at the country level (inter market integration), the markets tend to be segmented, 

especially after the mid-1990s. Exceptions are Italy and Japan, which exhibited 

respectively increases in conditional correlation and negative correlation. However, 

when estimating conditional correlation between a country stock or bond market and 

the respective EMU value weighted market (intra market integration), the findings are 

quite different.  Beginning in 1997, the European stock markets exhibited a high 

conditional correlation, indicating integration, and the US and Japan a lower but 

increasing conditional correlation. Likewise, the four EMU bond markets, as well as 

the UK bond markets, are highly correlated with the Euro zone regional bond index 

(ranging from 0.65 to almost 1). The US has a lower conditional correlation (0.68 to 

0.75) and Japan a smaller correlation (0.03, -0.09). So, while the inter-stock-bond 
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market integration has decreased at the country level, the intra-stock-bond market 

integration with EMU has strengthened. According to the authors, the introduction of 

the monetary union has Granger caused the segmentation between stock and bond 

markets within Europe.  

 

Bartram et al. (2007) examined the impact of the introduction of the Euro on the 

integration of European financial markets. They used daily prices for the main indices 

of seventeen European countries, out of which twelve were from the Euro-zone, for 

the period 1994-2003. They assessed the stock markets’ interactions applying time-

varying copula dependence model. They observed that market dependence in to Euro 

area increased only for countries with large equity market capitalization, 

comprehensive regulations, high liquidity and low transaction and information costs. 

They found that this increase in dependence started in the 1997 and 1998, when the 

Euro was first announced. Also, they argued that the countries not members of the 

Euro-zone lack of integration with the Euro area. They concluded noting that the Euro 

increased financial market integration in the Euro area, but that these markets are not 

fully integrated.        

3.6 Summary 

Stock market integration is an important trend in finance. There are many definitions 

of market integration, but they all revolve around the concept of co-movements 

between markets. 

 

Stock market integration is related to economic integration as the latter is believed to 

facilitate the first. Indeed, economic ties between countries, coordination of economic 

policies and linkages in the interest rates facilitate financial integration. The European 

Union, which includes political, legal and economic integration, the close relationship 

between the US and UK economies, and the PCB economies are examples often put 

forward in the literature. Parallel to economic integration, the development of 

technologies and their applications in financial trading are also important factors.     

 

However, the relations between economic and financial integration are complex. For 

example, the actions of international investors can influence economic policies. 

Moreover, when tested, most of macroeconomic variables, except interest rates, seem 
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not to have significant effects on financial integration. Finally, liberalization with 

measures of deregulation, decreases in barriers to trade and capital controls, is a 

gradual process. Moreover, it is difficult to ascertain which measure is more effective.     

 

Financial integration impacts on stock market interactions. Their correlation increases 

and they exhibit short and long-term relationships. There is an important debate in the 

literature that looks at the impact of financial integration on portfolio diversification. 

Some argue that the increase in predictability reduces the advantages of the portfolio. 

Others believe that this predictability is not sufficient to attenuate the benefits from 

international diversification.  

 

There are numerous approaches to investigate financial integration. One interesting 

taxonomy arranges them into two categories: the direct and indirect measures. The 

first category includes approaches which look directly at assets, such as the law of one 

price, equity markets correlation and common stochastic trends. The second category 

is comprised of methods that assess financial market integration indirectly, for 

example capital mobility.          

     

Finally, the chapter ends with a review of methods to investigate financial integration. 

It includes mainly methods related to the category of direct measures. Another 

interesting taxonomy classifies the tools used in these methods into static and 

dynamic models. The tools of the first category estimate the models over the whole 

period and have difficulty in capturing the potential changes within the period. On the 

other hand, the tools from the second category look at the changes in each 

observation. Cointegration analysis is therefore a static model and conditional 

correlation a dynamic model. As financial market integration is a dynamic process, 

tools from the second category are seen as more appropriate. However, when static 

models are used, then the original sample needs to be divided into subsamples in 

order to capture the expected changes in the markets interaction.             

3.7 Implications of the Literature Review for the Second Research Objective 

The second research objective is to assess whether Euronext integration has increased 

the interaction between the three stock markets, i.e. it has increased the markets’ 

integration.  
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Stock market integration is an important debate in finance. However there is no 

common definition of the pattern. This study understands market integration as an 

increase in co-movement between markets. Other definitions are attractive but their 

complexity makes them difficult to test.  

 

On a methodological point of view, static and dynamic models have advantages and 

disadvantages. The articles reviewed generally adopted one type of methodology - for 

example, the static cointegration test, eventually followed by an error correction 

model, impulse response and variance decomposition. Another approach in the 

literature is to apply a dynamic correlation model. An interesting methodology for the 

second research objective may be therefore to include two types of models, 

cointegration (static) and conditional correlation (dynamic), yielding a robust testing 

framework.    
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4 Methodology 

4.1 Introduction 

This chapter addresses the philosophical and methodological foundations of this 

research. It first investigates the issues of the research paradigm, approach and 

strategy.  Each issue is discussed with reference to the econometric methodology 

adopted in this study. A positivist philosophy, including a deductive approach and 

empirical research, is identified as suitable, but alternatives are also considered. The 

chapter ends with a discussion on how to minimise risks of reliability and validity.  

4.2 Research Paradigm 

The definition of a research paradigm or research philosophy is central to the research 

process as it is a description of the “world view” followed by the researcher. It 

therefore influences what should be studied, how it should be done and how the 

results should be interpreted (Bryman and Bell 2003, p. 23).   

4.2.1 The positivism paradigm and its assumptions 

The broad research paradigm adopted in this study is positivism. This research 

philosophy has its roots in natural sciences and was adopted by the social sciences in 

the nineteenth century. It assumes that the social reality is independent of the 

researcher. “According to positivists, laws provide the basis of explanation, permit the 

anticipation of phenomena, predict their occurrence and therefore allow them to be 

controlled” (Collis and Hussey 2003, p. 53). Saunders et al. (2003, p. 103-104) 

explain that positivists work with observable social reality and the results can be law-

like generalisations. The research strategy usually comprises the use of theories to 

develop hypotheses, the collection of data, the testing of the hypotheses that will in 

turn lead to further development of the theories.  However, Bryman and Bell (2003) 

argue that it is difficult to clearly define positivism as the views of authors often 

diverge. If the central approach is to apply the methods of natural sciences to the 

study of social reality, the term positivism can also entail different principles. In the 

words of the authors, these are:  

1. Only phenomena and hence knowledge confirmed by the senses can 

genuinely be warranted as knowledge (the principle of phenomenalism) 
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2. The purpose of the theory is to generate hypotheses that can be tested and 

that will thereby allow explanations of laws to be assessed (the principle of 

deduction). 

3. Knowledge is arrived at through the gathering of facts that provide the basis 

for laws (the principle of induction). 

4. Sciences must (and presumably can) be conducted in a way that is value 

free (that is, objective). 

5. There is a clear distinction between scientific statements and normative 

statements and a belief that the former are the true domain of the scientist. 

(Bryman and Bell 2003, p. 14). 

 

Furthermore, Bryman and Bell (2003) also emphasize that positivism is not 

synonymous with science, as philosophers of sciences and social sciences have 

different understandings of scientific practice.  

 

The positivist paradigm is based on several assumptions. The ontological assumption 

is that there exists a singular and objective reality, separate from the researcher. The 

epistemological assumption, the relationship of the researcher to that being 

researched, is that the researcher is independent from that being researched. The 

axiological assumption is that the research process is value-free and unbiased. The 

rhetorical assumption, the language of research, is formal and based on set definitions. 

Finally, the methodological assumption, the process of research, is based on a 

deductive causal process, with a static design. (Collis and Hussey 2003, p. 48-51).  

4.2.2 Evolution of positivism 

Classic positivism appeared in the 19th century. Auguste Comte (1798-1857), its 

founder, believed in discovering laws that can be established through observation, 

experiment and comparison. He introduced the methods of natural science to those of 

social sciences. In the 1920’s, the Vienna Circle developed logical positivism, which 

insists on the importance of the experience as the base of knowledge and the use of 

logical analysis. 

 

An important development of positivism is Popper’s “falsificationism”. According to 

Popper, we should not accept theories because they benefit from numerous types of 
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supporting evidence, but reject the theories that are falsified. Therefore, all theories 

are tentative and cannot be accepted as absolutely true. When applied to the field of 

econometrics, Hoover (2005) presents two problems generated by Popper’s approach. 

The first one is at which critical value should a theory be rejected as false? By nature, 

this is a technical question, but in this context, it can be seen as a conceptual one. The 

second and most important problem is, before being rejected, which theory should we 

use? 

 

An answer to Popper’s falsificationsim is given by Lakatos’s Methodology of 

Scientific Research Programmes (1970). According to Lakatos (1970), Popper’s view 

to reject a theory that is falsified is useless because all theories are falsified to some 

dimension. Instead, Lakatos proposes to assess a research programme both by what it 

explains and by what it fails to explain. Therefore, one programme is superior to 

another when it explains the anomalies of the other and predicts more novel facts. 

 

As described in the next section, the empirical work developed to address the research 

objectives of this study uses quantitative data and econometrics. According to Hoover 

(2005), “most econometricians are positivists in the very broad sense of finding the 

source of scientific knowledge in either logical deductions from secure premises or in 

empirical observation” (Hoover 2005, p. 34). More specifically, he believes that 

logical positivism and its variants represent the main philosophical framework for 

econometricians. Hence, this study adopts the positivism research paradigm.  

4.2.3 Alternative research paradigms 

An alternative research paradigm for this research could be interpretivism. For this 

world view, the ontological assumption is that the world is not separated from the 

researcher and that there is no objective reality. Moreover, the epistemological 

assumption is that the researcher is not independent from what is researched. Instead 

of collecting ‘real data’, the researcher focuses on analyzing feelings and attitudes, 

and therefore researches social phenomena. Saunders et al. (2007, p.102-103) describe 

the researcher as a ‘feelings researcher’ in this paradigm, compared to positivism’s 

‘resources researcher’. Consequently, the axiological assumption is that the research 

process is not value free and may be biased. Finally, the rhetorical assumption is less 
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formal than in the positivist paradigm and the process of method will tend to be more 

inductive in nature.  

 

Finally, Saunders et al. (2007, p.110) noted that the choice between positivism and 

interpretivism is not always clear, in particular the debate between the different 

epistemology and ontology positions. In certain cases, a pragmatist paradigm may be 

adopted. In the pragmatist framework, the most important determinant for the choice 

of the research paradigm is the research objective or question. Related to the 

pragmatist paradigm is the mixed approach, which allows a researcher to use the 

quantitative and the qualitative approach in the same study.  

 

An interpretivist or pragmatist paradigm is more suited for a research in Behavioural 

finance as the scope is often there to research social phenomena rather than analyse 

hard data.       

4.3 Research Approach 

There are two general approaches to reasoning which may result in the acquisition of 

new knowledge: inductive reasoning, which is a theory building process; and 

deductive reasoning, which is a theory testing process. 

4.3.1 Deductive approach 

In line with the research paradigm of this study, the research approach is deductive 

reasoning. Deductive research calls for the development of a theoretical framework 

prior to its testing through empirical work using quantitative tools (Saunders et al. 

2007, p.117-118; Bryman and Bell 2003, p. 9-10).  

 

Robson (2002 cited in Saunders et al. 2007, p.117) presents five classic stages through 

which deductive approach will progress: 

1. Deducing a hypotheses from the theory, 

2. Expressing the hypotheses in operational terms, 

3. Testing the operational hypotheses, 

4. Examining the outcome: either it confirms the theory or indicates the need 

for a change in theory, 

5. If necessary, modifying the theory in the light of the findings. 
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A deductive research approach is therefore characterized by a highly structured 

methodology, which allows for replications, and typically the use of quantitative data. 

Moreover, the scope of the researcher is to verify or modify existing theory and to 

generalize the outcomes from the research.  

 

In this study, the testable hypotheses are drawn from the theoretical framework 

presented in the literature review and the quantitative approach will be based on the 

use of econometrics. 

4.3.2 Econometric methodologies 

Econometric methodologies can differ on two main points: the importance of the 

economic theory and the approach towards statistical procedures.  

 

In an interesting article comparing the methodologies used by statisticians and 

economists, Granger (2001) describes ‘econometricians as statisticians who 

concentrate on economic data’ (p. 8). For him, statisticians are more data driven than 

theory driven, assuming that all valuable information lies in the data rather than in the 

theory. Moreover, statisticians see the observable world as stochastic while 

economists tend to believe it is deterministic. Furthermore, the aim of research for 

statisticians is to identify and understand data generating processes, which can only be 

approximated from data sets, and not to search for a generic truth, an approach closer 

to economists. Granger therefore concludes that the methodologies used by the two 

groups can diverge on the attitudes towards the data and towards the correctness of 

theory (p. 14). 

 

Spanos (1999) has a slightly different point of view. For him, theory plays a major 

role in econometric research. In statistical inference, the use of a set of data to derive 

conclusions about a stochastic phenomenon can be seen as an inductive procedure. 

Spanos insists on the fact that ‘this inductive procedure is embedded in a 

fundamentally deductive premise’ as ‘the procedure from the postulated model (the 

premise) to the inference propositions (estimation, testing, prediction, simulation) is 

deductive’ (p.16, italic in the text). He therefore recommends that no conclusions 

should be based on statistical inference before the statistical adequacy of the 

postulated model has been established first (p.17). Moreover, for Spanos a statistical 
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model is built exclusively in terms of statistical information whereas an econometric 

model is a synthesis of the theory and statistical model (p. 20).  

 

The use of econometrics to test theories can follow two main approaches. The first, 

the theory-of-errors, assumes a one-way relationship from theory to data: the 

underlying theory is presumed to be true and the strategy adopted is to model the error 

terms. Hoover (2005) calls this approach “econometrics as measurements”. 

 

The second approach, which Spanos (1995) refers to as “probabilistic reduction”, 

“…posits that a complete and true theory necessarily induces desirable statistical 

properties in the data: independent, serially uncorrelated, white noise. The scope of 

econometrics is therefore to find compact representations of the data that deliver these 

properties without loss of information. These representations are the statistical 

regularities that theory must explain” (Hoover 2005, p.22). This approach allows for a 

two-way relationship between theory and data. 

 

An important development of the probabilistic reduction is the London School of 

Economics (LSE) approach. It is based on the idea of encompassing which assumes 

that one specification encompasses another if it carries all the information of the other 

specification in a more parsimonious form. In this view, the specifications are 

maintained only tentatively. An application of encompassing is Hendry’s general-to-

specific strategy which calls for starting from a very general specification (the 

General Unrestricted Model, GUM) and systematically reducing it to the most 

parsimonious specification, testing the statistical properties of the errors at every step. 

This strategy is therefore very close to the essence of Lakatos’ paradigm. 

 

Important criticisms of the general-to-specific approach are data mining and the large 

number of sequential tests which are not always interpretable (Faust and Whiteman 

1995, 1997 cited in Hoover 2005). However, the danger of data mining appears to be 

higher if the researcher adopts the simple-to-general rather than the general-to-

specific approach, as the first approach starts the research process from a simple 

model and adds variables until the specification appears adequate (Verbeek 2004, p. 

57; Charemza and Deadman 1992).  Furthermore, the supporters of the general-to-

specific also argue, using a theorem of White (1990 cited in Hoover 2005, p. 26) that, 
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given enough data, only the true specification will survive a set of tests. In fact, they 

assume that the ‘true specification’ is a special case of the General Unrestricted 

Model (GUM), the starting point of their research (Verbeek 2004, p. 57).  

 

This study follows Spanos’ recommendations. The general-to-specific approach is 

adopted and the aim of the statistical model is to describe data generating processes 

parsimoniously. Moreover, theory and statistical models are used to build an 

econometric model.   

4.3.3 Alternative research approach 

Related to the interpretivist paradigm, an alternative research approach for this study 

could be the inductive approach. In this approach, the data lead to theory. If the 

positivism paradigm and the deductive approach are related to natural sciences, 

interpretivism and the inductive approach are closer to 20th century social sciences 

(Saunders et al. 2007, p.118). Consequently, the inductive approach is not only 

concerned with events, but with the context within which these events take place. 

Typically, it is characterized by a less rigid methodology which helps capture the 

uniqueness of context, as well as alternative explanations for events. Furthermore, the 

data used will tend be qualitative rather than quantitative. The scope of induction is 

therefore less to replicate an experiment and generalize conclusions than to provide a 

satisfactory understanding of a context.  

 

Finally, as mentioned in the previous section, a researcher who follows the pragmatist 

paradigm usually adopts a mixed approach. In this framework, a researcher would use 

both inductive and deductive approaches and the choice of the approach is a direct 

function of the nature of the research question or objective addressed.  

 

An inductive/qualitative research framework is therefore more related to Behavioural 

finance research whose scope is to discover the complex nature of the market and 

market participants.   

4.4 Research Strategy 

For the purpose of this study, empirical research is adopted. This approach focuses on 

establishing the relationship between variables (Ryan et al. 2002). Though similar to 
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an experiment, as it involves hypothesis testing and control, the adopted strategy can 

be characterised as quasi-experimental because a direct manipulation of the 

independent variables by the researcher is not possible. 

 

As mentioned in the introduction, the scope of this research is twofold and two 

research objectives were stated: 1. to test the information efficiency of the French, 

Belgian and Dutch exchanges before and after Euronext integration; and 2. to assess 

the level of market integration between the three exchanges before and after the 

Euronext integration.  

 

Chapter two and three presented a review of the literature for these objectives. The 

outcomes of these reviews are instrumental in the design of the research strategy and 

the statement of the hypotheses. Sections 2.5 and 3.7 relate the outcomes of the 

literature review to the research objectives. Specifically, for the first research 

objective, the EMH paradigm is adopted as the theoretical framework and the 

methodology developed to address the objective is based on an algorithm widely used 

in the literature. For the second objective, market integration defined as increase in 

markets co-movements is the framework and a methodology including two types of 

model, a static and a dynamic, is adopted.      

 

The empirical research is therefore comprised of two main parts, each addressing a 

research objective. The following sections introduce only briefly the research designs 

for each research objective; a more detailed description of the methodology is 

presented at the beginning of each chapter.    

4.4.1 Data 

As it is not possible to research the entire markets, the national indices are used as 

proxies for the markets. Therefore, the data used in this research are the daily adjusted 

closing prices for the main index of each stock market: the French CAC40, Belgian 

BEL20 and Dutch AEX. The period considered runs from January 1990 to December 

2010.  

 

As explained in the introduction to the thesis, the general principles behind the 

computations of these indices have not changed with the integration of the Euronext. 
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These indices are therefore reliable measurements to track the behaviour of the market 

during the whole period. Indeed, for all three indices, the calculation of the price 

index is based on the following general formula: 

 $ � ∑ &',()',(*',(+',- .',(/',(�( ,         (4.1) 

 Where 0  Time of calculation, 1  Number of constituent equities in index, 23,  Number of shares of equity i included in the index on day t, 43,    Free float factor of equity i*, 53,    Capping factor of equity i*, 63,  Price of equity i in time t, �3,   Current exchange rate in time t*, � Divisor of the index in time t, 

*Factor is equal 1 if not applied for the index.   

 

For all three indices therefore, the calculation is based on the current free float market 

capitalisation divided by the divisor. The divisor is determined by the initial 

capitalisation base of the index and the based level. It is adapted as a result of 

corporate actions and composition changes. The currency conversion is used for share 

prices quoted on other currencies than Euro. The free-float is round up to the next 5%. 

The calculation of the indices takes place every 15 seconds.  

 

In the case of the Dutch AEX index, stocks eligible are the companies listed in 

Euronext Amsterdam. It is comprised of the 25 most traded companies. The weighting 

is based on a free-float market capitalization. The capping is 15%. The review of the 

composition is normally annual but quarterly replacement possible.  

The eligible stocks for the BEL20 are companies listed on Euronext Brussels and that 

are trading continuously. The index is made up of a maximum 20 stocks having 

higher free-float market capitalization than the level of BEL20 index multiplied by 

Euro300,000. The capping is 12% and the review of the composition is annual with 

quarterly replacement allowed.  
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The eligible stocks for the CAC40 are companies listed on Euronext Paris or 

companies with different market reference, but fulfilling specific criteria. The 

selection of the index’s 40 stocks is decided by the Conseil Scientifique guided by 

free-float adjusted market capitalization and turnover. The capping is 15% and the 

review of the composition takes place every quarter.     

 

If the calculation of the index is very similar, the main difference between the indices 

lies in the criteria used deciding the inclusion of stocks in the index and the formal 

revision of the composition. Indeed, the Dutch index represents the most liquid 

shares, the Belgian index the higher capitalisation and the French index is in 

equilibrium between the two criteria. 

 

Descriptive statistics for each index as well as preliminary univariate tests are 

presented in chapter five. Two returns series are created for each index price: log-

returns and, using interbank as free rate excess returns. The latter series therefore 

represents the risk premium related to the index, hence the market premium.         

 

Outliers are often a concern in finance research. Indeed, if one leaves the outliers in a 

data set, the distribution of this set might not follow a specific probability law (e.g. 

normal, t-distribution, or others), yielding problems for inferential analysis. However, 

removing outliers from the data set is the equivalent of excluding potential valuable 

information regarding the series. The indices’ excess returns box plots (presented in 

appendix 2, section 10.2) show that the series include numerous outliers. The dot plots 

(appendix 3, section 10.3) indicate that the outliers are concentrated around specific 

periods (volatility clustering, see chapter five and six). This study adopts the view that 

the outliers include important information and therefore are not removed from the 

data sets. 

 

An alternative approach could be to use dummy variables to control for the effect of 

outliers on the estimated models. However, the important number of outliers in the 

returns series makes it extremely difficult to apply this method. Moreover, none of the 

papers discussed in the literature (chapter 3) which use daily data use dummy 

variables for outliers. 
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The order of integration of a series is an important characteristic to determine prior to 

many econometric measurements. In chapter two, sections 2.3.4 and 2.3.5 review unit 

root tests and their problems. The main outcome is that one should apply a robust 

testing procedure by including a unit root test and a stationarity test, as the benefit of 

one test will offset the disadvantage of the other. Such an approach is adopted in 

chapter five by jointly using the ADF unit root test and the KPSS stationarity test. 

 

The question of long memory in the index returns and volatility is also addressed. 

Section 2.3.7 of chapter two looks into the matter of long memory. Three testing 

procedures are mainly used in the literature: the R/S Hurst, the Whittle estimator and 

the GPH estimator. All three procedures are used to test the presence of long memory 

pattern in returns and in volatility.         

4.4.2 First research objective: market efficiency  

Chapter six presents the empirical work and results related to information efficiency. 

According to Euronext, the merger of the stock markets will result in a wider and 

more liquid market, an easier access to information and a decrease in transaction 

costs. Hence, the Euronext merger will provide the participants with a more efficient 

market. Thus, the main hypothesis tested in this chapter is: 

 ��: The French, Belgian and Dutch stock markets are more efficient following the 

Euronext merger. 

  

The review of the literature presented in chapter two shows that testing a financial 

market for EMH using an asset-valuation model entails a methodological issue, the 

joint hypothesis problem. One way to solve this problem is to analyse directly the data 

generating process of the series.  

  

In theory, a market is efficient if there is no element of predictability in the data 

generating process. For a market to be weakly efficient, the data generating process 

should follow a random walk.  

         

The method adopted in this thesis is based on the algorithms used by Hsieh (1991), 

Sewel et al. (1996), Al-Loughani and Chappell (1997), Panagiotidis (2005) and 
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Willcocks (2009). An extensive discussion of these articles is presented in chapter 

two, in sections 2.3.5 to 2.3.8 of the literature review and a detail description of the 

methodology adopted is included in chapter six.  

 

The aim of this algorithm is to estimate a parsimonious model capturing the data 

generating process of each series. The procedure involves the fitting of different 

models, from general linear to more complex nonlinear processes. The decision 

criterion is that the best model should exhibit iid residuals, i.e. that there is no 

information left in the residuals of the model estimated. Different diagnostic tests are 

used, but the Brock, Dechert, Scheinkman and LeBaron (BDS) test for independence 

(1996), which verifies the iid of a series, is the main hurdle. The original data set is 

divided into three sub-periods: the pre-integration, the integration and the post-

integration periods. The testable hypothesis for each sub-period is that the market 

follows a random walk, i.e. it is efficient. If the null is rejected, then the market 

follows a process that may include some elements of predictability. 

4.4.3 Second research objective: market integration 

Chapter seven presents the empirical work and results for the second research 

objective: the level of market integration between the three markets before and after 

the merger. Again, according to Euronext, a direct benefit to market participants from 

the merger is that they can invest from a wider range of equity, helping to diversify 

their portfolio. However, the merger may increase the integration of the equity 

markets. Indeed, by creating one company, with one common operating platform, the 

merger provides the investors with one market, Euronext, rather than three separated 

ones. Consequently, the investors in these markets may be subjected to the same risks. 

Market integration may therefore affect the real choice of investment for portfolio 

diversification. 

 

 Hence, the main hypothesis tested in chapter seven is:   

 

 �	: Euronext has increased the integration of the French, Belgium and Dutch stock 

markets. 
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The outcomes of the review of literature in chapter three indicate that there are 

different approaches and methods to investigate financial integration. In this chapter, 

a direct measurement of integration is adopted: the assessment of the co-movements 

between markets. The econometric methods used include the cointegration analysis (a 

static model), and conditional correlation (a dynamic model). The combination of 

these two methods should allow for robust conclusions.       

 

An alternative approach to model stock market integration could be to use panel 

econometrics. Panel models have the advantage of benefiting from both a time series 

and cross-sectional analysis. Moreover, dynamic panel techniques allow for lagged 

value of the dependent variable to be included in the model. In finance, panel 

techniques are often used when analysing jointly financial series and economic 

determinants for different countries (see for example Edison et al. 2002; Carrieri et al. 

2007). However, this approach often implies a low time series frequency (monthly, 

quarterly or yearly) and a large number of cross-sectional units.  

 

The strategy adopted in this thesis is to focus on the co-movements of the three 

Euronext stock markets and a control variable, the German market, using daily 

frequency. Furthermore, it does not seek to investigate the relationship between 

macroeconomics determinants and stock markets movements. Hence, in line with the 

literature presented in chapter 3, a multivariate time series approach is preferred.               

 

Cointegration analysis is adopted by many researchers (for example, Masih and Masih 

1997, 2004; Shamsuddin and Kim 2003; Leong and Felmigham 2003) and review of 

their articles is presented in section 3.5.1. In this framework, the testable hypothesis is 

that if stock markets are integrated, then the series studied should be cointegrated, i.e. 

present long-run equilibirum. If the series are cointegrated, then an error correction 

model, which captures the short-run correction to the long-run equilibrium, can be 

estimated and the short-run dependences between the series can be analysed. Most of 

the authors above mentioned, when examining a large sample and/or wanting to 

assess the impact of a specific event, divide their original sample into sub-periods. 

Likewise, in this study, the cointegration analysis is applied to the overall sample and 

to the three sub-periods: pre-integration, integration and post-integration.  
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The conditional correlation analysis is a more recent econometric tool but also widely 

used (for example, Kim et al. 2005, 2006; Bartram et al. 2007; Egert and Kocenda 

2011). A review of these articles is presented in section 3.5.2. In this study, the 

methodology based on conditional analysis does not include a testable hypothesis per 

se. It is mainly a graphical analysis of the daily conditional correlation over the entire 

period. However, some descriptive statistics of the correlation in each sub-period are 

calculated.   

 

The main econometric software used in this thesis is Eviews 7, with the exception of 

the long memory analysis presented in chapter 5 (the R/S Hurst, the Whittle estimator 

and the GPH estimator procedures) which is performed using the open-source 

software Gretl. Both Eviews7 and Gretl are time series software.     

4.4.4 The Euro currency: a methodological issue 

The two empirical research chapters include a methodological issue: the introduction 

of the European currency. Indeed, the three stock exchanges are in member countries 

of the Euro-zone. Moreover, the introduction of the Euro in the financial system on 1st 

January 1999 and  the bringing into the circulation of Euro coins and notes on 1st 

January 2002, coincided with the Euronext merger. It is therefore difficult to 

differentiate between the impacts of Euronext integration and the introduction of the 

Euro currency. In order to take into account the impact of the Euro currency, the 

following strategies are adopted. In chapter six, which investigates the data generating 

process of each series, a dummy variable, with value 0 before 1st January 1999 and 1 

after, is used when the series are analysed over the entire period. If the dummy 

variable is significant, then it indicates an impact from the introduction of the Euro.  

 

In the multivariate analysis in chapter seven, the German main index DAX30 is 

introduced in the system as a control variable. The German index is chosen as it is 

from an economy of the Euro-zone but the stock exchange is not part of the Euronext. 

If the DAX30 has a different pattern than the other indices, then the results indicate an 

impact from the Euro introduction.          
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4.5 Minimising Risks Associated to Reliability and Validity  

Reliability and validity are criteria to assess the credibility of the findings from the 

research. Reliability is concerned with the consistency of the findings while validity 

refers to the extent to which the findings represent what was supposed to happen. 

(Saunders et al. 2007, p. 149-150; Collis and Hussey 2003, p. 58-59). 

 

The threats to validity can be categorised in two main groups: threats to internal 

validity, which are related to the design of the research; and threats to external 

validity, which concerns the generalisation of the results of the study (Ryan et al. 

2002; Saunders et al. 2007, p. 150-151).  

 

Research studies which adopt the positivist paradigm and deductive approach are 

generally characterised by highly structured methodologies and methods to facilitate 

replication. Therefore, these studies enjoy high reliability (Saunders et al. 2007, 

p.117-118; Collis and Hussey 2003., p. 58).  As mentioned earlier, the approach of 

this study is deductive in nature as it involves the formulation of testable hypotheses 

from a theoretical framework, followed by the collection of secondary data and its 

analysis using appropriate econometric tests. A thorough and detailed description of 

the methodology and methods adopted will minimise the threat to reliability. 

 

However, a deductive approach might suffer from low validity, as it may use 

inappropriate procedures or misleading data (Collis and Hussey 2003, p.59). In order 

to address these threats, great care has been given to the choice of the data and the 

procedures adopted.  

 

Spanos (1999, p. 28-29) categorises the limitations of economic data into two 

categories: accuracy and nature. Arguing that no sophisticated statistical arguments 

can salvage bad quality data, he insists on the need for a deep understanding of the 

nature and the accuracy of the data. The data used in this study are official indices of 

the three stock markets. These indices are chosen as they are computed and 

disseminated in the same way throughout the period of the study. Moreover, the data 

are collected from Datastream which is a database with a trustworthy reputation. 
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An extended and critical review of the existing literature, focusing on the most recent 

and reputable sources, ensures the development of a sound theoretical framework. 

Moreover, the literature review provides a set of appropriate econometric tests, 

addressing the potential weaknesses of each test. Finally, following Spanos’ 

recommendation (1999, p. 16), the theoretical model is constructed independently of 

the observed data.  

 

The development of a theoretical model, the analysis of the nature and accuracy of the 

data and the critical assessment of the statistical procedures ensures a minimisation of 

the internal threats. By addressing the threats to internal validity the researcher 

increases the external validity (Ryan et al. 2002). 

4.6 Limitations and Delimitations 

Limitations are related to the potential weaknesses of the study while delimitations 

deal with the boundaries of the research. Both are connected to the research strategy 

of the study: the design, econometric tools and data used.  

 

The integration of the Euronext is a long and gradual process, with different stages of 

legal and operational integration. Each market had its own needs and pace. Thus it is 

difficult to date it exactly. Moreover, as mentioned above, the Euro currency was 

introduced in the same time period as the integration. The research strategy includes 

strategies to address these issues: the creation of an “integration period (2000-2002)”; 

the use of dummy and control variables. However, it is difficult to ascertain that the 

results are not influenced by these events.      

 

The stock indices used in this study are proxies for the markets researched. However, 

they truly represent only certain categories of the stock listed, the blue-chip shares. 

Using different indices, such as for example small-cap shares or even specific stocks 

may yield different results for the univariate and multivariate analysis.   

 

The stock indices are also subject to the survivorship bias of each individual stock. 

Over the 21-year period of this study, the composition of each index has changed. It is 

extremely difficult to analyse each individual changes. However, because the indices 
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calculation criteria have not been modified and the window span is large, the impact 

of these individual changes is extremely small.    

 

The study uses daily frequencies. Daily data include more information than longer 

frequency (e.g. weekly or monthly) data, but also more noise. Hence, the data 

generating process of weekly or monthly data may be captured with less complex 

models in the univariate analysis. The multivariate analysis may also provide different 

results. Moreover, the econometric tests considered in this study assume the use of 

critical values. It is extremely difficult to be sure that the probability distributions 

used are representative of the true data generating processes of the series. 

4.7 Summary 

This chapter has presented a discussion of the main methodological issues and a brief 

introduction to the methods proposed. 

 

This study adopts a positivist research study and a deductive/quantitative approach. 

Indeed, influenced by the outcomes of the literature review from chapter two and 

three, the theoretical frameworks for this study is EMH and market integration and the 

methodology involves testing market data using econometric tools.  

 

Related to the econometric approach, the general-to-specific strategy starts from a 

very general specification and reduces it to the most parsimonious model. This 

strategy is closely related to the Lakatos programme which posits that a model is 

superior to another when it can explain the anomalies of the other and predicts more 

novel facts.   

 

The research strategy, design, hypotheses, and an overview of the data econometric 

tools proposed in this thesis are introduced in the second part of the chapter. This 

study’s strategy can be qualified as quasi-experimental as it is very close to empirical 

research but without a direct manipulation of the independent variable. The 

hypotheses and the methods to test them are deduced from the outcomes of the 

literature review. 
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5 Descriptive Statistics and Univariate Analysis 

5.1 Overview 

This chapter presents and describes the data used in this study. First, it looks at the 

price levels of the national indices, the transformation to log-returns and excess 

returns, which are computed using a risk free proxy. Then, the order of integration of 

the series is determined using a robust approach, the joint confirmation procedure. 

Finally, a preliminary assessment of eventual persistence pattern in returns and 

volatility is provided applying the Rescaled Range (R/S) Hurst analysis and long 

memory tests. This preliminary univariate analysis is important to understand the 

nature of the data and is a prerequisite for tests presented in the following two 

chapters.   

5.2 Sample: National Indices Prices 

The sample is comprised of the daily prices of the national indices of France 

(CAC40), Belgium (BEL20), and the Netherlands (AEX) for the period beginning 

01/01/1990 and ending 10/12/2010, which means 5465 observations. The data was 

retrieved from Datastream. The default currency is the Euro and the codes for the 

series are: 

AEX:  AMSTEOE 

BEL20: BGBEL20 

CAC40: FRCAC40 

 

The time plot in Figure 5.1 shows that, overall, all three indices have a tendency to 

follow the same trend throughout the 21 year period. Indeed, the three indices had 

their lowest values around the same time: the same day for the BEL20 and the AEX 

(01/16/1991) and two days earlier for the CAC40 (01/14/1991) (table 5.1). However, 

during a period of approximately one year, from May 1999 to April 2000, the Dutch 

and French indices rallied to reach, in 09/04/2000, their maximum value for the 21 

year period, whilst the Belgian index was losing value. Table 5.1 shows that the mean 

and the median for each index are relatively close.  
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Figure 5.1: National indices daily closing prices for the period 01/01/1990-11/12/2010 

 
 

Table 5.1: National indices prices, 01/01/1990-10/12/2010, descriptive statistics 

 AEX BEL20 CAC40 

Mean 345.02 2382.8 3470.7 

Median 336.00 2417.0 3450.2 

Minimum 98.750 (01/16/1991) 928.57 (01/16/1991) 1441.2 (01/14/1991) 

Maximum 701.56 (09/04/2000) 4756.8 (05/23/2007) 6922.3 (09/04/2000) 

 

5.3 National Indices Returns 

Two types of returns are commonly used in finance: the log-returns and the excess 

returns. In this study, both returns are considered in order to assess whether the results 

from the empirical research are sensitive to the type of returns used.    

 

The log-returns of a financial series are computed as the natural logarithm of the first 

difference of the prices, or levels, of this series. In this paper, the log-returns for each 

index are calculated as:   73 � ln : ;'(;'(<-=,        (5.1) 

where 73 indicates the log-return for index � at time 0, �3 indicates the prices of index � at time 0, and�3�� indicates the prices of index � with a one-day lag. 
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To compute the excess returns of a financial series, a proxy for the risk-free rate is 

deducted from the log-returns. As the prices series considered in this study are 

National indices, the computed excess returns are also the market risk premium for 

these markets.  

 

The risk free proxies considered in this study were originally Treasury bills, with one 

month maturity, for each country. However, T-bill rates for the Netherlands were not 

available for the entire period under consideration.  The next option was then the 

Interbank rates, also with one month maturity, for each country. 

 

The daily Interbank rates for each country were retrieved from Datastream. The 

default currency is the national currency and the codes are: 

Dutch Interbank, one-month: AIBOR1M 

Belgian Interbank, one-month:  BIBOR1M 

French Interbank, one-month: PIBOR1M 

 

Figure 5.2: Time plot for one-month Interbank rates, Netherlands, Belgium and France, 

01/01/1990-10/12/2010.    

 
The time plot in Figure 5.2 shows that each country Interbank rate fluctuated apart 

from the first half of the period but were identical in the second half. This is indeed 
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because on January 1, 1999, the fixed exchange rates between the then national 

currencies and the Euro were officially announced. One month later, in February 

1999, the Interbank rates of the three countries were the same.  

 

The Belgian and the French Interbank rates showed two large shocks in the period 

1992-1993. More specifically, the French rate increased sharply in September 1992, 

the period corresponding to the Exchange Rate Mechanism (ERM) crisis and the exit 

of the pound sterling on Wednesday 16/09/1992. It is worth noting that the ERM 

crisis did not affect the Belgian and Dutch rates in the same harsh manner.  

 

The Belgian interbank rates picked in August and September 1993. This period 

corresponds to a harsh economic crisis for the country (1992-1993) coupled with a 

constitutional crisis. The constitutional crisis was temporally resolved at the end of 

the month of September with the introduction of the fourth State reform. 

 

The correlation matrices presented in tables 5.2-5.4 depict the same pattern: table 5.2 

shows the correlation for the entire period, table 5.3 for the period preceding the 

introduction of the Euro, 01/01/1990-31/01/1999 and table 5.4 for the period of the 

Euro, 01/02/1999-10/12/2010.  During the pre-Euro period, the Dutch and Belgian 

Interbank rates presented the highest correlation (0.9567), followed by the Dutch and 

the French (0.9336) and French and Belgian rates (0.9228).           

Table 5.2: Correlation matrix, Interbank rates, 01/01/1990-10/12/2010 

 Interbank Netherland Interbank Belgium Interbank France 

Interbank Netherland 1.00   
Interbank Belgium 0.979 1.00  
Interbank France 0.9659 0.9650 1.00 

Observations: 5465, 5% Critical value (two-tailed) = 0.0265 
 

Table 5.3: Correlation matrix, Interbank rates, 01/01/1990-31/01/1999  

 Interbank Netherland Interbank Belgium Interbank France 

Interbank Netherland 1.00   
Interbank Belgium 0.9567 1.00  
Interbank France 0.9336 0.9228 1.00 

Observations: 2372, 5% Critical value (two-tailed) = 0.0402 
 

Table 5.4: Correlation matrix, Interbank rates, 01/02/1999-12/10/2010   

 Interbank Netherland Interbank Belgium Interbank France 

Interbank Netherland 1.00   
Interbank Belgium 1.00 1.00  
Interbank France 1.00 1.00 1.00 

Observations: 3094, 5% Critical value (two-tailed) = 0.0352 
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Table 5.5 presents the summary statistics for the Interbank rates. The French and the 

Belgian rates have the highest mean, 4.91% and 4.52% respectively, as well as the 

highest volatility, with coefficient of variation of 0.64 and 0.61. The Dutch rates are 

the most conservative with a mean of 4.17% and a coefficient of variation of 0.59. All 

three series are positively skewed and only the French rates present positive excessive 

kurtosis.   

 

Table 5.5: Summary statistics, one-month Interbank rates, Netherland, Belgium, France, 

01/01/1990-10/12/2010. 

 NETHERLAND 
INTERBANK 1 

MONTH - OFFERED 
RATE 

 

BELGIUM 
INTERBANK 1 

MONTH - OFFERED 
RATE 

FRANCE 
INTERBANK 1 

MONTH - OFFERED 
RATE 

Mean 4.1682 4.4173 4.5911 
Median 3.4240 3.6200 3.5605 
Minimum 0.39700 0.40250 0.39700 
Maximum 10.080 15.234 18.813 
Standard Deviation 2.4489 2.7001 2.9271 
Coef. of Variation  0.58751 0.61125 0.63757 
Skewness 0.88730 0.90728 0.96229 
Excessive Kurtosis -0.012669 -0.082266 0.12894 

Observations: 5465 
 

T-Tests for difference in means, presented in table 5.6, show that the mean values of 

the Interbank rates were significantly different for each pair of countries. This is due 

to the differences in the rates during the period 1990-1998.    

 

Table 5.6: T-tests for difference in means, Interbank rates, 01/01/1990 – 10/12/2010.  

 Belgium France Belgium Netherlands France Netherlands 

Mean 4.4173 4.5911 4.4173 4.1682 4.5911 4.1682 
Variance 7.2906 8.5679 7.2906 5.9969 8.5679 5.9969 
Correlation 0.9649  0.9792  0.9659  
Df. 5464  5464  5464  
T-Statistics -16.51  31.68  36.91  

    Observations: 5465, hypothesised mean difference: 0                                       
 

The Interbank rates, when retrieved from the database, are expressed as annual rates. 

In order to subtract them from the daily indices log-returns, they need to be converted 

to daily rates, using the following transformation: 7�>3?;,3 � @ A1 � 7>BBC>?,3DEF G � 1, 
where 7�>3?;,3 is the computed daily Interbank rate, one-month maturity, for country � 
and 7>BBC>?,3 is the annual Interbank rate, one-month maturity, for country �. 
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The reason for taking the 260th root from each annual rate is that the series include 

about 260 observations for one year.  

 

Once the risk free proxies are converted to daily rates, the excess rates of return can 

be computed as the difference between the log-returns of each national index and the 

risk free for the respective country. Tables 5.7-5.9 show the summary statistics for 

both types of returns for each national index. The mean of the log-returns for each 

series is positive. However the means of the excess returns for Belgium and France 

are negative. Moreover, the deduction of the risk free has a very important effect on 

the volatility of each series: it increased the standard deviation of each series only 

marginally but, as would be expected, as the mean decreased, the coefficient of 

variation increased drastically. The most acute example is the case of the AEX, with a 

coefficient of variation that increased 7.8 times. The third and fourth moments of both 

types of returns are pretty similar: the Dutch and French returns exhibit negative 

skewness and all the returns for all three countries have excessive kurtosis. According 

to Das and Uppal (2004), “returns on international equities are characterized by jumps 

occurring at the same time across countries, leading to a return distribution that is fat-

tailed and negatively skewed.”(p.2831)  

 

Table 5.10 shows the results of t-tests comparing the means of the log-returns and 

excess returns for each national index, with a hypothesised mean difference of zero. 

All tests are highly significant, indicating a difference in means. The risk free proxy 

for each country is therefore different for the period prior the EMU, reflecting the 

differences in the country’s respective economic and monetary policy. More 

specifically, the spread between log- and excess return is more important for the 

French than for the Belgian and Dutch indices for the period 1990-1998.        

Table 5.7: Summary statistics for log-returns and excess returns, AEX, 02/01/1990-10/12/2010 

 AEX log-return AEX excess return 

Mean 0.00017232 0.000022096 
Median 0.00034210 0.00016772 
Minimum -0.095903 -0.096089 
Maximum 0.10028 0.10010 
Standard Deviation 0.013722 0.013724 
Coefficient of Variation  79.633 621.10 
Skewness -0.14736 -0.14265 
Excessive Kurtosis 6.9374 6.9367 

Observations: 5464 
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Table 5.8: Summary statistics for log-returns and excess returns, BEL20, 03/01/1990-10/12/2010 

 BEL20 log-return BEL20 excess return 

Mean 0.00011502 -0.000043791 
Median 0.000020544 -0.000095420 
Minimum -0.083193 -0.083376 
Maximum 0.093340 0.093242 
Standard Deviation 0.011484 0.011486 
Coefficient of Variation  99.839 262.30 
Skewness 0.045077 0.049275 
Excessive Kurtosis 7.7017 7.6992 

Observations:  5463 
 

Table 5.9: Summary statistics for log-returns and excess returns, CAC40, 02/01/1990-10/12/2010  

 CAC40 log-return CAC40 excess return 

Mean 0.00012011 -0.00004690 
Median 0.00000 -0.00012070 
Minimum -0.094715 -0.094901 
Maximum 0.10595 0.10576 
Standard Deviation 0.013950 0.013952 
Coefficient of Variation  116.15 312.20 
Skewness -0.0079309 -0.0056658 
Excessive Kurtosis 5.0498 5.0497 
 Observations: 5464 

 
Table 5.10: T-tests for difference in means, log- and excess returns, 01/01/1990 – 10/12/2010 

 AEX log-

return 

AEX excess 

return 

BEL20 log-

return 

BEL20 

excess return 

CAC40 log-

return 

CAC40 

excess return 

Mean 0.0001723 0.00022096 0.00011502 -.00004379 0.00012011 -0.00004690 
Variance 0.0001882 0.00018834 0.00013188 0.0001319 0.00019464 0.00019469 
Correlation 0.9999802  0.99996604  0.99997313  

Df. 5463  5463  5463  

T-Statistics 128.8016  123.9895  119.0447  

Observations: 5464, hypothesised mean difference: 0 
 

 
An examination by eye of the indices’ excess returns time plots (Figures 5.3 to 5.5) 

shows periods of low and high volatility, with, in certain cases, absolute daily returns 

in excess of 5%. Additionally, volatility clustering patterns seem to appear at 

approximately the same periods for each index.  
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Figure 5.3: Time plot for AEX excess returns, 02/01/1990-10/12/2010.  

 
 
 
 
Figure 5.4: Time plot for BEL20 excess returns, 03/01/1990-10/12/2010  
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Figure 5.5: Time plot for CAC40 excess returns, 02/01/1990-10/12/2010  

 
 

Table 5.11 and 5.12 present the correlation coefficients between the two types of 

indices’ returns. The highest correlation is exhibited by the Dutch-French indices, 

followed by the Dutch-Belgian, while the Belgian-French pair is less correlated. 

Interestingly, the risk free impacts only marginally on the synchronous correlations 

between indices’ returns.     

 

Table 5.11: Correlation coefficients, excess returns, 01/01/1990 – 10/12/2010 

 AEX excess return BEL 20 excess return CAC 40 excess return 

AEX excess return 1.00   

BEL 20 excess return 0.7938 1.00  

CAC40 excess return 0.8580 0.7550 1.00 

Observations: 5463, 5% critical value (two-tailed) = 0.0265  
 

Table 5.12: Correlation Coefficients, log-returns 01/01/1990 – 10/12/2010 

 AEX log-return BEL 20 log-return CAC 40 log-return 

AEX log-return 1.00   

BEL 20 log-return 0.7938 1.00  

CAC 40 log-return 0.8579 0.7549 1.00 

Observations: 5463, 5% critical value (two-tailed) = 0.0265  
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5.4 Stationarity  

The order of integration is an important element for identifying the Data Generating 

Process of a series, as well as for the analysing the co-movements between series. 

Following the findings of the literature review, the procedure adopted in this research 

to determine the order of integration is the Joint Confirmation, i.e. the simultaneous 

use of two tests: one with unit root as null hypothesis and one with stationarity as null 

hypothesis. This robust procedure is designed to tackle the problems of power and 

size of the traditional unit root tests when applied alone. The tests are: the Augmented 

Dickey Fuller (Dickey Fuller 1979, 1981) unit root test (ADF) and the Kwiatkowski, 

Phillips, Schmidt, and Shin (1992) stationarity test (KPSS). 

5.5 The Statistical Tests 

5.5.1 The Augmented Dickey Fuller (ADF) test 

The ADF test is an improved procedure of the original Dickey Fuller (DF) test: the 

original DF test assumes that a series follows an autoregressive process of order 1; the 

ADF test allows the series to be an autoregressive process of higher order. The test is 

described below.     

We start with the basic AR(1) process: � � H��� � I′ J � �,       (5.2) 

where IJ consists of optional exogenous regressors (a constant, a trend, or a constant 

and a trend). 

 

The simple DF test is carried out by estimating the above equation, after subtracting ��� from both sides of the equations, assuming that the series follows an AR(1) 

process.  To allow for potential higher order processes, AR(p), the ADF test includes 

p lagged difference terms of the dependent variable y on the right side of the equation:      

∆� � K��� � I′ J � L�∆��� � L	∆��	 � M � LN∆��N � O ,   (5.3) 

where K � H � 1 and p is the order of the AR process.  

 

 The null and alternative hypotheses of the test are: �P: K � 0 ��: K Q 0 
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The statistical test is a t-ratio for K 0R � KS @TU�KS�GV  

5.5.2 The Kwiatkowski, Phillips, Schmidt, and Shin (KPSS) test 

As mentioned above, the KPSS test is the alternative procedure that tests the null 

hypothesis of stationarity.  The KPSS is based on an analysis of the residuals from the 

regression of � on exogenous variable I  :  � � I ′J � O.        (5.4) 

 

The LM statistic is: 

�W � ∑ X�0�	 �Y	5P�V  , 
where 5P is an estimator of the residual spectrum at frequency zero and S(t) is a 

cumulative residual function: 

X�0� � Z O[\
[]� , 

based on the residuals O\ � � � I′Ĵ�0�. Under the null hypothesis, the process is 

stationary.  

5.5.3 Critical values  

As mentioned in chapter two, Charemza and Syczewska (1998), Carrion-i-Silvestre et 

al. (2001), and Keblowski and Welfe (2004) published critical values for the Joint 

Confirmation for various sample sizes.  Since the sample size in this study does not 

match the sizes considered in the above articles, only two sets of critical values are 

taken into consideration: first, the values from Carrion-i-Silvestre et al. (2001, p.4) for 

a sample of 300 observations; and secondly, the approximations of asymptotical 

critical values provided by Keblowski and Welfe (2004, p. 260). These are 

reproduced in the tables 5.13 and 5.14. 
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Table 5.13: Critical values for the Joint Confirmation, sample size: 300 

PJC No constant No trend (With constant) With trend 
ADF KPSS ADF KPSS ADF KPSS 

0.99 -2.694 0.246 -3.592 0.149 -4.159 0.070 
0.975 -2.357 0.339 -3.270 0.200 -3.851 0.084 
0.95 -2.159 0.414 -3.100 0.238 -3.670 0.095 
From: Carrion-i-Silvestre et al., 2001, p. 4. PJC: Probability of joint confirmation. KPSS estimated 
with Bartlett kernel. 
 

Table 5.14: Approximations of asymptotical critical values for the Joint Confirmation 

PJC No deterministic term With constant With trend 
ADF KPSS ADF KPSS ADF KPSS 

0.99 -2.847 0.391 -3.735 0.236 -4.224 0.102 
0.975 -2.502 0.558 -3.370 0.320 -3.896 0.130 
0.95 -2.242 0.746 -3.100 0.420 -3.604 0.162 

From: Keblowski and Welfe, 2004, p. 260. PJC: Probability of joint confirmation.  
 

When comparing the critical values from table 5.13 and 5.14, Keblowski and Welfe’s 

asymptotical approximations for ADF and KPSS (table 5.13) are larger in absolute 

values than these computed by Carrion-i-Silvestre et al. (table 5.14).  Hence, the 

values of Keblowski and Welfe, make it harder for both tests to be significant. 

Besides the different sample sizes, it is possible that the discrepancies between the 

critical values are due to different parameterizations of the tests in the Monte-Carlo 

procedures.  

5.5.4 Joint Confirmation tests 

For the following ADF tests, the automatic lag selection is chosen to minimize the 

Schwarz (1978) Bayesian Information Criterion (BIC or SBC), with a maximum lag 

length of 103. The BIC procedure is preferred over the Akaike Information Criterion 

(AIC) as it includes a penalty for including extra parameters. Therefore, 

asymptotically, the SBC procedure selects the more parsimonious model. Concerning 

the KPSS tests, the Bartlett window is used for the spectral estimation and the Newey-

West for the automatic selection of the bandwidth. For these tests, the index prices 

were transformed into log-prices. Tables 5.15-5.17 present the results of the Joint 

Confirmation analysis for log-prices, excess returns, and log-returns.  

 

 

                                                 
3
 A discussion on the information criteria and model selection is presented in appendix 7, section 

10.7.  
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Table 5.15: Joint Confirmation for national indices log-prices, 02/01/1990 – 10/12/2010. 

National 
Indices 

No constant, no trend With constant With constant and trend 
ADF KPSS ADF KPSS ADF KPSS 

AEX 0.8811 N/A -1.5402 5.1178** -0.9494 1.7964** 
BEL20 0.5967 N/A -1.3057 6.1440** -1.4432 1.0327** 
CAC40 0.5608 N/A -1.4539 6.1539** -1.6569 1.0991** 
Observations: 5464. **significant at 5%, observations 
 

Table 5.16: Joint Confirmation for national indices excess returns, 02/01/1990 – 10/12/2010 

National 
Indices 

No constant, no trend With constant With constant and trend 
ADF KPSS ADF KPSS ADF KPSS 

AEX -35.0593** N/A -35.0565** 0.2026 -35.0662** 0.1086  
BEL20 -68.0991** N/A -68.0939** 0.1152 -68.077** 0.1135 
CAC40 -35.2282** N/A -35.2261** 0.1054 -35.2229** 0.1047 
Observations: 5464. **significant at 5% 

 

Table 5.17: Joint Confirmation for national indices log-returns, 02/01/1990 – 10/12/2010 

National 
Indices 

No constant, no trend With constant With constant and trend 
ADF KPSS ADF KPSS ADF KPSS 

AEX -35.0659** N/A -35.0881** 0.2788 -35.1056** 0.0973 
BEL20 -68.1205** N/A -68.1205** 0.1377 -68.1172** 0.0971 
CAC40 -35.2494** N/A -35.2553** 0.1275 -35.2573** 0.0883 
Observations: 5464. **Significant at 5% 
 

The results from the ADF tests are significant at 5% for the returns, but do not reject 

the null of a unit root for the indices’ log-prices, indicating that the national indices 

are integrated of order 1, I(1). These results are not sensitive to the choice of critical 

values.  

 

The results for the KPSS tests are less straightforward and seem sensitive to the 

choice of critical values. If the asymptotic approximations are used (see table 5.14), 

then the null hypothesis of stationarity cannot be rejected at 5% for the returns, but 

can be rejected for the log-prices. This confirms the results from the ADF tests and 

points towards series integrated of order 1. But, if we use the Carrion-i-Sylvestre 

critical values for sample size 300 (see table 5.13), then some regressions including a 

constant and trend for the excess returns and log-returns appear non-stationary, 

contradicting the preceding results. However, the large sample size (5464 

observations) allows us to follow the decisions of the asymptotic approximations, and 

hence to characterise the series as I(1).  
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5.5.5 The Hurst-Mandelbrot Rescaled Range 

Based on the early work of the hydrologist Hurst (1951) and developed by 

Mandelbrot (1972), the Rescaled Range (R/S) Hurst exponent is an assessment of 

persistence patterns or long-memory in series.  If a series is white noise, with zero 

persistence, then the expected Hurst exponent is 0.5. The R/S exponent with a value 

significantly in excess of 0.5 indicates persistence, while a value less than 0.5 

indicates anti-persistence.  For large samples, the exponent is bounded by 0 and 1.  

Analysing returns with the R/S procedure is therefore an interesting complement to 

the Joint Confirmation. If the returns are a stationary white noise process, then the 

Hurst exponent should be around 0.5.       

 

The R/S exponent is based on the following relationship: _/X�I� � a#b ,         (5.5) 

where R/S is the rescaled range of the variable x in samples of size n; a is a constant 

and the H is the R/S Hurst exponent. 

 

When using returns, the rescaled-range statistic is given by: 2cB d �ef gmax�klkB ∑ @7m � 7nBG � min�klkB ∑ @7m � 7nBGlm]�lm]� p,        
where r is the series returns, and XB is the maximum likelihood standard deviation 

estimator: 

XB d q1# Z@7m � 7nBG	
m r� 	s . 

The original series is divided into subsamples and the rescaled range 2cB statistic is 

computed for each of the sub-samples.  The natural logarithms of these statistics are 

then plotted against the logarithms of the sample sizes of each sub-sample.  The Hurst 

component � is estimated as the slope coefficient of the regression of the log of 2cB 

statistics on the log of the sample size. In the econometrics software Gretl, the 

exponent is estimated using a binary sub-sample: starting with the entire data range, 

than with the two halves, then the four quarters, and so on.  

 

Teverovsky et al. (1999, p. 212) considered that, while being not reliable for small 

sample sizes, the R/S analysis is effective for relatively large sample sizes: “…the 
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most useful feature of the classical R/S analysis is its relative robustness under 

changes in the marginal distribution of the data, particularly if the marginals exhibit 

heavy tails with infinite variance.” (p.212). Drawbacks of the analysis include the 

sensitivity to the presence of short-range dependences in the variable and the lack of a 

distribution theory for the underlying R/S statistics. For these reasons, Lo (1991) 

proposed a modified R/S statistic, using a modified estimation of the standard 

deviation (see also Campbell et al. 1997). However, Teverovsky et al. (1999) showed 

that this procedure suffers from subjectivity in the choice of parameter and potential 

bias towards the null hypothesis of no long-range dependence (p. 225-226). 

 

Table 5.18 presents the estimates of the slopes and related standard errors for the 

regressions of the log2cB statistics on the log of the sample size for each series. 

Because the R/S is also an important graphical method (Teverovsky et al. p. 212), the 

graphs of each regression for the indices excess returns are produced in figure 5.6 -5.8 

(log-returns have similar slopes, hence similar graphs).  

 

Table 5.18: Rescaled Range (R/S) exponents for national indices returns, 02/01/1990-10/12/2010 

National Indices  Slope Standard Error R/S Exponent 
AEX excess returns 0.57764 0.0082505 0.577644 
AEX log-returns 0.57687 0.0068161 0.576866 
BEL20 excess returns 0.58338 0.017404 0.583377 
BEL20 log-returns 0.58181 0.016574 0.581811 
CAC40 excess returns 0.55455 0.0098326 0.554554 
CAC40 log-returns 0.54950 0.0075848 0.549503 

 
All estimates of the slopes are highly significant. An examination of the graphs by eye 

confirms that the line fits well all the log2cBstatistics-log sample size coordinates for 

each regression. The values of the exponents are quite similar and lie within a range 

between 0.549 and 0.583. 

 

The interpretation of the value of the R/S exponent is more difficult. If a variable is 

white noise, “then the range of its cumulated wandering (which forms a random 

walk), scaled by the standard deviation, grows as the square root of the sample size, 

giving an expected Hurst exponent of 0.5” (Gretl, p. 30). Persistence would be 

indicated by a value significantly in excess of 0.5, but there is no test to assess the 

significance of the exponent.  However, the values from table 5.18 do not give strong 

indications in favour of the existence of long-memory in the national indices returns. 



113 

 

Moreover, these values can translate the existence of short term dependence in the 

return series.  

 

Figure 5.6: Hurst R/S plots for AEX excess returns  

 
Figure 5.7: Hurst R/S plots for BEL20 excess returns  
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Figure 5.8: Hurst R/S plots for CAC40 excess returns  

 

 

5.5.6 Fractional integration  

As seen in the literature review on DGP, another procedure to test the long memory 

pattern of a series is to determine the order of integration of a series, assuming that the 

order of integration d is not an integer but a real number (see 2.3.7). Indeed, according 

to Granger and Joyeux (1980), a fractionally integrated seriest can have the 

following form: �����1 � ���t � �����,         (5.6) 

where: � � ����0,  	�,  and �1 � ��� is the fractional differencing operator. 

Hamilton (1994) explained that the scope of fractional-difference specification is to 

capture parsimoniously large-order ARMA processes that decay slowly.  

 

There are different procedures to estimates the order of integration d. Table 5.19 

shows the results of two popular techniques, the Geweke and Porter Hudak (GPH) 

test, (1983) and the local Whittle estimator proposed by Robinson (1995). 

 

 

 1

 2

 3

 4

 5

 6

 7

 3  4  5  6  7  8  9  10  11  12  13

lo
g
(R
S
)

log(sample size)

Rescaled-range plot for CAC40ER



115 

 

The interpretation of the estimates of the order of integration d is as follows: 

1. if 0.5 Q � Q 1, then the series is covariance nonstationary but mean 

 reverting; 

2. if �0.5 Q � Q 0.5, then the series is covariance stationary; 

3. if 0 Q � Q 0.5, the series is believed to exhibit persistence (i.e. the 

series is stationary mean reverting); 

4. if � � 0, then the series is said to have no memory; and 

5. if 0 v � v �0.5, then it exhibits negative autocorrelation.  

 

Table 5.19: Fractional integration, Local Whittle Estimator and GPH test for returns 

National Indices  Local Whittle 
Estimator 

p-value GPH test p-value 

AEX excess return 0.051161 
(0.0380143) 

0.1784 0.120904 
(0.0486569) 

0.0139 

AEX log-return 0.0489723 
(0.0380143) 

0.1977 0.116132 
(0.0486632) 

0.0181 

BEL20 excess return 0.0488334 
(0.0380143) 

0.1989 0.110059 
(0.0553908) 

0.0485 

BEL20 log-return 0.0440769 
(0.0380143) 

0.2463 0.103147 
(0.055585) 

0.0652 

CAC40 excess return 0.0442334 
(0.0380143) 

0.2446 0.0523528 
(0.048272) 

0.2797 

CAC40 log-return 0.0392493 
(0.0380143) 

0.3018 0.0432854 
(0.048321) 

0.3716 

Lag order automatically chosen as YP.w, i.e, 173.  Standard error in parenthesis.  

    

Table 5.19 presents the results for the indices’ returns. According to the Local Whittle 

Estimator, the estimates for the order of integration d are not significant, hence the 

return series are assumed to have no memory. However, the GPH test results show 

that the Dutch and Belgian returns exhibit light long-memory behaviour with an 

estimate of d around 0.1. The estimates are more significant for the Dutch returns (5% 

level of significance) and less for the Belgian returns (10% level of significance).  

 

On the other hand, the results from table 5.20 show strong evidence supporting the 

presence of a long memory process in the squared returns. Except for the Dutch index, 

all the estimates for the fractional integration parameter � are positive but smaller 

than 0.5, indicating a weakly stationary mean reverting process. The results the Dutch 

index indicate a marginal nonstationary volatility process, but as the estimated � is 

smaller than 1, the process is still mean reverting, i.e. “innovation will have no 

permanent effect on its value” (Caporale and Gil-Alana 2004b, p.350).    
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Table 5.20: Fractional integration, Local Whittle Estimator and GPH test, for squared returns 

National Indices  Local Whittle 
Estimator 

p-value GPH test p-value 

AEX excess return 0.502123 
(0.0380143) 

0.0000 0.517661 
(0.0469347) 

0.0000 

AEX log-return 0.502605 
(0.0380143) 

0.0000 0.518571 
(0.0471431) 

0.0000 

BEL20 excess return 0.424677 
(0.0380143) 

0.0000 0.462664 
(0.0500584) 

0.0000 

BEL20 log-return 0.424663 
(0.0380143) 

0.0000 0.462461 
(0.0500827) 

0.0000 

CAC40 excess return 0.446311 
(0.0380143) 

0.0000 0.47018 
(0.0508788) 

0.0000 

CAC40 log-return 0.446266 
(0.0380143) 

0.0000 0.470386 
(0.0511917) 

0.0000 

Lag order automatically chosen as YP.w, i.e, 173. Standard error in parenthesis. 

 

Therefore, the results of the fractional integration analysis show weak evidence of 

long memory in the indices’ returns series but strong evidence in the indices’ squared 

returns. Therefore, the returns series are stationary and appear to have weak or no 

memory.  The volatility of these returns series are weakly stationary and exhibit a 

mean reverting process. These results are in line with Lobato and Savin (1998), Po 

(2000), Assaf (2006), and Caporale and Gil-Alana (2002, 2004a).  

 

Caporale and Gil-Alana (2004a) argue that “despite the length of the series, a standard 

model in first differences rather than a fractional integrated one might be appropriate 

for stock returns.”(p.382). Moreover, Vougas (2004) argues that long memory in 

volatility disappear when the latter is modelled using a GARCH process.   

5.6 Main Findings  

The sample used in this study is comprised of daily prices for three national indices, 

AEX, BEL20, CAC40, for the period 01/01/1990-10/12/2010.  

 

Two types of daily returns are computed: 1. the log-returns which are the log 

transformation of the series’ first differences; 2. the excess returns which are the log-

returns minus the one-month interbank rate, a proxy for the country’s risk free rate. 

Both returns will be used for each index in the next chapter, an analysis of the data 

generating process of each series, allowing for sensitivity analysis.  
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The order of integration of the series is assessed using a robust procedure, the Joint 

Confirmation, which entails the simultaneous use of a Unit Root (ADF) and a 

Stationary test (KPSS). Moreover, specific critical values estimated for this procedure 

are used for inferential decisions. Results show that the log-price series are integrated 

of order 1, I(1), an expected outcome for financial time series. Hence, the log-returns 

and excess returns series are stationary. 

 

Finally, the eventual existence of long-memory in the returns is explored applying the 

R/S analysis and fractional integration analysis. According to the R/S procedure, the 

returns do not appear to include a persistence pattern, however, the values of the R/S 

exponent are slightly higher than expected if the returns were white noise stationary. 

These values may be caused by short term dependencies. Indeed, the time plot of the 

return series exhibits volatility clustering. According to the fractional integration 

analysis, the evidences supporting of long memory are weak for the returns but strong 

for the squared returns. This finding can be seen as an argument in favour of an 

ARMA-GARCH process to model the data generating process of the returns.    

 

The next chapter explores in more depth the matter of dependencies as its focus is the 

identification of the series’ data generating process.    
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6 The Data Generating Process 

6.1 Introduction  

The scope of this chapter is to research the first research objective: To test the 

information efficiency of the French, Belgian and Dutch exchanges before and after 

Euronext integration.  

 

The strategy designed to address this objective was introduced in chapter four. It 

entails the use of a multistep algorithm to identify the data generating process of each 

series for the entire period, but also for the three sub-periods. If the Euronext 

integration has indeed improved the information efficiency of the markets, then this 

should show in their data generating processes. 

  

This chapter is divided as follows: the next chapter analyses the research framework. 

Section 6.3 presents and discusses the estimates from linear models and section 6.4, 

the estimates from nonlinear stochastic models. Section 6.5 summarises the chapter’s 

main findings.   

6.2 Empirical Framework 

6.2.1 Hypothesis and research design 

As discussed in chapter four, the main hypothesis tested in this chapter is: ��: The French, Belgian and Dutch stock markets are more efficient following the 

Euronext merger. 

 

In order to avoid the joint hypothesis problem, the information efficiency of each 

series is tested by analysing directly the data generating process of each series (see 

chapters two and four). In the literature, a common framework for identifying the 

DGP of a series is used by many authors: Hsieh (1991) for US stock markets, Sewel 

et al. (1996) for international stock indices; Al-Loughani and Chappel (1997) working 

on UK stock indices; Panagiotidis (2005) for the Greek stock index; and Willcocks 

(2009) focusing on the UK housing index. This framework is a multistep procedure 

which assesses the fit of a model by assessing the iid assumption for the residuals. 

The procedure can be summarised as follows: 

Step 1: To assess the stationarity of the series. 
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Step 2: To model the stationary series using an appropriate linear model and save the 

residuals. 

Step 3: To test the residuals for the iid assumption. If the residuals are iid, then the 

series is assumed to be explained by the linear model of step 2.  

Step 4: If residuals are not iid, then there is evidence of stochastic nonlinearity in the 

series. The conditional variance of the series is modelled and the residuals are saved.  

Step 5: Same as step 3, to test the residuals from the model for the iid assumption. If 

the residuals are iid, then the DGP is explained by the model of step 4.  

Step 6:  If the residuals are not iid, then other models should be used: e.g. a nonlinear 

stochastic model (e.g. long-memory) or a nonlinear deterministic model (e.g. chaotic 

processes). 

 

All authors mentioned above found that their index prices were integrated of the first 

order. Hence, they proceeded to step 2 using the indices’ first differences (returns). In 

the second step, some authors (Hsieh 1991; Sewel et al. 1996) used an autoregressive 

model, others (Al-Loughani and Chappel 1997; Willcocks 2009) applied a random 

walk process to filter the linear dependences. All authors used the BDS procedure to 

test the iid assumption of the residuals, though sometimes in conjunction with other 

tests (e.g.  the McLeod-Li, the Engle LM, the Tsay  and the bicovariance tests in 

Panagiotidis 2005). All the authors found that linear processes were not sufficient to 

identify the DGP of their series and needed to model the conditional variance in order 

to explain the series. In most cases, parsimonious low level GARCH type models (e.g. 

GARCH (1, 1)) explained the series. Moreover, none of the five papers found strong 

evidence indicating the presence of long-memory or chaotic processes.  

 

The research design of this chapter adopts a similar strategy, with however some 

differences. First, the diagnostic framework at each step includes: the Jarque-Bera test 

to assess the normality of the residuals, the portmanteau Q-statistics of the residuals to 

test for autocorrelation in the mean equation, the Q-statistics of the squared residuals 

to investigate autocorrelation in the variance, the Engle LM test to assess potential 

heteroskedasticity in the residuals and the BDS test to assess the iid of the residuals. 

The lags structures considered for these tests are: 

Portmanteau Q-statistics:  5 and 10 lags, 

Engle LM:   1 and 5 lags, 
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BDS:    Dimension 2 to 5.  

The lag structure for the Q-test covers next week (5 lags) and two weeks periods (10 

lags). The lag structures for the Engle LM and BDS test correspond to the next day 

and next week.   

 

Second, if an ARMA-GARCH process needs to be estimated, then the mean and the 

variance are estimated jointly using the maximum likelihood estimator. 

 

The next section looks therefore at the linear processes. If the diagnostic tests indicate 

that these models fail to capture the data generating process, then nonlinear processes 

are estimated.   

6.3 Linear Models 

In the previous chapter, the order of integration of the data was investigated and the 

price series were found to have a unit root and to be integrated of order 1. The testing 

procedure was the robust Joint Confirmation (joint use of unit root and stationarity 

tests). No specific structure was assumed about the series and the Joint Confirmation 

was applied to three models: pure random walk, random walk with drift and random 

walk with a drift and a trend. 

  

In this chapter, we will research the data generating process using the returns series. 

Two types of returns are used for each series:  log-difference and excess returns.  Two 

broad families of linear models are considered: first the random walk family, then the 

more general class of autoregressive models.  

6.3.1 Random walk processes 

In this section, the �� �  �� � x̂ testing procedure is applied. This procedure allows 

for a clear choice of random walk process: i.e. a pure random walk, random walk with 

drift, or random walk with drift a trend.   

6.3.1.1 Background  

A pure random walk is given by the following equation: � � ����� � �,        (6.1) 

where � is the price level of a series and �� � 1.  
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If we take the first differences, we have: 

∆� � �,         (6.2) 

where � is a white noise process. This implies that the return of series y follows a 

white noise process, leaving no evidence of predictability for investors. This is the 

reason why the random walk process is associated with efficiency of the market.  

 

A random walk process can also include drift: � � z � ����� � �,        (6.3) 

where z is drift (constant) and �� � 1 .  

 

The return (first difference) is given by: 

 ∆� � z � �,         (6.4) 

where the drift is the unconditional mean of the return series.  

 

Finally, a random walk process can also include drift and a deterministic trend: � � z � ����� � L0 � � ,       (6.5) 

where Lis the deterministic trend and �� � 1  .  

 

The return (first difference) is given by: 

 ∆� � z � L0 � �,         (6.6)  

indicating that the returns include an unconditional mean and a time trend.  

 

In the equation 6.1, 6.3 and 6.5, the condition �� � 1 is essential for a random walk. 

If ��is smaller but close to the value 1, then the process is qualified as a near random 

walk. However, if �� v 1 then the process is said to be explosive.   

6.3.1.2 Testing framework 

In order to choose the appropriate type of random walk, we use a procedure based on 

the Augmented Dickey Fuller test (for details, see Patterson 2000, chapter 6) and run 

three maintained regressions, corresponding to the above three situations. 

The first maintained regression is: 

∆� � z � {��� � L0 � �,       (6.7) 

where ∆�is the first difference series (returns), z is a constant/drift, { � �� � 1 and L0 is a deterministic trend component.  
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The null hypotheses tested are: x̂| , �P: { � 0, ��: { Q 0; 

Φ�, �P: { � 0, L � 0, ��:{ } 0 and/or L } 0 

If null of Φ� is rejected, then x̂| is applied. If the null of x̂| cannot be rejected, then 

the series has a unit root.  If the null is rejected, then the series is stationary, following 

a random walk. 

If the null of Φ� cannot be rejected, then the second maintained regression is run: 

∆� � z � {��� � �.        (6.8) 

The hypotheses tested are: x̂~ , �P: { � 0, ��: { Q 0; ��, �P: z � 0, { � 0, ��: z } 0 and/or { } 0 

If the null of ��is rejected, then x̂~ is tested. If x̂~ is not rejected, the series has a unit 

root. If the null is rejected, the series is stationary.  

 

If the null of ��cannot be rejected, then a final maintained regression is run: 

∆� � {��� � �.         (6.9) 

The single hypothesis tested is: x̂, �P: { � 0, ��: { Q 0.  
If the null cannot be rejected, then the series has a unit root. If the null is rejected, 

then the series is a stationary.  

The critical values for the F- and T-tests in the above framework are specific and 

computed via Monte-Carlo simulations. They can be found in Patterson (2000) from 

which selected critical values are reproduced in tables 6.1, 6.4 and 6.7 below.  

6.3.1.3  Random walk models estimates  ��tests 
As in the previous chapter, when using the ADF tests, the automatic lag selection is 

chosen to minimize the Schwarz (1978) Bayesian Information Criterion (BIC), with a 

maximum lag length of 10. Two regressions are run: the restricted model, assuming 

the null hypothesis:  { � L � 0, and the unrestricted model with z } 0, { } 0 (the 

maintained ��regression).  
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The computed F-statistic is given by: �� � �@�__XX � �_XX�/�_XXG�Y� � 3�/2�,  
where  Y� � Y � 1. 

These computed statistics are then compared with specific critical values for the ��test (two-sided) using a data generating process of random walk with drift (table 

6.1).  

 

Table 6.1: Critical values for ��test 
 Critical values 
Sample Size T 1% 5% 10% 
200 8.542 6.397 5.433 
500 8.326 6.238 5.321 
1,000 8.328 6.209 5.309 
5,000 8.209 6.218 5.349 
Source: Patterson (2000, p. 234), tabulated from 25,000 replication with DGP Δt � z � � 

 

From tables 6.2 and 6.3, we can see that, at the 5% level of significance, all computed 

values from the F-tests do not exceed the two sided critical values. The null 

hypothesis of the �� tests is therefore not rejected and the next step is to consider the �� test.   

 
Table 6.2: Results from ��tests on the national indices log-price series 
National indices  Sample (date) Sample size Test Statistics 
AEX log-price 01/01/1990-10/12/2010 5465 0.058941 

01/01/1990-31/08/2000 2784 5.613404* 
01/09/2000-30/10/2002 564 2.771464 
01/11/2002-10/12/2010 2116 0.049038 

BEL20 log-price 02/01/1990-10/12/2010 5464 0.301687 
02/01/1990-31/08/2000 2783 5.304369 
01/09/2000-30/10/2002 564 2.563641 
01/11/2002-10/12/2010 2116 0.59173 

CAC40 log-price 01/01/1990-10/12/2010 5465 0.424066 
01/01/1990-31/08/2000 2784 2.75214 
01/09/2000-30/10/2002 564 3.535508 
01/11/2002-10/12/2010 2116 0.156895 

*indicate significance at 10%, ** indicate significance at 5%, ***indicate significance at 1% 
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Table 6.3: Results from ��tests on the national indices return series 
National indices Sample (date) Sample size Test Statistics 
AEX log return 02/01/1990-10/12/2010 5464 -0.79505  

02/01/1990-31/08/2000 2783 1.13621 
01/09/2000-30/10/2002 564 0.110685 
01/11/2002-10/12/2010 2116 0.040499 

AEX excess return 02/01/1990-10/12/2010 5464 0.372047 
02/01/1990-31/08/2000 2783 1.762452 
01/09/2000-30/10/2002 564 0.098531 
01/11/2002-10/12/2010 2116 0.031961 

BEL20 log-return 03/01/1990-10/12/2010 5463  0.110643 
02/01/1990-31/08/2000 2782 0.793379 
01/09/2000-30/10/2002 564 0.315349 
01/11/2002-10/12/2010 2116 0.73994 

BEL20 excess return 03/01/1990-10/12/2010 5463 0.00  

02/01/1990-31/08/2000 2782 1.433267 
01/09/2000-30/10/2002 564 0.289053 
01/11/2002-10/12/2010 2116 0.696888 

CAC40 log-return 02/01/1990-10/12/2010 5464 0.152704 
02/01/1990-31/08/2000 2783 2.009781 
01/09/2000-30/10/2002 564 0.038415 
01/11/2002-10/12/2010 2116 0.346159 

CAC40 excess return 02/01/1990-10/12/2010 5464 0.002588 
02/01/1990-31/08/2000 2783 2.856633 
01/09/2000-30/10/2002 564 0.029877 
01/11/2002-10/12/2010 2116 0.317979 

*significance at 10%, **significance at 5%, ***significance at 1% 
 

 

 �� tests 
The �� test assesses whether the DGP can be modelled with a random walk with drift. 

Two regressions are run: first, a restricted model, nesting the null hypothesis: { � z � 0; secondly, an unrestricted model (the maintained ��regression): { } 0 or z } 0.    

The computed �� statistic is given by: F=�@�__XX � �_XX�/�_XXG�Y� � 2�/2�. 
These computed statistics are then compared with specific critical values for the ��test (two-sided) using a data generating process of a pure random walk (table 6.4).  

 

Table 6.4: Critical values for ��test 
 Critical values 
Sample Size T 1% 5% 10% 
200 6.730 4.696 3.835 
500 6.387 4.646 3.803 
1,000 6.370 4.620 3.787 
5,000 6.365 4.596 3.797 
Source: Patterson (2000, p. 231), tabulated from 25,000 replication with DGP ∆t � � 
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Table 6.5: Results from ��tests on the national indices log-price series 
National indices  Sample (date) Sample size Test Statistics 
AEX log-price 01/01/1990-10/12/2010 5465 1.328827 

01/01/1990-31/08/2000 2784 0.094906 
01/09/2000-30/10/2002 564 0.170088 
01/11/2002-10/12/2010 2116 1.200302 

BEL20 log-price 02/01/1990-10/12/2010 5463 0.897325 
02/01/1990-31/08/2000 2783 0.00 
01/09/2000-30/10/2002 564 0.218051 
01/11/2002-10/12/2010 2116 1.017888 

CAC40 log-price 01/01/1990-10/12/2010 5464 1.102399 
01/01/1990-31/08/2000 2784 0.451002 
01/09/2000-30/10/2002 564 0.261898 
01/11/2002-10/12/2010 2116 1.468034 

*significance at 10%, **significance at 5%, ***significance at 1% 
 
Table 6.6: Results from ��tests on the national indices return series 
National indices Sample (date) Sample size Test Statistics 
AEX log-return 02/01/1990-10/12/2010 5464  0.527454 

02/01/1990-31/08/2000 2783 3.781397 
01/09/2000-30/10/2002 564 1.283175 
01/11/2002-10/12/2010 2116 0.00 

AEX excess return 02/01/1990-10/12/2010 5464 0.010707 
02/01/1990-31/08/2000 2783 1.652363 
01/09/2000-30/10/2002 564 1.590791 
01/11/2002-10/12/2010 2116 0.029829 

BEL20 log-return 03/01/1990-10/12/2010 5463 0.225133 
02/01/1990-31/08/2000 2782 1.011869 
01/09/2000-30/10/2002 564 0.755987 
01/11/2002-10/12/2010 2116 0.102381 

BEL20 excess return 03/01/1990-10/12/2010 5463 0.038144 
02/01/1990-31/08/2000 2782 0.065058 
01/09/2000-30/10/2002 564 1.050021 
01/11/2002-10/12/2010 2116 0.01137 

CAC40 log-return 02/01/1990-10/12/2010 5464 0.261442 
02/01/1990-31/08/2000 2783 1.612974 
01/09/2000-30/10/2002 564 1.536394 
01/11/2002-10/12/2010 2116 0.051439 

CAC40 excess return 02/01/1990-10/12/2010 5464 0.031053 
02/01/1990-31/08/2000 2783 0.366528 
01/09/2000-30/10/2002 564 1.883467 
01/11/2002-10/12/2010 2116 0.00 

*significance at 10%, **significance at 5%, ***significance at 1% 
 

The results from the ��tests (table 6.5 and 6.6) show that the joint null hypothesis of 

non-stationarity ({ � 0) and no drift �z � 0� cannot be rejected at all significance 

levels. The �� �  �� testing procedure therefore indicates no deterministic trend and 

no drift in the GDP of the log price series and return series, for all samples.  Formally, 

the testing procedure includes a last step, the x̂ test, to ascertain the stationarity of the 
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series. In the previous chapter, we have already established that the log price series 

are integrated of the order 1, using a robust approach. However, for the sake of 

completeness, we quickly present this last test and the appropriate critical values. The 

computed t-test values are already presented in the previous chapter, hence only the 

final outcomes are presented.  

 �S tests 
The �� and  �� tests are two sided tests. To increase its power, the x̂ test is one-sided, 

with a null hypothesis of { � 0 (or �� � 1, implying non-stationarity) against an 

alternative hypothesis of { Q 0 (or �� Q 1 , implying stationarity). Because of its 

alternative hypothesis, the critical values are negative (table 6.7). 

Table 6.7: Critical values for �S test 
 Critical values 
Sample Size T 1% 5% 10% 
200 -2.581 -1.938 -1.619 
500 -2.536 -1.943 -1.610 
1,000 -2.593 -1.961 -1.624 
5,000 -2.558 -1.952 -1.624 
Source: Patterson (2000, p. 229), tabulated from 25,000 replication with DGP Δt � � 
 

All the computed t-values reported in the previous chapter (see chapter 5) are greater 

than the above critical values for the log prices series and much lower for the return 

series.   

6.3.1.4 Findings from the random walk models ( ADF �� �  �� � �S)  
The results of the  �� �  �� � x̂ indicate that, at the 5% level of significance and for 

all sample windows considered, the DGP of the log prices series have a unit root and 

do not present a time tend or drift.  

The results of the BDS tests for pure random walk DGP are presented in appendix 4 

(see section 10.4) The results strongly reject the null hypothesis of iid at 1% 

significance. Hence, further investigations of the DGP are necessary.   

6.3.2 Autoregressive Moving Average (ARMA) Model 

In this section, a more generic family of linear models, the class of autoregressive 

moving average models, is considered.      
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6.3.2.1 Background  

 An Autoregressive Moving Average (ARMA) model attempts to capture the linear 

dependencies existing in a time series using lag values of the variables and lags of the 

residuals. 

 The generic model ARMA (p, q) is given by: 

 � � � � ∑ �3���N3]� � � � ∑ �3�3]� ���.     (6.10)  

If the coefficients �3 � 0, then the process collapses to a simple autoregressive (AR) 

model. If the coefficients �3 � 0, then the process collapses to a moving average 

(MA) model. 

6.3.2.2 ARMA models estimates   

Table 6.8 to 6.11 present estimates of ARMA process using the Ordinary Least 

Square (OLS) estimator for the entire period and each sub-period. The orders of the 

processes were determined using correlograms to identify the significant lags and 

minimizing the SBC criterion.  

 

Table 6.8: Estimation of ARMA models for the entire period. 

 AEX log-return AEX excess return 

Constant 0.000172 (0.97530) 0.0000219 (0.000174) 
MA(3rd lag) -0.059397 (0.013507)*** -0.059125 (0.013508)*** 
p-value Q statistics residuals (5 lags) 0.000 0.000 
p-value Q statistics residuals (10 lags) 0.000 0.000 
 p-value Q statistics squared residuals (5 lags) 0.000 0.000 
p-value Q statistics squared residuals (10 lags) 0.000 0.000 
p-value Engle’s LM test (1 lag) 0.000 0.000 
p-value Engle’s LM test (5 lags) 0.000 0.000 
p-value Jarque-Bera 0.000 0.000 

 BEL20 log-return BEL20 excess return 

Constant 0.000113 (0.000169) -0.0000461 (0.000169) 
AR(1st lag) 0.081242 (0.013487)*** 0.081624 ((0.013487)*** 
p-value Q statistics residuals (5 lags) 0.000 0.000 
p-value Q statistics residuals (10 lags) 0.000 0.000 
 p-value Q statistics squared residuals (5 lags) 0.000 0.000 
p-value Q statistics squared residuals (10 lags) 0.000 0.000 
p-value Engle’s LM test (1 lag) 0.000 0.000 
p-value Engle’s LM test (5 lags) 0.000 0.000 
p-value Jarque-Bera 0.000 0.000 

 CAC40 log-return CAC40 excess return 

Constant 0.000120 (0.000178) -0.0000448 (0.000178) 
AR(1st lag) -0.055539 (0.013510)*** -0.055209 (0.013511)*** 
p-value Q statistics residuals (5 lags) 0.000 0.000 
p-value Q statistics residuals (10 lags) 0.000 0.000 
 p-value Q statistics squared residuals (5 lags) 0.000 0.000 
p-value Q statistics squared residuals (10 lags) 0.000 0.000 
p-value Engle’s LM test (1 lag) 0.000 0.000 
p-value Engle’s LM test (5 lags) 0.000 0.000 
p-value Jarque-Bera 0.000 0.000 
Standard error in parenthesis. *significance at 10%, **significance at 5%, ***significance at 1% 
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Table 6.9: Estimation of ARMA models for the pre-integration period. 

 AEX log-return AEX excess return 

Constant 0.000582 (0.000194)*** 0.000384 (0.000195)** 
MA(3rd lag) -0.046384 (0.018948)** -0.045677 (0.018948)** 
p-value Q statistics residuals (5 lags) 0.166 0.167 
p-value Q statistics residuals (10 lags) 0.000 0.000 
 p-value Q statistics squared residuals (5 lags) 0.000 0.000 
p-value Q statistics squared residuals (10 lags) 0.000 0.000 
p-value Engle’s LM test (1 lag) 0.000 0.000 
p-value Engle’s LM test (5 lags) 0.000 0.000 
p-value Jarque-Bera 0.000 0.000 

 BEL20 log-return BEL20 excess return 

Constant 0.000284 (0.000199) -0.0000711 (0.000200) 
AR(1st lag) 0.125820 (0.018813)*** 0.126383 (0.018812)*** 
p-value Q statistics residuals (5 lags) 0.056 0.059 
p-value Q statistics residuals (10 lags) 0.002 0.002 
 p-value Q statistics squared residuals (5 lags) 0.000 0.000 
p-value Q statistics squared residuals (10 lags) 0.000 0.000 
p-value Engle’s LM test (1 lag) 0.000 0.000 
p-value Engle’s LM test (5 lags) 0.000 0.000 
p-value Jarque-Bera 0.000 0.000 

 CAC40 log-return CAC40 excess return 

Constant 0.000430 (0.000241)* -0.000204 (0.000241) 
MA (1st lag) -0.045863 (0.018943)** -0.046431 (0.018942)** 
p-value Q statistics residuals (5 lags) 0.066 0.071 
p-value Q statistics residuals (10 lags) 0.004 0.004 
 p-value Q statistics squared residuals (5 lags) 0.000 0.000 
p-value Q statistics squared residuals (10 lags) 0.000 0.000 
p-value Engle’s LM test (1 lag) 0.000 0.000 
p-value Engle’s LM test (5 lags) 0.000 0.000 
p-value Jarque-Bera 0.000 0.000 
Standard error in parenthesis. *significance at 10%, **significance at 5%, ***significance at 1% 
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Table 6.10: Estimation of ARMA models for the integration period.  

 AEX log-return AEX excess return 

Constant -0.001287(0.000716)* -0.001434 (0.000716)** 
MA(5th lag) -0.112636 (0.042415)*** -0.112641 (0.042415)*** 
p-value Q statistics residuals (5 lags) 0.367 0.367 
p-value Q statistics residuals (10 lags) 0.038 0.000 
 p-value Q statistics squared residuals (5 lags) 0.000 0.038 
p-value Q statistics squared residuals (10 lags) 0.000 0.000 
p-value Engle’s LM test (1 lag) 0.000 0.000 
p-value Engle’s LM test (5 lags) 0.000 0.000 
p-value Jarque-Bera 0.000 0.000 

 BEL20 log-return BEL20 excess return 

Constant -0.000831 (0.000674) -0.000979 (0.000674) 
AR(1st lag) 0.138058 (0.041820)*** 0.138014 ((0.041821)*** 
p-value Q statistics residuals (5 lags) 0.037 0.036 
p-value Q statistics residuals (10 lags) 0.005 0.005 
 p-value Q statistics squared residuals (5 lags) 0.000 0.000 
p-value Q statistics squared residuals (10 lags) 0.000 0.000 
p-value Engle’s LM test (1 lag) 0.000 0.000 
p-value Engle’s LM test (5 lags) 0.000 0.000 
p-value Jarque-Bera 0.000 0.000 

 CAC40 log-return CAC40 excess return 

Constant -0.001372 (0.000696)** -0.001518 (0.000696)** 
MA(5th lag) -0.113580 (0.042496)*** -0.113563 (0.042497)*** 
p-value Q statistics residuals (5 lags) 0.444 0.444 
p-value Q statistics residuals (10 lags) 0.104 0.104 
 p-value Q statistics squared residuals (5 lags) 0.000 0.000 
p-value Q statistics squared residuals (10 lags) 0.000 0.000 
p-value Engle’s LM test (1 lag) 0.098 0.099 
p-value Engle’s LM test (5 lags) 0.000 0.000 
p-value Jarque-Bera 0.000 0.000 
Standard error in parenthesis. *significance at 10%, **significance at 5%, ***significance at 1% 
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Table 6.11: Estimation of ARMA models for the period post-integration period.  

 AEX log-return AEX excess return 

Constant -0.00000853 (0.000309) -0.0000805 (0.000309) 
MA(3rd lag) -0.070454 (0.021696)*** -0.069986 (0.021697)*** 
p-value Q statistics residuals (5 lags) 0.001 0.001 
p-value Q statistics residuals (10 lags) 0.001 0.001 
 p-value Q statistics squared residuals (5 lags) 0.000 0.000 
p-value Q statistics squared residuals (10 lags) 0.000 0.000 
p-value Engle’s LM test (1 lag) 0.000 0.000 
p-value Engle’s LM test (5 lags) 0.000 0.000 
p-value Jarque-Bera 0.000 0.000 

 BEL20 log-return BEL20 excess return 

Constant 0.000135 (0.000274) 0.0000445 (0.000274) 
MA(3rd lag) -0.050367 (0.021722)** -0.049722 (0.021723)** 
p-value Q statistics residuals (5 lags) 0.151 0.142 
p-value Q statistics residuals (10 lags) 0.019 0.019 
 p-value Q statistics squared residuals (5 lags) 0.020 0.000 
p-value Q statistics squared residuals (10 lags) 0.000 0.000 
p-value Engle’s LM test (1 lag) 0.000 0.000 
p-value Engle’s LM test (5 lags) 0.000 0.000 
p-value Jarque-Bera 0.000 0.000 

 CAC40 log-return CAC40 excess return 

Constant 0.0000904 (0.000249) 0.00000139 (0.000251) 
AR(1st lag) 0.668653 (0.113168)*** 0.661535 (0.116555)*** 
MA(1st lag) -0.740029 (0.102341)*** -0.732809 (0.105736)*** 
p-value Q statistics residuals (5 lags) 0.001 0.001 
p-value Q statistics residuals (10 lags) 0.000 0.000 
 p-value Q statistics squared residuals (5 lags) 0.000 0.000 
p-value Q statistics squared residuals (10 lags) 0.000 0.000 
p-value Engle’s LM test (1 lag) 0.000 0.000 
p-value Engle’s LM test (5 lags) 0.000 0.000 
p-value Jarque-Bera 0.000 0.000 
Standard error in parenthesis. *significance at 10%, **significance at 5%, ***significance at 1% 

6.3.2.3 Discussion  

The autoregressive structures of each return series seem to change through time. 

During the first sub-period, pre-integration, parsimonious short lag term processes are 

fitted (except for the AEX return series), while for the next sub-period, longer lag 

term processes are preferred (except for BEL20 return series). It is worth noting that 

the SBC information criterion indicates similar processes for log-returns and excess 

returns of each national index.       

 

The Q-statistics of the residuals indicate that overall autocorrelation remains present 

in the series after estimation of the models, with the exception of the integration 

period (2000-2002), where autocorrelation disappear at lower lags (5). The Q-

statistics of squared residuals of the fitted processes indicate the presence of 

autocorrelation in the return series variance. Moreover, the results of the Engle’s LM 

ARCH tests points to the presence of ARCH effects in the residuals of all the ARMA 

processes. Finally, the results for the BDS tests are presented in appendix 5 (see 
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section 10.5). The null hypothesis of iid is rejected for all estimated processes at 1% 

for dimension 2 to 5.  

 

These findings suggest that the return series cannot be explained satisfactorily with 

linear processes. This corroborates the plots of the return series (see chapter 5) which 

indicated the presence of volatility clustering. A popular approach to capture both the 

linear dependences and the conditional volatilities of a return series is to use ARMA-

GARCH processes. Moreover, the results from the fractional analysis presented in 

chapter 5 showed that the return series did not exhibit long-memory, but that the 

squared returns did. Caporale and Gil-Alana (2004a) argued that a standard ARMA 

model is appropriate to model the mean equation and Vougas (2004) suggested that a 

GARCH process can capture the long memory in volatility.   

6.4 Autoregressive Conditional Heteroskedastic (ARCH) model 

The autoregressive conditional heteroskedastic (ARCH) model was first introduced 

by Engle (1982) in order to capture the changes in volatility that time series 

sometimes exhibit. An ARCH process estimates conditional variance in terms of a 

constant and past squared residuals of a mean equation, often estimated using a linear 

process. 

 

An ARCH(p) model is given by:  � � � � ∑ �3���N3]� � � � ∑ �3�3]� ��� � �,     (6.11) � �  �.         (6.12)  	 � KP � a����	 � a	��		 � M � aN��N	 ,     (6.13) 

where �  � 1�0,1��. �. �. are the standardised residuals,  	 is the conditional variance at time t, and  ��N	  is the residual of the mean equation at lag p. 

 

Equation 6.11 represents the mean equation, estimated here with an ARMA process. 

Equation 6.12 shows how the innovations of the mean equation are defined as 

function of the conditional standard deviation,   and an error term, the standardized 

errors �, which are assumed to be normally and iid distributed. Finally, equation 6.13 
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represents the conditional variance which is expressed as a function of a constant term 

and past squared residuals of the mean equation.  

 

In order to avoid the need for a high order ARCH model, Bollerslev (1986) proposed 

the generalized autoregressive condition heteroscedastic (GARCH) model. 

Essentially, he added lagged conditional variance terms to the process of past squared 

residuals.  A  GARCH (p,q) model is given by:  � �  �  	 � aP � ∑ �a3��3	 ��3]� � ∑ @�m �m	 G,Nm]�      (6.14) �  � 1�0,1��. �. �. 
 

Equation 6.14 represents the conditional variance as a function of lag values of the 

squared residuals (innovation) of the mean equation, the ARCH part of the 

conditional variance, and lag values of the conditional variance, the GARCH element.  

Low order for lag length in equation 6.14 seems to fit most financial time series (see 

Bollerslev et al., 1992, p. 21-22). 

 

In a classic GARCH process, the ARCH element, the coefficient a3in equation 6.14, 

can be interpreted as the impact of “recent news” on the conditional variance and the 

GARCH element, the coefficient �m in equation 6.14,  as the impact of “old news” 

(see Floros and Vougas 2006; Floros 2007; Filis et al. 2011). The sum of these 

coefficients has to be positive, but less than one for the variance process to be not 

explosive. In practice the sum of the coefficients is close to unity, indicating 

persistence of the shocks in the conditional variance.   

 

The sources of the presence of ARCH effects in financial time series are not always 

clear. According to Bollerslev et al. (1992), the correlation in the conditional 

variances of financial time series is due to the presence of a serially correlated news 

arrival process: “…the notion of time deformation in which economic and calendar 

time proceed at different speed” (p. 21). Moreover, the market mechanisms may 

induce different temporal dependence in stock volatility: “…a particular automated 

trade execution system inducing a very high degree of persistence in the variance 

process” (p. 21).  
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Xekalaki and Degiannakis (2010) presented three main factors affecting ARCH 

effects in finance.  The first factor is the leverage effect which states that volatility 

increases in response to bad news and decreases in response to good news, i.e. returns 

are negatively correlated to changes in volatility. Hence the presence of a leverage 

effect results in different impact from positive and negative shocks.  This asymmetric 

impact can be captured by models from the family of asymmetric GARCH (e.g. 

Exponential GARCH, GARCH with Threshold).  The second factor is the non-trading 

period effect which reflects “the accumulation of information during non-trading 

periods, as reflected in the prices when the markets reopen following a close” (p.15).  

The return variance after weekends or holidays is higher than on other days but is not 

proportional to the market close duration, i.e. it is not as high as it would be under a 

constant news arrival rate (Baillie and Bollerslev 1989 cited in Xekalaki and 

Degiannakis 2010, p. 15).  The third factor, the non-synchronous effect which reflects 

the fact that prices are “recorded at time intervals of one length when in fact they were 

recorded at time intervals of another, not necessarily regular, length” (p. 16). For 

example, closing prices of a security are typically the prices of the last transactions, 

which is not the same time for all securities. The non-synchronous effect can induce 

auto-correlation in high-frequency index return series. The non-trading and non-

synchronous effects are the consequences of the market mechanisms put forward by 

Bollerselv et al. (1992).  

 

In this chapter, we consider seven models for conditional volatility: the simple 

GARCH model, presented above, a GARCH in Mean (GARCH-M), a GARCH with 

Threshold (TARCH), a GARCH in Mean with Threshold (TARCH-M), an 

Exponential GARCH (EGARCH),  a Component GARCH (CGARCH) and a 

Component GARCH with Threshold (AGARCH) model. The exponential GARCH, 

the GARCH and component GARCH with a threshold process belong to the family of 

asymmetric GARCH which allow for different treatment of positive and negative 

shocks, hence recognizing the leverage effect.      
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The GARCH in mean (GARCH-M) model: 

The GARCH  in mean model integrates the conditional variance in the mean equation. 

It therefore incorporates the financial theoretical axiom stating that the investor’s 

expected return is positively related to the risk. The mean equation is now given by: � � z � � 	 � �,              (6.15) 

where � is an asset return series and z and � are constants. The parameter � is the 

risk premium. If the value of � is positive, then the return of the asset is positively 

related to its volatility (Tsay, 2005, p. 123). Equations 6.12 and 6.13 remain the same.  

 

The Threshold GARCH (TARCH/GJR) model: 

A TARCH (p, q) model, also called GJR GARCH (Glosten et al., 1993) is based on 

the original GARCH (p,q), but the conditional variance equation is now expressed as:  	 � aP � ∑ �a3 � {31�3��3]� ��3	 � ∑ @�m �m	 GNm]� ,    (6.16) 

where  1�3 is an indicator for negative lag innovation,  ��3	 ,  

 1�3 � 1 if ε��� Q 00 if ε��� v 0 

and a3 , {3 a#� �3are non-negative parameters. For positive ε���, the impact of the 

squared residuals on the conditional variance is a3��3	  and for negative ε���, the 

contribution of the squared residuals on the conditional variance is larger: �a3 �{3���3	 . The essence is therefore to separate the impact of positive and negative past 

innovation, giving a larger weight to the negative shocks. If {3 v 0, then bad news 

increases volatility, which is called the leverage effect. Finally, if {3 } 0, then the 

impact of past shock is asymmetric.  

 

The Exponential GARCH (EGARCH) model: 

The Exponential GARCH model was proposed by Nelson (1991) to overcome the 

problem of asymmetry in information flow. Its conditional variance equation is given 

by:  ���� 	� � aP � ∑ �m���@ �m	 G�m]� � ∑ a3N3]� ��(<-�(<-� � ∑ {l[l]� �(<��(<� (6.17) 

 

The left-hand side is the log of the conditional variance, meaning the effect is 

exponential rather than quadratic and that the forecast of the conditional variance is 
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nonnegative.  If {3 } 0, then the impact is asymmetric, like in the previous model. If {3 Q 0, it indicates the presence of a leverage effect. 

 

The component GARCH( CGARCH(1,1)) model:  

The CGARCH  model, proposed by Engle and Lee (1993), separates the conditional 

variance into a long-run component and a transitory component:   	 � � � a�����	 � ���� � ��� ��	 � ����,     (6.18) � � aP � ���� � �����	 �  ��	 �.      (6.19) 

Equation 6.18 defines the conditional variance and equation 6.19 is the time-varying 

long-run volatility. The difference between the conditional variance and the long-run 

trend,  	 � �, is the transitory or short-run component of the conditional variance:  	 � � � a�����	 � ���� � ��� ��	 � ����.       (6.20) 

 

In a classic GARCH (1, 1), if the sum of the coefficient of the conditional variance �a � �� Q 1 then the conditional variance mean-reverts to the conditional variance at 

a rate of �a � ��, which is called the mean-reverting rate or the persistence rate. 

Instead the originality of a CGARCH (1, 1) is the estimation of a long-run volatility 

component using an AR process, in equation 6.19. If 0 Q � Q 1 then the long-run 

volatility will converge to a constant level aP �1 � ��s . The transitory component 

mean-reverts to zero at a rate of�a� � ��� if 0 Q �a� � ��� Q 1. In this framework, 

the long-run component has a much slower mean-reverting process than the transitory 

component, i.e. the long-run component is more persistent: 0 Q �a� � ��� Q � Q 1 

(Engle and Lee, 1999, 477-478). The sufficient conditions for the process to be 

covariance stationary are that � Q 1 and �a� � ��� Q 1.            
 

The Component GARCH with Threshold (ACGARCH(1, 1)): 

A threshold can be added to the CGARCH (Engle and Lee, 1993). The conditional 

variance is now defined as:  	 � � � a�����	 � ���� � {����	 � ����1�� � ��� ��	 � ����, (6.21) � � aP � ����� � aP� � �����	 �  ��	 � Long-run volatility 

1�� is an indicator for negative lag innovation,  ��3	 , 1�3 � 1 if ε��� Q 00 if ε��� v 0 
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Like for the GJR model, the dummy included in the transitory component in equation 

6.21 captures asymmetry in the conditional variance. A significant positive coefficient { indicates the presence of leverage effect.   

6.4.1 ARMA-GARCH models estimates 

If a series exhibit ARCH characteristics, then the estimated of OLS estimator is 

unbiased but the standard errors of the coefficients are underestimated (Engle 2001, p. 

157), which may lead to an over-rejection of a true null hypothesis (Hamilton 2008).  

 

There are two ways to estimate an ARMA-GARCH process: first, as a two-step 

procedure, fitting a GARCH model on the residuals of the ARMA OLS estimates; or 

secondly, to estimate jointly the conditional mean and the conditional variance 

equation, using a Maximum Likelihood estimator.  This method allows the 

incorporation of the conditional variance into the estimation of the conditional mean 

(Hamilton 2008).         

 

In a classic GARCH model, the standardized residuals are assumed to be normally 

distributed (see above equation 6.14). However, a GARCH process does not always 

capture all the excess kurtosis exhibited by a series. The solution is then to consider 

residual distribution allowing for fat tails, such as the Student-t distribution or the 

Generalised Error distribution (GED) (see Bollerslev et al. 1992, p. 23; Tsay 2005, p. 

108; Xekalaki and Degiannakis 2010, p. 164-166). Other distributions which also take 

into consideration skewness are proposed, such as the skewed generalized-t-

distribution (see Harris et al. 2004). 

 

In this section we will estimate jointly the ARMA-GARCH model, applying the 

ARMA structure identified for each series in the previous section. We will use the 

Maximum Likelihood estimator and the General Error distribution (GED) for the 

models’ residuals. For each series, the seven models described above are considered, 

using a general to specific approach. The best model is chosen according to its 

performance on the Engle’s LM test and the BDS test. If for the same series, different 

models are competing, then the more parsimonious one is chosen. It is worth noting 

that the diagnostic tests indicated similar models for log-return and excess return 

series. 
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A plot of the annualized conditional standard deviation is provided for each series 

after the estimation and diagnostic results table. As models are similar for both log 

and excess return series, only the plots for the excess returns’ annualized conditional 

standard deviations are shown.   

 

Period 02/01/1990 – 10/12/2010 

For the whole period, the following models were chosen:  

AEX:  MA(3)-CGARCH(1,1);  

BEL20: AR(1)-CGARCH (1, 1);  

CAC40: MA(3)-CGARCH(1, 1).  

 

Table 6.12 presents the estimates for the ARMA-GARCH models for the entire 

period. The CGARCH conditional variance is given by equation 6.19 for the long run 

variance and 6.20 for the transitory component.  

 
Table 6.12: Estimation of ARMA-GARCH models for the entire period.  

Variable AEX log-  

return 

AEX excess 

return 

BEL20 log- 

return 

BEL20 

excess 

return 

CAC40 log- 

return 

CAC40 

excess 

return �P 0.000627*** 
(0.000114) 

0.000457*** 
(0.000114) 

0.000202 
(0.000133) 

-0.000035 
(0.000134) 

0.000442*** 
(0.000136) 

0.000277** 
(0.000136) 

Dummy 
(Mean) 

- - 0.000271 
(0.000199) 

0.000396** 
(0.000200) 

- - 

�� -0.018040 
(0.013560) 

-0.017499 
(0.013560) 

0.060924*** 
(0.013765) 

0.062272*** 
(0.013762) 

-0.037396*** 
(0.013588) 

-0.036916*** 
(0.013592) a� -0.048467*** 

(0.016697) 
-0.048550*** 
(0.016663) 

0.060075*** 
(0.022290) 

0.059700*** 
(0.022219) 

-0.057571*** 
(0.015707) 

-0.057712*** 
(0.015687) �� 0.089508 

(0.417379) 
0.093618 
(0.416257) 

-0.520214** 
(0.217974) 

-0.522217** 
(0.218110) 

0.185332 
(0.335405) 

0.182309 
(0.335454) aP 0.000196*** 

(0.000074) 
0.000195*** 
(0.0000734) 

0.000128*** 
(0.0000481) 

0.000128*** 
(0.0000476) 

0.000198*** 
(0.000038) 

0.000198*** 
(0.0000377) � 0.991126*** 

(0.004240) 
0.991127*** 
(0.004224) 

0.986251*** 
(0.006154) 

0.986226*** 
(0.006130) 

0.984491*** 
(0.004942) 

0.984466*** 
(0.004931) � 0.102083*** 

(0.008587) 
0.101702*** 
(0.008567) 

0.127280*** 
(0.012171) 

0.122888*** 
(0.021227) 

0.090812*** 
(0.008912) 

0.090510*** 
(0.008898) 

Dummy 
(Var.) 

- - 0.0000007** 
(0.0000003) 

0.0000007** 
(0.0000003) 

- - 

Standard error in parenthesis. * significance at 10%, ** significance at 5%, *** significance at 1% 
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Table 6.13: Diagnostic tests for the ARMA-GARCH models, entire period.  

Variable AEX log-

return 

AEX 

excess 

return 

BEL20 

log-return 

BEL20 

excess 

return 

CAC40 

log-return 

CAC40 

excess 

return 
Skewness -0.430122 -0.429874 -0.642474 -0.639893 -0.343045 -0.345077 
Kurtosis 5.265997 5.280279 10.83249 10.80741 5.151925 5.184167 
 Jarque-Bera* 0.000 0.000 0.000 0.000 0.000 0.000 
Q res. (5)* 0.078 0.069 0.000 0.000 0.300 0.069 
Q res. (10)* 0.011 0.008 0.004 0.003 0.337 0.008 
Q Sq. Res. (5)* 0.500 0.510 0.987 0.988 0.646 0.655 
Q Sq. Res. (10)* 0.873 0.880 0.999 0.999 0.729 0.737 
Engle’s LM (1)* 0.5135 0.5192 0.8450 0.8470 0.3398 0.3378 
 Engle’s LM (5)* 0.6453 0.6249 0.9967 0.9970 0.7779 0.7856 
BDS m=2* 0.3959 0.4015 0.8159 0.8100 0.1980 0.4015 
BDS m=3* 0.5143 0.5171 0.8452 0.8343 0.1488 0.5171 
BDS m=4* 0.8414 0.8442 0.9105 0.8997 0.2894 0.8442 
BDS M=5* 0.9442 0.9413 0.9969 0.9956 0.2522 0.9413 
*p-values 
 

 
The results from the diagnostic test (see table 6.13) are that the standardised residuals 

exhibit negative skewness and excessive kurtosis. The Q-statistics on the squared 

residuals and the LM test indicate no further autocorrelation in the variance of the 

residuals. Finally, according to the p-values of the BDS test, the null of iid in the 

standardized residuals cannot be rejected.  Other models for the mean and the 

variance were considered to improve the Q-statistics of the residuals; however they 

failed the BDS test.   

 

The estimations of the mean equation (table 6.12) include a significant intercept for 

each index return, and a significant AR term for the Belgian index and MA term for 

the French index. 

 

Following Engle and Lee (1999, 483), the interpretation of the CGARCH is as 

follows: 1. coefficients a� and � represent the shock impacts on the short-run and the 

long-run components; 2. coefficient � estimates the mean-reverting parameter of the 

long-run component and; 3. the sum �a� � ��� captures the mean-reverting tendency 

of the short-run component.  

 

The estimations of the coefficients a�, � and � (see table 6.12) are significant for all 

the index returns. Moreover, the values for a� are systematically larger than those for �, indicating that the impact of transitory shocks is greater than permanent shocks. 

The estimations of the mean reverting parameters for the long-run component are all 
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above 0.98 and are larger than the sum (a� � ���, indicating that the persistence of the 

transitory shocks is less than permanent shocks. These results capture a common 

pattern which is described by Engle and Lee (1999). Finally, the sufficient condition 

for covariance stationary process, i.e. �a� � ��� Q 1 and � Q 1, is there for all the 

index returns. 

   

In order to control for the effect of the introduction of the Euro, the same models were 

estimated including a dummy variable with the value 0 before 01/01/1999 and 1 after 

the introduction of the common currency. The dummy variables were included in both 

the mean and the variance equation. All the estimates are presented in Appendix 6 

(see section 10.6). The dummy variable was not significant in the mean and the 

conditional variance equations of the Dutch and French returns, indicating no 

significant effect due to the Euro currency. Hence, for these two countries, the 

processes were estimated again without the dummy variable. However, the dummy 

variable was significant in the equation of the conditional variance of the Belgian log-

returns and in the equations of the mean and conditional variance of the Belgian 

excess returns (see table 6.12). This indicates that the introduction of the Euro had an 

impact on the returns series. But the sizes of the estimates for the dummy variable are 

very small, indicating that the effect is limited.       

 

Figure 6.1 presents the plots of the annualised volatility of the excess return series for 

the entire period. For each series, peaks of annualized daily volatility appear during 

the periods: 1990-1992, 1997-1999, 2001-2003, 2007-2008 and in 2010. These 

periods are characterized by major political and economic events such as the first Iraq 

war (1990-1991), the Exchange rate mechanism (1992), the Asian crisis (1997), the 

Russian default (1998), the burst of the Dot.com bubble (2000), the terrorist attacks in 

New York (2001), the Argentinean crisis (2003), the Sub-prime crisis (2007-2008) 

and the sovereign debt crisis (2010).  
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Figure 6.1: Annualised volatility AEX, BEL20, CAC40, entire period. 
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Period 02/01/1990 31/08/2000  

For the period preceding the Euronext integration, the following models were chosen:  

AEX: MA (3)-ACGARCH (1, 1);  

BEL20: AR(1)-CGARCH (1, 1); 

CAC40: MA(1)-ACGARCH(1, 1).    

The ACGARCH model is similar to the CGARCH model, but a dummy is included in 

the transitory component to assess asymmetry in the process (see equation 6.21). 

 

Table 6.14: Estimation of ARMA-GARCH models for the pre-integration period. 

Variable AEX log  

return 

AEX excess 

return 

BEL20 log-

return 

BEL20 

excess 

return 

CAC40 log-

return 

CAC40 

excess 

return �P 0.000604*** 
(0.0000375) 

0.000461*** 
(0.000142) 

0.000152 
(0.000122) 

-0.0000886 
(0.000123) 

0.0003888* 
(0.000203) 

-0.0000682 
(0.000203) �� -0.014614*** 

(0.000215) 
-0.013474 
(0.018219) 

0.093837*** 
(0.018406) 

0.096587*** 
(0.018427) 

0.0321707* 
(0.018697) 

0.040315** 
(0.018465) a� -0.052829** 

(0.026702) 
-0.053443** 
(0.025922) 

0.097562*** 
(0.037052) 

0.097389*** 
(0.036922) 

-0.019606 
(0.026288) 

-0.024218 
(0.024207) { 0.142117*** 

(0.040222) 
0.145481*** 
(0.039084) 

_ _ 0.071934** 
(0.024196) 

0.084996*** 
(0.025258) �� 0.727424*** 

(0.094126) 
0.732975*** 
(0.088301) 

-0.478611** 
(0.216189) 

-0.478400** 
(0.215880) 

0.893619*** 
(0.050913) 

0.877384*** 
(0.052072) aP 0.0000848**

* 
(0.0000185) 

0.0000837**
* 
(0.0000182) 

0.000113** 
(0.0000480) 

0.000112** 
(0.0000466) 

0.000133*** 
(0.0000141) 

0.000129*** 
(0.0000123) 

� 0.989857*** 
(0.003892) 

0.990277*** 
(0.003728) 

0.981122*** 
(0.010114) 

0.980965*** 
(0.010044) 

0.983320*** 
(0.007915) 

0.982732*** 
(0.007711) � 0.049252*** 

(0.009610) 
0.047736*** 
(0.009193) 

0.123582*** 
(0.021359) 

0.122888*** 
(0.021227) 

0.031344*** 
(0.015265) 

0.028225** 
(0.012721) 

Standard error in parenthesis. * significance at 10%, ** significance at 5%, *** significance at 1% 
 

Table 6.15: Diagnostic tests for the ARMA-GARCH models, pre-integration period.  

Variable AEX log- 

return 

AEX 

excess 

return 

BEL20 

log- return 

BEL20 

excess 

return 

CAC40 

log- return 

CAC40 

excess 

return 
Skewness -0.549828 -0.541034 -0.883278 -0.884878 -0.414948 -0.41660 
Kurtosis 6.394569 6.345760 16.20674 16.22905 6.329307 6.323519 
 Jarque-Bera* 0.00 0.00 0.00 0.00 0.00 0.00 
Q res. (5)* 0.265 0.243 0.009 0.011 0.093 0.104 
Q res. (10)* 0.025 0.019 0.008 0.010 0.045 0.052 
Q Sq. Res. (5)* 0.794 0.791 0.956 0.957 0.971 0.970 
Q Sq. Res. (10)* 0.989 0.989 0.998 0.998 0.852 0.846 
Engle’s LM (1)* 0.5483 0.5238 0.8071 0.8086 0.9922 0.9955 
Engle’s LM (5)* 0.8935 0.8912 0.9846 0.9851 0.9912 0.9909 
BDS m=2* 0.2740 0.2550 0.8803 0.8941 0.5654 0.6220 
BDS m=3* 0.6778 0.6098 0.8250 0.8373 0.4486 0.5171 
BDS m=4* 0.9355 0.8426 0.6903 0.7606 0.6723 0.7748 
BDS M=5* 0.5719 0.6617 0.6445 0.6955 0.7270 0.8684 
*p-values 

 
The models performed well in terms of the diagnostic tests (see table 6.15): no further 

autocorrelation or ARCH effect in the conditional variances and iid standardized 
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residuals. The assumption of normality is rejected as the standardised residuals exhibit 

excess kurtosis and negative skewness. Finally, autocorrelation is captured in the 

mean equation until lag 5 (except for the Belgian index), but not at lag 10.        

 

The mean equation (see table 6.14) for the Dutch index returns includes an intercept 

and a MA term, for the Belgian index no intercept but an AR(1) term and for the 

French index a MA term.  

 

The conditional variance equation (see table 6.14) estimates a�are significant only for 

the Dutch and Belgian index, implying a significant transitory shock for the Belgian 

returns. The estimates of the coefficients � and � are significant for all indices. 

During this pre-integration period, the values of the coefficient � which captures the 

long-run shocks are larger than those of a�, the transitory shocks. Moreover, the 

estimates for ��, the lagged transitory component, which can be interpreted as “old 

news”, is significantly positive for the Dutch and French indices, indicating a positive 

impact of “old news” and significantly negative for the Belgian index, indicating a 

negative impact. The magnitude of the coefficient for the French (�� � 0.727� and 

Dutch (�� � 0.89� returns may translate long memory in the variance. Finally, the 

coefficient � is larger than the sum (a� � ���, hence the persistence of permanent 

shocks is larger than transitory shocks.     

 

Finally, the models estimated for the Dutch and the French indices included a dummy 

variable in the transitory component equation to account for the asymmetric effect of 

shocks. The estimates of the coefficient of the dummy variable are significant and 

positive for both indices, indicating that there is a transitory leverage effect in the 

variance for the Dutch and French indices. 

 

The GARCH processes are covariance stationary as the sum �a� � ��� Q 1 and 

 � Q 1.   
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Figure 6.2: Annualised volatility, AEX, BEL20, CAC40, pre-integration period. 
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Figure 6.2 presents the plots of the annualised volatility for the indices excess returns 

during the pre-integration period. Peaks of daily annualized volatility appear in 1990, 

1991 and 1992. These peaks are more acute for the Belgian stock market. These peaks 

correspond to the invasion of Kuwait by Iraq (August 1990), the operation Desert 

Storm (beginning of 1991) and the failure of the Exchange Rate Mechanism in the 

third quarter of 1992.  The period 1993 to the beginning of 1997 is characterized by 

low volatility whilst from mid-1997 to early 2000 the daily volatility increases again. 

The peak of the volatility is 1998 for the AEX and CAC 40 and in early 2000 for the 

BEL20. The period 1997-1998 was marked by the Asian financial crisis (third quarter 

of 1997) and the Russian default on its debt and the aftermath on Long Term Capital 

Management hedge fund.   

 

Period 01/09/2000 30/10/2002 

For the integration period, the following models were estimated: 

AEX: MA(5)-CGARCH(1, 1); 

BEL20: AR(1)-ACGARCH (1, 1); 

CAC40: MA(5)-CGARCH(1, 1).   

 

Table 6.16: Estimation of ARMA-GARCH models for the integration period.  

Variable AEX log  

return 

AEX excess 

return 

BEL20 log-

return 

BEL20 

excess 

return 

CAC40 log-

return 

CAC40 

excess 

return �P -0.000789 
(0.00493) 

-0.000943* 
(0.000493) 

-0.000387 
(0.000381) 

-0.000446 
(0.000397) 

-0.000659 
(0.000534) 

-0.000664 
(0.000612) �� -0.056041 

(0.039237) 
-0.055973 
(0.039273) 

0.127003*** 
(0.041741) 

0.133600*** 
(0.042166) 

-0.063077 
(0.043716) 

-0.050731 
(0.043387) a� -0.244425*** 

(0.042552) 
-0.244362*** 
(0.042932) 

-0.144974*** 
(0.050644) 

-0.178033*** 
(0.045787) 

-0.294805*** 
(0.027172) 

-0.306540*** 
(0.036936) { _ _ 0.200010*** 

(0.055767) 
0.222280*** 
(0.052493) 

0.202230*** 
(0.068740) 

0.193746*** 
(0.068214) �� 0.195852 

(0.243085) 
0.192824 
(0.243913) 

0.949751*** 
(0.069824) 

0.967782*** 
(0.070266) 

0.047787 
(0.304647) 

-0.024811 
(0.300301) aP 0.000483 

(0.000560) 
0.000485 
(0.000566) 

0.000956 
(0.006705) 

0.002152 
(0.015895) 

0.000562 
(0.000542) 

0.001027* 
(0.000602) � 0.985858*** 

(0.021157) 
0.985927*** 
(0.021165) 

0.998097*** 
(0.013843) 

0.998917*** 
(0.008287) 

0.991100*** 
(0.011238) 

0.995575*** 
(0.004263) � 0.176878*** 

(0.028272) 
0.176894*** 
(0.028384) 

0.157645*** 
(0.046627) 

0.180050*** 
(0.046339) 

0.090708*** 
(0.013762) 

0.103500*** 
(0.020383) 

Standard error in parenthesis. * significance at 10%, ** significance at 5%, *** significance at 1% 
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Table 6.17: Diagnostic tests for the ARMA-GARCH models, integration period.  

Variable AEX log- 

return 

AEX 

excess 

return 

BEL20 

log- return 

BEL20 

excess 

return 

CAC40 

log- return 

CAC40 

excess 

return 
Skewness -0.051868 -0.051488 -0.167016 -0.151070 -0.102195 -0.106625 
Kurtosis 2.897852 2.897435 3.493602 3.468259 3.529796 3.475019 
 Jarque-Bera* 0.779 0.780 0.015 0.026 0.022621 0.041 
Q res. (5)* 0.996 0.996 0.549 0.605 0.491 0.620 
Q res. (10)* 0.995 0.995 0.579 0.623 0.469 0.614 
Q Sq. Res. (5)* 0.121 0.122 0.050 0.079 0.103 0.125 
Q Sq. Res. (10)* 0.075 0.075 0.292 0.359 0.053 0.058 
Engle’s LM (1)* 0.8710 0.8785 0.7866 0.8386 0.6375 0.7590 
Engle’s LM (5)* 0.1915 0.1931 0.0686 0.1083 0.1690 0.2088 
BDS m=2* 0.8014 0.7985 0.8279 0.8404 0.4696 0.5000 
BDS m=3* 0.7023 0.6907 0.8969 0.9126 0.8344 1.0000 
BDS m=4* 0.7491 0.7494 0.9413 0.9074 0.5994 0.8441 
BDS M=5* 0.5737 0.5812 0.9427 0.9999 0.7371 0.9457 
*p-values 

 
The models perform well in terms of diagnostic tests. No autocorrelation or ARCH 

effects remain in the conditional variances, the standardized residuals are iid and the 

Q-statistics reject the presence of autocorrelation in the standardized residuals (see 

table 6.17). 

 

The mean equation (table 6.16) does not include a significant intercept and only the 

Belgian returns include a significant AR(1) term.  

 

The coefficients a� , � and � are significant for all the return series (table 6.16). The 

coefficient { is significantly positive for the Belgian and the French returns, 

indicating a transitory leverage effect in their conditional variance. The values of a� , 

the impact of shocks on the transitory component, are larger than � the impact of 

shocks on the long-run component, for the Dutch and the French indices but not for 

the Belgian index. The sum of �a� � ��� is smaller than the values of the coefficient �, indicating that the persistence rate of the long-run shocks is larger than the 

transitory shocks. Finally, ��, the coefficient of the lagged transitory component, is 

significantly positive for the Belgian returns, indicating a positive impact of “old 

news” on volatility.  Again, the magnitude of the coefficient may indicate long 

memory in the variance.   

 

The sufficient condition for the models to be covariance stationary, i.e. �a� � ��� Q 1 

and � Q 1 are met.  
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Figure 6.3: Annualised volatility, AEX, BEL20, CAC40, integration period 
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The plots of the annualised volatility for the integration period are presented in figure 

6.3. Volatility clustering appears during the third and fourth quarters of 2001, where 

the sudden increase corresponds to the terrorism acts in the USA (09/11) and their 

aftermaths, and during the third and fourth quarters of 2002, with a sharp and constant 

decrease of the indices price levels which stops in December 2003 only.  

 

Period 01/11/2002 12/10/2010 

For the period following the integration, the following models were considered:  

AEX: MA(3)-CGARCH (1, 1); 

BEL20: MA(3)-GARCH(1, 1) ; 

CAC40 : ARMA(1, 1)-CGARCH (1, 1).  

The conditional variance for a GARCH(1, 1) model is given by equation 6.14. 

 

Table 6.18: Estimation of ARMA-GARCH models for the post-integration period  

Variable AEX log-

return 

AEX excess 

return 

BEL20 log-

return 

BEL20 

excess 

return 

CAC40 

excess 

return 

CAC40 

excess 

return �P 0.000722*** 
(0.000195) 

0.000630*** 
(0.000195) 

0.000863*** 
(0.000174) 

0.000776*** 
(0.000174) 

0.000739*** 
(0.000143) 

0.000652*** 
(0.000145) �� -0.025091 

(0.021879) 
-0.025021 
(0.019880) 

-0.013577 
(0.022288) 

-0.013072 
(0.022292) 

-0.828286*** 
(0.058254) 

-0.822878*** 
(0.061250) �	 _ _ _ _ -0.883460*** 

(0.047986) 
-0.878077*** 
(0.050840) a� -0.070746*** 

(0.016282) 
-0.070706** 
(0.025105) 

0.127048*** 
(0.014753) 

0.127091*** 
(0.014771) 

-0.108636*** 
(0.023304) 

-0.108071*** 
(0.023302) �� 0.328240 

(0.393216) 
0.326750 
(0.394170) 

0.865512*** 
(0.013929) 

0.865488*** 
(0.013943) 

0.208382 
(0.311120) 

0.201403 
(0.314544) aP 0.000238 

(0.000164) 
0.000238 
(0.0000164) 

0.0000017*** 
(0.00000047) 

0.0000017*** 
(0.00000047) 

0.000231* 
(0.000119) 

0.000230* 
(0.000119) � 0.991558*** 

(0.007098) 
0.991569*** 
(0.007091) 

_ _ 0.988031*** 
(0.008021) 

0.988090*** 
(0.007987) � 0.113535*** 

(0.013641) 
0.113424*** 
(0.013634) 

_ _ 0.121552*** 
(0.015116) 

0.121092*** 
(0.015091) 

Standard error in parenthesis. * significance at 10%, ** significance at 5%, *** significance at 1% 
 
 

The models perform well on all the diagnostic models (see table 6.19): no 

autocorrelation in the residuals and squared residuals. The standardized residuals 

exhibit no further ARCH effect and are iid. 

 
 

The mean equations (see table 6.18) for all returns include a significant intercept and 

in the case of the French index, an ARMA (1, 1) term.   
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Table 6.19: Diagnostic tests for ARMA-GARCH models, post-integration period 

Variable AEX log-

return 

AEX 

excess 

return 

BEL20 

log-return 

BEL20 

excess 

return 

CAC40 

log-return 

CAC40 

excess 

return 

Skewness -0.245006 -0.244506 -0.326461 -0.325594 -0.331108 -0.330027 
Kurtosis 3.799910 3.800801 4.401222 4.399412 4.080210 4.082661 
 Jarque-Bera* 0.00 0.00 0.00 0.00 0.00 0.00 
Q res. (5)* 0.464 0.455 0.593 0.577 0.290 0.292 
Q res. (10)* 0.642 0.633 0.805 0.797 0.487 0.491 
Q Sq. Res. (5)* 0.543 0.544 0.581 0.590 0.352 0.351 
Q Sq. Res. (10)* 0.664 0.661 0.852 0.858 0.884 0.883 
Engle’s LM (1)* 0.2879 0.2851 0.4236 0.4246 0.3665 0.3614 
Engle’s LM (5)* 0.6922 0.6931 0.7234 0.7312 0.6340 0.6327 
BDS m=2* 0.2724 0.2716 0.8707 0.8585 0.2133 0.2123 
BDS m=3* 0.3515 0.3578 0.6843 0.6748 0.3092 0.3067 
BDS m=4* 0.5209 0.5319 0.8064 0.7791 0.3265 0.3249 
BDS M=5* 0.5100 0.5209 0.7885 0.7662 0.2963 0.2960 

*p-values 
 

The estimates of the conditional variance equations are presented in table 6.18. For 

the Dutch and the French return indices, the coefficients a�, � and � are significant, 

but not ��, the lagged transitory component coefficient. The values for a� are smaller 

than �, indicating that the impact of the long-run shocks are larger than the transitory 

shocks. Finally, the values of the coefficient � are over 0.98 and much larger than the 

sum �a� � ���, hence indicating that the persistence of the transitory shocks is smaller 

than the long-run shocks.   

  

In the case of the Belgian index, a simple GARCH (1,1) is found to be the best fit. 

The coefficient a� and �� are significantly positive, indicating a positive impact of 

recent and old news.  

 

All the GARCH processes are covariance stationary as the sum �a� � ��� Q 1 and � Q 1 for the CGARCH (AEX and CAC40) and the sum �a� � ��� Q 1 for the 

GARCH model (BEL20).  

 

Figure 6.4 present the annualised volatility of the excess returns for the post-

integration period. 
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Figure 6.4: Annualised volatility, AEX, BEL20, CAC40, post-integration period.  
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The period following Euronext integration begins with relatively high volatility, with 

a peak in the first half of 2003, corresponding to the beginning of the second Iraq war. 

For the period end of 2003 to end of 2006, the volatility is overall low, with the 

exception of a peak in 2005. Volatility increases in 2007, with a major peak of 

magnitude 80% to 90% in 2008, corresponding to the “sub-prime” crisis and the 

credit crunch that followed.  After a couple of quieter months, volatility peaked again 

in 2010, during the national debt crisis and the uncertainty caused by the situation in 

Greece.  

6.4.2 Discussion   

The data generating process of each series is best captured with ARMA-GARCH 

models. This finding is similar to Hsieh (1991), Sewel et al. (1996), Al-Loughani and 

Chappel (1997), Panagiotidis (2005), and Willcocks (2009).  From the recapitulative 

table 6.20, it is clear that the component GARCH model, occasionally with a 

threshold, seems to best fit the conditional variance of all but one return series 

(BEL20, for the period 2002-2010). 

 

The CGARCH model allows the discrepancy between transitory, or short-run 

component and the long-run, or trend component of the conditional variance. In their 

original article, Engle and Lee (1999) believed that the shocks on the transitory 

component have a higher impact but a lower persistence than the shocks on the long-

run component.  

 

In this study, where CGARCH models were found to be the best fit, the rates of 

persistence of the shock on the long-run component are indeed larger than that of the 

shocks on the transitory component. This indicates that the transitory component, as 

expressed by equation 6.20, mean-reverts to zero faster than the long-run component 

mean-reverts to its stable level aP �1 � ��s  in all cases, as suggested by Engle and Lee 

(1999). However, the coefficient capturing the impact of the shocks on the transitory 

component was not systematically larger than the coefficient measuring the impact of 

shocks on the long-run component.     

   

For the whole period (1990-2010) as well as for the period following the Euronext 

integration (2002-2010) none of the return series exhibit leverage effects. However, 
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the Dutch and French returns show asymmetric treatment of bad news for the period 

prior to the Euronext integration (1990-2000) and the Belgian returns for the 

integration period (2002-2010).  

 

Table 6.20: Models estimated 

Period AEX log-

return 

AEX excess 

return 

BEL20 log-

return 

BEL20 excess 

return 

CAC40 log-

return 

CAC40 excess 

return 

1990-2010 MA(3) 

CGARCH(1,1) 

MA(3) 

CGARCH(1,1) 

AR(1) 

CGARCH (1, 1) 

AR(1) 

CGARCH (1, 1) 

MA(3) 

CGARCH(1, 1). 

MA(3) 

CGARCH(1, 1). 

1990-2000 MA (3) 

ACGARCH (1, 1) 

MA (3) 

ACGARCH (1, 1) 

AR(1) 

CGARCH (1, 1) 

AR(1) 

CGARCH (1, 1) 

MA(1) 

ACGARCH(1, 1) 

MA(1) 

ACGARCH(1, 1) 

2000-2002 MA(5) 

 CGARCH(1, 1) 

MA(5) 

CGARCH(1, 1) 

AR(1) 

ACGARCH (1, 1) 

AR(1) 

ACGARCH (1, 1) 

MA(5) 

CGARCH(1, 1) 

MA(5) 

CGARCH(1, 1) 

2002-2010 MA(3) 

CGARCH (1, 1) 

MA(3) 

CGARCH (1, 1) 

MA(3) 

GARCH(1, 1)  

 MA(3) 

GARCH(1, 1)  

ARMA(1, 1) 

CGARCH (1, 1) 

ARMA(1, 1) 

CGARCH (1, 1) 

 

The standardized residuals of all the models are not normal, exhibiting negative 

skewness and excess kurtosis, except for the Dutch returns for the integration period. 

Moreover, the Q-statistics on the residuals are significant for the whole period as well 

as for some returns in the first sub-period, indicating possible autocorrelation in the 

mean equation.  However the models fully capture all the linear dependencies in the 

second and the third sub-periods. The difficulty of modelling the mean for the whole 

period may be due to structural breaks in the mean equation.  

 

A dummy variable was included in the models to control for the introduction of the 

Euro, but it was found to be insignificant for the Dutch and French return series.  

However, the dummy variable was significant in the mean and conditional equation of 

the Belgian excess returns and in the conditional equation only for the Belgian log- 

returns. The size of the estimated dummy coefficient is extremely small, indicating a 

limited impact of the introduction of the common currency on the mean and 

conditional variance of the series.   

 

All the estimated models capture fully the ARCH effect and estimate properly the 

conditional variance. Moreover, the standardized residuals of these models are iid. It 

is worth noting that for each series only one of the seven ARMA-GARCH models 

considered satisfied the iid criterion.  
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The long memory patterns in the volatility of the returns series presented in the 

previous chapter (see chapter 5) are fully captured by the ARMA-GARCH models as 

their standardized residuals are iid and do not exhibit further ARCH effects. This 

result is in line with Caporale and Gil-Alana (2004a) and Vougas (2004) who argued 

that simple ARMA-GARCH models may be better to capture long-memory patterns 

in volatility.    

 

Finally, the plots of the annualized estimated daily volatility show that overall, the 

conditional volatilities of each series behave similarly, although less so for the BEL20 

returns. A further investigation of the common behaviour of the series is undertaken 

in the next chapter.  

 

The impact of the Euronext integration on the indices’ returns is therefore not clear. 

The data generating process of the indices returns does not seem to change 

dramatically with Euronext. The series continue to exhibit heteroskedasticity or 

volatility clustering. On the other hand, in the post-integration period, none of the 

series seem to be affected by the leverage effect, i.e. the asymmetric treatment of 

good and bad news. This result however maybe due to relatively long periods of low 

variance in the sub-sample and different results may be found if one considers only 

the crisis period of the sub-sample (2007-2008 and 2010) as leverage effects are more 

acute during turmoil.    

6.5 Main Findings 

This chapter looks at the impact of the Euronext integration on the information 

efficiency of the Dutch, Belgian and French stock markets. More specifically, the 

main indices of the markets are used as proxies and the weak efficiency form is tested 

by analysing their data generating processes. A multistep strategy is applied, where 

linear and nonlinear models are estimated and a battery of diagnostic tests helps 

identify the best model for each series. The ultimate decision criterion is that the 

residuals from the estimates are iid.  

     

Linear models, from the family of random walks or more general ARMA class, do not 

appear to explain the DGP of the AEX, BEL20 and CAC40 log- and excess returns. 

The diagnostic tests indicate the presence of heteroskedasticity in the residuals.  
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All the return series were explained using stochastic nonlinear models of the ARMA-

GARCH class. All the models satisfy the Engle LM and the BDS tests, and hence 

exhibit iid residuals. However, the Q-statistics on the residuals for the models of the 

entire period and the pre-integration periods indicate some elements of autocorrelation 

in the mean equation. This might be caused by structural breaks in the mean 

equations.  

 

Interestingly, only one of the conditional variance models proposed for each series 

passes the iid hurdle. Moreover, for each index the model chosen is the same for the 

log and the excess returns.  

 

The ARMA-GARCH model captures well the pattern of long-memory process in the 

variance presented in chapter 5.  

 

The impact of the Euronext integration on the series efficiency is mild. All indices 

continue to exhibit volatility clustering after the integration. However, the leverage 

effect disappears after the integration for all the series. Finally, the dummy variable 

capturing the impact of the introduction of the Euro is significant only for the Belgian 

returns series.       

 

The next chapter looks into the impact of the Euronext integration on the interaction 

of the indices.  
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7 Multivariate Analysis 

7.1 Introduction 

The previous chapter investigated the potential changes in the indices following the 

Euronext integration. This chapter focuses on the nature of the relationships between 

the three indices forming the original Euronext. More specifically, it investigates the 

question: “Has the Euronext integration changed the interaction of the three indices?” 

Euronext integration involved creating a common framework for each stock exchange 

member, including one company, Euronext inc., common listing and trading rules, 

platform, source of information, etc. Such legal and operational integration implies 

that the three markets are now part of one entity. For the investors, this means a more 

attractive investment framework, with more investment solutions, easier access to 

information and trading operations. Ultimately, the merger should increase the 

attractiveness of the Euronext exchanges.  

7.2 Empirical Framework 

7.2.1 Hypotheses and research design   

Hypotheses 

The main hypothesis of this chapter is: �	: Euronext has increased the integration of the French, Belgium and Dutch stock 

markets. 

 

As outlined in the literature review, there are different understandings of stock market 

integration and approaches to test it. In this paper, we define stock market integration 

as an increase in market co-movements. Moreover, two testing frameworks are 

adopted. First, cointegration analysis is used to explore the long-run relationship 

between the indices. The hypothesis is then: �	.�: Euronext integration has created long-run equilibrium between the French, 

Belgian and Dutch markets.  

 

Parallel to long-run potential equilibrium, the short-run interactions between the 

markets are worth investigating. In particular, causality analysis, in a Granger sense, 

can give valuable insight into information flows between the markets. The hypothesis 

is: 
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�	.	: Euronext integration has intensified information flows between the French, 

Belgian and Dutch markets. 

 

However, cointegration analysis has been criticized for being a static approach and 

failing to capture the dynamic evolution of a process (Kim et al. 2005; Kearney and 

Lucey 2004; You and Daigler 2010). Hence, time-varying correlation is the second 

analysis. The hypothesis is: �	.�: Euronext integration has increased the correlation between the French, Belgian 

and Dutch markets.       

 

The incorporation of Euronext was contemporaneous with the establishment of the 

European Monetary Union (EMU). In fact, it can be seen as a private response to the 

public policy of introducing the common currency. However, as these two events 

happened around the same time, it is difficult to distinguish between the impact of the 

Euronext integration and the introduction of the Euro on these stock markets. 

Therefore, a fourth market, the German stock exchange, is included in the analysis. 

Indeed, Germany is a core member of the Euro-zone but its stock exchange is not in 

the Euronext. Hence, the DAX30, Frankfurt’s main index, is used as a control 

variable allowing differentiation between the impact of Euronext integration and the 

introduction of EMU on the French, Belgian and Dutch stock markets.    

 

Research Design 

The research design adopted to assess the long and short interdependence between the 

Stock Prices Indices (SPIs) is widely used in the literature (see table7.1 for a summary 

of interesting articles using cointegration studies relating to market integration). For 

example, see Shamsuddin and Kim (2003), Leong and Felmingham (2003) and Masih 

and Masih (1997, 2004). In particular, the research design includes bivariate and 

multivariate cointegration analysis to assess the long-run relationship. If variables are 

found to be cointegrated, i.e. if they exhibit long-run equilibrium, then an error 

correction model is estimated in order to capture their short-term adjustments to 

disequilibrium. Finally, Granger causality in a VAR or VECM framework, depending 

on whether the variables are cointegrated or not, helps to determine information 

flows.  
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Table 7.1: Studies assessing market integration using cointegration techniques.  

Authors and Scope of Studies Method and Data Outcomes 

Masih and Masih (2004): 
Dynamic linkages driving 
European stock markets before 
and after 1987. 

Method: JJ multivariate 
cointegration analysis; Granger 
causality; error variance 
decomposition; impulse response 
function. 
Data: Monthly index prices for 
France, Germany, Netherlands, 
Italy and United Kingdom, 
divided into two sub-samples, 
pre- and post-crash. 
  

No cointegration for the entire 
periods but one cointegrating 
vector in each sub-periods; lea-
lag relationships changed 
significantly following the crash.   

Masih and Masih (1997): 
Comparative analysis of the 
propagation of stock market 
fluctuations in alternative models 
of dynamic causal linkages. 

Method: JJ multivariate 
cointegration analysis; Granger 
causality; error variance 
decomposition; impulse response 
function. 
Data: Monthly index prices for 
four Asian newly industrialized 
countries (NIC): Taiwan, 
Singapore, South Korea and Hong 
Kong; and four established 
markets: United States, Japan, 
United Kingdom and Germany.  
Four systems estimated, each 
comprised of the four NIC and 
one established markets.     

Leading role of all the established 
markets on the NIC markets, ie 
they were the initial receptors of 
the exogenous shocks to the long-
term equilibrium relationships.   

Shamsuddin and Kim (2003): 
Integration and interdependence 
of stock and foreign exchange 
markets: An Australian 
perspective. 

Method: JJ multivariate 
cointegration; impulse response 
function, VAR and VECM.  
Data: weekly index prices for 
Australian, Japan and the US, as 
well as the Australian dollar value 
of the Japanese Yen and US 
dollar.  The sample is divided into 
three sub-periods: two pre-Asian 
and one post-Asian crisis.   

Long-run relationship before the 
Asian crisis, but not after. 
Moreover, short-run dynamic 
linkages suggest that the 
influence of the US on the 
Australian market diminishes 
with the Asian crisis.   

Leong and Felmingham (2003): 
The interdependence of share 
markets in the developed 
economies of East Asia.  

Method: bivariate Engle Granger 
(EG) and Hansen cointegration 
tests, JJ multivariate 
cointegration, Granger causality. 
Data: daily index prices for 
Singapore, Korea, Japan and 
Taiwan.    

Existence of long-run 
relationships and the degree of 
integration has increased between 
the markets during the 1990s.  

Choudhry, Lu and Peng (2007): 
Common stochastic trends among 
Far East stock markets and the 
effects of the Asian financial 
crisis. 

Method: JJ multivariate 
cointegration for long-run and 
band spectrum regression for 
short-run. 
Data:  daily index prices for nine 
Asian stock markets and the US 
market. Sample is divided in three 
sub-periods: pre-crisis, crisis and 
post-crisis.  

Long-run relationship during the 
three periods. But most important 
linkages and relationship are 
found during the crisis period.  
 
 
 
 

 
 

 
 



157 

 

     Table 7.2: Studies using conditional correlation model to assess market integration  

Authors and Scope of 

Studies 

Method and Data Outcomes 

Kim, Moshirian, Wu  
Dynamic stock market integration 
driven by the European Monetary 
Union 

Method: bivariate EGARCH-t 
model; Granger causality; 
regression analysis. 
Data: Daily index prices for 12 
Euro-zone members, 3 non-Euro-
zone members, Japan and US; a 
dummy variable for EMU; 
macroeconomic and financial 
variables and calendar effect 
dummies.   

Increase of market integration 
following introduction of EMU; 
unidirectional causality from 
EMU to conditional correlations; 
integration favored by 
macroeconomic convergence 
associated with introduction of 
EMU.  

Bartram, Taylor and Wang 
(2007): 
The Euro and European Financial 
Market dependence 

Method: GJR-GARCH-t model 
and Gaussian copula to estimate 
joint probabilities. 
Data: daily stock index prices for 
twelve Euro-zone members and 
five European but not Euro-zone 
members; dummy variables.  

Increase of integration between 
the Euro-zone members in early 
1998, when EMU was announced. 
Lower integration for the non-
members of the Euro-zone.  

Kim, Moshirian, Wu (2006):  
International stock and bond 
market integration and the 
influence of the European 
Monetary Union.   

Method: bivariate EGARCH-t 
model; Granger causality; 
regression analysis.  
Data: daily bond and stock 
indices prices for France for 4 
Euro-zone and 3 non-Euro-zone 
members; macroeconomic and 
financial variables as explanatory 
variables.  

Intra-stock and bond market has 
strengthen with the EMU, but 
inter-stock-bond market 
integration has decreased.  
The introduction of EMU has 
Granger-caused the segmentation 
between stock and bond markets 
within Europe, but not outside.   

 Hardouvelis, Malliaropoulos, 
Priestley (2006): 
EMU and European stock market 
integration 

Method: multivariate BEKK-
GARCH model.  
Data: weekly stock market prices 
and currency rates for 10 Euro-
zone countries and the UK; 
financial variables.  

Increase integration for the Euro-
zone stock markets and but not for 
the UK market. The integration is 
Euro-zone specific phenomenon, 
independent of the world-market 
integration.      

Egert and Kocenda (2011): 
Time varying synchronization of 
European stock markets 

Method: Dynamic Conditional 
Correlation GARCH (DCC-
GARCH). 
Data: Intraday prices for the 
Hungarian, Czech, Polish, 
German, French and UK main 
indices for the period 2003-2006.   

High correlation between the 
developed EU markets, but low 
between the new EU markets or 
between the new EU markets and 
developed EU markets.   

 

The interdependence between indices returns can be investigated using correlation 

analysis. However, traditional unconditional correlation measurements, such as 

Pearson or Spearman correlations, assume that the relationship remains the same 

throughout the periods. Hence, they do not track down the dynamics of the 

relationships. Similar to the GARCH models developed to measure the conditional 

variance of a time series, the multivariate GARCH (M-GARCH) models capture the 

conditional covariances of multiple time series. Moreover, Ayuso and Blanco (2001) 

showed that unconditional correlations are not appropriate to assess market 

integration. You and Daigler (2010) advocate that conditional or time varying 
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correlation is a better estimate, especially as it provides a dynamic framework to 

assess markets’ co-movements. Table 7.2 presents interesting studies using 

conditional correlation as core econometric methods.  

 

Therefore, the research design for Hypothesis �	.� involves two measurements.  

First, unconditional correlation is estimated for each period using Pearson correlation.  

Second, time varying correlation between stock market indices’ log-returnss is 

estimated using a multivariate version of the univariate GARCH model. The M-

GARCH model estimates jointly the conditional variance and covariance of the 

different series in a given system, hence capturing the time varying correlation.    

 

7.2.2 Cointegration and Vector Error Correction 

Following Leong and Felmingham (2003), two approaches of testing for cointegration 

are adopted in this study. First, the long run equilibrium between pairs of indices is 

investigated by applying the Engle and Granger (EG) residuals based procedure. This 

allows the relationship between each pair of indices to be investigated individually. 

As the EG results are sensitive to the choice of the dependent and independent 

variables (Enders, 2004, p.347), each pair is tested twice, assigning the role of 

independent variable to each index.  

The EG procedure involves two steps. First, a regression is run using the levels of the 

indices (equation 7.1). These levels are first tested to be $�1�.  X�$� � LP � L�X�$� � �,         (7.1) 

where X�$� is the dependent stock price index at time 0, X�$� is the independent stock 

price index at time 0.  

 

The second step involves testing the residuals of equation 7.1 for stationarity, using 

the ADF approach: 

∆�̂ � �H � 1��̂�� � ∑ JmNm ∆�̂�m � �.      (7.2) 

 

In Eviews 7, the ADF test statistic is based on a t-test of the null hypothesis of 

nonstationarity �H � 1�, given by x̂ � ���� ¡����, where x̂ denotes Engle’s Tau.  
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The quantity TU�HS� is the OLS standard error of the estimated HS, given by TU�HS� �T̂��∑ ��̂��	 ���/	.   

 

 If the residuals are stationary then the levels are said to be cointegrated, i.e. they have 

a long-run equilibrium and the regression is not spurious. In this case, the Granger 

representation theorem suggest that an Error Correction Model (ECM) can be 

estimated, including the first-differenced variables and the error correction term 

(ECT) from the cointegrating equations, which are the lagged values of the residuals 

from the cointegrating equation in 7.1. The ECT therefore captures the disequilibrium 

in the cointegrating relationship. 

 

The second approach to cointegration involves the Johansen and Juselius (1990) (JJ) 

multivariate cointegration test. The JJ procedure is believed to be superior to the EG 

procedure (see Masih and Masih 2004; Kennedy 2009; Enders 2004) for the following 

reasons: 

1. It does not assume the existence of at most a single cointegrating vector but 

tests for the number of cointegrating vector in a multivariate environment; 

2. JJ is not sensitive to the choice of the dependent variable as it treats all 

variables as endogenous and does not depend on the ordering of the variables; 

3. JJ provide appropriate statistics for the number of cointegrating vectors and 

test of restrictions for the coefficient of the vectors 

4. Estimates and hypothesis testing of cointegrating vectors using OLS can be 

biased for small samples. 

The JJ procedure is based on the identification of the rank of the ¢ x ¢ matrix Π in 

the following VAR system: 

∆£ � ¤ � ∑ ¥�l��3]� ∆£�3 � ¦£�l � �,      (7.3)  

where: £ is a m x 1 column vector of ¢ variables (i.e. SPI), 

 ¥� and ¦ are coefficient matrices such as ¥� � � ∑ §¨©̈]�ª�  and ¦ � ∑ §3l3]� � «, ¤ is ¢ x 1 column vector of constants, 

∆ is the difference operator, ¬ is the lag length.  
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If in equation 7.3 the matrix ¦ has rank zero, i.e. the sequences of variables are unit 

root processes, then no stationary linear combination can be found and the variables in 

the matrix  £ are not cointegrated. If the rank of ¦ is greater than zero, than there 

exists r possible stationary linear combinations. Moreover, the matrix ¦ can then be 

decomposed in two matrices  and ® of dimension ¢ x  7, such that  ¦ � ®′. The 

matrix  includes the coefficients of the error correction terms for each of the 

equations in the VAR system. The matrix  represents the speed-of-adjustment 

coefficients. The matrix ® contains the coefficients of the 7 cointegrating vectors (i.e. 

that ensure that ®′¯°is stationary).     

 

The JJ method is to estimate the matrix ¦ from an unrestricted VAR and to test the 

restrictions implied by the reduced rank of ¦, i.e. to estimate the rank of ¦.  
Two tests statistics are used to determine the number of cointegrating vectors: the 

“Maxiumum Eigenvalue” and the “Trace” statistics. Kennedy (2009, p.328) argues 

that the former is superior to the latter. When considering a system of three variables, 

the hypotheses being tested are as follows: 

Maximum Eigenvalue Trace  
Null hypotheses Alternative 

hypotheses 
Null hypotheses Alternative 

hypotheses 7 � 0 7 � 1 7 � 0 7 ± 1 7 ² 1 7 � 2 7 ² 1 7 ± 2 7 ² 2 7 � 3 7 ² 2 7 ± 3 
 
Eviews 7 provides five testing frameworks for the JJ procedure, namely that: 

1. the level of the variables have no deterministic trends and the cointegrating 

equations do not have intercepts; 

2. the level of the variables have no deterministic trends and the cointegrating 

equations have intercepts; 

3. the level of the variables have linear trends but the cointegrating equations 

have only intercepts; 

4. the level of the variables and the cointegrating equations have linear trends; 

5.  the level of the variables have quadratic trends and the cointegrating 

equations have linear trends.  

Only the first four frameworks are considered in this study. Indeed, the fifth assumes 

that the data are integrated of order 2.  
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 Moreover, two multivariate systems will be estimated: system A, including only the 

three original indices from the Euronext; and system B which also include the 

German DAX index.  

7.2.3 Temporal dependence 

The temporal dependences of the indices can be evaluated using the broader Granger 

causality approach. According to Granger (1969), a variable I is said to Granger 

cause a variable � if I helps predicting �, i.e. the coefficients on the lagged values of 

the variable I are statistically significant:  I � KP � K�I�� � M � K?I�³ � L���� � M � L3��3 � �,  (7.4) � � KP � K���� � M � K?��³ � L�I�� � M � L3I�3 � O.   (7.5) 

The Granger causality test is a (Wald) 4-statistic of the joint hypothesis for each 

equation: L� � L	 � M � L3 
The null hypothesis is that the variable � does not Granger-cause I in equation 7.4 

and that I does not Granger-cause � in equation 7.5.  

 

If the variables are not cointegrated, than a Granger test of non-causality can be 

applied, using a simple VAR model: 

∆£ � ´ � ∑ §3l3]� ∆£�3 � O,      (7.6) 

where: 

 £ is a m x 1 column vector of m variables, ´ is a m x 1 column vector of constant terms, §3is a m x m matrix of coefficient, 

∆ is the difference operator, ¬ is the lag length.  

The Granger causality test is then a µ	Wald test. For each equation, it looks at the 

joint significance of the lagged values of the other endogenous variables in the 

equation, i.e. it assesses whether a variable is endogenous or exogenous.  

 

However, if the variables are cointegrated, then Granger causality needs to be tested 

in the Vector Error Correction Model framework, such as equation 7.3. The difference 

between a VECM and an unrestricted VAR is the ¦£�l component of the VECM 
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equation in 7.3. If the variables are not cointegrated, i.e. the rank of the matrix ¦ is 

zero, the VECM collapses to the unrestricted VAR, as in equation 7.4. 

 

According to Masih and Masih (1997, 2004) the analysis of the VECM allows for 

differentiation between the short- and long-run forms of Granger causality. Indeed, if 

the variables are cointegrated and a VECM of the form of 7.3 is estimated, then if the 

changes in the dependent variables force movements towards the long-run 

equilibrium, this can be seen as short-run causality. On the other hand, the long-run 

causality in the VECM is included in the lagged error correction term (ECT), as it 

includes information directly derived from the long-run cointegration equation. 

Therefore, the µ	Wald test on the dependent variables in the VECM is used to 

indicate the short-term causality channels and the 0-test on the lagged ECT to indicate 

the long-run causality.                

7.2.4 Unconditional correlation: Pearson product-moment correlation  

The Pearson product-moment correlation is:  H��, t� � ¶!�/�~·��¸�~¹�"�·�¹ ,       (7.7) 

Eviews 7 estimates the Pearson product-moment correlation as follows: HS��, t� � ���/,¸�����/,/����¸,¸��-/D.          (7.8) 

The test statistics is given by 0 � [�B�l���-/D���[D�-/D ,  where r is the estimated correlation 

and k the number of conditioning variables. In this study, the degrees of freedom are 

therefore # � 2. 

7.2.5 Conditional correlation: BEKK multivariate GARCH 

The M-GARCH (Multivariate GARCH) models are a generalization of the univariate 

counterpart (for an extensive discussion, see Xekalaki and Degiannakis, 2010, chapter 

11). More specifically, it can be defined as follows: º � »′¼  � ½,  ½ «��⁄ � 5!0, ¿", 
¿ � ��¿��, ¿�	, … ½��, ½�	, … �,      (7.9) 
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where �º�is a (n x 1) vector of the time series to be predicted; Á���º� � Â is the 

conditional mean;  ½ � º� Â is the innovation process of the conditional mean and 

has an (n x n) conditional covariance matrix Ã���º� � ¿; » is a (k x n) matrix of 

unknown parameters; ¼ is a (k x 1) vector of endogenous and exogenous explanatory 

variables included in the available information set«��; 5 �. � is the conditional 

multivariate density function of the innovation process and � �. � is a function of the 

lagged conditional covariance matrices and innovation process (Xekelaki and 

Degiannakis, 2010, p. 445).  

 

The innovation process can be written as follows: ½ � ¿�/	Ä,         (7.10)  

where Äis an (n x 1) vector of independent and identical distributed errors with Á�Ä� � 0 and Á �Ä Ä′ � � Å.   
 

Following the work of Baba et al. (1990), Engle and Kroner (1995) proposed a 

generalization of the univariate GARCH ��, �� to the multivariate environment, the 

BEKK��, �� model, to model the conditional covariance matrix ¿, as ¿ � §P§P′ � ∑ �§3�3]� ½�3½�3′ §3′ � � ∑ @»m¿�m»m′ G,Nm]�     (7.11) 

where §P is a lower triangular matrix with �B�Bª��	 � parameters, §3»m are (n x n) 

matrices with #	parameters each.  

 

A more parsimonious model is the Diag-BEKK ��, �� (Diagonal BEKK) where the 

matrices§3and »m in equation (7.1) are restricted to being diagonal (Xekelaki and 

Degiannaki 2010, p. 448). The disadvantage of the parametrisation of the Diag-BEKK 

with regards to the original BEKK model is that it does not provide estimation of the 

volatility spillovers among the series.  

 

Eviews 7 uses the maximum likelihood method to estimate the mean and the 

variances equations of the Diag-BEKK ��, ��. In order to ensure that the conditional 

covariance is a positive semi-definite matrix, the full-rank method is chosen for 

estimating the parameters. An alternative method would be to use the scalar option 

which requires the estimation of fewer parameters. However, when applied, it 
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provided explosive estimation of the conditional variance process for most of the 

series. Moreover, Eviews provides a choice for the function 5 �. � in equation (7.9), ie 

the conditional multivariate density function of the innovation process: the 

multivariate normal and multivariate Student-t distribution. As seen in the previous 

chapter, the univariate processes were not normally distributed, hence the Student-t 

distribution is selected as the best density function for the innovation process.  

 

A BEKK (1,1) model is estimated: 

º � Æ∆6Ç640
∆ÉÁ�20
∆ÇÁ�

∆ÊÇ�30Ë �
ÌÍ
ÎLP,�LP,	LP,�LP,ÏÐÑ

Ò � ½, 

½ «��⁄ � 0!0, ¿", 
  ¿ � §P§P′ � §�½��½��′ §�′ � »�¿��»�′ .      (7.12) 

The conditional variance of the log-return �3, is the ith diagonal element of the matrix  ¿ in equation (7.12):   3,	 � aP,3,3 � a�,3,3�3,��	 a�,3,3 � ��,3,3 3,��	 ��,3,3 ,       (7.13) 

and the conditional covariance between log-returns �3, and  �m, is the (i, j)th element 

of ¿ in equation (7.12):  3,m, � aP,3,m � a�,3,3�3,���m,��a�,m,m � ��,3,3 3,m,����,m,m.    (7.14) 

 

Equation (7.13) is therefore a univariate GARCH (1, 1) capturing the conditional 

variance of the indices log-return and equation (7.14) the conditional covariance. The 

conditional or time-varying correlation is computed by standardizing the conditional 

covariance between two series by the cross-product of the square root of their 

conditional variances. An alternative model would be to estimate a TARCH/GJR 

GARCH (1, 1) model, but the results in chapter six indicate that the log-return series 

do not exhibit asymmetric behaviour for the whole period.     

 

The model is estimated for the entire period and for the four indices’ log-returns.  

The analysis of the conditional correlation can be difficult. An interesting approach is 

developed by Filis, Degiannakis and Floros (2011) in a paper assessing the 
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relationship between stock market and oil prices, where the conditional correlation is 

analysed in the light of major economic and political events. A similar approach is 

developed and a framework of important events for the period 1990-2010 was 

developed prior to the estimation of the model.       

 

Finally, following Kim et al. (2005), a Granger causality test between the conditional 

correlations,  3,m, and a dummy variable EMU, taking the value 1 from 01/01/1999 

and 0 before this date, is conducted in order to determine the impact of EMU on the 

co-movements between the stock market indices log-returns. Different lag structures 

(2, 4, 6) are used.  

7.3 Data and Sample 

The data used for the cointegration testing procedure are the daily log-prices of the 

three Euronext indices. The data used for the error correction, the unrestricted VAR as 

well as the M-GARCH models are the log-returns of the indices. In the previous 

chapter, log-returns and excess returns showed extremely similar behaviour, hence in 

this chapter only log-returns are used.  

 

The sample is divided in a similar way to that in the previous chapter: Entire period 

(03/01/1990-10/12/2010); Pre-Integration Period (03/01/1990-31/08/2000); 

Integration Period (01/09/2000-30/10/2002); and Post-Integration Period (01/11/2002-

10/12/2010).  

 

Figure 7.1 presents the plot of the log-prices of the three indices. The C-GARCH 

models estimated in the previous chapter for the three indices for the whole period 

(see chapter 6) are filtered using an asymmetric Christiano-Fitzerlgerald filter. The 

cycle of these C-GARCH are plotted in Figure 7.2. An examination by eye seems to 

indicate that the C-GARCH cycles synchronize after the Euronext integration.   
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Figure 7.1: Daily log-prices for CAC40, BEL20, AEX and DAX30 indices.  

 

 

Figure 7.2: Daily C-GARCH filtered   
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7.4 Cointegration Testing 

The results of the bivariate cointegration tests are presented in table 7.3. At 5% 

significance, there is no evidence of bivariate cointegration between the indices for 

the entire and the pre-integration periods. During the integration period, the French 

and Dutch and the German and the Dutch pairs are bivariate cointegrated, and during 

the post-integration period the French and Belgian present long-run equilibrium.  

There is therefore no continuity in the results before and after the Euronext 

integration.  The results seem to be robust regarding the choice of the dependent 

variable. 

Table 7.3: bivariate cointegration (Intercept, no trend)  

X�$� Ó X�$� Entire period Pre-integration 
period 

Integration period Post-integration 
period 6Ç640 Ó ÉÁ�20 -2.281715  

(0.3822) 
-1.060909  
(0.8900) 

-2.439735  
(0.3074) 

-4.739159 
(0.0005)*** ÉÁ�20 Ó 6Ç640 -2.043986  

(0.3228) 
-0.435351  
(0.9671) 

-2.411508  
(0.3204) 

-3.651813 
(0.0214)** 6Ç640 Ó ÇÁ� -1.799505  

(0.6306) 
-1.306312  
(0.8294) 

-3.789076 
(0.0148)** 

-3.102474  
(0.0883)* ÇÁ� Ó 6Ç640 -1.862806  

(0.5989) 
-0.881794  
(0.9209) 

-3.864626 
(0.0117)** 

-3.268897  
(0.0596)* ÉÁ�20 Ó ÇÁ� -1.992081  

(0.5322) 
-2.716195  
(0.1941) 

-2.397468  
(0.3269) 

-3.060409  
(0.0970)* ÇÁ� Ó ÉÁ�20 -1.834910  

(0.6130) 
-2.783507 
(0.1713) 

-2.180769  
(0.4342) 

-3.078507  
(0.0932)* ÊÇ�30 Ó 6Ç640 -1.497904  

(0.7641) 
-1.444710  
(0.7839) 

-2.762661  
(0.1795) 

-0.098152  
(0.9843) 6Ç640 Ó ÊÇ�30 -1.254702 

 (0.8442) 
-1.704479  
(0.6762) 

-2.574318  
(0.2493) 

0.653251  
(0.9977) ÊÇ�30 Ó ÉÁ�20 -1.868163  

(0.5962) 
-2.258986  
(0.3937) 

-3.147787  
(0.0808)* 

-0.228942  
(0.9789) ÉÁ�20 Ó ÊÇ�30 -1.801211  

(0.6298) 
-2.135627  
(0.4570) 

-3.263385  
(0.0615)* 

-0.268630  
(0.9770) ÊÇ�30 Ó ÇÁ� -0.424858  

(0.9678) 
-2.744675  
(0.1842) 

-3.521688 
(0.0317)** 

-1.127374 
(0.8759) ÇÁ� Ó ÊÇ�30 -0.143324  

(0.9826) 
-2.688332  
(0.2041) 

-3.459305 
(0.0374)** 

-0.907315  
(0.9171) 

Engle’s Tau statistic (p-value in parenthesis). Equation with intercept and no trend. Lag length chosen with SBC.  

 

Table 7.4 presents the results for multivariate cointegration testing for system A. Here 

as well, there is no cointegration for the entire and the pre-integration periods at 5% 

significance. However, there is evidence for long-run equilibrium during the 

integration period, if the cointegration equation includes an intercept and a trend, and 

during the post-integration period. 
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Table 7.5 presents the results for System B, which includes the German DAX index. 

The picture from system B is different as there is evidence of cointegration for the 

pre-integration and integration periods. In both cases, the cointegration equation 

included an intercept and a trend. There is no evidence supporting cointegration 

between the four indices for the entire and the post-integration periods.   

 

Table 7.4: Multivariate cointegration tests, system A: CAC40, BEL20, AEX   

Variables Hypotheses Test statistics 
Entire period, system A: 
CAC40, BEL20, AEX 

 �P:  ��: Max. 
eigenvalue 

 
Trace 

 7 � 0 7 v 0 8.501307  
(0.8705) 

15.15888 
(0.7697) 

 7 ² 1 7 v 1 3.7242078 
(0.8872) 

6.657575 
(0.6178) 

 7 ² 2 7 � 2 2.9333367 
(0.0868)* 

2.933367 
(0.0868)* 

Pre-integration period, system 
A: CAC40, BEL20, AEX 

    

 7 � 0 7 v 0 11.84791 
(0.5628) 

15.69746 
(0.7334) 

 7 ² 1 7 v 1 3.388120 
(0.9176) 

3.849551 
(0.9153) 

 7 ² 2 7 � 2 0.461432 
(0.4970) 

0.461432 
(0.4970) 

Integration period, system A: 
CAC40, BEL20, AEX 

    

Intercept and trend 7 � 0 7 v 0 26.10843 
(0.0459)** 

43.89674 
(0.0397)** 

 7 ² 1 7 v 1 10.82749 
(0.5312) 

17.78831 
(0.3583) 

 7 ² 2 7 � 2 6.960823 
(0.3486) 

6.960823 
(0.3486) 

Post-integration period, system 
A: CAC40, BEL20, AEX 

    

 7 � 0 7 v 0 22.79331 
(0.0289)** 

37.03501 
(0.0062)** 

 7 ² 1 7 v 1 11.67449 
(0.1235) 

14.24169 
(0.0765) 

 7 ² 2 7 � 2 2.567202 
(0.1091) 

2.567202 
(0.1091) 

p-value in parenthesis 
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Table 7.5: Multivariate cointegration tests, system B: CAC40, BEL20, AEX, DAX30       

Variables Hypotheses Test statistics 
Entire period, system B : 
CAC40, BEL20, AEX, 
DAX30 

 �P:  ��: Max. 
eigenvalue 

Trace 

 7 � 0 7 v 0 8.511027 
(0.9971) 

18.16316 
(0.9973) 

 7 ² 1 7 v 1 5.375869 
(0.9924) 

9.652134 
(0.9849) 

 7 ² 2 7 v 2 3.712186 
(0.8884) 

4.276265 
(0.8800) 

 7 ² 3 7 � 3 0.564079 
(0.4526) 

0.564079 
(0.4526) 

Pre-integration period, system 
B: CAC40, BEL20, AEX, 
DAX30 

    

Intercept and trend 7 � 0 7 v 0 43.56144 
(0.0013)** 

70.43802 
(0.0127)** 

 7 ² 1 7 v 1 13.39410 
(0.7728) 

26.87658 
(0.6882) 

 7 ² 2 7 v 2 10.25201 
(0.5919) 

13.48249 
(0.6999) 

 7 ² 3 7 � 3 3.230476 
(0.8481) 

3.230476 
(0.8481) 

Integration period, system B: 
CAC40, BEL20, AEX, 
DAX30 

    

Intercept and trend 7 � 0 7 v 0 34.96359 
(0.0218)** 

72.30460 
(0.0083)** 

 7 ² 1 7 v 1 19.97348 
(0.2446) 

37.34100 
(0.1615) 

 7 ² 2 7 v 2 10.86093 
(0.5277) 

17.36752 
(0.3988) 

 7 ² 3 7 � 3 6.506592 
(0.3988) 

6.506592 
(0.3988) 

Post-integration period, system 
B: CAC40, BEL20, AEX, 
DAX30 

    

 7 � 0 7 v 0 23.86142 
(0.1396) 

48.88221 
(0.1355) 

 7 ² 1 7 v 1 11.86897 
(0.5607) 

19.02080 
(0.4914) 

 7 ² 2 7 v 2 6.765442 
(0.5173) 

7.151827 
(0.5601) 

 7 ² 3 7 � 3 0.386385 
(0.5342) 

0.386385 
(0.5342) 

p-value in parenthesis.  
 

The estimates for the long term parameters Ls are presented bellow for system A and 

B. The equations are normalised on the variable CAC40. Following Masih and Masih 

(2004), restrictions were imposed on the coefficient to test the null hypothesis that 
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each coefficient is zero. The test is a likelihood ratio statistic, asymptotically µ	�1� 

distributed. The results of the tests are presented underneath the estimates4. 

 
System A 
 

1. Integration period 
 

L_CAC40 L_BEL20 L_AEX TREND 

1.000000 0.200797 0.000218 0.000218 µ	�1� � 13.65095*** µ	�1� � 1.683278 µ	�1� � 11.31765***  

2. Post-integration period 
 

L_CAC40 L_BEL20 L_AEX 

1.000000 -0.761071 0.066641 µ	�1� � 10.35353*** µ	�1� � 11.31643*** µ	�1� � 0.185858 

System B 
 

1. Pre-integration period 
 

L_CAC40 L_BEL20 L_AEX L_DAX TREND 

1.000000 -2.306976 

 
8.099595 -5.830969 -0.001779 

µ	�1� �5.438315** 
µ	�1� �11.15529*** 

µ	�1� �29.20559*** 
µ	�1� �26.69974*** 

 

 
2. Integration period 

 
L_CAC40 L_BEL20 L_AEX L_DAX TREND 

1.000000 0.217735 -0.529342 -0.395077 0.000274 µ	�1� �13.66081*** 
µ	�1� �3.443412* 

µ	�1� �4.525585** 
µ	�1� �9.277674*** 

 

 

For system A (excluding the German market), the French and Dutch markets enter 

significantly the cointegration equation, but not the Belgian market during the 

integration period. For the Post-integration period, the estimates for the French and 

the Belgian markets are significant, but not for the Dutch market.  

As far as system B is concerned, the zero-loading restriction is rejected for all 

coefficients, indicating that all the markets enter the cointegration equations 

significantly for the pre-integration and integration periods.   

    

                                                 
4 *significance at 10%, ** significance at 5%, ***significance at 1% 
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Therefore, with the exception the Belgian market in system A, integration period and 

the Dutch market in system A, post-integration period, all markets adjust in a 

significant fashion to short-run disequilibrium. These short-run relationships are 

captured with the VECM shown underneath.  

7.5 Temporal Dependence 

Table 7.6 presents the estimation results from the Granger causality analysis using a 

VAR model for the pair of indices which are not “bivariate cointegrated” and table 

7.7 the estimation results from the Granger causality analysis using a VECM for the 

pair indices which are cointegrated. The lag order of the VAR and VEC models were 

chosen according to the Schwarz Bayesian information Criterion (SBC).  More 

precisely, at five percent significance, the results are as follows:   

 

French-Belgian pair: the CAC40 Granger causes the BEL20 during the whole period. 

If there appears no causality during the pre- and integration periods, there is evidence 

of bi-directional causality during the post-integration period. Moreover, the ECT is 

significant in both cases.  

 

French-Dutch pair: there is no evidence of causality for the entire and the integration 

periods, however the CAC40 Granger causes the Dutch index during the pre-

integration period and there is strong evidence of bi-directional causality during the 

post-integration period. 

 

Belgian-Dutch pair: there is evidence of bi-directional causality for the entire and the 

post-integration periods. There seems to be no temporal dependence during the pre-

integration period and a unidirectional channel running from the Belgian to the Dutch 

indices during integration.  

 

French-German pair: there is evidence of bi-directional causality during the entire and 

the post-integration periods. The French Granger causes the German index during the 

pre-integration period but this channel is reversed during the integration period.  

 

Belgian-German pair: there is a unidirectional channel during the entire period, 

running from the Belgian to the German index, and during the integration period, 
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from the German to the Belgian index. The pre-integration period is characterized by 

bi-directional causality and the post-integration by no Granger causality. 

 

Dutch-German pair: there are unidirectional causality channels running from the 

Dutch to the German index for the entire and the post-integration periods, and from 

the German to the Dutch index for the integration and post-integration periods. 

 

Therefore, the bivariate temporal dependences between the French, Belgian and 

Dutch indices vary and are limited before the Euronext integration, but there is strong 

evidence supporting bi-directional causality between the indices for the post-

integration period. However, the interaction of these indices with the German index is 

different, as there are more causality channels before the integration than after.      

 

Table 7.6: Bivariate Granger causality, estimated using a VAR model (Wald test of exogeneity)  

Bivariate pairs Entire period Pre-integration 
period 

Integration period Post-integration 
period 

∆6Ç640 Ó ∆ÉÁ�20 5.150618 
(0.0232)** 

3.983302  
(0.0460) 

0.275557  
(0.5996) 

VECM 

∆ÉÁ�20 Ó ∆6Ç640 3.234087 
(0.0721)* 

2.683458  
(0.1014) 

2.252921  
(0.1334) 

VECM 

∆6Ç640 Ó ∆ÇÁ� 3.163525  
(0.2056) 

15.79131 
(0.0001)*** 

VECM 11.23620 
(0.0036)*** 

∆ÇÁ� Ó ∆6Ç640 2.949887  
(0.2288) 

0.508251  
(0.4759) 

VECM 11.21257 
(0.0037)*** 

∆ÉÁ�20 Ó ∆ÇÁ� 27.34185 
(0.0000)*** 

3.298042  
(0.0694)* 

8.537128 
(0.0035)*** 

23.08804 
(0.0000)*** 

∆ÇÁ� Ó ∆ÉÁ�20 6.633748 
(0.0363)** 

0.166057  
(0.6836) 

1.826497 
(0.1765) 

8.754653 
(0.0031)*** 

∆ÊÇ�30 Ó ∆6Ç640 32.29254 
(0.0000)*** 

2.987298  
(0.0839)* 

27.94341 
(0.0000)*** 

31.23525 
(0.0000)*** 

∆6Ç640 Ó ∆ÊÇ�30 26.94310 
(0.0000)*** 

106.0214 
(0.0000)*** 

2.451581  
(0.1174) 

14.90967 
(0.0006)*** 

∆ÊÇ�30 Ó ∆ÉÁ�20 0.006177  
(0.9374) 

5.796720 
(0.0161)** 

10.59970 
(0.0011)*** 

0.423391  
(0.5152) 

∆ÉÁ�20 Ó ∆ÊÇ�30 10.84968 
(0.0010)*** 

21.21003 
(0.0000)*** 

0.063509  
(0.8010) 

2.484279  
(0.1150) 

∆ÊÇ�30 Ó ∆ÇÁ� 2.505986  
(0.1134) 

0.445588  
(0.5044) 

VECM 9.171730 
(0.0025)*** 

∆ÇÁ� Ó ∆ÊÇ�30 25.27915 
(0.0000)*** 

39.91472 
(0.0000)*** 

VECM 0.992217  
(0.3192) µ	values, p-value in parenthesis. * significance at 10%, ** significance at 5%, *** significance at 1% 
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Table 7.7: Bivariate Granger Causality, estimated using a VEC model (Wald test of exogeneity) 

Bivariate pairs Period µ	values, p-value in 
parenthesis 

Estimated ECT, t-
statistics in parenthesis 

∆6Ç640 Ó ∆ÉÁ�20 Post-integration 29.53962  
(0.0000)*** 

0.018289  
(2.92268)*** 

∆ÉÁ�20 Ó ∆6Ç640 Post-integration 28.00005  
(0.0000)*** 

0.029856  
(4.34336)*** 

∆6Ç640 Ó ∆ÇÁ� Integration  2.415365  
(0.1201) 

0.071882  
(2.25028)** 

∆ÇÁ� Ó ∆6Ç640 Integration 0.777697  
(0.3778) 

0.034255  
(1.09581) 

∆ÊÇ�30 Ó ∆ÇÁ� Integration 35.38373  
(0.0000)*** 

0.013789  
(0.54413) 

∆ÇÁ� Ó ∆ÊÇ�30 Integration 3.421386  
(0.1807) 

-0.039252  
(-1.40805) 

* significance at 10%, ** significance at 5%, *** significance at 1% 

 
The results of the multivariate VECM analysis is presented in table 7.8 for system A 

(without the German index DAX) and 7.9 for system B (including the DAX as control 

variable).  The VECMs were estimated in the form of 7.3, including the first 

differences of the indices and the ECT in lagged levels. The lag order was determined 

according to the Schwarz Bayesian information Criterion (SBC). The lag order was 2 

lags for each VECM. At 5% significance, the results are as follows: 

 

System A: During the integration period, there is evidence of short-run causality 

running from the changes in the Belgian index to the other indices, as well as from the 

Dutch index to the French index. During the post-integration period, the short-run 

causality from the Belgian index remains but not the one from the Dutch. Moreover, 

short-run causality also runs now from the French index to the other two indices. In 

the VECM framework, the ECTs capture the adjustments to the deviation from the 

long-run equilibrium. It is interesting to note that during the integration period, none 

of the ECTs are significant; however in the post-integration period all three ECTs are 

statistically significant, indicating that now all three indices bear the brunt of short-

run adjustment to long-run equilibrium.  

 

System B: During the pre-integration period, the short-run causality runs from the 

changes in the French and German index to all other indices, as well as from the 

Belgian to the German index. However, during the integration period only the short-

run causality running from the German index remains, joined by the influence of the 

Belgian index on the Dutch, and the Dutch on the French. As far as the long-run 

causality is concerned, the ECTs in the first difference equations of the Belgian and 
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German indices are significant for the pre-integration period, indicating their 

influence on short-run adjustments to long-run equilibrium, but no ECTs are 

significant for the integration period. 

 

Table 7.8: Multivariate VECM for System A (CAC40, BEL20, AEX) 

Dependent 
variable 

Short-run lagged differences  Estimated ECT, 
( t-statistics ) ÕÖ×ÖØÙ ÕÚÛÜÝÙ Õ×Û¯ ÛÖÞ°�� 

Integration  
∆6Ç640 - 5.333795 

(0.0209)** 
4.8512328 
(0.0337)** 

-0.044132 
(-0.92377) 

∆ÉÁ�20 1.017617  
(0.3131) 

- 2.567081 (0.1091) -0.011536  
(-0.32675) 

∆ÇÁ� 2.874759  
(0.0900) 

8.534710 
(0.0035)*** 

- 0.041080  
(0.84163) 

Post-integration 
∆6Ç640 - 21.41969 

(0.0000)*** 
3.155847 (0.2064) -0.041041  

(-4.52211)*** 
∆ÉÁ�20 24.84224 

(0.0000)*** 
- 4.257624 (0.1190) -0.026128  

(-3.16326)*** 
∆ÇÁ� 24.60036 

(0.0000)*** 
34.74535 
(0.0000)*** 

- -0.036438 
(-3.83600)*** 

The ECTs were derived by normalising the cointegrating vectors on CAC40. P-value in parenthesis..  
* significance at 10%, ** significance at 5%, *** significance at 1% 

 
Table 7.9: Multivariate VECM for System B (CAC40, BEL20, AEX, DAX30) 

Dependent 
variable 

Short-run lagged differences Estimated 
ECT, 
( t-statistics)  ÕÖ×ÖØÙ ÕÚÛÜÝÙ Õ×Û¯ Õß×¯�Ù ÛÖÞ°�� 

Pre-integration 
∆6Ç640 - 4.677799 

(0.0964) 
0.296101 
(0.8624) 

22.63625 
(0.0000)*** 

0.000552 
(0.57128) 

∆ÉÁ�20 10.30406 
(0.0058)*** 

- 0.339564 
(0.8438) 

16.32305 
(0.0003)*** 

0.001682 
(2.22118)** 

∆ÇÁ� 20.06370 
(0.0000)*** 

4.611676  
(0.0997) 

- 17.18763 
(0.0002)*** 

-0.000673  
(-0.78623) 

∆ÊÇ�30 69.97847 
(0.0000)*** 

6.625077 
(0.0364)** 

2.479209  
(0.2895) 

- 0.003548 
(3.63336)*** 

Integration 

∆6Ç640 - 5.280117  
(0.0714) 

6.674893 
(0.0355)** 

30.11676 
(0.0000)*** 

0.035012 
(0.92760) 

∆ÉÁ�20 2.307191 
(0.3155) 

- 5.731758  
(0.0569) 

28.42633 
(0.0000)*** 

-0.010422 
(-0.37314) 

∆ÇÁ� 1.810968  
(0.4043) 

7.201737 
(0.0273)** 

- 35.61860 
(0.0000)*** 

0.073390 
(1.91381) 

∆ÊÇ�30 1.301705  
(0.5216) 

4.352469  
(0.1135) 

3.7869303 
(0.1506) 

- 0.017521 
(0.41219) 

The ECTs were derived by normalizing the cointegrating vectors on CAC40. P-value in parenthesis.  
* significance at 10%, ** significance at 5%, *** significance at 1% 

 

Figure 7.3 summarizes the short-run causality channels for systems A and B.  For 

system A, the French index is led by both the Belgian and the Dutch indices during 

the integration period, but during the post-integration period, it is the Dutch which is 
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led by the French and Belgian indices. The Belgian index appears to have a leading 

role during both periods. For system B, it is the Dutch which is led by the German and 

the French markets during the pre-integration period and the French which is led by 

the Dutch and the German indices. The German market seems to keep a leading 

position during both periods. 

 

Figure 7.3: Stock market lead-lag relationships based on short-run channels of Granger causality 

from VECMs 

 
System A: Integration period    System A: Post-integration 
 

CAC40     BEL20       CAC40          BEL20 
  
    
 
AEX        AEX 
 

 
System B: Pre-integration period    System B: Integration period 
CAC40 BEL20    CAC40 BEL20 
 
 
AEX  DAX30   AEX  DAX30 
 

7.6 Correlation Analysis 

Table 7.10 presents the estimation of the Pearson product moment correlation 

between the four indices’ log-returns as measurement of the unconditional correlation. 

All the measurements are highly significant. It is evident that the association between 

the stock market returns increases over time: the last period exhibiting the highest 

unconditional correlation for each pair.  

 

The log-returns of the French and the Dutch markets show the highest correlation 

measurements in all the periods except for the pre-integration period.  The French and 

German and Dutch and German pairs’ log-returns also exhibit relatively high degrees 

of association in all periods. Interestingly, measurements involving the Belgian log-

returns systematically take a relatively lower value. This indicates that, in all periods, 

the Belgian market is relatively less correlated with the other markets.    
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Table 7.10: Pearson’s correlation for the CAC40, BEL20, AEX and DAX30 log-returns  

Entire period ÕÖ×ÖØÙ ÕÚÛÜÝÙ Õ×Û¯ Õß×¯�Ù 
∆6Ç640 1    
∆ÉÁ�20 0.754939 (0.0000) 1   
∆ÇÁ� 0.857954 (0.0000) 0.793752 (0.0000) 1  
∆ÊÇ�30 0.802056 (0.0000) 0.699849 (0.0000) 0.808496 (0.0000) 1 
Pre-integration ÕÖ×ÖØÙ ÕÚÛÜÝÙ Õ×Û¯ Õß×¯�Ù 
∆6Ç640 1    
∆ÉÁ�20 0.593777 (0.0000)  1   
∆ÇÁ� 0.716575 (0.0000)  0.648028 (0.0000) 1  
∆ÊÇ�30 0.665973 (0.0000) 0.594062 (0.0000)  0.724033 (0.0000) 1 
Integration ÕÖ×ÖØÙ ÕÚÛÜÝÙ Õ×Û¯ Õß×¯�Ù 
∆6Ç640 1    
∆ÉÁ�20 0.646977 (0.0000)  1   
∆ÇÁ� 0.791921 (0.0000) 0.711479 (0.0000)  1  
∆ÊÇ�30 0.730990 (0.0000) 0.622849 (0.0000)  0.760875 (0.0000) 1 
Post-integration ÕÖ×ÖØÙ ÕÚÛÜÝÙ Õ×Û¯ Õß×¯�Ù 
∆6Ç640 1    
∆ÉÁ�20 0.877357 (0.0000)  1   
∆ÇÁ� 0.941224 (0.0000)  0.877501 (0.0000)  1  
∆ÊÇ�30 0.901167 (0.0000)  0.790970 (0.0000)  0.874277 (0.0000) 1 � �values in parenthesis. 
 

The results of the Diag-BEKK GARCH (1, 1) model for the four indices log-returns 

are presented in table 7.11. The mean equations, comprised of a constant only, are 

significant for all indices. The coefficients of the indices’ conditional variances are 

also significant. Moreover, the matrices §, » and ¿ were positive semi definite. 

  
  Table 7.11: Coefficients estimates for Diag-BEKK GARCH (1, 1) 

Coefficients ÕÖ×ÖØÙ ÕÚÛÜÝÙ Õ×Û¯ Õß×¯�Ù 
Mean equation: �P 0.00062 

(0.00011)*** 
0.00055 
(0.00009)*** 

0.00070 
(0.00010)*** 

0.00079 
(0.00012)*** 

Var/cov 
equation:aP 

6.12E-07 
(9.94E-08)*** 

7.01E-07 
(8.95E-08)*** 

6.03E-07 
(9.04E-08)*** 

6.03E-07 
(9.84E-0.8)*** 

Var/cov. 
equation:a� 

0.20165 
(0.00472)*** 

0.21607 
(0.00538)*** 

0.20756 
(0.00494)*** 

0.19716 
(0.00487)*** 

Var/cov. 
equation:�� 

0.97869 
(0.00089)*** 

0.97323 
(0.00124)*** 

0.97703 
(0.00099)*** 

0.97951 
(0.00092)*** 

Standard error in parenthesis. * significance at 10%, ** significance at 5%, *** significance at 1% 
 
 

However, in the BEKK representation, the estimated coefficients have to be squared 

in the GARCH equations (see equation 7.13), yielding:  

   ∆.á.ÏP,	 � 0.0000006 � 0.040 �∆.á.ÏP,��	 � 0.957 â.á.	P,��	  
     ∆ã¶ä	P,	 � 0.0000007 � 0.046 �∆ã¶ä	P,��	 � 0.947 ∆ã¶ä	P,��	  

  ∆á¶/,	 � 0.0000006 � 0.043 �∆á¶/,��	 � 0.954 ∆á¶/,��	  
  ∆�á/�P,	 � 0.0000006 � 0.038 �∆�á/�P,��	 � 0.959 ∆�á/�P,��	  
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The sum of the ARCH and GARCH coefficients is close to 1 for all index log-returns, 

indicating strong persistence of shock in the series volatilities. Alternative 

parsimonious models such as the scalar Diag-BEKK or scalar Diag-VECH were 

estimated, however the conditional variance equations for most of the series were 

explosive (i.e. the sum of the ARCH and GARCH coefficient was larger than one).   

  

Following equation 7.14, the covariance equations are as follows:  â.á.ÏP,âã¶ä	P, � 0.0000004 � 0.043�â.á.ÏP,���âã¶ä	P,�� � 0.952 â.á.ÏP,âã¶ä	P,��  â.á.ÏP,âá¶/, � 0.0000005 � 0.041�â.á.ÏP,���âá¶/	P,�� � 0.956 â.á.ÏP,âá¶/,��  â.á.ÏP,â�á/�P, � 0.0000005 � 0.039�â.á.ÏP,���â�á/�P,�� � 0.958 â.á.ÏP,â�á/�P,��  âá¶/,âã¶ä	P, � 0.0000004 � 0.044�âá¶/ÏP,���âã¶ä	P,�� � 0.950 â.á.ÏP,âá¶/,��  â�á/�P,âã¶ä	P, � 0.0000004 � 0.042�â�á/�P,���âã¶ä	P,�� � 0.953 â�á/�P,âã¶ä	P,��  âá¶/,â�á/�P, � 0.0000004 � 0.040�âá¶/,���â�á/�P,�� � 0.957 âá¶/,â�á/�P,�� 

 
The conditional covariance measurement is difficult to comprehend hence the 

conditional correlation, a scale invariant transformation of the former, is used. The 

conditional correlation is given by: 

 H�,¨, � �',å,(:�',(D �å,(D =-/D.  

 
Figure 7.4 presents the plots of the conditional correlations between the indices’ log- 

returns. The first observation is that the conditional correlations are indeed non-

constant. Moreover, all plots exhibit upward trends, with most of the correlation 

measures being positive. Only the pairs DAX30/CAC40 and CAC40/AEX are 

negatively correlated for a couple of days in early 1990 (03/01/1990-01/02/1990 for 

DAX30/CAC40 and 03/-12/01/1990 for CAC40/AEX) and the pair BEL20/AEX in 

mid-1993 (06-09/09/1993). Finally, the values of the conditional correlation 

coefficient are mainly above 0.4, except for some important drops, especially in mid-

1993 and in 2000. These results are in line with the unconditional correlations 

measured with the estimations for the Pearson product-moment correlation coefficient 

in table 7.10. 
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Figure 7.4: Conditional correlation for the CAC40, BEL20, AEX, DAX30 log-return 

 

 
 

The volatility of the conditional correlation measurements seems more important for 

the pre-integration and the integration periods than for the post-2002 sample. The 

coefficient of variation of the conditional correlation is used to track down the relative 

volatility of the conditional correlation. It is computed by standardizing the standard 

deviation of the conditional correlation by its average. This transformation yields a 

scale invariant measurement of the variability of conditional correlations, hence 

allowing for comparison.  
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The coefficients of variation are presented in table 7.12. The highest volatilities of the 

conditional correlations take place during the pre-integration period (for the pairs 

CAC40/AEX; CAC40/DAX30; DAX30/AEX; BEL20/AEX) and the integration 

period (for the pairs CAC40/BEL20 and BEL20/DAX30). The post-integration period 

is characterized by a much lower volatility for the conditional correlation between all 

pairs of index log-returns. 

 

The pairs CAC40/AEX and DAX30/AEX exhibit the lowest variability during the 

entire and the post-integration periods. The pair DAX30/CAC40 is also very stable 

during the integration period. Finally, the conditional correlation coefficients of the 

pairs involving the Belgian stock index have the highest volatility in all periods (see 

table 7.12) as well as very similar overall shape (see figure 7.4).    

 

Table 7.12: Coefficient of variation of the conditional correlation of the CAC40, BEL20, AEX 

and DAX30 log-returns  

Entire period ÕÖ×ÖØÙ ÕÚÛÜÝÙ Õ×Û¯ Õß×¯�Ù 
∆6Ç640 0.0000    
∆ÉÁ�20 0.2952 0.0000   
∆ÇÁ� 0.1775 0.2422 0.0000  
∆ÊÇ�30 0.2408 0.2599 0.1596 0.0000 
Pre-integration ÕÖ×ÖØÙ ÕÚÛÜÝÙ Õ×Û¯ Õß×¯�Ù 
∆6Ç640 0.0000    
∆ÉÁ�20 0.3161 0.0000   
∆ÇÁ� 0.1772 0.2646 0.0000  
∆ÊÇ�30 0.2582 0.2718 0.1534 0.0000 
Integration ÕÖ×ÖØÙ ÕÚÛÜÝÙ Õ×Û¯ Õß×¯�Ù 
∆6Ç640 0.0000    
∆ÉÁ�20 0.3366 0.0000   
∆ÇÁ� 0.0922 0.2490 0.0000  
∆ÊÇ�30 0.0813 0.2747 0.0835 0.0000 
Post Integration ÕÖ×ÖØÙ ÕÚÛÜÝÙ Õ×Û¯ Õß×¯�Ù 
∆6Ç640 0.0000    
∆ÉÁ�20 0.0893 0.0000   
∆ÇÁ� 0.0370 0.0960 0.0000  
∆ÊÇ�30 0.0424 0.1015 0.0560 0.0000 
The coefficient of variation are computed using the standard deviation of the conditional correlation between 
indices i, j log-returns and standardizing it by the average the conditional correlation.   

  

In order to analyse further the conditional correlations between the indices’ log- 

returns, important political and economic events were chosen as landmarks. These 

events are summarized in table 7.13. Figure 7.5 presents the plots of the conditional 

correlation estimations with the periods corresponding to these important events in 

blue shade.  
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Table 7.13: Summary of important political and economic events 

Period Event 

August 1990 Iraq invades Kuwait (02/08/1990) 
First quarter 1991 Operation Desert Storm (January and February) 
Third quarter 1992 Exchange Rate Mechanism (ERM) crisis: Black 

Wednesday (16/09/1992) UK and Italy forced to leave 
ERM 

Second  and third quarter 
1993 

Russian constitutional crisis.  

Fourth quarter 1994 Tesobonos Mexican crisis. On 20/12/1994, Mexico 
announced 15% devaluation of the peso. 

Third and fourth quarter 
1995 

Beginning of the Japanese banking crisis. During the 
summer 1995, the seven Jusen (housing loan 
companies) announced ¥6,410 billion losses. 

Third quarter 1997 Beginning of the Asian financial crisis: Following 
speculative attacks, the Baht is devaluated on 
02/07/1997. Contagion to Indonesia, South Korea, 
Philippines, Singapore, Malaysia, etc. 

Third quarter 1998 Russian defaults on debt (17 August). Long Term 
Capital Market (LTCM) bankrupted.  

March 2000 Dot-com bubble crash 
11 September 2001 New York terrorist attacks 
December 2001 International Monetary Fund stops payments to 

Argentina  
Second and third quarter 
2003 

Iraq war II (19/03/2003) 

Second and third quarter 
2007 

June: Bear Stearns and Fanny Mae 
August: BNP-Paribas freezes investment fund / FED 
and ECB inject money in the market 
September: Northern Rock rescued 

Third quarter 2008 September 2008: Fanny MAC and MAE rescued by US 
(7th), Lehmann bankrupted (15th), deal BofA-Merrill 
(15th), Fed lends to AIG (16th), deal Lloyds-HBOS 
(18th), etc 
End of September-October 2008: Government 
intervention in US, Europe, Australia.... 

Third quarter 2010 Greek sovereign debt crisis (April and May) 
 
 

Invasion of Kuwait and Iraq war I (1990-1991): In the days following the invasion 

in August 1990 as well as the beginning of operation Desert Storm in January 1991, 

all the conditional correlations increased to a high level (in between 0.8 and 0.9) and 

decreased afterwards.     
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Figure 7.5: Conditional correlation with political and economic events represented 

 
 
 
Exchange Rate Mechanism Crisis (1992):  All the correlation coefficients increased 

with the speculative attacks, especially around Black Wednesday. They decreased 

after the exit of Italy and the UK from the ERM.  

Russian Constitutional Crisis (1993): This event had an inverse impact as all 

conditional correlations decreased. The drop was important during the peak of the 

crisis, in September and October 1993, especially for the pairs including the BEL20 

log-returns.  
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Mexican Tesobono Crisis (1994): The correlation coefficients decreased as the crisis 

unfolded in the second part of December 1994, with the devaluation of the Mexican 

peso against the American dollar. 

Japanese Bank Crisis (1995): Following the announcement of the losses of the 

Japanese banks in the summer of 1995, the correlation coefficients increased at first 

and then slightly decreased towards the end of the year. The pair CAC40, BEL20 log- 

returns dropped to values lower than 0.2 in December 1995. 

 Asian Crisis (1997): All the correlation coefficients increased sharply following the 

devaluation of the Thai baht against the American dollar in July 1997.  

Russian Default (1998): Again, all coefficients increased sharply in the days around 

the announcement of the Russian default, in August 1998. 

Dot.com bubble (2000): The burst of the dot.com bubble in March 2000 provoked 

mixed answers. The correlation coefficients involving the Belgian stock index log- 

returns dropped sharply, reaching values below 0.2.  The coefficients of the other 

pairs increased, but not as importantly.  

World Trade Center attacks (2001): The conditional correlation increased for all 

pairs in the days following 11/09/2001. The steepest increases involve pairs including 

the Belgian stock market log-returns. 

IMF suspends Argentina loans (2001): Small increase in all coefficients except for 

the pair CAC40, AEX log-returns, whose coefficient remained stable.   

Iraq war II (2003): The correlation coefficients increased with the beginning of the 

offensive in March 2003 and then decreased in May 2003. 

Subprime crisis part 1 (2007): All the coefficients which were high in March 2007, 

slightly decreased in April but increased again with the announcements of the 

problems of Bearn Stearns and Fanny Mae in June, as well as in August with the Fed 

and ECB decisions to inject money in the financial system.  

Subprime crisis part 2 (2008): Again, all the coefficients increased and remained 

high during the main part of the crisis.   

Greek sovereign debt crisis (2010): The coefficients slightly decreased over the 

third quarter of 2010 however they all remained above 0.8.   

 

In order to determine the impact of the EMU on the conditional correlations, Granger 

causality tests are conducted. As the Granger causality procedure is sensitive to lag 

structure, we follow Kim et al. (2005, p. 2494), and use lag 2, 4 and 6. 
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The results presented in table 7.14 support that the hypothesis “EMU dummy variable 

does not Granger cause  3,m,” is rejected at 5% significance in all the lag structures, 

indicating a Granger causality channel running from EMU to each of the conditional 

correlations. The hypothesis “ 3,m, does not Granger cause EMU” cannot be rejected 

at 5% in all lag structures, except for the pairs   ∆.á.ÏP,∆á¶/, and  ∆.á.ÏP,∆�á/�P, 

with lag 2.        

 
Table 7.14: Granger causality test between conditional correlations and a dummy variable EMU 

Hypothesis Lag 2, æ �value Lag 4, æ �value Lag 6, æ �value  â.á.ÏP,âã¶ä	P, does not Ganger cause EMU 0.3697 0.7220 0.8374 

EMU does not Granger cause â.á.ÏP,âã¶ä	P, 0.0451 0.0003 0.0001  â.á.ÏP,âá¶/, does not Granger cause EMU 0.0491 0.1694 0.3697 

EMU does not Granger cause â.á.ÏP,âá¶/,  0.0000 0.0000 0.0002  â.á.ÏP,â�á/�P, does not Granger cause EMU  0.0410 0.1161 0.2804 

EMU does not Granger cause  â.á.ÏP,â�á/�P, 0.0000 0.0000 0.0000  âá¶/,âã¶ä	P, does not Granger cause EMU 0.6356 0.9220 0.9750 

EMU does not Granger cause  âá¶/,âã¶ä	P, 0.0484 0.0376 0.0191  â�á/�P,âã¶ä	P, does not Granger cause EMU 0.8622 0.9877 0.9906 

EMU does not Granger cause  â�á/�P,âã¶ä	P, 0.0415 0.0008 0.0144  âá¶/,â�á/�P, does not Granger cause EMU 0.1154 0.3535 0.6051 

EMU does not Granger cause  âá¶/,â�á/�P, 0.0000 0.0000 0.0000 

 

7.7 Discussion  

In this section, the results are discussed in light of the a priori stated hypotheses. 

 

  çÝ.�: Euronext integration has created long-run equilibrium between the 
French, Belgian and Dutch markets.  

 

At the 5% significance level, the results of the bivariate cointegration analysis does 

not show a clear increase in cointegration between the French, Belgian and the Dutch 

indices following the Euronext integration, as only the BEL20 and the CAC40 exhibit 

long-run equilibrium. However, it is worth noting that at the 10% level of 

significance, all three indices are pairwise cointegrated in the post-integration period. 

Moreover, there is strong evidence against bivariate cointegration between the 

Euronext indices and the DAX30 index, a variable that controls for the EMU 

integration, for the post-integration period. This seems to indicate that the EMU has 

no excess impact on the relationship of the CAC40, BEL20 and AEX.  
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Table 7.15: Number of Cointegration Vectors for System A and System B 

 Pre-integration Integration Post-integration Entire period 
System A None One One None 
System B One  One None  None 
 
 

The results from the multivariate analysis show that there is an increase in 

cointegration between the three Euronext indices (system A) following its integration, 

but not when including the DAX30 (system B). On the contrary, Euronext integration 

or the introduction of the EMU meant the end of the long-run equilibrium between the 

four indices. Table 7.15 presents a resume of the findings from the multivariate 

cointegration analysis. 

 

The fact that long-run equilibrium between financial prices is not static but changes 

over time is documented in Masih and Masih (2004) Shamsuddin and Kim (2003) and 

Leong and Felmingham (2003). Indeed, shocks like the 1987 financial crisis (Masih 

and Masih) or the Asian financial crisis (Shamsuddin and Kim) can change the long-

run dynamics.    

 çÝ.Ý: Euronext integration has intensified information flows between the French, 
Belgian and Dutch markets. 

 

The temporal dependences analysis depicts a similar picture. First, the bivariate 

Granger tests show that there is an increase in short-run causality between the three 

Euronext indices as all three exhibit bi-directional causality channels after integration. 

At the same time, the number of causality channels with the German DAX30 

decreases. Then, the multivariate analysis shows the existence of a long-run causality 

between the Euronext indices after the integration, indicating that all three bear the 

brunt of adjustment to short-run disequilibrium.  

 

In terms of short-run causality for system A, i.e. the Euronext indices, the French and 

Belgian indices seem to play a leading role. During the integration period, the Belgian 

index leads the two other indices, and during the post-integration period the Belgian 

and the French indices present synchronous channels of communications and are both 
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leading the Dutch market. It is worth noting that only these two indices are pairwise 

cointegrated at 5% during the post-integration period.  

 

Within system B, it is the German market which seems to play the leading role of 

picking up information and passing it to the other markets.  

 

In the literature, changes in information flows between stock market indices are also 

documented (Masih and Maish 1997, 2004; Shamsuddin and Kim 2003). For 

example, Shamsuddin and Kim (2003) showed that the influence of the US market on 

the Australian market diminished after the Asian financial crisis. 

    çÝ.�: Euronext integration has increased the correlation between the French, 
Belgian and Dutch markets.       

 

Unconditional correlation measurements between the three Euronext indices’ returns 

have increased after the integration. However, the association between these indices 

and the DAX30, the control variable, has also increased. In fact, the lower correlation 

measurements are recorded for pairs including the Belgian index returns.   

  

The conditional correlations between the four stock indices’ log-returns increase over 

time and their coefficients of variation indicate that the variability of the correlations 

decreased over time. The least volatile conditional correlations are measured between 

the French, Dutch and German indices’ log-returns. The pairs involving the Belgian 

market are the most volatile during the whole period and in each sub period. 

       

When looking at the effect of major political and economic events on the conditional 

correlations of the indices log-returns, it is interesting to note that the events of the 

pre-integration period yielded important changes in the conditional correlations. 

Indeed, except for the Russian constitutional crisis (1993) and the Mexican Tesobono 

crisis (1994), the political and economic shocks provoked a marked increase in the 

correlation coefficients. These coefficients decrease as the shocks are absorbed by the 

system. During the integration period, the most dramatic event, the World Trade 

Centre attacks, caused a similar pattern. However, the four events of the post-

integration period did not induce marked changes in the conditional correlation 
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coefficients, as these remained overall high (above 0.7 for the pair DAX30/AEX log- 

returns and above 0.8 for the pairs CAC40/AEX and DAX30/CAC40 log-returns) and 

stable, even during shocks. This pattern is the same for all the pairs during the post-

integration period. 

 

An interesting approach is to look at the results of the univariate analysis (chapter six) 

and of the conditional correlation analysis in the light of the economic and political 

events. The events having an important impact on the annualised conditional standard 

deviation of the indices (the Kuwait invasion and operation Desert Storm, the ERM 

crisis, the Asian crisis, the Russian default, the events of September 2011, the second 

war in Iraq, the two episodes of the Sub-prime crisis and the Greek sovereign debt 

crisis) were also characterised by a high conditional correlation between the indices. 

Hence, there is a direct link between high volatility and high correlation. This pattern 

is well-documented in the literature (see for example Solnik et al. 1996; Karolyi 2003; 

Das and Uppal 2004; Baele et al. 2004). This link can therefore limit the benefits of 

international diversification. Some authors (Solnik et al. 1996; Bekaert 2002a) believe 

that international diversification is still beneficial: 

As for the risk benefits, even though volatility is internationally contagious and 
correlation increases in periods of high volatility, international correlations remain at 
levels that are attractive from a diversification viewpoint (Solnik et al. 1996, p.32)    

 

Indeed, Adjaoute and Danthine (2003) argued that that the European investors remain 

home biased.   

 

Other authors (Das and Uppal 2004) suggest that international crisis contagion and 

systematic risk provide fewer opportunities for the investors to diversify their 

portfolios. Stiglitz (2010) argued that diversification and contagion are directly related 

and that wider financial integration increases the risk of contagion, especially in the 

event of a negative shock. Moreover, Fratzscher (2001) and Beale et al. (2004) 

believed that integration of the Euro area limits the diversification of the portfolio in 

the Euro-zone. Beale et al. (2004) explained the phenomenon by a further 

synchronisation of the business cycle of the Euro-zone countries and the convergence 

of the macroeconomic fundamentals.  However, pointing out argued that the 

correlations of the EMU sector returns have decreased, they argued that there is 

greater potential in sector diversification than in geographic diversification (p.72).            
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These results show that during the post-integration period, there is an increase in 

correlation, as well as a more stable conditional correlation, between the indices’ log- 

returns. However, this pattern cannot be directly attributed to Euronext integration as 

the pairs including the control variable, DAX30, follow the same behaviour. Egert 

and Kocenda (2011) using intraday data for the period 2003-2006 also found that the 

conditional correlation between the CAC40, DAX 30 and the UKX indices was high.   

Kim et al. (2005, 2006), Bertram et al. (2005), Hardouvelis et al. (2005) found that 

integration increased for the Euro-zone members. They all argued that EMU played 

an important role in the market’s integration. Bertram et al. (2005) dates the 

beginning of the integration to early 2008, when the EMU was first announced. 

 

In this paper, the results of the Granger causality tests between the EMU dummy 

variable and the indices’ conditional correlations overwhelmingly show that there is a 

unidirectional causality channel between EMU and the conditional causalities. This 

result is in line with Kim et al. (2005, 2006).  

 

It is therefore not possible to conclude that the Euronext integration has increased 

stock market integration directly as measured by the conditional correlation. It may 

however have played a role within the larger framework of EMU integration. Kim et 

al. (2005, 2006) demonstrated that financial integration is a result of the macro-

economic convergence between the Euro-zone members, as well as a self-fuelling 

process (2005, p. 2500). Interestingly, the authors also showed that EMU Granger 

caused the segmentation between stock and bond markets within Europe and induced 

a flight to government bonds (2006, p. 1529). Bertram et al. (2005) and Hardouvelis 

et al. (2005) also showed that market integration is mainly a Euro-zone trait, as other 

European markets which are not part of the Euro-zone, do not show the same pattern. 

Hardouvelis et al. concluded that: “integration in Europe appears to be a Euro-zone-

specific phenomenon, independent of possible simultaneous world-market 

integration” (p.390).             
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Concluding the discussion, the results of these different analyses can be collected 

together to answer the main hypothesis of this chapter: 

 çÝ: Euronext has increased the integration of the French, Belgium and Dutch 
stock markets. 

 

The results from the cointegration and temporal dependence analysis show that 

Euronext had an impact on the French, German and Dutch markets. However, the 

results from the correlation analysis, i.e. the dynamic analysis of the co-movements 

between indices’ log-returns, do not support the hypothesis that Euronext had a direct 

impact on the stock markets. Indeed, results from the empirical work and from the 

literature review show that it was EMU, and not the Euronext, that Granger caused 

integration between these markets.  

 

If, however, we see the Euronext integration as a private response to the European 

public policy for macro-economic and monetary convergence, then we can say that it 

indirectly impacted on the integration of the French, Belgium and Dutch stock 

markets.  This conclusion is in line with Kim et al. (2005): “financial integration is 

largely a self-fuelling process dependent on existing levels of financial sector 

development” (p.2500) 

7.8 Main Findings 

This chapter examines the impact of the Euronext integration on the stock market 

interactions. The main hypothesis tested is that Euronext has increased the integration 

of the French, Belgium and Dutch stock markets. This main hypothesis is broken 

down into three hypotheses: 1. Has Euronext created a long-run equilibrium between 

the stock markets? 2. Has Euronext integration intensified information channels 

between the stock markets? 3. Has Euronext increased the co-movements between the 

stock markets? 

 

The econometric methods used to test these hypotheses are derived from the 

literature. The JJ cointegration technique and the VEC models are used to assess long 

and short run relationship. The Granger causality framework is applied to assess the 

information channels. Finally, the BEKK-GARCH model is estimated to capture 
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time-varying correlation. The econometric design is robust as it is comprised of both a 

static model, the cointegration technique, and a dynamic model, the M-GARCH 

process is a dynamic model.   

 

The variables used are the log-prices and log-returns of the indices for the three 

Euronext stock markets. A control variable, the DAX30 German index, is used to 

account for the effect of EMU, as Germany is part of the Euro-zone but its main stock 

market is not a member of the Euronext.  

 

For the static model, the original sample is divided into three sub-periods: pre-

integration, integration and post-integration periods.  For the dynamic approach, the 

model is estimated only once for the whole period.  

 

The results of the cointegration analysis show that the Euronext indices have a long-

run equilibrium during the integration and post-integration periods, but not for the 

pre-integration periods. The system which includes the control variable exhibits 

different behaviour, with long-run equilibrium before and during the integration, but 

not post-integration. This indicates that Euronext integration has an impact on its 

members.  

 

The information channels have changed following Euronext integration, with the 

French and the Belgian indices having contemporary causality channels and leading 

the Dutch market.  

 

The empirical and the conditional correlations between the three Euronext indices and 

the German index, the control variable have increased. At the same time, the volatility 

of the conditional correlations has decreased. These results show an increase in 

integration between these markets. A Granger causality test shows, however, that 

EMU has Granger caused this integration. 

 

We therefore cannot conclude that Euronext has directly increased stock market 

integration. It is, however, part of a process of convergence, which includes public 

policies and private initiatives. In that sense, we can say that Euronext has indirectly 
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or partially impacted on the integration of the French, Belgian and Dutch stock 

markets.              

 

It is difficult to assess the impact of this market integration on the investors’ 

propensity to diversify their portfolio. However, cointegration and the increase of 

dynamic correlation in the post-integration periods might decrease the choice of 

equity for investors. This is may be truer when one looks at the dynamic correlation 

around major events, where co-movements between the indices increase sharply, 

leaving investors with fewer alternatives.         
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8 Conclusions and Further Research 

8.1 Research Context 

The aim of this study was to assess the consequences of the merger of Euronext on its 

original constituent markets: the French, Belgian, and Dutch equity markets. More 

specifically, it investigated whether the merger was beneficial to market participants.  

Two research objectives were stated: one, assessing the market efficiency before and 

after the integration and the other, assessing the level of integration of the markets. 

 

The research paradigm adopted in this thesis is a positivist research philosophy 

coupled with a deductive research approach. The literature review was therefore 

instrumental in the process of stating the hypotheses and building the econometric 

methodology.  

 

The data used in the study are the daily closing prices for the French, Belgian, and 

Dutch national indices, CAC40, BEL20 and AEX, for the period 01/01/1990-

10/12/2010. Two types of returns were computed for each index: the log-returns and 

the excess returns. The latter is calculated by deducting a proxy for the risk free rate, 

the one-month interbank rate, from the log-returns. Hence, the indices excess returns 

represent market premium rates. 

 

The original data set is divided in three sub-periods: the pre-integration period 

(01/01/1990-31/08/2000), the integration period (01/09/2000-30/10/2002), and the 

post-integration period (01/11/2002-10/12/2010). The period 2000-2002 includes the 

gradual integration of the three stock markets into Euronext.  

8.2 Review of the Main Findings 

Preliminary tests show that the log-prices of each index are integrated of order one, 

I(1), i.e. that the price levels have a unit root and the returns are stationary. These 

results are obtained using a robust procedure, the joint confirmation, which calls for 

the joint use of a unit root and a stationarity tests.  

 

Moreover, the log-returns and excess returns were tested for long memory behaviour. 

Three tests were used: the Hurst R/S range, the GPH and the Robinson’s procedure. 
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The results show no evidence of long memory in the returns. However, the returns’ 

volatility exhibits long memory patterns.  

 

Research objective 1:  

The first research objective was to test the information efficiency of the French, 

Belgian and Dutch exchanges before and after Euronext integration. Related to this 

research objective, the following hypothesis is tested:  ��: The French, Belgian and Dutch stock markets are more efficient following the 

Euronext merger. 

 

In order to test this hypothesis, the DGP of each market is identified for each sub-

period. The procedure to model the DGP is based on the iid residuals criterion. Three 

diagnostic tests are used: portmanteau Q-statistics, the Engle LM test and the BDS 

test.  

  

First, the DGP of the indices returns were estimated using linear models, from the 

family of random walks or more general ARMA class. However, the residuals did not 

pass the diagnostic tests.  

 

The long memory behaviour in the return volatility indicated the presence of non-

linearity in the variance. Seven GARCH models are considered to capture conditional 

volatility: a simple GARCH model, a GARCH in Mean (GARCH-M), a GARCH 

with Threshold (TARCH), a GARCH in Mean with Threshold (TARCH-M), an 

Exponential GARCH (EGARCH), a Component GARCH (CGARCH) and a 

Component GARCH with Threshold (AGARCH) model. The EGARCH, the TARCH 

and the AGARCH belong to the family of asymmetric GARCH, which allow for 

different treatment of positive and negative shocks, hence recognizing the leverage 

effect.      

 

All the return series were explained using stochastic nonlinear models of the ARMA-

GARCH class. All the models satisfy the Engle LM and the BDS tests, hence they 

exhibit iid residuals. However, the Q-statistics on the residuals for the models of the 

entire periods and the pre-integration periods indicate some elements of 
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autocorrelation in the mean equation. This might be caused by structural break in the 

mean equations.  

 

The models estimated are as follows: 

 
Period AEX log-

return 

AEX excess 

return 

BEL20 log-

return 

BEL20 excess 

return 

CAC40 log-

return 

CAC40 excess 

return 

Entire 

period 

MA(3) 

CGARCH(1,1) 

MA(3) 

CGARCH(1,1) 

AR(1) 

CGARCH (1, 1) 

AR(1) 

CGARCH (1, 1) 

MA(3) 

CGARCH(1, 1). 

MA(3) 

CGARCH(1, 1). 

Pre-

integration  

MA (3) 

ACGARCH (1, 1) 

MA (3) 

ACGARCH (1, 1) 

AR(1) 

CGARCH (1, 1) 

AR(1) 

CGARCH (1, 1) 

MA(1) 

ACGARCH(1, 1) 

MA(1) 

ACGARCH(1, 1) 

Integration  MA(5) 

 CGARCH(1, 1) 

MA(5) 

CGARCH(1, 1) 

AR(1) 

ACGARCH (1, 1) 

AR(1) 

ACGARCH (1, 1) 

MA(5) 

CGARCH(1, 1) 

MA(5) 

CGARCH(1, 1) 

Post-

integration 

MA(3) 

CGARCH (1, 1) 

MA(3) 

CGARCH (1, 1) 

MA(3) 

GARCH(1, 1)  

 MA(3) 

GARCH(1, 1)  

ARMA(1, 1) 

CGARCH (1, 1) 

ARMA(1, 1) 

CGARCH (1, 1) 

  

Interestingly, only one of the conditional variance models proposed for each series 

passes the iid hurdle, i.e. there was no competing model. Moreover, for each index, 

the models chosen are the same for the log- and the excess returns.  

 

In order to control for the impact of the introduction of the Euro, a dummy variable 

was included in the mean and the variance equations of each model. This variable was 

not significant for the Dutch and the French index, indicating no impact of the Euro 

on the DGP of the series. However, it was significant for the Belgian returns, but the 

small size of the dummy variable estimate indicated a very small impact.   

 

Therefore, the impact of the Euronext integration on the series efficiency is mild. The 

asymmetric behaviour of the conditional variance, i.e. the leverage effect, disappears 

after the integration for all the series. But all indices returns continue to exhibit 

volatility clustering after the integration, indicating therefore that the markets are not 

more information efficient following Euronext merger.   

 

Research objective 2: 

The second research objective is to assess the level of market integration between the 

three exchanges before and after the Euronext integration.  Multivariate time series 

econometrics techniques are used to research this objective. Additionally, in order to 

control for the effect of the introduction of the Euro, the German national DAX30 is 
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included in the analysis. Indeed, the German stock market is from a country of the 

Euro-zone, but it is not a member of the Euronext exchange.  

 

The following hypothesis is related to the second research: �	: Euronext has increased the integration of the French, Belgium and Dutch stock 

markets.  

 

As this hypothesis is broad, it is broken down into three achievable hypotheses: �	.�;  �	.	;  �	.�. The main findings for each hypothesis are presented below. 

  �	.�: Euronext integration has created long-run equilibrium between the French, 

Belgian and Dutch markets.  

 

Cointegration analysis is used to test �	,�. Two different cointegration techniques are 

used: the Engle Granger bivariate and the Johansen Juselius multivariate methods.  

 

At the 5% significance level, the results of the bivariate cointegration analysis does 

not show a clear increase in cointegration between the French, Belgian and the Dutch 

indices following the Euronext integration, as only the BEL20 and the CAC40 exhibit 

long-run equilibrium. Moreover, there is strong evidence against bivariate 

cointegration between the Euronext indices and the DAX30 index for the post-

integration period. This seems to indicate that the EMU has no excess impact on the 

relationship of the CAC40, BEL20 and AEX.  

 

The results for the multivariate cointegration analysis show cointegration between the 

three Euronext markets (system A) for the integration and post-integration period, but 

not for the pre-integration period. On the other hand, when including the control 

variable in the VAR (system B), there is evidence in favour of cointegration for the 

pre and integration period, but not for the post-integration period.  

 

Therefore, the results of the two cointegration analyses indicate a reinforcement of the 

long-run equilibrium between the three Euronext indices following the integration of 

the Euronext. The fact that the DAX30 index does not enter the cointegration 



195 

 

equations for the post-integration period indicates that this long-run equilibrium may 

be the result of the integration of the Euronext.  

      �	.	: Euronext integration has intensified information flows between the French, 

Belgian and Dutch markets. 

 

Hypothesis �	.	 is tested with the analysis of the temporal dependences between the 

markets. This analysis is performed in a bivariate and a multivariate environment. In 

the latter, it is possible to differentiate between the long-run causality, captured by the 

ECT of the VECM, and the short-run causality, identified with the µ	Wald test of 

exogeneity on the dependent variables in the VECM.  

    

 The bivariate Granger tests show that there is an increase in short-run causality 

between the three Euronext indices, as all three exhibit bi-directional causality 

channels after integration. At the same time, the number of causality channels with 

the German DAX30 decreases. The multivariate analysis shows the existence of a 

long-run causality between the Euronext indices (system A) after the integration, 

indicating that all three bear the brunt of adjustment to short-run disequilibrium.  

 

In terms of short-run causality for system A, i.e. the Euronext indices, the French and 

Belgian indices seem to play a leading role. During the integration period, the Belgian 

index leads the two other indices, and during the post-integration period the Belgian 

and the French indices present synchronous channels of communications and are both 

leading the Dutch market. It is worth noting that only these two indices are pairwise 

cointegrated at 5% during the post-integration period.  

 

Therefore, the integration of the Euronext has increased information flows between 

the three indices. The control variable presents a different behaviour, indicating that 

this increased in flow is not related to the introduction of the Euro.   

 �	.�: Euronext integration has increased the correlation between the French, Belgian 

and Dutch markets.       
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Estimation of the unconditional and conditional correlations between indices’ returns 

are used to test �	.�. Unconditional correlation measurements between the three 

Euronext indices’ returns have increased after the integration. However, the 

association between these indices and the DAX30, the control variable, has also 

increased.   

  

The conditional correlations between the four stock indices’ log-returns increase over 

time. Moreover, the coefficients of variation of the conditional correlation decreased 

over time. This indicates an increase in market’s co-movements.  

 

It is however not possible to attribute this increase in correlation directly to the 

integration of Euronext. The smallest unconditional correlations always involve 

Belgian returns. Moreover, the least volatile conditional correlations are measured 

between the French, Dutch and German indices’ log-returns. The pairs involving the 

Belgian market are the most volatile during the whole period and in each sub period. 

Finally, a Granger causality test between the conditional correlation and a Euro 

dummy variable shows that EMU has Granger caused the increase in conditional 

correlations.        

8.3 Conclusions 

A first conclusion from this thesis is that the markets were not information efficient 

after Euronext integration, as the national indices’ returns continue to exhibit 

volatility clustering in the post-integration period, especially during crises. For 

example, the volatility of the indices’ returns peaks during the 2007-2008 financial 

crisis. The presence of GARCH effect in the volatility of the returns violates the 

weak-efficiency form of EMH as the information included in the variance may be 

used to forecast future index price.  However, the fact that the leverage effects in the 

variance disappear after the merger can be seen as an efficiency improvement as then, 

the variance includes less information.   

 

A second conclusion is that financial integration has increased between the markets 

but it is difficult to attribute it exclusively to Euronext. According to the results from 

the cointegration analysis, Euronext merger has played a role in the financial 

integration of the three markets. But, the results from the conditional correlation 
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analysis do not provide the same evidence. We therefore cannot conclude that 

Euronext has directly increased the financial integration of the French, Belgian and 

Dutch stock markets. The merger is however part of a process of European 

convergence, which includes public policies and private initiatives. Each element of 

this process, the macro-economic convergence, the development of a common legal 

framework, the increase in exchange between European countries, the introduction of 

the Euro and the elimination of the exchange rate risk, is a factor pushing towards 

economic and financial integration. Euronext, by providing a common trading 

platform, is therefore a technological factor influencing integrated markets. As such, it 

can be interpreted that Euronext has indirectly or partially impacted on the integration 

of the French, Belgian and Dutch stock markets.              

  

A third conclusion comes from integrating the findings and examining them in view 

of the major political and economic events. It is interesting to note that during crisis 

periods, the prices of the indices decrease, the volatility and the conditional 

correlation of the indices’ returns increase. This situation may leave investors with 

fewer alternatives for portfolio diversification. Moreover, this pattern does not 

diminish in the post-integration period, indicating no change following Euronext 

integration. 

 

Hence, Euronext integration has provided some benefits to market participants: it has 

slightly improved the information efficiency of the markets and provided a wider 

market for investments. However, during crisis periods, the increased financial 

integration may limit the possibility for market participants to internationally diversify 

their portfolios.  

8.4 Limitations 

The first limitation of this study is related to the difficulty of exactly dating the 

integration of the Euronext, as it is a long and gradual process. Moreover, it coincides 

with the introduction of the common European currency in the Euro-zone countries. It 

is therefore difficult to fully disentangle the impacts of these two events on the 

Belgian, French and Dutch indices.  
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The second limitation is related to the data set. This study uses stock indices, 

assuming that they are acting as proxies for the markets researched. However, the 

AEX, BEL20 and CAC40 truly represent only certain categories of the stock listed in 

these markets, the blue-chip shares. Hence, using different indices, such as for 

example small-cap index, sector index or even specific stocks may yield different 

results for the univariate and multivariate analysis.    

 

Moreover, the national stock indices are also subject to survivorship bias. The study 

covers a 21-year period; hence the composition of each index has changed. However, 

because the indices’ calculation criteria have not been modified during this time 

period and the window span is large, the impact of these changes is extremely small.    

 

Finally, the study uses daily frequencies. Daily data include more information than 

longer frequency data (e.g. weekly or monthly), but also more noise. Hence, the data 

generating process of weekly or monthly data may be captured with less complex 

models in the univariate analysis. The multivariate analysis may also provide different 

results. 

 

8.5 Further Research 

The presence of GARCH effect in indices’ returns is a stylised fact in finance, well-

documented in the literature. The computation of the index, i.e. the aggregation of 

different share prices, may be causing or increasing this pattern. Hence, further 

research could focus on the impact of Euronext on sector indices or individual stocks. 

Also, it could investigate whether one can develop an investment strategy based on 

information included in the volatility of the returns that would yield systematic 

abnormal returns. In other words, are the other components of the French, Belgian and 

Dutch markets also information inefficient and is this lack of efficiency sufficient to 

generate economic profit?           

 

The integrated results from chapter six and seven show that, during crises, the price 

levels of indices decrease, the conditional volatilities of the indices’ returns increase 

as well as their conditional correlations. This situation may be problematic for 

investors who face an environment of falling prices and no alternative for 
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diversification. This study does not address directly the problem of portfolio 

diversification or market contagion. Hence, further study could go in two different 

directions. First, it could assess the impact of the Euronext integration on 

diversification. In the literature, there is evidence of a shift from geographical 

diversification towards sector diversification. Therefore, a study including sector 

indices or hand-picked stocks from different sectors may address this question. 

Second, the problem of contagion induced by market integration could be addressed. 

Indeed, does this wider integration increase the systemic risk?  

 

Moreover, the impact of the integration of Euronext could be also researched with a 

different econometric methodology. Time-domain instruments are the most popular in 

finance research. However, frequency-domain econometrics could be used. For 

example, wavelet analysis can help understand the DGP of a series by decomposing it 

into different cycles and measuring the intensity of each cycle at different times. 

Likewise, cross-wavelet analysis examines the relationship between variables by 

comparing their cycles and intensity. Another interesting econometric approach is the 

Singular Spectrum Analysis (SSA) which is essentially a non-parametric procedure, 

hence it addresses the problems of outliers and probability laws. SSA instruments can 

be used for both univariate and multivariate analysis.  

 

Finally, it could be interesting to research the impact of the 2007 merger of Euronext 

with the largest exchange in the world, the New York Stock Exchange. However, 

another methodological issue may arise then as the merger was directly followed by 

the economic crisis of 2007/2008, which heavily affected stock markets and the 

financial world overall.   
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10 Appendix 

 
 
In this section, the following documents are presented: 

 

Appendix 1: Market indicators (related to chapter one, Introduction) 

 

Appendix 2: Box plots for excess return series (related to chapter four, Methodology) 

 

Appendix 3: Dot plots for excess returns series (related to chapter four, Methodology) 

 

Appendix 4: BDS test for pure random walk as DGP (related to chapter six, Data 

Generating Process) 

 

Appendix 5: BDS test for ARMA process as DGP (related to chapter six, Data 

Generating Process) 

 

Appendix 6: ARMA-GARCH for entire period including dummy for Euro (related to 

chapter six, Data Generating Process) 

 

Appendix 7: Information criteria and model selection (related to chapter five, 

Descriptive Statistics and Univariate Analysis, chapter six, Data Generating Process 

and chapter 7, Multivariate Analysis).   
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10.2 Appendix 2: Box plots for excess returns 

 

 

10.3 Appendix 3: Dot plots for excess returns 
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10.4 Appendix 4: BDS test for pure random walk as DGP 

  

Variable AEX log- 
return 

AEX excess 
return 

BEL20 log- 
return 

BEL20 
excess 
return 

CAC40 log- 
return 

CAC40 
excess 
return 

Entire period 
BDS m=2* 0.026921 

(0.001339) 
0.026850 
(0.001339) 

0.0.5862 
(0.001363) 

0.035806 
(0.001362) 

0.014044 
(0.001201) 

0.013968 
(0.001201) 

BDS m=3* 0.056490 
(0.002131) 

0.056356 
(0.002130) 

0.067909 
(0.002163) 

0.067784 
(0.002161) 

0.030971 
(0.001904) 

0.030841 
(0.001903) 

BDS m=4* 0.079960 
(0.002541) 

0.079780 
(0.002540) 

0.092883 
(0.002572) 

0.092703 
(0.002570) 

0.044970 
(0.002260) 

0.044803 
(0.002259) 

BDS M=5* 0.095200 
(0.002652) 

0.094998 
(0.002651) 

0.108650 
(0.002678) 

0.108413 
(0.002675) 

0.053179 
(0.002349) 

0.052987 
(0.002348) 

Pre-integration period 
BDS m=2* 0.022881 

(0.001755) 
0.022811 
(0.001754) 

0.029018 
(0.001835) 

0.028943 
(0.001832) 

0.008587 
(0.001527) 

0.008539 
(0.001526) 

BDS m=3* 0.046388 
(0.002788) 

0.046265 
(0.002785) 

0.053536 
(0.002915) 

0.053359 
(0.002910) 

0.016428 
(0.002418) 

0.016416 
(0.002417) 

BDS m=4* 0.062740 
(0.003318) 

0.062557 
(0.003315) 

0.072503 
(0.003469) 

0.072280 
(0.003464) 

0.022740 
(0.002869) 

0.022704 
(0.002867) 

BDS M=5* 0.073937 
(0.003457) 

0.073686 
(0.003454) 

0.083522 
(0.003614) 

0.083255 
(0.003609) 

0.06288 
(0.002980) 

0.026274 
(0.002977) 

Integration  period 
BDS m=2* 0.027694 

(0.004208) 
0.027628 
(0.004210) 

0.037799 
(0.004439) 

0.037761 
(0.004439) 

0.011566 
(0.003625) 

0.011573 
(0.003625) 

BDS m=3* 0.064507 
(0.006709) 

0.064454 
(0.006711) 

0.077397 
(0.007071) 

0.077388 
(0.007071) 

0.030762 
(0.005751) 

0.030864 
(0.005752) 

BDS m=4* 0.103429 
(0.008018) 

0.103440 
(0.008018) 

0.113304 
(0.008442) 

0.113345 
(0.008441) 

0.051817 
(0.006838) 

0.051942 
(0.006840) 

BDS M=5* 0.132260 
(0.008387) 

0.132337 
(0.008387) 

0.141255 
(0.008823) 

0.141315 
(0.008822) 

0.067187 
(0.007116) 

0.067328 
(0.007119) 

Post-integration period 
BDS m=2* 0.015488 

(0.002068) 
0.021516 
(0.002186) 

0.034778 
(0.002139) 

0.034425 
(0.002149) 

0.016293 
(0.002055) 

0.016238 
(0.002056) 

BDS m=3* 0.038194 
(0.003280) 

0.48567 
(0.003477) 

0.068638 
(0.003402) 

0.068348 
(0.003416) 

0.038142 
(0.003263) 

0.038076 
(0.003263) 

BDS m=4* 0.058461 
(0.003898) 

0.072939 
(0.004145) 

0.096266 
(0.004053) 

0.096135 
(0.004070) 

0.057601 
(0.003883) 

0.057534 
(0.003883) 

BDS M=5* 0.070545 
(0.004056) 

0.088872 
(0.004326) 

0.114307 
(0.004228) 

0.114194 
(0.004245) 

0.071005 
(0.004044) 

0.070924 
(0.004044) 

BDS Statistics (Standard error in parenthesis). All estimates are significant at 1%.  
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10.5 Appendix 5: BDS test for ARMA process as DGP 

 
 
Variable AEX log- 

return 
AEX excess 

return 
BEL20 log- 

return 
BEL20 
excess 
return 

CAC40 log- 
return 

CAC40 
excess 
return 

Entire period 
BDS m=2* 0.026887 

(0.001343) 
0.026826 
(0.001343) 

0.035861 
(0.001363) 

0.035805 
(0.001362) 

0.014184 
(0.001196) 

0.014131 
(0.001195) 

BDS m=3* 0.056696 
(0.002137) 

0.056573 
(0.002136) 

0.067907 
(0.002163) 

0.067783 
(0.002161) 

0.030797 
(0.001895) 

0.030698 
(0.001894) 

BDS m=4* 0.080108 
(0.002548) 

0.079964 
(0.002547) 

0.092880 
0.002572) 

0.92702 
(0.002675) 

0.044634 
(0.002251) 

0.044494 
(0.002249) 

BDS M=5* 0.095201 
(0.002659) 

0.095055 
(0.002658) 

0.108647 
(0.002678) 

0.108411 
(0.002675) 

0.052755 
(0.002339) 

0.052591 
(0.002338) 

Pre-integration period 
BDS m=2* 0.022325 

(0.001756) 
0.022256 
(0.001755) 

0.022256 
(0.001755) 

0.028947 
(0.001832) 

0.088613 
(0.001527) 

0.008569 
(0.001526) 

BDS m=3* 0.045605 
(0.002789) 

0.045460 
(0.002786) 

0.045460 
(0.002786) 

0.053363 
(0.002910) 

0.016361 
(0.0022668) 

0.016355 
(0.002416) 

BDS m=4* 0.061717 
(0.003320) 

0.061502 
(0.003316) 

0.061502 
(0.003316) 

0.072284 
(0.003464) 

0.022668 
(0.002869) 

0.088636 
(0.002867) 

BDS M=5* 0.072879 
(0.003458) 

0.072637 
(0.003454) 

0.072637 
(0.003454) 

0.083258 
(0.003609) 

0.026192 
(0.002980) 

0.026177 
(0.002977) 

Integration  period 
BDS m=2* 0.027018 

(0.004141) 
0.027024 
(0.004141) 

0.037749 
(0.004439) 

0.037773 
(0.004440) 

0.011362 
(0.003569) 

0.011292 
(0.003569) 

BDS m=3* 0.62820 
(0.006598) 

0.062894 
(0.006597) 

0.077366 
(0.007070) 

0.077334 
(0.007071) 

0.029780 
(0.005682) 

0.029672 
(0.005682) 

BDS m=4* 0.101257 
(0.007879) 

0.101317 
(0.007877) 

0.113241 
(0.008441) 

0.113182 
(0.008443) 

0.050874 
(0.006776) 

0.050821 
(0.006780) 

BDS M=5* 0.130200 
(0.008237) 

0.130295 
(0.008233) 

0.141183 
(0.008822) 

0.141157 
(0.008824) 

0.066521 
(0.007078) 

0.066492 
(0.007080) 

Post-integration period 
BDS m=2* 0.021599 

(0.002181) 
0.021516 
(0.002186) 

0.033886 
(0.002151) 

0.033914 
(0.002151) 

0.016121 
(0.002057) 

0.016093 
(0.002058) 

BDS m=3* 0.048863 
(0.003468) 

0.48567 
(0.003477) 

0.067575 
(0.003420) 

0.067611 
(0.003420) 

0.038991 
(0.003265) 

0.038949 
(0.003265) 

BDS m=4* 0.073468 
(0.004133) 

0.072939 
(0.004145) 

0.095472 
(0.004076) 

0.095523 
(0.004076) 

0.059074 
(0.003883) 

0.059032 
(0.003884) 

BDS M=5* 0.089321 
(0.004312) 

0.088872 
(0.004326) 

0.113676 
(0.004252) 

0.113717 
(0.004251) 

0.072678 
(0.004042) 

0.072615 
(0.004043) 

BDS Statistics (Standard error in parenthesis). All estimates are significant at 1%.  
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10.6 Appendix 6: ARMA-GARCH for entire period including dummy for Euro 

 
 
Variable AEX log-  

return 

AEX excess 

return 

BEL20 log- 

return 

BEL20 

excess 

return 

CAC40 log- 

return 

CAC40 

excess 

return �P 0.000692*** 
(0.000154) 

0.000468*** 
(0.000154) 

0.000202 
(0.000133) 

-0.000035 
(0.000134) 

0.000306 
(0.000205) 

-0.00005 
(0.000205) 

Dummy -0.000148 
(0.000229) 

-0.0000268 
(0.000230) 

0.000271 
(0.000199) 

0.000396** 
(0.000200) 

0.000254 
(0.000272) 

0.000403 
(0.000272) �� -0.017118 

(0.013175) 
-0.016646 
(0.013175)) 

0.060924*** 
(0.013765) 

0.062272*** 
(0.013762) 

-0.037604*** 
(0.013594) 

-0.037182*** 
(0.013598) a� -0.011845 

(0.009742) 
-0.011846 
(0.009763) 

0.060075*** 
(0.022290) 

0.059700*** 
(0.022219) 

-0.057980*** 
(0.015702) 

-0.058163*** 
(0.015685) �� -0.901715*** 

(0.093644) 
-0.901228*** 
(0.0945241) 

-0.520214** 
(0.217974) 

-0.522217** 
(0.218110) 

0.174114 
(0.335423) 

0.167698 
(0.335428) aP 0.000149*** 

(0.0000513) 
0.000149*** 
(0.0000514) 

0.000128*** 
(0.0000481) 

0.000128*** 
(0.0000476) 

0.000220*** 
(0.000047) 

0.000220*** 
(0.000047) � 0.990483*** 

(0.004158) 
0.990518*** 
(0.004145) 

0.986251*** 
(0.006154) 

0.986226*** 
(0.006130) 

0.984700*** 
(0.004879) 

0.984724*** 
(0.004871) � 0.093624*** 

(0.007979) 
0.093310*** 
(0.007954) 

0.127280*** 
(0.012171) 

0.122888*** 
(0.021227) 

0.090948*** 
(0.008842) 

0.090760*** 
(0.008830) 

Dummy 0.0000003 
(0.0000003) 

0.0000005 
0.0000006 

0.0000007** 
(0.0000003) 

0.0000007** 
(0.0000003) 

-0.0000005 
(0.0000004) 

-0.0000005 
(0.0000004) 

* significance at 10%, ** significance at 5%, *** significance at 1% 

 
 

10.7  Appendix 7:  Information criteria and model selection 

 
Information criteria are measurements that can be used to choose among competing 

models. The most basic criterion that can be used to select a model is the coefficient 

of determination,_	, which is given by the ratio of the explained sum of squares to the 

total sum of squares: 

 _	 � ¶eeéee � 1 � êeeéee        (10.1) 

 

The value of the coefficient lies between 0 and 1, and the closer it is to 1, the better is 

the fit. There is however some problems related to this measurement of goodness of 

fit, the most important being that _	cannot fall when more variables are added to the 

model: “of course, adding more variables to the model may increase _	 but it may 

also increase the variance of forecast error” (Gujarati, 2003, p. 537). 

 

Hence, information criteria including a penalty factor for adding extra variables 

should be used when selecting a model. Two popular measurements are the Akaike 

Information Criteria (AIC) and the Schwarz Bayesian Information Criteria (BIC).  
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The AIC is given by the following equation: 

 Ç$6 � U	l/B ∑ C�DB � U	l/B êeeB        (10.2) 

 

where ¬ is the number of regressors (including the intercept), # is the number of 

observations. For convenience, the equation is converted in logarithm: 

 ln Ç$6 � :	lB = � ln :êeeB =       (10.3) 

 

where ln Ç$6 is the natural log of AIC, !2¬/#" is the penalty factor. In comparing two 

models, the lowest value of AIC is preferred.  

 

The BIC is defined as: 

 É$6 � #l/B ∑ C�DB � #l/B êeeB        (10.4) 

 

The log-form is given by:  

 ln É$6 � lB ln # � ln :êeeB =       (10.5) 

 

where the expression g:lB= ln #p is the penalty factor. As for the AIC, the model with 

the lowest value of BIC is preferred.   

 

The two information criteria are therefore similar in the sense that they prefer a model 

that will minimize the residual sum of squares, gln :êeeB =p. However, the penalty factor 

for adding extra variable to the model imposed by the BIC,  g:lB= ln #p, is harsher than 

the penalty factor for AIC, !2¬/#". Hence the BIC should help choosing the most 

parsimonious model. In this thesis, the BIC is adopted.  

 

In EVIEWS7, the BIC is computed as:  
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 ln É$6 � �2:� Ys = � ¬ Ys ln Y      (10.6) 

 

where � is the log of the likelihood function, ¬ is the number of parameters estimated 

and Y is the number of observations.  

 

 


