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ABSTRACT 

In the classical laminate plate theory for composite materials, it is assumed that the 

laminate is thin compared to its lateral dimensions and straight lines normal to the 

middle surface remain straight and normal to the surface after deformation. As a result, 

the induced twist which is due to the transverse shear stresses and strains are neglected. 

Also, this induced twist was considered as an unwanted displacement and hence was 

ignored. However, in certain cases this induced twist would not be redundant and can be 

a useful displacement to control the behaviour of the composite structure passively. In 

order to use this induced twist, there is a need for a modified model to predict the 

behaviour of laminated composites. A composite normally consists of two materials; 

matrix and fibres. Fibres can be embedded in different orientations in composite lay-

ups. In this research, laminated composite models subject to transfer shear effect are 

studied. A semi analytical model based on Newton-Kantorovich-Quadrature Method is 

proposed. The presented model can estimate the induced twist displacement accurately. 

Unlike other semi analytical model, the new model is able to solve out of plane loads as 

well as in plane loads. It is important to mention that the constitutive equations of the 

composite materials (and as a result the induced twist) are determined by the orientation 

of fibres in laminae. The orientation of composite fibres can be optimised for specific 

load cases, such as longitudinal and in-plane loading. However, the methodologies 

utilised in these studies cannot be used for general analysis such as out of plane loading 

problems. This research presents a model whereby the thickness of laminated composite 

plates is minimised (for a desirable twist angle) by optimising the fibre orientations for 

different load cases. In the proposed model, the effect of transverse shear is considered. 

Simulated annealing (SA), which is a type of stochastic optimisation method, is used to 

search for the optimal design. This optimisation algorithm is not based on the starting 

point and it can escape from the local optimum points. In accordance with the annealing 

process where temperature decreases gradually, this algorithm converges to the global 

minimum. In this research, the Tsai-Wu failure criterion for composite laminate is 

chosen which is operationally simple and readily amenable to computational 

procedures. In addition, this criterion shows the difference between tensile and 

compressive strengths, through its linear terms. The numerical results are obtained and 

compared to the experimental data to validate the methodology. It is shown that there is 

a good agreement between finite element and experimental results. Also, results of the 

proposed simulated annealing optimisation model are compared to the outcomes from 

previous research with specific loading where the validity of the model is investigated. 
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1.1 Introduction  

A structural composite is a material system consisting of two or more constituent 

materials with significantly different properties which remain separate within the final 

structure or product. The mechanical performance and properties of them are designed 

to be superior to those of the constituent materials acting independently. One of them 

which is called reinforcement is usually stiffer and stronger. The less stiff and weaker 

part is called the matrix which bond the reinforcement together, as it is shown in Figure 

(1.1) (Daniel and Ishai 2006).  

 

 

 

Figure1.1 Phase of a composite material (Daniel and Ishai 2006) 

 

Conventional materials can be classified into three general categories: metals, 

polymers and ceramics. Composites are combinations of two or more materials from 

one or more of these categories. In the Stone Age primitive man relied primarily on 

ceramics (stone) for tools and weapons and on natural polymers and composites (wood). 

The use of metals began with gold and was preceded with copper, bronze, and iron. 

Metals, especially steel and aluminium became dominant starting in the last century and 

continue to the present. A new trend is currently taking place presently where polymers, 

ceramics, and composites are increasing in relative importance. Whereas, in the early 

years man used natural forms of these materials, the newer developments and 

applications emphasise man-made or engineered materials (Astrom 1992).  
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Fibres normally have a very high length-to-diameter ratio. Short fibres, called 

whiskers, exhibit better structural properties than long fibres. To gain full understanding 

of the behaviour of the fibres, matrix materials and other properties of fibre-reinforced 

materials, it is necessary to know certain aspects of material science. Since the present 

study is entirely devoted to mechanics aspects and analytical methods of fibre-

reinforced composite materials in macroscopic scale, no attempt is made here to present 

some aspects such as the molecular structure or inter-atomic forces that hold the matter 

together. (Reddy 2004) 

Below is an explanation of some basic material definitions which are used frequently 

in this research:  

 

Homogeneity: A material is called homogeneous if its properties are the same at every 

point or are independent of location. The concept of homogeneity is associated with a 

scale or characteristic volume and the definition of the properties involved. Depending 

on the scale or volume observed, the material can be more homogeneous or less 

homogeneous. If the variability from point to point on a macroscopic scale is low, the 

material is referred to as quasi-homogeneous (Daniel and Ishai 2006). 

 

Heterogeneity/ Inhomogeneity: A material is heterogeneous or inhomogeneous if its 

properties vary from point to point, or depend on location. As in the case above, the 

concept of heterogeneity is associated with a scale or characteristic volume. As this 

scale decreases, the same material can be regarded homogeneous, quasi-homogeneous, 

or heterogeneous.  

 

Isotropy: Many material properties, such as stiffness, strength, thermal expansion, 

thermal conductivity, and permeability are associated with a direction or axis (vectorial 

or tensorial quantities). A material is isotropic when its properties are the same in all 

directions or are independent of the orientation of reference axes. 

 

Anisotropy/Orthotropy: A material is anisotropic when its properties at a point vary 

with direction or depend on the orientation of reference axes. If the properties of the 

material along any direction are the same as along a symmetric direction with respect to 

a plane, then that plane is defined as a plane of material symmetry. A material may have 

zero, one, two, three, or an infinite number of planes of material symmetry through a 
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point. General anisotropic materials have no planes or symmetry. Isotropic materials are 

the opposite of anisotropic materials. It means isotropic materials have an infinite 

number of planes of symmetry. A special type of anisotropic composite material is one 

that has at least three mutually perpendicular planes of symmetry. The intersections of 

these planes define three mutually perpendicular axes, called principal axes of material 

symmetry or simply principal material axes.  

 

Lamina and laminate characteristic: A lamina, or ply, is a plane (or curved) layer of 

unidirectional fibres or woven fabric in a matrix. In the case of unidirectional fibres, it is 

also referred to as unidirectional lamina (UD). The lamina is an orthotropic material 

with principal material axes in the direction of the fibres (longitudinal), normal to the 

fibres in the plane of the laminate (in-plane transverse), and normal to the plane of the 

lamina. These principal axes are designated as 1, 2, and 3 or (X, Y, Z) respectively. In 

the case of a woven fabric composite the warp and the fill directions are the in-plane l 

and 2 principal directions, respectively. A laminate is made up of two or more 

unidirectional laminae or plies stacked together at various orientations. The laminae (or 

plies, or layers) can be of various thicknesses and consist of different materials. Since 

the orientation of the principal material axes varies from ply to ply, it is more 

convenient to analyse laminates using a common fixed system of coordinates (X, Y, Z) 

as shown in Figure (1.2) The orientation of a ply is given by the angle between the 

reference x-axis and the major principal material axis (fibre orientation or warp 

direction) of the ply, measured in a anticlockwise direction on the x-y plane (Daniel and 

Ishai 2006).  

 

Figure 1.2 Coordinate system 
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1.1.1 Smart Materials 

Active (smart) materials are a class of materials that have the potential and ability to 

change mechanical force and motion into other forms of energy. Unlike a simple 

transducer, many of these materials are capable of transforming energy from one type to 

another.  For example, from heating to deformation or deformation to electricity or 

motion and mechanical motion into energy, which can provide so many new and 

creative sensing and actuation possibilities in the applications such as wireless ID tags 

and remote sensors. They also can be used for inventing novel instruments and 

structures which are lighter and more accurate compared to current ones (Khandan et al. 

2009).  For example, the conventional use of measurement instrumentations is often 

obtrusive and interfering with the normal act of the structure or machine. These types of 

measurements more likely need further instrumented locations to ensure robust, 

adaptive and repeatable sensing capabilities which are hard to adapt with the original 

structure or machine. Active materials have been used in these situations to improve the 

behaviour of the structure by allowing actuation and sensing to become fully integrated 

into a structure or machine tool in an unobtrusive manner. Active materials can exhibit 

piezoelectric or magnetostrictive effects. Shape memory alloys (SMA), ionic polymers 

and electrorheological (ER) fluids are types of active materials. Generally some 

advantages of using smart materials in devices are their compactness, higher operating 

frequency, low-power consumption, ease of integration into critical structural areas and 

low-weight (Park, et al. 2007; Khandan, et al. 2009). Anisotropic composite materials 

have the potential to be added to this category as elastic-coupling, warping and twist of 

these materials can potentially be used to control the behaviour of the structure 

passively. 

 

1.1.2 Composite Materials 

Figure (1.3) shows the recent English language refereed journal publications related 

to multifunctional materials and structures (Gibson 2010). The increased interest in 

multifunctional materials and structures is driven by the need for the development of 

new materials and structures that simultaneously perform multiple structural functions 

or combine non-structural and structural functions. It is also shows the application of 

composite materials is increasing exponentially.   
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Figure 1.3 Recent English language refereed journal publications related to multifunctional 

materials and structures (Gibson 2010) 

 

 

In the Figure (1.4) the type and classification of composite materials is shown. This 

research focuses on multidirectional continuous fibre composites as the fibre direction 

can be controlled and optimised.  In the other composite types fibre direction cannot be 

utilised as it does not exist (unidirectional orientation) or it is not predictable (random 

fibre orientations).  
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Figure 1.4 Classification of composite material systems (Daniel and Ishai 2006). 

 

1.1.3 Composite Modelling 

Composites can be analysed from a micro or macro mechanical point of view. When 

viewed on the scale of fibre dimensions, composites have the advantage of high- 

stiffness and high-strength fibres. The usually low fracture toughness of the fibre is 

enhanced by the matrix ductility and the energy dissipation at the fibre/matrix interface. 

The stress transfer capability of the matrix enables the development of multiple-site and 

multiple-path failure mechanisms. On the other hand, the fibres exhibit a relatively high 

scatter in strength. Local stress concentrations around the fibres reduce the transverse 

tensile strength appreciably. Conventional materials are more sensitive to their 

microstructure and local irregularities that influence the brittle or ductile behaviour of 

the material. Their homogeneity makes them more susceptible to flaw growth under 

long-term cyclic loading (Daniel and Ishai 2006). However, in this research we are 

looking at the modelling of composite materials in macro mechanical point of view. 
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In macro mechanical analysis, where the material is treated as quasi-homogeneous, 

its anisotropy can be used to its advantage. The average material behaviour can be 

controlled or predicted from the properties of the constituents. However, the anisotropic 

analysis is more complex and more dependent on the computational procedures. On the 

other hand, the analysis for conventional materials is much simpler due to their isotropy 

and homogeneity. The analysis of composite structures requires the input of average 

material characteristics. These properties can be predicted on the basis of the properties 

and arrangement of the constituents. However, experimental verification of analysis or 

independent characterisation requires a comprehensive test program for determination 

of a large number (more than ten) of basic material parameters. On the other hand, in 

the case of conventional isotropic materials, mechanical characterisation is simple, as 

only two elastic constants and two strength parameters suffice. 

In order to analyse and understand stress and the nature of stress concentration in 

composite laminates, the three-dimensional (3D) stress and elasticity boundary value 

problem must be solved. This problem involves a series of coupled equations. 

Unfortunately, exact solutions to this problem are, as yet, unavailable. Therefore, 

various researchers have presented a variety of approximate models to calculate the 

transverse/interlaminar stresses (Kant and Swaminathan 2000).  

It is important to note that in most laminated composite models the laminate is 

considered to be sufficiently long. Thus, the effect of the boundary conditions, loading 

points in other locations of the laminated plate can be neglected. This is one of the 

assumptions normally considered in laminated composite formulation to simplify the 

model. The same assumption was considered by Wang and Choi (Wang and Choi 

1982a; Wang and Choi 1982b; Wang and Choi 1983). An appropriate and accurate 

formula for interlaminar stress analysis of laminated composites must consider the 

continuity conditions and transverse shear effect for interlaminar stresses and 

displacements on the composite interface. It is also desirable if the formulation and 

equations are variationally consistent so that they can be used for finite element 

methods (FEM). Lu and Liu (1990) developed an interlaminar shear stress continuity 

theory to prove the importance of these points. The model was developed by 

considering the mentioned conditions and deriving the interlaminar shear stress could 

not be directly estimated from the constitutive equations. However, the interlaminar 
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normal stress directly from the constitutive equations as deformation in the thickness 

direction was neglected.  

Study in this field is still continuing. A comprehensive review of methods of 

modelling laminated composites is presented in Chapter 2.   

 

1.1.4 Composite Structures 

Analysing and modelling of composite structures can be very complicated. In order 

to be able to analyse the behaviour of these structures, we need to break them down to 

simpler parts such as a beam and plate. In this research we focus on investigating 

laminated composite plates. Plates are an important part of any complex structure and 

developing those help to improve the whole composite applications and structures. 

Analysing the composite plates is the first step towards understanding and modelling 

more complicated composite structures and products. 

Laminated plate models are vital to provide an accurate evaluation of laminated 

composite plates. Numerous laminated plate theories have been developed and proposed 

in different literatures (Zhang and Yang 2009). A review of various equivalent single 

layer and layerwise laminated plate theories was presented by Reddy and Robbins 

(1994). A study of laminated theories and models based on a displacement hypothesis is 

presented by Liu and Li (1996) that includes shear deformation and layerwise theories. 

An overall review of models for laminated and sandwich plates is presented by 

Altenbach (1998). Similar work investigating displacement and stress-based refined 

shear deformation theories of anisotropic and isotropic laminated plate is presented by 

Ghugal and Shimpi (2001). In this work various equivalent single layer and layerwise 

theories were discussed. A historical study of approaches to model multi-layered plates 

and shells up to 2003 is presented by Carrera (2003). Also, a review of shear 

deformation plate and shell models is explored by Reddy and Arciniega (2004). A 

survey of the theories focused on estimation of transverse/interlaminar stresses in 

laminated composites is given by Kant and Swaminathan (2000), and a selective 

literature survey on the free-edge effect since 1967 is presented by Mittelstedk and 

Becker (2004). 

None of the previous work studies general and out of plane loads by considering the 

transverse shear effect, warping and twist behaviour of the laminated composite plate. 
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In this research the transverse shear effect for laminated composite plate under general 

loads is considered.  

 

1.1.5 Optimisation in Composites 

The advantage of composite materials is that they provide excellent mechanical 

properties. However, in order to use this advantage, the optimisation of size and shape 

and the proper placement of fibres within the material are essential. This potentially 

gives a good opportunity to tailor the material properties. However, it increases the 

complexity of the design problem. This complexity exists, not only because of 

numerous design variables, but also because of having variable-dimensional and 

multimodal optimisation problem costly derivatives (Ghiasi et al. 2009).  

Optimum strength designs of continuous fibre-reinforced composite laminates have 

been used since the early days of these materials. The first research to investigate the 

fibre orientation of a unidirectional lamina yielding maximum strength under in-plane 

stress conditions has been carried out by Sandhu and Brandmaier (1969). Brandmaier 

found that the strength of a unidirectional lamina under in-plane stresses could be 

maximised analytically with respect to the fibre orientation (Brandmaier 1970). The 

results based upon Tsai-Hill failure criterion indicated that the optimum fibre 

orientation depended upon the stress state and the relative value of the transverse and in-

plane shear strengths of the lamina. When the strength of a multidirectional composite 

laminate is to be maximised, more complicated and explicit optimisation techniques are 

needed (Wang and Karihaloo 1999). Chao et al. (1975) were the pioneers that sought 

the optimum strength design of multidirectional laminates using a search technique. 

Subsequently, many studies have been devoted to the optimum strength design of 

multidirectional laminate. Among these are the works by Park (1982), Fukunaga and 

Chou (1988), Miravete (1989), Fukunaga and Vanderplaats (1991), Haftka and Gurdal 

(1992), Gurdal et al. (1999), Spallino et al. (1999), Weaver (2002), Chattopadhyay et al. 

(1999), Luersen and Le Riche (2004) and Ghiasi et al. (2008).  

Previous studies have shown that composite fibre angles can be optimised by 

different optimisation methods for specific load cases such as longitudinal or in-plane 

loading (Fukunaga and Vanderplaats 1991; Wang and Karihaloo 1996; Tabakov and 

Walker 2007; Akbulut and Sonmez 2008). 
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In this work, a stochastic optimisation method is used to optimise the orientation of 

fibres in laminated composites by considering different loadings and the transverse 

shear effect. 

 

1.2. Applications 

Composites are used in a very wide range of applications. They include aerospace, 

aircraft, automotive, marine, energy, infrastructure, armour, biomedical, and 

recreational (sports) applications. It is expected that the outcome of this research has the 

potential to be applied in these applications.  

Aerospace structures, such as space antennae, mirrors, and optical instrumentation, 

make use of lightweight and extremely stiff graphite composites. A very high degree of 

dimensional stability under severe environmental conditions can be achieved because 

these composites can be designed to have nearly zero coefficients of thermal expansion.   

The high-stiffness, high-strength, and low-density characteristics make composites 

highly desirable in primary and secondary structures of both military and civilian 

aircraft.  The Boeing 777, for example, uses composites in fairings, floor beams, wing 

trailing edge surfaces, and the empennage (Figures 1.5 and 1.6) (Mabson et al 2001). 

The strongest sign of acceptance of composites in civil aviation is their use in the new 

Boeing 787 "Dreamliner" and the worlds largest airliner, the Airbus A380 (Figure 1.7). 

Composite materials, such as carbon/epoxy and graphite/titanium, account for 

approximately 50% of the weight of the Boeing 777, including most of the fuselage and 

wings. Besides the advantages of durability and reduced maintenance, composites 

afford the possibility of embedding sensors for on-board health monitoring (Daniel and 

Ishai 2006).  
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Figure 1.5 Boeing 777 (Mabson et al 2001) 

 

 

Figure 1.6 Diagram illustrating usage of composite materials in various components of the Boeing 

777aircraft (Mabson et al 2001) 
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Figure 1.7 Airbus A380 (Daniel and Ishai 2006) 

 

In the energy production field, carbon fibre composites have been used in the blades 

of wind turbine generators that significantly improve power output at a greatly reduced 

cost (Figure 1.8). In offshore oil drilling installations, composites are used in drilling 

risers like the one installed in the field in 2001 (Daniel and Ishai 2006).  
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Figure 1.8 Composite wind turbine blade used for energy production (Daniel and Ishai 2006). 

 

One of the wide applications of laminated composite is in biomedical devices. One 

application could be in the design of prosthetic feet. The desire of individuals with a 

lower-limb amputation to participate in sports and the high demands of athletics, have 

resulted in the development of composite prosthetics which are capable of storing 

energy during stance and returning it to the individual in late stance to assist in forward 

propulsion.  However, the static and dynamic characteristics (natural frequencies, mode 

shapes and damping) of them depends on materials properties. As it was mentioned 

earlier the fibre orientation can be used as a design parameter to control and improve the 

behaviour of them. The evaluation of such parameters is urgently required when the use 

of energy-storing-and-returning (ESR) feet have been investigated through legal and 

justice systems to determine participation of amputee athletes using them at the 

Olympic Games (Noroozi et al. 2012). The research in this area is continuing. The two 

types of prosthetic which are investigated at Bournemouth University are shown in 

Figure (1.9). (Noroozi et al. 2012) 
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Figure 1.9 A) Mass spring typical system B) Runner C) equivalent system D) mass over an Elite 

Blades E) an example of Elite Blades (Noroozi et al. 2012) 

 

Composites are used in various forms in the transportation industry, including 

automotive parts and automobile, truck, and railcar frames. Also ship structures 

incorporate composites in various forms, thick-section glass and carbon fibre 

composites and sandwich construction. The latter consists of thin composite sheets 

bonded to a thicker lightweight core. Applications include minesweepers and corvettes 

(Figure 1.10). Composite ship structures have many advantages such as insulation, 

lower manufacturing cost, low maintenance, and lack of corrosion (Daniel and Ishai 

2006). A composite panel representative of a boat’s hull structure is instrumented and 

calibrated to function as a complex load cell capable of measuring external normal loads 

which is shown in Figure (1.11). The panel is divided into 16 patches and 12 loading 

positions are picked to be loaded utilising weights. Generated superimposed data from 

these readings are used to train an Artificial Neural Network. Preliminary results from 

static loading of a composite panel indicate very promising results with a very low error 

margin (Ramazani et al. 2012). This research on this composite panel is continuing at 

the Design Simulation Research Centre (DSRC) at Bournemouth University. 

This applications show the importance of composite in various products which are 

being used widely everyday. Therefore, improvement and development in composite 

modelling can potentially lead to better and more efficient design of composite 

products. This research mainly focuses on induced twist deformation in composite plate 

and how this induced twist can be used and controlled by optimising the fibre 

orientations in laminae. 
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Figure 1.10 Royal Swedish Navy Visby class corvettes (Daniel and Ishai 2006) 

 

 

 

Figure 1.11 Panel drawing with the location of gauges and loading (Ramazani et al. 2012) 

 

 

1.3. Research Question and Objectives 

Fibre-reinforced composite materials for structural applications are often made in the 

form of a thin layer, called lamina. A lamina is a macro unit of material whose material 

properties are determined through appropriate laboratory tests. Structure elements, such 

as bars, beams or plates are then formed by stacking the layers to achieve desired 
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strength and stiffness. Fibre orientation in each lamina and stacking sequence of the 

layers can be chosen to achieve desired strength and stiffness for specific application. It 

is the purpose of the present study to investigate the equations that describe appropriate 

kinematics of deformation, govern force equilibrium, and represent the material 

response of laminated structures under general loads by controlling the fibre 

orientations in plies. Analysis of structural elements made of laminated composite 

materials involves several steps. The analysis requires knowledge of anisotropic 

elasticity, structural theories (i.e., kinematics of deformation) laminates, analytical or 

computational methods to determine solutions of the governing equations, and failure 

theories to predict modes of failures and determine failure loads.  

Controlling the fibre orientations in laminated composites can potentially lead to 

designing passive smart structures. On the other hand, fibre orientations can be used as 

a design parameter to control the composite structure behaviour, because changing fibre 

orientations directly affects material properties (stiffness matrix). 

The fibre orientation in each layer of a composite can range from -90 to +90 degrees 

and the angle directly effects the behaviour of the structure. The ability to create a wide 

range of fibre orientation in each layer gives so many options to design the structure 

with composite. Therefore, using an optimisation method is unavoidable in order to find 

the best fibre orientations for the composite structures (products) depending on the final 

structures (products) requirements.  

The initial idea of this research is formed from previous work which has been done 

by Maheri et al. (2007) on controlling the composite structure (wind turbine blade) 

passively. A passive control approach reduces the size of the controlling system, its cost 

of maintenance and the initial cost. The idea was to have an adaptive and smart structure 

to employ the structure itself as the controller (e.g. for the wind turbine blade to sense 

the wind velocity and adjust its aerodynamic characteristics to affect and increase the 

efficiency of the wind turbine performance). The anisotropy of composites produces 

shear coupling and twist in composite structures. Considering this shear coupling and 

transverse shear effect on modelling of composite structures with complex profile such 

as a wind turbine blade is very complicated. Therefore, the problem is broken down to a 

thin wall beam which is placed and joint inside the wind turbine blade. So each 

deformation in beam is directly followed by the blade. In two opposite sides of thin wall 

beam a composite panel is considered. The combined effect of twisting in opposite 

surface of the beam which is enhanced from composite panels causes shear coupling on 
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the blade. On the other hand for example by applying uniform distribution loads on a 

cantilever anisotropic composite plate (Fixed in one side and free the other sides), 

unlike conventional materials, twist deformation is induced as well as bending. The 

amount of this twist can be controlled by changing the fibre orientations in composite 

plates. Because changing fibre orientations changes the stiffness matrix in Hook’s law 

and any deformation (including twist) can be calculated from Hook’s law.  

Therefore, the main question (research question) which this work seeks to answer is: 

 

“How can a laminated composite plate be designed and controlled by 

using the induced twist deformation through optimisation of the fibre 

orientations of the laminae” 

 

The research question is very general and broad, therefore to find answer for it, a set 

of key subquestions and issues must be studied. On the other hand, finding answers for 

the following questions are the objectives of this research. 

 

 What are the current methods which can model the induced twist deformation 

in laminated composite plate? 

 Is there any possibility to modify the constitutive equation for composite in 

order to predict the behaviour of laminated composite more accurate? 

 How precise the applied model can predict the behaviour of laminated 

composite plate in comparision with experimental results? (On the other hand 

the validity of the method must be checked) 

 How the fibre orientations in laminated composite plate can be optimised to 

achieve certain induced twist displacement?      

  

The following milestones are set to answer the above questions and achieve research 

objectives. 

 

 Studying and evaluating the current composite models subject to how accurate 

they can predict the induced twist deformation in composite structure. 

 Modification of current analytical and semi-analytical models of composites (if 

possible), to predict the behaviour of laminated composite plate more accurate. 
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 Validation of the applied method must be checked. Therefore, a series of 

experimental tests should be undertaken to compare the experimental and 

simulation results. 

 An optimisation algorithm is requied to find the suitable fibre orientations in 

laminae to achieve desirable induced twist deformation.  

 

Each milestone is studied and reffered in one chapter. The milestones can be seen in 

Figure (1.12) where the structure of the research is shown. 

 

Figure 1.12 Structure of this research 

 

In the first step an appropriate and accurate model for laminated composite plate 

should be chosen. In Chapter 2 an overall review of analytical model for laminated 

composites are presented. Advantages and disadvantages of each one are discussed. 

Semi-analytical models are explained in Chapter 3. Also, a new semi-analytical model 

based on Newton-Kantorovich-Quadrature (NKQ) method is proposed.  

In the next step, some experimental tests on laminated composite plates have been 

done and the results compared with finite element analysis to validate the results. In 

order to solve the composite models accurately, using numerical methods such finite 

element (FE) is unavoidable. After investigation about different FE software packages 
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Abaqus is chosen because of more accurate results, being user friendly and the ability to 

write programs (in Python language) and easily link this program to Abaqus’s model 

and solver. In order to answer the effect of fibre orientations, it is necessary to have the 

FE results for all possible fibre orientations. As it is mentioned, the orientations can be 

varied from -90 to +90 degrees in each layer. When the number of layers is increasing, 

consequently the number of FE tests is increasing and it is almost impossible to run the 

program each time manually. Therefore the written Python program is used to run these 

FE tests for the different orientations for each ply iteratively. It is tried to expand this 

Python program as a design tool. In the next step, some experimental tests on laminated 

composite plates have been done and the results compared with finite element analysis 

to validate the results. Finite element simulation of laminated composite plate with 

Abaqus, Python program, manufacturing the composite samples and the comparison of 

FE and experimental results are explained and discussed in Chapter 4. 

In Chapter 5 the results of FEM are used to optimise the fibre orientations in 

laminated composite plate. The optimisation model tries to find the appropriate fibre 

orientations for laminated composite plate depending on the requirements of the 

structure or product. Different optimisation models have been introduced to solve this 

challenging problem, which is often non-linear, non-convex, and multidimensional. The 

stochastic non-linear optimisation methods are utilised for this problem as they can 

avoid the local minimums. One of the best algorithms in this category is the simulated 

annealing (SA) method which is used to solve this problem in this research. The effect 

of transverse shear, which causes twisting, in laminate composite plate under different 

types of loading (in plane and out of plane) are considered in the proposed model and 

the results are compared with previous works. The conclusion of this research and 

possible future works are presented in Chapter 6. 

In summary, the novelty of this work and what distinguished this study from current 

researches are: 

 

 In current studies, the effect of transverse shear is neglected. Therefore, the 

induced twist in laminated composite structures is ignored and considered as 

unwanted displacement. This work suggested that the induced twist can be a 

useful displacement to control the behaviour of composite structures. 
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 A comprehensive study in modelling of composite materials subject to 

transverse shear effect is done and also a semi analytical model is proposed 

which can consider the transverse shear effect in constitutive equations of 

composite materials. 

 

 Fibre orientation in laminated composite plate is considered as a design 

parameter which can control the transverse shear and as a result can control 

the induced twist displacement in laminated composite plate. The fibre 

orientations are optimised by modifying the current penalty function for SA 

and proposing a new penalty function which is able to control the amount of 

induced twist in laminated composite. 

 

 

1.4. Methodology 

Here, how the study was carried out and what procedures were used, are concisely 

explained and in the following chapters these methods and techniques will be expanded. 

As it is mentioned earlier, in this research we try to present a way to design and control 

composite plate by using induced twist displacement. Fibre orientation of laminated 

composite is the design parameter that can control the induced twist deformation in 

composite products, because the stiffness matrix of composite materials is depend on 

the fibre orientations of laminae. To answer the research question four milestones and 

objectives were set.  

 

• Investigate and evaluate the current composite models  

• Modification of current analytical and semi-analytical models  

• Check the validation of the applied method  

• Optimisation algorithm to find the suitable fibre orientations in laminae to 

achieve desirable induced twist deformation.  

 

Because the nature and type of these objectives are different, each objective is 

considered as a smaller research in this work and investigated in individual chapter. For 

example, modification of semi-analytical model involves mathematical calculations and 

computations study whereas to validate the model a series of experimental test is 



22 

 

required. Also, optimisation algorithms and methods are explored separately from 

constitutive equations and models of composite materials to avoid confusion. 

In the literature review, laminated composite plate theories have been reviewed. Also, 

they have been categorised based on how accurate they estimate the induced twist in 

laminated composites. The advantages and disadvantages of each model have been 

explained. In the single layer theory approach, layers in laminated composites are 

assumed to be one equivalent single layer whereas in the discrete theory approach each 

layer is considered individually in the analysis. In discrete layer models (layerwise 

theories) each layer is analysed independently in order to achieve more accurate results 

and to assure the compatibility of the displacements and the inter-laminar equilibrium 

equations. Furthermore, it is discussed, because of some simplification assumptions 

(normal lines to the mid-plane before deformation remain straight and normal to the 

plane after deformation), classical laminate plate theory cannot be used in this research 

as it would not capable of estimating the transverse shear and as a result any induced 

twist in the laminated composite plate. Therefore, FE packages such as NX which were 

using this model to solve the composite problems were not used in this research. 

Different models try to overcome the limitations of CLPT in order to predict the 

transverse shear more accurately by using more terms in Taylor series and as a result 

increasing the order of constitutive equations for the model, such as first order shear 

deformation theory, third order shear deformation theory, etc. The FE package (Abaqus) 

which is used in the following chapters to model the laminated composite plate in this 

research, is considering the transverse shear in modelling of composite materials.  

One aim of this research is to modify the current model in a way that it presents the 

induced twist more accurate. Semi-analytical models are explained in Chapter 3 and a 

new semi-analytical model by using the Newton-Kantorovich-Quadrature method is 

proposed. The key advantage of this method, compared to current models, is that it can 

potentially be used for more complicated cases such as out of plane loading and 

different boundary conditions with the expense of increasing processing time. The 

model can predict the transfer shear and as a result induced twist of laminated 

composite more precise in comparision with current models. The non-linear equations 

are solved by Newton-Kantorovich-Quadrature (NKQ) method. This method breaks 

down the laminated composite plate equations into a series of sequential equations and 

attempts to solve iterative integral equations. The convergence of the proposed method 

is compared with other semi-analytical methods (EKM and MTEKM). Various 
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numerical examples with different boundary conditions and loadings are studied. 

Originally the aim of investigating on semi-analytical model was to find a semi-

analytical method which is able to model the laminated composite plates for out of 

plane loading and considering the transverse shear effect. The proposed model is 

theoretically can be used for these purposes. However, higher processing time and lower 

accuracy are two critical disadvantages of this semi-analytical model in comparison 

with numerical models and make this model impractical. Therefore, this model is not 

used in this research and instead the numerical method and finite element method is 

used in this work. FEM in Abaqus is used in this work due to its wide material 

modelling and analysing capability especially in terms of considering the transverse 

shear effect in comparison with other FE software. Abaqus is also easy to define fibre 

orientations for lay-ups in the laminate composite plate. How to model and simulate the 

laminated composite plate in Abaqus is explained. In order to answer the effect of fibre 

orientations on composite plate behaviour, it is necessary to have the FE results for all 

possible fibre orientations. When the number of layers is increasing, as a result the 

number of FE tests which is needed is increasing as well and it is very time-consuming 

and hard to set up and run the program for each test manually. So, the written Python 

program is used to run these FE tests for the different orientations iteratively. An 

expanded and modified version of Python program is presented as a design tool. Some 

experimental tests on laminated composite plates have been performed with Vacuum 

bagging process. To minimise the error, it is necessary to perform the test for few times. 

In this research, six identical plates are manufactured for each test and the average of 

these results is considered as a final result for that sample. The plates are under the 

constant load and square laminated composite plates are fabricated (500 x 500 mm). 

They are fixed in one side and the displacement is measured on the opposite free side. 

The plates are under their own weight and in FE this load is consider as a uniform 

distribution pressure on the plate. The displacement is measured by Laser Displacement 

Measurement Sensors with accuracy of .001 mm. The validity of the model is verified 

by comparison of experimental outcomes verses model results. The results of FEM 

displacement is generated and saved in a database which included all the results of the 

laminated composite plates for all possible different orientation for each ply. In order to 

achieve the certain induced twist (depending on the designers requirements), using an 

optimisation method is unavoidable because the fibre orientation in each layer of 

composite can be in a wide range of [-90 +90] degree and it means the number of 
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combinations of different orientations for laminated plate are considerably large. The 

SA optimisation method is proposed and used to solve this challenging problem, which 

is normally non-linear due to anisotropy. The validity of the optimisation model is 

verified by another GA and SA models which were proposed recently. A new penalty 

function was proposed for SA in order to overcome the difficulties and shortcomings 

faced by the previous SA model where the effect of transverse shear (induced-twist) 

was ignored. By the proposed model, the effect of transverse shear and, as a result, out 

of plane loadings can be solved as well as the in-plane loadings. In this work the Tsai-

Wu and maximum stress failure criteria are chosen for laminated composite. By using 

the proposed optimisation method for fibre orientations of laminae, the amount of 

induced twist in laminated composite plate can be controlled. 
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2. Modelling of Laminated Composite 

Modelling of laminated composite plates can be categorised into three different 

types: 

 Analytical models 

 Semi-analytical models 

 Numerical models 

Analytical models are the constitutive equations which are explaining the behaviour 

of the materials. These equations derive from Hook’s law and users normally simplify 

them. Shortcomings and errors which are caused by this simplifying can be neglected in 

conventional materials but cannot be ignored in anisotropic materials as it makes 

considerable differences on the behaviour of such materials. Considering the anisotropy 

effect on composite materials, leads to very complicated equations which are not 

possible to solve them by hand. Semi-analytical and numerical methods are used to 

solve these equations. Semi-analytical models try to find mathematical methods to 

estimate the acceptable solutions for these equations. Although the semi-analytical 

results are not as accurate as numerical results, they help to understand the physical 

interpretation of each parameter in equations and the effect of them in the final result. 

Analytical models for laminated composite plates are investigated in this chapter and 

semi-analytical and numerical models are explained in the following chapters. 

In this chapter previously developed analytical models are studied comprehensively 

and the advantages and disadvantages of them are investigated.  

Composite theories that have been proposed and developed are explained and their 

suitability and functionality assessed in this section. The particular focus is on normal 

stresses and the through-thickness distributions of transverse shear. These are important 

for composite plates as these are the parameters which affect composites behaviour 

under different loadings. Therefore, it is essential, to understand and calculate transverse 

shear and normal stress through the thickness of the plate accurately. Here previous 

laminated composite plate theories are categorised and reviewed in a general sense, i.e. 

not problem specific, and the advantages and disadvantages of each model are 

discussed. It starts with displacement-based theories from very basic models such as 

Classical Laminate Plate Theory (CLPT) to more complicated and Higher Order Shear 

Deformation Theory (HOSDT). Models are furthermore, categorised by how the models 

consider the overall laminate. Here the theories are divided in to two parts; Single Layer 
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Theory (SLT), where the whole plate is considered as one layer, and Layerwise Theory 

(LT), where each layer is treated separately. The models based on Zig-zag and Discrete 

theories are then reviewed and finally the mixed (hybrid) plate theories are studied. 

      

2.1. General Introduction 

It is important to explain, in studying composite models, why focus is placed on how 

the model considers the transverse shear of composite materials. The normal stresses 

and through-thickness distributions of transverse shear for composite materials are 

important for many reasons. For example, in laminate composite plate stress-induced 

failures occur through three mechanisms. If the in-plane stress gets too large, fibre 

breakage or material yield occurs. However, normally before the in-plane stresses 

exceed the fibre breakage point, inter-laminar shear stress failure occurs when one layer 

slips tangentially relative to another. Alternatively, transverse normal stress may 

increase enough to cause deboning failure where two layers pull away from each other. 

Therefore, it is essential, to understand and calculate transverse shear and normal stress 

through the thickness of the plate accurately (Fox 2000). 

Generally, two different approaches have been used to study laminated composite 

structures analytically: single layer theories and discrete layer theories. In the single 

layer theory approach, layers in laminated composites are assumed to be one equivalent 

single layer whereas in the discrete theory approach each layer is considered in the 

analysis. Also, plate deformation theories can be categorised into two types: stress 

based and displacement based theories (Aydogdu 2009). 

A review of displacement based theories is given below: Displacement based 

theories can be divided into two categories: Classical laminated plate theory and shear 

deformation plate theories. Normally laminated composite plate theories are described 

in the classical laminated plate theory, first-order shear deformation theory, global 

higher-order theory and global–local higher shear deformation theory (Wu. et al. 2005). 

The most general form of the linear constitutive equations for infinitesimal 

deformations is: 

 

3,2,1,,,  lkjiC klijklij                (2.1) 
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which is referred to as the generalised Hooke’s law, where C is the fourth-order tensor 

of material parameters and is termed stiffness tensor. There are, in general, 34=81 scalar 

components of a fourth-order tensor. The number of independent components of C are 

considerably less because of the symmetry of σ, symmetry of ε, and symmetry of C. 

Since the strain tensor is symmetric, lkkl   , then 
ijklC  must be symmetric in the last 

two subscripts as well, further reducing the number of independent material stiffness 

components to 6×6=36. If we assume that the material is hyperelastic, i.e., there exists a 

strain energy density function )(0 ijU   such that: 

  

klijkl
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ij C
U
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 
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 0                 (2.2) 
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                 (2.3) 

Since the order of differentiation is arbitrary, it follows that 
klijijkl CC  . This reduces 

the number of independent material stiffness components to 21 or on the other hand: 

  

jiji C                    (2.4) 
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jiij CC   lead to 6+5+4+3+2+1=21 independent stiffness coefficients for the most 

general elastic material. 

When there is no preferred directions in the material (the material has infinite 

number of planes of material symmetry), the number of independent elastic coefficients 

reduces to 2. These materials are called isotropic materials. Figure (2.1) shows the 

difference in behaviour between isotropic and anisotropic materials under uniaxial load. 

Because properties of materials depend on the direction in anisotropic materials the 

deformation is not the same as isotropic materials. 
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Figure 2.1 The behaviour of isotropic and anisotropic materials under uniaxial load. 

 

 

2.2. Classical Laminated Plate Theory (CLPT) 

The simplest equivalent single layer (ESL) laminated plate theory, based on the 

displacement field, is the classical laminated plate theory (CLPT) (Reissner 1961; 

Stavsky 1961; Dong 1962; Yang 1966; Ambartsumyan 1969; Whitney1969 and Reddy 

2004). The two dimensional classical theory of plates was initiated by Kirchhoff (1850) 

in the 19th century, and then was continued by Love (1934) and Timoshenko (1934) 

during the early 20th century. The principal assumption in CLPT is that normal lines to 

the mid-plane before deformation remain straight and normal to the plane after 

deformation. Although this assumption leads to simple constitutive equations, it is the 

main deficiency of the theory.  The effect of the transverse shear strains on the 

deformation of the elastic two-dimensional structure is ignored and some of the 

deformation mode constraints by reducing the model to a single degree of freedom 

(DoF) results are neglected.  This is a consequence of the basic assumptions made. It is 



30 

 

also worth mentioning that neglecting shear stresses leads to a reduction or removal of 

the three natural boundary conditions that should be satisfied along the free edges. 

These boundary conditions being the normal force, bending moment and twisting 

couple (Reissner 1945). 

Despite its limitations, CLPT is still a common approach used to get quick and 

simple predictions especially for the behaviour of thin plated structures. The main 

simplification is that three-dimensional thick structural plates or shells are treated as 

two-dimensional plate or shells located through mid thickness which results in a 

significant reduction in the total number of variables and equations, consequently 

saving a lot of computational time and effort. The governing equations are easier to 

solve and present in closed-form solutions, which normally provides more physical or 

practical interpretation. This approach remains popular as it is well-known and has 

become the foundation for further composite plate analysis methods. 

This method works relatively well for structures that are made out of a symmetric 

and balanced laminate, experiencing pure bending or pure tension. The error 

induced/introduced by neglecting the effect of transverse shear stresses becomes trivial 

on or close to the edges and corners of thick-sectioned configurations. The induced error 

increases for thick plates made of composite layers, for which the ratio of longitudinal 

to transverse shear elastic modulii is relatively large compared to isotropic materials 

(Reddy 1984). It neglects transverse shear strains, underpredicts deflections and 

overestimates natural frequencies and buckling loads (Cosentino and Weaver 2010). 

The ESL theories are generally developed by assuming the form of the displacement 

field or stress field as a linear combination of unknown functions and the thickness 

coordinate (Mindlin 1951): 
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where i is the i
th

 component of displacement or stress, (x, y) the in-plane coordinates, z 

the thickness coordinate, t the time, and  j

i  are functions to be determined. 

When i  are displacements, then the equations governing j

i  are determined by the 

principle of virtual displacements (or its dynamic version when time dependency is to 

be included which is not a subject here) (Reddy 2004): 
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dtKVU
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)(0               (2.7) 

where δU, δV, and δK denote the virtual strain energy, virtual work done by external 

applied forces, and the virtual kinetic energy, respectively. 

The classical laminated plate theory which is an extended version of the classical 

Kirchhoff’s plate theory for laminated composite plates. It is based on the displacement 

field.  
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where ),,( 000 wvu  are the displacement components along the (x, y, z) coordinate 

directions, respectively, of a point on the midplane (z=0). Figure (2.2) shows the 

deformed geometries of composite plate for CLPT. 
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Figure 2.2 Deformed geometries of composite plate for CLPT (Reddy 2004) 

 

Composite plates are, in fact, inherently subjected to transverse shear and normal 

stresses due to their discontinuous through-thickness behaviour and their global 

anisotropic nature (Cosentino 2010) in order to achieve better predictions of the 

response characteristics, such as bending, buckling stresses, etc. A number of other 

theories have been developed which are presented in following sections (Noor 1972; 

Pagano 1972; Noor 1975; Aydogdu 2006).  

 

2.3 First-Order Shear Deformation Theories (FSDT) 

Several theories have been proposed to analyse thicker laminated composite plates in 

order to consider the transfer shear effect. Most of these theories are extensions of the 

conventional theories developed by Reissner (1945) and Mindlin (1951), which are 

known as the shear deformation plate theories. These theories are based on the 

assumption that the displacement   is constant through the thickness while the 

displacements   and   vary linearly through the thickness of each layer (constant cross-

sectional rotations    and    ). Generally these theories are known as First-Order Shear 

Deformation Theories (FSDT) (Onsy 2020). According to this theory, transverse 

straight lines before deformation will still be straight after deformation but they are not 
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normal to the mid-plane after deformation. This theory assumes constant transverse 

shear stress and it needs a shear correction factor in order to satisfy the plate boundary 

conditions on the lower and upper surface. The shear correction factor adjusts the 

transverse shear stiffness and thereby, the accuracy of results of the FSDT will depend 

significantly on the shear correction factor (Wu 2005; Aydogdu 2009).  Further research 

has since been undertaken to overcome some of the limitations of FSDT without 

involving higher-order theories in order to avoid increasing the complexity of the 

equations and computations (Levinson 1980; Murthy 1981; Reddy 1984). 

Bhaskar and Varadan (1993) used the Laplace transform technique to solve the 

equations of equilibrium. From the results they observed that the dynamic magnification 

factor for the deflection and the in-plane stress is close to 2.0, and that the interlaminar 

stresses can reach higher values depending on the geometry of the plate and type of 

loading (Kant 2000). 

Onsy et al. (2002) presented a finite strip solution for laminated plates. They used the 

FSDT and assumed that the displacements u and v vary linearly through the thickness of 

each layer and are continuous at the interfaces between adjacent layers. They also 

assumed that the displacement w does not vary through the thickness. These 

assumptions allow for a more realistic situation (compared with CLPT) where the shear 

strains across the interfaces between adjacent laminae are not continuous.  This model is 

more realistic compared with CLPT as the displacement results allow for the warping of 

the composite cross-section and the shear strain field is discontinuous at the linear 

interface. Two-node and three-node finite strip elements are developed as a result of 

their work (Onsy et al. 2002).  Equations (2.8), for first order shear deformation theory, 

is presented as:  
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where x and  
y  are rotations about the y and x axes, respectively. The FSDT 

extends the kinematics of the CLPT by including a transverse shear deformation in its 

kinematic assumptions. As it was mentioned the transverse shear strain is assumed to be 
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constant with respect to the thickness coordinate (Reddy 2004). Figure (2.3) shows 

deformed geometries of composite plate for FSDT. 

 

 

 

Figure 2.3 Deformed geometries of composite plate for FSDT (reddy 2004) 

 

In order to calculate transverse shear more accurately, to satisfy all boundary 

conditions and to analyse the behaviour of more complicated thick composite structures 

under different loads, the use of higher order shear deformation theories is inevitable. 

 

2.4 Higher Order Shear Deformation Theories (HOSDT) 

The limitations of the classical laminated plate theory and the first order shear 

deformation theory led researchers to develop a number of global Higher Order Shear 

Deformation Theories (HOSDT) (Wu et al. 2005). 

The higher order models are based on an assumption of nonlinear stress variation 

through the thickness. These theories are capable of representing the section warping in 

the deformed configuration. However, some of these models do not satisfy the 

continuity conditions of transverse shear stresses at the layer interfaces. Although the 

discrete layer theories do not have this concern, they are significantly more labour 

intensive and computationally slow when solving such problems due to the fact that the 
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order of their governing equations depends on the number of layers (Karama at al. 

1998). This is the main advantage of HOSDT compared to discrete layer theories which 

will be presented in following sections. 

Whitney et al. (1973) attempted to examine the problem with interlaminar normal 

stress.  The calculation of interlaminar normal stress was studied by Pagano (1974), a 

boundary layer theory, by Tang (1975) and Tang and Levy (1975), the perturbation 

method by Hsu and Herakovich (1977), and approximate elasticity solutions by Pipes 

and Pagano (1974) was carried out. Later, Pagano (1978), based on assumed in-plane 

stresses and the use of Reissner's variational principle, developed an approximate 

theory.  In most of these models the laminate is assumed to be reasonably long. The 

stress singularities were considered in a model presented by Wang and Choi (1982). 

They used the Lekhnitskii's (1963) stress potential and the theory of anisotropic 

elasticity and determined the order of stress singularities at the laminate free-edges. The 

eigen function technique developed by them uses a collocation system at every ply 

interface in order to satisfy continuity. This limits the application of this method to 

relatively thin laminate (Kant et al. 2000). 

Ambartsumian (1958) proposed a higher order transverse shear stress function in 

order to explain plate deformation. Soldatos and Timarci (1993), suggested a similar 

approach for dynamic analysis of laminated plates. Various different functions were 

proposed by Reddy (1984), Touratier (1991), Karama et al. (2003) and Soldatos (1992). 

The results of some of these methods were compared by Aydogdu (2006). Swaminathan 

and Patil (2008) used a higher order method for the free vibration analysis of 

antisymmetric angle-ply plates (Aydogdu 2009).  

Some models just focus on special cases such as buckling, vibration, etc. For 

example, a 2D higher-order theory is developed by Matsunaga (1994, 1997) to 

investigate buckling in isotropic plates for in-plane loads. Effects of transverse shear 

and normal deformations have been predicted in this work. General higher order 

theories, which consider the complete effects of transverse shear, normal deformations 

and rotary inertia, have been studied for the vibration and stability problems of specific 

laminates (Matsunaga 1969, 2000). Thermal buckling, modal vibration properties and 

optimisation have been focused in angle-ply laminated composite plates (Khandan et al. 

2012; Matsunaga 2006; 2007; Fiedler et al. 2010). 
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2.4.1 Third order shear deformation theory (TSDT) 

Generally, researchers who have wanted to simulate plates have used the third-order 

shear-deformation theories first published by Schmidt (1977) and then developed by 

Jemielita (1975).  A Third order shear deformation theory (TSDT) is presented by 

Reddy (2004). Some references know this theory as parabolic shear deformation plate 

theory (PSDPT). Phan and Reddy (1985) applied this theory for free vibration, bending 

and buckling of composite plates (Aydogdu 2006). The same unknown displacements 

as those used in first-order shear deformation theories were used. The theory also 

satisfies transverse shear free conditions at the outer surfaces. The results for the thick 

laminates prove that the in-plane stresses are much better than those identified using 

FSDT, but still have errors when comparing with three-dimensional models. It is 

noteworthy that this theory is not the layer-wise type, therefore, unlike most of the other 

equivalent single layer theories, it does not satisfy the continuity conditions of 

transverse shear stresses between layers (Wu et al. 2005). 

Another parabolic distribution of shear strains through the laminated plate thickness 

was proposed by Vuksanovic (2000). It has a cubic variation of in-plane displacement. 

The results confirm that this model can explain/predict the global laminate response 

better than previous parabolic methods, but it is complex to accurately compute the 

interlaminar stress distributions (Wu et al. 2005). 

In the third-order theories (Pandya and Kant 1988; Reddy 2004), the in-plane 

displacements are assumed to be a cubic expression of the thickness coordinate while 

the out-of-plane displacement is a quadratic expression at most. Based on the model that 

Vlasov (1957) presented for equations for bending of plates, Carrera (2007) presented a 

third order theory. The reduced third order model with three displacement variables was 

obtained by imposing homogeneous stress conditions with correspondence to the plate 

top-surface. This was further modified in the same research for the non-homogeneous 

stress conditions. Again, a closed form solution result was presented for both stresses 

and displacements in the case of harmonic loadings and simply supported boundary 

conditions. Idlbi et al. (1997) compared TSDT and parabolic shear deformation plate 

theory with CLPT for the bending of cross-ply plates (Aydogdu 2006). 

The third-order laminated plate theory (Reddy 1984) which is based on the 

displacement field is:  
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The displacement field accommodates quadratic variation of transverse shear 

strains/stresses. There is no need to use shear correction factors in a third-order theory. 

The third-order theories provide an increase in accuracy relative to the FSDT solution, 

at the expense of an increase in computational effort. 

Figure (2.4) shows the differences between CLPT, FSDT and TSDT: 

 

 

Figure 2.4 Comparing CLPT, FSDT and TSDT 

 

 

2.4.2. Trigonometric Shear Deformation Plate Theory (TSDPT) 

Trigonometric functions are used to describe the shear deformation plate theories 

called trigonometric shear deformation plate theory (TSDPT). Touratier (1991) chose 

transverse strain distribution as a sine function. 
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Stein (1986) developed a 2D theory wherein the displacements are stated by 

trigonometric series. Trigonometric terms are combined with the usual algebraic 

through-the-thickness terms assumed for the displacements, to provide a better solution. 

Later the effects of transverse shear on cylindrical bending of laminated composite 

plates were studied by Stein and Jegley (1987). They show that this theory calculates 

the stresses more accurately than other theories. A straightforward method to analyse 

symmetric laminates under tension/compression using the principle of minimum 

complimentary energy and the force balance method, based on assumed stress 

distributions was introduced by Kassapogolou and Lagace (1986, 1987). Afterward, 

Kassapogolou (1990) generalised and modified this approach for general unsymmetric 

laminate loads (in-plane and out-of-plane common moment and shear loads). This 

model was more general; however, it does not solve the weaknesses of inequality in 

Poisson's Ratios and the coefficients of mutual effect that exists between different plies 

through the thickness (Kant and Swaminathan 2000). Touratier compared the TSDT 

proposed by Reddy (1984) with the one suggested by Touratier (1991) using a sine 

function to illustrate the warping throughout the thickness of the plate fibre during 

rotation, by considering the transverse shear (IdIbi 1997). Becker (1993) made use of 

cosine and sine functions for warping deformation of   and   displacement respectively 

and developed a closed-form higher-order laminated plate theory. 

An analytical method was presented by Mortan and Webber (1993), using the same 

approach as Kassapoglou (1987) and Becker (1993); they considered the thermal effects 

in their model (Kant and Swaminathan 2000). 

An accurate theory for interlaminar stress analysis should consider the transverse 

shear effect and continuity requirements for both displacements and interlaminar 

stresses on the composite interface.  In addition to accurate interlaminar stress and 

transverse shear prediction, it is advantageous if the model is variationally consistent in 

order to use it for finite element formulation. Considering these points, and to obtain the 

interlaminar shear stress directly from the constitutive equations, Lu and Liu (1990) 

improved an interlaminar shear stress continuity theory. Although the interlaminar shear 

stress is obtained directly from the constitutive equations in their model, the 

deformation in the thickness is neglected and therefore it cannot calculate the 

interlaminar normal stress directly from the constitutive equations. Despite the 

conventional analysis for laminated composite materials, where the composite interface 

is always assumed to be rigidly bonded due to the low shear modulus and poor bonding, 
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the composite interface can be non-rigid. Later, Lu and Liu (1992), in their search to 

improve their model by investigating the effect of interfacial bonding on the behaviour 

of composite laminates, developed the interlayer shear slip theory based on a multilayer 

approach. Finally, a closed-form solution for the general analysis of interlaminar 

stresses for thin and thick composite laminates under sinusoidal distributed loading was 

derived by Lee and Liu (1992). Both interlaminar shear stress and interlaminar normal 

stress at the composite interface were satisfied in this model and also the interlaminar 

stresses could be calculated directly from the constitutive equations, yet the accuracy of 

their model was questioned later. Touratier (1991) proposed a theory based on using 

certain sinusoidal functions for shear stress. Numerical results for the bending of 

sandwich plates were presented and compared with the other theories. It was shown that 

this theory is more accurate than both FSDT and some other higher-order shear 

deformation theories (Kant and Swaminathan 2000). 

By considering the following equations: 
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where, for TSDPT we have: 
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2.4.3. Hyperbolic Shear Deformation Plate Theory (HSDPT) 

Hyperbolic shear deformation plate theory (HSDPT) was proposed by Soldatos 

(1992). Timarci and Soldatos (1993) united/combined these shear deformation theories. 

The basic advantage of this unified theory was the ability to change the transverse strain 

distribution (Reddy 1984). Ramalingeswara and Ganesan (1996) used parabolic and 

hyperbolic function to uniform external pressure and a simply supported cylindrical 

shell for cross ply laminated composite by considering an internal sinusoidal pressure 

(Kant and Swaminathan 2000). It is also worth mentioning the Karama model where 
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Karama et al. (2003) proposed an exponential function for the transverse strain in his 

study of the bending of composite. 

In equation (2.11) for HSDPT we have: 
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2.4.4. Other HOSDT 

Rohwer (1992) presented a comparative study of different higher-order shear 

deformation theories for multilayer composite plates. The advantages and limitations of 

the various models were shown with the analysis applied on a rectangular plate with a 

range of thickness, number of layers, edge ratios and material properties. A double 

Fourier series was used by Kabir (1992, 1994). It was tested for symmetric and 

antisymmetric laminate plates with simply supported boundary conditions at all edges 

and +45/-45 orientation angles for laminae. Later, by using the same approach and 

Kirchhofe's theory, a simply supported laminated plate with arbitrary laminations was 

presented by Kabir (1996). For validation the results were compared with FSDT based 

on finite element solutions. Based on Kassapogolou and Lagace’s (1986, 1987) model, 

and using boundary layer theory, Ko and Lin (1992) proposed a model to analyse the 

3D stress distribution around a circular hole in symmetric laminate for in-plane stresses. 

The laminate was subdivided into interior and boundary layer regions and each stress 

component was introduced by superposition of the interior and boundary layer stress. 

All the boundary conditions for each ply and the interface traction continuity were 

satisfied. Later Ko and Lin (1993) extended the work for analysing the complete state of 

stress around a circular hole in symmetric cross-ply laminates under bending and 

torsion.  

Wang and Li (1992) used 3D anisotropic elasticity and the method of separation of 

variables to derive the constitutive equations with unknown displacements for each 

cylindrical lamina of a multilayered shell. They considered mechanical and thermal load 

with various boundary conditions in their work. The model is able to determine the 

interlaminar stresses exactly (Kant and Swaminathan 2000).  Matsunaga (2002) 

proposed a global higher-order theory. It was employed to analyse the inter-laminar 

stress problems of laminated composite and sandwich plates. The advantage of this 
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method is that the total number of unknowns does not increase as the number of layers 

increases and from the constitutive relations the in-plane stresses can be predicted 

accurately. By integrating the three-dimensional equilibrium equation, transverse shear 

and normal stresses can be calculated, which satisfy the free surface boundary 

conditions and continuity conditions at interfaces (Wu et al. 2005). 

A complex function was presented by Soldatos (2004) which only dealt with simple 

bending of a special kind of transversely inhomogeneous monoclinic plates (class of 

symmetric cross-ply laminates and functionally graded material). The basis of these 

methods was the governing equations of the generalised, shear deformable plate theory 

presented by Soldatos (1997). Later, Soldatos presented a theory which considered the 

effects of both transverse shear and transverse normal deformation, in a way that allows 

for multiple, a posteriori, choice of transverse strain distributions to be stated. This 

function considers the bending-stretching coupling for un-symmetric laminates and 

inhomogeneous material through-thickness (Soldatos et al. 1997, 2006). 

 

2.5. Layerwise Theory (LT) 

In recent years, the layerwise theories and individual layer theories have been 

presented to achieve more accurate results.  Some of this research is carried out by Wu 

and Chen (1994) and Cho et al. (1991), Plagianakos and Saravanos (2009), and Fares 

and Elmarghany (2008). These theories require many different unknowns for 

multilayered plates and are often computationally time-consuming and expensive to 

obtain accurate results (Nosier et al. 1993; Di-Sciuva et al. 1995). 

A number of layerwise plate models, which can represent the zig-zag behaviour of 

the in-plane displacement through the thickness, have been developed to predict both 

gross response and the stress distributions (Wu et al. 2005).  The basic idea is assuming 

certain displacement and/or stress models in each layer, followed by equilibrium and 

compatibility equations at the interface to reduce the number of the unknown variables 

(Fiedler et al. 2010). For example, Di-Sciuva and Icardi (1995) proposed an eight-noded 

general quadrilateral plate element with 56 degrees of freedom for anisotropic multi-

layered plates based on the third-order zig–zag plate model and demonstrated a good 

accuracy. Generally in Layerwise theories the number of unknowns increases 

significantly with the number of layers and consequently the computational weight 

becomes considerably heavier and higher. To overcome this problem different solutions 
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are suggested. Cho and Parmerter (1993) presented a model in which the number of 

unknowns is independent of the number of layers. They modified their previous model 

of a composite plate theory for general lamination configurations by superimposing a 

cubic varying displacement field on a zig–zag linearly varying displacement. This 

method satisfies transverse shear stress continuity at the layer interfaces and shear-free 

surface conditions. 

There is a lack of accuracy in Equivalent Single Layer (ESL) for thick laminated 

composite plates, especially in the vicinity of the free edges, corners or other special 

features such as holes, where the interlaminar shears dominate by the stress field 

distortion and highly depend on the real stacking sequence. The so-called free edge 

effect is mainly explained by the mismatch of elastic properties, particularly the 

Poisson’s ratio, at the interface of two consecutive layers. Therefore, some other more 

accurate layerwise field equations are needed to overcome such limitations. The theories 

that have been developed to justify through-the-thickness piece-wise behaviour of 

stresses and displacement are often subject to Zig-Zag theories (ZZ). 

The general difference between a single layer plate theory and a multi-layer plate 

theory is that different tangential elastic compliances of the plies cause the displacement 

components to show a quick change of their slopes in the thickness direction at each 

layer interface, the so-called zig–zag effect. To summarise, the in-plane stresses 

(           ) can be discontinuous at each layer interface while the transverse stresses 

(           ), for equilibrium, must be continuous. In ZZ theory the compatibility of 

the displacements and the inter-laminar equilibrium of the transverse stresses in the 

thickness direction are assured by defining a new stiffness matrix called C0z (Fiedler et 

al. 2010). 

Lekhnitskii (1968) was one of the pioneers who tried to define a ZZ theory. The 

main drawback for this approach was the limitation of the approach to multi-layered 

composite where each layer is isotropic. Ren (1986) later improved this model by using 

an extension of the theory developed by Reissner (1944) to multi-layered plates. This 

approach used a Lagrange function with five parameters, which represent the degrees of 

freedom of the structure. In fact, each degree of freedom is represented by a function for 

the whole domain.  Normally, the DoFs are: 

 Two axial in-plane displacements along x and y co-ordinates (namely    and 

  ) 
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 Transverse displacement  , 

 Two transverse shear strains     and    . 

In uncoupled problems the essential number of degrees of freedom is three. On the 

other hand when it is possible to separate the in-plane from the transverse response in 

order to solve the transverse equilibrium equations the shear strains are sometimes 

replaced by the two rotations of the cross-section about the y and x-axes, therefore the 

number of DoFs reduced to three (Cosentino  and Weaver 2010). 

Discrete-layer models which categorise Layerwise theories, have been developed by 

Noor and Burton (1989) and Carrera (1998), which can provide very accurate prediction 

of the displacement and stress. However, increasing the number of layers lead to 

increasing the number of unknowns. Due to the number of variables depending on the 

number of layers, they become impractical for engineering application. 

Di-Sciuva (1987, 1993) and then Touratier (1992) proposed simplified discrete layer 

models with only five essential variational unknowns to consider the warping in the 

deformed configuration. Like many early methods these models also could not satisfy 

the compatibility conditions (both at layer interfaces and at the boundaries). Beakou 

(1991) and Idlbi (1995) modified those models to overcome this limitation and then He 

(1994) introduced the Heaviside step function which allows automatic satisfaction of 

the displacement continuity at interfaces between different layers. Later, based on 

discrete layer theory and Di-Sciuva (1993), He (1994) and Ossadzow et al. (1995) a new 

model is presented for laminated composite structure by Karama et al. (1998).  

Based on Sciuva’s theory, new zig-zag models have been proposed by Lee et al. 

(1990), Di-Sciuva (1992) and Cho and Parmerter (1992). These models contain the 

same variables as those given by the FSDT and satisfy transverse shear stresses 

continuity conditions at interfaces. The number of variables does not depend on the 

layers of laminated plate. Numerical solutions verify that in-plane stresses compared 

with 3D solutions are very accurate. However, the transverse shear stresses from the 

direct constitutive equation method cannot be calculated accurately. In order to 

accurately predict interlaminar stress, the equilibrium equation approach has to be 

considered (Khandan et al. 2012). 

The discrete-layer theories (Sun and Whitney 1973; Srinivas 1973; Seide 1980) are 

capable of modeling the warpage of the cross-section during bending and of predicting 

in-plane responses. A refined shear deformation theory (RSDT) with a simplified 
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discrete-layer model is presented by He (1989) to reduce the total number of dependent 

variables. The transverse displacement is constant across the thickness and the in-plane 

displacements assumed to be piecewise linear. The transverse shear strains across any 

two different layers next to each other are assumed to be linearly dependent on each 

other as real transverse shear stresses are continuous between layers. Based on those 

assumptions, governing equations have been derived using the principle of minimum 

potential energy. The difference between this method and FSDT is the set of governing 

differential equations which are of the 12
th

 order, which means two orders higher than 

FSDT. However, the variables are still the same. The limitation on the application of 

this theory is that the thickness of the shell must be small compared to the principal 

radii of curvature. Thus, the analytical solutions can be obtained for only a few cases. 

This model have been tested for various problems such as cylindrical bending of an 

infinitely long cross-ply laminated strip under sinusoidal loading, and bending of simply 

supported symmetric and antisymmetric cross-ply rectangular plates under sinusoidal 

transverse loads (He 1992; He et al. 1993). It was shown that RSDT is accurate to 

predict the stresses and deflections by comparing the numerical results of RSDT with 

FSDT and 3D elasticity theory.  Later, based on the same model, He and Zhang (1996) 

presented a simple closed-form solution for antisymmetric angle ply, simply-supported 

rectangular plates subjected to sinusoidal transverse loads and compared their model 

with CLPT and FSDT. 

In order to satisfy the continuity of displacements at the interfaces between two 

adjacent layers Robbins and Reddy (1993) introduced a layerwise laminate theory by 

using a one-dimensional Lagrangian interpolation function associated with a series of n 

nodes. Using the Lagrangian function for the variation of the displacements through the 

thickness causes calculations to become large when the number of layers increases 

(Chaudhri 1986; Barbero et al. 1989; Han and Hao 1993). 

Wu and Kuo (1992) proposed a local higher-order lamination theory. They used the 

Lagrange multiplier method and defined the Lagrange multipliers as the interlaminar 

stresses to evaluate the interlaminar stresses. They also used interlaminar stresses as the 

primary variables. It guaranteed the equilibrium equation and the displacement 

continuity constraints at the interface between consecutive layers. Then they used the 

Fourier series expansion method to analyse the problem (Kant and Swaminathan 2000). 

A higher-order layerwise theoretical framework is presented by Plagianakos and 

Saravanos (2009), which was able to predict the response of thick composite plates. The 
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linear approximation by linear layerwise theories is considered. The displacement in 

each discrete layer through the thickness of the laminate includes quadratic and cubic 

polynomial distributions of the in-plane displacements. Interlaminar shear stiffness 

matrices of each discrete layer are presented by considering the interlaminar shear stress 

compatibility conditions in order to guarantee the continuity of interlaminar shear 

stresses through the thickness. The main advantage of this model when compared to 

linear layerwise theories is in the small number of discrete layers used to model the 

thick composite laminate through-thickness and in the prediction of interlaminar shear 

stresses at the interface. 

 

2.6. Mixed Plate Theory 

Recently, some researchers have attempted to combine previous models in order to 

overcome the limitations of each one. Unified equations have been proposed for mixed 

layerwise and mixed equivalent single layer theories. The main aim is to formulate these 

unified C0z theories in the most general way for users to be able to choose the approach 

(equivalent single layer, Layerwise zig–zag, etc); at the same time the order of the 

expansion of displacements and transverse stresses (Carrera and Ciuffreda 2005). 

This class of model has been contemplated over the last few decades. The so-called 

mixed variational approach-based on the variational principles developed by Hellinger 

(1914) was proposed and then improved by Reissner (1944).  The number of variables 

that must be computed is at least 2N+1 where N is the total number of layers. The 

number of variables can be significantly reduced by using a weak form of Hooke’s Law 

(Carrera 1995), which shows the variables in terms of the three displacements only. 

Shimpi et al. (2007) derived two novel formulations with only two variables, which 

work perfectly for moderately thick isotropic plates. However, it requires ad-hoc 

calculated shear correction factors for transverse shear stresses in multilayered 

composite plates. 

Recently, Tessler et al. (2009) have developed a refined zig-zag theory based on the 

kinematics of FSDT. The deployment of novel piece-wise linear zig-zag functions 

provides an accurate and robust approach. The number of computations is relatively low 

compared to other layerwise theories. By reducing the number of functional degrees of 

freedom and choosing the appropriate degree of freedom, the function converges 

quickly and the computational efforts are reduced (Cosentino and Weaver 2010). 
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Cen et al. (2002) presented a simple displacement-based, quadrilateral 20 DoF (5 

DoF per node) bending element based on the FSDT for analysis of arbitrary laminated 

composite plates by considering the Timoshenko’s beam theory for elements and 

interpolation for shear strain, rotation and in-plain displacement. By proposing a hybrid 

procedure the stress solutions, especially transverse shear stresses, in comparison with 

LT are improved. 

A Reissner mixed variational theorem (RMVT) based on TSDT was developed for 

the static analysis of simply-supported, multilayered plates under mechanical loads. Wu 

et al. (2005) based on the observations of these solutions, developed a model for the 

static analysis of simply supported, multi-layered composite and functionally graded 

material (FGM) plates. Reddy’s third-order displacement model (Reddy 1990) and a 

layer-wise parabolic function of transverse shear stresses are used as the kinematic and 

kinetic assumptions, respectively. A set of Euler–Lagrange equations associated with 

the possible boundary conditions was derived. The results obtained from the present 

TSDT based on RMVT are compared with those obtained from the published TSDT 

based on the principle of virtual displacement for single layer orthotropic, multilayered 

composite and multilayered FGM plates (Wu and Li 2010). 

Another hybrid model, based on FSDT, was presented by Daghia et al. (2008) for the 

analysis of laminated composite plates. This model considered a new quadrilateral four-

node finite element from a hybrid stress formulation involving, as primary variables, 

compatible displacements and element wise equilibrated stress resultants. By the 

minimum number of parameters, the transverse stresses through the laminate thickness 

are reconstructed using three-dimensional equilibrium. Their strategy can be adopted 

with any plate finite element and does not need any correction factor. However, like 

other hybrid models, the amount of computational calculations increased drastically. 

Demasi (2009) presented mixed plate theories based on the Generalised Unified 

Formulation (GUF) in five parts. In the first part, the governing equations for GUF are 

explained. GUF is a recent common method which is categorised as a displacement-

based theory. GUF is extended for the first time for a mixed variational statement, 

Reissner’s mixed variational theorem (Reissner 1944). In this technique each of the 

displacement variables and out-of-plane stresses is independently considered. Also, 

different orders of expansions for the different unknowns can be chosen. This method is 

applied to the case of LT. As mentioned before for LT each layer is independently 

modelled and the compatibility of the displacements and the equilibrium of the 
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transverse stresses between two contiguous layers are enforced a priori. Infinite 

combinations of the orders used for displacements and out-of-plane stresses can be 

freely chosen (Demasi 2009 part II). In addition, GUF is applied to mixed higher order 

shear deformation theories. The displacements have an equivalent single layer 

description, whereas the stresses are based on a layerwise category. The compatibility of 

the displacements and the equilibrium of the transverse stresses between two adjacent 

layers are considered. The displacement-based ‘‘classical” HSDT results will be 

obtained by neglecting the out-of-plane stresses and using the static condensation 

technique in this model (Demasi 2009 part III). Furthermore, this model is applied for 

advanced mixed higher order zig-zag theories by adopting Murakami’s zig-zag function 

(Demasi 2009 part IV) and finally the numerical results of this model are presented 

(Demasi 2009 part V). 

Bhar et al. (2011) presented a method based on least square of error for accurate 

evaluation of through-the-thickness distribution of transverse stresses in thick composite 

and sandwich laminates, using a displacement-based C0 higher-order shear deformation 

theory (HSDT). This model is different from the conventional method of integrating the 

3D equilibrium equations for transverse stress in composite laminates. The numerical 

results compared well with the results from FSDT and HSDT. They used this method to 

express the transverse shear stress accurately and furthermore expand it for post-

processing techniques. 

Based on the least-squares variational principle, which is an alternative approach to 

the mixed weak form FEM, Moleiro et al. (2008) presented a mixed finite element 

model for the static analysis of laminated composite plates. This model is a FSDT with 

displacements and stress resultants as independent variables. By using equal-order C0 

Lagrange interpolation functions of high levels along with full integration, the model is 

proposed and the results for different boundary conditions calculated and compared 

with previous work by Chou and Kelly (1980). The mixed least-squares model was 

developed for free vibration and different side-to-thickness ratios (from 10 to 500) 

(Moleiro et al. 2009).  

It is worth noting that Finite Element Methods (FEM) can be used for all the 

different methods which have been mentioned.  (Reddy 1984, 2004; Cho 1994; Ugo 

1998; Kant and Swaminathan 2000; Carrera and Demasi 2002; Sheikh and Chakrabarti 

2003; Oh and Cho 2004; Han et al. 2004; Zhang and Kim 2005; Kim et al. 2005; Kreja 

and Schmidt 2006; Ramesh et al. 2008, 2009). However, FEM is not the only solution 
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for these models. Recently, different meshless methods are presented to solve equation 

for laminated composite plates (Xiang et al. 2011). The developments of element-free or 

meshless methods and their applications in the analysis of composite structures have 

been reviewed by Liew et al. (2011) recently. 

 

2.7. Summary 

It is shown in the research literature review (this chapter) that current composite models 

either ignore the induced twist displacement or consider it as an undesirable 

displacement. It is discussed, because of some simplification assumptions (normal lines 

to the mid-plane before deformation remain straight and normal to the plane after 

deformation), some composite models such as classical laminate plate theory are not 

able to estimate the transverse shear and therefore cannot predict the behaviour of 

laminated composite structure accurately. Not considering a transverse shear effect 

leads to ignoring the induced twist displacement in composite products. They are some 

other models which consider the transfer shear effect. They have been categorised to 

single layer and discrete layer theories. The advantages and disadvantages of each 

model have been explained. In the single layer theory approach, layers in laminated 

composites are assumed to be one equivalent single layer whereas in the discrete theory 

approach each layer is considered individually in the analysis. In discrete layer models 

(layerwise theories) each layer is analysed independently in order to achieve more 

accurate results and to assure the compatibility of the displacements and the inter-

laminar equilibrium equations. Furthermore, the laminated composite models for plate 

can be categorised into two types: stress based and displacement based theories. This 

research mainly focused on how accurately and efficiently the models can predict the 

transverse shear effect, as it is using this transverse shear effect to estimate the induced 

twist in laminated composite plate. However, the induced twist has not been used in any 

of the mentioned models to control the composite structures. This is the idea behind this 

work and this research is trying to fill this gap and find a way to control the composite 

structure by controlling the induced twist displacement. The amount of twist can be 

controlled by changing the fibre orientations in composite plates. Because changing 

fibre orientations changes the stiffness matrix in Hook’s law, and any deformation 

(including twist) can be calculated from Hook’s law. On the other hand, the aim of this 

research is to answer “How can a laminated composite plate be designed and controlled 
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by using the induced twist deformation through optimisation of the fibre orientations of 

the laminae?” 

In order to overcome the limitation of the current models of composite materials, a semi 

analytical model is proposed which can consider the transverse shear effect in 

constitutive equations of composite materials. Also, in order to answer the above 

question, fibre orientation in laminated composite plate is considered as a design 

parameter which can control the transverse shear and as a result can control the induced 

twist displacement in laminated composite plate. The fibre orientations are optimised by 

modifying the current penalty function for SA and proposing a new penalty function 

which is able to control the amount of induced twist in laminated composite plate. 
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3.1. Semi-analytical Models 

The non-linear evaluation of laminated plates has been studied by many researchers. 

Also, various semi-analytical and numerical methods for the description and response 

of laminated plates have been developed. A comprehensive study of the analysis for the 

geometrically non-linear modelling of isotropic and composite laminated plates was 

given by Chia (1980) and later (Khandan et al. 2012). The common analytical non-

linear theories for laminated composites such as classical laminated plate theory and 

first shear deformation plate theory, which were described earlier, generally use the 

Rayleigh-Ritz method (Liew et al. 2004) or the Galerkin method (Savithri et al. 1993; 

Renganathan et al. 2002; Tanriover et al. 2004). The accuracy of these analytical models 

depends on the trial functions which they choose and they have to satisfy at least the 

kinematic boundary conditions. There are also some numerical methods to analyse 

laminated plates for the large deflection including the finite strip method (Akhras et al. 

1998; Dawe 2002); the differential quadrature technique (Yang and Zhang 2000); the 

method of lines (Rabinovitch 2005); Finite Element Method (FEM) (Kant and 

Swaminathan 2000; Carrera and Demasi 2002; Ramesh et al. 2008, 2009). Different 

meshless methods are presented to solve the equations for laminated composite plates 

(Xiang et al. 2011).  

Due to numerous computations and the number of unknown variables, numerical 

methods are needed to solve the problem of laminated plates. However, the analytical 

and semi-analytical non-linear models are essential and the first step to explain the 

physical non-linear behaviour of the composite plate structure. Furthermore, these 

methods generally present reliable and quick solutions for simple problems and give an 

initial idea in the early stage of the design process. They also provide a means of 

validating the numerical methods and potentially are the tools to enable the further 

development of new computational models. Therefore, the development of the semi-

analytical methods has been growing rapidly (Shufrin et al. 2008). 

In semi-analytical models instead of using the virtual work as it is used in numerical 

models, the constitutive equations are solved by mathematical estimation techniques. 

So, the main requirement of semi-analytical models is a mathematical technique to 

solve (estimate) the complex and non-linear constitutive equations. The Kantorovich 

method is one of the techniques which were used to solve the constitutive equations. 

Later, the extended Kantorovich method (EKM) was found to be a valuable technique to 
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offer more accurate approximate solutions for various systems of governing partial 

differential equations of problems. This technique also converges faster than similar 

mathematical techniques with less computational efforts and the potential of achieving 

closed form solutions for simple cases are other advantages of this method (Alijani and 

Aghdam 2009).  The EKM is used for eigenvalue (Kerr 1969), bending, vibration and 

buckling of thin rectangular plates, bending of variable thickness thin plates, bending of 

moderately thick rectangular isotropic and orthotropic plates and free-edge stress 

analysis. Most recent EKM articles also include buckling of laminated and bending of 

piezolaminated rectangular plates (Alijani and Aghdam 2009). 

Recently, EKM was improved by Shufrin et al. (2009). They used extra terms and 

named it the multi-term extended Kantrovich method. The multi-term extended 

Kantorovich method assumes a solution of the 2D problem in the form of a sum of 

products of functions in one direction and the same structure functions in the other 

direction. As a result, the general form of problem is reduced to a set of non-linear 

ordinary differential equations in the second direction. Now, solving a set of non-linear 

ordinary differential equations (even for complicated cases) is possible with any 

mathematical tool. Then the solution of the 1D problem is used as the assumed 

functions which can be replaced in the original 2D problem. Subsequently, the 2D 

equations should be solved. These iterations are repeated until convergence is 

completed. Unlike most of the other semi-analytical models, the accuracy of this 

method is independent of the initial chosen functions. This initial function, even if it 

does not satisfy any of the boundary conditions (Yuan and Jin 1998; Shufrin et al. 

2008), does not affect the accuracy of the final solution. Noteworthy, the EKM was 

applied by Soong (1972) to the large deflection analysis of thin rectangular isotropic 

plates subjected to uniform loading. Some solutions used only one-term for expansion 

yielding of isotropic plates. However, it is showed that one term formulation is not 

enough to predict the behaviour of anisotropic plates (Shufrin et al. 2008). 

By presenting new techniques which are solving the non-linear equations much faster 

and more accurately, the semi-analytical models for composites are developing. 

Therefore, it is important to apply these new methods in the composite field to keep the 

modelling of composites up to date. One of these mathematical techniques which is 

presented recently is Newton-Kantorovich-Quadrature (NKQ) method. NKQ method 

was proposed recently, by Saberi-Najafi and Heidari (2010), for solving nonlinear 

integral equations in the Urysohn form. Here, NKQ method is used to present a more 
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accurate semi-analytical model for composites. The main aim of this work was to 

achieve a semi-analytical approach for the non-linear model of composite plates. As this 

method is able to solve the general constitutive equations for composites, it is 

potentially able to consider the out of plane loadings as well as in plane loadings. 

However, it is not practical to use this model for complex loadings as the computational 

process increases exponentially and the model cannot converge. The accuracy and 

convergence of the method has been investigated through a comparison with other 

semi-analytical solutions and with FEA using a number of numerical examples in order 

to validate the model.  

 

Governing Equations 

3.2. General Governing Equations for Composites 

In order to be able to present the semi-analytical model, some governing equations 

for composites are explained. The state of stress at a point in a general continuum can 

be represented by nine stress components     (         ) acting on the sides of an 

elemental cube with sides parallel to the axes of a reference coordinate system (Figure 

3.1). 

 

 

 

Figure 3.1 State of stress at a point in a general continuum (Daniel and  Ishai 2006) 
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As it was mentioned in the most general case the stress and strain components are 

related by the generalised Hook’s law. Here, two different scenarios are explained 

which are normally considered to solve composite problems. 

3.2.1 In-plane Stress 

The classical laminate theory is used to analyse the mechanical behaviour of the 

composite laminate. It is assumed that plane stress components are taken as zero. The 

in-plane stress components are related to the strain components as: 
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where k is the lamina number,     are the stiffness components, which can be explained 

in terms of principal stiffness components,    ,  which are defined in reference (Daniel 

and  Ishai 2006; Khandan et al. 2010). 

Stress resultants, or forces per unit length of the cross section, are obtained as: 
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Here   is the number of distinct laminae,    is the number of plies in the kth lamina. 

Here, lamina is meant to be a group of plies with the same orientation angle. 

Substituting the stress–strain relation given by Eq. (3.1) into Eq. (3.2): 
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where    , components of extensional stiffness matrix, are given by: 
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Principal stress components can be obtained using the following transformation: 
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3.2.2 Out of Plane Stress 

In the classical laminate theory, it is assumed that straight lines normal to the middle 

surface remain straight and normal to that surface after deformation. These assumptions 

are not valid in the case of thicker laminates and laminates with low stiffness central 

plies undergoing significant transverse shear deformations. In the following, referred to 

as first order shear deformation laminate plate theory, the assumption of normality of 

straight lines is removed. On the other hand straight lines normal to the middle surface 

remain straight but not normal to that surface after deformation (Reddy 2004).     can 

be found in Daniel and Ishai (2006), Khandan et al. 2010).: 
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   (3.7) 

 

where the components of this stiffness matrix are given by: 
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              (3.8) 

The out-of-plane boundary conditions include three cases: simply supported (S), 

clamped (C), and free (F) edges. The four possible in-plane restraints along the plate 

edges are shown in Figure (3.2) and they are denoted by a subscript index (Shufrin et al 

2008).

 
 

 

Figure 3.2 Boundary conditions (Shufrin et al 2008) 

 

 

3.3. NKQ Equations 

As it was mentioned in Section 3.1 NKQ method is recently proposed by Saberi-

Najafi and Heidari (2010) for solving nonlinear equations in Urysohn form. This 

technique is used in this research to solve nonlinear equations of composite materials. 

Here, The NKQ method and related equations are presented. The nonlinear integral 

equation in the Urysohn form is defined as (Saberi-Nadjafi and Heidari 2010): 

 

       bxadttytxKxfxy   ,,          (3.9) 

 

If ),( xa , it is named a nonlinear Volterra integral equation and if ),( ba , it 

is named the nonlinear Fredholm integral equation. To approximate the right-hand 

integral in Eq. (3.9), the usual quadrature methods similar to the ones used to 

approximate the linear integral equations that lead to the following nonlinear systems 

for Fredholm and Volterra equations are used, respectively. For further information on 
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quadrature methods in this respect, see (Atkinson 1995, 1997; Baker et al. 1982; Delves 

et al. 1985; Saberi-Nadjafi and Heidari 2010; Jerri 1999; Kondo1991; Kytheet al. 2002). 
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where swij
and sw j

 are weights of the integration formula.

 
In the Newton-Kantorovich method, an initial solution for )(xy  is considered. The 

following iteration method is used to solve the following sequence of linear integral 

equations instead of a nonlinear integral equation. For further information on the 

Newton-Kantorovich method, see Appell et al. 1991; Saberi-Nadjafi and Heidari 2010; 

Polyanin et al. 2008). 
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where    ytxK
y

ytxK y ,,,,



 .

 

In the NKQ method which is used, equations (2.23-2.25) are combined by Saberi-

Najafi and Heidari (2010) to solve the nonlinear integral equations.  

 

3.4. Applying the NKQ Method 

In order to be able to use the NKQ method for composites, the composite constitutive 

equations should be in a format which can be used by the NKQ method. Therefore, 

here, the form of the integral equations that can be solved by the NKQ method is 

explained and then the composite constitutive equations are represented in the same 

format. The general form of the nonlinear integral equations of the Urysohn form is: 
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By considering the equations (3.10-3.12) and by integrating )(1 xk  with 

)()( 1 xyxy kk  : 

 

   

      

       

































i

j

jkjkjkjiyij

i

j

jkjiijii

k

nixyxyxyxxKw

xyxxKwxfxy

xfxy

0

11

0

1

00

,...,2,1,,

,,               (3.14) 

 

Consider: 
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This equation can be solved by considering an initial solution )(0 xy  and constructing 

the )0()0()0( ,, FAY  and also using the following repetition sequence: 

 
 

       nkFYAI kkk ,...,2,111          (3.18) 
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On the other hand, by considering an initial solution )(0 xy , 
iY )( )0( would be )(0 ixy  

and by using equation (3.15) and (3.16) )0()0( , AF  are obtained respectively. Then by 

solving the system       010 FYAI  , )1(Y  is obtained. By repeating this procedure and 

then using equation (3.18), the values of )()3()2()1( ,...,, mYYYY  are calculated for Nm .  

m is a constant value which can be increased for higher n. Depending on n  an 

approximate solution for equation (3.9) is presented. Noticeably, by increasing m , the 

solution tends to be more accurate with respect to n. However it is shown that to achieve 

good results it is not necessary to increase m  significantly.  

Here the composite constitutive equations should be present in a format that can be 

solved by NKQ method.  This format is derived from the general basic equations for 

laminated composite plates (Reddy 2004). How to derive the NKQ model for laminated 

composites is explained by Khandan et al. (2012). (Appendix A4) 

 

3.5. Verification Study 

In order to verify the NKQ method a number of numerical examples are solved and 

compared with previous research. In the first example, a four layer glass/epoxy laminate 

[0, 90]s with the following ply properties (Herakovich 1988) is studied: 

 

GPaGGPaGG

vGPaEEGPaE

12.445.34.

,27.,5.11,5.43

23131223

1312321








      (3.19) 

 

The plate is a square with 0.5m length and 0.01m thickness and it is fixed on one side 

and uniform distribution loadings (under its weight). A trigonometric function is chosen 

for initial guess ( )/sin()(0 lxxy  ). It is shown in Figure (3.3) that it is converged after 

five iterations. Aghdam and Falahatgar (2003) used an Extended Kantorovich method 

EKM for analysing the thick composite plate. By choosing a trigonometric function as 

an initial guess, the model converges after 4 iterations. 
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Figure 3.3 Convergence of NKQ method 

 

 

In Table (3.1) the number of iterations, which are needed for convergence, for three 

different initial functions are shown. As it is mentioned earlier the initial guess does not 

have to satisfy the boundary conditions, so any initial function can be selected. 

Furthermore, as it is shown in Table (3.1) that the NKQ method is almost as quick as 

EKM and does not significantly depend on the initial value. The proposed model 

potentially can be used for more complicated cases such as out of plane loading and 

different boundary conditions. However, it increases processing time dramatically. 

Therefore as it was mentioned earlier, it is not practical to use this model to solve the 

complex composite problems.    

 

Table 3.1 Number of iteration for convergence of NKQ and EKM 

Initial guess 
Number of iteration in order 

to converge for NKQ 

Number of iteration in order 

to converge for EKM 

(Aghdam, Falahatgar 2003) 

Trigonometric function  

)sin()(0 xxy   

 

5 

 

4 

Polynomial function  

2

0 1)( xxxy   

 

4 

 

NA 

Exponential function 

)()(0 xexy   

 

4 

 

NA 
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In the next study the material properties are: 

 

GPaGGPaGG

vGPaEEGPaE

1.24.528.

,17.,6.23215

23131223

1312321









        

(320) 

 

The plate is a square and each length is 0.25m, the thickness is 0.006m and the lay 

ups are [0, 90, 0]s. In Table (3.2) the relative error between the NKQ method and 

FEM (Further details of FEM and how it is applied in this research is explained in the 

next chapter) for different numbers of iterations are shown for a plate clamped on one 

side (C) and free (F) on the other three sides (CFFF). This example was then repeated 

for SSSS (simply supported on all sides) and CCCC boundary conditions and the results 

are shown in Tables (3.3) and (3.4) respectively.  

 

 

Table 3.2 Relative error for CFFF boundary condition  

Number of iterations 1 2 3 4 5 6 7 8 9 10 

Relative error (%) for u 29.4 8.3 3.4 1.9 1.1 0.6 0.3 0.1 0.0 0.0 

Relative error (%) for v 34.5 9.2 5.1 2.1 1.2 0.8 0.3 0.1 0.0 0.0 

Relative error (%) for w 53.4 11.3 5.4 2.1 1.2 0.8 0.4 0.2 0.0 0.0 

 

 

Table 3.3 Relative error for SSSS boundary condition  

Number of iterations 1 2 3 4 5 6 7 8 9 10 

Relative error (%) for u 25.4 9.1 3.9 1.9 1.2 0.7 0.4 0.1 0.0 0.0 

Relative error (%) for v 47.2 11.0 5.6 2.5 1.5 1.0 0.5 0.2 0.1 0.0 

Relative error (%) for w 76.6 21.2 7.0 2.9 1.5 0.9 0.5 0.2 0.1 0.1 
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Table 3.4 Relative error for CCCC boundary condition  

Number of iterations 1 2 3 4 5 6 7 8 9 10 

Relative error (%) for u 92.2 30.4 14.1 8.3 5.3 3.2 1.8 1.0 0.4 0.1 

Relative error (%) for v 63.8 19.2 9.2 5.1 3.7 1.9 0.9 0.4 0.1 0.0 

Relative error (%) for w 77.1 24.5 11.1 6.6 4.9 2.2 1.3 0.7 0.3 0.1 

 

 

In Table (3.5), the dimensionless deflection at the centre of the plate is compared 

between FEM, multi-term extended Kantorovich method (MTEKM) and NKQ method 

under different levels of loads (Shufrin  et al. 2008). As shown, the NKQ results 

generally show a reasonable agreement with FEM. Semi-analytical models (MTEKM 

and NKQ) illustrate less than 3% error. The structure is a square plate with CFCC 

boundary conditions. The angle-ply laminated plate has four symmetric layers [45, -45]. 

 

Table 3.5 Dimensionless hW for CFCC square laminated plate under different loads 

Q MTEKM (W) 

(Shufrin  et al. 2008) 

NKQ (W) ABAQUS %MTEKM Error 

(Shufrin  et al. 2008) 

%NKQ 

Error 

2488 .746 .741 .763 2.23 2.88 

4975 1.092 1.090 1.115 2.05 2.24 

7463 1.328 1.325 1.335 2.02 1.50 

9950 1.512 1.559 1.541 1.81 1.16 

12438 1.667 1.667 1.695 1.66 1.66 

14925 1.800 1.802 1.827 1.54 1.36 

17413 1.919 1.913 1.947 1.43 1.74 

19900 2.027 2.025 2.053 1.33 1.36 

 

 

This technique is also used to propose a semi-analytical model for buckling of 

composite structures which is explained in appendix (A2). 

 

3.6. Summary 

In this chapter semi-analytical models are explained and a new semi-analytical model 

by using the Newton-Kantorovich-Quadrature method is proposed. The key advantage 

of this method, compared to EKM, is that it can potentially be used for more 
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complicated cases such as out of plane loading and different boundary conditions with 

the expense of increasing processing time. The non-linear equations are solved by the 

Newton-Kantorovich-Quadrature (NKQ) method. This method breaks down the 

laminated composite plate equations into a series of sequential equations and attempts 

to solve iterative integral equations. The convergence of the proposed method is 

compared with other semi-analytical methods (EKM and MTEKM). Various numerical 

examples with different boundary conditions and loadings are studied. Good agreement 

between the NKQ model and FEM results are shown to validate the model. 

Originally the aim of investigating semi-analytical model was to find a semi-

analytical method which is able to model the laminated composite plates for out of 

plane loading and considering the transverse shear effect. The proposed model 

theoretically can be used for this purpose. However, higher processing time and lower 

accuracy are two critical disadvantages of this semi-analytical model in comparison 

with numerical models and make this model impractical. Therefore, this model is not 

used in this research; however, as numerical methods are using the results of the 

analytical and semi-analytical equations, any improvement in analytical and semi-

analytical models potentially leads to developing better numerical methods. 
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CHAPTER 4: 

 

FEM Modelling, Programming and 

Experimental Results 
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4. FE Modelling, Programming and Experimental Results 

Abaqus FEA package (version 6.10) is used in this chapter to simulate laminated 

composite plates. The steps which are taken in Abaqus are explained and short 

description of different parts of Abaqus, which are used in this research to simulate the 

composite panel, are presented. Also, Python programming is overviewed as this is the 

link with Abaqus and the final program in this research is written by Python. In order to 

validate the FE results, some experimental tests have been performed. Some essential 

notes about the methods of making composites and the materials are studied and finally 

the results of FE and experimental tests are presented. 

 

4.1. Finite Element 

The approximate analytical and semi-analytical methods discussed in Chapter 2 and 

3 are often inadequate for assessment of stress and strain in composite structures. The 

procedure and computation become very time-consuming (almost impossible) when 

multilayer laminates are involved. A common feature of all analytical methods is that 

they can only be used for the simple problems (in terms of loadings, boundary 

conditions and geometries). For thick composite structural laminates, the solution for 

3D problem is extremely complicated. Thus a variety of numerical methods, e.g., finite 

difference and finite element, have been developed to calculate these interlaminar 

stresses. These models not only give the option of placing an optional mesh close to 

regions of possible stress concentration but also are able to be used for the accurate 

evaluation of laminated composite structures having complex geometry, loading and 

different boundary conditions (Kant and Swaminathan 2000). 

The finite element method is a powerful computational technique for the solution of 

differential and integral equations that arise in various fields of engineering and applied 

science. This method is a generalisation of the classical variational (i.e., Ritz) (Reddy 

2004) and weighted-residual (e.g., Galerkin, least-squares, etc.) methods (Reddy 2004). 

Since most real-world problems are defined on domains that are geometrically complex 

and may have different types of boundary conditions on different portions of the 

boundary of the domain, it is difficult to generate approximation functions required in 

the traditional variational methods. The basic idea of the finite element method is to 

view a given domain as an assemblage of simple geometric shapes, called ”finite 

element”, which it is possible to systematically generate the approximation functions 
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needed in the solution of differential equations by any of the variational and weighted-

residual methods. The ability to represent domains with irregular geometries by a 

collection of finite elements makes the method a valuable practical tool for the solution 

of eigenvalue problems which are existing in various fields of engineering and science. 

It is important to note that any numerical or computational method is a tool to 

analyse a practical engineering problem and that analysis is not an end in itself but 

rather an aid to design. The value of the theory and analytical solutions is presented in 

the preceding chapters, in order to gain insight into the behaviour of laminated 

composite plates. Here, the numerical modelling of composite plates is presented to 

help the designer for faster and more accurate analysis of composite plates. However, 

those who are quick to use a computer rather than think about the problem to be 

analysed may find it difficult to interpret or explain the computer-generated results. 

Even to develop proper input data to a computer program requires a good understanding 

of the underlying theory of the problem as well as the method on which the program is 

based.  

Many studies exist on the modelling and analysis of laminated composite plates and 

shells using a 2D finite element. Each method is looking from a different perspective 

and tries to solve a specific problem. An overview of 2D FE models without evaluating 

them in depth is presented, as FE is just used as a tool in this research and is not the 

main aim of this work.   

Reddy (1985) presented an overview of the literature on FE modelling of laminated 

composite plates. In his work only research up to the year 1985 were included. Kapania 

(1989) gave a review of studies up to the year 1989 on the analysis of laminated shells.  

Engblom et al. (1989) presented a model in which a shear deformable element is 

considered in a parametric plate and shell element with respect to the shear effects by 

allowing mid surface displacements to be independent of the rotations. The model is 

based on 8-noded quadrilateral geometries with 4 corner nodes and 4 mid-side nodes 

located at the mid surface of the element with 6 dof per node. The displacement field is 

expressed in the following form: 

 

      
      
      yxnyxnztyxwtzyxw

yxnyxnztyxvtzyxv

yxnyxnztyxutzyxu

yyxx

zxyz

zyxz

,,),,(,,,

,,),,(,,,

,,),,(,,,

0

0

0













 

           (4.1) 
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where 000 ,, wvu  are the mid-plane displacements respectively and 
zyx  ,,  are the 

surface rotations. The transverse stresses are found out by using equilibrium equations 

and Guass Quadrature is used to obtain the integration within each layer. Hamdallah 

and Engblom (1990) presented a similar model. However, the plate element developed 

includes shear effects. Also, the main aim of this model was to analyse 3D structures 

they introduced a 6th DoF to represent rotations normal to the plane of the element. 

Their model was an 8-noded quadrilateral plate element with 5 DoF at each of the mid-

side and corner nodes. The displacements are similar to Equation (2.9). They used the 

equilibrium equations for calculating the transverse stresses.  

Manjunatha and Kant (1992) formulated stiffness matrix for finite elements based on 

a set of higher-order theories which considers the effect of transverse shear deformation, 

transverse normal strain and non-linear variations of in-plane displacements. Therefore, 

there is no need for shear correction coefficients. The various higher-order theories used 

in their study are summarised below in the increasing order of their DoFs (Kant and 

Swaminathan 2000).  

 

Higher-order shear deformation theory (HOST 5 dof/node) 
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                  (4.2) 

 

Higher-order shear deformation theory (HOST 6 dof/node) 
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Higher-order shear deformation theory (HOST 7 dof/node) 
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Higher-order shear deformation theory (HOST 9 dof/node) 
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Higher-order shear deformation theory (HOST 11 dof/node) 
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Higher-order shear deformation theory (HOST 12 dof/node) 
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                     (4.7) 

 

where u, v and w are the displacements of a general point (x, y, z) in the laminate in the 

x, y and z directions, respectively. The parameters 000 ,, wvu  and 
zyx  ,,  are the 

appropriate 2D terms in the Taylor series and are defined in x-y plane at z=0. The 

parameters *

0

*

0

*

0 ,, wvu  and 
*** ,, zyx   are higher-order terms in the Taylor's series 

expansion which are difficult to interpret in physical terms, except that they represent 

higher-order transverse cross-sectional deformation modes.  

Wu and Kuo (1993) presented a method based on the local higher-order lamination 

theory to analyse thick laminated composite plates. In their theory, the displacement 

continuity at the interface between layers is described by considering the potential 

energy functional of the laminates and applying Lagrange multipliers. The Lagrange 

multipliers are defined to be the interlaminar stresses (
zyzxy  ,, ) at the interface 

between layers. The modified potential energy functional which is presented in this 

model is: 
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              (4.8) 
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where 
zyx TTT ,,  are the tractions applied at upper surfaces and i is the i

th
 layer. The 9 

nodal unknowns in this model are the 3 displacements, 3 rotations and 5 higher-order 

functions. The local displacement fields are described as: 
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              (4.9) 

 

yxzyx  ,,,,  are the suitable higher-order functions. z is always measured from the 

middle surface of the i
th

 layer. Di-Sciuva’s zig-zag model (Di-Sciuva 1993) was 

explained in Chapter 2. This model is later used in FE. The basic equations were: 
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where, 

 









 2

23

4
)( z

h
zzf rF                 (4.11) 

 

iY  is the Heaviside unit function; it takes a value of 0 for kzz  and the value 1 for 

kzz  . rF  ,  are tracers which identify the contribution brought by the various plate 

models. This model developed a 4 noded quadrilateral plate element with 10 dof/node 

using an improved zig-zag model. The displacement field allows a non-linear variation 

of the in-plane displacements through the laminate thickness and fulfils a transverse 

stress continuity condition at interfaces. Also, the model satisfies the static condition of 

zero transverse shear stresses on the bottom and top surfaces for symmetric laminates. 

The plate model used is based on the following representation of the displacement field 

across the plate thickness. 
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Noor et al. (1994) presented a computational model based on FSDT for accurate 

determination of transverse shear stresses and their sensitivity coeffcients in laminated 

composite panels for thermal and mechanical loads.  

Bose and Reddy (1998) presented FEM of various shear deformation theories for the 

evaluation of composite plates and also compared transverse displacements and through 

the thickness distributions of transverse stresses and in-plane stress. Another model 

which decreases the order of differentiation by one as compared to the standard 

equilibrium approach was shown by Rolfes et al. (1998). The model needs only 

quadratic shape functions for analysing the required derivatives at the element level and 

also the computational effort is low since it must only have stiffness continuity in shape 

functions in the FE code.  

 Abaqus software is used to perform the FEA for the tests. Further details of the finite 

element equations and formulas can be found in (Kant and Swaminathan 2000; Reddy 

2004). 

 

4.2. Abaqus 

Abaqus is FEA software with the ability to solve a wide variety of problems and 

simulate them in order to avoid the expense of manufacturing and prototype making. 

Abaqus is used in the aerospace and automotive industries widely. It is used in this 

work due to its wide material modelling capability. Abaqus also provides a good 

collection of multiphysics capabilities, such as piezoelectric, shape memory alloys and 

coupled acoustic-structural, making it attractive for production-level simulations where 

multiple areas need to be joined. It was originally released in 1978. It has also been 

widely used in research of composite materials, as it is accurate and it is an open-source 

software which gives the option to users to customise the software.  

Figure (4.1) shows the components and the main window appearance of Abaqus 

(Abaqus 6.10). Furthure details of each component are explained in Appendix (B1). 

 

 



71 

 

 

Figure 4.1 Components of the main window (Abaqus 6.10) 

 

 

4.2.1 Parts 

The first step to model the laminate composite plate is to model the plate. From the 

Model Tree, Figure 4.1, shell part is chosen. In the Parts components the dimension of 

the panel is defined. As a laminate composite plate is to be modelled, there is no need to 

define the thickness of the plate at this stage. The thickness of the plate is calculated 

automatically when identifying the laminate lay-ups. The thickness of each layer is 

defined and the total thickness of the plate will be the total thickness of the layers.  

 

4.2.2 Materials 

The next step in the Model Tree is to define the materials and the lay-ups for 

laminated composite plate. Composite layups in Abaqus are designed to user to manage 

a large number of plies in a typical composite model. Designers might find it 

increasingly difficult to define the model by increasing the number of plies. It can also 
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be cumbersome to add new plies or remove or reposition existing plies. The Abaqus 

composite layup editor allows designers to easily add a ply, choose the region to which 

it is applied, specify its material properties, and define its orientation. It is also able to 

read the definition of the plies in a layup from the data in a text file. This is convenient 

when the data are stored in a spreadsheet or were generated by a third-party tool. 

It is important to specify the correct orientation of the fibres in a ply. Abaqus allows 

us to define a reference orientation for the layup as well as a reference orientation for 

each ply in the layup. In addition, we can specify the direction of the fibres in a ply 

relative to the reference orientation of the ply. By default, the coordinate system of a 

layup is the same as the coordinate system of the part; similarly, the coordinate system 

of a ply is the same as the coordinate system of the layup. Figure (4.2) shows the Edit 

Composite Layup window in Abaqus for one example. For this example, 4 plies are 

defined. 2 layers are with fibre orientations of +90 degrees and the other two with fibre 

orientations of +45 degrees. As it can be seen in Figure (4.2), the name of each ply can 

be given in ply name box. Also, in the region column, the part which these plies apply 

to is chosen. Each ply can be applied only on one part. In our case as there is only one 

plate, all the layers applied on part which is explained before. For each layer, the 

thickness, reference axes and fibre orientations can be defined in Thickness, CSYS and 

Rotation Angle tabs respectively. By right clicking on each layer, these parameters can 

be edited and also the plies can be copied, cut, pasted, moved up/down which makes 

this window really easy to work with by users. 

Materials are selected for each layer by clicking on the Material tab which lead to 

another window (Figure 4.3). Depending on the problem, the user can consider one type 

of material. In this case as the laminated composite plate is simulated, the Lamina is 

selected. 
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Figure 4.2 The ply table in the composite layup editor 

 



74 

 

 

Figure 4.3 Input material properties 

 

 

4.2.3. Mesh/Element 

The next step is to mesh the laminated composite plate. As the plate does not have a 

complex shape (simple panel) the automatic meshing which is suggested by Abaqus is 

acceptable here. (The appropriate manual meshing must be considered for more 

complicated structures.) Choosing the appropriate element for a composite plate is 

essential. A wide range of elements is available in Abaqus. This extensive element 

library provides a powerful set of tools for solving many different problems. Each 

element in Abaqus has a unique name, such as T2D2, S4R, or C3D8I. The element 

name identifies each of the aspects of an element. Figure (4.4) shows the element 

families most commonly used in a stress analysis. One of the major distinctions 

between different element families is the geometry type that each family assumes. For 

composite material analysis, the shell element is used in this research which is the most 

common element to analyse laminated composite plates. 
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Figure 4.4 Commonly used element families (Abaqus 6.10) 

 

The degrees of freedom (dof) are the fundamental variables calculated during the 

analysis. For a stress/displacement simulation the degrees of freedom are the 

translations at each node. Some element families, such as the beam and shell families, 

have rotational degrees of freedom as well. 

Shell elements are used to model structures in which one dimension (the thickness) is 

significantly smaller than the other dimensions. In Abaqus general three-dimensional 

shell elements are available with three different formulations: general-purpose, thin-

only, and thick-only. Table (4.1) summarises the shell elements available in Abaqus. 

 

Table 4.1 Three classes of shell elements in Abaqus 

General-Purpose Shells S4, S4R, S3/S3R, SAX1, SAX2, SAX2T, SC6R, SC8R 

Thin-Only Shells STRI3, STRI65, S4R5, S8R5, S9R5, SAXA 

Thick-Only Shells S8R, S8RT 

 

The three-dimensional elements in Abaqus whose names end in the number “5” (e.g., 

S4R5, STRI65) have 5 degrees of freedom at each node: u, v, w and two in-plane 

rotations (i.e., no rotations about the shell normal). However, all six degrees of freedom 

are activated at a node if required; for example, if rotational boundary conditions are 

applied or if the node is on a fold line of the shell. In this work S4R5 and S9R5 
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elements are used, as these elements are suggested for stress-strain analysis of laminate 

composite plates in Abaqus. 

 

4.2.4. Boundary Conditions/Loading 

In the Model Tree loading and boundary conditions can be defined in Loads and BCs 

respectively. In this research the plate is under uniform distributed loads (pressure). In 

order to experimental results match the FEA, this load is considered to be equal to the 

weight of the plate which is manufactured. The final model is shown in Figure (4.5). As 

it is shown in Figure (4.5), in this case the plate is fixed (clamped) in one side and it is 

free on the other sides. 

 

 

 

Figure 4.5 Loads and Boundary condition for the laminate composite plate (the plate is fixed in side 

a and it is free in side b) 

 

 

4.2.5. Submitting the Job 

The final step is to submit the created model as a new job to Abaqus. By clicking the 

jobs box from Analysis Tree, choosing a name for the job and the location to save the 

results, the job can be submitted. Two examples of the FEA simulation of the plate are 

shown in Figures (4.6) and (4.7).  
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Figure 4.6 FE simulation deformation results for 4 layers plate [45 -45 0 90] 

 

 

Figure 4.7 FE simulation deformation results for 4 layers plate [45 -90 -45 45] 

 

 

4.3. Python 

In Section 4.2, how to simulate the laminated composite plate in Abaqus is 

explained. As was mentioned, the fibre orientation in each layer can be changed from -

90 to +90 degrees. The aim of this work is to find the best combination of fibre 

orientations for laminated composite plate depending on design requirements. On the 

other hand, if designer has a laminated composite plate under certain loads and the plate 

must have certain behaviour (deformation); what are the suitable fibre orientations for 

the layers of this plate.  

In order to answer this question, it is necessary to analyse the laminated composite 

plate for all the possible fibre orientations and save these results on a database to be able 
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to find the best fibre orientations from this database. It means that fibre orientations 

must be changed from -90 to +90 degrees for each layer. This change should be 

undertaken for all the layers. The number of simulation tests which are needed is shown 

in equation (4.12) 
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where    is number of simulation tests which are needed,     is the step changes in fibre 

orientation and   is the number of layers. For example, the number of tests for 4 layer 

laminated composite plate, when the fibre orientation changes by 2 degrees is: 

 

360
2

4180



 

 

When the number of plies increases and/or     decreases, the number of tests which 

must be simulated, increases. It is almost impossible to set up the simulation tests and 

run these many tests manually. Therefore, a program is written in Python to perform 

these simulation tests by automatically changing the fibre orientations for plies and save 

the results. 

Python is a powerful programming language. It has efficient high-level data 

structures and a simple but effective approach to object-oriented programming. Rather 

than needing all the desired functionality to be completely built into the language's core, 

Python is designed to be highly extensible. Also, built-in modules can be written in C or 

C++. Python can also be used as an extension language for existing modules and 

applications that require a programmable interface such as Abaqus. The following chart 

shows the Abaqus scripting interface commands (Figure 4.8). Further details on 

programming in Python and the command which are used in this research programming 

is explained in Appendix (B2). 
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Figure 4.8 Abaqus Scripting Interface commands 

 

 

After writing a Python program to run iteratively for a laminated composite plate for 

all different possible fibre orientations the program is expanded and modified in order to 

be able to be used as a design tool for laminated composite plate. The interface of this 

tool is shown in Figure (4.9) 
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Figure 4.9 Laminated composite plate tool 

 

The input parameters are shown in Figure (4.9). This tool is directly linked with 

Abaqus. The inputs are regarding the material, geometry and loads where the first two 

are entered in the tool and the loads and boundary conditions can be defined in the 

Abaqus program. The output of this tool is a database which contains the results of FEA 

for all possible fibre orientations, in separate files (the result of each combination of 

fibre orientations for layers is saved in one file). Figures (4.10) and (4.11) show two 

different outputs of these files. Later, this database can be used to select, optimise and 

generally design laminated composite plate. This design can potentially be used by 

optimising for loads, geometry, thickness or induced twist depending on requirements. 

The details of the program are explained in Appendix (C). 
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Figure 4.10 Output of the design tool; this notepad file shows the displacement for some nodes of 

laminate composite plate with the fibre orientations of [0 45 -45 0] 
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Figure 4.11 Output of the tool this notepad file shows the displacement for some of the nodes on 

free side of the laminate composite plate with the fibre orientations of [90 -90 0 90] 

 

 

4.4. Experimental tests 

To find how accurate the results of FEA are in comparison with actual 

behaviour of laminated composite plates and in order to validate the FE results, 

a series of experimental tests have been performed. In addition, validating the 

model, helps us to rely on the FE results in more complicated cases which are 

quite hard to test practically. 

 

4.4.1 Composite Properties 

Here, some of the properties of composite material and materials which have been 

used in the experimental tests in this research are explained. In order to understand the 

properties of the final composite material it is necessary to examine more closely how 

the properties of the resin matrix and fibre components combine. Figure (4.12) 

illustrates the stress/strain curves for a typical composite laminate and its fibre and resin 

components. 
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Figure 4.12 Stress/Strain curve of composite components (Gurit 2012) 

 

 

It can be seen that the properties of the composite fall between those of the fibre and 

the resin. As the fibre content of the composite increases, the closer its properties will 

tend towards those of the pure fibre. Note also that for the fibres to be able to achieve 

their full mechanical properties, the resin must be capable of deforming to at least the 

same extent as the fibre. The amount of this deformation before failure occurs is known 

as the elongation to break. Different materials have different elongation to break values. 

Those for the reinforcements E-glass, S-glass, Aramid and carbon are shown in Figure 

(4.13). 
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Figure 4.13 Elongation to break curve of fibre reinforcements (Gurit 2012) 

 

4.4.2 Resin  

Resin used in a composite material needs good mechanical properties such as 

toughness, resistance to environmental degradation and good adhesive properties.  Here, 

we just consider the mechanical properties of the resin system. Figure (4.14) shows the 

stress/strain curve for an ideal resin system. The graph for this specific resin shows a 

high elongation to break, high stiffness and high ultimate strength which means that the 

resin is initially stiff but at the same time will not suffer from brittle failure. 
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Figure 4.14 Stress/Strain resin curve (Gurit 2012) 

 

High adhesion between reinforcement fibres and resin is essential for any resin. This 

is to ensure that the loads/forces are transferred completely and also to avoid cracking or 

fibre/resin debonding when stressed which leads to delamination. The stress/strain curve 

of the resin also illustrates the materials stiffness. The elongation values describe the 

resins ability to deform under load, both shock loads and static. The more deformation 

the resin accepts before failure (its elongation to break) the tougher the material is.  

The resins in fibre reinforced composites are sometimes called polymers. Polymers 

can be categorised in two types, thermosetting and thermoplastic, depending on the 

effect of heat on their material properties.  

Thermoplastics, like metals, are either soft or hard subject to the temperature. They 

harden with cooling and soften with heating. This process of crossing the softening 

point on the temperature scale can be repeated as desired without any appreciable effect 

on the material properties. Typical Fibre Reinforced Thermoplastics would be glass 

filled nylon and glass filled polypropylene.  

Thermosetting materials, however, are the result of a chemical reaction, where the 

resin and hardener (or resin and catalyst) are mixed and then undergo a non-reversible 

chemical reaction to form a hard, infusible product. In some thermosetting materials, 

such as phenolic resins, volatile substances are produced. Other resins such as polyester 

and epoxy cure by mechanisms that do not produce any volatile by products and thus 

are much easier to process.  
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There are three main types of resins which have widely been used in the composites 

industries; polyester, vinylester and epoxy. 

For the experimental tests in this research epoxy is used for the following reasons: 

 

 Epoxies generally have better performance compared to all other resin types in 

terms of mechanical properties and resistance. 

 Epoxy is environment friendly and produce considerably less volatile by 

products in comparison with polyester and vinylester. Therefore, it is safer to 

work with epoxy compared to other resins. 

  Adhesive properties and resistance to water degradation make these resins ideal 

for use in the composites industry and especially in marine applications. 

  

The adhesion of the resin matrix to the fibre reinforcement is important. Polyester 

resins generally have the lowest adhesive properties of the three systems described here. 

Vinylester resin shows improved adhesive properties over polyester but epoxy systems 

offer the best performance of all. As epoxies cure with low shrinkage the various 

surface contacts set up between the liquid resin and the adherents are not disturbed 

during the cure. Another case where the adhesive properties of epoxy become really 

useful is in honeycomb core laminates where the small bonding surface area means that 

maximum adhesion is needed. Figures (4.15) and (4.16) compare the tensile strength 

and stiffness of three different resins. 

 

 



87 

 

 

Figure 4.15 Comparative tensile strength of resins (Gurit 2012) 

 

 

 

Figure 4.16 Comparative stiffness of resins (Gurit 2012) 

 

The epoxy in this research is the combination of resin SP106 and hardener SP106 

which is mixed in a ratio of 5 to 1. (Figure 4.17) 

 

 



88 

 

 
Figure 4.17 Resin and hardener SP106 

 

 

Figure (4.18) shows a sample of resin after mixing with hardener and becomes solid. 

 

 

 
Figure 4.18 Resin SP106 after become solid  

 

4.4.3 Fibres 

The materials used for reinforcement have very high tensile and compressive 

strength, but in bulk, these properties are not obvious because small numbers of random 

surface flaws in the material cause it to fail under load much earlier than would be 
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predicted from theory. To overcome this problem the materials are manufactured in the 

form of fibres, because the number of random flaws is few these will appear on only a 

small number of fibres, so that the majority of fibres exhibit the theoretical properties of 

the material. To maximise this effect even further, the fibres must be kept apart from 

each other to prevent the introduction of further flaws from fibre/fibre abrasion. This is 

one of the basic functions of the matrix system.  

The mechanical properties of a composite are largely dictated by the fibre 

reinforcements and their orientations. High reinforcement content produces high 

strength (although not necessarily high stiffness). For an efficient composite the 

elongation of the fibre must be less and its stiffness must be higher, than that of the 

matrix. Stress transfer along the fibre/matrix interface is particularly important, and 

there are various methods and procedures for achieving the best possible fibre/matrix 

bond for a particular combination of fibre and matrix. If it is provided by a commercial 

company, they normally consider this and it can be bought together.  

Fibre diameter is also important as smaller diameter fibres provide higher surface 

area of fibre per unit weight which spreads any fibre/matrix interface load. In general, 

regardless of fibre chemical type, the finer the fibre, the more expensive per kg it will 

be.  

In comparison with other type of fibres, carbon fibre is the most common one which 

has been used in different industries. It is produced by a very controlled oxidation and 

carbonisation of carton-rich organic precursors which are already in fibre form. Once 

they were formed, the carbon fibre has a surface treatment or size applied. This is to 

increase the matrix/fibre bond in the composite and to protect it during handling.  

Carbon fibre was first produced in 1971 in the UK at which time the world annual 

production capacity was about 1/2 a tonne and the price was about £200/kg. In 1996 the 

annual capacity was about 7000 tonnes in the world and the price for the equivalent 

(high strength) grade was about £25/kg.  

The usual distinction of grades is high strength, high modulus, intermediate modulus 

and very high modulus. The filament diameter of all types is about 7 microns. 

Considering Table (4.2), although carbon fibres are relatively expensive and are not as 

good as Aramid in impact strength, they are much better in all other properties such as, 

tensile and compressive strength, flexural modulus and fatigue. Therefore, carbon fibre 

is used in this research. The sample of unidirectional carbon fibres (UT-C300/500) 

which is used in this work is shown in Figure (4.19). 



90 

 

 

 

Table 4.2 Advantage and disadvantage of fibres (A=Excellent B=Average C=Poor) 

Property Aramid Carbon Glass 

Tensile Strength    B A B 

Tensile Modulus    B A C 

Compressive Strength  C A B 

Compressive Modulus B A C 

Flexural Strength    C A B 

Flexural Modulus    B A C 

Impact Strength    A B B 

In-plane Shear Strength  B A A 

Density    A B C 

Fatigue    B A C 

Low Cost  C C A 

 

  

  
Figure 4.19 unidirectional carbon fibres (UT-C300/500) 
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4.5. Manufacturing Process 

There are many different material options to choose as composite materials. From 

fibres, cores and resins, where each one has its own unique set of properties such as 

stiffness, toughness, strength, heat resistance, production, rate cost, etc. However, the 

final properties of a composite part produced from these different materials are not only 

a function of the individual properties of the resin matrix and fibre but are also 

dependent on the way that the materials themselves are designed into the products and 

the way that they are processed. 

Wet lay-up (hand lay-up) is the basic manufacturing process which is used in this 

work. 

In this process resins are soaked into fibres which can be in the form of knitted, 

unidirectional, woven or bonded fabrics, by hand. This will normally have been done by 

rollers or brushes, with a special type of roller (nip-roller) to impregnate resin into the 

fabrics better. Then laminates are left to cure under standard atmospheric conditions.  

In this process any kind of resins and fibres can be used. However, Aramid fabrics 

are not suggested as they can be hard to wet-out by hand. This method is widely used in 

the production of boats, standard wind-turbine blades and architectural mouldings.  

Advantage and disadvantage of this method is listed in Table (4.3) (Gurit 2012). 

 

 

 

 

 

 

 

 

 

 

 



92 

 

Table 4.3 advantages and disadvantages of Hand lay-up method 

Advantages   

 Simple principles to teach 

 Widely used for many years 

 Low cost tooling  

 Wide choice of suppliers and material types  

 Higher fibre contents, and longer fibres than with spray lay-up 

Disadvantages  Resin mixing, laminate resin contents, and laminate quality are very 

dependent on the skills of laminators.  

 Low resin content laminates cannot usually be achieved without the 

incorporation of excessive quantities of voids.  

 Health and safety considerations of resins. The lower molecular weight 

of hand lay-up resins generally means that they have the potential to be 

more harmful than higher molecular weight products. The lower 

viscosity of the resins also means that they have an increased tendency 

to penetrate clothing etc.  

 Resins need to be low in viscosity to be workable by hand. This 

generally compromises their mechanical/thermal properties due to the 

need for high styrene levels. 

 

 

In order to improve the process, the Vacuum bagging process is normally considered 

for hand lay-up. Vacuum bagging is an extension of the wet lay-up process, where 

pressure is applied to the laminate once laid-up in order to improve its consolidation. 

This method is used in this research and samples are made by the vacuum bagging 

process. Vacuum bagging is performed by sealing a plastic film over the wet laid-up 

laminate and onto the tool. Air under the bag is extracted by a vacuum pump and thus 

up to one atmosphere of pressure is applied to the laminate to consolidate it. By 

applying this process, the laminate cures relatively faster and also the resin is spread in 

the laminate almost equally. In this process, extra resin will be absorbed from the 

laminate, it also results in a better volume fraction of fibre to resin. The main 

applications are, race car components, core-bonding in production boats and large one-

off cruising boats. Advantages and disadvantages of this method are listed in Table 

(4.4). There are other manufacturing processes for composites which are explained and 

compared in Appendix (B3) (Gurit 2012) 

 



93 

 

Table 4.4 advantages and disadvantages of vacuum bagging method 

Advantages   

 Higher fibre content laminates can usually be achieved than 

with standard wet lay-up techniques.  

 Lower void contents are achieved than with wet lay-up.  

 Better fibre wet-out due to pressure and resin flow into 

bagging materials.  

 Health and safety: The vacuum bag reduces the amount of 

volatiles emitted during cure.  

 

Disadvantages  The extra process adds cost both in labour and in disposable 

bagging materials A higher level of skill is required by the 

operators  

 Mixing and control of resin content still largely determined by 

operator skill.  

 

 

All the samples in this research are manufactured by the vacuum bagging process. In 

vacuum bagging, like other composite manufacturing processes, using a release agent is 

essential. Before starting to lay up the plies, the release agent is applied to the tool to be 

sure the part will separate from the tool easily after the process. The plies are placed one 

by one in the desirable orientation and then get wet by applying resin with a brush. 

Once the plies are sited, the bag is applied all over the plies. The first item to go down is 

peel ply. Peel plies are a tightly woven fabric, often nylon, and impregnated with some 

type of release agent. The peel ply will stick to laminate, but it will pull away easily 

after the process. Peel ply is an optional item and is used to give the laminate a smooth 

and nice finish surface. After peel ply a layer of release film is applied. This is a thin 

plastic which has been treated so it won’t bond to the laminate. It is highly stretchable 

so it can conform to complex geometries. At least one layer of bleeder cloth goes above 

the release film. Bleeder is a thick, felt-like cloth. Its purpose is to absorb excess resin. 

The bleeder also acts as a breather, providing a continuous air path for pulling the 

vacuum. If the bag wrinkles against hard laminate, it will trap air. The breather prevents 

this from happening. The breather must be thick enough so that it doesn’t become fully 

saturated with resin. A thick breather is also desirable to keep resin from coming in 

contact with the bag. The bag is the last item to be placed at the top. It is a relatively 

thick plastic layer. The bag is usually applied along one edge at a time. Starting at one 

corner the release paper is removed from the tape as it is moving along the edge. It must 
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carefully be applied in order not to get any wrinkles in the bag or it will leak. Also the 

vacuum part is attached before closing the bag at the corner of the bag. 

The sample is now ready to vacuum. The vacuum pressure for all samples was 1 bar 

and it was applied for 24 hours for each sample in room temperature. Figure (4.20) is a 

schematic form of the vacuum bagging process. Figure (4.21) shows the items which 

have been used in this research at BU composite workshop. 

 

 

 
Figure 4.20 Schematic of vacuum bagging process 

 

 
Figure 4.21 From left to right: release film, vacuum bag, peel ply, unidirectional carbon fibre 

laminated composite plate tool 
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Figure (4.22) shows the sample during vacuuming and in Figures (4.23) and (4.24) 

the final manufactured samples after vacuum bagging are shown. More than 300 

samples are prepared in this way. As this process is completely manufacturing by hand 

(not with the machine mechanism), so the quality of the samples are varied and depend 

on the experience of the manufacturer. Therefore, not all the samples which are 

prepared in this way have acceptable quality to be used in the tests. Figure (4.25) shows 

one of the faulty samples. The reason might be because the fibres didn’t become 

completely wet (not enough resin) or the resin cured more quickly than normal which 

shows the appropriate ratio of resin to hardener is not used. 

 

 

 

Figure 4.22 Process of making laminated plate 
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Figure 4.23 Laminated composite plate after vacuuming 

 

 

Figure 4.24 Laminated composite plate  
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Figure 4.25 Faulty sample (the red parts are dry) 

 

4.6. Experimental Set up 

After preparing the laminated composite plates, the behaviour of them (deformation) 

must be evaluated.  In order to minimise error, it is necessary to perform the test several 

times. Therefore, six identical plates (in terms of fibre orientations, composite materials, 

loading and boundary conditions) were chosen for each test and the average of these 

results is considered as a final result for that sample. In Figure (4.26) t1 to t6 are the 

experimental test results for six similar plates under the constant load. Six plates in each 

case have the same layup and geometry; ta is the average of t1 to t6 and tF is the FEM 

results. The size of the laminated composite plates are (500 x 500 mm) and as it is 

shown in Figure (4.5) they are fixed in one side and the displacement is measured on the 

opposite free side. The plates are under their own weight which is 270±2 grams. In FE 

this load is considered as a uniform distribution pressure on the plate. The displacement 

is measured by Laser Displacement Measurement Sensors with accuracy of .001 mm. 
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Figure 4.26 An example for one case; t1 to t6  are the experimental test results for six similar plates 

under constant load. ta is the average of t1 to t6 and tF is the FEM outputs. 

 

 

4.7. Results 

In this section, some of the FE results in this research are compared with current 

finite element models and later the finite element results are compared with 

experimental tests. 

For the first case study, the effect of number of layers is compared with the work that 

has been done by Reddy (2004). Non-dimensionalised maximum deflections and 

stresses for five-layer with [0/90/0/90/0] fibre orientations and a simply supported 

square laminate plate is considered under uniform distribution loads. Table (4.5) shows 

the deflection of the plate and stresses for both models. The finite element results by 

Reddy were obtained with 4×4 mesh of eight-node quadratic elements. The results are 

in a very good agreement with the Reddy’s work. However it is observed that Reddy’s 

FEM is slightly under predicting the results for lower a/h. The ratio of material 

properties in this test are; (E1=25E2, G12=G13=0.5E2, G23=0.2E2, v12=0.25.)  

 

 

 



99 

 

Table 4.5 Comparison of non-dimensionalised maximum deflections and stresses of simply 

supported five-layer [0/90/0/90/0] square laminated plates. 

a/h Source 210w  xx  yy  
xy  

xz  yz  

4 (Reddy 2004) 1.5620  0.4339 0.4991 0.0233 0.3033 0.2281 

Abaqus FEM 1.5629  0.4345 0.4501 0.0235 0.3033 0.2283 

10 (Reddy 2004) 0.6212  0.4986 0.4078 0.0219 0.3435 0.1984 

 Abaqus FEM 0.6212  0.4989 0.4082 0.0219 0.3434 0.1984 

20 (Reddy 2004) 0.4796  0.5239 0.3722 0.0214 0.3592 0.1827 

Abaqus FEM 0.4799  0.5239 0.3727 0.0212 0.3590 0.1825 

100 (Reddy 2004) 0.4331  0.5345 0.3573 0.0211 0.3655 0.1761 

 Abaqus FEM 0.4341  0.5343 0.3577 0.0210 0.3655 0.1762 

 

 

In order to show that this test is repeatable another test has been performed. This 

time different fibre orientations are considered. Here, a three-layer [0/90/0] square plate 

is considered (Table 4.6). The layers are of equal thickness, with the same material 

properties as the previous example. The same locations and non-dimensionalisation are 

used.  

While the classical laminate plate theory underpredicts deflections for small values 

of a/h, the stresses predicted are in general agreement with the first-order shear 

deformation theory. Also, the transverse shear stresses predicted through equilibrium 

equations, for the laminates studied so far, are very close to those predicted by the 

elasticity theory (Reddy 2004). Again there is a very good agreement between this work 

and Reddy’s work.  
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Table 4.6 Comparison of non-dimensionalised maximum deflections and stresses of simply 

supported three-ply [0/90/0] square laminated plates.  

a/h Source 210w  xx  yy  
xy  

xz  yz  

10 FEM 4Q8-S (Reddy 2004) 0.6692  0.5098 0.2518 0.0250 0.4060 0.0908 

Abaqus FEM S9R5 0.6692  0.5101 0.2516 0.0251 0.4060 0.0906 

20 FEM 4Q8-S (Reddy 2004) 0.4921  0.5281 0.1983 0.0222 0.4176 0.0754 

Abaqus FEM S9R5 0.4923  0.5281 0.1982 0.0222 0.4175 0.0754 

100 FEM 4Q8-S (Reddy 2004) 0.4336  0.5346 0.1791 0.0212 0.4215 0.0699 

Abaqus FEM S9R5 0.4336  0.5347 0.1792 0.0212 0.4217 0.0699 

 

 

It is shown that the Abaqus FEM results have good agreement with Reddy’s FEM 

results. It is important to show that these results also match with the experimental 

results of laminated composite plate in order to prove the validity of the FE model. A 

series of experimental tests have been performed in order to validate the current FE 

method.  One random sample is chosen from the experimental tests which were 

described in Section 4.5. After simulating the same example by Abaqus, the 

displacement result for the free edge of the plate is compared with experimental results. 

In this example the laminated composite plate has four layers and fibre orientations are 

[0/45/0/90]. The comparison of the FEA and experimental results are shown in Figures 

(4.27) and (4.28).  
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Figure 4.27 Displacement for the free edge of [0/45/0/90] plate with FEM and experiment 

 

 

 

Figure 4.28 Displacement for the free edge of [0/45/0/90] plate with FEM and experiment 

 

180 acceptable samples of which every 6th plate of them has the same fibre 

orientations, material properties and size were manufactured, as it is mentioned in 

Section 4.4 and 4.5. Therefore, 30 tests have been performed for laminated composite 
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plates with fibre orientations. The average displacement from each 6 plates with the 

same fibre orientations are compared with finite element results. As it is shown in 

Figures (4.29) to (4.34), the error is less than 2% for all the tests and experimental tests 

show a very good agreement with the FE results. These tests show the validity of the FE 

model. In the next chapter, the results of FE are used for different loading and boundary 

condition to find optimum fibre orientations for laminated composite plate. 

 

 

 

 

Figure 4.29 percentage error between FEM and experimental tests (t1-t5) 
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Figure 4.30 percentage error between FEM and experimental tests (t6-t10) 

 

 

Figure 4.31 percentage error between FEM and experimental tests (t11-t15) 
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Figure 4.32 percentage error between FEM and experimental tests (t16-t20) 

 

 

Figure 4.33 percentage error between FEM and experimental tests (t21-t25) 
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Figure 4.34 percentage error between FEM and experimental tests (t26-t30) 

 

 

 

4.8. Summary 

In this chapter, finite element modeling for laminated composites is studied. FEM in 

Abaqus is used in this work due to its wide material modelling and analysing capability 

especially in terms of considering the transverse shear effect in comparison with other 

FE software. Abaqus is also easy to define fibre orientations for lay-ups in the laminate 

composite plate. How to model and simulate the laminated composite plate in Abaqus is 

explained. In order to answer the effect of fibre orientations on composite plate 

behaviour, it is necessary to have the FE results for all possible fibre orientations. When 

the number of layers is increasing, as a result the number of FE tests which is needed is 

increasing and it is very time-consuming and hard to set up and run the program for 

each test manually. So, the written Python program is used to run these FE tests for the 

different orientations iteratively. An expanded and modified version of the Python 

program is presented as a design tool. Some experimental tests on laminated composite 

plates have been performed with the Vacuum bagging process. The steps for 

manufacturing laminated composite plate and the advantages and limitations of the 

process and the samples are described. In order to check the validity of the Abaqus FE 
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model, the Abaqus’s FE results are compared with Reddy’s FE and experimental results 

and it is shown that there is a good agreement between them.   
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5. Optimum Design of Fibre Orientation  

In this research the main parameter considered for optimisation is desirable twist for 

laminated composite plates which is the effect of transverse shear. All possible fibre 

orientations for laminated composite plates are simulated in Abaqus and the results are 

saved in a database. In this chapter, an optimisation algorithm is presented to find the 

suitable fibre orientations from this database. Nowadays usually stochastic non-linear 

optimisation methods are utilised for complicated problems as they can avoid the local 

optimums. One of the best algorithms in this category is the Simulated Annealing (SA) 

method which is used in similar problems (Ghiasi et al. 2009). Previous research by 

Akbulut and Sonmez (2008) shows that using just one failure criterion in composite 

might lead to inaccurate results therefore two different criteria are used in this research 

for optimisation at the same time. Here, the Tsai-Wu failure and maximum stress 

criteria for composite laminate are chosen. Tsai-Wu failure is operationally simple and 

readily amenable to computational procedures. In addition, this criterion shows the 

difference between tensile and compressive strengths clearly, through its linear terms. 

By applying two failure criteria at the same time the results are more reliable. The 

proposed SA model is compared with a genetic algorithm (GA) and the SA optimisation 

models. Unlike other optimisations, the proposed SA optimisation model is able to be 

used for out of plane loadings as well as in-plane loadings. 

 

5.1. ABDE Matrix 

The advantage of fibre reinforced composite structures which is highlighted in this 

research is the ability to control the stiffness by tailoring the layup. By choosing the 

layer fibre orientations selectively, a composite can be elastically coupled to produce 

unique structural responses not possible with isotropic homogeneous conventional 

materials. The layup of the composite can be designed to tailor the stiffness matrix to 

couple the elastic response of the structure so that the uniaxial load causes twist, 

bending, shearing. The equations (3.7) show the relations between the force and 

moment resultants to the strains and deformation. It can be observed that the forces and 

moments are related to the strains through the terms of the ABDE matrix. Take for 

example the first equation that relates the load in the x direction (Nx) to the strains. In 

an isotropic homogenous material, the terms C16, C41, C42, and C46 are 0. Which 

simply means the axial force Nx is related only to in-plane strains Ex and Ey. A 
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composite laminate on the other hand can be designed so that these terms can be 

designed to be various non-zero values. This means that these terms couple the axial 

load with to the shear and bending (elastic coupling). 

In equation (3.7) [A] is the extension-shear stiffness matrix, [B] is the extension-

bending coupling stiffness matrix, [D] is the bending-torsional stiffness matrix and [E] 

is the effect of transverse shear and normal stresses. Deformation of a laminated 

composite plate depends strongly on the fibre orientation angles in various plies as well 

as the layers sequence. Depending on the construction of the laminate, unique 

deformation characteristics of laminate composites are (Chandra et al. 1992): 

 

Extension-shear coupling: If the laminate is not balanced, normal stresses acting on the 

laminate lead not only strains also shear strains. Likewise, shear stresses initiate the 

shear strain as well as normal strains. Balanced laminate is when for each ply with a 

fibre orientation of +Ɵ, there is an identical ply with fibre orientation of –Ɵ in the 

laminate. 

 

Bending-torsion coupling: [D] is not zero, if for each ply with a fibre orientation of +Ɵ 

above the mid-plane, there is no identical ply with fibre orientation of – Ɵ at an equal 

distance below the mid-plane. In this case, the bending-torsion stiffness matrix [D] 

causes the bending-torsion coupling. On the other hand, the bending moment acting on 

the laminate composite plate creates bending as well as twisting. 

 

Extension-bending coupling: If the laminate is not symmetric, the extension-bending 

coupling matrix , [B], is not zero which means in-plane loads create bending and 

twisting deformation as well as in-plane deformation. When for each ply with fibre 

orientation of +Ɵ above the mid-plane there is an identical ply with + Ɵ at the same 

distance below the mid-plane the laminate is called symmetric.  

 

The twist in laminate composite plate is induced from the above coupling effects. 

Figure (5.1) shows the schematic exaggerated warping deformation of a laminate 

composite plate. Here, the angle of twist is considered as (α). 
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Figure 5.1 Applying a load to unsymmetrically laminated plate causes coupling between extension, 

shear, bending and twisting. (Chandra et al. 1992) 

 

 

 

5.2. Failure Criteria 

Here, the stress based criteria are briefly overviewed. It is essential to mention that in 

this research the delamination and other types of failure are not considered. In all cases 

tensile values must be positive and compressive values must be negative. The input data 

for the stress-based failure theories are tensile and compressive stress limits, tF1  and 

cF1 , in the 1-direction; tensile and compressive stress limits, tF2  and cF2 , in the 2-

direction; and shear strength (maximum shear stress), 12F , in the X–Y plane. 

 

Maximum stress theory 

The maximum stress failure criterion is: 
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                                (5.1) 

If tFX 111 ,0   otherwise, cFX 1 . If tFY 222 ,0   otherwise, cFY 2 . 

 

Tsai-Hill theory 

The Tsai-Hill failure criterion is: 
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                           (5.2) 

If tFX 111 ,0   otherwise, cFX 1 . If tFY 222 ,0   otherwise, cFY 2 . 

Azzi-Tsai-Hill theory 
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The Azzi-Tsai-Hill failure theory is similar to Tsai-Hill theory except the fact that the 

absolute value of the cross product term is taken. 
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                           (5.3) 

 

This difference just shows up if 2211,  have different opposite signs. 

 

Tsai-Wu theory 

The Tsai-Wu failure criterion is: 

 

0.12 221112222111   FFFIF   
                                (5.4) 

 

The Tsai-Wu criterion is used in this work and the coefficients are defined later. 

Figures (5.2) to (5.4) show the differences between these failure criteria. 

 

 

 

Figure 5.2 Tsai-Hill versus maximum stress failure envelope ( 0.1FI ) (Reddy 2004) 

 

 

 

 

Figure 5.3 Tsai-Hill versus Tsai-Wu failure envelope ( 0.1FI ) (Reddy 2004) 
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Figure 5.4 Tsai-Hill versus Azzi-Tsai-Hill failure envelope ( 0.1FI )(Reddy 2004) 

 

Here, two failure criteria (Maximum stress and Tsai-Wu) are considered and 

explained more as they are utilised in the optimisation. 

Maximum stress criterion is one of the simplest failure methods to apply. According to 

this criterion, failure is predicted whenever one of the principal stress components 

exceeds its corresponding strength. It is expressed in the form of the following sub-

criteria: 

 

    
                   
                  

                                                  (5.5)   

 

    
                   
                  

                                                        (5.6) 

 

    
                   
                  

                                        (5.7)  

 

                              (5.8) 

 

                                                                                                       (5.9) 

 

                                             (5.10) 

 

    and     are the longitudinal tensile and compressive strengths,     and     are the 

transverse longitudinal tensile and compressive strengths and    is the in-plane shear 

strength. Four additional lamina strength parameters, which are relevant in three-

dimensional analysis, are the out of plane or interlaminar tensile, compressive, and 

shear strengths,    ,    ,    and   . 
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The Tsai-Wu failure criterion is one of the most reliable static failure criteria as it 

provides a simple analytical expression. Tsai-Wu in 3D format can be presented as: 

 

                                                                        (5.11) 

 

where    and      are second- and fourth-order strength tensors, and              

(Reissner 1961). By applying assumptions some of    and      are identified. Finally it is 

reduced to a failure envelope for constant values of shear stress        
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or equivalently 

 

   
 

        
 

   
 

        
 

   
 

  
 

      

             
  

 

   
 

 

     
       

 

   
 

 

     
            (5.13) 

 

 

5.3. Simulated Annealing Algorithm 

Kirkpatrick et al. (1983) proposed simulated annealing as a powerful stochastic 

search technique. The method gets its name from the physical process whereby the 

temperature of a solid is raised to a melting point, where the atoms can move freely and 

then slowly cooled. The method attempts to model the behaviour of the atoms in 

forming arrangements in solid material during annealing. Although the atoms move 

randomly, as their natural behaviour they tend to form lower-energy configurations 

(Erdal and Sonmez 2005). However, this is a time driven process. When a material is 

crystallised from its liquid phase, it must be cooled slowly if it is to assume its highly 

ordered, lowest-energy, perfect crystalline state. At each temperature level during this 

annealing process, the material should reach equilibrium. As the temperature decreases, 

the arrangement of the atoms gets closer and closer to the lower energy state. This 

process continues until the temperature finally reaches freezing point. The temperature 

is initially assigned a higher value, which corresponds to more probability (chance) of 

accepting a bad move and is gradually decreased by a cooling schedule rate which is 



114 

 

defined by the user. Retaining the best solution is recommended in order to preserve the 

good solution (Erdal and Sonmez 2005). 

At each iteration of the simulated annealing algorithm, a new point is randomly 

generated. The distance of the new point from the current point, or the extent of the 

search, is dependent on a probability distribution with a scale proportional to the 

temperature. Not only does the algorithm accept all new points that lower the objective, 

but also, with a certain probability, it accepts points that raise the objective. The 

algorithm avoids being trapped in local minima, by accepting points that raise the 

objective, and is capable of searching globally for more potential optimums. An 

annealing schedule is chosen to systematically decrease the temperature as the 

algorithm proceeds. As the temperature decreases, the algorithm reduces the extent of 

its search to converge to a minimum. 

If a set of configurations is considered, in each iteration the speed convergence 

would be increased. In this research the SA proposed by Erdal and Sonmez (2005) is 

applied.  The number of these configurations depends on the dimension of the problem. 

 

                                                                               (5.14) 

 

where   is the dimension of the problem, i.e. the number of design variables. 

The basic algorithm of SA in MATLAB is shown in Figure (5.5). The algorithm 

starts from a valid solution and randomly generated new states, for the problem and 

calculates the associated cost function. Simulation of the annealing process starts at high 

temperature (which is defined by the user). A new point is randomly selected and the 

difference in cost function is calculated. If it is lower, then this new point is accepted. 

This method guides the system towards a minimum which can be a local or global 

minimum. To avoid a local minimum, an increase of the cost function is accepted with a 

certain probability. 

Figure (5.6) illustrates how this algorithm works. It starts at point i, then the new 

point k1 is chosen and accepted, but the new point k2 is only accepted with a certain 

probability. The probability of accepting a worse state is high at the beginning and 

decreases at the temperature decreases. For each temperature, the system must reach an 

equilibrium which means a minimum number of new points must be tried, before the 

temperature is reducing.  
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Figure 5.5 The basic algorithm of SA 

 

 

 

 

 

Figure 5.6 Illustrating how the SA algorithm work 

 



116 

 

5.4. Penalty Function and Optimisation Procedure  

In this step a penalty function is expressed and then this function has to be optimised.  

 

                        
 
           

   

 
                  (5.15) 

 

   is the number of plies in the     lamina, in which the orientation angle is   ;   is 

the total number of distinct lamina; the second and third terms represent the penalty 

values introduced to increase the value of the objective function for designs for which 

failure is predicted and thus to restrict the search to the feasible design space;     and  

    are penalty values calculated based on the maximum stress criterion and the Tsai–

Wu criterion, respectively.      and      are equal to the safety factors according to 

the maximum stress and Tsai–Wu criteria, respectively, if they are greater than 1.0, 

otherwise these terms are equal to zero;    are suitable coefficients (Akbulut and 

Sonmez 2008). This penalty function is the same as the one defined by Akbulut and 

Sonmez (2008) except the last term of Equation (5.15). In their work, the ply angles are 

optimised for the in-plane plate and the effect of shear stress and as a result induced 

twist angle of the plate was neglected. However in this research the induced twist angle 

is considered. Therefore, the maximum acceptable twist angle is defined and by 

assuming this maximum twist angle, the appropriate coefficient for     is obtained.  

Applying several tests by FEM software shows that maximum twist for each material 

happens at the specific angles                  .   is the number of possible     . 

The range of fibre orientations          is divided into several areas, each      is the 

centre of the area and in each iteration the program finds the    to the range that it 

belongs to. Then the program works with the appropriate       and corresponding    . 

Except for the related    , the other      variables are equal to zero.     is defined as: 

 

                                                                             (5.16) 

 

So when the ply angle in each layer (    would be close to     , the value of 

        is bigger and thus the last term of the penalty function. As a result the penalty 

function would be larger. For a proper   , the amount of induced twist     will always 

be less than the maximum acceptable twist       .  
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The reason that safety factors are used in the designs is that there may be many 

feasible designs with the same minimum thickness. Of these designs, the optimum is 

defined as the one with the largest failure load. Accordingly, the objective function is 

linearly reduced in proportion to the failure margin (Le and Haftka 1995). Similarly in 

another study (Kere et al. 2003), the margins to initial failure were maximised with the 

minimum feasible number of laminae. The safety factor of the laminate according to the 

maximum stress criterion,     , is calculated as follows (Akbulut and Sonmez 2008): 
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                                              (5.18) 

 

The safety factor for the     lamina,     
 , according to the Tsai–Wu criterion is 

defined as the multiplier of the stress components at lamina k,    
 , that makes the right 

hand side of Eq. (5.15) equal to 1 then it turns into: 
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The root of the above equation gives the safety factor. Because a negative safety 

factor is not physically meaningful, the absolute value of the first root is considered as 

the actual safety factor. 

 

    
            

  
                                                                          (5.21) 

 

Then, the minimum of     
  is chosen as the safety factor of the laminate. 

 

                
                                             (5.22) 

 

In equation (5.21), the  –        

  
  can be considered, as   is always positive and the 

aim is to find the minimum of     
 . 

The penalty value due to the violation of the maximum stress and Tsai-Wu criteria 

are calculated in equations (5.23) and (5.24) respectively:  

 

  
   

                                       
   

     
                     

   
 

  
   

                                       
   

     
                     

   
 

  
   

                                       
   

     
                     

   
 

                                            (5.23) 

 

   
   

                                        
   

      
                      

   
                                       (5.24) 

 

The total penalty value for the laminate due to the violation of the maximum stress and 

Tsai-Wu criteria are then calculated by summing up the penalty values calculated for 

each lamina. 

 

       
  

      
    

                                                                    (5.25) 
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5.5. Numerical Results 

Here, the induced twist for different boundary conditions (CFFF and CCCF) are 

compared between experimental and FE results. In order to validate the presented SA 

optimisation model, the results of it are compared with another optimisation method 

(genetic algorithm) and a modified SA which are recently proposed by Hade et al. 

(2011) and Akbulut and Sonmez (2008) respectively for in-plane stress. Furthermore, 

the results of the proposed SA optimisation model are shown for out of plane stresses. 

As it is mentioned in Chapter 4 in order to validate the FE model some experimental 

tests have been performed. For each panel six similar laminated plates are manufactured 

and the results used here is the average of them.  

The experimental tests have been carried out for 15 different samples with a uniform 

distributed loads of P=50 pa for two different boundary conditions. In Figure (5.7) the 

percentage difference of induced twist angle    , between tests and FEM results for 

CFFF boundary condition is shown. The same tests have been performed with CCCF 

boundary conditions which the results are shown in Figure (5.8). As it is shown in 

Figures (5.7) and (5.8) there is a very good agreement between FEM and experimental 

results. The Y axis is zoomed in to 10% to distinguish the differences between each 

case. 
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Figure 5.7 Percentage difference of (α) between tests and FE with CFFF boundary condition 

 

 

 

Figure 5.8 Percentage difference of (α) between tests and FE with CCCF boundary condition 

 

Hade et al. (2011) presented an optimisation model based on numerical simulation of 

laminate composite plate using genetic algorithms with finite difference analyses for 
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simply supported laminated composite plate. The case study is graphite/epoxy materials 

with the properties of: 

 

25251312322100141000 131220 .υ, υ*E.G, GE Pa, EE m, E.a,
m

N
 P   

 

The results of the SA and GA model are shown in Table (5.1) for different ratio of 

E1/E2. The SA results show good agreement with GA results. In order to be sure that 

the presented SA is not trapped in local minimum each optimisation method was run 6 

times. All the results were the same and the SA model can avoid the local optimum. 

 

 

Table 5.1 Optimised fibre orientations by GA and SA for different E1/E2 ratio. 

2

1

E

E
  

Optimum lamina orientations 

GA  

(Hade et al. 2011) 

SA  

5 [-45.96,-45.14,-45.73] [-45.89,-44.99,-45.55] 

10 [-49.62,-45.19,-45.13] [-49.72,-45.29,-44.98] 

20 [-44.94,-44.13,-45.48] [-44.64,-44.43,-45.28] 

30 [-48.99,-45.05,-44.76] [-49.08,-45.50,-44.79] 

40 [-41.57,-45.81,-44.92] [-41.70,-45.61,-44.92] 

50 [-44.41,-45.41,-44.72] [-44.31,-45.76,-45.00] 

 

 

Here, two other case studies are presented. The first one compares the obtained 

results with those which were found by Akbulut and Sonmez (2008). The 

graphite/epoxy materials T300/5308 with the properties of            GPa,     

      GPa,           GPa,           ,          MPa,            MPa, 

        MPa,           MPa,          MPa is considered for the first case 

study. 

In this case the maximum acceptable twist angle is          for square laminated 

composite plate where each side is 300mm and the boundary condition of CFFF. In 

Table (5.2) and Table (5.3) the results are compared with previous work. As it is shown 

in Table (5.2) the number of lay-ups increase for some loads and it shows that in these 
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cases the amount of twist angle is more than     . (In the notation       Ɵ is the fibre 

orientation and n is the number of layers with the fibre orientations of Ɵ). Clearly by 

increasing the lay-ups, the safety factor for both Tsai-Wu and Maximum stress will be 

increased.  In Table (5.3) the number of lay-ups and thickness is constant but in some 

cases the optimum orientations are different from the Akbulut and Sonmez work. 

Although the safety factor is reduced, when the number of the layers is fixed, it avoids 

passing the acceptable twist angle and the safety factor is still more than 1, therefore, it 

is still acceptable. When the maximum twist angle is less than the      the results are 

comparable with the work carried out by Akbulut and Sonmez (2008). 

 

Table 5.2 Optimum lamina orientations for Material T300/5308 under different loads 

Loading: 

            

        

 

Optimum lamina orientations Safety factor 

Akbulut , 

Sonmez (2008) 

Present Work  Akbulut, Sonmez (2008) Present Work 

Max. 

Stress 

Tsai-Wu   Max. 

Stress 

Tsai-

Wu 

10/5/0                           1.0277 1.0068 1.1309 1.1001 

20/5/0                           1.1985 1.0208 1.3305 1.1560 

40/5/0                           1.5381 1.0190 1.6504 1.1903 

80/5/0                           1.2213 1.0113 1.2302 1.0120 

120/5/0                           1.0950 1.0030 1.0951 1.0030 

 

 

Table 5.3 Optimum lamina orientations for Material T300/5308 under different loads for constant 

thickness 

Loading: 

            

        

Optimum lamina orientations Safety factor 

Akbulut & Sonmez (2008) Present Work  Akbulut, 

Sonmez 

(2008) 

Present 

Work 

200/200/0                                                                 2.14 2.14 

200/0/200                                          4.84 1.91 

400/200/0                                                                 1.64 1.42 

200/200/200                                                  
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In the second case study a highly anisotropic material is considered (material II). The 

elements of the stiffness matrix are:             ,            ,       

      ,           ,           ,            ,           ,       

    ,           ,            ,         ,           ,        ,       

     ,            ,        ,           ,            ,            , 

          ,            .  

In Figure (5.9) the amount of twist angle under a constant load for different ply 

angles is shown.  The amount of           in equation (5.16) are           which are 

the local maximums. This test is for the first layer in order to find the          and the 

areas which were explained in the penalty function. FEM tests show that these         

are the same by adding the next layers. If the stiffness matrix is symmetric the curves 

will be symmetric about the y axis. A general stiffness matrix for material II is 

considered, so there is no mirror about the y axis. Optimum lamina orientations under 

different loads in this case are shown in the Table (5.4). In this case the pure bending 

load     is also applied to the plate. 

 

 

 

Figure 5.9 Twist angle for a first layer of material (case II) 
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Table 5.4 Optimum lamina orientations for second case study material under different loads for 

constant thickness. 

Loading: 

                

        

Optimum Fibre orientations Safety factor 

Max. 

Stress 

Present 

Work 

100/100/0/20                                 1.2720 1.0931 

100/0/100/20                  1.5402 1.2112 

200/100/0/20                                 1.3200 1.111 

100/100/100/20                 3.3401 2.3765 

 

 

5.6. Summary 

In Chapter 4 a database is generated which included all the results of the laminated 

composite plates for all possible different orientations for each ply. In order to achieve 

the best outcome (depending on the designers requirements), using an optimisation 

method is unavoidable because the fibre orientation in each layer of composite can be in 

a wide range of [-90 +90] degree and it means the number of combinations of different 

orientations for laminated plate are considerably large. In this chapter, a SA 

optimisation method is proposed and used to solve this challenging problem, which is 

normally non-linear due to anisotropy. The validity of the model is verified by 

experimental results, a GA and another SA model which were proposed recently. A new 

penalty function was proposed for the SA in order to overcome the difficulties and 

shortcomings faced by the previous SA model which was presented by Akbulut & 

Sonmez (2008). In their work, the effect of transverse shear (induced-twist) was 

ignored. By the proposed model, the effect of transverse shear and, as a result, out of 

plane loadings can be solved as well as the in-plane loading. Here, the Tsai-Wu and 

maximum stress failure criteria are chosen for laminated composite. By applying two 

failure criteria at the same time the results are more reliable.  
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6. Outcomes and Future Work 

In this Chapter an overview of the steps that are taken in this work are summarised.  

A discussion of the outcomes of this research at each step, the potential future work that 

can be undertaken in this area and how this study can help them are proposed. 

 

6.1. Oucomes 

As it is mentioned in Chapter 1, the initial idea of this research is formed from 

previous work which has been undertaken by Maheri et al. (2006, 2007) on controlling 

the composite structure (wind turbine blade) passively. An advantage of a passive 

control approach is that it is generally reducing the size of the controlling system, cost 

of maintenance and the initial cost. In passive control, designers try to employ the 

structure itself as the controller. On these materials (SMA, piezoelectric, composites) 

which are normally categorised as smart materials, the external loadings can be 

generated by heat, electricity, force, etc. For example for wind turbine blades which are 

made from composite material, wind velocity can be considered as an external load, and 

potentially this load can be used to control the twist of the blade passively. This 

increases the efficiency of the wind turbine performance as well as decreasing the cost 

of controlling the system. On the other hand, the anisotropy of composites produces 

shear coupling and twist in composite blades. Considering this shear coupling and 

transverse shear effect on the modelling of composite structures with a complex profile 

such as a wind turbine blade, is very complicated. In most cases it is possible to 

simplify and break down these complex structures into a combination of composite 

plates. Therefore, in this research laminated composite plates were considered and 

analysed.  

Unlike conventional materials, by applying uniform distribution loads on a cantilever 

anisotropic composite plate, twist deformation is induced as well as bending. The 

amount of this induced twist can be controlled by changing the fibre orientations in 

composite plates. Changing fibre orientations changes the stiffness matrix in Hook’s 

law and generally any deformation (including twist) can be calculated from Hook’s law. 

The aim of this study was to anaswer the following research question: 

How can a laminated composite plate be designed and controlled by 

optimising the fibre orientations of the laminae? 
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Figure (6.1) shows the flow diagram and a summary of how this research answers 

this question. 

 

 

 

Figure 6.1 Flow diagram of this research 
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Three major milestones are considered to be accomplished in this project. 

• Modelling of Laminated Composite  

• FE Modelling, Programming and Experimental Results  

• Optimisation  

For the first step, a general study about modelling of composite materials was 

essential. It was also necessary to understand the behaviour of laminated composite 

plate. But more importantly as one of the critical point which was considered in this 

research was shear-coupling (twist) in laminated composite plate, the selected method 

should be able to model and explain transfer shear effect. Due to these reasons, a 

comprehensive study about analytical models has been performed and the outcome of 

this study was presented in chapter 2. 

Transverse shear not only has an effect on deformation of the laminate composites, it 

is also important to consider this effect to predict the failure of the composite structures. 

It is explained that in laminate composite plate stress induced failures occur through 

different mechanisms. Normally before the in-plane stresses exceed the fibre breakage 

point, inter-laminar shear stress failure occurs when one layer slips tangentially relative 

to another. Alternatively, transverse normal stress may increase enough to cause 

deboning failure where two layers pull away from each other.  

In modelling of composites, generally two different approaches have been used to 

study laminated composite structures analytically: single layer theories and discrete 

layer theories. In the single layer theory approach, layers in laminated composites are 

assumed to be one equivalent single layer whereas in the discrete theory approach each 

layer is considered individually in the analysis. The higher order models are based on an 

assumption of nonlinear stress variation through the thickness. These theories are 

capable of representing the section warping in the deformed configuration. The 

weakness of these models is that some of them do not satisfy the continuity conditions 

of transverse shear stresses at the layer interfaces. Although the discrete layer theories 

do not have this concern, they are significantly more labour intensive and 

computationally slow when solving such problems due to the fact that the order of their 

governing equations depends on the number of layers. This is the main advantage of 

single layer theories (and the reason that it is used in this research) compared to discrete 

layer theories. 
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It is discussed that because of some simplification assumptions in classical laminate 

plate theory (normal lines to the mid-plane before deformation remain straight and 

normal to the plane after deformation), it cannot be used in this research as it is not able 

to estimate the transverse shear and as a result any induced twist in the laminated 

composite plate. Other models try to overcome the limitations of CLPT in order to 

predict the transverse shear more accurately by using more terms in the Taylor series 

and as a result increasing the order of constitutive equations for the model (i.e first order 

shear deformation theory, third order shear deformation theory, etc). In some other 

models such as trigonometric shear deformation and hyperbolic shear deformation 

theories, different functions are used in order to avoid increasing the order of 

constitutive equations in composite models. Investigation of different models for 

laminated composite plates, helps this research and possibly future works in this area to 

understand how accurately each model can estimate the behaviour of laminated 

composite products or structures.  

In order to cover all modelling of composite materials, an investigation of semi-

analytical methods has also been performed as well. Because these models (analytical 

and semi-analytical models) are the first stage to explain the physical behaviour of 

composite structures. Furthermore, these methods generally present reliable and quick 

solutions for simple problems and give an initial idea at an early stage of the design 

process. They also provide a means of validating the numerical methods and potentially 

are the tools to enable the further development of new computational models. The main 

requirement of semi-analytical models is a mathematical technique to solve the complex 

and non-linear constitutive equations. The Kantorovich method is one of these 

techniques. It was used to solve the constitutive equations for laminated composite. It 

was extended later (EKM) and was recently modified by Shufrin et al. (2008) by adding 

an extra term and named that multi-term extended Kantrovich method. Although this 

new method is more accurate compared to previous ones, it is modified in this research 

by using the Newton-Kantorovich-Quadrature (NKQ) method. This method is for 

solving nonlinear integral equations. It is found out that by presenting the laminated 

composite constitutive equations in integral format, NKQ method can be used. So, 

potentially this semi-analytical model can be applied for out of plane loading as there is 

no simplification made in solving the general constitutive equations for laminated 

composites. On the other hand, the transverse shear effect is considered in this semi-

analytical model. This proposed method is used to reduce the limitation on loading that 
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current semi-analytical models are not able to analyse. The accuracy and convergence 

of this method has been investigated through a comparison with other semi-analytical 

solutions and with FEA in order to validate the model. The accuracy of the proposed 

model is relatively similar to current semi-analytical models. However, unlike most of 

the other semi-analytical models, the accuracy of this method is independent from the 

initial chosen functions. This initial function, even if it does not satisfy any of the 

boundary conditions, does not affect the accuracy of the final solution. Although the 

proposed model theoretically works, it is not practical to use this model for complex 

loadings as the computational process increasing exponentially and the model cannot 

converge. Therefore, due to numerous computations and the number of unknown 

variables, numerical methods are needed to solve the problem of laminated plates. 

Using a numerical method (finite element) was the second step in this research to 

solve composite problems. In Chapter 4 the finite element method is used to solve the 

laminated composite plate problem. In order to simulate the composite plate, Abaqus 

software is used. It is an FEA software with the ability to solve a wide variety of 

problems and simulate them in order to avoid the expense of manufacturing and 

prototype making. It is also an open-source software which gives the option to 

customise the program. Abaqus is chosen as simulation software because the transverse 

shear effect is considered in Abaqus solver for laminated composites problems. Also, 

the composite layup editor in Abaqus allows designers to easily add a ply, choose the 

region to which it is applied, specify its material properties, and define its orientation. It 

is also able to read the definition of the plies in a layup from the data in a text file. This 

is convenient when the data are stored in a spreadsheet or were generated by a third-

party tool such as an Excel or Notepad file. As the plate does not have a complex shape 

(simple panel) the automatic meshing which is generated by Abaqus was acceptable in 

this work. However, the appropriate manual meshing must be considered for more 

complicated structures. Also, in this work S4R5 and S9R5 elements are used, as these 

elements are suggested for stress-strain analysis of laminated composite plates in 

Abaqus. This means 5 degrees of freedom at each node is considered; (u, v, w and two 

rotations).  

The laminated composite plate was under uniform distributed loads (pressure). In 

order to ensure the experimental results match the FEA, this load is considered to be 

equal to the weight of the plate which is manufactured. The plate was fixed (clamped) 

on one side and it is free on the other sides.  
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In order to customise the simulation for different fibre orientations for each layer a 

Python program is written. It was essential to write this program as it gave the 

opportunity to modify the model depending on the requirements. On the other hand, by 

using this program parameters such as the geometry of the composite plate, material 

properties, loads and steps of changing fibre angles, can easily be controlled. It also can 

run the program iteratively for all possible fibre orientations automatically and save all 

the results in a database. Any numerical or computational method is a means to analyse 

a practical engineering problem and that analysis is not an end in itself but rather an aid 

to help the designer. Considering this point the program is modified in order to become 

a tool for designers. This tool is capable of getting inputs such as material properties 

and geometries, and then it solves the problem for all possible fibre orientations and 

also, based on the designer’s request, optimises the fibre angles for any type of 

deformation. The process of how this tool works can be seen in Figure (6.1). This tool is 

directly linked with Abaqus. The inputs are the material properties, geometry and loads 

for the plate; where the first two are entered in the tool and the loads and boundary 

conditions can be defined in the Abaqus program. The output of this tool is a database 

which contains the results of FEA for all possible fibre orientations, in separate files. 

Later, this database can be used for any purposes in the design of laminated composite 

plate. This design can potentially be used by optimising for loads, geometry, thickness 

or induced twist depending on requirements.  

It is important to validate the results which were achieved from FEM. Therefore, 

experimental tests on laminated composite plates were inevitable. First, the type of resin 

and fibre were determined. Epoxy was used as a resin because of being environmentally 

friendly, better adhesive properties and having better performance compared to all other 

resin types in terms of mechanical properties and resistance. Also, carbon fibre was 

used because it has better tensile and compressive strength, flexural modulus and 

fatigue properties in comparison with other type of fibres.  

In the manufacturing process Vacuum bagging is very common to produce laminated 

composite panels. Although this process has its limitation (i.e. the quality of products 

depend on operator skills), it is used in this work due to equipment availability, higher 

fibre content laminates, lower void contents, better fibre wet-out because of pressure 

and easier to employ in terms of health and safety. More than 300 samples were 

manufactured with this process. A series of experimental tests has been performed.  



132 

 

The average displacement of six identical laminated composite plates (similar in size, 

fibre orientations, numbers of layers and material properties) were compared with finite 

element results. The results show less than two percent error for all the samples. 

Therefore, it can be concluded that there is a good agreement between experimental test 

and numerical results. This validation shows that the model can be used in more 

complicated cases where it is hard or practically impossible to test the products. 

The final step was to design the laminated composite plate based on fibre orientation. 

In order to achieve the best outcome an optimisation technique is required to determine 

the best possible fibre orientations for plies. In Chapter 5, simulated annealing (SA) 

optimisation methods have been introduced to solve this challenging problem. 

Stochastic non-linear optimisation methods are utilised for this problem as they can 

avoid the local optimums. One of the best algorithms in this category is the SA method 

which is used to solve the problem in this research. A new penalty function was 

proposed in order to overcome the difficulties and shortcomings faced by the previous 

research. In the previous models, the effect of transverse shear was neglected. In some 

applications the induced twist, which is the direct effect of transverse shear, are 

undesirable. Therefore, the effect of transverse shear is simply ignored and/or the design 

limited to in-plane stresses. The validity of the proposed model was verified by 

comparison the results with experimental test data and other GA and SA model which 

were proposed recently. Different case studies with various boundary conditions and 

loading were considered. It was shown that the effect of transverse shear is considered 

in the proposed model and, as a result, out of plane stresses can be solved as well as the 

in-plane stresses.  

The fibre orientation angle in each layer of composite can be in a wide range of [-90 

+90] degree and they directly effect the behaviour of the structure. Obviously the wide 

range of fibre orientation angles in each layer gives many options to design the structure 

with composite. The modification and improvement of the optimisation method used in 

this research, not only gives the skills to designers to consider the transfer shear effect, 

but it also gives them the opportunity to use them as a design parameter. On the other 

hand, designers can use this induced twist in composite materials as a useful parameter 

to design special products. This can be a useful displacement to passively control the 

behaviour of composite structures which is the future outcome of this work for 

applications such as wind turbine blades, prosthetic feet, etc.  
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6.2. Conclusion 

It is mentioned that the idea of this work is to control the induced twist by optimising 

the fibre orientations of the laminae. A set of objectives were defined in Chapter 1 in 

order to complete the goal of this reach. The objectives were to answer the following 

questions: 

 

 What are the current methods which can model the induced twist deformation 

in laminate composite plate? 

 Is there any possibility to modify the constitutive equation for composite in 

order to predict the behaviour of laminate composite more accurately? 

 How precise the applied model can predict the behaviour of laminated 

composite plate in comparison with experimental results? (On the other hand 

the validity of the method must be checked) 

 How the fibre orientations in laminated composite plate can be optimised to 

achieve a certain induced twist displacement?      

 

In the literature review it is shown that current composite models either ignore the 

induced twist displacement or consider it as an unwanted displacement. It is discussed, 

because of some simplification assumptions; some composite models such as classical 

laminate plate theory are not able to estimate the transverse shear and therefore cannot 

predict the behaviour of laminated composite structure accurately. Not considering a 

transverse shear effect leads to ignoring the induced twist displacement in composite 

structures. They are some other models which consider the transfer shear effect. They 

have been discussed and categorised in Chapter 2. However, the induced twist has not 

been used in any of the mentioned models to control the composite structures. 

A semi analytical model was modified and a new model based on the Newton-

Kantorovich-Quadrature method is proposed. The non-linear equations are solved by 

the NKQ method. The main benefit of this method, compared to current models, is that 

it can potentially be used for more complicated load and boundary condition cases such 

as out of plane loads. Although the model considers the transverse shear effect for out 

of plane loads which leads to estimation of induced twist displacement accurately, the 

processing time increases exponentially in this model.  



134 

 

The accuracy of the model which is used in this work is studied in Chapter 3. The 

displacement results of the model are compared to experimental tests. It is shown that 

there is a good agreement between the applied model and experimental results and there 

is less than 2% error in laminated composite displacements. Even by considering the out 

of plane loads the error for induced twist displacement remains under 2%. This 

validation verifies that this model can be used in optimisation process to achieve a 

desirable induced twist in laminated composite plate. 

In the optimisation of fibre orientations, it is shown that by proposing a new penalty 

function, the model can be considered for out of plane loads as well as in plane loads. 

By defining extra terms for the penalty function, unlike current optimisation models, the 

transverse shear effect and as a result the induced twist displacement were evaluated 

accurately. On the other hand, this new optimisation model can control the induced 

twist displacement in laminated composite palte.       

 

6.3. Future works 

In this research, the fibre orientations are optimised by considering the effect of 

transverse shear for laminated composite plates. However, in order to be able to apply 

this method for industrial applications it needs to be extended to composite beams. 

Therefore, the next clear steps to continue this work is to expand it for composite thin-

walled beams. Although plate and beams are very basic structures, most of complicated 

structures can be broken down to these two basic structures. 

Fibre orientation angle is used as a parameter to design and control the laminated 

composite plates in this research. The aim of this project is to design the composite 

structure in order to have a definite deformation (desirable twist) under certain loads. As 

a result of this work, the plate can be controlled passively. On the other hand, by 

applying certain loads, certain induced twist is achieved. As it was mentioned, this has 

the potential to use and categorise anisotropic composite material as smart materials. It 

gives the opportunity to designers to invent smart structures and products which can be 

controlled passively.  For example carbon fibre composites have been used in the blades 

of wind turbine generators that potentially can improve power output at a greatly 

reduced cost. Whenever a wind turbine blade twists, it is directly affecting the changing 

blade loading, angle of attack, and as a result turbine power. So, twist or pitch angle of 

the blade in a wind turbine is a key parameter in controlling wind turbine performance. 
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Passive control of wind turbine blades reduces the size of the controlling system and its 

initial and maintenance cost. Some mechanical passive controls already exist such as 

cyclic adjusting load mechanisms or centrifugally loaded mass. However, extra 

mechanical parts and gadgets are still involved which increase the weight and cost and 

leads to decreasing the efficiency and performance of wind turbines. Adaptive or smart 

blades retain the blade itself as the controller to sense the wind velocity (loads) and 

adjust angle of attack to increase the wind turbine performance. 

There are also other aspects of this work which can be further development such as 

FEM code. Although the Python program is a helpful tool to design laminated 

composite plates, the running time is very high and it needs to be adjusted especially if 

it is to be used later for composite beam problems. In order for this design tool to 

become commercial it need to be linked with the optimisation part directly.  

A list of possible future works can be summarised as: 

 Analysing, simulating and modelling of thin wall composite beam and 

expanding this model for composite products and structures. 

 Considering the consequences of other parameters such as temperature and 

humidity on the transverse shear effect. 

 Expand the design tool to a commercial composite software design, by 

improving the interface, processing time, etc. 

 Presenting a numerical method based on the proposed NKQ semi-analytical 

model for composites. 
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Abstract: 

This study investigates and reviews approaches to modelling laminated composite plates. It explores 

theories that have been proposed and developed and assesses their suitability and functionality. The 

particular focus in this study has been on normal stresses and the through-thickness distributions of 

transverse shear. These are important for composite plates as stress-induced failures can occur in three 

different ways. Therefore, it is essential, to understand and calculate transverse shear and normal stress 

through the thickness of the plate accurately. In this study, previous laminated composite plate theories 

are categorised and reviewed in a general sense, i.e. not problem specific, and the advantages and 

disadvantages of each model are discussed. This research mainly focuses on how accurate and efficient 

the models can predict the transverse shear. It starts with displacement-based theories from very basic 

models such as Classical Laminate Plate Theory (CLPT) to more complicated and Higher Order Shear 

Deformation Theory (HOSDT). Models are Furthermore, categorised by how the models consider the 

overall laminate. Here the theories are divided in to two parts; Single Layer Theory (SLT), where the 

whole plate is considered as one layer, and Layerwise Theory (LT), where each layer is treated separately. 

The models based on Zig-zag and Discrete Theories are then reviewed and finally the mixed (hybrid) 

plate theories are studied. 
 

Key words: Laminate theory; Transverse shear; Composites; Layerwise theory 

 

      

1. Introduction 

The demand for high strength, high modulus and low density industrial materials has generated an 

increased number of applications for fibre laminated composite structures in many different fields such as 

in submarines, sport equipment,  medical  instruments, civil engineering, enabling technologies, primary 

and secondary marine and aerospace structures, astronavigation and many more industries [1].  

Composite constructions are usually multilayer produced structures, mostly made of flat and curved 

panels, built up from several layers or laminae, which are bonded together [2]. 

In the last half century, the use of composite materials has grown rapidly. These materials are ideal for 

structural applications that require high strength and low weight. They have good fatigue characteristics 

and are resistant to corrosion. They provide some flexibility in design through the variation of the fibre 

orientation or stacking sequence of fibre and matrix materials [3,4]. Another advantage of fibre laminate 

composites is the capability to design the physical structure and mechanical properties prior to 

manufacture. The mechanical behaviour of laminates strongly depends on the orientation of fibres and 

thickness of lamina. Accordingly, the lamina should be designed to satisfy the specific requirements of 

each particular application in order to obtain the maximum advantages from the directional properties of 

materials.  Accurate and efficient structural analysis, design sensitivity analysis and optimisation 

procedures for size and shape and the orientation of fibres within the material are also required.  This 

provides a good opportunity to tailor the material properties to the specific application [5,6]. 
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The normal stresses and through-thickness distributions of transverse shear for composite materials are 

important for many reasons. For example, in laminate composite plate stress-induced failures occur 

through three mechanisms. If the in-plane stress gets too large, fibre breakage or material yield occurs. 

However, normally before the in- plane stresses exceed the fibre breakage point, inter-laminar shear stress 

failure occurs when one layer slips tangentially relative to another. Alternatively, transverse normal stress 

may increase enough to cause deboning failure where two layers pull away from each other. Therefore, it 

is essential, to understand and calculate transverse shear and normal stress through the thickness of the 

plate accurately [7]. 

Generally, two different approaches have been used to study laminated composite structures: single layer 

theories and discrete layer theories. In the single layer theory approach, layers in laminated composites 

are assumed to be one equivalent single layer whereas in the discrete theory approach each layer is 

considered in the analysis. Also, plate deformation theories can be categorized into two types: stress 

based and displacement based theories. [8] 

A brief review of displacement based theories is given below: Displacement based theories can be divided 

into two categories: Classical laminated plate theory and shear deformation plate theories [8]. Normally 

laminated composite plate theories are described in the classical laminated plate theory, the first-order 

shear deformation theory, the global higher-order theory and the global–local higher shear deformation 

theory. [9] 

In previous studies, many different theories are represented to overcome various issues and explain the 

behaviour of composite materials more accurately for certain types of problems. In this paper these 

theories are reviewed, categorised and the advantages, weaknesses and limitations discussed.   

 

2. Classical Laminated Plate Theory (CLPT) 

The simplest equivalent single layer (ESL) laminated plate theory, based on the displacement field, is the 

classical laminated plate theory (CLPT) [10-16]. The two dimensional classical theory of plates was 

initiated by Kirchhoff [17] in the 19th century, and then was continued by Love [18] and Timoshenko 

[19] during the early 20th century. The principal assumption in CLPT is that normal lines to the mid-

plane before deformation remain straight and normal to the plane after deformation. Although this 

assumption leads to simple constitutive equations, it is the main deficiency of the theory.  The affect of 

the transverse shear strains on the deformation of the elastic two-dimensional structure are ignored and 

some of the deformation mode constraints by reducing the model to a single degree of freedom (DoF) 

results are neglected.  This is a consequence of the basic assumptions made. It is also worth mentioning 

that neglecting shear stresses leads to a reduction or removal of the three natural boundary conditions that 

should be satisfied along the free edges. These boundary conditions being the normal force, bending 

moment and twisting couple [20]. 

Despite its limitations, CLPT is still a common approach used to get quick and simple predictions 

especially for the behaviour of thin plated structures. The main simplification is that three-dimensional 

thick structural plates or shells are treated as two-dimensional plate or shells located through mid 

thickness which results in a significant reduction in the total number of variables and equations, 

consequently saving a lot of computational time and effort. The governing equations are easier to solve 

and present in closed-form solutions, which normally provides more physical or practical interpretation. 

This approach remains popular as it is well-known and has become the foundation for further composite 

plate analysis methods. 

This method works relatively well for structures that are made out of a symmetric and balanced laminate, 

experiencing pure bending or pure tension. The error induced/introduced by neglecting the effect of 

transverse shear stresses becomes trivial on or close to the edges and corners of thick-sectioned 

configurations. The induced error increases for thick plates made of composite layers, for which the ratio 

of longitudinal to transverse shear elastic modulii is relatively large compared to isotropic materials [21]. 

It neglects transverse shear strains, underpredicts deflections and overestimates natural frequencies and 

buckling loads. 

In fact, thick composite plates are unsurprisingly focused/sensitive to transverse shear and normal stresses 

through thickness (3D stress) due to the discontinuous nature of the stack and through-thickness 

behaviour and its anisotropic nature. [22].  In order to achieve better predictions of the response 

characteristics, such as bending, buckling stresses, etc. a number of other theories have been developed 

which are presented in following sections [8, 23-26].  

 

3. First-Order Shear Deformation Theories (FSDT) 

Several theories have been proposed to analyse thicker laminated composite plates in order to consider 

the transfer shear effect. Most of these theories are extensions of the conventional theories developed by 
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Reissner [20] and Mindlin [27], which are known as the shear deformation plate theories. These theories 

are based on the assumption that the displacement   is constant through the thickness while the 

displacements   and   vary linearly through the thickness of each layer (constant cross-sectional 

rotations    and    ). Generally these theories are known as First-Order Shear Deformation Theories 

(FSDT) [3]. According to this theory, transverse straight lines before deformation will still be straight 

after deformation but they are not normal to the mid-plane after deformation. This theory assumes 

constant transverse shear stress and it needs a shear correction factor in order to satisfy the plate boundary 

conditions on the lower and upper surface. The shear correction factor adjusts the transverse shear 

stiffness and thereby, the accuracy of results of the FSDT will be depend significantly on the shear 

correction factor [8,9].  Further research has since been undertaken to overcome some of the limitations 

of FSDT without involving higher-order theories in order to avoid increasing the complexity of the 

equations and computations [21,28,29]. 
Bhaskar and Varadan [30] used the combination of Navier's approach and a Laplace transform technique 

to solve the equations of equilibrium. From the results they observed that the dynamic magnification 

factor for the deflection and the in-plane stress is close to 2.0, and that the interlaminar stresses can reach 

higher values depending on the geometry of the plate and type of loading [31]. 

Onsy et al [3] presented a finite strip solution for laminated plates. They used the FSDT and assumed that 

the displacements   and   vary linearly through the thickness of each layer and are continuous at the 

interfaces between adjacent layers. They also assumed that the displacement   does not vary through the 

thickness. These assumptions allow for a more realistic situation where the shear strains across the 

interfaces between adjacent laminae are not continuous. Two-node and three-node finite strip elements 

are developed as a result of their work. [3] 

In order to calculate transverse shear more accurately, to satisfy all boundary conditions and to analyse 

the behaviour of more complicated thick composite structures under different loads, the use of higher 

order shear deformation theories is inevitable. 

 

4. Higher Order Shear Deformation Theories (HOSDT) 

The limitations of the classical laminated plate theory and the first order shear deformation theory led 

researchers to develop a number of global Higher Order Shear Deformation Theories (HOSDT) [9]. 

The higher order models are based on an assumption of nonlinear stress variation through the thickness. 

These theories are capable of representing the section warping in the deformed configuration. However, 

some of these models do not satisfy the continuity conditions of transverse shear stresses at the layer 

interfaces. Although the discrete layer theories do not have this concern, they are significantly more 

labour intensive and computationally slow when solving such problems due to the fact that the order of 

their governing equations depends on the number of layers [32]. This is the main advantage of HOSDT 

compared to discrete layer theories which will be presented in Section 5. 

Whitney attempted to examine the problem with interlaminar normal stress [33].  The calculation of 

interlaminar normal stress was studied by Pagano [34], a boundary layer theory, by Tang [35] and Tang 

and Levy [36], the perturbation method by Hsu and Herakovich [37], and approximate elasticity solutions 

by Pipes and Pagano [38] have been carried out. Later, Pagano, based on assumed in-plane stresses and 

the use of Reissner's variational principle, developed an approximate theory [39,40].  In most of these 

models the laminate is assumed to be reasonably long. The stress singularities were considered in a model 

presented by Wang and Choi [41-44]. They used the Lekhnitskii's [45] stress potential and the theory of 

anisotropic elasticity and determined the order of stress singularities at the laminate free-edges. The eigen 

function technique developed by them uses a collocation system at every ply interface in order to satisfy 

continuity. This limits the application of this method to relatively thin laminate [31]. 

Ambartsumian [46] proposed a higher order transverse shear stress function in order to explain plate 

deformation. Soldatos and Timarci [47], suggested a similar approach for dynamic analysis of laminated 

plates. Various different functions were proposed by Reddy [21], Touratier [48], Karama et al. [49] and 

Soldatos [50]. The results of some of these methods were compared with work by Aydogdu [23]. 

Swaminathan and Patil [51] used a higher order method for the free vibration analysis of antisymmetric 

angle-ply plates [8].  

Some models just focus on special cases such as buckling, vibration, etc. For example, a 2D higher-order 

theory has been developed by Matsunaga [52,53] to investigate buckling in isotropic plates for in-plane 

loads. Effects of transverse shear and normal deformations have been predicted in his work. General 

higher order theories, which consider the complete effects of transverse shear, normal deformations and 

rotary inertia, have been studied for the vibration and stability problems of specific laminates [54,55]. 
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Thermal buckling, modal vibration properties and optimisation have been focused in angle-ply laminated 

composite plates [6,56-58]. 

 

4.1. Third order shear deformation theory (TSDT) 

Generally, researchers who have wanted to simulate plates have used the third-order shear-deformation 

theories first published by Schmidt [59] and then developed by Jemielita [60].  A Third order shear 

deformation theory (TSDT) is presented by Reddy [16,61]. Some references know this theory as 

parabolic shear deformation plate theory (PSDPT). Phan and Reddy [62] applied this theory for the free 

vibration, the bending and the buckling of composite plates [23]. The same unknown displacements as 

those of the/used in first-order shear deformation theories were used. The theory also satisfies transverse 

shear free conditions at the outer surfaces. The results for the thick laminates prove that the in-plane 

stresses are much better than those identified using FSDT, but still have errors when comparing with 

three-dimensional models. It is noteworthy that this theory is not the layer-wise type, therefore, unlike 

most of other equivalent single layer theories, it does not satisfy the continuity conditions of transverse 

shear stresses between layers [9]. 

Another parabolic distribution of shear strains through the laminated plate thickness was proposed by Dj. 

Vuksanovic [63]. It has a cubic variation of in-plane displacement. The results confirm that this model 

can explain/predict the global laminate response better than previous parabolic methods, but it is complex 

to accurately compute the interlaminar stress distributions [9]. 

In the third-order theories [21,64], the in-plane displacements are assumed to be a cubic expression of the 

thickness coordinate while the out-of-plane displacement is a quadratic expression at most. Based on the 

model that Vlasov presented for equations for bending of plates [65], Carrera presented a third order 

theory. The reduced third order model with three displacement variables was obtained by imposing 

homogeneous stress conditions with correspondence to the plate top-surface. This was further modified in 

the same research for the non-homogeneous stress conditions. Again, a closed form solution result was 

presented for both stresses and displacements in the case of harmonic loadings and simply supported 

boundary conditions [66,67]. Idlbi et al. [68] compared TSDT and parabolic shear deformation plate 

theory with CLPT for the bending of cross-ply plates [23]. 

 

4.2. Trigonometric Shear Deformation Plate Theory (TSDPT) 

Trigonometric functions are used to describe the shear deformation plate theories called trigonometric 

shear deformation plate theory (TSDPT). Touratier [48] chose transverse strain distribution as a sine 

function [23]. 

Stein [69] developed a 2D theory wherein the displacements are stated by trigonometric series. 

Trigonometric terms are combined with usual algebraic through-the-thickness terms assumed for the 

displacements, to provide a better solution. Later the effects of transverse shear on cylindrical bending of 

laminated composite plates were studied by Stein and Jegley [70]. They show that this theory calculates 

the stresses more accurately than other theories. A straightforward method to analyse symmetric 

laminates under tension/compression using the principle of minimum complimentary energy and the force 

balance method, based on assumed stress distributions was introduced by Kassapogolou and Lagace 

[71,72]. Afterward, Kassapogolou [73] generalised and modified this approach for general unsymmetric 

laminate loads (in-plane and out-of-plane common moment and shear loads). This model was more 

general; however, it does not solve the weaknesses of inequality in Poisson's Ratios and the coefficients 

of mutual effect that exists between different plies through the thickness [31]. Touratier compared the 

TSDT proposed by Reddy [21] with the one suggested by Touratier [48] using a sine function to illustrate 

the warping throughout the thickness of the plate fibre during rotation, by considering the transverse shear 

[68]. Becker [74] made use of cosine and sine functions for warping deformation of   and   

displacement respectively and developed a closed-form higher-order laminated plate theory. 

An analytical method was presented by Mortan and Webber [75], using the same approach as 

Kassapoglou [71] and Becker [74], they considered the thermal effects in their model [31]. 

An accurate theory for interlaminar stress analysis should consider the transverse shear effect and 

continuity requirements for both displacements and Interlaminar stresses on the composite interface.  In 

addition to accurate interlaminar stress and transverse shear prediction, it is advantageous if the model is 

variationally consistent in order to use it for finite element formulation. Considering these points, and to 

obtain the interlaminar shear stress directly from the constitutive equations, Lu and Liu [76] improved an 

interlaminar shear stress continuity theory. Although the interlaminar shear stress is obtained directly 

from the constitutive equations in their model, the deformation in the thickness is neglected and therefore 

it cannot calculate the interlaminar normal stress directly from the constitutive equations. Despite the 

conventional analysis for laminated composite materials, where the composite interface is always 
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assumed to be rigidly bonded due to the low shear modulus and poor bonding, the composite interface 

can be non-rigid. Later, Lu and Liu [77], in their search to improve their model by investigating the effect 

of interfacial bonding on the behaviour of composite laminates, developed the interlayer shear slip theory 

based on a multilayer approach. Finally, a closed-form solution for the general analysis of interlaminar 

stresses for thin and thick composite laminates under sinusoidal distributed loading was derived by Lee 

and Liu [78]. Both interlaminar shear stress and interlaminar normal stress at the composite interface 

were satisfied in this model and also the interlaminar stresses could be calculated directly from the 

constitutive equations. Touratier [48] proposed a theory based on using certain sinusoidal functions for 

shear stress. Numerical results for the bending of sandwich plates were presented and compared with the 

other theories. It was shown that this theory is more accurate than both FSDT and some other higher-

order shear deformation theories [31]. 

 
4.3. Hyperbolic Shear Deformation Plate Theory (HSDPT) 

Hyperbolic shear deformation plate theory (HSDPT) was proposed by Soldatos [50]. Timarci and 

Soldatos [47] united/combined these shear deformation theories. The basic advantage of this unified 

theory was the ability to change the transverse strain distribution [23]. Ramalingeswara and Ganesan [79] 

used parabolic and hyperbolic function to uniform external pressure and a simply supported cylindrical 

shell for cross ply laminated composite by considering an internal sinusoidal pressure [31]. It is also 

worth mentioning the Karama model where Karama et al. proposed an exponential function for the 

transverse strain in his study of the bending of composite [23,49]. 

 
4.4. Other HOSDTs 

Rohwer [80] presented a comparative study of different higher-order shear deformation theories for 

multilayer composite plates. The advantages and limitations of the various models were shown with the 

analysis applied on a rectangular plate with a range of thickness, number of layers, edge ratios and 

material properties. A double Fourier series was used by Kabir [81,82]. It was tested for symmetric and 

antisymmetric laminate plates with simply supported boundary conditions at all edges and +45/-45 

orientation angles for laminae. Later, by using the same approach and Kirchhofe's theory, a simply 

supported laminated plate with arbitrary laminations was presented by Kabir [83]. For validation the 

results were compared with FSDT based on finite element solutions. Based on Kassapogolou and 

Lagace’s [71,72] model, and using boundary layer theory, Ko and Lin [84] proposed a model to analyse 

the 3D stress distribution around a circular hole in symmetric laminate for in-plane stresses. The laminate 

was subdivided into interior and boundary layer regions and each stress component was introduced by 

superposition of the interior and boundary layer stress. All the boundary conditions for each ply and the 

interface traction continuity were satisfied. Later Ko and Lin [85] extended the work for analysing 

complete state of stress around a circular hole in symmetric cross-ply laminates under bending and torsion 

[31].  

Wang and Li [86] used 3D anisotropic elasticity and the method of separation of variables to derive the 

constitutive equations with unknown displacements for each cylindrical lamina of a multilayered shell. 

They considered mechanical and thermal load with various boundary conditions in their work. The model 

is able to determine the interlaminar stresses exactly [31].  Matsunaga proposed a global higher-order 

theory [87]. It was employed to analyse the inter-laminar stress problems of laminated composite and 

sandwich plates. The advantage of this method is that the total number of unknowns does not increase as 

the number of layers increases and from the constitutive relations the in-plane stresses can be predicted 

accurately. By integrating the three -dimensional equilibrium equation, transverse shear and normal 

stresses can be calculated, which satisfy the free surface boundary conditions and continuity conditions at 

interfaces [9]. 

A complex function presented by Soldatos [88] which only dealt with simple bending of a special kind of 

transversely inhomogeneous monoclinic plates (class of symmetric cross- and angle-ply laminates and 

functionally graded material). The basis of these methods was the governing equations of the generalised, 

shear deformable plate theory presented by Soldatos [89]. Later, Soldatos presented a theory which 

considered the effects of both transverse shear and transverse normal deformation, in a way that allows 

for multiple, a posteriori, choice of transverse strain distributions to be stated. This function considers the 

bending-stretching coupling for un-symmetric laminates and inhomogeneous material through-thickness 

[90,91]. 
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5. Layerwise Theory (LT) 

In recent years, the layerwise theories and individual layer theories have been presented to achieve more 

accurate results.  Some of this research has been carried out by Wu and Chen, [92] and Cho et al. [93], 

Plagianakos and Saravanos [94], and Fares and Elmarghany [95]. These theories require many different 

unknowns for multilayered plates and are often computationally time-consuming and expensive to obtain 

accurate results [8,96,97]. 

A number of layerwise plate models, which can represent the zig-zag behavior of the in-plane 

displacement through the thickness, have been developed to predict both gross response and the stress 

distributions [9].  The basic idea is assuming certain displacement and/or stress models in each layer, 

followed by equilibrium and compatibility equations at the interface to reduce the number of the unknown 

variables [58]. For example, Di Sciuva and Icardi [97] proposed an eight-noded general quadrilateral 

plate element with 56 degrees of freedom for anisotropic multi-layered plates based on the third-order 

zig–zag plate model and demonstrated a good accuracy. Generally in Layerwise theories the number of 

unknowns increases significantly with the number of layers and consequently the computational weight 

becomes considerably heavier and higher. To overcome this problem different solutions are suggested. 

Cho and Parmerter [98] presented a model in which the number of unknowns is independent of the 

number of layers. They modified their previous model of a composite plate theory for general lamination 

configurations by superimposing a cubic varying displacement field on a zig–zag linearly varying 

displacement. This method satisfies transverse shear stress continuity at the layer interfaces and shear-free 

surface conditions. 

There is a lack of accuracy in Equivalent Single Layer (ESL) for thick laminated composite plates, 

especially in the vicinity of the free edges, corners or other special features such as holes, where the 

interlaminar shears dominate by the stress field distortion and highly depend on the real stacking 

sequence. The so-called free edge effect is mainly explained by the mismatch of elastic properties, 

particularly the Poisson’s ratio, at the interface of two consecutive layers. Therefore, some other more 

accurate layerwise field equations are needed to overcome such limitations. The theories that have been 

developed to justify through-the-thickness piece-wise behaviour of stresses and displacement are often 

subject to Zig-Zag theories (ZZ). 

The general difference between a single layer plate theory and a multi-layer plate theory is that different 

tangential elastic compliances of the plies cause the displacement components to show a quick change of 

their slopes in the thickness direction at each layer interface, the so-called zig–zag effect. To summarise, 

the in-plane stresses (           ) can be discontinuous at each layer interface while the transverse 

stresses (           ), for equilibrium, must be continuous. In ZZ theory the compatibility of the 

displacements and the inter-laminar equilibrium of the transverse stresses in the thickness direction are 

assured by defining a new stiffness matrix called C0z [58]. 

Lekhnitskii in 1968 [99] was one of the pioneers who tried to define a ZZ theory. The main drawback for 

this approach was the limitation of the approach to multi-layered composite where each layer is isotropic. 

Ren [100] later improved this model by using an extension of the theory developed by Reissner [101] to 

multi-layered plates. This approach used a Lagrange function with five parameters, which represent the 

degrees of freedom of the structure. In fact, each degree of freedom is represented by a function for the 

whole domain.  Normally, the DoFs are: 

 two axial in-plane displacements along x and y co-ordinates (namely    and   ) 

 transverse displacement  , 

 two transverse shear strains     and    . 

In uncoupled problems the essential number of degrees of freedom is three. On the other hand when it is 

possible to separate the in-plane from the transverse response in order to solve the transverse equilibrium 

equations the shear strains are sometimes replaced by the two rotations of the cross-section about the y 

and x-axes, therefore the number of DoFs reduced to three [22].  

Discrete-layer models which categorise Layerwise theories, have been developed by Noor and Burton 

[102] and Carrera [103], which can provide very accurate prediction of the displacement and stress. 

However, increasing the number of layers lead to increasing the number of unknowns. Due to the number 

of variables depending on the number of layers, they become impractical for engineering application [9]. 

Di Sciuva [104,105] and then Touratier [48,106] proposed simplified discrete layer models with only five 

essential variational unknowns to consider the warping in the deformed configuration. Like many early 

methods these models also could not satisfy the compatibility conditions (both at layer interfaces and at 

the boundaries). Beakou [107] and Idlbi [108] modified those models to overcome this limitation and then 

He [109] introduced the Heaviside step function which allows automatic satisfaction of the displacement 

continuity at interfaces between different layers. Later, based on discrete layer theory and Di Sciuva 
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[105], He [109] and Ossadzow et al. [110] a new model is presented for laminated composite structure by 

Karama et al. [32].  

Based on Sciuva’s theory, new zig-zag models have been proposed by Lee et al. [111], Sciuva [112] and 

Cho and Parmerter [113]. These models contain the same variables as those given by the FSDT and 

satisfy transverse shear stresses continuity conditions at interfaces. The number of variables does not 

depend on the layers of laminated plate. Numerical solutions verify that in-plane stresses compared with 

3D solutions are very accurate. However, the transverse shear stresses from the direct constitutive 

equation method cannot be calculated accurately. In order to accurately predict interlaminar stress, the 

equilibrium equation approach has to be considered [9]. 

The discrete-layer theories [114-116] are capable of modeling the warpage of the cross-section during 

bending and of predicting in-plane responses. A refined shear deformation theory (RSDT) with a 

simplified discrete-layer model has been presented by He [117] to reduce the total number of dependent 

variables. The transverse displacement is constant across the thickness and the in-plane displacements 

assumed to be piecewise linear. The transverse shear strains across any two different layers next to each 

other are assumed to be linearly dependent on each other as real transverse shear stresses are continuous 

between layers. Based on those assumptions, governing equations have been derived using the principle 

of minimum potential energy. The difference between this method and FSDT is the set of governing 

differential equations which are of the 12
th

 order, which means two orders higher than FSDT. However, 

the variables are still the same. The limitation on the application of this theory is that the thickness of the 

shell must be small compared to the principal radii of curvature. Thus, the analytical solutions can be 

obtained for only a few cases. This model have been tested for various problems such as cylindrical 

bending of an infinitely long cross-ply laminated strip under sinusoidal loading, and bending of simply 

supported symmetric and antisymmetric cross-ply rectangular plates under sinusoidal transverse loads 

[118,119]. It was shown that RSDT is accurate to predict the stresses and deflections by comparing the 

numerical results of RSDT with FSDT and 3D elasticity theory [120].  Later, based on the same model, 

He and Zhang presented a simple closed-form solution for antisymmetric angle ply, simply-supported 

rectangular plates subjected to sinusoidal transverse loads and compared their model with CLPT and 

FSDT [120,121]. 

In order to satisfy the continuity of displacements at the interfaces between two adjacent layers Robbins 

and Reddy [122] introduced a layerwise laminate theory by using a one-dimensional Lagrangian 

interpolation function associated with a series of n nodes. Using the Lagrangian function for the variation 

of the displacements through the thickness causes calculations to become greatly heavy when the number 

of layers increasing [3, 123-125]. 

Wu and Kuo [126] proposed a local higher-order lamination theory. They used the Lagrange multiplier 

method and defined the Lagrange multipliers as the interlaminar stresses to evaluate the interlaminar 

stresses. They also used interlaminar stresses as the primary variables. It guaranteed the equilibrium 

equation and the displacement continuity constraints at the interface between consecutive layers. Then 

they used the Fourier series expansion method to analyse the problem [31]. 

A higher-order layerwise theoretical framework is presented by Plagianakos and Saravanos [94], which 

was able to predict the response of thick composite plates. The linear approximation by linear layerwise 

theories is considered. The displacement in each discrete layer through the thickness of the laminate 

includes quadratic and cubic polynomial distributions of the in-plane displacements. Interlaminar shear 

stiffness matrices of each discrete layer are presented by considering the interlaminar shear stress 

compatibility conditions in order to guarantee the continuity of interlaminar shear stresses through the 

thickness. The main advantage of this model when compared to linear layerwise theories is in the small 

number of discrete layers used to model the thick composite laminate through-thickness and in the 

prediction of interlaminar shear stresses at the interface. 

 

6. Mixed Plate Theory 

Recently, some researchers have attempted to combine previous models in order to overcome the 

limitations of each one. Unified equations have been proposed for mixed layerwise and mixed equivalent 

single layer theories. The main aim is to formulate these unified C0z theories in the most general way for 

users to be able to choose the approach (equivalent single layer, Layerwise zig–zag, etc); at the same time 

the order of the expansion of displacements and transverse stresses [58,127]. 

This class of model has been contemplated over the last few decades. The so-called mixed variational 

approach-based on the variational principles developed by Hellinger [128] was proposed and then 

improved by Reissner [101].  The number of variables that must be computed is at least 2N+1 where N is 

the total number of layers. The number of variables can be significantly reduced by using a weak form of 

Hooke’s Law [129], which shows the variables in terms of the three displacements only. Shimpi et al. 
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[130] derived two novel formulations with only two variables, which work perfectly for moderately thick 

isotropic plates. However, it requires ad-hoc calculated shear correction factors for transverse shear 

stresses in multilayered composite plates [22]. 

Recently, Tessler et al. [131] have developed a refined Zig-zag theory based on the kinematics of FSDT. 

The deployment of novel piece-wise linear zig-zag functions provides an accurate and robust approach. 

The number of computations is relatively low compare to other layerwise theories. By reducing the 

number of functional degrees of freedom and choosing the appropriate degree of freedom, the function 

converge quickly and the computational efforts reduced [22]. 

Cen et al. presented a simple displacement-based, quadrilateral 20 DoF (5 DoF per node) bending element 

based on the FSDT for analysis of arbitrary laminated composite plates by considering the Timoshenko’s 

beam theory for elements and interpolation for shear strain, rotation and in-plain displacement. By 

proposing a hybrid procedure the stress solutions especially transverse shear stresses are improved [132]. 

A Reissner mixed variational theorem (RMVT) based on TSDT was developed for the static analysis of 

simply-supported, multilayered plates under mechanical loads. Wu et al. based on the observations of 

these solutions, developed a model for the static analysis of simply supported, multi-layered composite 

and functionally graded material (FGM) plates. Reddy’s third-order displacement model and a layer-wise 

parabolic function of transverse shear stresses are used as the kinematic and kinetic assumptions, 

respectively. A set of Euler–Lagrange equations associated with the possible boundary conditions was 

derived. The results obtained from the present TSDT based on RMVT are compared with those obtained 

from the published TSDT based on the principle of virtual displacement for single layer orthotropic, 

multilayered composite and multilayered FGM plates [133]. 

Another hybrid model, based on FSDT, was presented by Daghia et al. [134] for the analysis of laminated 

composite plates. This model considered a new quadrilateral four-node finite element from a hybrid stress 

formulation involving, as primary variables, compatible displacements and element wise equilibrated 

stress resultants. By the minimum number of parameters, the transverse stresses through the laminate 

thickness are reconstructed using three-dimensional equilibrium. Their strategy can be adopted with any 

plate finite element and does not need any correction factor. 

Demasi [135-139] presented mixed plate theories based on the Generalized Unified Formulation (GUF) in 

five parts. In the first part, the governing equations for GUF are explained. GUF is a recent common 

method which is categorised as a displacement-based theory. GUF is extended for the first time for a 

mixed variational statement, Reissner’s mixed variational theorem [101]. In this technique each of the 

displacement variables and out-of-plane stresses is independently considered. Also, different orders of 

expansions for the different unknowns can be chosen. The advantage of this model is that it can easily 

apply in a single FEM code. This method applied to the case of LT. As it was mentioned before for LT 

each layer is independently modelled and the compatibility of the displacements and the equilibrium of 

the transverse stresses between two contiguous layers are enforced a priori. Infinite combinations of the 

orders used for displacements and out-of-plane stresses can be freely chosen [136]. In addition, GUF is 

applied to mixed higher order shear deformation theories. The displacements have an equivalent single 

layer description, whereas the stresses are based on a layerwise category. The compatibility of the 

displacements and the equilibrium of the transverse stresses between two adjacent layers are considered. 

The displacement-based ‘‘classical” HSDT results will be obtained by neglecting the out-of-plane stresses 

and using the static condensation technique in this model [137]. Furthermore, this model is applied for 

advanced mixed higher order zig-zag theories by adopting of Murakami’s zig-zag function [138] and 

finally the numerical results of this model presented [139]. 

Bhar et al. [140] presented a method based on least square of error for accurate evaluation of through-the-

thickness distribution of transverse stresses in thick composite and sandwich laminates, using a 

displacement-based C0 higher-order shear deformation theory (HSDT). This model is different from the 

conventional method of integrating the 3D equilibrium equations for transverse stress in composite 

laminates. The numerical results compared well with the results from FSDT and HSDT. They used this 

method to express the transverse shear stress accurately and furthermore expand it for post-processing 

techniques [140]. 

Based on the least-squares variational principle, which is an alternative approach to the mixed weak form 

FEM, Moleiro et al. [141] presented a mixed finite element model for the static analysis of laminated 

composite plates. This model is a FSDT with displacements and stress resultants as independent 

variables. By using equal-order C0 Lagrange interpolation functions of high levels along with full 

integration, the model is proposed and the results for different boundary conditions calculated and 

compared with previous work by Chou [142]. It is showed that the mixed least-squares model with high-

order interpolation functions is insensitive to shear-locking. The model was developed for free vibration 

and different side-to-thickness ratios (from 10 to 500) [143]. Later, this model is developed in order to be 

able to choose the finite element approximating spaces independently [144,145]. 
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It is worth noting that Finite Element Methods (FEM) can be used for all different methods which have 

been mentioned.  However, due to numerous computations and number of unknown variables, layerwise 

theories mostly have been solved by FEM which are presented in previous works [4,16,21,31,97,146-

157]. However, FEM is not the only solution for these models. Recently, different meshless methods are 

presented to solve equation for laminated composite plates [158]. The developments of element-free or 

meshless methods and their applications in the analysis of composite structures have been reviewed by 

Liew et al. [159] recently. 

 

7. Conclusion and Future Work 

In this review, composite laminate plate theories have been generally categorised. The advantages and 

limitations of each model have been discussed. This research mainly focused on how accurately and 

efficiently the models can predict the transverse shear effects. It is explained that CLPT and FSDT are 

unable to accurately compute transverse shear stresses of both moderately thick and thick laminated 

plates. To obtain reasonable transverse shear stresses, the global displacement theories with very higher 

order shear deformation should be adopted. Also, the zig-zag theories satisfying interlaminar continuity of 

transverse shear stresses at interfaces is unable to accurately compute transverse shear stresses directly 

from constitutive equations. To accurately obtain transverse shear stresses, 3D equilibrium equations have 

to be adopted which require heavy computational processing because of the increasing number of 

variables. Due to the number of variables depending on the number of layers, they become impractical for 

engineering applications. 

Some recent researchers have tried to use the transverse shear and warping effect in highly anisotropic 

composite to passively control the composite structure. Smart passive adaptive structures are a new 

approach for developing smart and predictable composite materials with wide ranging applications. They 

can be used to exploit the effects of shear and elastic coupling and link stretching to bending to twisting 

of the structure. This requires a much better and more deterministic knowledge of interlaminar shear. 

Such passively smart structures can have a wide range of applications such as in the new generation of 

bend-twist adaptive wind turbine blades, smart helicopter blades of passive adaptive fan and compressor 

blades. Therefore, predicting transverse shear effect accurately and in practical way for engineering 

applications is essential. Novel approaches are being proposed and tested by the authors and the results 

will be the subject of the future publications.  
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Abstract. A semi-analytical approach for analysis of laminated plates with general 

boundary conditions under a general distribution of loads is developed. The non-linear 

equations are solved by the Newton-Kantorovich-Quadrature (NKQ) method which is a 

combination of well-known Newton-Kantorovich method and the Quadrature method. 

This method attempts to solve a sequence of linear integral equations. In this paper this 

method is used to propose a semi-analytical model for buckling of laminated plates. The 

convergence of the proposed method is investigated and the validation of the method is 

explored through numerical examples and the results compared with finite element 

method (FEM). There is a good agreement between the NKQ model and FEM results. 

 

1. Introduction 

In the last half century, the use of composite materials has grown rapidly. These 

materials are ideal for structural applications that require high strength and low weight. 

They have good fatigue characteristics and are resistant to corrosion [1]. Understanding 

the mechanical behaviour of composite plates is essential for efficient and reliable design 

and for the safe use of structural elements. The complex behaviour of laminated plate 

structures normally need a non-linear model to describe them. Moreover, anisotropic and 

coupled material behaviour add more non-linearity to analysis. The non-linear analysis of 

buckling of laminated plates has been the subject of many research projects. Also, 

various semi-analytical and numerical methods for the description and response of 

laminated plates have been developed. The common analytical non-linear theories for 

laminated composites such as classical laminated plate theory [2,3] and first shear 

deformation plate theory [3,4] generally use the Rayleigh-Ritz method [5] or the 

Galerkin method [6]. The accuracy of these analytical models depends on the trial 

functions. The semi-analytical non-linear methods are an essential tool that provides 

perception to the physical non-linear behaviour of the composite plate structure, present 

fast and reliable solutions during the preliminary design phase and also provide a means 

of validations the numerical methods and enable the development of new computational 

models. 

The buckling behaviour of elastic plates is a geometric non-linear problem. The non-

linear large deflection behaviour of a plate can be analysed by solving the Von-Kármán 

non-linear equations [1,7] together with the appropriate boundary conditions. 

Unfortunately, the Von-Kármán equations are coupled and fourth-order and thus no 

rigorous solutions are available. This has prepared the ground for the development of 

the approximate methods and semi-analytical models. Ovesy and Assaee presented a 

buckling model by considering The effects of bend–twist coupling of composite 

laminated plates and using semi-energy finite strip approach [7]. Shufrin et al. proposed 

a semi analytical approach for Buckling of symmetrically laminated rectangular plates. 

mailto:ras_khandan@yahoo.com
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The solution of the partial differential buckling equations has been reduced to a solution 

of a set of ordinary differential equations using the multi-term extended Kantorovich 

method [8]. 

Bisagni and Vescovini focused on analytical formulation for local buckling and post-

buckling analysis of stiffened laminated panels [9]. Lopatin and Morozov worked on 

Buckling of the rectangular orthotropic plate subjected to linearly varying in-plane 

loading with certain boundary condition (SSCF) [10]. Later The effect of anisotropy on 

post-buckling behaviour of laminated plates is studied by Assaee et al. They used semi-

energy finite strip method on their work. The NKQ method is used by authors to present 

a semi-analytical model for solving the constitutive equation of laminate plate with 

general boundary conditions, in this paper the NKQ method is used to propose a semi-

analytical model of buckling of laminated plates. 
 

2. Governing Equations 

2.1. General composite equations 

The state of stress at a point in a general continuum can be represented by nine stress 

components     (         ) acting on the sides of an elemental cube with sides parallel 

to the axes of a reference coordinate system. In the most general case the stress and 

strain components are related by the generalised Hook’s law as follows [1]: 

σ                                                                                  (1) 

where       is the stiffness components [11].  

In the classical laminate theory, it is assumed that straight lines normal to the middle 

surface remain straight and normal to that surface after deformation. These assumptions 

are not valid in the case of thicker laminates and laminates with low stiffness central 

plies undergoing significant transverse shear deformations. In the following, referred to 

as first-order shear deformation laminate plate theory, the assumption of normality of 

straight lines is removed [1,3]. 
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where the components of this section stiffness matrix are given by: 

                  

  
  

  
  

                          

        

  
  

  
  

                                     
                     (3) 

    are the off-axis stiffness components, which can be explained in terms of principal 

stiffness components,    ,  which are defined in reference [1,11] 
 

2.2. Basic NKQ Equations 

The nonlinear integral equation in the Urysohn form is defined as [12]: 
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       bxadttytxKxfxy   ,,               (4) 

If ),( xa , it is named a nonlinear Volterra integral equation and if ),( ba , it is 

named the nonlinear Fredholm integral equation. To approximate the right-hand integral 

in equation (4), the usual quadrature methods similar to the ones used to approximate 

the linear integral equations that lead to the following nonlinear systems. For further 

information on quadrature methods in this respect, see [12]. 
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where swij
and sw j

 are weights of the integration formula. For further information on 

the Newton-Kantorovich method, see [12]. 
 

3. Application of NKQ 

As it is mentioned the general form of the nonlinear Volterra integral equations of the 

Urysohn form is: 

       bxadttytxKxfxy
x

a
  ,,             (7) 

By considering the equation (5,6) and by integrating )(1 xk  with )()( 1 xyxy kk  : 
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Consider: 
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This equation can be solved by considering an initial solution )(0 xy  and constructing 

the )0()0()0( ,, FAY  and also using the following repetition sequence (for further details 

see [12]): 

 
       nkFYAI kkk ,...,2,111               (12) 

On the other hand, by considering an initial solution )(0 xy , 
iY )( )0( would be )(0 ixy  and 
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by using equation (9) and (10) )0()0( , AF  are obtained respectively. Then by solving the 

system       010 FYAI  , 
)1(Y is obtained. By repeating this procedure and next using 

equation (12), the values of )()3()2()1( ,...,, mYYYY  are calculated for Nm .  m is a 

constant value which can be increased for higher n. Depending on n , an approximate 

solution for equation (10) is presented.  

To evaluate buckling load capacity of a square laminated plate the minimization of total 

potential energy approach is considered. For more details of parameters see [7]. The 

total potential energy of plate is presented as following equation: 

                    dxdyADAAV nL

T

nL

T

L

T

nLL

T

Ls     2
2

1
         (13) 

NKQ method run a series of buckling displacement functions to converge till it 

converge and error become less than a certain desirable amount. 

 

4. Verification Study 

In order to verify the NKQ method numerical examples are solved and compared with 

previous research. In the first example, a square plate with all edges simply supported 

out-of-plane, and with the unloaded edges free to move in plane is considered. The 

square plate is assumed to be of 200mm length and 2mm thickness. Moreover, the plate 

is from high strength carbon-epoxy with [(+45)2/(-45)2/(+45)2/(-45)2]s lay-ups and the 

material properties of a single ply as follows: 

GpaGmmtvGpaEGpaE 5125.03.0,10,140 121221   

The results is shown in Figure 1a to 1d after five iterations and compared with the 

results presented by Ovesy and Assaee [7]. 

 
 

 
(a) 

 

 
(b) 
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(c) 

 

 
(d) 

Fig. 1. Variation of out-of plane deflection across the plate at a) x=L/4, P=1.212Pco, b) 

x=L/4, P=2.027Pco, c) x=L/2, P=1.212Pco, d) x=L/2, P=2.027Pco, 
 
 

In the next example a square laminated plate with a length of 50cm under uniform 

loading is considered. The material properties are: 

GpaGGpaGGvGpaEEGpaE 12.445.3,4.,27.,5.11,5.43 231312231312321  

 

As it is shown in Figures 2a and 2b there is a good agreement between the model and 

FEM results. 

 

     
(a) 
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   (b)     

Fig. 2. Variation of out-of plane deflection across the plate at a) x=L/4, P=3.9112Pco, b) 

x=L/2, P=3.9112Pco 
 

 

5. Conclusion 

It is very important to include the effects of bend–twist coupling terms in the 

appropriate analysis of buckling of composite plates. Conventional analytical models 

are not able to consider this effect. In this paper a semi analytical model presented to 

consider the transverse shear for buckling of composite plates. Based on the concept of 

semi-energy method, for the postbuckling analysis of geometrically perfect thin-walled 

composite laminated plates under uniform end shortening is presented in this paper. The 

non-linear equations are solved by Newton-Kantorovich-Quadrature (NKQ) method. 

This method breaks down the laminated composite plats equations to series of 

sequential equations and attempts to solve iterative linear integral equations. The 

convergence of the proposed method is compared with other method. Furthermore, 

there is a good agreement between the model and FEM results. 
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ABSTRACT 

Previous studies have shown that composite fibre orientation angles can be optimised 

for specific load cases such as longitudinal or in-plane loading.  However, the 

methodologies utilised in these studies cannot be used for general analysis of such 

problems.  In this research an extra term is added to the optimisation penalty function in 

order to consider the transverse shear effect. This modified penalty function leads to a 

new methodology whereby the thickness of laminated composite plate is minimised by 

optimising the fibre orientation angles for different load cases.  Therefore, the effect of 

transverse shear forces is considered in this study.  

Simulated annealing (SA), which is a stochastic optimisation method, is used to search 

for the optimal design. This optimisation algorithm has been shown to be reliable as it is 

not based on the starting point and it can escape from the local optimum points. In 

accordance with the annealing process where temperature decreases gradually, this 

algorithm converges to the global minimum. 

In this research, the Tsai-Wu failure and maximum stress criteria for composite 

laminate are chosen. Tsai-Wu failure is operationally simple and readily amenable to 

computational procedures. In addition, this criterion shows the difference between 

tensile and compressive strengths clearly, through its linear terms. By applying two 

failure criteria at the same time the results are more reliable.  

Experimentally generated results show a very good agreement with the numerical 

results, validating the simulated model used. Finally, to validate the methodology the 

numerical results are compared to the results of previous research with specific loading.  

 

Key Word: Composite Laminate Plate, Optimisation, Transverse Shear, Out-plane 

Stresses 
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1. INTRODUCTION 

The demand for high strength, high modulus and low density industrial materials has 

generated an increased number of applications for fibre laminated composite structures 

in many different fields such as in submarines, sport equipment,  medical  instruments, 

civil engineering, enabling technologies, primary and secondary marine and aerospace 

structures, astronavigation and many more industries [1].  Composite constructions are 

usually multilayer produced structures, mostly made of flat and curved panels, built up 

from several layers or laminae, which are bonded together [2]. 

In the last half century, the use of composite materials has grown rapidly. These 

materials are ideal for structural applications that require high strength and low weight. 

They have good fatigue characteristics and are resistant to corrosion. They provide 

some flexibility in design through the variation of the fibre orientation or stacking 

sequence of fibre and matrix materials [3,4]. Another advantage of fibre laminate 

composites is the capability to design the physical structure and mechanical properties 

prior to manufacture. The mechanical behaviour of laminates strongly depends on the 

orientation of fibres and thickness of lamina. Accordingly, the lamina should be 

designed to satisfy the specific requirements of each particular application in order to 

obtain the maximum advantages from the directional properties of materials.  Accurate 

and efficient structural analysis, design sensitivity analysis and optimisation procedures 

for size and shape and the orientation of fibres within the material are also required.  

This provides a good opportunity to tailor the material properties to the specific 

application [5,6]. However, it increases the complexity of the design problem. This 

complexity exists, not only because of numerous design variables, but also because of 

having a multimodal and variable-dimensional optimisation problem with unattainable 

or costly derivatives [7]. 

Optimum strength designs of continuous fibre-reinforced composite laminates have 

been used since the early days of these materials. The first research to investigate the 

fibre orientation of a unidirectional lamina yielding maximum strength under in-plane 

stress conditions has been carried out by Sandhu and Brandmaier [8]. Brandmaier found 

that the strength of a unidirectional lamina under in-plane stresses could be maximised 

analytically with respect to the fibre orientation [9]. The results based upon Tsai-Hill 

failure criterion indicated that the optimum fibre orientation depended upon the stress 

state and the relative value of the transverse and in-plane shear strengths of the lamina. 

When the strength of a multidirectional composite laminate is to be maximised, more 

complicated and explicit optimisation techniques are needed [10]. Chao et al. were the 

pioneers that sought the optimum strength design of multidirectional laminates using a 

search technique [11]. Latterly, many studies have been devoted to the optimum 

strength design of multidirectional laminate. Among these are the works by Park [12], 

Fukunaga and Chou [13], Miravete [14], Fukunaga and Vanderplaats [15], Haftka, 

Gurdal et al. [16,17], Spallino et al. [18], Weaver [19], Chattopadhyay [20], Luersen 

[21] and Ghiasi et al. [22]. 
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Previous studies have shown that composite fibre orientation angles can be optimised 

by different optmisation methods for specific load cases such as longitudinal or in-plane 

loading [23-35].   

In this Paper the thickness of laminated composite plates is minimised by optimising the 

fibre orientation angles for different load cases.  The novelty of the research presented 

in this paper is that the effect of transverse shear forces and therefore the induced twist 

angle are considered. 

 

2. Governing Equation 

2.1.  ANALYSIS OF A LAMINATE COMPOSITE PLATE  

The state of stress at a point in a general continuum can be represented by nine stress 

components     (         ) acting on the sides of an elemental cube with sides parallel 

to the axes of a reference coordinate system (Fig. 1). 

 

 

 
Figure 1. State of stress at a point of a continuum [36] 

 

In the most general case the stress and strain components are related by the generalised 

Hook’s law as follows: 
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or, 

 

σ                                                                                          (2) 

where       is the stiffness components [30].  

  

By considering the symmetry of the stress and strain tensors and the energy relations, it 

is proven that the stiffness matrices are symmetric. Thus the state of stress (strain) at a 

point can be described by six components of stress (strain), and the stress-strain 

equations are expressed in terms of 21 independent stiffness constants [36]. 

2.2. IN-PLANE STRESS 

The simplest equivalent single layer (ESL) laminated plate theory, based on the 

displacement field, is the classical laminated plate theory (CLPT) [37-43]. The two 

dimensional classical theory of plates was initiated by Kirchhoff [44] in the 19th 

century, and then was continued by Love [45] and Timoshenko [46] during the early 

20th century. The principal assumption in CLPT is that normal lines to the mid-plane 

before deformation remain straight and normal to the plane after deformation. Although 

this assumption leads to simple constitutive equations, it is the main deficiency of the 

theory.  The affect of the transverse shear strains on the deformation of the elastic two-

dimensional structure are ignored and some of the deformation mode constraints by 

reducing the model to a single degree of freedom (DoF) results are neglected.  This is a 

consequence of the basic assumptions made. It is also worth mentioning that neglecting 

shear stresses leads to a reduction or removal of the three natural boundary conditions 

that should be satisfied along the free edges. These boundary conditions being the 

normal force, bending moment and twisting couple [47]. 

For solving in-plane stress normally the classical laminate theory is used. It is assumed 

that plane stress components are taken as zero.  With respect to the coordinate system 

shown in (Fig. 2) the in-plane stress components are related to the strain components as: 

 

 

   

   

   

 

 

  

         

         

         

  

   

   

   

                                                  (3) 

 

where k is the lamina number,     are the off-axis stiffness components, which can be 

explained in terms of principal stiffness components,    , using the tensor 

transformation rules [48] as 
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Figure 2. A scheme of composite plate under in-plane stress [35] 

 

 

The principal stiffness terms,    , are related to elastic properties of the material along 

the principal directions,   ,   ,    ,    , and     [48]. The effect of transverse shear 

stress is not considered by previous work [35] because in their work the laminate is only 

subject to in-plane loads. Therefore, strain components defined with respect to x–y–z 

coordinate system are the same for each ply regardless of the fibre orientation. For the 

same reason, the mechanical response of the laminate is independent of the stacking 

sequence. Stress resultants, or forces per unit length of the cross section, are obtained 

as: 
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Here   is the number of distinct laminae,    is the number of plies in the kth lamina. 

Here, lamina is meant to be a group of plies with the same orientation angle. 

Substituting the stress–strain relation given by Eq. (3) into Eq. (5): 

 

 

   

   

   

   

         

         

         

  

   

   

   

                                                   (6) 

 

where    , components of extensional stiffness matrix, are given by 

  

                
 
                                                                (7) 

 

Principal stress components can be obtained using the following transformation [35]: 
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Despite its limitations, CLPT is still a common approach utilised to determine quick and 

simple predictions especially for the behaviour of thin plated structures. The main 

simplification is that three-dimensional thick structural plates or shells are treated as 

two-dimensional plate or shells located through mid thickness which results in a 

significant reduction in the total number of variables and equations, consequently 

saving a lot of computational time and effort. The governing equations are easier to 

solve and present in closed-form solutions, which normally provides more physical or 

practical interpretation. This approach remains popular as it is well-known and has 

become the foundation for further composite plate analysis methods. 

This method works relatively well for structures that are made out of a symmetric and 

balanced laminate, experiencing pure bending or pure tension. The error 

induced/introduced by neglecting the effect of transverse shear stresses becomes trivial 

on or close to the edges and corners of thick-sectioned configurations. The induced error 

increases for thick plates made of composite layers, for which the ratio of longitudinal 

to transverse shear elastic modulii is relatively large compared to isotropic materials 

[49]. It neglects transverse shear strains, underpredicts deflections and overestimates 

natural frequencies and buckling loads. 

 

 

2.3. OUT-PLANE STRESS 

As discussed in Section 2.2, in the classical lamination theory, it was assumed that the 

laminate is thin compared to its lateral dimensions and that straight lines normal to the 

middle surface remain straight and normal to that surface after deformation. Therefore, 

the transverse shear stress and strain are neglected. These assumptions are not valid in 

the case of thicker laminates and laminates with low stiffness central plies undergoing 

significant transverse shear deformations. In order to overcome these limitations several 

theories have been proposed to analyse thicker laminated composite plates in order to 

consider the transfer shear effect. Most of these theories are extensions of the 

conventional theories developed by Reissner [47] and Mindlin [50], which are known as 

the shear deformation plate theories. These theories are based on the assumption that the 

displacement   is constant through the thickness while the displacements   and   vary 

linearly through the thickness of each layer (constant cross-sectional rotations    and 

   ). Generally these theories are known as First-Order Shear Deformation Theories 

(FSDT) [3]. According to this theory, transverse straight lines before deformation will 

still be straight after deformation but they are not normal to the mid-plane after 

deformation. This theory assumes constant transverse shear stress. 

In the following, referred to as first-order shear deformation laminate plate theory, the 

assumption of normality of straight lines is removed compare to CLPT. On the other 

hand straight lines normal to the middle surface remain straight but not normal to that 

surface after deformation [43]. 

For out-plane stress, the equation (4), (5) and (6) are described as (9), (10) and (11) 

respectively. 
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where the components of this section stiffness matrix are given by: 
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2.4. FAILURE CRITERIA 

As it is shown in previous research [35] using one failure method is not reliable enough 

for evaluating the results. Also in each fibre orientation the type of the failure is 

switched between fibre, shear and transverse shear failure [43]. Therefore, it is logical 

that the results would be checked by at least two failure criteria.  In this research 

Maximum stress and Tsai-Wu criteria are chosen. 
 

2.4.1. Maximum stress criterion 
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Maximum stress criterion is one of the simplest failure methods to apply. According to 

this criterion, failure is predicted whenever one of the principal stress components 

exceeds its corresponding strength. It is expressed in the form of the following 

subcriteria: 

    
                   
                  

                                                      (13.1) 

    
                   
                  

              (13.2)  

    
                   
                  

                                                      (13.3) 

 

               (13.4) 
                (13.5) 
                (13.6) 

 

    and     are the longitudinal tensile and compressive strengths,     and     are the 

transverse longitudinal tensile and compressive strengths and    is the in-plane shear 

strength. Four additional lamina strength parameters, which are relevant in three-

dimensional analysis, are the out-plane or interlaminar tensile, compressive, and shear 

strengths,    ,    ,    and   . 
 

2.4.2. Tsai-Wu criterion 

The Tsai-Wu failure criterion is one of the most reliable static failure criteria as it 

provides a simple analytical expression taking components. Tsai-Wu [43] proposed a 

modified tensor polynomial theory by assuming the existence of a failure in the stress 

space. In contracted notation it takes the form: 

 

                                                                                  (14) 

 

where    and      are second- and fourth-order strength tensors, and              [36]. 

By applying assumptions some of    and      are identified. Finally it is reduced to a 

failure envelope for constant values of shear stress        
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or equivalently 

 
   

 

        
 

   
 

        
 

   
 

  
 

      

             
  

 

   
 

 

     
       

 

   
 

 

     
                                                                    

(18) 

 

 

3. OPTIMISATION 
An optimised composite laminate requires finding the minimum number of layers, and 

the best fibre orientation and thickness for each layer. Several optimisation methods 

have been introduced to solve this challenging problem, which is often non-linear, non-

convex, multimodal, and multidimensional. Nowadays usually stochastic non-linear 

optmisation methods are utilised for this problem as they can avoid the local minimums. 
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One of the best algorithms in this category is Simulated Annealing (SA) method which 

is used in similar problems [7]. 

 
 

3.1 SIMULATED ANNEALING ALGORITHM 

Kirkpatrick et al. [51] proposed simulated annealing as a powerful stochastic search 

technique in 1983. The method gets its name from the physical process whereby the 

temperature of a solid is raised to a melting point, where the atoms can move freely and 

then slowly cooled. The method attempts to model the behaviour of the atoms in 

forming arrangements in solid material during annealing. Although the atoms move 

randomly, as their natural behaviour they tend to form lower-energy configurations 

[52]. However, this is a time driven process. When a material is crystallised from its 

liquid phase, it must be cooled slowly if it is to assume its highly ordered, lowest-

energy, perfect crystalline state. At each temperature level during this annealing 

process, the material should reach equilibrium. As the temperature decreases, the 

arrangement of the atoms gets closer and closer to the lower energy state. This process 

continues until the temperature finally reaches freezing point [52]. The temperature is 

initially assigned a higher value, which corresponds to more probability of accepting a 

bad move and is gradually reduced by a user-defined cooling schedule. Retaining the 

best solution is recommended in order to preserve the good solution [52]. 

At each iteration of the simulated annealing algorithm, a new point is randomly 

generated. The distance of the new point from the current point, or the extent of the 

search, is based on a probability distribution with a scale proportional to the 

temperature. The algorithm accepts all new points that lower the objective, but also, 

with a certain probability, points that raise the objective. The algorithm avoids being 

trapped in local minima, by accepting points that raise the objective, and is able to 

explore globally for more possible solutions. An annealing schedule is selected to 

systematically decrease the temperature as the algorithm proceeds. As the temperature 

decreases, the algorithm reduces the extent of its search to converge to a minimum. 

If a set of configurations is considered, in each iteration the speed convergency would 

be increased. In this research the SA proposed by Erdal et al. [52] is applied.  The 

number of these configurations depends on the dimension of the problem. 

 

                                                                                (17) 

 

where   is the dimension of the problem, i.e. the number of design variables [52]. 
 

 

3.2 PENALTY FUNCTION and OPTIMISATION PROCEDURE  

In this step a penalty function is expressed and then this function has to be optimised.  

 

                        
 
           

   

 
          (18) 

 

   is the number of plies in the     lamina, in which the orientation angle is   ;   is 

the total  number of distinct lamina; the second and third terms represent the penalty 

values introduced to increase the value of the objective function for designs for which 

failure is predicted and thus to restrict the search to the feasible design space;     and  

    are penalty values calculated based on the maximum stress criterion and the Tsai–

Wu criterion, respectively.      and      are equal to the safety factors according to 

the maximum stress and Tsai–Wu criteria, respectively, if they are greater than 1.0, 
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otherwise these terms are equal to zero;    are suitable coefficients [35]. This penalty 

function is the same as the one defined by Akbulut and Sonmez [35] in 2008 except the 

last term of equation (18). In their work, the ply angles are optimised for in-plane plate 

and the effect of shear stress and as a result induced twist angle of the plate was 

neglected. However in this research the induced twist angles is considered. Therefore 

the maximum acceptable twist angle is defined and by assuming this maximum twist 

angle, the appropriate coefficient for     is obtained.  

Implying several tests by Finite Element Method (FEM) software shows that maximum 

twist for each material happens at the specific angles                   .   is the 

number of possible     . The range of fibre orientations         is divided into 

several areas, each      is the centre of the area and in each iteration the program find 

the   to the range that it belongs to and then the program works with the appropriate  

     and corresponding     . Except for the related     , the other      are equal to 

zero.     is defined as: 

 

                                                                                (19) 

 

So when the ply angle in each layer (    would be close to     , the amount of 

        is bigger and thus the last term of penalty function and as a result penalty 

function would be larger. For a proper   , the amount of induced twist     always will 

be less than maximum acceptable twist        .  

The reason that the objective is reduced for safe designs is that there may be many 

feasible designs with the same minimum thickness. Of these designs, the optimum is 

defined as the one with the largest failure load. Accordingly, the objective function is 

linearly reduced in proportion to the failure margin [53]. Similarly in another study [54], 

the margins to initial failure were maximized with the minimum feasible number of 

laminae. The safety factor of the laminate according to the maximum stress criterion, 

    , is calculated as follows [35]:  
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The safety factor for the     lamina,     
 , according to the Tsai– Wu criterion is 

defined as the multiplier of the stress components at lamina k,    
 , that makes the right 

hand side of Eq. (16) equal to 1 then it turns into [35]: 
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where 
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The root of the above equation gives the safety factor. Because a negative safety factor 

is not physically meaningful, the absolute value of the first root is considered as the 

actual safety factor. 

 

    
            

  
                                                              (24) 

 

Then, the minimum of     
  is chosen as the safety factor of the laminate. 

 

                
                                               (25) 

 

In equation (24), the  –        

  
  can be considered, as   is always positive and the aim 

is to find the minimum of     
 . 

The penalty value due to the violation of the maximum stress and Tsai-Wu criteria are 

calculated in equations (26) and (27) respectively:  
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The total penalty value for the laminate due to the violation of the maximum stress and 

Tsai-Wu criteria are then calculated by summing up the penalty values calculated for 

each lamina. 
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4. Results 

4.1. Experimental Results 

In order to validate the FEM model some experimental tests have been performed. For 

each case six similar laminated plates are manufactured. One of the samples is shown in 

figure (3).  Carbon fibre is used for all laminated experimental tests and the size of plate 

is 500*500 (mm).   
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Figure 3. Process of making laminated plate 

 

 

In figure (4) t1 to t6 are the experimental test results for six similar plates under the 

constant load. Six plates in each case have the same layup and geometry; ta is the 

average of t1 to t6 and tF is the FEM results. 

 

 
Figure 4. An example for one case; t1 to t6  are the experimental test results for six similar plates 

under constant load. ta is the average of t1 to t6 and tF is the FEM outputs. 

 

 

The experimental tests have been carried out for 15 different cases with different loads 

and layups. In figure (5) the percentage difference of deformation between tests and 

FEM results and in figure (6) the percentage difference of   are shown. As is shown in 

figures (5,6) there is a very good agreement between FEM and experimental results. In 

figures (5,6) the axis which shows error is zoomed in to 10% to distinguish the 

differences between each case. 
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Figure 5. Percentage difference of deformation between tests and FEM results 

 

 

 
Figure 6. Percentage difference of (α) between tests and FEM results 

 

 

4.2. Case Study Results 

In this Section, two case studies are considered. The first case study compares the 

obtained results with those which were found by Akbulut and Sonmez [35] to validate 

the proposed optimisation method. The graphite/epoxy materials T300/5308 with the 
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properties of            GPa,           GPa,             GPa,           , 

         MPa,            MPa,         MPa,           MPa,        

MPa is considered for the first case study. 

In this case the maximum acceptable twist angle is         . In table (1) and table 

(2) the results are compared with previous work [35]. As it is shown in table (1) the 

number of lay-up increase for some loads and it shows that in these cases the amount of 

twist angle is more than     . Clearly by increasing the lay-ups, safety factor for both 

Tsai-Wu and Maximum stress will be increased.  In table (2) the number of lay-ups and 

thickness is constant but in some cases the optimum orientation angles is different from 

the previous work. Although the safety factor is reduced, it avoids passing the 

acceptable twist angle and the safety factor is still more than 1, therefore, it is still 

acceptable. When the maximum twist angle is less than the      the results are 

comparable with the work has been done by Akbulut and Sonmez [35]. 

 

Table 1.  Optimum lamina orientations for Material T300/5308 under different loads 

Loading: 

              

        

(Fig.  2) 

Optimum lamina orientations Safety factor 

Akbulut & Sonmez 

[35] 

Present Work  Akbulut et al. [35] Present Work 

Max. 

Stress 

Tsai-Wu   Max. Stress Tsai-

Wu 

10/5/0                           1.0277 1.0068 1.1309 1.1001 

20/5/0                           1.1985 1.0208 1.3305 1.1560 

40/5/0                           1.5381 1.0190 1.6504 1.1903 

80/5/0                           1.2213 1.0113 1.2302 1.0120 

120/5/0                           1.0950 1.0030 1.0951 1.0030 

 

 

Table 2.  Optimum lamina orientations for Material T300/5308 under different loads for constant 

thickness 

Loading: 

             

         

(Fig.  2) 

Optimum lamina orientations Safety factor 

Akbulut & Sonmez [35] Present Work  Akbulut 

& 

Sonmez 

[35] 

Present 

Work 

200/200/0                                                                 2.14 2.14 

200/0/200                                          4.84 1.91 

400/200/0                                                                 1.64 1.42 

200/200/200                   
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In the second case study a highly anisotropic material is considered (material II). The 

elements of stiffness matrix are:             ,            ,             , 

          ,           ,            ,           ,           , 

          ,            ,         ,           ,        ,       

     ,            ,        ,           ,            ,            , 

          ,            .  

In figure (7) the amount of twist angle under a constant load for different ply angles is 

shown. So the amount of           in equation (20) are           which are the local 

maximums.  

 

 
Figure 7. Twist angle for a first layer of material (II) 

 
 
 

Table 3.  Optimum lamina orientations for second case study material under different loads for 

constant thickness. 

Loading: 

                        

Optimum lamina                     

orientations 

Safety factor 

Max. Stress Present Work 

100/100/0/20                                 1.2720 1.0931 

100/0/100/20                  1.5402 1.2112 

200/100/0/20                                 1.3200 1.111 

100/100/100/20                 3.3401 2.3765 

 

 

This test is for the first layer in order to find the          and the areas which were 

explained in Section 3.2. FEM tests show that these         are the same by adding the 

next layers. If the stiffness matrix is symmetric the curves will be symmetric about y 

axis. A general stiffness matrix for material II is considered, so there is no mirror about 

y axis. Optimum lamina orientations under different loads in this case are shown in the 

table (3). In this case the pure bending load     is also applied to the plate. 
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4. CONCLUSION 

In this study, an optimisation methodology of composite plates was presented. A 

method was proposed in order to overcome the difficulties and shortcomings faced by 

the previous research. In previous work the effect of transverse shear was neglected and 

therefore the induced twist angle is ignored. In some applications the twist angle, which 

is the direct effect of transverse shear, is undesirable. Therefore, in this research, after 

optimising the fibre orientations, by considering the induced twist angle as well as 

safety factor, the induced twist angle always stays less than the acceptable twist angle. 

One of the other weakness in previous work was that the plate was optimised under 

specific loads, such as longitudinal or in-plane loading. By the proposed method in this 

research the out-plane stress optimisation can be solved as well as the in-plane stresses. 

In order to have a reliable optimisation, simulated annealing, which is one of the 

stochastic optimisation methods and can escape the local minima is applied and the 

penalty function for this optimisation method is modified. This modified penalty 

function forces the induced twist to stay under a predefined induced twist. In addition, 

two Tsai–Wu and maximum stress failure criteria are used in the algorithm individually 

to avoid false optimal design. 
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Abstract: 

A semi-analytical approach for analysis of laminated plates with general boundary 

conditions under a general distribution of loads is developed. The non-linear equations 

are solved by the Newton-Kantorovich-Quadrature (NKQ) method which is a 

combination of well-known Newton-Kantorovich method and the Quadrature method. 

This method attempts to solve a sequence of linear integral equations. The convergence 

of the proposed method is compared with other semi-analytical methods. The validation 

of the method is explored through various numerical examples and the results compared 

with finite element method (FEM) and experimental tests. Good agreement between the 

NKQ model, FEM and experimental results are shown to validate the model. 

 

Key words: composites; laminates; semi-analytical model 

 

1. Introduction 

In the last half century, the use of composite materials has grown rapidly. These 

materials are ideal for structural applications that require high strength and low weight. 

They have good fatigue characteristics and are resistant to corrosion [1]. 

Understanding the mechanical behaviour of composite plates is essential for efficient and 

reliable design and for the safe use of structural elements. The complex behaviour of 

laminated plate structures normally need a non-linear model to describe them. Moreover, 

anisotropic and coupled material behaviour add more non-linearity to analysis. In general, 

there is no closed-form exact solution for the non-linear problem of composite plates for 

large deformations with arbitrary boundary conditions. The non-linear analysis of 

laminated plates has been the subject of many research projects. Also, various semi-

analytical and numerical methods for the description and response of laminated plates 

have been developed. A comprehensive summary of the solutions for the geometrically 

non-linear analysis of isotropic and composite laminated plates was given by Chia [2]. 

The common analytical non-linear theories for laminated composites such as classical 

laminated plate theory [3-9] and first shear deformation plate theory [9-11] generally 

use the Rayleigh-Ritz method [12] or the Galerkin method [13-15]. The accuracy of 

these analytical models depends on the trial functions which they choose and they have 

to satisfy at least the kinematic boundary conditions. For certain boundary conditions 

and out-of-plane loadings these methods are so complicated and time consuming [16]. 

There are also some numerical methods to analyse laminated plates for the large 

deflection including the finite strip method [17,18]; the differential quadrature technique 

[19]; the method of lines [20]; Finite Element Method (FEM) [21-32]. Different 
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meshless methods are also presented to solve the equations for laminated composite 

plates [33]. The development of element-free or meshless methods and their 

applications in the analysis of composite structures have been reviewed by Liew et al. 

[34] recently. 

Due to numerous computations and the number of unknown variables, numerical 

methods are needed to solve problem of laminated plates. However, the analytical and 

semi-analytical non-linear methods are an essential tool that provides perception to the 

physical non-linear behaviour of the composite plate structure. Furthermore, these 

methods normally present fast and reliable solutions during the preliminary design 

phase. They also provide a means of validations the numerical methods and enable the 

development of new computational models. Therefore, the development of the semi-

analytical methods has been growing rapidly [16]. 

The aim of this work is to achieve a semi-analytical approach for the non-linear model 

of laminated plates with arbitrary boundary conditions for general out-of-plane 

loadings. A Newton-Kantorovich-Quadrature (NKQ) method was proposed recently, by 

Saberi-Najafi and Heidari [35], for solving nonlinear integral equations in the Urysohn 

form. This method is expanded and used in this paper to present a semi-analytical model 

for laminated composite plates. Different extended Kantorovich methods (EKM) have 

been used by researchers to analyse the free-edge strength of composite laminates [36], 

the bending of thick laminated plates [37], buckling of symmetrically laminated 

composite plates [38] and laminated rectangular plates under general out-of-plane 

loading [16]. The multi-term extended Kantorovich method assumes a solution of the 

two-dimensional problem in the form of a sum of products of functions in one direction 

and functions in the other direction. As a result, the problem is reduced to a set of non-

linear ordinary differential equations in the second direction. The solution of the 

resulting one-dimensional problem is then used as the assumed functions and the 

problem is solved again for the first direction. These iterations are repeated until 

convergence is completed. Unlike most of the other semi-analytical methods the 

accuracy of the solution is independent of the initial chosen functions. This initial 

function, even if it does not satisfy any of the boundary conditions [39,40], does not 

affect the accuracy of the solution. The EKM was applied by Soong [41] to the large 

deflection analysis of thin rectangular isotropic plates subjected to uniform loading. 

Some solutions [40,41] used only one-term for expansion yielding of isotropic plates. 

However, it is showed that one term formulation is not enough to predict the behaviour 

of anisotropic plates [40]. In this study, the NKQ is used to overcome these 

shortcomings and the model for out-of-plane loading as well. The accuracy and 

convergence of the method has been investigated through a comparison with other 

semi-analytical solutions and with finite element analysis (FEA) using a number of 

numerical examples in order to validate the model [16]. 

 

 

2. Governing Equations 
2.1. General composite equations 

The state of stress at a point in a general continuum can be represented by nine stress 

components     (         ) acting on the sides of an elemental cube with sides parallel 

to the axes of a reference coordinate system (Fig. 1). 
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Figure 1. State of stress at a point in a general continuum [42] 

 

 

In the most general case the stress and strain components are related by the generalised 

Hook’s law as follows [1]: 

 

σ                                                                                           (1) 

 

where       is the stiffness components [42]. Thus in general, it would require 81 elastic 

constants to characterize a material fully. However, by considering the symmetry of the 

stress and strain tensors and the energy relations, it is proven that the stiffness matrices 

are symmetric. Thus the state of stress (strain) at a point can be described by six 

components of stress (strain), and the stress-strain equations are expressed in terms of 

21 independent stiffness constants [42]. 
 

 

2.1.1. IN-PLANE STRESS 

The classical laminate theory is used to analyze the mechanical behaviour of the 

composite laminate. It is assumed that plane stress components are taken as zero. The 

in-plane stress components are related to the strain components as: 
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where k is the lamina number,     are the off-axis stiffness components, which can be 

explained in terms of principal stiffness components,    ,  which are defined in 

reference [1,42] 

Stress resultants, or forces per unit length of the cross section, are obtained as: 
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Here   is the number of distinct laminae,    is the number of plies in the kth lamina. 

Here, lamina is meant to be a group of plies with the same orientation angle. 

Substituting the stress–strain relation given by Eq. (2) into Eq. (3) [1]: 
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where    , components of extensional stiffness matrix, are given by: 

 

                
 
                                                                   (5) 

 

Principal stress components can be obtained using the following transformation [29]: 
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2.1.2 OUT-of-PLANE STRESS 

In the classical laminate theory, it is assumed that straight lines normal to the middle 

surface remain straight and normal to that surface after deformation. These assumptions 

are not valid in the case of thicker laminates and laminates with low stiffness central 

plies undergoing significant transverse shear deformations. In the following, referred to 

as first-order shear deformation laminate plate theory, the assumption of normality of 

straight lines is removed. On the other hand straight lines normal to the middle surface 

remain straight but not normal to that surface after deformation [1,9].     can be found 

in reference [1,42]: 
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where the components of this section stiffness matrix are given by: 
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The out-of-plane boundary conditions include three cases: simply supported (S), 

clamped (C), and free (F) edges. The four possible in-plane restraints along the plate 

edges are shown in Fig. 2, and they are denoted by a subscript index [16].

  

 
Figure 2. Boundary conditions [16] 

 

 

2.2. Basic NKQ Equations 

The nonlinear integral equation in the Urysohn form is defined as [35]: 

 

       bxadttytxKxfxy   ,,          (10) 

 

If ),( xa , it is named a nonlinear Volterra integral equation and if ),( ba , it is 

named the nonlinear Fredholm integral equation. To approximate the right-hand integral 

in (10), the usual quadrature methods similar to the ones used to approximate the linear 

integral equations that lead to the following nonlinear systems for Fredholm and 

Volterra equations are used, respectively. For further information on quadrature 

methods in this respect, see [35,43-49]. 
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where swij
and sw j

 are weights of the integration formula.

 In the Newton-Kantorovich method, an initial solution for )(xy  is considered. The 

following iteration method is used to solve the following sequence of linear integral 

equations instead of a nonlinear integral equation. For further information on the 

Newton-Kantorovich method, see [35,50,51]. 
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where    ytxK
y

ytxK y ,,,, 



 .

 
In NKQ method which is used in this paper, equations (11-13) are combined by Saberi-

Najafi and Heidari (2010) to solve the nonlinear integral equations.  

 

 

3. Application of NKQ 

As it is mentioned the general form of the nonlinear Volterra integral equations of the 

Urysohn form is: 

 

       bxadttytxKxfxy
x

a
  ,,       (14) 

 

By considering the equation (11-13) and by integrating )(1 xk  with )()( 1 xyxy kk  : 
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Consider: 
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     nixyY iki

k ,...,2,1,01 
         (18) 

 

This equation can be solved by considering an initial solution )(0 xy  and constructing 

the )0()0()0( ,, FAY  and also using the following repetition sequence (for further details 

see [35]): 
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       nkFYAI kkk ,...,2,111          (19) 

 

On the other hand, by considering an initial solution )(0 xy , 
iY )( )0( would be )(0 ixy  and 

by using equation (16) and (17) )0()0( , AF  are obtained respectively. Then by solving 

the system       010 FYAI  , )1(Y is obtained. By repeating this procedure and next 

using equation (19), the values of )()3()2()1( ,...,, mYYYY  are calculated for Nm .  m is a 

constant value which can be increased for higher n. Depending on n  an approximate 

solution for equation (10) is presented. Noticeably, by increasing m , the solution tends 

to be more accurate with respect to n. However it is shown that to achieve good results 

it is not necessary to increase m  significantly. 

The general basic equations for laminated composite plate are [9]:  
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Where: 
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And equations (7-9) are simplified to [9]: 
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Where 

 

    
2

2

2 6,..,2,1,,,1,,
h

h ijijijij jidzzzQDBA         (30) 

 

where )6,...,2,1,( jiQij are the transformed plane-stress stiffness coefficients. 

By adopting the variation principle of virtual work and applying the NKQ the equations 

(31) to (35) are derived: 
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Where the secondary variables of the formulation are: 
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Equations (31) to (35) can be estimated by considering them as Urysohn form and an 

initial solution )(0 xy  and consequently the )0()0()0( ,, FAY  and also repeating the 

sequences for equation (19). 

  

 

4. Verification Study 

In order to verify the NKQ method a number of numerical examples are solved and 

compared with previous research. In the first example, a four layer glass/epoxy laminate 

[0, 90]s with ply properties [52] is studied: 

 

GpaGGpaGG

vGpaEEGpaE

12.445.34.

,27.,5.11,5.43

23131223

1312321








    (39) 

 

The plate is a square with 0.5m length and 0.01m thickness. A trigonometric function is 

chosen for initial guess ( )/sin()(0 lxxy  ). It is shown in Figure (3) that it is converged 

after five iterations. Aghdam and Falahatgar [37] used an Extended Kantorovich method 

EKM for analysing the thick composite plate. By choosing a trigonometric function as 

an initial guess, the model converges after 4 iterations. 

 

 

 
Figure 3. Convergence of NKQ method 

 

 

In Table (1) the number of iterations, which are needed for convergence, for three 

different initial functions are shown. As it is mentioned earlier the initial guess does not 

have to satisfy the boundary conditions, so any initial function can be selected. 

Furthermore, as it is shown in Table (1) that the NKQ method is relatively quick and 

does not significantly depend on the initial value. The main advantage of this method, 

compared to EKM, is that it can be used for more complicated cases such as out-of-

plane loading and different boundary conditions. 
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Table 1. Number of iteration for convergence of NKQ and EKM 

Initial guess Number of iteration in 

order to converge for NKQ 
Number of iteration in 

order to converge for EKM 

[37] 

Trigonometric function  

)sin()(0 xxy   
 

5 
 

4 

Polynomial function  
2

0 1)( xxxy   

 
4 

 
NA 

Exponential function 

)()(0 xexy   
 

4 
 

NA 

 

In the next study the material properties are: 

 

GpaGGpaGG

vGpaEEGpaE

1.24.528.

,17.,6.23215

23131223

1312321








 

 

The plate is a square and each length is 0.25m, the thickness is 0.006m and the lay ups 

are [0, 90, 0]s . In Table (2) the relative error between the NKQ method and FEM for 

different numbers of iterations are shown for a plate clamped on one side (C) and free 

(F) on the other three sides (CFFF). This example was then repeated for SSSS and 

CCCC boundary conditions and the results are shown in Tables (3) and (4) respectively.  

 

 
Table 2.  Relative error for CFFF boundary condition  

Number of iterations 1 2 3 4 5 6 7 8 9 10 

Relative error (%) for u 29.4 8.3 3.4 1.9 1.1 0.6 0.3 0.1 0.0 0.0 

Relative error (%) for v 34.5 9.2 5.1 2.1 1.2 0.8 0.3 0.1 0.0 0.0 

Relative error (%) for w 53.4 11.3 5.4 2.1 1.2 0.8 0.4 0.2 0.0 0.0 

 

 
Table 3.  Relative error for SSSS boundary condition  

Number of iterations 1 2 3 4 5 6 7 8 9 10 

Relative error (%) for u 25.4 9.1 3.9 1.9 1.2 0.7 0.4 0.1 0.0 0.0 

Relative error (%) for v 47.2 11.0 5.6 2.5 1.5 1.0 0.5 0.2 0.1 0.0 

Relative error (%) for w 76.6 21.2 7.0 2.9 1.5 0.9 0.5 0.2 0.1 0.1 

 

 

 

 



Appendix A4                 212 

 

 

 
Table 4.  Relative error for CCCC boundary condition  

Number of iterations 1 2 3 4 5 6 7 8 9 10 

Relative error (%) for u 92.2 30.4 14.1 8.3 5.3 3.2 1.8 1.0 0.4 0.1 

Relative error (%) for v 63.8 19.2 9.2 5.1 3.7 1.9 0.9 0.4 0.1 0.0 

Relative error (%) for w 77.1 24.5 11.1 6.6 4.9 2.2 1.3 0.7 0.3 0.1 

 

 

In Table (5), the dimensionless deflection at the centre of plate is compared between 

FEM, multi-term extended Kantorovich method (MTEKM) and NKQ method under 

different levels of load (patch out-of-plane load) [16]. As shown, the NKQ results 

generally show a reasonable agreement with FEM. Semi-analytical models (MTEKM 

and NKQ) illustrate less than 3% error. The structure is a square plate with CFCC 

boundary conditions. The angle-ply laminated plate has four symmetric layers [45, -45]. 

 

Table 5. Dimensionless hW for CFCC square laminated plate under different loads 

Q MTEKM (W)[16] NKQ (W) ABAQUS %MTEKM Error[16] %NKQ 

Error 

2488 .746 .741 .763 2.23 2.88 

4975 1.092 1.090 1.115 2.05 2.24 

7463 1.328 1.325 1.335 2.02 1.50 

9950 1.512 1.559 1.541 1.81 1.16 

12438 1.667 1.667 1.695 1.66 1.66 

14925 1.800 1.802 1.827 1.54 1.36 

17413 1.919 1.913 1.947 1.43 1.74 

19900 2.027 2.025 2.053 1.33 1.36 

 

 

In the next example a square laminated plate with a length of 0.5m under uniform 

loading is considered. The plate is clamped at one side and the deformation at the other 

edge is measured. Because of the different lay-ups (anisotropic) and out-of-plane 

loading there is an induced twist at the free edge of the plate. The aim of this example is 

to find out if the NKQ model can estimate this induced twist. The results are shown for 

an experiment, FEM and NKQ method in Figure (5).  Carbon fibre is used for all 

laminated experimental tests and the size of plate is 500*500 (mm).  The experimental 

test results which are shown in Figure 4 are the average results of six identical plates 

under the constant load.  
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Fig4. Deformation at free edge of anisotropic laminated plate 

 

 

5. Conclusion 

The constitutive equations of the laminated composite plates are non-linear. The semi-

analytical non-linear methods are an essential tool that provides perception to the 

physical non-linear behaviour of the composite plate structure, present fast and reliable 

solutions during the preliminary design phase and also provide a means of validations 

the numerical methods and enable the development of new computational models. In 

this paper a semi-analytical approach for the analysis of laminated plates with general 

boundary conditions and distribution of loads is proposed. The non-linear equations are 

solved by Newton-Kantorovich-Quadrature (NKQ) method. This method breaks down 

the laminated composite plats equations to series of sequential equations and attempts to 

solve iterative linear integral equations. The convergence of the proposed method is 

compared with other semi-analytical methods (EKM and MTEKM). Various numerical 

examples with different boundary conditions and loadings are studied. Good agreement 

between the NKQ model, FEM and experimental results are shown to validate the 

model. 
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Abstract. Considering the non-linearity, complexity and anisotropy of constitutive 

equations in composite materials, numerical methods are essential to evaluate the 

behaviour of this material. The finite element method (FEM) is a powerful 

computational technique for the solution of differential and integral equations that arise 

in various fields of engineering and applied science such as composite materials. Here, 

an FEM tool is designed to analyse non-linearity in the behaviour of composites caused 

by the effect of transverse shear and twist in laminated composite plates. The tool is 

established by using FEM for composites in ABAQUS combined with programming in 

Python to run the tests for all possible fibre orientations in laminated composite plates. 

It is shown that the tool has the ability to design laminated composite plates by 

considering the effect of transverse shear and the tool’s output provides results for all 

different fibre orientations. It is demonstrated that there is good agreement between 

numerical results obtained from this tool and experimental results.  The advantages of 

the tool give designers the opportunity to use this tool for wide range of products.  

Introduction 

Composite materials have been used in a wide range of products and industries due 

to their excellent mechanical properties. Various studies have been carried out to 

analyse composite materials. Reddy [1] presented an overview of the literature on finite 

element (FE) modelling of laminated composite plates up to 1985. Kapania [2] gave a 

review of studies up to 1989 on the analysis of laminated shells. Engblom et al. [3] 

presented a model in which shear deformation is considered in a parametric plate and 

shell element with respect to the shear effects by allowing mid surface displacements to 

be independent of the rotations. The model was based on eight-noded quadrilateral 

geometries with four corner nodes and four midside nodes located at the mid surface of 

the element with six degrees of freedom per node. Wu and Kuo [4] presented a method 

based on the local higher-order lamination theory to analyse thick laminated composite 

plates. In their theory, the displacement continuity at the interface between layers was 

described by considering the potential energy functional of the laminates and applying 

Lagrange multipliers. Noor et al. [5] presented a computational model based on first 

order shear deformation theory (FSDT) for accurate determination of transverse shear 

stresses and their sensitivity coefficients in laminated composite panels for mechanical 

loads. Bose and Reddy [6] presented finite element methods (FEM) of various shear 

deformation theories for the evaluation of composite plates and also compared 

transverse displacements and through the thickness distributions of transverse stresses 

and in-plane stress. Another model which decreases the order of differentiation by one 

as compared to the standard equilibrium approach was shown by Rolfes et al. [7]. The 



Appendix A5                 218 

 

model needed only quadratic shape functions for analysing the required derivatives at 

the element level and also the computational effort was low since it must only have 

stiffness continuity in shape functions in the FE code. Recently, development of 

laminated composite plate theories was reviewed by Khandan et al. [8]. 

Shell elements generally have been used to model structures in which one dimension 

(the thickness) is significantly smaller than the other dimensions. In ABAQUS 6.10-1 

(SIMULIA), general three-dimensional shell elements are available with three different 

formulations: general-purpose, thin-only, and thick-only. Here, S9R5 elements in 

ABAQUS are used which means the element has nine nodes and five degrees of 

freedom. It is important to consider that any numerical or computational method is a 

way to analyse a practical engineering problem and that analysis is not an end in itself 

but rather an aid to design. This is the reason, the FE methods in ABAQUS is used in 

this work to present a laminated composite design tool.  

Governing Equations 

Classical laminate plate theory (CLPT) was the first model to analyse composites. 

However, it is not able to explain transverse shear effect in laminated composites. In the 

classical laminate theory, it is assumed that straight lines normal to the middle surface 

remain straight and normal to that surface after deformation. These assumptions are not 

valid in the case of thicker laminates and laminates with low stiffness central plies 

undergoing significant transverse shear deformations. By considering the transverse 

shear effect, the complexity and non-linearity of constitutive equations for composites 

increase significantly and therefore using a numerical method such as FEM to solve 

these complicated equations is necessary. In order to consider the effect of transverse 

shear, the following equations (Eq. 1-3) are considered (    can be found in references 

[9,10]): 
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where the components of this stiffness matrix are given by: 
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Laminated Composite Tool 

The results for different fibre orientations in each layer of the laminated composite 

plate are needed and can be helpful for designers in order to evaluate potential 

acceptance cases and choose the best option, depending on the final product 

requirements. Therefore, it is essential in ABAQUS to change the fibre orientations by 

small steps in each layer. It is very time-consuming manual process and as a number of 

layers increases, it becomes almost impossible to perform manually. A Python 

programming script was written for this purpose. After writing the Python program to 

run iteratively for a laminated composite plate for all different possible fibre 

orientations, the program is expanded and modified in order to be able to use as a design 

tool for laminated composite plate. The graphical user interface of this tool is shown in 

Fig. 1. 

 

 
Fig 1. Laminated composite plate tool. 

 

As it is shown in Fig. 1, the inputs are the number of iterations required, number of 

plies, load, geometry of the plate (width and length) and material properties (E1, E2, 

Nu1, G12, G13, G23).  The material properties and geometry are entered directly in the 

design tool and the loads and boundary conditions must be defined in ABAQUS. The 

output of this tool is a database of ABAQUS results (stress, strain, etc) for certain all 

possible fibre orientations.  

Experimental Tests 

In order to validate the results of this design tool, some experimental tests were 

performed. For each layup six laminated plates with identical geometry were 

manufactured. Carbon fibre with material properties of E1=      GPa, E2=     GPa, 

Nu1=0.292 G12=2.84 GPa, G13=1.13 GPa and G23=0.91 GPa was used for all 

laminated experimental tests in this work. Square laminated composite panels (500 x 
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500 mm) were produced by vacuum bagging.  In order to minimise the error, the 

average results of these six plates were calculated to be compared with FEM results 

obtained from the design tool. As it is shown in Fig. 2, the plates are fixed on one side 

(a) and displacement in z direction is measured on the opposite free side of the plate (b) 

due to the effect of gravity only.   

 

 
Fig 2. Boundary condition and loading (the plate is clamped on side a. Displacements 

are measured on side b). 

 

An example of the results obtained from a plate with four layers and fibre orientation 

of [0/45/0/90] is shown in Fig. 3.  The results of five other random samples with 

varying fibre orientation layups are shown in Fig. 4. It is observed that for all the 

samples, the errors between the experimental and FEM displacements were less than 

2%. 

 

 

 
Fig 3. Displacement for the free edge of [0/45/0/90] plate with FEM and experiment. 
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Fig 4. Percentage error between FEM and experimental tests (t1-t5). 

Conclusion 

The aim of this work is to present a design tool to evaluate laminated composite 

plates for different fibre orientations. Here, the finite element method is used to solve 

non-linear equations of composite materials by considering the effect of transverse 

shear in a laminated composite plate. In order to validate the FE model and the output of 

the design tool, a series of experimental tests has been performed and there is a good 

agreement between numerical and experimental results. It is shown that there is less 

than two percent error between the result of the designed composite tool and 

experimental results. The tool has the ability to accept material properties, geometries of 

the plate and loads as an input.  The output is a database which contains the results of 

FEA for all possible fibre orientations and can potentially link with any optimisation 

technique to optimise the composite for load, geometry, thickness, induced twist or cost, 

depending on the final product’s function. 
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Overview of Abaqus 

The interaction with Abaqus is through the main window and the look of the window 

change as you work through the modelling process. Figure (1) shows the components that 

appear in the main window (Abaqus 6.10). 

 

 

 

Figure 1 Components of the main window (Abaqus 6.10) 
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Menu bar 

The menu bar includes all the possible menus; the menus give access to all the functionality 

in the product. Different menus appear in the menu bar depending on which module is 

selected by user from the context bar. 

 

Toolbars 

The toolbars is for quick access to items that are also available in the menus. 

 

Model Tree 

The Model Tree makes using Abaqus more user friendly, as it provides a graphical 

overview of the model and the objects that it contains, such as materials, parts, loads, steps 

and output requests. The Model Tree also offers a convenient, tool for moving between 

modules and for managing objects. 

 

Results Tree 

The Results Tree gives users a graphical overview of the output databases and other 

session-specific data such as X–Y plots. Especially if there is more than one output 

database open in the session, user caneasily use the Results Tree to move between output 

databases. 

 

Toolbox area 

When user enters a module, the toolbox area displays tools in the toolbox which are 

appropriate and relevant for that specific module. The toolbox allows quick access to many 

of the module functions. These functions are also available from the menu bar. 

 

Viewport 

Viewports are windows which Abaqus displays your model. 

 

Command line interface 

Users can write the command in command line interface with type Python, which will be 

explained later, to customise the existence model.  
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Modelling 

The Model Tree is convenient tool for searching and controlling the models. The Model 

Tree provides a visual description of items in a model. For example, Figure (2) shows the 

Model Tree in one case. 

 

 

Figure 2 The Model Tree 

 

In the Parts container we draw the model and all parts of it. In our case it is a simple panel. 

In Loads and BCs containers, the Force/Loads and boundary conditions and their types are 

defined respectively. In this research tests, loads are uniform and the square laminated 

composite panel fixed (clamped) in one side. In Material container the materials, laminate 
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parameters such as number of layers, fibre orientations and thickness of each layer are 

defined which will be explained in the following sections. 

Worth to mention, that Abaqus has no built-in system of units. The consistent units that are 

used in Abaqus are defined in Table (1). 

 

 

 

 

Table 1 Consistent units 

Quantity SI SI (mm) US Unit (ft) US Unit (inch) 

Length m mm ft in 

Force N N lbf lbf 

Mass kg tonne (103 kg) slug lbf s2/in 

Time s s s s 

Stress Pa (N/m2) MPa (N/mm2) lbf/ft2 psi (lbf/in2) 

Energy J mJ (10–3 J) ft lbf in lbf 

Density kg/m3 tonne/mm3 slug/ft3 lbf s2/in4 

 

 

 

Mesh/Ellement 

A wide range of elements is available in Abaqus. This extensive element library provides a 

powerful set of tools for solving many different problems. Each element in Abaqus has a 

unique name, such as T2D2, S4R, or C3D8I. The element name identifies each aspects of 

an element. Figure (3) shows the element families most commonly used in a stress analysis. 

One of the major distinctions between different element families is the geometry type that 

each family assumes. For composite material analysis, we used shell element in this 

research which is the most common element to analyse the laminated composite plates. 
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Figure 3 Commonly used element families (Abaqus 6.10) 

 

The degrees of freedom (dof) are the fundamental variables calculated during the analysis. 

For a stress/displacement simulation the degrees of freedom are the translations at each 

node. Some element families, such as the beam and shell families, have rotational degrees 

of freedom as well. 

Temperatures, rotations, displacements and the other degrees of freedom are calculated 

only at the nodes of the element. At any other point in the element, the displacements are 

acheived by interpolating from the nodal displacements. Usually the interpolation order is 

recognised by the number of nodes used in the element. Three different types of element 

are shown in Figure (4). 

 

 

 

Figure 4 Linear brick, quadratic brick, and modified tetrahedral elements. 
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Shell elements are used to model structures in which one dimension (the thickness) is 

significantly smaller than the other dimensions. In Abaqus general three-dimensional shell 

elements are available with three different formulations: general-purpose, thin-only, and 

thick-only. The general-purpose shells and the axisymmetric shells with asymmetric 

deformation account for finite membrane strains and arbitrarily large rotations. The three-

dimensional “thick” and “thin” element types provide for arbitrarily large rotations but only 

small strains. Table (2) summarises the shell elements available in Abaqus. 

 

Table 2 Three classes of shell elements in Abaqus 

General-Purpose Shells S4, S4R, S3/S3R, SAX1, SAX2, SAX2T, SC6R, SC8R 

Thin-Only Shells STRI3, STRI65, S4R5, S8R5, S9R5, SAXA 

Thick-Only Shells S8R, S8RT 

 

The three-dimensional elements in Abaqus whose names end in the number “5” (e.g., 

S4R5, STRI65) have 5 degrees of freedom at each node: three translations and two in-plane 

rotations (i.e., no rotations about the shell normal). However, all six degrees of freedom are 

activated at a node if required; for example, if rotational boundary conditions are applied or 

if the node is on a fold line of the shell. Here, we used S4R5 and S9R5 elements. 

 

 

Composite layups 

This section provides information on modelling composite layups with Abaqus. Composite 

layups in Abaqus are designed to help you manage a large number of plies in a typical 

composite model. Composite sections are a product of finite element analysis and may be 

difficult to apply to a real-world application. Unless your model is relatively simple and all 

plies cover the same region, you will find it increasingly difficult to define your model 

using composite sections as you increase the number of plies. It can also be cumbersome to 

add new plies or remove or reposition existing plies. We start with a basic shape and then 

we add plies of different materials and thicknesses to selected regions and orient the plies to 

provide the greatest strength in a particular direction. The Abaqus composite layup editor 

allows you to easily add a ply, choose the region to which it is applied, specify its material 
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properties, and define its orientation. We can also read the definition of the plies in a layup 

from the data in a text file. This is convenient when the data are stored in a spreadsheet or 

were generated by a third-party tool. 

It is important to specify the correct orientation of the fibres in a ply. Abaqus allows us to 

define a reference orientation for the layup as well as a reference orientation for each ply in 

the layup. In addition, we can specify the direction of the fibres in a ply relative to the 

reference orientation of the ply. By default, the coordinate system of a layup is the same as 

the coordinate system of the part; similarly, the coordinate system of a ply is the same as 

the coordinate system of the layup. 

Figure (5) shows the Edit Composite Layup window in Abaqus. We can control and edit 

the ply name, region, material, thickness for each layer, coordinate system, fibre rotation 

angle (fibre orientation) and integration points. 
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Figure 5 The ply table in the composite layup editor. 

Region 

Select the region to which the ply is assigned. We can choose faces from the viewport, or 

can choose a set that refers to a face. 

 

Material 

Materials can be chosen for each ply. It can be selected from Edit Material from the menu 

that appears, and select the desired material from the list of available materials or create a 

new material. 

Depend on the type of composite we consider, Laminae, orthotropic or anisotropic, we 

should enter 6, 9 or 21 material properties (Figure 6).  
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Figure 6 Input material properties 

 

Rotation Angle 

It describes the rotation (positive clockwise about the normal direction) for the ply's 

reference orientation.
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Python 

Python is a powerful programming language. It has efficient high-level data structures and 

a simple but effective approach to object-oriented programming. Rather than needing all 

desired functionality to be completely built into the language's core, Python is designed to 

be highly extensible. Also, built-in modules can be written in C or C++. Python can also be 

used as an extension language for existing modules and applications that require a 

programmable interface. The following chart shows the Abaqus scripting interface 

commands (Figure 1). 
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Figure 1 Abaqus Scripting Interface commands 

The program which is written to link with Abaqus and run the tests iteratively is presented 

in appendix (B). It is worth to mention some key points about how to work with Python and 

some concepts of it. 

Traditional procedural languages, such as C and FORTRAN, are based around sub-routines 

or functions that perform actions. Unlike them, object-oriented programming languages, 

such as Python and C++, are based around objects. An object gathers and summarises some 

data and functions that are used to manipulate those data. These data are called the 

members of the object. The functions which manipulate the data are called methods. 

Modelling the objects can be varying from a tree (real- world problem) to an array of nodes 

(abstract data from a tree object such as its height, diameter and age). 

 

Running a script 

A script can be run when you start an Abaqus session by typing the following command: 

abaqus cae script=myscript.py 

“myscript.py” is the name of the file which the script is written by that. The script can also 

be run selecting File→Run Script from the main menu bar in Abaqus. Abaqus shows the 

Run Script dialog box, and you choose the file containing the script. 

 

Python data types 

Integer: 

An integer is based on a C program and also can be compared to a FORTRAN integer. For 

extremely large integer values, user should state a long integer. The size of a long integer is 

unlimited and depends on the integer which is used. The “L” at the end of the number 

shows that it is a long integer. 

 

Float: 

Floats represent floating-point numbers or real numbers. It can be used exponential notation 

for floats. 
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Complex: 

A complex number has two members, the real member and the imaginary member 

respectively. Complex numbers use the “j” notation to indicate the imaginary part of the 

number. 

 

Sequences: 

Sequences include strings, lists, tuples, and arrays. 

 

Loop 

A Python script can include a loop. The start and end of a loop is controlled by indentation 

in the script. It is a general and fundamental rule for Python that should be considered by 

users. Start and end of each loop and function is controlled by indentation in script. Unlike 

other program, Python is not using a special character, such as “}”, to signify the end of a 

control block such as an If statement. Instead, Python uses indentation to indicate the end of 

a control block. Users define the indentation that governs a block and should be really 

careful with that. When your script returns to the original indentation, the block ends. Like 

other language programs, Python has commands such as while, break, if, for and elif, else 

to write and control loops. 

 

Abaqus object model 

The object model is a concept in object-oriented programming such as Python. The object 

model provides: 

 A definition of each Abaqus Scripting Interface object which are containing the 

methods and data members. 

 Definitions of the relationships and functions between different objects. These 

relationships and functions form the structure of the object model. 

 

Container/ Singular object 

A Container is an object that takes in objects of a similar type. Objects that are not 

containers are described as a Singular object. A singular object includes no other objects of 

a similar type. 
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Session/ Mdb/ Odb 

Session objects are objects that are not saved between Abaqus sessions; for example, the 

objects that define user-defined views, remote queues and viewports, as shown in Figure 

(2).  The statement from Abaqus imports an instance of the Mdb object. Mdb objects are 

objects which are saved in a model database and can be recovered between Abaqus 

sessions. Mdb objects contain the Job object and the Model object (Figure 3). .odb objects 

are saved in an output database and include both results and model data, as shown in Figure 

(4). 

 

 

Figure 2 The Session object model 
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Figure 3 The Mdb object model 

 

 

 

Figure 4 The Odb object model 

 



Appendix B3                 237 

 

Composite Processing  

There are many different material options to choose as composite materials. From fibres, 

cores and resins, which each one has its own unique set of properties such as stiffness, 

toughness, strength, heat resistance, production, rate cost, etc. However, the final properties 

of a composite part produced from these different materials are not only a function of the 

individual properties of the resin matrix and fibre it is also dependent on the way that the 

materials themselves are designed into the products and the way that they are processed. A 

number of the commonly used composite production methods are compared. The 

advantages and disadvantages of each process are classified and sorted. By considering 

these points the production method is selected and the tests are designed. 

 

Spray Lay-up  

Fibre is chopped in a hand-held gun and fed into a spray of catalysed resin directed at the 

mould. Then the materials are left to cure under standard atmospheric conditions. The resin 

is normally polyester in this process and the fibres are glass roving. The main advantages of 

this method are, widely used for many years, low cost in tooling depositing fibre and resin. 

The disadvantage of spray lay-up are, only short fibres are incorporated and laminates tend 

to be very resin-rich and therefore heavy, which limits the mechanical properties of the 

laminate, the high styrene contents of spray lay-up resins means that they are potentially 

harmful and their lower viscosity means that they can penetrate in clothing etc and finally 

resins need to be low viscosity to be sprayable. This really compromises their mechanical 

thermal properties. This method normally is used to fabricate products such as bathtubs, 

simple enclosures, shower trays and some small dinghies. 

 

Wet Lay-up/Hand Lay-up 

In this process resins are soaked into fibres which can be in the form of knitted, 

unidirectional, woven or bonded fabrics, by hand. This is normally have been done by 

rollers or brushes, with a special type of roller (nip-roller) to impregnate resin into the 

fabrics better. Here, like spray Lay-up process, laminates are left to cure under standard 

atmospheric conditions.  
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In this process any kind of resins and fibres can be used. However, Aramid fabrics are not 

been suggested as they can be hard to wet-out by hand. This method is widely being used in 

the production of boats, standard wind-turbine blades and architectural mouldings.  

Advantage and disadvantage of this method is listed in Table (1). 

 

Table 1 advantage and disadvantage of Hand lay-up method 

Advantage   

 Simple principles to teach 

 Widely used for many years 

 Low cost tooling  

 Wide choice of suppliers and material types  

 Higher fibre contents, and longer fibres than with spray lay-up  

 

Disadvantage  Resin mixing, laminate resin contents, and laminate quality are very 

dependent on the skills of laminators. Low resin content laminates 

cannot usually be achieved without the incorporation of excessive 

quantities of voids.  

 Health and safety considerations of resins. The lower molecular 

weight of hand lay-up resins generally means that they have the 

potential to be more harmful than higher molecular weight products. 

The lower viscosity of the resins also means that they have an 

increased tendency to penetrate clothing etc.  

 Limiting airborne styrene concentrations to legislated levels from 

polyesters and vinylesters is becoming increasingly hard without 

expensive extraction systems.  

 Resins need to be low in viscosity to be workable by hand. This 

generally compromises their mechanical/thermal properties due to 

the need for high styrene levels. 

 

 

Vacuum Bagging  

Vacuum bagging is an extension of the wet lay-up process where pressure is applied to the 

laminate once laid-Up in order to improve its consolidation. This method is used in this 

research and samples are made by vacuum bagging process. Vacuum bagging is performed 
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by sealing a plastic film over the wet laid-up laminate and onto the tool. Air under the bag 

is extracted by a vacuum pump and thus up to one atmosphere of pressure is applied to the 

laminate to consolidate it. By applying this process, the laminate cures relatively faster and 

also the resin spread in the laminate almost equally. In this process, extra resin will be 

absorbed from the laminate, therefore we have more accurate ratio of fibre to resin. The 

main applications are, race car components, core-bonding in production boats and large 

one-off cruising boats. Advantage and disadvantage of this method is listed in Table (2). 

 

Table 2 advantage and disadvantage of vacuum bagging method 

Advantage   

 Higher fibre content laminates can usually be achieved than 

with standard wet lay-up techniques.  

 Lower void contents are achieved than with wet lay-up.  

 Belter fibre wet-out due to pressure and resin flow into bagging 

materials.  

 Health and safety: The vacuum bag reduces the amount of 

volatiles emitted during cure.  

 

Disadvantage  The extra process adds cost both in labour and in disposable 

bagging materials A higher level of skill is required by the operators  

 Mixing and control of resin content still largely determined by 

operator skill.  

 

 

Filament Winding 

This process is initially used for hollow and generally circular or oval sectioned 

components, such as pipes and tanks. The main advantage of this process is that the 

orientations of the fibre can be controlled very accurately. Fibre tows are passed through a 

resin bath before being wound onto a mandrel in a variety of orientations, controlled by the 

fibre feeding mechanism, and rate of rotation of the mandrel. Pipelines, gas cylinders, 

Storage tanks and fire-fighters breathing tanks are produced with this method. 

 

Resin Transfer Moulding (RTM) 
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Fabrics are normally laid up as a dry stack of materials. These fabrics are usually prepared 

and pre-pressed to the mould shape, and held together by a binder. Then, these prepared 

materials are laid into the mould tool.  A second mould tool is then clamped over the first, 

and resin is injected into the cavity. Sometimes a vacuum is also applied to the mould 

cavity to help resin in being drawn into the fabrics. This is known as Vacuum Assisted 

RTM (VARTM) or Vacuum Assisted Resin Injection (VARI). After all the fabric is wet 

out, the resin inlets have been closed, the laminates are allowed to cure. Cure and injection 

often happen at ambient or elevated temperature. Train seats and small complex aircraft 

components are normally made with RTM. 

 

Prepregs 

Fabrics and fibres are pre-impregnated under heat and pressure or with solvent, with a pre-

catalysed resin by the materials manufacturer. The materials are normally stored frozen. 

The reason for that is the resin is usually a near-solid at ambient temperatures, so the pre-

impregnated materials (Prepregs) have a light sticky feel to them, such as that of adhesive 

tape. It is in spite of the fact that the catalyst itself is largely latent at ambient temperatures 

and giving the materials several weeks (even months) of useful life when defrosted. The 

prepregs are laid up by machine or hand onto a mould surface, vacuum bagged and then 

heated to typically 120-180 Celsius. This allows the resin to reflow and eventually to cure. 

Addttional pressure for the moulding is usually provided by an autoclave (effectively a 

pressurised oven) which can apply up to 5 atmospheres to the laminate. F1 racing cars, 

aircraft structural components (e.g. wings and tail sections), sporting goods such as tennis 

racquets and skis are produced by this method.  

In Tables (3) to (5) the advantage and disadvantage of filament winding, resin transfer 

moulding and prepregs methods are listed. There are some other methods such as 

pultrusion, low temperature curing prepregs, resin film infusion (RFI) which are not as 

common as the above methods. 
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Table 3 advantage and disadvantage of filament winding method 

Advantage   

 This can be a very fast and therefore economic method of laying 

material down. Resin content can be controlled by metering the 

resin onto each fibre through dies.  

 Fibre cost is minimised since there is no secondary process to 

convert fibre into fabric prior to use.  

 Structural properties of laminates can be very good since 

straight fibres can be laid in a complex pattern to match the 

applied loads  

 

Disadvantage  The process is limited to convex shaped components  

 Fibre cannot easily be laid exactly along the length of a component.  

 Mandrel costs for large components can be high.  

 The external surface of the component is unmoulded, and therefore 

cosmetically unattractive.  

 Low viscosity resins usually need to be used with their attendant 

lower mechanical and health and safety properties generally 

compromises their mechanical/thermal properties due to the need 

for high styrene levels. 

 

 

 

Table 4 advantage and disadvantage of resin transfer moulding method 

Advantage  High fibre volume laminates can be obtained with very low void 

contents.  

 Good health and safety, and environmental control due to 

enclosure of resin.  

 Possible labour reductions.  

 Both sides of the component have a moulded surface.  

Disadvantage  Matched tooling is expensive and heavy in order to withstand 

pressures.  

 Generally limited to smaller components.  

 Unimpregnated areas can occur resulting in very expensive scrap 

parts.  
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Table 5 advantage and disadvantage of prepregs method 

Advantage   

 Resin catalisation and the resin content in the fibre is accurately 

set by the materials manufacturer.  

 High fibre contents can be safely achieved.  

 The materials have excellent health and safety characteristics 

and are clean to work with.  

 Fibre cost is minimised in unidirectional tapes since there is no 

secondary process to convert fibre into fabric prior to use.  

 Resin chemistry can be optimised for mechanical and thermal 

pertormance, with the high viscosity being impregnatable due to 

the materials manufacturer's process.  

 The extended working times of up to several months at room 

temperatures means that structurally optimised, complex lay-

ups can be readily achieved.  

 Potential for automation and labour saving  

Disadvantage  Materials cost is higher for preimpregnated fabrics  

 Autoclaves are usually required to cure the component. These are 

expensive, slow to operate and limited in size.  

 Tooling needs to be able to withstand the process temperatures 

involved  

 Core materials need to be able to withstand the process temperatures 

and pressures.  
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Python program: 

 

Part I. 

# -*- coding: mbcs -*- 

#x=getInputs(((('Number of iterations:\t valid numbers,81,625',''),('Number of 

Plies',''),('Load',''),('Lenght',''),('Width',''),('E1', ''),('E2',''),('Nu1',''),('G12',''),('G13', ''),('G23',''),))) 

#N=x[0] 

 

Part II. 

import sys,math 

import visualization 

from abaqus import * 

from abaqus import getInput 

from abaqusConstants import * 

from part import * 

from material import * 

from section import * 

from assembly import * 

from step import * 

from interaction import * 

from load import * 

from mesh import * 

from job import * 

from sketch import * 

from visualization import * 

from connectorBehavior import * 

import regionToolset 

from odbAccess import * 

 

Part III. 

mdb.models['Model-1'].ConstrainedSketch(name='__profile__', sheetSize=200.0) 

mdb.models['Model-1'].sketches['__profile__'].rectangle(point1=(0.0, 0.0),  

    point2=(500.0, 500.0)) 

mdb.models['Model-1'].Part(dimensionality=THREE_D, name='Part-1', type= 

    DEFORMABLE_BODY) 

mdb.models['Model-1'].parts['Part-1'].BaseShell(sketch= 
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    mdb.models['Model-1'].sketches['__profile__']) 

del mdb.models['Model-1'].sketches['__profile__'] 

mdb.models['Model-1'].Material(name='Material-1') 

mdb.models['Model-1'].materials['Material-1'].Elastic(table=(( 

    40910000000.0, 9880000000.0, 0.292, 2840000000.0, 1580000000.0,  

    980000000.0), ), type=LAMINA) 

mdb.models['Model-1'].parts['Part-1'].CompositeLayup(description='',  

    elementType=SHELL, name='CompositeLayup-1', offsetType=MIDDLE_SURFACE,  

    symmetric=False, thicknessAssignment=FROM_SECTION) 

mdb.models['Model-1'].parts['Part-1'].compositeLayups['CompositeLayup-1'].Section( 

    integrationRule=SIMPSON, poissonDefinition=DEFAULT, preIntegrate=OFF,  

    temperature=GRADIENT, thicknessType=UNIFORM, useDensity=OFF) 

mdb.models['Model-1'].parts['Part-1'].compositeLayups['CompositeLayup-1'].ReferenceOrientation( 

    additionalRotationType=ROTATION_NONE, angle=0.0, axis=AXIS_3, fieldName='',  

    localCsys=None, orientationType=GLOBAL) 

 

 

Part IV. 

N=625 

n=int (N) 

if n==81: 

   myInputFile = open('c:/temp/ABAQUS/Number_input_81_-90_0_90.txt','r') 

if n==625: 

   myInputFile = open('C:\Users\Rasoul\Desktop\Abaqus_Rasoul\Number_input_625_-90_-

45_0_45_90.txt','r') 

 

 

Part V. 

v=myInputFile.readlines() 

mystring=[] 

 

q=n*4 

for a in range (q): 

    string=[int(v[a])]     

    mystring=mystring+string 

#print mystring 

myInputFile.close() 
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myInputFile2 = open('C:\Users\Rasoul\Desktop\Abaqus_Rasoul\Number_nodes_end.txt','r') 

v=myInputFile2.readlines() 

mystring2=[] 

for a in range (51): 

   string2=[int(v[a])]     

   mystring2=mystring2+string2 

myInputFile.close() 

 

 

Part VI. 

for i in range(0,625): 

     a=mystring[(4*i)]  

     b=mystring[(4*i)+1] 

     c=mystring[(4*i)+2] 

     d=mystring[(4*i)+3] 

 

     mdb.models['Model-1'].parts['Part-1'].compositeLayups['CompositeLayup-1'].CompositePly( 

     additionalRotationField='', additionalRotationType=ROTATION_NONE, angle=0.0 

     , axis=AXIS_3, material='Material-1', numIntPoints=3, orientationType= 

     SPECIFY_ORIENT, orientationValue=a, plyName='Ply-1', region=Region( 

     faces=mdb.models['Model-1'].parts['Part-1'].faces.getSequenceFromMask( 

     mask=('[#1 ]', ), )), suppressed=False, thickness=0.2, thicknessType= 

     SPECIFY_THICKNESS) 

 

     mdb.models['Model-1'].parts['Part-1'].compositeLayups['CompositeLayup-1'].CompositePly( 

     additionalRotationField='', additionalRotationType=ROTATION_NONE, angle=0.0 

     , axis=AXIS_3, material='Material-1', numIntPoints=3, orientationType= 

     SPECIFY_ORIENT, orientationValue=b, plyName='Ply-2', region=Region( 

     faces=mdb.models['Model-1'].parts['Part-1'].faces.getSequenceFromMask( 

     mask=('[#1 ]', ), )), suppressed=False, thickness=0.2, thicknessType= 

     SPECIFY_THICKNESS) 

     mdb.models['Model-1'].parts['Part-1'].compositeLayups['CompositeLayup-1'].CompositePly( 

     additionalRotationField='', additionalRotationType=ROTATION_NONE, angle=0.0 

     , axis=AXIS_3, material='Material-1', numIntPoints=3, orientationType= 

     SPECIFY_ORIENT, orientationValue=c, plyName='Ply-3', region=Region( 

     faces=mdb.models['Model-1'].parts['Part-1'].faces.getSequenceFromMask( 
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     mask=('[#1 ]', ), )), suppressed=False, thickness=0.2, thicknessType= 

     SPECIFY_THICKNESS) 

      

     mdb.models['Model-1'].parts['Part-1'].compositeLayups['CompositeLayup-1'].CompositePly( 

     additionalRotationField='', additionalRotationType=ROTATION_NONE, angle=0.0 

     , axis=AXIS_3, material='Material-1', numIntPoints=3, orientationType= 

     SPECIFY_ORIENT, orientationValue=d, plyName='Ply-4', region=Region( 

     faces=mdb.models['Model-1'].parts['Part-1'].faces.getSequenceFromMask( 

     mask=('[#1 ]', ), )), suppressed=False, thickness=0.2, thicknessType= 

     SPECIFY_THICKNESS) 

 

     

     mdb.models['Model-1'].HomogeneousSolidSection(material='Material-1', name='Section-1', 

thickness=None) 

     mdb.models['Model-1'].StaticStep(description='load', name='Step1', previous='Initial') 

     mdb.models['Model-1'].rootAssembly.DatumCsysByDefault(CARTESIAN) 

     mdb.models['Model-1'].rootAssembly.Instance(dependent=ON, name='Part-1-1',  

     part=mdb.models['Model-1'].parts['Part-1']) 

     mdb.models['Model-1'].EncastreBC(createStepName='Initial', name='fix', region= 

     Region( 

     edges=mdb.models['Model-1'].rootAssembly.instances['Part-1-1'].edges.getSequenceFromMask( 

     mask=('[#2 ]', ), ))) 

      

     mdb.models['Model-1'].Pressure(amplitude=UNSET, createStepName='Step1',  

     distributionType=UNIFORM, field='', magnitude=14.20, name='p', region=Region( 

     side1Faces=mdb.models['Model-1'].rootAssembly.instances['Part-1-1'].faces.getSequenceFromMask( 

     mask=('[#1 ]', ), ))) 

     mdb.models['Model-1'].parts['Part-1'].setElementType(elemTypes=(ElemType( 

     elemCode=S8R5, elemLibrary=STANDARD), ElemType(elemCode=STRI65,  

     elemLibrary=STANDARD)), regions=( 

     mdb.models['Model-1'].parts['Part-1'].faces.getSequenceFromMask(('[#1 ]', ), ), )) 

     

     mdb.models['Model-1'].parts['Part-1'].seedPart(deviationFactor=0.1, size=10) 

     mdb.models['Model-1'].parts['Part-1'].generateMesh() 

     mdb.models['Model-1'].rootAssembly.regenerate() 

     print (a,b,c,d) 

     jobName='JOB_%s_%s_%s_%s' % (a,b,c,d) 
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     print jobName 

      

     mdb.Job(atTime=None, contactPrint=OFF, description='', echoPrint=OFF,  

     explicitPrecision=SINGLE, getMemoryFromAnalysis=True, historyPrint=OFF,  

     memory=50, memoryUnits=PERCENTAGE, model='Model-1', modelPrint=OFF,  

     multiprocessingMode=DEFAULT, name=jobName,nodalOutputPrecision=SINGLE,  

     numCpus=1, queue=None, scratch='', type=ANALYSIS, userSubroutine='',  

     waitHours=0, waitMinutes=0)      

 

     mdb.jobs[jobName].submit() 

     mdb.jobs[jobName].waitForCompletion() 

     myOdb=openOdb(path=jobName + '.odb')   

     myOdb = visualization.openOdb(path=jobName + '.odb')   

     outputFile = open('disp_U_all_'+jobName + '.txt','w')     

     lastFrame = myOdb.steps['Step1'].frames[1] 

     displacement=lastFrame.fieldOutputs['U'] 

     field_displacement_Values=displacement.values 

     outputFile.write('Node\t\tU[1]\t\tU[2]\t\tU[3]\n') 

      

 

Part VII. 

     for v in field_displacement_Values: 

          outputFile.write('%d\t%.9e\t%.9e\t%.9e\n' % (v.nodeLabel, v.data[0], v.data[1], v.data[2] ))  

      

     outputFile.close() 

     outputFile = open('disp_U_end_nodes_'+jobName + '.txt','w') 

     outputFile.write('Node\t\tU[1]\t\tU[2]\t\tU[3]\n') 

      

     for i in mystring2: 

          v=field_displacement_Values[i-1] 

          outputFile.write('%d\t%.9e\t%.9e\t%.9e\n' % (v.nodeLabel, v.data[0], v.data[1], v.data[2] ))  

      

     outputFile.close()                  

     del mdb.models['Model-1'].parts['Part-1'].compositeLayups['CompositeLayup-1'] 
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Part VIII. 

     mdb.models['Model-1'].parts['Part-1'].CompositeLayup(description='',  

     elementType=SHELL, name='CompositeLayup-1', offsetType=MIDDLE_SURFACE,  

     symmetric=False, thicknessAssignment=FROM_SECTION) 

     mdb.models['Model-1'].parts['Part-1'].compositeLayups['CompositeLayup-1'].Section( 

     integrationRule=SIMPSON, poissonDefinition=DEFAULT, preIntegrate=OFF,  

     temperature=GRADIENT, thicknessType=UNIFORM, useDensity=OFF) 

     mdb.models['Model-1'].parts['Part-1'].compositeLayups['CompositeLayup-1'].ReferenceOrientation( 

     additionalRotationType=ROTATION_NONE, angle=0.0, axis=AXIS_3, fieldName='',  

     localCsys=None, orientationType=GLOBAL) 

 

 

Here, different parts of the written Python program are explained. In part (I) the program 

ask the user to enter the inputs such as number of the iterations which user wants the 

program to perform. The number of iterations depends on the step change for fibre 

orientations. For example if the plate is 4 layers and the -90, 0 and +90 degrees are 

considered for fibre orientations, it means 3 fibre orientation for each layer, which means 

the number of iterations would be 3*3*3*3 or 81. If the fibre orientations of -45 and +45 

degrees are also consider for this case, the number of iterations are increasing to 5*5*5*5 

or 625. The other inputs are the number of plies, geometry of the laminated composite plate 

and material properties.  

In part (II), it is essential to recall different parts of Abaqus in Python. In Part (III), 

Modelling of the laminated composite plate has been defined. If there is no input in each 

parameter, a default input number is considered. In Part (IV) an example of how the 

program works for different inputs is shown. The fibre orientations are in separate notepad 

files. The program, depends on the input, is calling the related file and uses the fibre 

orientations from the file. This way is much faster to generate the fibre orientations in the 

program.  

The program needs to have files to save the output results on them. The name of the file 

must be changed in each iteration to avoid rewriting the results on the same file. Also, in 

order to be able to use this file later in a database, it is necessary to know, what fibre 

orientations is presenting in each file. Therefore, to recognise the results which are saved in 

the file belongs to which fibre orientations; the name of the files must somehow represent 
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the fibre orientations of the laminated composite plate. Also as the names of the files are in 

string format, they must be changed to integer format in order to be counted as a number. 

This number in the name of the files shows the fibre orientation for plies. For example the 

file name “45_0_-60_90” shows that the results in the file belong to a laminated composite 

plate with 4 layers and fibre orientations of [45 0 -60 90]. Part (V) in the program is written 

for this purpose.  

Part (IV) is a loop command which is changing the orientations for each layer. The number 

of layers is considered 4 in this example. It can be simply extended for more layers. In Part 

(IIV) the results are saved in output files which were created in part (V). In the shown 

program the output is displacements. It is important to notice that output jobs (.odb) are 

Abaqus files and the results are not limited to the ones which are mentioned in the Python 

program. The .odb file can be opened by Abaqus at any time and the results (stress, strain, 

displacements, etc.) can be checked. On the other hand, when the job is completed by 

Python, all different output results can be viewed in Abaqus without submitting the job 

again each time. 

At each iteration the model is redefined and at the end of the job it is deleted. It is because 

the fibre orientation is part of modelling and to change the fibre orientations, the whole 

modelling part must be changed. As the model deleted at the end of each iteration, the 

model must be defined again at the end of the program which is presented in part (VIII). 

 


