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Abstract

The accurate identification of the right customer to target with the right product at
the right time, through the right channel, to satisfy the customer’s evolving needs, is a
key performance driver and enhancer for businesses. Data mining is an analytic process
designed to explore usually large amounts of data (typically business or market related)
in search of consistent patterns and/or systematic relationships between variables for the
purpose of generating explanatory/predictive data models from the detected patterns. It
provides an effective and established mechanism for accurate identification and classifica-
tion of customers. Data models derived from the data mining process can aid in effectively
recognizing the status and preference of customers - individually and as a group. Such
data models can be incorporated into the business market segmentation, customer tar-
geting and channelling decisions with the goal of maximizing the total customer lifetime
profit. However, due to costs, privacy and/or data protection reasons, the customer data
available for data mining is often restricted to verified and validated data, (in most cases,
only the business owned transactional data is available). Transactional data is a valu-
able resource for generating such data models. Transactional data can be electronically
collected and readily made available for data mining in large quantity at minimum extra
cost. Transactional data is however, inherently sparse and skewed. These inherent charac-
teristics of transactional data give rise to the poor performance of data models built using
customer data based on transactional data. Data models for identifying, describing, and
classifying customers, constructed using evolving transactional data thus need to effec-
tively handle the inherent sparseness and skewness of evolving transactional data in order
to be efficient and accurate. Using real-world transactional data, this thesis presents the
findings and results from the investigation of data mining algorithms for analysing, de-
scribing, identifying and classifying customers with evolving needs. In particular, methods
for handling the issues of scalability, uncertainty and adaptation whilst mining evolving
transactional data are analysed and presented. A novel application of a new framework for
integrating transactional data binning and classification techniques is presented alongside
an effective prototype selection algorithm for efficient transactional data model building.
A new change mining architecture for monitoring, detecting and visualizing the change
in customer behaviour using transactional data is proposed and discussed as an effec-
tive means for analysing and understanding the change in customer buying behaviour
over time. Finally, the challenging problem of discerning between the change in the cus-
tomer profile (which may necessitate the effective change of the customer’s label) and the
change in performance of the model(s) (which may necessitate changing or adapting the
model(s)) is introduced and discussed by way of a novel flexible and efficient architecture
for classifier model adaptation and customer profiles class relabeling.
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Chapter 1

Introduction

Data mining algorithms have now gained prominence as core business profit enhancing

tools, with enterprise database software systems now incorporating them as standard. A

recent survey by Gartner [Herschel, 2008] and Forester Research [Kobielus, 2008] attribute

the increased dependence and usage of data mining tools to businesses becoming more

“information-driven”.

This is more so, given that we currently live in a world where information overload is a

pertinent issue. Data mining algorithms have proven to be invaluable tools for discovering

hidden/unknown patterns in data, for predictive or descriptive purposes. For instance,

the discovered patterns can be used by a product retailer to answer questions like “Who

is likely to buy a certain product in the next six months?”; “What are the characteristics

of these likely buyers?”

In order to adequately utilize the discovered patterns and respond to changing market

forces or market growth, businesses tend to constantly change their processes with a

resultant deterioration of the data mining models performance due to their becoming

obsolete as soon as the business process they model changes.

To discover the hidden/unknown patterns, data mining algorithms employ statistical

methods which operate on the data to produce statistical conclusions for specific patterns

in the data. Huge transactional datasets containing millions of training examples with a

large number of attributes (tall fat data) are relatively easy to gather for such data mining

purposes [Raykar, 2005].

However, the inherent sparseness of transactional datasets and its constant chang-

ing nature makes the data mining process challenging; even more so for data mining

algorithms which do not make any assumptions on the constantly changing form of the

underlying function generating the data.

This seriously restricts the use of these data mining algorithms in the context of mining

transactional datasets.

Interfacing the data mining algorithms with transactional databases as an integral

part of an organization’s data management plan is also made difficult as workarounds are
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often required to deal with the issue of sparse transactional datasets.

1.1 Thesis Goal and Scope

This thesis presents the analysis, design and implementation of data mining algorithms

that discover hidden/unknown patterns in transactional data and generate models that

are adaptive to the change and uncertainty inherent in transactional data.

It presents investigations on how data mining techniques have been and can be used

for knowledge discovery in transactional data. It proposes approaches that will make it

easier for organisations to apply data mining to transactional data sets.

In particular, using data from Screwfix - a leading UK retail outfit, and SLIGRO Food

Group N.V. - a group of food-retail and food-service companies selling to the Dutch food

and beverages market as case studies, this thesis describes the application of robust adap-

tive data mining algorithms to real-world transactional datasets and the down-streaming

of advanced modelling results to non-expert users.

Screwfix and Sligro have large quantities of customer and order data. The data is

heavily sparse and in constant flux in that many of the customers purchase few items per

transaction and constantly change their buying behaviour at different time points. For

example, many Screwfix customers tend to buy different items depending on the job they

are undertaking at a particular time, e.g. gardening in the spring and building in the

summer.

The constantly changing buying behaviour of the customers complicates the process

involved in identifying significant correlation between the different buying behaviour time

points, making the analytical characterization of the customers challenging. Furthermore,

sparseness and skewness of transactional data is compounded by the similarity of few items

bought by the customers which makes predictability and distinction of the customers based

on their buying behaviour challenging.

Data mining algorithms which can effectively handle the inherent sparseness and skew-

ness of transactions to identify behaviour of customers over time, can thus be used to aid

in the decision support process.

Screwfix and SLIGRO are examples of the type of data rich organisations that need

to build data mining and analysis skills to be able to improve on how they use their data

in their marketing and sales departments. Recent attempts by Screwfix and SLIGRO to

analyse their transactional data have failed due to sparsity and the constantly changing

nature of transactional data.

This thesis presents investigations of methods for adapting and changing data mining

models as the nature of Screwfix and SLIGRO’s transactional data grows and changes.

Adaptation helps to prolong the useful life of learned predictive/inference models which

is an important part of making models more useful to non-expert users.
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1.2 Summary of Contributions

Concisely, the main contributions of this thesis are:

1. An in-depth critical analysis of the main research challenges of adaptivity, scala-

bility and uncertainty encountered when mining real-world transactional data. In

particular, the thesis details the problem of mining large transactional data and how

sparsity and skewness results in uncertainty of inference from transactional data.

2. Clustering and sub-sampling are often chosen as the favoured data pre-processing

approaches in data mining project. The thesis highlights the problem of transac-

tional data pre-processing and shows the inappropriateness in mining transactional

data using some of the clustering and sampling techniques proposed in the literature.

3. Investigations and implementations of adaptive algorithms for solving business prob-

lems using real-world transactional data. In particular, the thesis presents the analy-

sis, design, implementation and interpretation of results for classifying and detecting

as well as adapting to customer behaviour using robust adaptive models generated

from transactional data.

4. Methods for the down streaming of advanced models of real-world transactional data

to non-expert users. More specifically, the thesis presents the results for detecting,

visualizing and adapting to the change in buying behaviour to customer transactions

over time using the real-world transactional data provided by Screwfix and SLIGRO.

1.3 List of Publications

The research undertaken has thus far resulted in the following publications:

• Edward Apeh, Bogdan Gabrys, Amanda Schierz, “Customer Profile Classification:

To Adapt Classifiers or To Relabel Customer Profiles?”, Accepted for publication in

the Special Issue: NaBIC2011 Neurocomputing Journal. Elsevier.

• Edward Apeh, Indrė Žliobaite, Mykola Pechenizkiy, Bogdan Gabrys, “Predicting

Multi-Class Customer Profiles Based on Transactions: a Case Study in Food Sales”,

in The Proceedings of AI-2012 Thirty-second SGAI International Conference on

Artificial Intelligence (SGAI).

• Edward Apeh, Bogdan Gabrys, “Detecting and Visualizing the Change in Classifi-

cation of Customer Profiles based on Transactional Data”, in the Special Issue of

the Journal of Evolving Systems, October 2012.
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• Edward Apeh, Bogdan Gabrys, “Change Mining of Customer Profiles based on

Transactional Data”, in Proceedings of the 11th IEEE International Conference on

Data Mining Workshops (ICDMW 2011). IEEE, December 2011

• Edward Apeh, Bogdan Gabrys, Amanda Schierz, “Customer Profile Classification

Using Transactional Data”, in Proceedings of the Third World Congress on Nature

and Biologically Inspired Computing (NaBIC2011). IEEE, October 2011

• Amanda Schierz, Marcin Budka, Edward Apeh, First and Second Winners’ notes:

“Using Multi-Resolution Clustering for Music Genre Identification” in the ISMIS

2011 Contest: Music Information Retrieval.

• Edward Apeh, Bogdan Gabrys, Amanda Schierz, “Robust Adaptive Algorithms for

Relational Data Mining”, in The Proceedings of the 3rd School of Design, Engineer-

ing and Computing Poster Conference, Bournemouth University, UK, May 2010.

1.4 Roadmap

The thesis continues in Chapter 2 with an overview of data mining together with a de-

scription of the problems encountered when mining transactional data for information.

The main part of that chapter surveys techniques for handling the problem of uncertainty

and adaptation and their applicability in mining transactional data.

Preprocessing of the data for the purpose of data mining is a recurrent challenge in

data mining and is reported to take up to 80 percent of data mining and knowledge discov-

ery projects’ time [Adriaans and Zantinge, 1996, Han and Kamber, 2006, Kotsiantis and

et al., 2006, Pyle, 1999]. For mining transactional data, a part of the preprocessing step

involves constructing appropriate customer profiles. Chapter 3 provides a detailed descrip-

tion of customer profiles and the methods for their construction along with a statistical

description of Screwfix’s transactional data. The results obtained from using clustering

as a preprocessing step for Screwfix’s transactional data is also presented.

Chapters 4 and 5 contain the results of investigated approaches for uncertainty han-

dling in classifying transactional data for a binary and multiclass case respectively. Chap-

ter 6 then presents adaptive mechanisms for transactional data mining. Chapter 7 con-

cludes this thesis with a summary and a discussion of open research problems pertaining

to transactional data mining.

Figure 1.1 shows the overall structure of the thesis.
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Figure 1.1: Graphical Representation of the Thesis Structure

5



Chapter 2

Background Knowledge and

Research Challenges

The purpose of this chapter is to give a concise overview of the fundamentals of data

mining, as well as challenges encountered in its application to transactional data.

It starts with an introductory overview of the field of data mining in Section 2.1. Data

mining algorithms discover hidden/unknown patterns in data and generate models for

the purpose of knowledge discovery and understanding. The discussion here covers the

common data mining approaches and their use in mining transactional data.

The discipline of data mining has seen an explosion of interest over the last few years,

and has been successfully applied across an extraordinary range of problem domains, in

areas as diverse as finance [Kovalerchuk and Vityaev, 2000], medicine [Lavra and Zu-

pan, 2005, Lavrac, 1999], engineering [Grossman et al., 2001], geology [Ester et al., 2001,

Shekhar et al., 2003] and physics [Grossman et al., 2001, Sumathi and Sivanandam, 2006].

Indeed, anywhere that there are problems of prediction, classification or control, data

mining techniques are being introduced. This increase in usage can be attributed to the

ability of data mining techniques to contribute to the generation of new opportunities, by

providing the following capabilities [Berry and Linoff, 2004]:

• Automated prediction of trends and behaviours. Data mining automates the

process of finding predictive information in large databases. Questions that tradi-

tionally required extensive hands-on analysis can now be answered quickly, directly

from the data. A typical example of a predictive problem is targeted marketing

[Associates, 1999]. Data mining uses data on past promotional mailings to identify

the targets most likely to maximize return on investment in future mailings. Other

predictive problems include forecasting bankruptcy [Foster and Stine, 2004, Sung

et al., 1999] and other forms of default [Kumar and Ravi, 2008, Phua et al., 2005],

and identifying segments of a population likely to respond similarly to given events

[Jiang and Tuzhilin, 2006].
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• Automated discovery of previously unknown patterns. Data mining tools

sweep through databases and identify in one step previously hidden patterns . An

example of pattern discovery is the analysis of retail sales data to identify seemingly

unrelated products that are often purchased together [Gutierrez, 2006]. Other pat-

tern discovery problems include detecting fraudulent credit card transactions [Chan

et al., 1999] and identifying anomalous data that could represent data entry keying

errors [Margineantu et al., 2005].

The application of data mining techniques in mining transactional data have however

been hampered due to the skewness and sparsity of transactional data. This will be

elaborated upon in the later chapters of this thesis.

2.1 Overview of Data Mining

Data mining is defined as the explorative and non-trivial search for implicit, previously

unknown, and potentially useful insights from data [Han and Kamber, 2006]. It is the

automated process of discovering patterns in data [Fayyad, 1996]. It consists of different

phases and incorporates a number of computer science fields such as Artificial Intelli-

gence, Databases, and Machine Learning, as well as intellectual human capabilities such

as curiosity and creativity.

The goal of data mining is to estimate (or learn) a useful model of an unknown

system from available data. The generated model is subsequently often used in business

applications for predictive or descriptive purposes. In distinguishing data mining from

the other learning methods of predictive and statistical model estimation, Cherkassky

and Mulier [1998] describe data mining as the learning methodology which attempts to

extract a subset of data samples (from a given large data set) with useful (or interesting)

properties. However, the apparent non-distinction of data mining from the other learning

methods of predictive and statistical model estimation, arises from the ’seemly’ absence

of generally accepted theoretical frameworks for data mining which has resulted in data

mining algorithms being initially introduced (by practitioners) and then ’justified’ using

formal arguments from statistics, predictive learning, and information retrieval.

The concept of data mining is, however, becoming increasingly popular as a business

information management tool, where it is expected to reveal knowledge that can guide

decisions in conditions of limited certainty [Hand, 1998, Hand et al., 2001].

2.1.1 Stages of the Data Mining Process

Generally, the process of data mining consists of four stages [Fayyad, 1996]:

1. the initial exploration,
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2. model building or pattern identification with validation/verification,

3. deployment (i.e., the application of the model to new data in order to generate

predictions or describe the phenomenon responsible for the data),

4. model management.

Stage 1: Exploration.

This stage usually starts with data preparation which may involve cleaning data, data

transformations, selecting subsets of records and - in the case of data sets with large

numbers of variables (“fields”) - performing some preliminary feature selection operations

to bring the number of variables to a manageable range (depending on the statistical

methods being considered). Then, depending on the nature of the analytic problem, this

first stage of the process of data mining may involve anywhere from a simple choice of

straightforward predictors for a regression model, to elaborate exploratory analyses using

a wide variety of graphical and statistical methods, in order to identify the most relevant

variables and determine the complexity and/or the general nature of models that can be

taken into account in the next stage.

The main goal of this stage as outlined in the visual guide to the Cross Industry

Standard Process for Data Mining (CRISP-DM) methodology shown in Figure 2.1 is to

understand the data to be mined as well as to assess and determine the business’ data

mining goal.

Stage 2: Model Development and Validation.

This stage involves processing the prepared data and considering various models from

which the best one is chosen based on their predictive performance (e.g., explaining the

variability in question and producing stable results across samples). There are a variety

of techniques which have been developed to achieve this goal - many of which are based

on so-called “competitive evaluation of models”, that is, applying different models to the

same data set and then comparing their performance to choose the best. These techniques

- which are often considered the core of data mining for data model generation/selection/-

validation - include: base classifiers (such as Decision Trees, Support Vector Machines,

Neural Nets), ensemble methods (such as Bagging (Voting, Averaging), Boosting, Stack-

ing (Stacked Generalizations)), and meta-learning. They are discussed in greater detail

in [Hastie et al., 2009].

The data processing, modelling and evaluation tasks are usually repeated with the

knowledge and feedback from stage 1 incorporated if needed, until the model that performs

best on the data is determined, as depicted in Figure 2.1.
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Stage 3: Model Deployment.

This penultimate stage of the initial data mining model development and deployment

cycle involves using the model selected as best in the previous stage and applying it to

new data, in order to generate predictions or estimates of the expected outcome.

Stage 4: Model Management.

Usually, model management implies periodic creation of models and replacement of cur-

rent ones in an automatic or semi-automatic fashion. In this sense, model management

is tightly coupled with model development and deployment steps. It can be seen as

an outer-loop controlling these steps. When dealing with large numbers of models, a

model management component, responsible for automating the creation and deployment

of models, becomes a necessity. A useful approach for implementing model management

is the champion/challenger testing strategy. In a nutshell, champion/challenger testing is

a systematic, empirical method of comparing the performance of a production model (the

champion) against that of new models built on more recent data (the challengers). If a

challenger model outperforms the champion model, it becomes the new champion and is

deployed in the production system. Challenger models are built periodically as new data

are made available [Campos et al., 2005].

Another dimension of model management is the creation and management of metadata

about models. Model metadata can be used to dynamically select, for scoring, models

appropriate to answer a given question [Jain et al., 2008].

The model management stage usually encompasses the modelling, evaluation and de-

ployment steps as also depicted in Figure 2.1.
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Phases

a visual guide to CRISP-DM methodology
SOURCE   CRISP-DM 1.0
  http://www.crisp-dm.org/download.htm
DESIGN   Nicole Leaper  
 http://www.nicoleleaper.com
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Determine Data Mining 
Goals

Data Mining Goals
Data Mining Success Criteria
(Log and Report Process)

Produce Project Plan
Project Plan
Initial Assessment of Tools and 

Techniques
(Log and Report Process)

Collect Initial Data
Initial Data Collection Report
(Log and Report Process)

Describe Data
Data Description Report
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Explore Data
Data Exploration Report
(Log and Report Process)

Verify Data Quality
Data Quality Report
(Log and Report Process)

Data Set
Data Set Description
(Log and Report Process)

Select Data
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Exclusion
(Log and Report Process)

Clean Data
Data Cleaning Report
(Log and Report Process)

Construct Data
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Generated Records
(Log and Report Process)

Integrate Data
Merged Data
(Log and Report Process)

Format Data
Reformatted Data
(Log and Report Process)

Select Modeling 
Technique

Modeling Technique
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(Log and Report Process)

Generate Test Design
Test Design
(Log and Report Process)

Build Model Parameter 
Settings

Models
Model Description
(Log and Report Process)

Assess Model
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(Log and Report Process)

Evaluate Results
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Mining Results with 
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(Log and Report Process)
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Review of Process
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Determine Next Steps
List of Possible Actions
Decision
(Log and Report Process)

Plan Deployment
Deployment Plan
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Plan Monitoring and 
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Maintenance Plan
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Produce Final Report
Final Report
Final Presentation
(Log and Report Process)

Review Project
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Deployment
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Business Understanding
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Data Preparation

select and cleanse data

Data Mining Life Cycle

Figure 2.1: A Visual Guide to CRISP-DM Methodology [CRISP-DM.org and Leaper, 2009]
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2.1.2 Data Mining Tasks

The different data mining techniques used in accomplishing the stages in Section 2.1.1

can be classified according to different groups, depending on the kinds of knowledge to

be discovered (i.e. problem to be solved), the kinds of databases to be mined, and the

computing tools available.

In terms of tasks, data mining techniques can be classified into two categories: de-

scriptive and predictive [Han and Kamber, 2006]. Descriptive data mining tasks char-

acterize the general properties of the data in the database. Predictive data mining tasks

perform inference on the current data, in order to make predictions.

In terms of problems of intellectual, economic and business interest, data mining tech-

niques can be grouped into the following four major categories:

Classification

Classification is concerned with arranging the data into predefined groups. It consists

essentially of examining the features of a newly presented object and assigning it to one

of a predefined set of classes. The objects to be classified are generally represented by

records in a database table or a file, and the act of classification consists of adding a new

column with a class code of some kind. For example, an email program might attempt to

classify an email as legitimate or Spam.

The classification task is characterized by well-defined classes, and a training set con-

sisting of pre-classified examples. The task is to build a model of some kind that can be

applied to unclassified data in order to classify it.

Common classification algorithms like Nearest neighbour, Naive Bayes classifier and

Neural network have been used to address classification tasks such as: [Berry and Linoff,

2000]

• Classifying credit applicants as low, medium, or high risk;

• Choosing content to be displayed on a Web page;

• Determining which phone numbers correspond to fax machines;

• Spotting fraudulent insurance claims;

• Assigning industry codes and job designations on the basis of free-text job descrip-

tions.

All the examples given above have a limited number of classes/discrete outcomes, and

the task is to assign any record into one of them.
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Regression

Regression attempts to find a function which models the data with the least error. Unlike

classification which deals with discrete outcomes, such as yes or no; regression deals with

continuously valued outcomes which are estimated from a model learned from a set of

training examples that include the numerical outcome. Given some input data, a regres-

sion model delivers a value for some unknown continuous variable such as income,height,

or credit card balance.

In practice, regression is often used to perform a classification task [Berry and Linoff,

2004]. For example, a telecommunications company might build a model which assigns all

of its customers, based on their lifetime value, into one of two classes of “low propensity

to churn” and “high propensity to churn”. An alternative approach will be to build a

model which assigns each customer a “propensity to churn” score. These might be a

value from 0 to 1 indicating the estimated probability that the customer will churn. The

initial classification task now comes down to establishing a threshold score. Any customer

with a score greater than or equal to the threshold is classified as belonging to the “high

propensity to churn” class and any customer having a lower score is considered to belong

to “low propensity to churn” class.

The regression approach has the great advantage that individual records can be ordered

according to the estimate. To see the importance of this, suppose that the telecommu-

nication company has budgeted for a loyalty reward programme as an incentive to keep

5000 of their likely to churn customers. If the classification approach is used and 15000

customers are identified as having a high propensity to churn, it might simply select 5000

customers from the identified 15000 customers. If, on the other hand, each customer has a

propensity to churn score, it can instead include the 5000 most likely to churn customers

in the loyalty reward program.

Examples of regression task include:

• A credit card company may estimate the amount of money an individual will spend

in a year;

• A warranty provider may estimate the number of claims a particular product is

likely to generate;

• A supermarket may estimate the number of customers in a particular location.

Data mining techniques well suited to regression tasks include: generalized, logistic,

probit, multinomial or neural networks regression models [Dobson and Barnett, 2008].

Clustering

Clustering is like classification but the groups are not predefined, so the algorithm will try

to group similar items together. It is the task of segmenting a heterogeneous population
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into a number of more homogeneous subgroups or clusters, which are not predefined and

without the use of any labels. The records are grouped together on the basis of similarity

values, calculated using a number of possible similarity measures. It is up to the user to

determine what meaning, if any, to attach to the resulting clusters. Clusters of symptoms

might indicate different diseases. Clusters of customer attributes might indicate different

market segments.

Clustering is often done as a prelude to some other form of data mining or modeling.

For example, clustering might be the first step in a market segmentation effort; instead of

trying to come up with a one-size-fits-all rule for “what kind of promotion do customers

respond to best,” first divide the customer base into clusters or people with similar buying

habits, and then ask what kind of promotion works best for each cluster [Berry and Linoff,

2000].

There are many clustering methods available, and each of them may give a different

grouping of a dataset. The choice of a particular method will depend on the type of

output desired, the known performance of the method with particular types of data, the

hardware and software facilities available and the size of the dataset. In general, clustering

methods may be divided into two categories: hierarchical and non-hierarchical methods,

based on the cluster structure they produce [Jain and Dubes, 1988].

• The hierarchical methods produce a set of nested clusters in which each pair of

objects or clusters is progressively nested in a larger cluster until only one cluster

remains. The hierarchical methods can be further divided into agglomerative or

divisive methods. In agglomerative methods, the hierarchy is built up in a series of

N-1 agglomerations, or fusion, of pairs of objects, beginning with the unclustered

dataset. The less common divisive methods begin with all objects in a single cluster

and at each of the N-1 steps divide some clusters into two smaller clusters, until

each object resides in its own cluster.

• The non-hierarchical methods divide a dataset of N objects into M clusters,

with or without overlap. These methods are sometimes divided into partitioning

methods, in which the classes are mutually exclusive, and/or the less common clump-

ing method, in which overlap is allowed. Each object is a member of the cluster

with which it is most similar, however the threshold of similarity has to be defined.

Affinity Grouping or Association Rules

Affinity Grouping or Association Rules involves determining which things go together.

It consist of searching for relationships between variables. It can be used to identify

cross-selling opportunities and to design attractive packages or groupings of product and

services. For example a supermarket might gather data of what each customer buys. Using

association rule learning, the supermarket can work out what products are frequently
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bought together, which is useful for marketing purposes. This is sometimes referred to as

“market basket analysis” [Gutierrez, 2006]. This kind of market basket data analysis would

enable the supermarket to bundle groups of items together as a strategy for maximizing

sales. For example, given the knowledge that printers are commonly purchased together

with computers, a supermarket could offer expensive models of printers at a discount to

customers buying selected computers, in the hope of selling more of the expensive printers

[Han and Kamber, 2006].

Affinity grouping can also be referred to as a simple approach to generating rules from

data [Berry and Linoff, 2004]. For example, if two items, say biscuits and lemonade, occur

together frequently enough, we can generate two association rules thus:

• People who buy biscuits also buy lemonade with probability P1,

• People who buy lemonade also buy biscuits with probability P2.

2.1.3 Data Mining Tasks covered in this Thesis

This thesis mainly covers the clustering and classification data mining tasks. Cluster-

ing is used in describing the transactional data and aids in accomplishing the business

understanding, data understanding and data preparation phases of the data mining life

cycle outlined in Figure 2.1. Classification models are also built, evaluated, deployed and

adapted as highlighted in the modeling, evaluation and deployment phases of the data

mining life cycle in Figure 2.1.

2.2 The Problem of Mining Transactional Data

In general, a transactional database consists of a file where each record represents a

transaction [Berry and Linoff, 2004, Han and Kamber, 2006]. A transaction typically

includes a unique transaction identity number (trans ID) and a list of the items making

up the transaction (such as items purchased in a store). The transactional database may

have additional tables associated with it, which contain other information regarding the

sale, such as the date of the transaction, the customer ID number, the ID number of the

salesperson and of the branch at which the sale occurred, and so on.

Transactional data are time-stamped data, collected over time, at no particular fre-

quency. Some examples of transactional data are

• Web log data;

• Point of Sales (POS) data;

• Retail data;
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• Inventory data;

• Call Center data;

• Trading data.

Transactional data apart from being traditionally large, is also inherently sparse, due

mainly to the underlying process from which they are generated. For example, in retail

transactional data, where it is usual for customers to purchase only a very small fraction

of products, the average size of a basket (i.e., the collection of items that a customer pur-

chases in a typical transaction) might contain just 3-4 products out of 1,000s of products

in the retailer’s catalogue/inventory. Such a transaction when represented in an attribute-

vector representation will have an average of 3-4 out of 1000s of product attributes that

are not null. This implies that the fraction of non-zero attributes on the table (i.e. the

sparsity factor) will be 3/1000 - 4/1000, or 0.3 - 0.4%. Figure 2.2 depicts the distribution

of a typical transactional dataset.
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Figure 2.2: Plot depicting the distribution of items per transaction (Basket size) of a
typical transactional dataset sourced from Screwfix Limited

Furthermore, the data mining process typically involves using the attribute-vector

representation of the transaction, to build a predictive model consisting of the identified

relevant independent variables which best minimize prediction error. Although processing

power has continued to increase, performing the data mining process on the entire dataset

available can be prohibitive in terms of time and finance.

This prohibition can be attributed either to the design structure of some data mining

algorithms or the complexity of the problem to be solved [Nisbet et al., 2009]. Also, even

though the data size, in terms of volume, might not be of great importance in solving data
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mining problems; analysing all available variables is often computationally impossible in

fields such as geodetics, bio-informatics, and finance [Mannila, 2000].

Pre-processing techniques are often employed to reduce the size of the dataset used in

building and maintaining data mining based business models.

For sparse data, conventional sampling/feature reduction may not work well, because

most of the samples are zeros [Church et al., 2006] while sampling or choosing fixed

dataset columns/features from the dataset, as is done in some cases [Gemulla, 2008,

Gemulla and Lehner, 2008], is also inflexible because different rows may have very different

sparsity factors, leading to each sampled data instance conveying little or no information

for accurate inference. The difficulty in performing an accurate inference with a reduced

feature space of typical transactional dataset can be seen in Figure 2.3 where the data

projection in 2D space is shown using the first 2 principal components. It can also be seen

that the data is concentrated around the origin, reflecting the fact that a vast majority

of customers buy only few items over long periods of time.
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Figure 2.3: Plot showing the projection of the first two principal components of Customer
Profiles based on the transactional data of Screwfix’s Electricians and PlumbHeaters.

Likewise, automatically clustering the transactional datasets as proposed in [Giannotti

et al., 2002, Wang and Karypis, 2004, Yan et al., 2006, 2010], into mutually exclusive

partitions is unwieldy with a resultant high misclassification rate of the discovered clusters

due to the inherent skewness of transactional datasets.

2.2.1 Issues Encountered when Mining Transactional Data

Companies that have been in business for decades accumulate masses of data about their

customers, suppliers, products and services. Also, the rapid pace of e-commerce means
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that Web startups can become huge enterprises in months, not years, amassing propor-

tionately large databases as they grow.

Most data mining techniques are, however, not well-suited to learn from evolving

disparate data sources that may include multi-channel purchases, descriptive features,

estimates based on partial data, video data, etc. as they are designed to operate on a static

datasets of interest amassed over time. They take in, as input, a single homogeneous data

set consisting of a fixed number of attributes and records, similar to a database relation

or query result, with the assumption that the input data contains relatively few records

which are generally static in nature.

For example, predictive data mining techniques employ statistical methods which op-

erate on the whole data to produce statistical conclusions for specific patterns in the data.

Huge data sets containing millions of training examples with a large number of attributes

(tall fat data) are relatively easy to gather for such predictive data mining purposes. How-

ever, one of the bottlenecks for successful inference of useful information from the data

is the computational complexity of some machine learning algorithms which do not make

any assumptions on the form of the underlying function.

Most state-of-the-art non-parametric machine learning algorithms1 -also known as

memory based methods- such as Support Vector Machines, have a computational com-

plexity of either O (N2) (for prediction) or O (N3) (for training in situations where solving

the quadratic problem and choosing the support vectors directly involves inverting the

kernel matrix [Bordes et al., 2005]), where N is the number of training examples [Burges,

1998, Gray and Moore, 2001, Kearns, 1990]. The computational bottleneck at the heart

of these algorithms is the multiplication of a structured matrix with a vector, referred to

in the literature as Sparse matrix vector product (MVP) [Agarwal et al., 1992].

This seriously restricts the use of these data mining algorithms in the context of min-

ing transactional datasets, as the Sparse matrix vector product requires that all of the

available data be retained while making the inference. Interfacing the data mining algo-

rithms with business databases, as an integral part of an organization’s data management

plan, is also made challenging, as workarounds are often required to deal with the issues

of scalability, uncertainty and adaptivity.

2.2.2 Scalability

Most data mining techniques require all the data to be mined to be available in one

table. This is counter-intuitive, especially as most real world applications describe complex

objects in terms of properties and relations. For example, consider the one-to-many

1A learning algorithm is said to be non-parametric if the complexity of the functions it can learn is
allowed to grow as the amount of training data is increased. The term non-parametric has been restricted
in some publications to learning algorithms in which the learned function is expressed directly in terms
of the training examples, e.g., the nearest-neighbor classifier.
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depiction of a customer’s many purchases at a store in Figure 2.4: A data mining task such

Figure 2.4: One-to-Many Customers Purchases

as basket analysis will require that the data be in a single table as depicted in Table 2.1

obtained by performing a join on the data in the Customer Table and Transaction Table

in Figure 2.4.

CustomerID DateOfPurchase ProductPurchased Gender
1 01-03-06 Hammer Male
1 02-03-06 Screw driver Male
3 01-03-06 Drill bits Male
2 01-04-06 Water Pipes Male
3 09-04-06 Screws Male
5 08-04-06 Nails Male

Table 2.1: Example of a Table of Customer Transactions

However, performing a join to form Table 2.1 restricts the meaning/usefulness of the

table to just details of customer transactions and will result in the loss of meaning/use-

fulness of the resultant table if the detailed information (e.g. Address) on each unique

customer who has made a purchase is required by the business.

Alternatively, we could aggregate the customer purchases in an effort to include more

customer details whilst attempting to exclude redundant information to obtain Table 2.2.

This however results in loss of information as whilst our aforementioned joining goals have

been met and we know the number of purchases made; the exact dates of the individual

purchases, together with the exact products purchased, are, however, unknown.

The work of putting all of an established retail organization’s data into a single table

is further made complex because current databases are much too large to be held in main
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CustomerID DateOfLastPurchase NumberOfPurchases Gender Address
1 02-03-06 2 Male 1A High

Sreet
2 02-04-06 1 Male 1A High St
3 09-04-06 2 Male 200 Main

Rd
5 08-04-06 1 Male 200 High

Rd

Table 2.2: Example of a Table of Customer-Details Transactions

memory. Retrieving data from disk is markedly slower than accessing data in RAM.

Thus, to be efficient, the data-mining techniques applied to very large data2 must be

highly scalable3. An algorithm is said to be scalable if, given a fixed amount of main

memory, its runtime increases linearly with the number of records in the input database.

Research on the scalability of mining algorithms tends to focus on either:

1. developing special-purpose scalable implementations of existing well-known algo-

rithms that are guaranteed to return the same result as the original (naive) imple-

mentation, but that typically will run faster on large data sets or

2. derive new approximate algorithms that inherently have desirable scaling perfor-

mance by virtue of relying on various heuristics based on a relatively small number

of linear scans of the data.

There have been several clustering algorithms [Bradley et al., 1998, Lara and Baran-

dela, 2005, Zhang et al., 1996], association rule algorithms [Agrawal and Shafer, 1996,

Agrawal and Srikant, 1994, Zäıane et al., 2001] and classification algorithms [Shafer et al.,

1996, Srivastava et al., 1997] that were designed to achieve scalability by processing the

data points in an incremental manner, or by processing the data points in small batches.

However, these algorithms still treat all the objects of the data set the same way with-

out making any distinction between old data and new data. Therefore, these approaches

cannot possibly handle evolving data, where new concepts emerge, old concepts die out,

and existing concepts change.

Ganti et al. [1999] survey a broad range of scalability issues which algorithms that

address three data-mining problems: market basket analysis, clustering, and classification

have to overcome. Grossman [2001], Grossman and Guo [2002] describe some approaches

and specific techniques for scaling data mining algorithms to large data sets through

parallel processing, that have been used to implement data mining algorithms that are

2The term “Large Data” is often used in the data mining literature to mean data that does not fit into
the memory of a single processor.

3The term “scalable” is used in the data mining literature to refer to data mining algorithms that scale
gracefully and predictably (e.g. linearly) as the number of records n and/or the number of variables p
grow.

19



efficient in both time and space when dealing with very large data sets. However, the

results obtained from these techniques assume the data being mined is static and does

not represent a continuously changing environment.

2.2.3 Uncertainty

The rapid business changes, coupled with the rapidly growing, massive databases preva-

lent in retail, all add up to the increase of uncertainty involved in any problem-solving

situation. This results from some information deficiency pertaining to the system within

which the problem-solving situation is conceptualized. Information deficiencies which

manifest themselves as incomplete, imprecise, fragmentary, unreliable, vague, or contra-

dictory information become even more pronounced in data mining system models, where

putting all the data into a single table, in compliance with the fundamental requirement

of data mining algorithms, results in loss of information/meaning.

The uncertainty can also arise due to implementing the following workarounds in an

attempt to achieve efficient implementation of data mining algorithms:

• Sampling and filtering of large data sets leads to uncertainty about how the samples

differ from each other and the overall data distribution.

• The data mining task being undertaken can also lead to uncertainty. For instance,

uncertainty about the nature of the data, such as the occurrence of missing data or

latent data values.

In general, these various information deficiencies determine the type of the associated

uncertainty [Klir, 2005].

Many conceptual approaches such as Probability and Fuzzy Logic together with their

related concepts such as Probability Theory and Fuzzy Sets have been formulated to

handle4 uncertainty in data and models of imprecise knowledge discovered from using

data mining techniques.

Proponents of the probabilistic approach to handling uncertainty assert that fuzzy

logic, whilst having a moderately large following, remains rather controversial and lacks

the sound theoretical backbone and widespread application and acceptance of probability.

Unwin [1986] in distinguishing between the two forms of uncertainty that arise in risk

and reliability analyses, i.e.:

1. that due to the randomness inherent in the system under investigation and,

2. that due to the vagueness inherent in the assessor’s perception and judgement of

that system;

4The term “handle” is used here to refer to the ability to measure the amount of uncertainty obtained
in generating the results pertaining to a given problem-solving situation. [Klir, 2005]
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proposed that, whereas, the application of the probabilistic approach to the first variety

of uncertainty is an appropriate one, the same may not be true of the latter. This is

due mainly to the capability of fuzzy set theory to provide a formal framework for the

representation of vagueness, through seeking to quantify the imprecision that characterizes

our linguistic description of perception and comprehension.

In advocating information mining5, Kruse et al. [1999] emphasize the appropriateness

of fuzzy set methods in the data mining/knowledge discovery process as solutions obtained

using fuzzy approaches are easy to understand and to apply due to their closeness to

human reasoning.

We now present an overview of the fuzzy logic approach and probabilistic approaches

of handling uncertainty.

Fuzzy Approach to Handling Uncertainty

Fuzzy logic is logic of fuzzy sets introduced by Lofti Zadeh in [Zadeh, 1965] to deal with

variables with values in the interval [0, 1]. A Fuzzy set has, potentially, an infinite range

of truth values between one and zero. Fuzzy sets provide a means of defining a series

of overlapping concepts for a model variable, since it represents degrees of membership.

The values from the complete universe of discourse for a variable can have memberships

in more than one fuzzy set [Cox, 2005].

Propositions in fuzzy logic have a degree of truth, and membership in fuzzy sets can

be fully inclusive, fully exclusive, or some degree in between. The fuzzy set is distinct

from a crisp set6, in that it allows the elements to have a degree of membership. In a fuzzy

set, transition between membership and non-membership is gradual rather than abrupt;

each member is given a degree of membership between 0 (non-membership) and 1 (full

membership), such as 0.27 or 0.75.

Each fuzzy set is defined in terms of a relevant crisp universal set by a function known

as a membership function, which is analogous to the characteristics function of crisp sets.

Fuzzy logic’s capability of supporting, to a reasonable extent, human type reasoning

in natural form, by allowing partial membership for data items in fuzzy subsets, has

put it in good stead for integration with data mining techniques, to handle the challenges

posed by the massive collection of natural data and modelling of imprecise and qualitative

knowledge, as well as handling of uncertainty at various stages [Kruse et al., 1999].

The fuzzy approaches to handling uncertainty exploit concepts of fuzzy theory and

assign data samples into classes with different degrees of belief. By so doing, fuzzy ap-

proaches to handling uncertainty consider that data samples belong to several classes at

5Information mining is the non-trivial process of identifying valid, novel, potentially useful,and under-
standable patterns in heterogeneous information sources.

6Boolean sets are often called crisp sets as a way of distinctly differentiating them from fuzzy sets, as
well as a way of indicating the sharpness of crispness of their membership function
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the same time with different degrees.

Probabilistic Approach to Handling Uncertainty

Probabilities are descriptions of the likelihood of some event occurring (ranging from 0 to

1).

Probability is usually thought of in terms of relative frequencies and subjective infer-

ence.

The relative frequencies view of probability takes the perspective that probability is

an objective concept. In particular, the probability of an event is defined as the limiting

proportion of times that the event would occur in repetitions of the essentially identical

situations, e.g. the number of times head comes up in an unbiased coin toss.

The subjective inference view of probability takes the perspective that probability

is an individual degree of belief that a given event will occur. Thus, probability in the

subjective context is not an objective property of the outside world, but rather an internal

state of the individual - and may differ from individual to individual.

The principles and methodologies for data analysis that derive from the subjective

point of view are often referred to as Bayesian statistics and they form the central tenet

for the explicit characterization of all forms of uncertainty in data analysis problems.

Using Bayesian statistics, subjective probability provides for a very flexible framework

for modeling different forms of uncertainty, such as, uncertainty about any parameters

estimated from the data, uncertainty as to which among a set of model structures are

best or closest to “truth”, uncertainty in any forecast made, etc. [Hand et al., 2001].

The probabilistic approach to handling uncertainty involves building a probability

model and using it to estimate the probability that a data sample belongs to a class as

follows:

For each data sample vector, x , the probability that it belongs to each of the classes

Ci (i = 1, . . . , nc) , P (Ci |x), is estimated. The sample vector, x , is then assigned to the

class for which its probability of belonging is maximum [Vazirgiannis et al., 2003].

2.2.4 Adaptation

Due to the dynamic nature of doing business, businesses tend to constantly change their

processes in order to adequately respond to changing market forces or market growth.

Data mining models tend to, therefore, become obsolete as soon as the business process

they model changes.

Data analyst or system administrators with knowledge of the domain of application

can tune the models by adjusting the model parameters, or by entering specific patterns

that will trigger notifications of change in the business environment. Unfortunately, deter-

mining which potential parameters or patterns will be useful is a time-consuming process
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of trial-and-error. Moreover, the patterns of the retail business environment as deter-

mined by businesses and consumer behaviour in response to market forces are dynamic.

Businesses and consumers constantly change their strategies and spending behaviour in

response to constantly changing economic environment. By the time a data mining mod-

el/system is manually tuned, the economics driving the business function it models may

have changed significantly.

For all these reasons, it is important that a data mining model adapt easily to new

conditions. It should be able to notice new patterns of business/customer behaviour. It

should also be able to modify its change notification, for example, as the business function

modelled or customer behaviour profile changes.

Holland [1992] provides a nature-inspired conceptual framework for adaptive systems.

He defines adaptive systems as a broad class of problem solving and data analysis tech-

niques, that derive their inspiration from highly abstracted models of naturally occurring

processes consisting of four components:

1. an environment or, more correctly, the input from the environment to which the

adaptive system adapts. In data mining the data set is the input. The structures

adapt themselves to the information contained within the data set, with the result

that structures are produced that provide a good description or explanation of this

information.

2. a set of structures which are progressively modified. These structures constitute the

basis of the adaptive process, being largely determined by field of study. In data

mining, the mined models are essentially the structures that form the basis of the

analysis and adaptive process.

3. an adaptive plan which modifies the system structures, i.e. the models. The mod-

els/structures in an adaptive system are modified in response to input datasets (i.e.

the environment) under the control of the adaptive plan. In data mining, the type of

adaptive plan used depends on the type of models being used in the problem solving

or data analysis activity. The adaptive plan results in a progressive, incremental and

probabilistic modification of the system’s structure. The field of evolutionary com-

putation has extensively studied this type of plan [Bäck, 1995, Biethahn and Nissen,

1995]. Other forms of adaptive plans are analytic (on which multivariate statistics

is based) [Friedman, 1991, Hastie et al., 2009], hill-climbing (used by standard neu-

ral networks) [Chalup and Maire, 1999], and plans embedded in the structure itself

(as in ant colony optimization) [Dorigo and Di Caro, 1999]. More recently, social

adaptation, based on communities of interacting agents, have led to new fields such

as memetic algorithms [Krasnogor, 2008].

4. a measure of the performance of each structure/model, or fitness, which provides
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feedback on how well the structure/model has represented the environment, solved

the problem, or explained the nature of the input dataset. In data mining, this

usually consists of maximizing or minimizing a cost or objective function by sys-

tematically choosing input values from within an allowed set and computing the

value of the function to measure the error or decide which model is best.

According to Holland [1992], a system undergoing adaptation is largely characterized

by the mixture of operators acting on the structures at each stage. The set of factors

controlling this changing mixture - the adaptive plan - constitutes the workings of the

system as far as its adaptive character is concerned. The adaptive plan determines just

what structures arise in response to the environment, and the set of structures attainable,

by applying all possible operator sequences which mark out the limits of the adaptive

plan’s domain of action. Since a given structure performs differently in different envi-

ronments - the structure is more or less fit - it is the adaptive plan’s task to produce

structures which perform “well” (are fit) in the environment confronting it. “Adaptations”

to the environment are persistent properties of the sequence of structures generated by

the adaptive plan.

Thus, an adaptive system, as described by [Holland, 1992], undergoes a progressive

modification of its component structures/models. The rate and direction of this modifi-

cation is controlled by feedback indicating how well the structures/models are explaining

the available data.

Within the data mining framework, depicted in Figure 2.1 of Section 2.1, adaptation

implies implementing a model management in such a way that models are periodically

evaluated in an automatic or semi-automatic fashion. In this sense, model management

is tightly coupled with the modelling, evaluation and deployment phases of Figure 2.1. It

can be seen as an outer-loop controlling these steps as shown in Figure 2.5.

Figure 2.5: Model Management Cross Section of CRISP-DM

An approach for implementing model management is the champion/challenger testing

strategy [Berry and Linoff, 2004, Nath, 2007, Nisbet et al., 2009]. This implementation

involves comparing the performance of a model currently being used (the champion)

against that of new models built on more recent data (the challengers). If the challenger
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model outperforms the champion model, it becomes the new champion and is deployed

in the production system. Challenger models are built periodically as new data are made

available.

Another aspect of model management is the creation and management of metadata

about models [Ari et al., 2008a,b, Jain et al., 2008]. Model metadata can be used to

dynamically select, for scoring, models appropriate for handling a particular data mining

task. An example of this aspect of model management is the encoding of models into

XML files using Predictive Model Markup Language (PMML) [Pechter, 2009]. PMML

files may contain one or more mining models along with their data dictionaries, model

schemas, and data transformations.

A crucial shortcoming of the aforementioned approaches to adaptation in data mining

is the lack of a precise definition of the time context in which the adaptation is performed.

Furthermore, the range of models (such as association rules, clusters, regression results

and rule-based/tree models) that can be used for the data mining task vary vastly in their

applicability and in their representation of the input dataset. Determining when and how

to effectively adapt them in data mining activities is usually time consuming. Also, the

other components of an adaptive system, the environment (i.e. the data set), the adaptive

plan (i.e. the process of modification of models), and the fitness (the level of performance

of the models), all add up to make adapting the models, whilst undertaking complex

data mining tasks, such as learning under concept drift (e.g. a retail model of seasonal

customer purchases) more challenging.

In machine learning, changing concepts are often handled by using a time window of

fixed or adaptive size on the training data [Widmer and Kubat, 1996], or weighting data

or parts of the learned model according to their age and/or usefulness for the classification

task [Taylor et al., 1997].

For windows of fixed size, the choice of a “good” window size is a compromise between

fast adaptability (small window) and good and stable learning results in phases without

or with little concept change (large window) [Klinkenberg and Renz, 1998]. The basic

idea of the adaptive window management, on the other hand, is to adjust the window size

to the current extent of concept drift. Indicators such as performance measures (e.g. the

accuracy of the most recent model), properties of the model (e.g. the complexity of the

most recent tree structure) and properties of the data (e.g. class distribution) are usually

monitored to detect concept drift.

Thus, most adaptive algorithms (such as the FLORA algorithms [Widmer and Kubat,

1996], Very Fast Decision Tree (VFDT) [Domingos and Hulten, 2000], Concept-adapting

Very Fast Decision Tree (CVFDT) [Hulten et al., 2001]) in the machine learning literature,

incorporate one or more of the following components:

• windows to remember recent examples;
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• methods for detecting the change in complexity or distribution in the input dataset;

• methods for determining updated estimations for some statistics of the input dataset.

For the work in this thesis, the aforementioned components are viewed as the basis for

solving the following three central adaptive system problems:

1. What needs to be remembered or forgotten?

2. How can the change(s) in the model be monitored and detected?

3. How can the change(s) in the input dataset be measured?

The goal is to demonstrate that by basing mining algorithms on well-designed, well-

encapsulated modules for these tasks, more adaptive and more flexible solutions for mining

transactional data can be obtained than by using ad-hoc data mining techniques.

2.3 Summary

This chapter presented background overview of approaches and techniques for data min-

ing. The issues inherent in transactional data which makes mining them for knowledge

challenging were also discussed. The chapter concluded with a discussion of the current

research challenges of stability, uncertainty and adaptation encountered when mining

transactional data. In Chapter 3, a detailed description of transactional data will be

provided together with techniques for preprocessing them in order to construct effective

customer profiles for the purpose of implementing business applications, such as, person-

alization and recommender systems. A detailed description of the Screwfix’s transactional

data used in this thesis is also given.
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Chapter 3

Transactional Data Description and

Preprocessing

The key goal in utilizing the collected transactional data for data mining, is to create a

set of customer-centric data models (customer profiles) comprising the interests and be-

haviour of all customers, that can be used as input to a variety of data mining algorithms

for knowledge discovery. The output from these algorithms, i.e., the discovered knowl-

edge, can then be used both for describing and predicting the interests and behaviour of

the customers. The exact representations of these customer models differ based on the

approach taken to model the customers and the granularity of the information available.

The data mining tasks therefore differ in complexity based on the expressiveness of the

customer profile representation chosen and the data available.

One common approach to customer modelling is the grouping of customers with similar

buying behaviour. In this way, if a customer is found to belong to a particular group of

customers with similar buying behaviour, then that customer may be expected to have

similar interests and behaviour with the rest of the customers belonging to the same group.

Thus, for example, inferences can quickly be made on an individual customer based on

the behaviour of other customers.

However, as outlined in Figure 2.1, before data mining techniques can be applied

to create the customer-centric data models, the raw transactional data must undergo a

series of preprocessing steps so as to determine the business’ data mining goals as well as

explore, describe and transform the raw transactional data into an appropriate format for

subsequent processing. The typical preprocessing steps include [Han and Kamber, 2006]:

1. Feature extraction - to identify relevant attributes for a data mining task using

techniques such as, event detection, feature selection, and feature transformation

(including normalization and application of Fourier or wavelet transforms).

2. Data cleaning - to resolve data quality issues such as, discrepancies, noise, outliers,

missing values, and mislabelling errors.
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3. Data reduction - to improve the processing time or reduce the variability in data by

means of techniques such as, statistical sampling and data aggregation.

4. Dimension reduction - to reduce the number of features presented to a data min-

ing algorithm; principal component analysis (PCA), ISOMAP, and locally linear

embedding (LLE), are some examples of linear and non-linear dimension reduction

techniques.

Nevertheless, as discussed in Chapter 2, data preprocessing is a challenging task which

tends to take up to 80% of the data mining task.

This chapter presents the results obtained from the initial analysis and preprocessing

Screwfix’s transactional data so as to gain insight into the business objective for data

mining and the problem of mining transactional data to create customer-centric data

models..

It commences in Section 3.1 with a detailed description of the real world transac-

tional data obtained from Screwfix Ltd. The architecture of the data warehouse of the

transactional data is then given, together with their method of collection and their basic

statistics.

The results obtained from clustering and normalizing the transactional data are then

presented in Section 3.2. Section 3.3 then presents the effect of conventional statistical

sampling on the predictability of 4 classifiers

The chapter concludes with a summary and discussion of the findings obtained from

the exploratory analysis of Screwfix’s transactional data in Section 3.4.

3.1 Description of Screwfix’s Transactional Database

Screwfix’s transactional data going back to around 1999 is stored in a Sybase RDBDMS

(i.e. The MIS in Figure 3.1).

A new system was recently introduced as part of Screwfix’s goal for a better and higher

quality data management. As part of the transition to the new system, a copy of each

day’s data is sent via an ETL system to the MDM oracle DB as shown in Figure 3.1.

The new database has been optimized for quick access to aggregated data (e.g. number

of orders taken, number of active customers, etc.) as well as data cleansing.

The data is also stored in Alterian - a database specially built for holding both trans-

actional and non-transactional information on customers for marketing purposes.

The data held on the customers comprises of demographic details (i.e. name, gender,

birth date, address, etc.) and transaction details (i.e. orders). These records are stored

in the Customers, Addresses, Order and Order details tables.

For our experiments, only the customerID in the Customers table and the information

from the Order and Order details tables were used.
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Figure 3.1: Screwfix’s Systems Architecture framework, showing the old and new systems
set-up

3.1.1 Description of Screwfix’s Customers and Trade-types

Screwfix has approximately 7.7 million customers held on their system. These customers

are segmented into unconverted, inactive and active. Unconverted (2.8M) and inactive

(2.4M) customers make up approximately 5.2M of Screwfix customer base and include

customers who have attended trade-shows, made enquiries or requested a catalogue but

are yet to make any orders. 1 million of the remaining 2.5 million are considered active

(have made at least an order within the last one year).

Screwfix customers are also conceptually grouped on the basis of the information they

provide into the 12 trade-types as shown in Table 3.1.

Figure 3.2 shows the total number of each trade-type, categorized on the basis of

the information provided by the customers. It can be seen that a large number of the

customers (i.e. 293600 NTS trade-type) did not specify their trade-type, a sign that many

of the respondents (in this case, customers) did not want to divulge information about

themselves.

Two of the 12 trade-types, i.e., Electrician and PlumbHeaters were therefore ver-

ified with the third party professional bodies listed in Table 3.2. Figure 3.3 shows the

total number of the verified Electrician and PlumbHeat trade-types.

Many of the verified Electrician and PlumbHeat customers’ trade types where found

not to reflect the type-trades provided.
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S/N Trade-Type Abbreviation
1 Domestic/light commercial electricians Electrician
2 Bathroom fitters Bathroom
3 Decorators (Domestic/light components) Decorator
4 Joiners Joiner
5 Domestic kitchen fitters Kitchen
6 Gardening and Landscapers Landscaper
7 Multi-trade domestic small general contractor MTD
8 Small facilities/maintainers Maintenance
9 No Trade Specified NTS
10 Other Trades Other Trades
11 Specialist plasterers Plasterers
12 Small plumbing and heating contractors PlumbHeat

Table 3.1: Screwfix’s Trade-Types

Figure 3.2: Total number of the customers categorized into Trade-Types that made at
least one (1) order during the period between the 1st quarter of 2007 and the 2nd quarter
of 2009

S/N Professional Body Trade-Type
1 Corgi PlumbHeat
2 CIPHE PlumbHeat
3 NICEIC Electrician
4 ECA Electrician
5 NAPPIT Electrician

Table 3.2: Verified Trade-Types and their Professional Bodies
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Figure 3.3: Total number of the Customers whose Trade-Types were verified with a third-
party

Figures A.1 and A.3 of Appendix A, depict the discrepancies between the trade-type

information provided and its verification for the Electrician trade-type; while Figures A.2

and A.6 of Appendix A depict the discrepancies for the PlumbHeat.

Figures A.4 and A.5 of Appendix A further show the discrepancies between the cate-

gorized and verified trade-types in terms of the number of items transacted in each order.

The numerical composition in each segment of the items transacted can be found in Ta-

bles C.1 and C.2 of Appendix C, for the verified Electrician and PlumbHeat trade-types

respectively.

These discrepancies discovered in the provided recorded values and the actual values

could seriously affect the quality of the mining results. The inconsistencies contribute

to the data being inaccurate for analysis and uncertainty in the results obtained. If the

unverified data is used (without resolving the inconsistencies) for the mining process,

many of the customers would possibly be put into wrong clusters or incorrectly classified.

Also, the discrepancy can cause confusion for the model building procedure, resulting in

unreliable models. Although, most mining routines have some procedures for dealing with

incomplete or noisy data, they are not always robust to inconsistencies in the data [Fayyad,

1996, Han and Kamber, 2006]. Instead, they may concentrate on avoiding over-fitting the

data to the function being modelled [Bishop, 1995, Bramer, 2007]. Section 3.2 further

demonstrates the effects the identified discrepancies have on the result obtained from

clustering Screwfix’s transactional data.
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3.1.2 Description of Products

Screwfix currently sell in excess of 15,000 different items. These are grouped hierarchically

into 929 groups which are further grouped into 37 topics.

Figure 3.4 shows the columnar and row-wise aggregation of Screwfix’s product items

by items, groups and topics as defined by the business.

Figure 3.4: View of Screwfix’s Defined Product Items.
∗The reduced set of transactions is obtained by aggregating the total individual transac-
tions made per customer in the full set of transactions.

The unverified customer trade-types have similar buying patterns as can be seen in

the plots of the topics transaction patterns in Figure 3.5 and Figure 3.6. The similarity in

the buying pattern of the unverified customer trade-types would make it difficult to build

data mining models that will accurately distinguish the customers by their trade-types

based on their transactions.

Further numerical details which show the similarity of the buying patterns for the

unverified customer trade-types can be found in Tables C.3 and C.4 of Appendix C.

The buying patterns for the verified customer trade-types are, however, more distin-

guishable as can be seen in the plots of the average Topics transacted by each group

of number of Topics per transaction in Figures 3.7 and 3.8; and from the plots of the

proportions of the items transacted by the verified trade-types in Figure B.2 and B.1 of

Appendix B. It can also be seen from the plots that the PlumbHeat trade-type consistently

buy a large proportion of items under the Plumbing topic and the Electrician trade-type

consistently buy a large proportion of items under the Electrical topic. Numerical details

of the ’items by topics’ transactions for the verified Electrician and PlumbHeat trade-types

can be found in Appendix C.

However, the items transacted for the verified trade-types were found, in keeping with
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Figure 3.5: Plot showing transaction patterns of the Topics (normalized by scaling the
aggregated total number of item topic bought in the range [0.0, 1.0]) for the unverified
customer trade-types.

Figure 3.6: Plot showing the average Topics transacted per transaction for the unverified
customers’ trade-types.
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Figure 3.7: Plot showing the average Topics transacted per transactions by the verified
Electrician trade-type.

Figure 3.8: Plot showing the average Topics transacted per transactions by the verified
PlumbHeat trade-type.
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the inherent nature of transactional data, to be sparse and skewed with a high number of

trade-types making few purchases as can be seen in the plots in Figures 3.9 and 3.10.

Figure 3.9: Plot showing the positive skewness of topics transacted by the verified Elec-
trician

3.2 Exploration of Screwfix’s Customer Transactional

Data using Clustering Algorithms

In the context of utilizing collected transactional data, it is very helpful to acquire in-

formation about costumers’ interests and then group customers with similar interests in

products. Clustering algorithms are often used to generate descriptive customer models.

This section presents results obtained from using Hierarchical, and K-means clustering

algorithms to generate descriptive models from Screwfix’s transactional data.

3.2.1 Hierarchical Clustering of Screwfix Transactional Data

To gain a better understanding of the relationship between Screwfix’s customer Trade-

types on the basis of their transactions; a hierarchical clustering analysis was undertaken

using the topic transactions for 2007.

Figure 3.11 shows the result obtained from using the Hamming distance as a distance

function to cluster the topics transactions data.
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Figure 3.10: Plot showing the positive skewness of topics transacted by the verified
PlumbHeat trade-type

Figure 3.11: Best Dendrogram (with a cophenetic correlation coefficient of 1) of the
Trade-Type Topic Transactions for 2007.
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There are a few intuitive clusters formed from the data, with trade-types with similar

buying patterns grouped together; i.e.:

1. a mixed cluster containing PainterDecorator and CleaningServices trade-types

2. a mixed cluster containing LeisureIndustry and DeclinedToAnswer trade-types

3. a mixed cluster containing Trade and MaintenanceSchool trade-types

4. 22 singleton clusters containing each of the remaining 22 trade-types and thus not

revealing any new details about the data.

Each of the three clusters containing 2 trade-types are related by the topic transactions

made by the clustered trade-types in 2007. The other 22 trade-types do not group into

clusters when the cut is made at a distance of 0.95.

One issue that can be seen from looking at the dendrogram in Figure 3.11 is the

inability to assess at a glance the quality of the clusters formed or to estimate the ’correct’

number (based on the buying pattern) of trade-type groups in the Screwfix’s transactional

data.

The upper tail rule, which was developed by Mojena [1977], is one of the well-known

criterion function distribution based indexes, which is, aj+1 > α + cσα, where α and σα

is the mean and standard deviation of the distribution of clustering criterion value. It

is often used to address the uncertainty of the clusters inherent in data. It finds the

first biggest jump of the series of the clustering criterion values as the number of cluster,

which is in the upper tail of the clustering criterion value distribution for hierarchical

agglomerative clustering. If no such number can be found then there is only one cluster.

Applying MojenaŠs upper tail rule to the hierarchical cluster depicted in the dendro-

gram in Figure 3.11 results in the plot in Figure 3.12.

Whilst the plot in Figure 3.12 gives the likely number of trade-type clusters (i.e. any

from 3 upwards) that are inherently in Screwfix’s transactional data; the contents of the

clusters can not be gleaned from the plot nor can the ’correct’ number of trade-type

clusters.

Another hierarchical clustering analysis was performed which produced the dendro-

gram in Figures 3.13 showing the relation between the topics, i.e. topics that were bought

together by the Trade-types in 2007.

Table 3.3 shows the Topics in the 9 clusters (from left to right) formed by the den-

drogram in Figure 3.13 when cut at 0.05 while Figure 3.14 depicts the upper tail rule’s

estimates of the Topics in Screwfix’s transactional database.

The results obtained from the hierarchical clustering of the Topics, whilst providing

insight into the Topics that are purchased together, still does not address the issue of

uncertainty (i.e. uniqueness and distinctness) of the clusters formed.
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Figure 3.12: This figure, shows the plot of the standardized fusion levels. The ’elbow’ in
the curves indicates that no less than 3 clusters are reasonable for grouping the Trade-
types.

Figure 3.13: The dendrogram shows the results of Topics purchased together by the Trade-
types obtained using Spearman distance and centroid linkage on the Topics transactional
data for 2007.
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Cluster Leaf Nodes Topics in Cluster
1 16, 29, 28, 1,

2, 8, 25, 18,
10, 25, 30

Hand Tools, Workwear, Screw-
driver Bits, Abrasives, Access
Equipment and Storage, Cleaning,
Ironmongery, Decorating Sundries,
Paint, Sealants Glues

2 3, 14, 20 Automotive, Fixings, Landscape
Power

3 5, 12 Blades, Drill Bit
4 4, 7, 19, 27,

13, 21, 17, 15
Bathrooms, Building, Kitchens,
Power Tools, Electrical, Lighting,
Heating and Ventilation, Flooring

5 24 Outdoor Buildings
6 6, 26 Security, Workplace Safety
7 11 Doors & Windows
8 22 Voucher
9 9 Conservatories

Table 3.3: Description of 9 Clusters of Topics from Hierarchical Clustering.

Figure 3.14: This figure, shows the plot of the Topics standardized fusion levels. The
’elbow’ in the curves indicates that four clusters is reasonable for the topics transactions
data. However, the other ’elbows’ at 8 might provide interesting clusters, too.
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Another major drawback that can be noticed with using hierarchical clustering tech-

niques for the purpose of descriptive analysis, is that using the linkage techniques leads

to confusing results, as can be seen in both Figures 3.11 and 3.13 where both of the aver-

age (weighted and unweighted) linkage methods have resulted in the decrease of merged

points of some of the clusters formed.

3.2.2 K-means Clustering of Screwfix Transactional Database

In order to gain an alternative insight into the underlying nature of Screwfix’s transac-

tional data, a K-means analysis on how the Trade-types and Topics transactions cluster

was performed.

Kaufman and Rousseeuw [1990] present the silhouette statistic as a way of estimating

the optimal solution (i.e. the ’correct’ number of underlying clusters) when using the K-

means clustering algorithm. The silhouette for a given observation is computed as follows.

For each observation i, compute ai as the average dissimilarity of observation i with all

objects in cluster c:

ai = d̄ (i, c) (3.1)

Let bi be the minimum of the average dissimilarities d̄ (i, c), computed in Equation 3.1.

The silhouette for the i-th observation is:

swi =
(bi − ai)

max (ai, bi)
(3.2)

The average silhouette width can be computed by averaging swi over all oberservations:

¯swi =
1

n

n∑
i=1

swi. (3.3)

Heuristically, the silhouette measures how well matched an object is to the other

objects in its own cluster versus how well matched it would be if it were moved to the

next closest cluster. Observations with a large silhouette are well clustered, but those

with small values tend to be ones that are scattered between clusters. The silhouette swi

in Equation 3.2 ranges from -1 to 1. If an observation has a value close to 1, then the data

point is closer to its own cluster than a neighbouring one. If it has a silhouette close to -1,

then it is not very well clustered. A silhouette close to zero indicates that the observation

could just as well belong to its current cluster or one that is near to it.

Kaufman and Rousseeuw [2005] used the average silhouette to estimate the number

of clusters in the data set by using the partition with two or more clusters that yields

the largest average silhouette width. They state that an average silhouette width greater

than 0.5 indicates a reasonable partition of the data, and a value of less than 0.2 would
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indicate that the data do not exhibit cluster structure.

This thesis uses the silhouette statistics here to investigate the number of clusters

inherent in the Topics transacted and the customer Trade-types.

Figures 3.15 and 3.16 show the silhouette plots of the silhouette values for the Topics

and Trade-types with each cluster ranked in decreasing order obtained from clustering

Screwfix’s transactional data for 2007.

In Figure 3.15, the top one indicates large values for cluster 1 and a few negative

values for clusters 3. The second plot in Figure 3.15 with 7 clusters shows that there are

no negative silhouette values with large values for cluster 1. These plots, like the preceding

plot of the standardized fusion levels in Figure 3.14, indicate that cluster numbers above

3 are a fit to the Trade-types; with 7 clusters here being a better fit with mean silhouette

value of 0.9269 compared to the mean silhouette value of 0.7687 for 4 clusters.

On the other hand, Figure 3.16 for the Topics K-means clusters indicate large values

for cluster 1 and negative values for cluster 3 for the second silhouette plot of 8 clusters

Topics.

It can be seen from observing the contents of the 3 clusters of Trade-Types found

by the K-means and hierarchical clustering techniques in Figure 3.17 and Table 3.4 that

although both the K-means and hierarchical clustering techniques indicate 3 clusters as

the best fit for the Topics in Screwfix’s transaction data; the composition of the clusters

are different; leading to uncertainty about the composition of the grouping inherent in

Screwfix’s transactional data.

The uncertainty is further enhanced by the overlap of cluster contents in the hierar-

chical cluster case (e.g. the ’Carpenter’ trade-type belongs in both clusters 2 and 3).

The same discrepancies between clusters found by the two clustering techniques can

be observed from the Topics perspective as depicted in Table 3.5.

The uncertainty due to the sparseness of the transactional data can also be seen when

the clustering process is performed on the verified customer profiles as can be seen in the

plots in Figure 3.18.

3.3 Effect of Conventional Sampling Data Mining Al-

gorithms’ Predictability

Section 2.2.2 highlighted the information loss and subsequent fall in predictive accuracy

encountered by data mining algorithms, due to the need to scale large data down for

efficient data mining.

This can be more so for sparse transactional data, especially if an ad-hoc data reduc-

tion process is used. A practical analysis of the effect of conventional sampling on the

predictability of 2 parametric (linear and quadratic discriminant functions) and 2 non-
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Figure 3.15: The silhouette plots for k = 4 and k = 7 clusters for the Trade-types in
Screwfix’s transactional data.
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Figure 3.16: The silhouette plots for k = 4 and k = 8 clusters for the Topics in Screwfix’s
transactional data.
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Figure 3.17: Plots showing the three (3) trade-type clusters found by K-means and hier-
archical clustering techniques.
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Trade-Type K-Means Cluster No. Hierarchical Cluster No.
Agricultural 2 2
Builder 2 2
Carpenter 2&3 2&3
CarpetFloorFitter 2 3
CleaningServices 2 2
DeclinedToAnswer 2 2
DIYHobbies 1 1
Electrician 2 2
Engineer 3 2
HandyMan 2 2
HotelCatering 2 2
LandscapeGardenMaintenance 2 2
LeisureIndustry 2 2
MaintenanceCollegeUni 2 2
MaintenancePropertyFacilities 2 2
MaintenanceSchool 2 2
Manufacturing 2 2
None 2 2
Other 3 2
PainterDecorator 2 2
pickOne 3 2
PlumberHeatGasFitter 2 2
RetailerShopFitting 2 2
Roofer 2 2
SecurityServices 2 2
Trade 2 2
TransportAutomotive 3 2
Unknown 2 2

Table 3.4: K-means and Hierarchical Clustering Techniques’ Cluster Groupings of Screw-
fix’s Trade-Types
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Topics K-Means Cluster No. Hierarchical Cluster No.
Abrasives 4 2
Access Equipment and Storage 4 2
Automotive 4 2
Bathrooms 4 2
Blades 4 2
Bolts 4 2
Building 4 2
Cleaning 4 2
Conservatories 4 4
Decorating Sundries 4 2
Doors & Windows 4 3
Drill Bits 1 2
Electrical 2 2
Fixings 4 2
Flooring 4 2
Hand Tools 3 2
Heating and Ventilation 4 2
Ironmongery 1 2
Kitchens 4 2
Landscape Power 4 2
Lighting 1 2
Nails 4 2
Other 3 2
Outdoor Buildings 4 2
Paint 4 2
Plumbing 2 2
Power Tools 1 2
Screwdriver Bits 4 2
Screws 4 2
Sealants & Glues 1 2
Security 4 1
Vouchers 4 3
Workplace Safety 4 1
Workwear 4 2

Table 3.5: Screwfix’s Topics K-means and Hierarchical Clustering Techniques Cluster
Groupings
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Clustering of Absolute values of Verified Customer
Profiles’ Transactional Data

Clustering of Min-Max Normalized applied on
Rows of Verified Customer Profiles’ Transactional
Data

Clustering of Min-Max Normalized applied on
Columns of Transactional Data

Clustering of Min-Max Normalized applied on
Entire Verified Customer Profiles’ Transactional
Data

Figure 3.18: Plots showing the results obtained from clustering the absolute values of
transactional data as well as those obtained from applying the Min-Max normalization
method on the individual customer profile transactions (row-wise), on the items transacted
(column-wise), and on the entire transactional data. It can be seen that due to the
sparseness of the transactions per customer normalization has little effect on separability
as would otherwise be expected from the clustering process.
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parametric (k-nearest neighbour and decision tree) classifiers further asserts this draw-

back.

To perform the analysis, 10,000, 50,000 and 100,000 were uniformly sampled from

Screwfix’s 2007 and 2008 transactional data with the 28 Trade-types as targets (i.e. 28

classes). Figures D.1, D.2 and D.3 of Appendix D show the distributions of targets for

each of the year 2007 data samples whilst Figures D.4, D.5 and D.6 of Appendix D show

the distributions of targets for each of the year 2008 data samples.

The analysis was undertaken using ldc (- Linear discriminant classifier assuming nor-

mal densities with equal covariance matrices), qdc (- Quadratic discriminant classifier as-

suming normal densities (sigma unconstrained)), Knnc (- K-Nearest Neighbour classifier

with K= 3 ) and stumpc (- Decision stump tree classifier) which are PRTools [Duin et al.,

2007] implementations of the 2 parametric (linear and quadratic discriminant classifiers)

and 2 non-parametric (k-nearest neighbour and decision tree) classifiers being studied.

The standard 10-fold cross-validation, in which each part is held out in turn and the

classifier trained on the remaining nine-tenths with the misclassification rate calculated on

the hold out, was used to evaluate the classifiers. The cross-validation was done 30 times

repeatedly to obtain the performance of the classifiers depicted in the plots in Figure 3.19

on the 10000, 50000 and 100000 datasets uniformly sampled from Screwfix’s 2007 and

2008 transactional data with the 28 Trade-types as targets (i.e. 28 classes). The Matlab

code for the experiment can be found in Appendix F.

Looking at the performance results in Figure 3.19, one can see that the attribute-value

based data mining classifiers perform very poorly with the best classifier, ldc achieving

an average error of 58% on all three dataset samples.

Screwfix’s transactional data is inherently sparse as described in Section 3.1 and de-

picted in Table E.5 .

This kind of data is typical of transactional data due to customers typically purchasing

only a very small fraction of products as discussed in Section 2.2.

For sparse data, conventional random sampling may not work well because most of

the samples are zeros [Church et al., 2006]. Sampling fixed dataset columns (as we have

done here with Screwfix’s Topics transactional data) from the dataset is also inflexible

because different rows may have very different sparsity factors. Thus, each sampled data

instance conveys little or no information for the aforementioned classifiers (especially qdc

and knn) to adequately distinguish one Trade-Type from the other on the basis of Topics

transacted.

In practice the set of data mining algorithms that are said to be best at handling sparse

data are those that process the training set data into trees of related patterns [Quinlan,

1986, Schaffer, 1992] or build association models [Agrawal and Shafer, 1996, Agrawal

and Srikant, 1994, Gouda and Zaki, 2001] as they are designed to use sparse data. This

accounts for the relatively better performance of the decision tree classifier (stumpc)
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Classification Performance on Sampled Screwfix’s Transactions for 2007

Classification Performance on Sampled Screwfix’s Transactions for 2008

Figure 3.19: Plots showing the performance of ldc, qdc, 3-Nearest Neighbour and Decision
Tree Classifiers on Sampled Screwfix’s Transactional Data
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compared to the other classifiers on the sampled datasets.

Similarly, the ldc performed much better than qdc and knn due its being a linear

discriminant analysis based classifier [McLachlan, 2004], which searches for a linear com-

bination (i.e. association) of features that characterize or separate the 28 Trade-Types.

However, data that has a significantly higher sparsity factor can require extremely

large amounts of temporary space to build associations even if small datasets of the data

are sampled [Ahmed et al., 2004, Han et al., 1997]; thus defeating the reason for sampling

for data mining purposes i.e. to efficiently utilize and save memory space [Brin and Page,

1998].

This thesis presents a more guided data reduction approach in Section 4.4.2, which

uses the results from the K-mean’s algorithm to extract prototypes that are the most

representative of transactional data that have been aggregated and binned.

3.4 Summary of Exploratory Analysis and Conclu-

sion

The chapter commenced with an informal and formal description of transactional data

together with their use in building customer profiles. A detailed description of Screwfix’s

transactional data was then presented, along with a statistical analysis that uncovered

discrepancies in the transactional data. This occurred mainly due to the reluctance of the

customers to divulge information about their trade-type and inaccurate labels for those

who declared their line of business.

The identified discrepancies were shown to result in the unreliability of the customer

labels for the 12 trade-types in Screwfix’s transactional data with the “No Trade Specified

(NTS)”, “Multi-trade domestic small general contractor (MTD)”, and“Other trade (OT)”,

which make up the specified trade-types, being a mixed bag of all the trade-types.

To handle the identified discrepancies, a necessary third party verification of the Elec-

trician and PlumbHeat was undertaken. Further statistical analysis on the verified trade-

type were shown to have more distinguishable buying patterns.

The results of the statistical analysis of Screwfix’s transactional data covering the

period between the 1st quarter of 2007 and the 2nd quarter of 2009 are presented in

Section 3.1.1 and Section 3.1.2. The total number of each of the unverified trade-types

was provided, along with those for the two verified trade-types. Plots comparing the

items transacted by each of the trade-types were also presented as well as plots showing

the positive skewness of the buying behaviour of the trade-types.

The following key findings can be gleaned from the plots:

1. There are significant discrepancies between the unverified and the third-party veri-

fied trade-type information for the Electrician and PlumbHeat trade-type as can be
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seen in Figures A.1, A.2, A.3, A.4, A.5 and A.6.

These discrepancies, which were found to have come about mainly due to the cus-

tomers’ unwillingness to divulge information about themselves and mislabelled cus-

tomer profiles, increase the uncertainty of the transactional data. This increased

uncertainty makes it challenging to effectively distinguish the customers using just

their transactional data. The challenge in differentiating the unverified customers’

trade-type based on their transactions is further compounded by the similarity of

their buying behaviour as shown in Figure 3.5 and 3.6. The patterns of the buying

behaviour for the verified customer trade-types are however more distinguishable in

terms of numbers/type of items purchased as can be seen in Figures 3.7 and 3.8 for

the Electrician and PlumbHeat trade-types respectively. Furthermore, the verified

Electrician trade-type were found to consistently purchase a large proportion of the

Electrical topic while the verified PlumbHeat consistently purchase a large propor-

tion of the Plumbing topic as can be seen in Figures 3.6, B.1 and B.2. The verified

customer trade-types are thus more viable, due to their consistence, for building

models that will more effectively distinguish the Electrician trade-type from the

PlumbHeat trade-type.

2. The transactional data is highly sparse and positively skewed with a large proportion

of the trade-types making very few purchases and a very small proportion of the

trade-types making high purchases as can be seen in the plots in Figures 3.9,and 3.10

where the mass of the trade-type distribution is concentrated on the left of the plots

with relatively few high values of items transacted.

This means that the transactional data has very few items, which will make it diffi-

cult for mined models to accurately distinguish the customers based on their trans-

actional data. The transactional data will need to be transformed or consolidated

into forms appropriate for mining.

The use of clustering for grouping transactional data was then investigated but found

to be inadequate for transforming the transaction data in a form appropriate for mining.

The following list summarizes the key findings obtained from applying hierarchical and

K-means clustering techniques to Screwfix’s topics transactional data.

1. Both cluster evaluation techniques, i.e. upper-tail rule for hierarchical clustering

and silhouette statistics for the K-means clustering techniques; identified 3 clusters

as the minimum number of trade-type groupings and 4 clusters for Topic groupings

in Screwfix’s transactional data for 2007. See Figures 3.12 and 3.14 for a graph-

ical depiction of the Upper-Tail rule’s cluster evaluation results; and Figures 3.15

and 3.16 for the silhouette statistics cluster evaluation plots. This is contrary to the
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real-world setting as encapsulated by Screwfix’s customer database which, in real-

ity, contains a mixture of more than 3 customer trade-types and more than 4 Topic

groupings. The sparseness inherent in transactional data, due to a large propor-

tion of the customers buying few products, results in the single, large, inseparable

cluster, even when the data is verified and normalized as can be seen in Figure 3.18.

2. Both cluster evaluation techniques for the two clustering techniques studied identi-

fied a unique cluster for ’DIY/Hobbies’ but there were overlaps and discrepancies

in the contents of the remaining trade-type clusters found by both techniques. See

Table 3.4 for the details of the cluster contents and Figure 3.17 for the graphical

depiction.

3. Both K-means and hierarchical clustering identified Topics that were purchased

together however there were discrepancies between the contents of Topics grouped

together by the clustering techniques. See Table 3.5 for details.

Thus, using the K-means and hierarchical clustering algorithms to explore both the

verified and unverified customer profiles resulted in an indistinguishable cluster group.

Both clustering algorithms were susceptible to the sparseness (due to a large proportion

of the customers buying very few items) of the transactional data.

The indistinguishability of the trade-types due to the sparseness and skewness of the

transactional data were further shown in Section 3.3 to adversely affect the prediction

performance of 2 parametric (linear and quadratic discriminant functions) and 2 non-

parametric (K-nearest neighbour and decision tree) classifiers using conventional sampled

transactional data.

The transactional data used in this thesis was transformed by aggregating the cus-

tomers’ transactions over time to deal with the sparseness. The aggregated customer

transactions were then partitioned by binning them based on the number of items bought

to deal with the inherent skewness in the transactional data.

The next chapter presents the use of binning, to group the customer profiles based on

the number of items bought and demonstrates the improvement in accuracy for classifying

customer profiles built using transactional data. In particular the problem of the minimum

number of items required to confidently classify a customer profile is investigated and the

results obtained from applying the proposed approach on 4 classifiers are analysed for

both the two-class classification problem and the multi-class classification problem.
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Chapter 4

Customer Profile Classification

This chapter presents approaches for classifying customer profiles using transactional data.

A key business application of mined knowledge from transactional data is in building

customer profiles for personalization and recommender systems. These business applica-

tions of transactional data mining differ, not only in the data mining algorithms they use

to make inference or recommendations, but also in the way in which the customer profiles

they use are constructed.

This chapter begins by presenting an overview of customer profiles and the construction

of customer profiles from transactional data. A description of customer profiles is provided

together with methods for building such profiles.

The chapter continues with a description of the problem of classifying customer pro-

files. A background overview of the different approaches used to address the problem are

then provided together with their shortcomings.

Our approach to solving the problem for a two-class case and multi-class scenario are

then presented, together with results from the experiments performed on real-world data

provided by Screwfix and Sligro respectively. The chapter concludes with a discussion

on the characteristics of the customer profiles which are confidently classified by the two

approaches.

4.1 Overview of Customer Profile

A customer profile is an outline of the type of customer likely to purchase a product.

Customer profiles may vary from product to product and are constantly updated with

changing customer preferences. Well-developed customer profiles are an essential analysis

tool, as they aid businesses in targeting their advertising and marketing to the right

customer at the right time; thereby cutting advertising costs and saving time and money

by concentrating on real potential customers rather than too wide a range of individuals.

Customer profiles can be factual or behaviourally based. A factual based customer

profile consists of a set of characteristics (e.g. demographic information such as name,
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gender, birth date, etc.) while a behaviourally based customer profile consists of what

the customer is actually doing and is usually derived from transactional data [Bazik and

Feltes, 1999, Yu, 1999].

Behaviourally based customer profiles are much stronger predictors of the future ac-

tions of a customer, as they encapsulate the dynamism of the customer more than demo-

graphically based customer profiles which are more or less static.

Furthermore, the information that makes up demographically based customer profiles

is expensive to acquire by the business, while the information for behaviourally based

customer profiles can be gleaned each time a customer makes a purchase.

4.1.1 Customer Profile Construction Methods

As mentioned in the preceding section, whereas factual customer profiles describe who

the customer is, behaviourally based customer profiles describe what the customer does.

Behaviourally based customer profiles can be constructed using rules specified by hu-

man experts or extracted from transactional data using data mining methods [Meteren

and Someren, 2000, Paulson and Tzanavari, 2003].

Customer profiles based on data mining require the collection of data that accurately

reflect the interest of the customers and their interactions with the business, i.e. services

and/or items. Customer profiles generated using data mining methods can be grouped

based on the data used:

1. Interest-based: Customer profiles are built with features of items extracted from

item descriptions, or relational attributes associated with items in the backend

databases. The process of building such profiles involves two stages. First, the

level of user interest is determined from a subset of items. This task may be ac-

complished implicitly, by passively observing the user and using various heuristics to

classify items as interesting or non-interesting [Lieberman, 1995, Mladenic, 1999], or

it can be based on explicit user judgement, assigning interest levels to items or man-

ually identifying positive and negative examples [Lang, 1995, Pazzani and Billsus,

1997]. The second stage involves transforming each item into a bag of words (vec-

tor) representation, with each token being assigned a weight, using methods such as

TF-IDF [Salton and McGill, 1986] or minimum description length. This approach to

building customer profiles has a major disadvantage common to approaches based

on an individual profile, in that it’s unable to capture new and unexpected changes

in general customer behaviour due to its focus on the individual customer’s previous

interests.

2. Rule-based: Customer profile-construction process usually consists of two main

steps: rule discovery and rule validation. Various data mining algorithms such
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as Apriori, FP-Growth, and CART, can be used for the rule discovery step. Ag-

garwal et al. [2002] proposed profile association rules, in which the left-hand side

consists of customer profile information (e.g. age, salary, education) and the right-

hand consists of customer behaviour information (e.g., buying nappies, milk prod-

ucts). Profile association rules are especially useful for segmenting users based on

their transactional characteristics and for deriving customers’ behavioural attributes

from their transactional attributes. One of the problems with many rule discovery

methods is the large number of generated rules, many of which, although statis-

tically acceptable, are spurious, irrelevant, or trivial [Meteren and Someren, 2000,

Paulson and Tzanavari, 2003]. Post-analysis is usually used to filter out irrelevant

and spurious rules. This usually involves getting a domain expert to inspect and

validate/reject the generated rules one-by-one. This manual inspection is, however,

not scalable to a large number of rules and customer profiles.

3. Ratings-based: Customer profiles are generally represented as a vector or set of

ratings providing the customer’s preferences on a subset of items [Meteren and

Someren, 2000, Mobasher et al., 2002].

Irrespective of the algorithmic approach used to build the customer profile, the data

used for building the profile can be collected implicitly or explicitly.

Explicit collection usually requires the customer’s active participation. For customer

profiles that are based on factual information, customer involvement may take the form

of taking part in surveys or providing personal and financial information at the time of a

transaction.

Implicit collection on the other hand, involves monitoring and measuring customer

behaviour, data such as customer’s purchase and activity history, to create the customer

profiles. Collecting data implicitly has the advantage of removing the burden associated

with providing personal information from the user.

This thesis focuses mainly on customer profiles built from implicit customer feedback,

collected automatically by monitoring customers’ purchase histories. In other words, the

work here is centred around the application of data mining techniques that attempt to

learn individual and group customer profiles, using transactional data for the purpose of

generating robust adaptive models, that can be used to more efficiently target customers.

4.2 The Problem of Classifying Customer Profiles

4.2.1 Problem Statement

Formally, given a set of transactions T, containing N transactions categorized into d

product item topics:
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T =


t1,1 t1,2 · · · t1,d

t2,1 t2,2 · · · t2,d
...

... · · · ...

tN,1 tN,2 · · · tN,d


we define a set of M customer profiles,

P =



p1,1 p1,2 · · · p1,d

...
... · · · ...

pi,1 pi,2 · · · pi,d
...

... · · · ...

pM,1 pM,2 · · · pM,d


with

pi,j =

ni∑
k=i1

tk,j, ∀i=1,...,M ∀j=1,...,d

where k ∈ {i1, i2, . . . , ini
} is a set of indexes referring to the ni transactions of the i -

th customer in the set of transactions T. Table E.6 shows an excerpt of a computed

Electrician and PlumbHeat profile.

Goal: We seek to build classifiers using distinctive groups (defined by the number of

items purchased), for which the predictive error of classifying unseen customer profiles

over time is minimal.

4.3 Background Knowledge and Related Work

Using a data mining algorithm to discover the best model for a business problem involves

processing historical data with the goal of identifying the relevant independent variables

which will best minimize the error for predicting unseen future instances.

Typically, the process of building the data mining model for classifying customers

involves an initial pre-processing of the available data and then applying one (or a com-

bination of) classification technique(s) to classify the customers.

The decision to apply a pre-processing technique may be driven by the need to: gen-

erate a model from a dataset that is too large to process in full (data reduction), handle

missing values/inconsistent data (data cleansing), combine data from multiple sources

into a coherent store (data integration), normalize data so that it can be more efficiently

processed (data transformation), etc.

The classification process essentially consists of examining the features of a newly

presented object and assigning it to one of a predefined set of classes. The objects to
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be classified are generally represented by records in a database table or a file, and the

act of classification consists of adding a new column with a class code of some kind. For

example an email classifier might attempt to classify an email as legitimate or Spam.

Common classification algorithms like Nearest neighbour, Naive Bayes classifier and

Neural network have been used to classify customer profiles. For instance, Allera and

Horsburgh [1998], Gerbec et al. [2003] examine the classification of electricity customers

based on their consumption. Their approach typically involved grouping the consumers

according to their type of activity (e.g. residential and non-residential), using data mining

techniques such as feature selection and clustering. However, Chicco et al. [2001, 2004]

reported that better approaches are needed to classify electricity customer profiles as

there are poor correlations between type of activity and electricity consumption of the

consumer.

Other customer profile classification areas include: insurance fraud detection [Nisbet

et al., 2009], web content management [Berry and Linoff, 2000, Markov and Larose, 2007],

credit risk classification [Madeira et al., 2003, Soares et al., 2008], etc. All the aforemen-

tioned examples have a limited number of classes/discrete outcomes, and the task is to

assign new records into one of them.

This Chapter presents an investigation of a data mining approach that combines an

unsupervised data binning pre-processing technique with classification to identify different

types of customer profiles using their transactions. Customers’ with sparse transactions

which tend to make up the bulk of transactional data are difficult to distinguish and

accurately classify. This problem is even more pronounced when the sparse transactions

are mixed with dense transactions, as the classifier performance tends to be biased towards

the larger number of customers with sparse transactions.

4.4 Customer Profile Classification using Transactional

Data

To overcome the problem of sparsity which is inherent in transactional data, our proposed

approach groups customer profiles into bins on the basis of the number of items trans-

acted. The ultimate goal is to determine the minimum number of items required to more

accurately and confidently classify a customer profile into one of the identified distinctive

groups. In situations where very large bins are returned by the binning process, prototype

selection is then undertaken to obtain customer profiles which are most representative of

each bin.

We now present a background overview of binning in Section 4.4.1 and prototype

selection in Section 4.4.2. The classification process for a two-class classification is usually

a straight forward assignment of the customer profile into one of two classes. The case
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is, however, different for multi-class classification which involves assigning the customer

profiles into one of many classes. The proposed approach for the multi-class classification

of customer profiles is presented in Section 4.4.3.

4.4.1 Overview of Data Binning

Data binning is an unsupervised discretization method in which the data is grouped into

either Equal Interval Width or Equal Frequency Intervals.

The equal-width data binning algorithm works by determining the minimum and max-

imum values of the attribute of interest and then dividing the range into a user-defined

number of equal width bin intervals. This approach to data binning is, however, vulnerable

to outliers that may drastically skew the range [Catlett, 1991].

The equal-frequency data binning algorithm, on the other hand, determines the mini-

mum and maximum values of the attribute of interest, sorts all values in ascending order,

and divides the range into a user-defined number of intervals, so that every interval con-

tains the same number of sorted values.

Kerber [1992] asserts that since binning, like many unsupervised methods, do not

utilize instance labels in setting partition boundaries, it is likely that classification infor-

mation will be lost by binning as a result of combining values that are strongly associated

with different classes into the same bin. This can result in effective classification being

much more difficult to perform in some cases.

Chiu et al. [1991], Chmielewski and Grzymala-Busse [1995] use a variation of equal

frequency intervals - maximal marginal entropy - to adjust the boundaries so as to min-

imise entropy at each interval. Holte [1993] presented an example of a simple supervised

data binning approach, in which his Information Retrieval (IR) algorithm divides the do-

main of every continuous variable into pure bins, each containing a strong majority of one

particular class, with the constraint that each bin must include at least some pre-specified

number of instances. This approach appears to work reasonably well when used with the

IR induction algorithm.

A typical data binning process broadly consists of four steps:

1. sorting the continuous values of the feature to be binned,

2. evaluating a cut-point for splitting or adjacent intervals for merging,

3. according to some criterion, splitting or merging intervals of continuous value, and

4. finally stopping at some point.

One key parameter of concern in the data binning process is determining the best“cut-

point” to split a range of continuous values or the best pair of adjacent intervals to merge.

Entropy based-and/or-statistical based evaluation function have been used to determine
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an appropriate “cut-point” with varying results [Kerber, 1992, Kohavi and Sahami, 1996,

Li and Wang, 2002, Liu and Wang, 2005, Witten and Frank, 1999].

As discussed in Section 4.4, transactional data tends to be skewed towards the large

number of customers who make fewer purchases. This makes distinguishing them for

classification purposes difficult.

In order to overcome the problem of skewness that is inherent in sparse transactional

data as well as to ensure sufficient statistical power for inference, it is particularly im-

portant that the cut-point for splitting the range of the number of items bought, be such

that each bin contains a proportional representation of the number of customer profiles

for each class.

To meet this requirement for better classification performance, we regroup the cus-

tomer transactions into bins defined by the number of items per transactions and choose

a “cut-point” that is a large fraction of the total number of customer profile transactions.

This heuristic ensures that the bins with the fewer items per transaction have a large

enough representation of examples to make up for the sparseness of the transactions,

ti ∈ Tj. Our approach is outlined as follows:

Given a set of M customer profiles,

P = [p1,p2, . . . ,pM]

with each customer profile pi having its aggregated d -dimensional transaction as defined

in Section 4.2, re-ordered to obtain:

P̂ =


p̂1

...

p̂M

 , where p̂i = [p̂i,1, . . . , p̂i,d]

based on the sum total of the number of items transacted by each of the customers.

The corresponding vector ŝ, consisting of the total number of items bought by each of

the M customers is:

ŝ =


d∑
i=1

p̂1,i

...
d∑
i=1

p̂M,i

 =


ŝ1

...

ŝM

 , where ŝ1 ≤ ŝ2 ≤ . . . ≤ ŝM

Given that P̂ and ŝ are sorted in ascending order, the bins can be easily determined.

That is, for a given bin size of Q (in our case Q = 40000 instances) there will be dM/Q

bins.
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The training sets in the respective b-1 bins will be:

Bi =


p̂1+(i−1)Q

...

p̂iQ

 , for i = 1, . . . , b− 1

with the minimum and maximum number of items transacted within each bin given by:

[
ŝ1+(i−1)Q ŝiQ

]
For the (b-th) bin, the number of items can be smaller than Q ; and the respective

training set and range of total items bought is given by:

Bi =


p̂1+(i−1)Q

...

p̂M

 , for i = b

and
[
ŝ1+(i−1)Q ŝM

]
.

4.4.2 The K-means Algorithm as a Prototype Selection Tool

The binning process, discussed in Section 4.4.1, whilst abating the problem of skewness

in transactional data results in transactional data groups whose sparsity makes sampling

them for classifier modelling unwieldy with a resultant poor performance of the classifier

model as discussed in Section 2.2.

An alternative approach to random sampling is to carefully select prototypes that most

represent each bin. Many methods have been developed for prototype selection. Some

of them are aimed at minimizing the space and time needed for the classification of a

dataset; while others attempt to improve accuracy.

Typical examples of the former include Edited Nearest Neighbour (ENN) [Wilson,

1972], Multi-edit [Ferri et al., 1999], Relative Neighbourhood Graph Edition (RNGE) [Sánchez

et al., 1997], etc.; while the Decremental Reduction Optimization Procedure Family

(DROP3) [Wilson and Martinez, 1997], Prototype Selection by Relative Certainty Gain

(PSRCG) [Olvera-López et al., 2010] and Model Class Selection (MoCS) [Brodley, 1993]

have been proposed as prototype selection for accuracy improvement.

Although different researchers have addressed the issue of prototype selection there

is no research that suggests an automatic procedure for instance selection, which can be

employed for any given classification algorithm and in a computationally efficient way,

for sparse transactional data. This thesis presents an algorithm for prototype selection,
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which exploits the K-means clustering algorithm. It is aimed at reducing the error rate

compared to that obtained by using a simple sampling of the transactional data. The

proposed approach in this thesis is analogous to the fuzzy clustering based approach

proposed in [Bezdek and Kuncheva, 2009, Liu et al., 2002, Spillmann et al., 2006] in

which the centroids are selected as prototypes.

K-means has a linear complexity in computation, i.e. for I iterations of the K-means

algorithm performed on a dataset containing m instances each has n attributes, its com-

plexity may be calculated as: O(I ∗K ∗m∗n). K-means, therefore, has a time complexity

advantage, when used in decomposing large transactional data, in comparison to other

clustering methods (e.g. hierarchical clustering methods), which have non-linear complex-

ity with respect to the number of instances. Also, K-means is easy to interpret, simple

to implement, has a fast speed of convergence and can be used on sparse data [Dhillon

et al., 1999, Witten and Tibshirani, 2010.].

The Basic K-means Prototype Selection Algorithm

The basic K-means prototype selection uses the K-means algorithm for the purpose of

space (i.e. bin) decomposition. It then uses silhouette statistic to select the instances that

are closest to the centre (measured by the average silhouette width) of the decomposed

bin.

First, the K-means algorithm is used to partition the transactional data in each bin

into K groups, such that the within-group sum-of-squares is minimized. The K-means

algorithm works by defining the within-bin scatter matrix given by:

SW =
1

n

g∑
j=1

n∑
i=1

Iij
(
Xi −Xj

) (
Xi −Xj

)T
(4.1)

where Iij is one if Xi belongs to group j and zero otherwise, and g is the number of

groups. The criterion that is minimized by the K-means algorithm is given by the sum of

the diagonal elements of SW , i.e., the trace of the matrix, as follows

Tr (SW ) =
∑

SWii
(4.2)

Minimizing the trace, is essentially equivalent to minimizing the total within-group

sum of squares about the group means [Everitt et al., 2011].

In order to proceed with the decomposition of the unlabelled data, K-means requires

the number of subsets, or in our case, groups, existing in the data. The K-means algo-

rithm requires this parameter as input, and the results are affected by its value. Various

heuristics attempt to find an optimal number of groups most of them refer to inter-cluster

distance or intra-cluster similarity. Nevertheless, in this case as we know the actual class

of each instance, we use the number of classes in the transactional data and employ sil-
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houette statistic, described in Section 3.2.2, to determine and select the instances closest

to the centre of each class as prototypes for classification.

4.4.3 Solution for Multi-class classification

Multi-class classification involves assigning one of many class labels to an input instance.

Formally, given a training dataset of the form (xi, yi), where xi ∈ Rn is the ith example

and yi ∈ ωA, . . . , ωK is the ith class label, multiclass classification algorithms aim to learn

a model H such that H (xi) = yi for new unseen instances. [Han and Kamber, 2006,

Vapnik, 1995]

Classifiers such as k-nearest neighbours and multi-layered perceptrons can directly

deal with multi-class problems. However, for complex classification problems involving a

large number of classes, it has been often observed [Hsu and Lin, 2002, Vapnik, 1995],

that obtaining a classifier that discriminates between two classes, outperforms the one

that simultaneously distinguishes among all classes.

Thus, techniques such as the One-Vs-All method [Vapnik, 1995], the All-Vs-All [Fried-

man, 1996, Hastie and Tibshirani, 1998], and the Error Correcting approaches [Allwein

et al., 2001, Crammer and Singer, 2002, Dietterich and Bakiri, 1995], which decompose

the outer-space are often used in solving the multi-class classification problem.

The proposed approach in this thesis, involves binning the customer profiles based

on the number of items purchased and selecting prototypes of each of the classes in the

discovered bin. Multi-class models are then built using 10-fold cross-validation using the

discovered prototypes.

Algorithm 1 formally describes the procedure for training the predictors.

New customer profiles are predicted by first determining their closest bin based on

the number of transactions and then using the classifier trained within that bin for the

prediction as formally described in Algorithm 2.

4.5 Two-Class Classification Experiments and Anal-

ysis of Results

To evaluate the performance of the proposed approach on a two-class real-world transac-

tional data, a series of experiments were performed using transactional data provided by

Screwfix of Electricians and PlumbHeaters covering a period of 30 months.

Many of the recorded customers’ trade types do not, however, reflect the “true” trades

of the customers mainly due to changes in the transaction behaviour of customers over

time.

Table 4.1 shows the total number of the verified Electricians and PlumbHeaters trade-

types used for the evaluation experiment, together with the number of transactions and
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Input: Training set P
Output: Predictors CB, bins cluster centres µBk
Initialize: S = 0.6

Bin P into B bins based on the number of items per transaction.;
for b← 1 to B do

Cluster into KClasses groups using K-means, where KClasses is the number of
classes in T ;
Record bin cluster centre µbk;
for each instance xi in bin b do

for each group k ∈ Kclasses do
Compute the Silhouette Statistics swk

i ;
if swk

i > S then
include xi into the set of prototypes P ?

kb

end

end

end
Train a predictor Cb on instances in P ?

kb;

end
Algorithm 1: Train predictors

Input: new customer profile xi, predictors CB, bins cluster centres µBk
Output: predicted class ki

Assign xi to the closest bin Bp : p = arg min
∥∥x− µbk∥∥;

classify xi using the predictor Cb;
Algorithm 2: Predict class of new customer profile

Table 4.1: Customer Profile Data

Profile Name No. Customers No. Transactions No. Items Transacted

Electricians 1537 32063 111730

PlumbHeaters 4135 68715 230542
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items transacted by the aforementioned trade-types over the period under consideration.

Figures 4.1 shows the individual items topics contribution to total number of items top-

ics transacted by the Electricians and PlumbHeaters trade-types over the 30 months as

discovered by the binning process.

It can be seen from the plots in Figure 4.1 that the number of instances in each of

the discovered bins is statistically sufficient and not too large for efficiently inducing a

classifier. The prototype selection algorithm outlined in Section 4.4.2 was therefore not

used.

4.5.1 Bin Evaluation using the AUC score

As can been seen in Table 5.1 the Electricians and PlumbHeaters are imbalanced by a ratio

of approximately 1:3. The performance of data mining algorithms is typically evaluated

using predictive accuracy. However, this is not appropriate when the data is imbalanced

and/or the costs of different errors vary markedly [Japkowicz, 2000, Provost, 2000]. This

is mainly because the large difference in representation between the classes can lead to

a bias in which even a simple default strategy of guessing would give a high predictive

accuracy to the majority class [Chawla, 2005].

The Receiver Operating Characteristic (ROC) curve is a standard technique for sum-

marizing classifier performance over a range of trade-offs between true positive and false

positive error measures. It is not influenced by decision biases and prior probabilities, and

it places the performance of diverse systems on a common, easily interpreted scale [Swets,

1988].

The Area Under the Curve (AUC) is an accepted traditional performance metric for a

ROC curve [Bradley, 1997, Duda et al., 2000, Lee, 2000]. The ROC convex hull can also

be used as a robust method of identifying potentially optimal classifiers [Provost et al.,

1999] and is therefore used in our experiments.

4.5.2 Discussion of Experiment Results

The goal of the experiment was to identify a range of required items per transaction in or-

der to more accurately classify unseen customers to a customer profile. The transactional

binning part algorithm outlined in Section 4.4.1 was implemented using Matlab Version

7.9.0.529 (R2009b) on Intel Core2 Duo machine running Microsoft Windows XP while an

evaluation of the ROC performance on the identified bins was performed using Weka’s

implementation of C4.5 [Quinlan, 1993] (implemented as J48 in Weka), linear discriminant

classification [Frank et al., 1998] (implemented as Classification via Regression in Weka),

Naive Bayes [Pernkopf, 2007] and SVM [Boser et al., 1992, Cristianini and Shawe-Taylor,

2000](implemented as SMO in Weka).
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Electricians Items Topics Bar Graphs

PlumbHeaters Items Topics Bar Graphs

Figure 4.1: Stacked Bar graphs showing the contribution of the individual items topics’
to the total number of items topics transacted over the 30 months period.
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Table 4.2 shows the classification performance on the identified bins while Table 4.3

shows the classification performance on the randomly sampled data of customers. Fig-

ure 4.2 shows the comparative ROC performance of the 4 classifiers on both the identified

bins and the randomly sampled customers.

Table 4.2: Classification Performance on Identified Binsa.

(a) C4.5 Decision Tree

Bins No. Elec-
tricians

No.
Plumb-
Heaters

Bin Size TP (E) FP (E) TP (P) FP (P) Accuracy ROC

1-5 303 775 1078 0.221 0.132 0.868 0.779 0.686 0.599
6-13 302 805 1107 0.325 0.199 0.801 0.675 0.671 0.594
14-28 249 784 1033 0.442 0.18 0.82 0.558 0.729 0.648
29-62 256 761 1017 0.516 0.184 0.816 0.484 0.74 0.687
63-175 288 713 1001 0.59 0.147 0.853 0.41 0.777 0.702
176-8395 139 297 436 0.748 0.101 0.899 0.252 0.851 0.813

(b) Linear Discriminant Classification

Bins No. Elec-
tricians

No.
Plumb-
Heaters

Bin Size TP (E) FP (E) TP (P) FP (P) Accuracy ROC

1-5 303 775 1078 0.096 0.041 0.959 0.904 0.716 0.649
6-13 302 805 1107 0.129 0.037 0.963 0.871 0.735 0.704
14-28 249 784 1033 0.289 0.07 0.93 0.711 0.775 0.791
29-62 256 761 1017 0.402 0.075 0.925 0.598 0.794 0.836
63-175 288 713 1001 0.573 0.069 0.931 0.427 0.828 0.879
176-8395 139 297 436 0.633 0.047 0.953 0.367 0.851 0.92

(c) Naive Bayes

Bins No. Elec-
tricians

No.
Plumb-
Heaters

Bin Size TP (E) FP (E) TP (P) FP (P) Accuracy ROC

1-5 303 775 1078 0.294 0.183 0.817 0.706 0.67 0.617
6-13 302 805 1107 0.351 0.217 0.783 0.649 0.665 0.666
14-28 249 784 1033 0.522 0.162 0.838 0.478 0.762 0.76
29-62 256 761 1017 0.59 0.171 0.829 0.41 0.769 0.795
63-175 288 713 1001 0.625 0.143 0.857 0.375 0.79 0.846
176-8395 139 297 436 0.41 0.047 0.953 0.59 0.78 0.892

(d) SVM

Bins No. Elec-
tricians

No.
Plumb-
Heaters

Bin Size TP (E) FP (E) TP (P) FP (P) Accuracy ROC

1-5 303 775 1078 0.04 0.017 0.983 0.96 0.718 0.535
6-13 302 805 1107 0.066 0.024 0.976 0.934 0.728 0.616
14-28 249 784 1033 0.309 0.071 0.929 0.691 0.779 0.773
29-62 256 761 1017 0.445 0.072 0.928 0.555 0.806 0.821
63-175 288 713 1001 0.625 0.077 0.923 0.375 0.837 0.877
176-8395 139 297 436 0.784 0.061 0.939 0.216 0.89 0.95

aThe gray rows represent the performance obtained for the bins at and above the “critical point” which
denotes the minimum number of items per transaction required by the classifiers studied to confidently
identify and distinguish a customer profile.

The difficulty in classifying customers with few transactions can be observed from

Table 4.2 and Figure 4.2 in which the ROC classification performance values increase

as the number of items in the bins increase. The effect of the sparsity and skewness

of the transactional data on classification performance can also be seen from Tables 4.2
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Decision Tree Two-class Classifier Performance

Naive Bayes Two-class Classifier Performance

Linear Regression Two-class Classifier Performance

Support Vector Machine Two-class Classifier Performance

Figure 4.2: Plots showing the two-class 10 fold cross-validation classification performance
of Decision Tree, Naive Bayes, Linear Discriminant, and Support Vector Machine on the
selected SLIGRO prototypes of customer profiles based on transactional data.
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Table 4.3: Baseline Classification Performance on Randomly Sampled Customer Profiles

Classifiers No. Elec-
tricians

No.
Plumb-
Heaters

Total No.
Instances

TP (E) FP (E) TP (P) FP (P) Accuracy ROC

C4.5 1537 4135 5672 0.472 0.163 0.837 0.528 0.738 0.69
LDC 1537 4135 5672 0.114 0.007 0.993 0.886 0.755 0.756
Naive Bayes 1537 4135 5672 0.181 0.049 0.951 0.819 0.742 0.644
SVM 1537 4135 5672 0.24 0.033 0.967 0.76 0.77 0.779

and 4.3 where the classification performance is drawn more to the majority PlumbHeaters

class, as reflected by the true positive rate measures. Thus, a classifier built using the

entire transactional data will be less accurate and less confident in its classification of

the customers with larger items per transaction, as can be seen in Figure 4.2. The bins

for which the ROC classification performance becomes better than that obtained from

the baseline, (bin 63-175 for C4.5, bin 14-28 for LDC, bin 6-13 for Naive Bayes and

bin 29-62), can be interpreted as the “critical point” at which the minimum number of

items per transaction required for the aforementioned classifiers to confidently identify and

distinguish a customer profile, given a dataset of highly sparse and skewed transactions.

4.6 Multi-class Classification Experiments and Anal-

ysis of Results

To evaluate the performance of the proposed approach on a two-class customereal-world

transactional data, a series of experiments were performed using transactional data pro-

vided by SLIGRO Food Group N.V. SLIGRO Food Group N.V. encompasses food retail

and foodservice companies, selling to the Dutch food and beverages market.

The provided data consists of 408,625 aggregated SLIGRO customer transactions, col-

lected over three consecutive years. Each aggregated customer transaction record contains

information about the customer number, the item number, the number of items purchased

and the customer category as stipulated by SLIGRO.

In total 148,601 SKU products were transacted by 65 customer categories. Tables G.1

lists the categories along with their transactions. Figure 4.3 shows the number of distinct

top selling items purchased per customer transaction, while Figure 4.4 shows the plots of

the mean, standard deviation and maximum number of distinct top selling items purchased

per customer transaction.

4.6.1 Experiment Methodology and Results

The main goal of the experiments was to validate the proposed approach on a real-world

case study. More specifically, the experiments were aimed at determining the effect of the

number of items bought by each category on the classification performance of four (4)
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Figure 4.3: Plot showing the distribution of Items per Transaction (Basket size) of SLI-
GRO’s Transactional Dataset

multi-class classifiers. We compared the performance of the approach with the random

sampling baseline, which randomly sub-samples customer profiles for classification.

To perform the experiments, customer profiles (i.e. SLIGRO categories) with great-

than or equal to 3,000 transactions over the 3 year period were first binned into the groups

shown in Table 4.4.

Table 4.4: Identified Data Bins in SLIGRO’s Transactional Data.

Categories Bins
1-5 6-20 21-127 128-894222 Total

100 551 470 699 1439 3159
190 4443 3957 2677 300 11377
230 9284 7963 6358 1125 24730
300 1454 1765 2697 2676 8592
310 972 1117 2069 3083 7241
331 970 1052 1713 3235 6970
360 898 957 1064 948 3867
380 714 768 1116 1037 3635
390 974 1071 1814 1593 5452
391 789 935 1140 586 3450
590 1088 1075 1334 900 4397
620 891 1104 1457 1189 4641
800 8718 8749 7904 1701 27072
820 1518 1431 1105 134 4188
840 4051 4396 4089 609 13145
890 1443 1513 1364 217 4537
900 2941 1928 1420 206 6495

Total 41699 40251 40020 20978 142948

It can be seen that the size of each of the discovered bins was large for the efficiently

inducing classifiers. Therefore, the prototypes as numbered in Table 4.5 for each of the

categories were then selected using the K-means prototype selecting algorithm outlined

in Section 4.4.2.

69



Mean number of distinct items purchased per transaction

Standard Deviation from Mean of distinct items purchased per transaction

Maximum item purchased in a Transaction

Figure 4.4: Plots showing the Mean, Standard Deviation, and Maximum number of items
purchased in a Transaction.
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Table 4.5: Number of Selected Prototype per Category per Identified Data Bins in SLI-
GRO’s Transactional Data.

Categories Bins
1-5 6-20 21-127 128-894222 Total

100 23 17 12 115 167
190 105 185 47 31 368
230 246 381 94 112 833
300 80 72 82 268 502
310 55 36 7 305 403
331 39 39 23 320 421
360 30 43 12 93 178
380 24 22 13 103 162
390 36 42 21 158 257
391 41 42 16 59 158
590 42 56 25 90 213
620 18 60 21 109 208
800 287 328 101 171 887
820 38 51 11 14 114
840 121 199 43 61 424
890 25 69 21 22 137
900 72 68 17 21 178

Total 1282 1710 566 2052 5610

Experimental comparisons were performed on 4 classifiers in WEKA [Hall et al., 2009]

using the selected prototypes from each bin. For each of the selected prototypes 10-fold

cross-validation was repeated 10 times. To compare classifier performance on the entire

multi-class transactional dataset, we use the weighted average AUC, where each target

class ci is weighted according to its prevalence thus: AUCweighted =
∑
∀ci∈C AUC (ci) ×

p (ci)

Figure 4.5 shows the plots of the ROC performance results obtained from the compared

Decision Tree, Logistic Regression, Naive Bayes, and SVM multi-class classifier models

trained using WEKA’s built-in OVA and ECOC on the selected prototypes.

4.6.2 Discussion of Results

It can be seen from all 4 plots that there exists a critical point, based on the number

of items purchased, at which the overall ROC classification performance is higher than

that obtained from the standard data mining approach, of random sampling of customer

profiles based on transactional data.

From a business perspective, the customers with profiles whose classification fall above

the critical point can be prime candidates for direct interactive/one-to-one marketing

campaigns while customers whose profiles fall below the critical point can be candidates

for general market campaigns.

Also, the differences in classification performance on individual categories across the

bins provide insight that can be valuable for developing better relationship with the cus-

tomers. For instance, it can be gleaned from the top 10 items for the category codes

100 and 310 across the four (4) bins in Tables 4.6 and 4.7 that the highlighted prod-

uct codes have a strong influence on the classification of the customer profiles based on
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Decision Tree Multi-class Classifier Performance

Naive Bayes Multi-class Classifier Performance

Logistic Regression Multi-class Classifier Performance

Support Vector Machine Multi-class Classifier Performance

Figure 4.5: Plots showing the comparative multi-class classification performance of Deci-
sion Tree, Naive Bayes, Logistic Regression, and Support Vector Machine on the selected
SLIGRO prototypes of customer profiles based on transactional data.
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transactional data in that category. These products could be included in product promo-

tions and customer targeting programmes as incentives for product growth and customer

retention.

Table 4.6: Top 10 Product Code Purchased by Category Code 100 (Supermart/rijdende
winkel) per Identified Data Bins in SLIGRO’s Transactional Data.

Bin1 Bin2 Bin3 Bin4
Product
Code

Total Product
Code

Total Product
Code

Total Product
Code

Total

93456 42 190855 56 190855 193 190855 1710
184532 22 93456 42 882627 180 882627 1657
81491 11 936251 36 936251 156 190499 765
663523 10 24224 12 93456 151 190960 696
637263 2 652378 12 900360 42 235346 677
284099 1 591881 9 397805 8 192653 618
882627 1 64787 8 736177 6 900360 601
190855 0 637263 3 226054 6 438554 557
432257 0 432257 2 433245 4 432257 537
900360 0 226054 2 81491 4 81491 500

Legend: Details of Highlighted Products
Product Code Product Name
81491 MARK.FRANS STOKBR. 220GR 91038
882627 MARLBORO BOX 19STLB090
190855 HEINEKEN PILS 24X30CL 1 00142
432257 AA DRINK HIGH ENERGY 33CL69733
900360 MARLBORO GOLD 19STLX090

4.7 Summary and Conclusion

This Chapter has presented two approaches for efficiently and confidently identifying and

classifying two-class and multi-class customer profiles.

The two-class approach involved combining binning and classification in order to more

confidently classify customer profiles using their transactions over time. The use of the

proposed approach to discover the buying patterns of Screwfix’s Electricians and Plumb-

Heaters was presented, together with a discussion on the minimum number of items

transacted required to more confidently classify a customer profile into one of two classes.

Results shown in tables and plots in Section 4.5 show that there exist a “critical-point”

for which the ROC performance for classifying customer profiles, based on transactions,

significantly outperforms randomly sampling and classifying customer profiles.

The problem of multi-class classification of customer profiles was also highlighted to-

gether with the methods used in addressing it. An approach that involves binning, pro-

totyping and 10 fold-cross validation was then presented together with experiments on

using the proposed approach, to classify multi-class customer profiles using real-world

transactional data provided by SLIGRO. The results gleaned from the tables and plots

in Section 4.6, show that the classification performance, for all the studied classifiers on
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Table 4.7: Top 10 Product Code Purchased by Category Code 310 (Cafetaria/shoarma/-
fastfood) per Identified Data Bins in SLIGRO’s Transactional Data.

Bin1 Bin2 Bin3 Bin4
Product
Code

Total Product
Code

Total Product
Code

Total Product
Code

Total

184532 111 184532 119 297296 146 192653 5062
93456 60 93456 70 93456 92 184532 4782
81491 8 64787 65 882627 63 190902 3689
394548 2 652378 36 936251 60 882627 2329
637263 1 190855 26 24224 54 265943 2130
192653 1 936251 24 736177 13 432257 1868
269117 1 591881 20 591881 11 255710 1578
476997 1 87353 9 282241 8 516140 1569
736177 1 432257 4 900360 7 231708 1483
882627 0 882627 3 192653 6 401963 1450

Legend: Details of Highlighted Products
Product Code Product Name
184532 T.D.SERV 1L 33X33 WI500ST19180
192653 COCA-COLA REGULAR 33CL 2069
882627 MARK.FRANS STOKBR. 220GR 91038

the prototypes from the binned transactional datasets, depends on the number of distinct

items bought as well as the number of the customer category classified in the sampled

bin. A rise in either numbers across any of the bins results in a rise in performance.

The results obtained from the experiments validate the proposed approaches on two

difficult real world problems. The predictive performance was shown to be consistent

across different base classifiers, with the overall accuracy improving with the number of

items purchased.

The analysis demonstrates that it is possible to find a critical number of items to be

purchased to ensure accurate classification. Knowing this point allows for the filtering of

customers and for focused marketing activities to be undertaken on the ones where better

predictive accuracy can be expected. The results from the case studies also illustrated

that the proposed approach can be used not only for the prediction of new customer

profile classes, but also for business analysis, as closer insights can be gleaned from the

predicted customer profiles, thereby enabling a better understanding of the customers of

the business.

In Chapter 5, we present the investigations of mechanisms for mining change in Cus-

tomer profiles over time.
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Chapter 5

Change Mining of Customer Profile

Classifications

Customer profiles based on real-world transactional data tend to change over time as

customers change their buying behaviour in reaction to the change in their circumstances,

the market, the business, etc. For instance, consider a retail shop with the customer type:

Plumber. The buying behaviour of the Plumber customer type may be different in summer

and winter e.g., increase in the transaction of plumbing tools during winter to meet an

increase in demand for plumbing work (e.g. replacing freezing pipes, suction tubes, etc.);

and in the summer to meet an increase in demand for gardening jobs (e.g. hose-pipes,

water pumps, etc.).

Monitoring, detecting and understanding such changes in customer behaviour over

time enables businesses to gain better insights into the relationship between their cus-

tomers’ buying behaviour and their attitude towards the business over time.

Change mining is a recent paradigm that encompasses mechanisms that monitor mod-

els and patterns over time, compare them, detect changes and quantify them on their

interestingness [Böttcher, 2011, Böttcher et al., 2008, 2010, Kruse et al., 2010]. In essence,

change mining concentrates on understanding the changes themselves. This includes de-

tecting when change occurs in the population under observation, describing the change

and pro-acting towards it.

This chapter presents the use of change mining to monitor, detect and visualize the

change in the classification of customer profiles built using transactional data.

The chapter begins by providing a background overview of Change Mining together

with related work. The investigation of mining change of customer profiles overtime is then

presented in Section 5.2. The work on change detection is then presented in Section 5.1.

The chapter concludes with a discussion on deciding what to do with the results from

change mining and change detection. In the context of customer profile classification

using transactional data, this will mean laying the foundation for tackling the important

question of whether to adapt (or change) the model or incorporate a new labelling scheme
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which is the subject of Chapter 6.

5.1 Background Overview of Change Mining and Re-

lated Work

Traditionally, data mining has focused on synthesising knowledge from a static world, in

which data instances are collected, stored, and analysed, to derive models for the purpose

of making decisions based on the knowledge inferred from them.

The real world is however dynamic and data instances tend to constantly change.

Mining and analysis, therefore need to be done on the fly. Research in data stream

mining have shown adaptive classifiers to be resilient to high prediction bias as the data

change [Klinkenberg, 2004, Widmer and Kubat, 1996].

However, the challenge does not only lay in adapting the models to the evolving data

but also to analysing how the models change and when they do so. Change mining is

a recent approach for mining evolving data and encompasses methods that capture the

process of change, analyse how models have changed and proscribe pro-acting measures

on changes that have been discovered [Böttcher, 2011, Böttcher et al., 2010, Kruse et al.,

2010].

Change mining involves processing a temporal sequence of datasets with the goal of

inferring the changes experienced by their models during the elapsed time.

Change mining has found applicability in fast paced business domains such as re-

tail [Böttcher et al., 2009, Song et al., 2001], manufacturing [Günther et al., 2006], telecom-

munication [Jin and Zhu, 2007], etc. where it is crucial to quickly detect emerging trends

and make proactive rather than reactive decisions as early as possible. For instance, Gün-

ther et al. [2006] use a change mining approach to mine change logs in adaptive process

management systems. Their approach provides an aggregated overview of all changes

that happened up to the point of the change mining process, which can serve as a basis

for process improvement actions. Similarly, Böttcher et al. [2009] use an approach based

on the discovery of frequent itemsets and the analysis of their change over time. This

results in a change-based notion of segment interestingness, to detect arbitrary segments

and analyse their temporal development.

Formally, let T = 〈t0, . . . , tn〉 be a sequence of time points and let Di be the dataset

accumulated during the interval (ti−1, ti], where Di may be a static dataset, whose records

do not possess timestamps themselves, or a stream of records. Furthermore, let f () be a

decay function which determines which data contribute in the learning process1 and with

which weights. For example, f () can express a sliding window W of length w, so that all

1The learning process alluded to here is the “learning” of the class of the customer profile as outputted
by the static classifier in each of the varying time windows.
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data in the interval [ti−w, t0] are used for learning, (or f () may be an exponential function

of ageing, which assigns weights to the individual records on the basis of their age). At

each sliding window Wi, i > 0, we observe a model (or a set of local models) Ξi, inferred

from the dataset D̂i := f
(
∪ij=i−wDj

)
.

Change Mining is defined as encompassing:

1. methods which describe the changes of Ξi to Ξj, j > i > 0 and

2. methods which build a predictive model over the sequence < Ξ1, . . . ,Ξn >.

Hence, just like conventional data mining, Change Mining has a descriptive and a

predictive subcategory of algorithms.

For Change Mining the description of changes among models involves two core tasks:

1. deciding on whether the models are indeed different and quantifying the difference,

2. semantically describing and interpreting the differences.

The prediction of changes in a sequence of models, on the other hand, implies building

a higher order model, which determines whether the next member of the sequence will be

different from the members seen thus far.

Change Mining essentially constitute a methodological process of four (4) generic

tasks [Böttcher et al., 2008]:

1. Determining the goals of Change Mining:

• Deciding between description of change or prediction of change, with change

description being a prerequisite for change prediction.

• Determining whether the interest lays with the result of change or with the

process of change itself

2. Specifying a model of time:

• Determining the type(s) of model to be studied

• Determining the granularity level of change to be studied. That is deciding

between the study of a whole model (such as a classifier) and of its components

(such as individual classification rules, clusters, association rules, profiles) -

these are the objects of change

• Identifying the types of change that can occur on the selected objects of change

3. Designing a monitoring mechanism:
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• Designing a method for tracing models or their components over time, depend-

ing on the specified objects of change

• Designing an algorithm for the identification of model (or model component)

changes

• Designing an algorithm that captures the changes in the model (components)

• Extracting interesting changes

• Semantically interpreting change

This thesis focuses on the descriptive aspect of change mining. It presents an inves-

tigation of using change mining to monitor and evaluate the classification of dynamic

customer profiles by a two-class decision tree ensemble over varying time windows using

real-world time-stamped transactional data.

In particular, using the classifications from the generated decision tree ensembles in

Section 5.2.1, the thesis achieves the following change mining objectives:

Objective 1 The discovery and description of the evolution of the class of customer

profiles over time windows.

Objective 2 The discovery and description of differences in the classification in adjacent

and/or non-adjacent time windows.

In this work, we define the classification of the customer profile built using the cus-

tomer transactions as the object of change and assume that the customer transactions are

aggregated in 3, 6, 9 and 12 monthly intervals. Furthermore, we define f () to be a decay

function which determines which data contribute in the inference process to be a sliding

window of length w, so that all the data preceding the current time window are included

in the inference process, i.e. D̂i := f
(
∪ij=i−wDj

)
.

Thus, in terms of the change mining Objective 2, the time axis is partitioned into

3, 6, 9 and 12 monthly intervals. At the end of each monthly interval, the decision tree

ensemble classifies each customer profile, Ξi based on their aggregated transactions within

the time window.

5.2 Proposed Approach for Change Mining of Trans-

actional Data

Performing the aforementioned Change Mining tasks in a transactional data mining set-

ting requires paying particular attention to the way change is detected over time. This is

mainly because the varying sparsity and skewness inherent in transactional data makes

it challenging to detect the change in the distribution of the input. This is particularly
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challenging for unstable learning algorithms such as multi-layer perceptrons and decision

trees for which small changes in the input training samples may cause dramatic changes

in the resulting models [Li and Belford, 2002]. Thus, large changes in the learned classifier

structure may be observed even if the underlying population remains unchanged.

To overcome the above stated challenges, this thesis proposes an approach that in-

volves choosing a time window and classifying customer profiles, based on their accumu-

lated transactions in the chosen time window. The change in the classifications of the

customer profiles over time are then monitored and quantified, using our introduced sta-

bility measure. The introduced stability measure is focused on quantifying the change

in the classification of customer profiles by way of their classification over time, by the

classifiers and not the change due to the change in the structure of the trained classifiers

themselves.

The following sections describe the proposed approach in terms of a system consisting

of preprocessing, training, inference, and change mining.

5.2.1 Change Mining System

Here we present an approach for mining change in customers’ time-variant transaction

behaviour, for the purpose of monitoring a classifier’s performance, with the goal of main-

taining robust decision support over time.

Given the nature of transactional data and the problems as described in Chapter 2, in

Chapter 4 of this thesis proposed and evaluated an approach based on developing separate

classifiers for different groups of customers, depending on the number of items bought.

We observed from experiments, using the proposed approach on real-world data, that

the discriminative power of the classifiers heavily depends on the need for a sufficient

number of items to be bought in order to be able to create informative, and sufficiently

discriminative profiles.

In this section, the proposed approach builds on the previous work and is designed

to be applied in a dynamic retail environment. Combined with data binning, (related to

the procedures described in Chapter 4), the proposed approach has resulted in a classifi-

cation system that incorporates multiple time windows in which customers are classified

based on their accumulated transactions in the respective time windows, and the different

classification decisions from the different time windows optimally combined.

The classification system consists of two phases of training and inference as outlined

in Figure 5.1.

5.2.2 Training Phase

In the training phase, each customer’s transactional data in the training dataset, accu-

mulated over a long period of time (in our case 30 months), is aggregated and classifier
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Figure 5.1: Architecture for change mining a classifier ensemble over time. The highlighted
steps are described in Sections 5.2.2 and 5.2.3
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models derived for change mining of evolving transactional data. The phase comprises of

the following steps:

Step 1: Binning of data for training purposes

In order to overcome the problem of skewness that is inherent in sparse transactional data,

we use the equal-frequency data binning algorithm outlined in Section 4.4.1 of Chapter 5

to partition/group customer transactions by the number of items purchased.

Step 2: Training individual classifiers on respective bins

Classifier models are then independently generated from each of the bins returned by the

data binning process. Different base classifiers can be used. A number of them were

evaluated in Section 4.5.2 of Chapter 4 within the framework shown in Figure 5.1 on

the left, and the decision tree learner was chosen as the base classifier to perform the

classification process in this thesis, due to its relatively similar performance to the other

classifiers evaluated and its ease of interpretation.

5.2.3 Inference/Evolving Data Classification Phase

The inference phase involves using the classifier models derived from the training phase

to classify and mine previously unseen customer transactions for change, using a set of

user specified time window sizes. It includes the following steps:

Step 3: Representing the transactional data for the customers in different

sizes of sliding time windows

In this step, previously unseen transactional data of customers over time are aggregated

and represented in different window sizes each of which of which have moving time windows

of varying lengths. For instance, in our case, the customer profiles for the two classes

(i.e. Electricians and PlumbHeaters) studied, were aggregated over sliding windowing

sequences on the basis of their previous 3, 6, 9 and 12 months transactions, which resulted

in 28, 25, 22, and 19 sliding windows dataset partitions respectively.

Step 4: Directing the aggregated transaction data in each of the different

sequence of time windows to appropriate classifiers.

The profiles based on the aggregated transactional data for each customer in each sequence

of time windows are then directed to the suitable classifier, based on the number of items

purchased in a given time window.
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Step 5: Classification of the customer profiles using the appropriate classifier

in each of the different time windows.

The previously unseen aggregated transaction data in each of the different time windows,

from Step 4, are then classified by the appropriate (based on the number of items trans-

acted) trained classifier from Step 2.

Step 6: Combining the outputs from the different time windows.

In an evolving transactional data setting, it is common for the features of the datasets to

continually change as the customer buying behaviour change with time.

Using isolated classifications of individual time windows may give a distorted picture

of the customers’ true class and an increase in uncertainty especially in cases where the

customer’s buying behaviour is constantly changing.

One way of reducing the uncertainty due to misclassification or to introduce additional

flexibility to the system (if one would like to focus on detecting change), is to combine

the outputs from more than one time window using a combiner such as majority voting,

gating, etc. [Polikar, 2006, Ruta and Gabrys, 2000]. This can result in more certain/stable

classification over time, as well as enhance the ability to detect changes by focusing on or

selecting classifiers that are able to follow changes in behaviour.

The strategy used in combining the classifiers are often grouped as [Kuncheva et al.,

2001, Subramanian et al., 2010]:

1. trainable vs. non-trainable; or

2. class label vs. class-specific continuous outputs.

The parameters or weights used by trainable combiners are usually obtained through

a separate training algorithm (e.g. the maximum likelihood estimates from the EM al-

gorithms in mixture of experts model, Multilayer perceptron (MLP) networks trained by

back propagation, etc.).

The non-trainable combiners (e.g. majority vote, min, max, etc.) on the other hand,

use the classifiers’ outputs without incorporating any other information, i.e. there is no

separate training involved, beyond that used in inducing the ensemble members.

In the case of the class label combiners, like behaviour knowledge space, weighted

majority voting, majority voting, etc., only the classification decision from the classifiers is

needed, while methods like algebraic combiners, decision templates, weighted average, etc.,

need the continuous-valued outputs of individual classifiers. These values often represent

the degrees of support the classifiers give to each class.

This thesis investigates the use of majority Voting, weighted majority voting, weighted

average voting and minority voting combiners from the second grouping in an evolving

transactional data setting.
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Majority Voting Combiner

In our setting, the majority voting combiner focuses on the more frequent class. We define

the decision to choose the j -th class at window Wi, i > 0 as hWi,j for a system of Wn class

decisions: H = {H1, . . . , HWn} and C classes: ω = {ω1, . . . , ωC}. If the class at Wi-th

window is ωj, then hWi,j = 1, and 0, otherwise. Thus, in our case, the class with the most

representation across the windows studied was chosen as the final class ωd, if:

ωd =
C

arg max
j=1

n∑
i=1

hWi,j (5.1)

Ties were resolved arbitrarily.

Weighted Majority Voting Combiner

In the case of the weighted majority voting combiner, the class values in each window were

assigned weights θWi
based on the accuracy value of the classifier performance, obtained

on the training dataset in each bin as an estimate of the classifier’s future performance.

That is, formally, if the total weighted vote received by ωd across the windows is higher

than the total vote received by any other class, then ωd will be chosen, if:

ωd =
C

arg max
j=1

n∑
i=1

θWi
hWi,j (5.2)

Weighted Average Combiner

For the weighted average combiner, each classifier in each window were assigned weight

θWi
in order to determine the chosen class. Thus, we have a class-conscious combina-

tion [Kuncheva et al., 2001] of a total of θWn ×HWn weights that are class and classifier

specific, with the final class ωd chosen if:

ωd =
C

arg max
j=1

n∑
i=1

θWi,jhWi,j (5.3)

where θWi,j is the weight of the i -th classifier for classifying class ωd. In our case, the weight

θWi,j was obtained by combining the True Positive rate values for each class with the

accuracy of the classifier performance obtained from the training phase, i.e. for example

using the performance values in Table 5.3, the θWi,j for Electricians who bought 1-5 items

will be 0.15 while θWi,j for PlumbHeaters who bought 1-5 items will be 0.6.

Minority Voting Combiner

The aforementioned majority vote based combiner rules focus more on the regular classes

(in terms of numbers) obtained by the base classifiers and normally have a stabilizing and
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improving effect on the classification performance. They, thus,provide for the monitoring

of the more common behaviour of a customer over time.

However, rare events, such as a customer’s change in buying behaviour occasioned by

environment stimuli, might result in the temporal change in the classification of the cus-

tomer within the time period of the environment stimuli. These rare events, which could

be of interest for gaining insights into how customers’ respond to external environment

stimuli, would be missed by combiners, which are more focused on monitoring or detect-

ing frequent events. Such rare events can be useful insight for better product positioning

as well as getting a holistic view of a customer’s buying behaviour over time, for better

customer relationship management.

To monitor or detect the changes occasioned by the rare, or less common, changes in

customer behaviour over time we propose Minority Voting.

Given a set of votes on C classes: ω = {ω1, . . . , ωC} by Wn base classifiers: H =

{H1, . . . , HWn}, we focus on the least common class. If all the base classifiers vote for a

class ωj, we simply output ωj as the final class. If the majority vote is for a class ωj, the

class ωl having the lowest number of votes is chosen as the final class. We expect this

voting strategy to increase the likelihood of detecting a rare, or less common, change in

the behaviour of the customer at the expense of accurate classification of the customer’s

profile. Formally, the vote of class ωd will be chosen, if

ωd =
C

arg min
j=1

n∑
i=1

hWi,j (5.4)

Ties are resolved arbitrarily.

This combination scheme, therefore, aims to detect and highlight differences, rather

than compensate for errors, as would be the case with majority vote. It is included here

to help with change detection, analysis and mining.

5.2.4 Measurement of Classifier Stability Over Time

Stability is one of the two statistical tests (the other being trend) used in change mining

to detect and analyse change [Böttcher et al., 2009].

To quantify and assess the stability of the classifier’s predictions over time, we defined

the prediction stability measure S for the kth customer in a time window w as:

Sk =
n−m
n+m

(5.5)

where n is the number of times the kth customer was correctly classified using the cus-

tomer profile generated from the transactional data within time window w, and m is the

number of times the kth customer was wrongly classified. We define S as a measure of

the classification stability normalized between -1 and +1.
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The prediction stability is +1 in the case of perfect positive (correct) predictions over

time, -1 in the case of a perfect (incorrect) classification over time - indicating a mislabelled

customer; and some value between -1 and 1 in all other cases, indicating the level of change

in classification, which highlights potential changing buying behaviour over time. As it

approaches zero there is less stability in the classification and indicates equal number of

classification for both classes over time. The closer the prediction stability is to either -1

or 1, the stronger the stability of prediction with only 1 class being predominantly chosen.

5.3 Experimental Evaluation

5.3.1 Objective of Experiments

This chapter aims to quantitatively capture and analyse the evolution of customer pro-

files based on their transactions. The analysis is based on monitoring the classification

performance of customer profiles by a set of classifiers over time. To achieve this goal,

experiments were conducted to:

1. Investigate the effect of varying time windows on the prediction accuracy of customer

profiles over time; and

2. Investigate the prediction stability of customer profiles in varying transaction time

windows.

To obtain and analyse the change customer profiles modelled, using real-world trans-

actional data, experiments were performed using transactional data, provided by Screwfix

of Electrician and PlumbHeater groups of customers covering a period of 30 months.

Table 5.1 shows the total number of the verified Electrician and PlumbHeaters trade-types

used for the evaluation experiment, together with the total number of transactions and

items transacted by the aforementioned trade-types over the period under consideration.

Table 5.1: Customer Profile Data

Profile Name No. Customers No. Transactions No. Items Transacted

Electricians 1537 32063 111730

PlumbHeaters 4135 68715 230542

5.3.2 Experimental approach and Analysis of Results

Data Partitioning using Data binning

To obtain the training and test dataset used for the experiments, we ran the dataset

summarized in Table 5.1 through Step 1 (i.e. the data binning process) of the process

outlined in Figure 5.1 in order to obtain the data bins shown in Table 5.2.
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Table 5.2: Identified Data Bins

Bin Bin Size No. Electricians No. PlumbHeaters

1-5 1078 303 775

6-13 1107 302 805

14-28 1033 249 784

29-62 1017 256 761

63-175 1001 288 713

176-8395 433 136 297

The first 5 bins were then sub-selected as the training dataset and the last bin as the

test dataset for the experiments. The decision to sub-select the binned dataset in this

manner was driven by the results, shown in Table 5.3, which were obtained from inducing

C4.5 decision trees on each of the 6 data bins using a 10-fold cross validation process.

Table 5.3: C4.5 Decision Tree Classification (10-fold Cross Validation) Performance on
Identified Bin

Bin Bin Size TP(E) FP(E) TP(P) FP(P) Accuracy

1-5 1078 0.22 0.13 0.87 0.78 0.69

6-13 1107 0.33 0.20 0.80 0.68 0.67

14-28 1033 0.44 0.18 0.82 0.56 0.73

29-62 1017 0.52 0.18 0.82 0.48 0.74

63-175 1001 0.59 0.15 0.85 0.41 0.78

176-8395 433 0.75 0.10 0.90 0.25 0.85

As can be seen, and as one would expect, the larger the number of transacted items

the more accurate the classifier. More details can be found in our previous investigation

on customer profile classification in Chapter 4.

Inducing Decision Trees from Binned Data

Using the algorithm outlined in Figure 5.1, we derived five (5) Decision Tree classifier

models from the training datasets generated from binning the data. Weka’s implementa-

tion of C4.5 [Quinlan, 1993](implemented as J48 in Weka) was used to induce the decision

trees [Hall et al., 2009].

Effect of Window Size on Prediction Accuracy

To experimentally determine the effect of the time window size on the quality of the

prediction, we regrouped the 30 months transactions for the 433 high purchasing customers

discovered by the data binning process in Section 5.3.2 into 3, 6, 9 and 12 months sliding

window snapshots, which resulted in 28, 25, 22, and 19 dataset partitions respectively.

The aggregated transactions for each customer, in each of the partitions, were then passed
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through the inference phase of Figure 5.1 to obtain the decision tree ensemble’s prediction

of each customer. Table 5.4 illustrates the classification output obtained for two customers:

an Electrician and a PlumbHeater.

Table 5.4: An example illustrating the Classifications of an Electrician and a PlumbHeater
over Time by the Decision Tree Ensemble outlined in Figure 5.1

Sliding 
Window 
Dataset 

Partitions

Class in 3 
Months 
Window 

Class in 6 
Months 
Window

Class in 9 
Months 
Window

Class in 
12 months 

Window

Majority 
Vote 

Across 
Windows

Weighted 
Majority 

Vote 
Across 

Windows

Weighted 
Average 
Across 

Windows

Minority 
Vote 

Across 
Windows

Class in 3 
Months 
Window 

Class in 6 
Months 
Window

Class in 9 
Months 
Window

Class in 
12 months 

Window

Majority 
Vote 

Across 
Windows

Weighted 
Majority 

Vote 
Across 

Windows

Weighted 
Average 
Across 

Windows

Minority 
Vote 

Across 
Windows

1 E E E E E P P P P P
2 E E E E E P P P P P
3 P P P P P P P P P P
4 P E E E P E E P P E P E
5 E E E E E E P P P P P P
6 P E P E P E P P P P P P
7 E E E E E E E P E P P P P E
8 E E - E E E E P P P P P P P
9 E E E E E E E P P P P P P P
10 P E E - E E P P P P P P P P P P
11 E E E - E E E E P P P P P P P P
12 P P E - P P P E P P P P P P P P
13 E P E - E E P P P P P P P P P P
14 P P E - P P P E P E P P P P P E
15 E P E - E E P P P E P P P P P E
16 E E E - E E E E P P P P P P P P
17 E E P - E P P P P P P P P P P P
18 P E P - P P P E P P P P P P P P
19 E E P - E P P P P P P P P P P P
20 E E E P E E P P P P P P P P P P
21 E E E E E E E E P P P P P P P P
22 E E E E E E E E P P P P P P P P
23 E E E E E E E E P P P P P P P P
24 E P E E E E P P P P P P P P P P
25 E E E E E E E E P P P P P P P P
26 P P E E E E P P P P P P P P P P
27 P E E E E E P P P P P P P P P P
28 E E E E E E E E P P P P P P P P

Majority 
Vote in 
Windows E E E E E P P P P P
Weighted
Majority 
Vote in 
Windows E E E E E P P P P P

Weighted
Average in 
Windows P P P P P P P P P P

Minority in 
Windows P P P P P E E - - E
Accuracy 
Stability 
Measure 0.36 0.52 0.71 0.78 0.64 0.71 -0.07 0.21 0.93 0.76 1 1 1 0.93 1 0.71

Electrician (E) PlumbHeater (P)

A comparative look at the corresponding prediction stability measures in Table 5.4

show that the classification of the Electrician is less stable over time than that of the

PlumbHeater for the 4 time windows studied. The sporadic change in classification of the

Electrician in the 3 and 6 months intervals heighten the uncertainty attached to making a

proactive decision in reaction to the change in customer’s profile. This is mainly because

the change in the customer’s profile could be due to a change in buying behaviour (and

thus a real change, worth reacting to) or due to a misclassification by the decision tree

ensemble.

Individual Classifier Stability and Accuracy Over time

To measure and analyse the prediction stability and accuracy of the classification over

time, the time-stamped transactions for the last bin in Table 5.3 (i.e. the 433 verified

high purchasing customers spanning 30 months) were aggregated into 3, 6, 9 and 12

months time windows. Each of the sub-samples were then passed through the inference

phase part of the algorithm outlined in Figure 5.1.
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Figure 5.2 shows the prediction stability distribution while Table 5.5 shows the overall

results obtained for the 4 tested time windows.

Three (3) Months Sliding Window Six (6) Months Sliding Window

Nine (9) Months Sliding Window Twelve (12) Months Sliding Window

Figure 5.2: Plots showing the prediction stability of the Decision Tree Ensemble models
within the 3, 6, 9 and 12 months sliding windows.

It can be seen from the plots in Figure 5.2 and from Table 5.5 that the average

prediction stability values (calculated as a mean of absolute stability values for the dataset)

increase with the window size. Also, it can be seen in Table 5.5 that the values of the

average misclassification rates fall over time, with the lowest value occurring for the 12

months window size.

Table 5.5: Individual Classifier Average Prediction Stability and Average Misclassification
Rate Over Time

Sliding Windows Months Average Prediction Stability Average Misclassification Rate

3 0.66 0.18

6 0.67 0.17

9 0.68 0.15

12 0.69 0.13

This means, in terms of change detection, that the ability to quickly detect changes

in the customer behaviour in the shorter time windows comes at the expense of lower

accuracy, with the longer windows being more stable and accurate with regard to the

accuracy calculated with the a priori class labels.
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This information would be valuable, for instance, in determining the length of time a

customer transactional behaviour should be observed before including the customer in a

direct marketing campaign.

Furthermore, the information from the prediction stability over time can be useful

for monitoring the changing behaviour of customers and improving the decision support

provided by the decision tree ensemble. For instance, the following statements can be

made about the four (4) customers with prediction stability shown in Table 5.6 (and

highlighted in Figure 5.2):

Table 5.6: Typical Examples of Prediction Stability Distribution Over Time

Customers Windows Majority
Vote
Across
Win-
dows

Weighted
Majority
Vote
Across
Win-
dows

Weighted
Average
Across
Win-
dows

Minority
Voting

3 6 9 12
Months Months Months Months

Electrician
(E1)

0.38 0.52 0.71 0.78 0.64 0.71 -0.07 0.21

PlumbHeater
(P1)

1 0.76 1 1 1 0.93 1 0.71

Electrician
(E2)

-1 -1 -1 -1 -1 -1 -1 -1

PlumbHeater
(P2)

-0.24 -0.44 -0.54 -0.5 -0.24 -0.24 0.05 0.05

• The increase in the prediction stability in each of the 4 sliding windows for Electri-

cian (E1) reflects an increase in the number of items transacted by the said customer

overtime. The values for Electrician (E1) in Table 5.7 further support this interpre-

tation, as it can be seen that over time, the classification is mainly being done using

classifiers derived from the larger bins.

• On the other hand, the drop in the prediction stability value of PlumbHeater (P1)

into the stability bin ranged: 0.7 to 0.8 in the 6 months time window before falling

back into the bin ranged: 0.9 to 1 with an increased stability value of +1 in the

9 and 12 month windows, indicates a temporal change in buying behaviour of the

customer in the 6 months window. The true positive (TP) performance values for

PlumbHeater (P1) for the 6 months in Table 5.7 further supports the temporal

change in behaviour when compared with the expected true positive (TP) perfor-

mance (in Table 5.3) of the decision tree ensemble.

• The -1 prediction stability value of Electrician (E2) for all 4 time windows is an

indication of a strong discrepancy between the customer’s buying behaviour and
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their a priori label; a consistent discrepancy that can be taken to mean that the a

priori label is incorrect and should be changed.

• Lastly, the negative values of the PlumbHeater (P2) (at the lower 25% percentile) in

all 4 windows studied reflects the intermittent buying behaviour of the said customer

with a resultant movement between different classes.

Table 5.7: An illustration of the typical data bin allocation and classification performance
over time of the Decision Tree Ensemble outlined in Figure 5.1 on two Electricians and
two PlumbHeaters.

Percentage Aggregated Transactions Allocated Per Bin True Positive Accuracy Rate Per Bin
Bins Bins

Sliding 
Window 
Months 1-5 6-13 14-28 29-62 63-175 1-5 6-13 14-28 29-62 63-175

3 - - 21.43 57.14 21.43 - - 0.57 0.75 0.67
6 - - - 28.00 72.00 - - - 1.00 0.67

E1 9 - - - - 95.45 - - - - 0.86
12 - - - - 47.36 - - - - 0.89

3 10.71 25.00 50.00 14.29 - 0.67 1.00 1.00 1.00 -
P1 6 - 8.00 20.00 72.00 - - 1.00 0.80 0.89 -

9 - - 13.64 22.73 63.64 - - 1.00 1.00 1.00
12 - - - 21.05 78.95 - - - 1.00 1.00

3 - - 3.57 39.29 - - - 0.00 0.00 -
E2 6 - - 4.00 8.00 36.00 - - 0.00 0.00 0.00

9 - - 4.55 9.09 40.91 - - 0.00 0.00 0.00
12 - - 5.26 10.53 36.84 - - 0.00 0.00 0.00

3 10.71 14.29 3.57 25.00 21.43 1.00 0.00 0.00 0.29 0.50
P2 6 4.00 12.00 - 12.00 44.00 1.00 0.00 - 1.00 1.00

9 4.55 13.64 - 4.55 36.36 1.00 0.00 - 1.00 0.13
12 - 5.26 - 10.53 26.32 - 0.00 - 1.00 0.40

Effect of Combiners on Classification Over Time

To gauge the performance of the classifiers across the 4 time windows, an analysis of

majority voting, weighted majority voting, weighted average and minority voting was

performed.

The results, as can be seen in Table 5.8 and Figure 5.3, show that the prediction

stability values over time for the first three (3) combiners, which are focused on the

frequent class, are higher than those obtained from all the 4 individual time windows

studied in Section 5.3.2 as shown in Table 5.5, with the misclassification rate of the

weighted average voting scheme at par with that obtained in the 9 months time window.

Thus, the three (3) frequent class focused combiners, by incorporating the performance at

the shorter time windows can be used to monitor and detect early changes in the customer

behaviour as well as provide the prediction stability of the longer time windows; although

at the expense of accuracy with regards to the a priori class labels.

Furthermore, the prediction stability over time of the three (3) combiners, which are

focused on the frequent class, can be crossed checked with that obtained from the minority

voting combiner, to gauge the significance of the detected change over time. For instance,

it can be seen from Table 5.6 that the higher positive prediction stability values for the

customers E1 and P1, for both the frequent class focused combiners and the minority class

combiner, are higher than those obtained for E2 and P2 over time. The higher prediction
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stability values obtained for the customers E1 and P1 can be interpreted as reflecting

temporary changes, which would not necessitate a change in classification labels, while the

lower prediction stability values for E2 and P2 can be interpreted as significant changes

requiring a re-labelling of the customers (samples) or a re-evaluation of the classifiers

responsible for their classification over time.

Also, the class-conscious combination [Battiti, 1994] of the weighted average can be

used to monitor the changes in class imbalance between the Electrician class and the

PlumbHeater class to which it is biased as can be seen in Table 5.6.

Majority Voting Across Windows Weighted Majority Voting Across Windows

Weighted Average Voting Across Windows Minority Voting Across Windows

Figure 5.3: Plots showing the distribution of prediction stability over time for the ma-
jority Voting, weighted majority voting, weighted average voting, and minority voting
Combiners Across the 3, 6, 9 and 12 month windows.

Table 5.8: Combiners’ Average Prediction Stability and Average Misclassification Rate
Over Time

Combiner Average Prediction Stability Average Misclassification Rate

Majority Voting 0.73 0.16

Weighted Majority Voting 0.73 0.15

Weighted Average Voting 0.79 0.18

Minority Voting 0.61 0.21
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5.4 Summary and Conclusion

This Chapter presented a change mining approach for evaluating and analysing a pro-

posed robust technique for classifying time-variant customers based on their transactions

over time. The approach consists of two phases of training and inference. The training

phase involves inducing a decision tree ensemble from aggregated and binned customer

transactions. The inference phase uses the induced decision tree ensemble from the train-

ing phase to classify time aggregated and binned customer transactions within a user

specified time windows.

Experiments were performed to evaluate the prediction accuracy and stability of our

technique within 4 different time windows on real-world time-stamped transactional data

obtained from Screwfix Limited.

Overall, it was observed from the prediction stability tables and plots, that the classifi-

cation obtained by looking at longer time windows rather than shorter windows improves

the stability of the classification though reduces the ability to detect and react to short

time changes in buying behaviour. However, using any (depending on the application) of

the combiners which are focused on the frequent class in conjunction with the proposed

Minority Voting combiner, provides the flexibility of monitoring, detecting and verifying

short and long term changes in customers’ behaviour.

These results show that monitoring classifier accuracy and stability over time can be

used for change mining purposes.

Furthermore, the change mining process also provides information that can be valuable

in determining the time to confidently target a customer with a direct marketing campaign

as well as determining the usefulness of a classifier in a dynamic business domain.

From a company perspective, our work here is very useful as it helps in identifying

customers who:

1. Change their buying behaviour frequently moving between different classes;

2. May have been assigned a wrong label in the verification process; and

3. Exhibit stable behaviour with only an occasional change of classification, which may

be due to temporary behaviour change or misclassification.

The introduced simple stability measure, the evaluated minority voting (as an example

of the decision combination rule focusing on detecting even minor differences), and the

visualisation of classification over time, makes identification of these groups much easier.
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Chapter 6

Customer Profile Classification: To

Adapt Classifiers or To Relabel

Customer Profiles?

In Chapter 5, static classifier models, built using data aggregated over 30 months, were

used to monitor, detect and describe the change in the classification of customer profiles

aggregated over 3, 6, 9 and 12 month sliding windows.

The decision to use static classifier models built using customer profiles aggregated

over 30 months, to perform the work in Chapter 5 was based on the findings in Chapter

4, where it was shown that classifier models based on customers who bought more items

performed better than classifier models based on customers who bought fewer items.

A classification stability measure was introduced and used to measure the change in

classification of customers’ over time with the customers whose stability measure was

consistently at -1 identified and recommended for relabeling.

However, it is often the case that businesses needs to identify their customers as soon

as possible. They might not have the luxury of time to build classifier models of customer

profiles based on transactional data accumulated over a long period of time.

Meeting the need for a timely identification of reliable and stable customers is chal-

lenging, due to the dynamic nature of customer profiles built using transactional data.

The chapter commences with an overview of the problem of concept drift and label

switching in the context of customer profile classification. A background overview of the

techniques for adaptation and relabeling, together with related works, is then presented in

Sections 6.2.1 and 6.3 respectively. The experiments in which the effect of model adapta-

tion on classification performance, in contrast to the effect of re-labelling is then presented

in Section 6.5. A comparative analysis of the results obtained from the experiments is

also presented and discussed. The chapter concludes with a discussion on the problem of

model adaptation, versus instances re-labelling, in a dynamic transactional data setting.

In the context of customer profile classification using transactional data, this introduces
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the important research question of whether to adapt (or change) the model or incorporate

a new labelling scheme.

6.1 Concept Drift and Customer Profile Class Switch-

ing Problem.

As discussed in Chapter 5, customer profiles based on real-world transactional data tend

to change overtime as customers change their buying behaviour in reaction to the change

in their circumstances, the market, the business, etc.

Classifier models induced from such real-world evolving transactional data thus, tend

to deteriorate over time in their predictive accuracy .

This may be due to the change in the distribution of the target variable the model is

trying to predict. In this case, the a priori unknown change in the statistical properties

of the target variable is referred to in the literature as concept drift [Tsymbal, 2004].

Concept drift complicates the classification task as the model needs to be able to track

and adapt quickly, to unanticipated changes.

The change experienced may be abrupt (concept shift) or gradual (concept drift) [Stan-

ley, 2003, Widmer and Kubat, 1996]. Both have deteriorating effects on the performance

of a classifier designed and trained under the assumption that the customer profiles are

fixed. Such dynamic customer profiles require robust adaptive classifier models in order

for their classification to remain accurate over time.

Formally, given a continuous stream of data instances x1, x2, . . . with each instance

being an m-dimensional vector in some pre-defined vector space ℵ = <m, the problem of

concept drift detection and analysis involves, at every time point p, splitting the instances

in a set X of n recent instances and a set X containing the n instances that appeared

prior to those in X. The goal is to determine whether or not the instances in X were

generated by the same distribution as the ones in X. The standard tools for drift detection

are methods from statistical decision theory [Nisbet et al., 2009]. These methods usually

compute a statistic from the available data, which is sensitive to changes between the two

sets of instances. The measured values of the statistic are then compared to the expected

value, under the null hypothesis that both samples are from the same distribution. The

resulting p-value can be seen as a measure of the strength of the drift. A good statistic

must be sensitive to data properties that are likely to change by a large margin between

samples from differing distributions. This means that it is not enough to look at means or

variance-based measures, because distributions can differ significantly, even though mean

or variance remain in the same range [Dries and Rückert, 2009].

Rank-based measures such as the Mann-Whitney or the Wald-Wolfowitz statistics are

usually used instead. However, these statistics depend on a fixed set of characteristics
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(e.g. mean and variance) of the underlying distribution [Lehmann and D’Abrera, 2006].

Thus, they work well in scenarios where the change in the underlying distribution affects

the properties measured by the statistic, but they perform below par, if the drift influences

the characteristics caught by the test statistic only to a small degree [Dries and Rückert,

2009].

This is usually the case for transactional data used in building customer profiles, where

the inherent skewness and sparsity of the transactional data make the problem of detecting

concept drift non-trivial for dynamic customer profiles [Hahsler, 2006, Hsu et al., 2004,

Xiong et al., 2003].

Methods for detecting concept drift in dynamic customer profiles therefore need to be

independent of the underlying distribution of the transactional data used in constructing

the customer profiles.

Furthermore, the change in an individual customer’s profile classification might not

necessarily be due to the change in the distribution of the target variable representing the

customers with similar profiles, but a temporary or permanent change in the individual

customer’s behaviour. That is, for example, the change in the number/type of items

bought by an individual Electrician, to that bought by an individual Plumb-Heater may

not necessarily be due to the entire set of Electricians’ change in buying behaviour.

In such a scenario, the “misclassified” output by the classifier may not necessarily be

“wrong” and the customer profile will need to be relabelled to reflect the customer’s new

buying behaviour.

6.2 Adaptive Customer Profile Classification

The current approaches for classifying customer profiles over time require the entire

dataset to obtain the desired models that adequately represent the patterns inherent

in the database. However, the occurrence of changes in the business environment which

are often reflected in the training database as data operations such as: additions (cus-

tomers making more orders of an item), deletions (customers returning an item within a

28 days stipulated period), edits (customers swapping items), etc.; often require that the

training database be rescanned and retrained so the generated models reflect the changes

done. Such business driven database changes, as highlighted in Chapter 2, make the costs

of the required rescan each time the training dataset is modified prohibitive.

Algorithms for the adaptive learning that involves keeping of descriptive parameters

of past mining results and operating only on data records that have been updated, are a

more efficient approach which can lead to substantial savings in tracking and keeping in

line with the changing customer behaviour over time.
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6.2.1 Overview of Adaptive Systems

Much of the work for adaptive mining has been applied mainly to data streams where the

developed algorithms tend to incorporate one or more of the elements shown in Table 6.1

to address the accompanying problems.

Table 6.1: Challenges and Methods for Adaptive Systems

Challenges Methods
What needs be to remembered or
forgotten?

Methods for determining which
data contribute to the learning
process.

When should the model be up-
graded?

Methods for change detection.

How should the model be up-
graded?

Methods for monitoring and up-
dating estimations for some statis-
tics of the input.

The algorithms are usually integrated into adaptive systems consisting of three mod-

ules as shown in Figure 6.1 (adapted from [Bifet and Gavaldà, 2009, Schon et al., 2006]).

Estimator
Change 

Detector

Memory

Estimation

Alarm
x
t

Figure 6.1: Framework of a typical adaptive system

Generally, the input to these algorithms is a sequence x1, x2, . . . , xt, . . . of data items

whose distribution varies over time in an unknown way. The outputs at each time step

are:

• an estimation of some important parameters of the input distribution, and

• a signal alarm indicating that distribution change has recently occurred.

In the data stream setting, all the xt are real values. The desired estimation in the

sequence of xi is usually the expected value of the current xt, and less often another
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distribution statistics such as the variance. The only assumption on the distribution is

that each xt is drawn independently from each other. Thus, they are concerned with

one-dimensional items. While the data streams often consist of structured items, most

adaptive mining algorithms are not interested in the items themselves, but in a collection

of real-valued (sufficient) statistics derived from the items; thus the input data stream is

taken as decomposed into possibly many concurrent data streams of real values, which

will be combined by the adaptive mining algorithm.

Memory is the component where the algorithm stores the sample data or summary

that is considered relevant at current time, that is, for example, its description of the

current data distribution.

The Estimator component is an algorithm that estimates the desired statistics on the

input data, which may change over time. The algorithm may or may not use the data

contained in the Memory. The simplest Estimator algorithm for the expected output value

is the linear estimator, which simply returns the average of the data items contained in

the Memory. Other examples of efficient estimators are Auto-Regressive, Auto Regressive

Moving Average, and Kalman filters.

The change detector component outputs an alarm signal when it detects change in

the input data distribution. It uses the output of the Estimator, and may or may not in

addition use the contents of Memory.

The output from the estimator and change detector components are used in evaluating

the models of the adaptive system at each time step. The methods used for evaluating

the adaptive learning model in a stream context include [Gama et al., 2009]:

• Holdout which uses an independent test set [Han and Kamber, 2006]. It applies the

current decision model to the test set at regular time intervals (or set of examples).

The loss estimated in the holdout is an unbiased estimator.

• Predictive Sequential method [Dawid, 2008] which involves computing the error of

a model from the sequence of examples. For each example in the stream, the ac-

tual model makes a prediction based only on the example attribute-values. The

prequential-error is computed based on an accumulated sum of a loss function be-

tween the prediction and observed values:

S =
n∑
i=1

L (yi, ŷi)

It is to be noted that, in the prequential framework, we do not need to know the true

value yi for all points in the stream. The framework can be also used in situations of

limited feedback by computing the loss function and Si for points where yi is known.

The mean loss is given by: M = 1
n
× S. For any loss function, we can estimate a
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confidence interval for the probability of error, M ± ε, using Chernoff bound [Castillo and

Gama, 2005]:

εc =

√
3× µ̄
n

ln (2/δ)

where δ is a user defined confidence level. In the case of bounded loss functions, like

the 0-1 loss, the Hoeffding bound [Hoeffding, 1963] can be used:

εh =

√
R2ln (1/δ)

2N

where R is the range of the random variable X (for a probability, R is one, and for an

information gain, it is log c, where c is the number of classes).

Both bounds use the sum of independent random variables and give a relative or

absolute approximation of the deviation of the random variable from its expectation.

They are independent of the distribution of the random variable.

Langford [2005] provides an extensive review of different types of distribution free

bounds that are prevalent in Machine Learning and categorizes each bound into one of

two categories: (1) test set bound and (2) training set bound.

The test set bound bounds the error over the test set by considering that the er-

ror has a binomial distribution. A good approximation to this bound is the Chernoff

bound [Chernoff, 1952] and the related Hoeffding bound [Hoeffding, 1963].

A training set bound, on the other hand, bounds the training error to the generaliza-

tion error. Well known examples of this type of bound are the Vapnik-Chervonenkis

bounds (VC bounds) [Vapnik, 1998], Probably Approximately Correct Bayes bounds

(PAC Bayes bounds) [McAllester, 1999], OccamŠs Razor bounds [Blumer et al., 1987],

Sample Compression bounds [Floyd and Warmuth, 1993] and Rademacher Complexity

bounds [Bartlett et al., 2002].

Langford [2005] infers from the comparison of these two categories that test set bounds

are generally much tighter than training set bounds and are a superior tool in reporting

error rates.

The independence of the Hoeffding bound from the distribution of the random variable

is particularly useful in our setting where the inherent sparsity and skewness of the input

transactional data has adverse effect on the performance of standard (i.e. non-adaptive)

classifier models.

An alternative approach to model adaptation is the champion/challenger testing strat-

egy. In a nutshell, champion/challenger testing is a systematic, empirical method of com-

paring the performance of a production model (the champion) against that of new models

built on more recent data (the challengers) [Han and Kamber, 2006]. If a challenger

model outperforms the champion model, it becomes the new champion and is deployed

in the production system. Challenger models are built periodically as new data are made
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available [Campos et al., 2005].

6.2.2 Related Work

A number of adaptive algorithms, which mainly relate to association mining, have been

proposed in the literature for transactional data. These include the re-running of the

association mining algorithms on the updated database, as proposed by Tsai et al. [1999]

which has a drawback in not utilizing existing information, such as the previously obtained

support count.

The Fast Update Algorithm (FUP) [Cheung et al., 1996] and FUP2 [Cheung et al.,

1997] overcome the aforementioned limitation, but they do this by rescanning the original

database. Chang et al. [2005] proposed the New Fast Update Method (NFUP) which

manages to overcome both limitations but does so under the assumption that the items

have same “exhibition” time-line and thus those that fall in the same partition as the

previously stored database are identical.

The algorithm proposed in this thesis is analogous to the aforementioned approaches

in that they do not adequately address the problem considered here, namely, how to

accurately learn the buying behaviour of changing customer profiles, based on their trans-

actional data over time without having to rescan the entire database.

6.3 Relabeling as a Solution to the Customer Profile

Class Switching Problem

Relabeling algorithms have been used to address the problem of label switching in Bayesian

analysis using mixture models where the data are thought to belong to one of C classes

(or components) but whose individual class memberships are unavailable [Nobile and

Fearnside, 2007].

However, while Bayesian analysis using mixture models provide a flexible way to model

heterogeneous data, the sensitivity of the posterior distribution to changes in the prior

distribution for the parameter limits its applicability in inferring the class of dynamic

customer profiles built using transactional data over time.

Alternative relabeling techniques, such as the partitioning of the solution space using

pattern filtering [Fürnkranz, 1999, Zhu et al., 2003] and using majority/consensus to

isolate stable and noisy instances [Brodley and Friedl, 1999] have been used to relabel

instances. However, stable instances are often removed along with noisy instances in the

case of the latter, which causes the solution space to be incomplete, with the resultant

lost of valuable information; while the arbitrary partitioning of the solution space, by

the pattern filtering approach, tends not to take into account the reduction in confidence

due to mining subspaces. Thus, the classifiers built from the resulting datasets may
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not accurately represent the actual problem and lead to increase in the generalization

errors [Mantas et al., 2002].

The relabeling approach used in this thesis is analogous to the aforementioned ap-

proaches, in that the misclassified customer profiles in each time window are relabelled

independent of the change in the distribution or nature (i.e. noisy or stable) of the cus-

tomer profiles over time.

6.4 Proposed Classifier Model Adaptation and Rela-

beling for Customer Profile Classification

The proposed adaptation and relabeling algorithm consists of the three key phases of: pre-

processing, inference/evolving data classification and customer profile class adaptation

and relabeling.

6.4.1 Pre-processing Training Data Phase

Step 1: Aggregating and Binning data for training purposes

As discussed in Section 4.4, transactional data tends to be sparse and skewed towards the

large number of customers who make fewer purchases. This makes distinguishing them

for classification purposes difficult.

In order to handle the sparsity problem, the pre-processing phase involves aggregating

the verified customer profiles in sliding time windows (3, 6, 9 and 12 month sliding windows

were used for the work in this thesis).

Binning process outlined in Section 4.4.1 is then applied to the aggregated transaction

to regroup them based on the number of items bought.

6.4.2 Inference/Evolving Data Classification Phase

The pre-processing phase is then followed by an inference/evolving data classification and

adaptation/relabeling phase consisting of the following four (4) steps.

Step 2: Aggregating individual customers transactions in different sizes of

sliding time windows

In this step, the test datasets of individual customer transactions in each window are

aggregated based on the number of items bought.

100



Step 3: Deriving classifier models from the binned customers from Step 1

During this step, classifier models are derived for each of the discovered bins from Step

1 and used to classify previously unseen test data made of the aggregated number of

individual customer items transacted in time window Wi from Step 2.

Step 4: Adaptation of classifier models/relabeling of customer profile

This step is comprised of two alternative components of (1) relabeling and (2) adaptation:

1. The relabeling component compares each test customer profile’s classification in

the current window Wi against the classification obtained in the previous window

W(i−1). If the i -th customer profile classification in the current window Wi is the

same as the classification obtained in the previous W(i−1), then the customer profile’s

classification is left unchanged; otherwise the customer profile is relabelled. The

relabeling algorithm assumes that the customer profiles used in training the static

classifier models for each of the bins have been verified and established with a third-

party to truly represent the class of the customer profiles.

2. The adaptation component computes each classifier model’s classification accuracy

on the test data. If the performance rate is within the change bound (i.e. error

bound in the case of the Hoeffding bound guided change detection and accuracy for

the champion/challenger approach), the classifier model is left unchanged; otherwise

a new classifier model is built using the most recent (i.e. current window’s) training

dataset and a new change bound on the test set computed.

Step 5: Combining the class outputs from the different time windows

As discussed in Section 5.2.3, in an evolving transactional data setting, it is common

for the features of the datasets to continually change as the customer buying behaviour

change with time. Using isolated classifications of individual time windows may give a

distorted picture of the customers’ true class and an increase in uncertainty especially in

cases where the customer’s buying behaviour is constantly changing. In other to reduce

the uncertainty due to misclassification or to introduce additional flexibility to the system

(if one would like to focus on detecting change), this step combines the outputs from the

different time windows using a combiner such as majority voting, gating, etc. [Polikar,

2006, Ruta and Gabrys, 2000]. This can result in more certain/stable classification over

time as well as enhance the ability to detect changes by focusing on or selecting classifiers

that are able to follow changes in behaviour.

Figure 6.2 outlines the proposed architecture for adapting classifier models and rela-

beling customer profiles.
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Figure 6.2: Architecture for adapting classifier models and relabeling misclassified cus-
tomer profiles. The highlighted steps are described in Section 6.4.

6.5 Experiment Setting, Results and Evaluation

The goal of our experiment was to perform a comparative analysis of the performance

obtained from relabeling the customer profiles classifications of previously unseen cus-

tomer transactions over time window against the performance obtained from: (1) static

classifier models, (2) adaptive classifier models based on the champion/challenger testing

strategy and (3) adaptive classifier models based on the Hoeffding bound change detection

strategy.

The customer profiles built, using the transactional data of Electricians and Plumb-

Heaters covering a period of 30 months provided by Screwfix, were used for the experi-

ments. The detailed description of the data can be found in Chapter 3 of this thesis.

To perform the experiments, the customers, whose total transactions were identified in

Chapter 4 to be in bins 1 to 5 over the 30 months transactions, were used as the training

set, while the customers with transactions in bin 6 were used as the test set. The training

and test set were regrouped into 3, 6, 9 and 12 months sliding windows, which resulted

in 28, 25, 22 and 19 dataset partitions (each with 5 bins) respectively. The resulting

dataset partitions were such, that each training dataset was paired with a corresponding

test dataset. Figures H.1 and H.2 in Appendix H respectively show the distribution of

the top 10 products transacted by the Electricians and PlumbHeaters in the training and
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test datasets in the 3, 6, 9 and 12 months sliding windows.

WEKA’s [Hall et al., 2009] implementation of: (1) the decision tree algorithm (J48),

(2) Naive Bayes, (3) Linear Discriminant Classification and (4) Support Vector Machines

(SVM) was then applied to each of the bins in the training dataset partitions. The

algorithms were chosen in such a way as to enable the comparative analysis to cover

parametric, non-parametric, linear and kernel-based classification methods respectively.

For the relabeling experiments, the customer profiles in each bin of the test windows

were classified, using the classifier model derived from the corresponding training bin and

window, as outlined in Figure 6.2. The label of the misclassified customer profile at each

window were relabelled before the subsequent window classification was performed.

The procedure outlined in Figure 6.2 was used for the adaptive classifier experiments.

Each of the bin derived classifier models were evaluated at each time window and a

decision to keep it or change it made, based on the accuracy rate (in the case of the chal-

lenger/champion strategy) or the error rate (in the case of the Hoeffding bound strategy).

6.5.1 Effect of Window Length on Classification Accuracy

Comparative experiments were undertaken to gauge the effects of the chosen sliding

window size on the customer profile classification over time. Table 6.2, as well as Fig-

ures I.1, I.2, I.3 and I.4 in Appendix I, show the comparative results obtained from using

the four (4) classification approaches on ensembles of Weka’s implementation of C4.5 Deci-

sion Trees (J48), Naive Bayes, Linear Discriminant Classifiers (LDC) and Support Vector

Machines (SVM) for the 3, 6, 9 and 12 month windows respectively. It can be seen, from

the tables, that the classification performance of the relabeling and adaptive approaches,

tend to improve as the window size increases, with the LDC and SVM ensembles generally

performing better on the vector representation of the customer profiles. It can also be

seen from the lower accuracy rates in the 3 and 6 months that discriminating the class

of the customer profiles is challenging in the shorter windows (3 Months especially), a

reflection of the skewness and sparseness of the customer transactions due to few items

bought.

6.5.2 Stability of Customer Profile Classification Over Time

Observing the stability in the classification of a customer profile over time, provides insight

into the customer’s buying behaviour over time. To comparatively assess the stability of

the customer profile classification, Equation 5.5 from Chapter 5 was used to compute the

stability of the customer profile classification over time.

It can be seen from the comparative customer profile classification stability values in

Table 6.3, as well as Figures J.1, J.2, J.3 and J.4 in Appendix I, for all the 4 time window

sizes studied, that relabeling the “misclassified” individual customers profile classifications
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Table 6.2: Comparative Classification Performance of 4 Classifiers in 4 Sliding Time
Window Sizes

(a) Three (3) Months Sliding Window

Champion/Challenger
Adaptation

Hoeffding Bound
Adaptation

No Adaptation Relabeling

C4.5 0.77 0.73 0.73 0.82
Naive Bayes 0.81 0.73 0.74 0.79

LDC 0.82 0.76 0.76 0.83
SVM 0.81 0.77 0.75 0.82

(b) Six (6) Months Sliding Window

Champion/Challenger
Adaptation

Hoeffding Bound
Adaptation

No Adaptation Relabeling

C4.5 0.79 0.68 0.68 0.83
Naive Bayes 0.81 0.75 0.75 0.85

LDC 0.84 0.82 0.82 0.92
SVM 0.83 0.79 0.79 0.90

(c) Nine (9) Months Sliding Window

Champion/Challenger
Adaptation

Hoeffding Bound
Adaptation

No Adaptation Relabeling

C4.5 0.79 0.73 0.73 0.89
Naive Bayes 0.81 0.80 0.80 0.90

LDC 0.85 0.85 0.83 0.93
SVM 0.84 0.84 0.82 0.93

(d) Twelve (12) Months Sliding Window

Champion/Challenger
Adaptation

Hoeffding Bound
Adaptation

No Adaptation Relabeling

C4.5 0.77 0.76 0.71 0.89
Naive Bayes 0.82 0.81 0.79 0.92

LDC 0.86 0.85 0.85 0.94
SVM 0.85 0.85 0.83 0.95
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(in contrast to adapting the classifier models), leads to more stable (i.e. invariant) cus-

tomer profile classifications in the longer time window sizes (i.e. 9 and 12 months sliding

windows); while adapting the classifiers using the Accuracy Bound Adaptation approach

leads to more stable (i.e. invariant) customer profile classifications in the shorter time

window sizes (i.e. 3 and 6 months sliding windows).

As was discussed in Section 4.4, the customer profiles tend to be sparse in the shorter

time window sizes, due to fewer items bought. This makes it more challenging to distin-

guish them in the shorter time window sizes. Therefore, relabeling the customer profiles

in the shorter time window sizes has little impact in the classification stability, compared

to the champion/challenger approach, where the classifiers relearn and adapt to the chal-

lenging sparse solution space. In the longer time window sizes, the customers tend to buy

more items, making the solution space more stable and thus, the changes in classification

are more likely to be due to change in the customer’s buying behaviour.

Table 6.3: Comparative Customer Profiles Classifications Stability for the 4 Classifiers in
the 4 Sliding Time Window Sizes

(a) Three (3) Months Sliding Window

Champion/Challenger
Adaptation

Hoeffding Bound
Adaptation

No Adaptation Relabeling

C4.5 0.67 0.64 0.66 0.66
Naive Bayes 0.68 0.54 0.56 0.58

LDC 0.73 0.65 0.64 0.68
SVM 0.69 0.64 0.59 0.65

(b) Six (6) Months Sliding Window

Champion/Challenger
Adaptation

Hoeffding Bound
Adaptation

No Adaptation Relabeling

C4.5 0.72 0.57 0.57 0.66
Naive Bayes 0.73 0.61 0.61 0.70

LDC 0.78 0.76 0.76 0.84
SVM 0.77 0.73 0.73 0.81

(c) Nine (9) Months Sliding Window

Champion/Challenger
Adaptation

Hoeffding Bound
Adaptation

No Adaptation Relabeling

C4.5 0.70 0.64 0.67 0.78
Naive Bayes 0.77 0.75 0.71 0.79

LDC 0.81 0.80 0.81 0.86
SVM 0.79 0.79 0.79 0.86

(d) Twelve (12) Months Sliding Window

Champion/Challenger
Adaptation

Hoeffding Bound
Adaptation

No Adaptation Relabeling

C4.5 0.64 0.66 0.66 0.77
Naive Bayes 0.81 0.80 0.77 0.83

LDC 0.83 0.83 0.84 0.88
SVM 0.84 0.84 0.83 0.89
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Furthermore, at the individual level, it can be seen from the tables in Table 6.4, as

well as the tables in Tables K.1, K.2, K.3 in Appendix K, illustrating the classification of

an Electrician and PlumbHeater, that the changing classification of the customer profiles

is closely related with the window size, with the classification stability increasing with the

window size as the customers buy more.

Thus, viewing this perspective in tandem with the classification performance in Ta-

ble 6.2, it can be seen, that the reduction in performance due to the change in class of the

customer profiles as detected by the adaptive methods, in the longer time window sizes,

may not necessarily be due to the deterioration in the performance of the learnt classifier

models (i.e. due to concept drift), but due to the change in the individual customer buying

behaviour over time. Relabeling such customer profiles might be the more appropriate

thing to do, rather than changing the classifier model and keeping the class unchanged.

6.5.3 Effects of Combiners on the Customer Profile Classifica-

tion Over Time

As was discussed in Chapter 5, combiners are often used to improve the flexibility of clas-

sifiers over time and to monitor customer buying behaviour across different time window

sizes. To gauge the effect of combiners on the customer profiles classification stability by

the 4 approaches over time, the majority, weighted majority, weighted average majority

and minority voting combiners were applied on the individual customer profile classifica-

tions. It can be seen from the results obtained in the Table 6.4 for the Linear Regression

Classifier and in Table 6.5, as well as the stability plots in Figures L.1, L.2, L.3,and

L.4 in Appendix L, that using the combiners with the adaptive and relabeling approaches

leads to more stable customer profile classifications over time with the best stability being

obtained from the weighted average majority combiner.

6.6 Conclusion

This Chapter has investigated and presented a comparative analysis of 4 approaches for

customer profile model management over time. A relabeling approach, which relabelled

“misclassified” customer profiles, was presented and analysed alongside a static and two

adaptive classification approaches. The results obtained on an individual and group cus-

tomer profile classification level showed that the relabeling approach led to more stable

and robust customer profiles over time.

The finding could be useful to businesses which need to identify their different customer

types and their buying behaviour, using transactional data within a short time frame.

In terms of future research work, a lot of work for developing adaptive techniques has

been directed at monitoring concept drift and improving classifier performance [Dries and
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(a) Adaptive Linear Regression Classifiers

(b) Static Linear Regression Classifiers With Misclassified Customer Profiles Relabelled (* Indicates
point of relabeling)

Table 6.4: Tables illustrating the comparative stability of an Electrician (E1) and a Plumb-
Heater(P1) customer profiles classifications by the Linear Regression Ensemble over time
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Table 6.5: Comparative Customer Profiles Classifications Stability for Four (4) Combiners

(a) Majority Voting

Champion/Challenger
Adaptation

Hoeffding Bound
Adaptation

No Adaptation Relabeling

C4.5 0.74 0.67 0.65 0.65
Naive Bayes 0.73 0.65 0.64 0.64

LDC 0.78 0.76 0.76 0.76
SVM 0.78 0.75 0.73 0.73

(b) Weighted Majority Voting

Champion/Challenger
Adaptation

Hoeffding Bound
Adaptation

No Adaptation Relabeling

C4.5 0.74 0.67 0.64 0.64
Naive Bayes 0.74 0.67 0.66 0.66

LDC 0.79 0.77 0.77 0.77
SVM 0.78 0.76 0.75 0.75

(c) Weighted Average Voting

Champion/Challenger
Adaptation

Hoeffding Bound
Adaptation

No Adaptation Relabeling

C4.5 0.84 0.86 0.86 0.86
Naive Bayes 0.74 0.70 0.72 0.72

LDC 0.80 0.77 0.78 0.78
SVM 0.79 0.78 0.75 0.75

(d) Minority Voting

Champion/Challenger
Adaptation

Hoeffding Bound
Adaptation

No Adaptation Relabeling

C4.5 0.59 0.38 0.40 0.48
Naive Bayes 0.47 0.48 0.48 0.51

LDC 0.36 0.60 0.61 0.51
SVM 0.39 0.61 0.58 0.53
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Rückert, 2009, Kelly et al., 1999, Minku et al., 2010, Žliobaitė, 2009]. However, the work

in this chapter has shown that the change in the target variable the classifier model is

attempting to infer, might not necessarily be due to concept drift, which will need the

model being adapted or changed, but might be due to a temporal change, independent of

the distribution of the target variable.

Thus, in the context of customer profile classification using transactional data, deciding

whether to adapt (or change) the model or to relabel the customer profiles is a non-trivial

and significant decision which requires further research.

For instance, the work in this chapter used a simple relabeling scheme based on the

assumption that static classifier models initially built, (i.e. in the first time window), ad-

equately represent the solution space of the target variables (i.e. Electricians and Plumb-

Heaters). Future work needs to be directed at developing relabeling schemes, where the

assumption that observed change might not necessarily be due to change in the distribu-

tion target variable, does not hold true, i.e., techniques for relabeling under concept drift.

One approach, currently being investigated, involves attaching a decay constant, which

is a function of the number of individual target variables in the training set, to each the

customer profiles. That is a customer profile is only relabelled if its rate of change is lower

than the decay rate of its last held target value.

Furthermore, the work here involved monitoring and identifying dynamic customer

profile classification for a two-class decision parameter. Future work will be directed at

developing relabeling schemes for multi-class settings.
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Chapter 7

Thesis Summary, Conclusion and

Proposed Direction for Future Work.

7.1 Summary and Conclusion

This thesis investigated the problem of mining real-world transactional data. In particular,

the work undertaken was centred around the performance of data mining algorithms for

the exploration/description and inference of retail transactional data.

Data mining algorithms and techniques were investigated with the main aim of ad-

dressing the research challenges of:

1. handling uncertainty arising from mislabelled profiles based on transactional data,

2. handling scalability and efficiently processing large transactional data in order to

improve the inference process, and

3. adapting to the dynamic nature of transactional data representing continuously

changing environment.

The inherent skewness and sparseness of transactional data, which make exploratory

and predictive data mining challenging, were highlighted in Chapter 2, together with the

research challenges of scalability, uncertainty and adaptation.

The challenge of transactional data exploration and modelling were further explored

in Chapter 3, where techniques for describing and pre-processing transactional data were

highlighted, together with their appropriateness for mining transactional data. In partic-

ular,the need for the use of third-party varied labels, as a way of handling the discrepancy

due to non-disclosure and mislabelling, was highlighted in Section 3.1; while the effect of

conventional sampling on the performance of classifiers on inherently sparse transactional

data was empirically shown in Section 3.3.

Chapter 4 presented investigations on the minimum number of items required to ac-

curately classify a customer profile. It commenced with a description of customer profiles
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and methods for their construction in Section 4.1. An approach for handling the problem

of customer profile classification scalability, accuracy and uncertainty using transactional

data was then presented. The proposed approach combines binning and 10-fold classifica-

tion to discover ’critical point’ at which classifiers can more accurately classify a customer

profile based on transactional data. In particular, the proposed approach involved devel-

oping a classifier for accurately classifying customer profiles based on transactional data

using the following four stage approach:

1. Binning the transactional dataset based on the number of items bought,

2. Bin decomposition and prototype selection using K-means algorithm,

3. Generating classifier models for each bin, and

4. Using the generated classifier models to classify future input data.

The key advantage of this heuristic is that it enables the aggregation and grouping of

like for like customer profiles based on the number of items bought and so enables the

building of classifier models that would more accurately predict future instances on the

basis of their transactions. Experiments, using Screwfix’s transactional data, showed the

existence of a critical point, based on the number of items bought, for which the ROC

performance of classifiers improved on a two-class customer profile classification problem

as discussed in Section 4.5. An approach for solving the multi-class classification version of

the problem, in the context of transactional data, was also presented. Using the real-world

multi-class transactional data provided by SLIGRO, an approach which involves binning,

prototype selection and 10-fold multi-class classification, was investigated in Section 4.6.

Experiments showed that the proposed approach can be used to effectively assign customer

profiles, based on the number of items bought to categories.

Chapter 5 presented the work undertaken to design a novel change mining mechanism

that detects and visualizes the change in the classification of customer profiles based on

transactional data over time. An approach, which uses the concept of change mining to

monitor, detect and visualize the changing classification of customer profiles, as returned

by a classifier model over time, was proposed. The proposed algorithm encompasses the

following steps:

1. Binning of data for training purposes

2. Training individual classifiers on respective bins

3. Representing the transactional data for the customers in different sizes of moving

time windows

4. Directing the aggregated transaction data in each of the different time windows to

appropriate classifiers.
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5. Combining the outputs from the different time windows.

Experiments were then undertaken, in which the classification performance of a two-class

decision tree ensembles, built using the data binning process based on the number of

items purchased, was monitored over a varying 3,6,9 and 12 months time windows. The

changing class values of the customer profiles were analysed and described. The proposed

approach to change mining provides decision support, by helping to identify, for example,

customers who changed their behaviour, who may have been assigned a wrong label in

the verification process or who only temporarily changed their behaviour.

Chapter 6 then presented the results obtained from investigating methods for tracking

customer buying behaviour and more confidently classifying customer profiles over time,

with the goal of quickly identifying when customers change their buying behaviour and

move from one profile class to another. Much of the work in the literature has focused

on improving the classification performance of evolving data by building adaptive mech-

anisms for detecting concept drift. However, the deterioration in performance may not

be due to concept drift but due to mislabelling or a temporal change in an individual

customer’s buying behaviour. This chapter highlights and introduces the directions for

future work in addressing this important research problem by presenting a comparative

analysis on deciding whether to adapt (or change) the classifier model or incorporate a

new labelling scheme. Two adaptation methods were comparatively investigated, along-

side a proposed relabeling approach, within the context of classifying customer profiles

based on transactional data over time. The experimental results obtained from 4 clas-

sifiers, as analysed and discussed in Section 6.5, showed that the proposed approach for

relabeling misclassified customer profiles between time windows, leads to more accurate

and stable classification of customer profiles in the longer time window sizes; while the

adaptive approaches are better suited for the shorter time window sizes.

The remaining part of this chapter now presents directions for the use of relational

data mining algorithms as an alternative approach to the work undertaken in this thesis.

7.2 Suggestions for Future Research

7.2.1 Relational Data Mining as an alternative to Attribute-

Value Data Mining Techniques

Relational Data Mining (RDM) is the multi-disciplinary field, dealing with knowledge dis-

covery from relational databases consisting of multiple tables. To emphasize the contrast

to typical data mining approaches that look for patterns in a single relation of a database,

the name Multi-Relational Data Mining (MRDM) is often used as well [Dzeroski and

Lavrac, 2001]. Mining data which consists of complex/structured objects also falls within
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the scope of this field. The field aims at integrating results from existing fields such as in-

ductive logic programming, KDD, data mining, machine learning and relational databases;

producing new techniques for mining multi-relational data; and practical applications of

such techniques.

The fundamental difference between the attribute-value based data mining approach

used in this thesis and relational data mining techniques lies in the way they represent

knowledge1.

Many attribute-value based data mining algorithms, employ attribute-value repre-

sentations, (which are essentially propositional logic), to identify subgroups [Han and

Kamber, 2006].

In this representation, the central database of examples is given as a single relation

table/flat-file with rows (or records) corresponding to data instances, and columns corre-

sponding to attributes with no relationships between individual instances. One attribute

is designated as the class attribute, and the learning task is to construct a learner that

can predict the value of the class attribute from the values of the other attributes.

Formally, in the attribute-value representation, an attribute-value signature or AV-

signature is a finite set of attributes {A1, . . . , An}. An attribute-value literal or AV-literal

is an expression of the form Ai = aij, where Ai is an attribute and aij is an associated

value. An attribute-value conjunction AV-conjunction is a conjunction of AV-literals, such

that each attribute occurs at most once; the AV-conjunction is complete if each attribute

occurs exactly once.

The attribute-value based data mining algorithms, which use attribute-value repre-

sentation, extensively search for interesting subgroups within the central database of ex-

amples, using a pattern language of choice, that defines a search space of patterns as the

starting point for the search process.

In order to traverse this space in a sensible, guided and efficient manner, the attribute-

value based data mining algorithms require a means of judging the interestingness of a

given pattern (and corresponding subgroup). In general terms, such a means of searching

the space of patterns is referred to as a score function. Typically, a score function considers

the database and acquires statistics about the pattern at hand, which in turn produces a

score. This score helps the algorithm to make informed decisions about the progress and

direction of the search [Flach, 1999].

Most of the attribute-value based data algorithms use a priori information about the

kind of data instances that are known to exist in the database, as well as statistical

1The goal of Knowledge Representation is to represent knowledge in a manner that facilitates inferenc-
ing (i.e. drawing conclusions) from knowledge. It involves analysing how to formally represent patterns
- i.e. how to use a symbol system to represent a domain of discourse, along with functions that allow
inference (formalized reasoning) about the objects [Brachman and Levesque, 2004]. Thus, the represen-
tation of the domain of discourse determines the inference method employed for a knowledge discovery
problem and an understanding of the output from the inference method is fundamental to understanding
the inference method.
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information from the database, to guide the search.

The simple tabular structure, that forms the basis of the attribute-value based data

mining approach, has been a key reason for its popularity, but at the same time its weak-

ness in terms of expressiveness and dealing with commercial/industrial problems beyond

the scope of attribute-value learning [Maimon and Rokach, 2005]. In many large com-

mercial databases, data elements exist as structured data instances, that consist of parts

that may be connected in a variety of ways, rather than as vectors of attribute-value data.

This makes such commercial databases too complex to analyze with an attribute-value

based data mining algorithm without losing important information, adversely impacting

on scalability and resulting in the quality of results from the data mining process.

Relational data mining algorithms overcome the limitations of propositional data min-

ing, by using a first-order logic representation [Knobbe, 2005, Wrobel, 2000].

The nature of the first order representation used by relational data mining algorithms

tend to differ, depending on whether the relational data mining algorithm is a new re-

lational learning algorithm, systematically developed by creating a single table from a

multi-relational database [Kramer et al., 2000, Krogel et al., 2003] or a first-order up-

grade of propositional learning algorithms [Laer and Raedt, 2000, Raedt, 1997].

As an alternative to the work undertaken in this thesis, future research will involve

investigating the first of the two aforementioned approaches to relational data mining;

with the aim of providing scenarios where they can be used as an alternative to -or in

combination with- data mining techniques, to address the research problems of adaptation,

scalability and uncertainty when mining transactional databases.

In particular, future research work should cover:

1. The application of the relational data mining approach to clustering transactional

data;

2. Sampling and search strategies for handling scalability and reducing uncertainty;

3. Adaptive mechanism(s) for relational data mining;

4. The application and down-streaming of robust market segmentation and basket

analysis models to non-experts.

The following Sections further outlines the proposed future research work.

7.2.2 Proposed Application of Relational Data Mining Approach

to Clustering Transactional Data

In Chapter 3, this thesis highlighted the uncertainty that comes from clustering for ex-

plorative purposes using attribute-value based data mining techniques.
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The expressiveness of relational data mining techniques have been exploited success-

fully, in addressing the incomprehensibility of non-predictive or descriptive data mining

tasks in the areas of molecular biology (including drug design, protein structure pre-

diction, and functional genomics), environmental sciences, traffic control, and natural

language processing. An overview of the aforementioned applications have been pro-

vided by Dz̆roski [2000]. However, very little work has been done to use the background

knowledge provided by relational data mining techniques, to more adequately explore and

describe transactional data.

As part of future research work, we propose an investigation of the application of

relational data mining to cluster transactional data. In particular, we suggest the ap-

plication of relational data mining to cluster and explore the features that best describe

transactional data, in terms of identifying typical customer profiles transactions and their

product buying behaviour.

Findings from this work could then be analytically compared with the knowledge

gleaned from Chapter 3, to assess and present the benefit(s) and drawback(s) in terms

of the effect(s) of uncertainty, when clustering transactional data for similar customer

profiles transactions and their product buying behaviour.

7.2.3 Proposed Future Research on Sampling and Search Strate-

gies for Handling Scalability and Reducing Uncertainty

This proposed future research work involves investigating feature construction and ag-

gregation processes, with the aim of showing how they impact on the performance of

both attribute-value based and relational data mining techniques in terms of handling

scalability and reducing uncertainty of mined models.

In Chapter 2, it was discussed that, in order to meet the requirement of attribute-

value based data mining algorithms for flat data, time-consuming processes (such as:

data manipulation and integration techniques, such as data cleansing, exact matching of

identical records, etc.) are often performed, which results in datasets that are too large

for many attribute-value based data mining algorithms. Sampling techniques, such as

those described by Guha et al. [2000], are often used to reduce the size of the dataset.

However, as shown by the performance of the baseline classifiers in Chapters 4 and 5,

the models built, using sampled data, tend to perform poorly on transactional data, due

to their sparse nature and the inadequate/indirect attribute-value representation of the

relationships between the data instances in the underlying relational data from which the

datasets were sampled.

Several relational data mining systems have been developed which employ various

search strategies and hypothesis evaluation criteria, in order to cope with intractably

large search spaces and to be able to generate high-quality patterns [Knobbe, 2005].
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Formally, the relational search process can be stated as:

Given:

• Background knowledge B

• Theory Description Language T

• Positive examples P (class +)

• Negative examples N (class -)

• A covering relation covers(B,T,e)⇔ B ∪ T |−e

Find: a theory (i.e. a set of rules) that covers

• all positive examples (completeness)

• no negative examples (consistency)

Some of the more efficient of these search strategies for relational data mining in-

clude [Blockeel et al., 2003]:

1. Depth-first exploration which has been implemented in Java Expert System Shell

(JESS) [Friedman-Hill, 1997] and Foil [Quinlan, 1993] and Tilde [Blockeel and

De Raedt, 1998], retains and refines only the current best hypothesis.

2. Beam Search, implemented in Aleph [Srinivasan, 2000] and ML-SMART [Bergadano

et al., 1989] avoids the limitations of greedy myopic optimization, that can arise in

depth-first search [Russell and Norvig, 2003] by retaining and refining a limited

number of the best current hypotheses [Bergadano et al., 1988].

3. Stochastic, population-based exploration of the hypothesis space using evolutionary

computation and genetic algorithms (GAs) [Bäck, 1996, Goldberg, 1989]

There is a need to investigate the aforementioned search strategies in a retail data

context and compare their performance in terms of the quality of knowledge discovery

with those of attribute-value based data mining algorithm on sampled transactional data.

For attribute-value based transactional data mining investigations, the non-conventional

sampling techniques proposed in [Church et al., 2006] and [Budka and Gabrys, 2010] can

be used; whilst the depth-first and beam search strategies implemented in Aleph and

JESS can be investigated for performing the search.
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7.2.4 Proposed Research of Adaptive Mechanism(s) for Trans-

actional Data

Chapter 6 of this thesis showed the change in the classification of customer profiles based

on their buying patterns over time and highlighted the need for the incorporation of

adaptive mechanism(s) to predictive models, so as to enable them to be robust to the

change of different data characteristics (e.g., underlying distribution, skewness, mean,

etc.).

Often the cause of change is hidden, not known a priori, or may be due to the patterns

of customers’ buying preferences, that may change with time, depending on the current

season, availability of alternatives, inflation rate, etc. Either way, these changes make the

data mining task more complicated, as they can induce more or less radical changes in the

target concept - a phenomenon known as concept drift [Widmer and Kubat, 1996]. An

effective data mining algorithm should be able to track such changes and quickly adapt

to them.

More research work will be required to investigate measures for detecting and handling

concept drift in transactional data.

In essence, the research should be aimed at identifying the adaptive mechanism (e.g.

incremental learning, monitor/input of appropriate background knowledge, etc.) that

best suits transactional data.

7.2.5 Design and implement user-friendly interfaces of advanced

modelling software for non-expert users

Businesses, whilst performing their fundamental daily activities, such as managing slim

margins and tenuous customer loyalty, as well as deciding where to locate stores, what

products to stock, which customers to retain, how to effectively communicate with them

and meet their diverse and changing needs; tend to accumulate an incredible amount of

data on demographics, product sales based on seasons, transactions, etc.

Business organizations are increasingly using sophisticated modelling and optimization

tools that utilize this data, to provide analytical support, which helps to address the

business issues and painful points faced by retailers, whilst performing essential retail

industry business functions.

These processes tend to be time consuming with models becoming out-of-date with

the business by the time they are successfully built.

Future research work can use the knowledge gained from the work in this thesis, to

design and build robust adaptive data mining systems, which address key business man-

agement problems of market segmentation (usually addressed using clustering or associa-

tion mining techniques [Berry and Linoff, 2000, 2004]), accurate trade-type identification
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(usually addressed with an appropriate classifier [Berry and Linoff, 2000, 2004]) and prod-

uct bought together (-usually addressed using basket analysis via association mining or

clustering [Agrawal and Imielinski, 1993]) without the need to export the data into a

flat-file.
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Appendix A

Figures showing the discrepancies between the trade-type

information provided and the verified trade-type.

120



Figure A.1: Pie of Pie Chart showing the discrepancies in the number of Customers who
were categorized as “Electrician” and were verified to be “Electrician” (63%); and those
made by Customers who were categorized as belonging to one of the other 11 trade-types
and were verified to be “Electrician” (34%).

Figure A.2: Pie of Pie Chart showing the discrepancies in the number of Customers
who were categorized as PlumbHeat and were verified to be under PlumbHeat (64.3%);
those made by Customers who were categorized as belonging to one of the other 11 trade-
types and were verified to be PlumbHeat (35.7%)
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Figure A.3: Pie of Pie Chart showing the discrepancies in the Orders made by the
Customers who were categorized as “Electrician” and were verified to be “Electrician”
(61.5%); and those made by Customers who were categorized as belonging to one of the
other 11 trade-types and were verified to be “Electrician” (38.5%).

Figure A.4: Plot showing the discrepancies between Customers who were categorized
as Electrician and were verified to be Electrician; and those who were categorized
as belonging to one of the other 11 trade-types and were verified to be Electrician;
segmented in terms of the number of items they bought.
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Figure A.5: Plot showing the discrepancies between Customers who were categorized un-
der PlumbHeat and were verified to be under PlumbHeat; and those who were catego-
rized as belonging to one of the other 11 trade-types and were varified to be PlumbHeat;
segmented in terms of the number of items they bought.

Figure A.6: Pie of Pie Chart showing the discrepancies in the Orders made by the Cus-
tomers who were categorized as PlumbHeat and were verified to be under PlumbHeat
(71.4%); those made by Customers who were categorized as belonging to one of the other
11 trade-types and were verified to be PlumbHeat (28.6%)
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Appendix B

Figures showing the proportion of items transacted by the

verified trade-type.

Figure B.1: Plots showing the proportions of topics transacted by the verified Plumb-
Heat trade-types
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Figure B.2: Plots showing the proportions of topics transacted by the verified Electrician
trade-types

125



Appendix C

Tables detailing the numerical composition of the discrepancies

between categorized and verified Electrician and PlumbHeat

Trade-types

Table C.1: Table showing the segmented numerical discrepancies between the categorized
and verified Electrician trade-type

Topics No. Items
Transacted

(1-10) (11-20) (21-30) (31-40) (41-60) (61-90) Total Per
Trade-
Types

Bathroom 0 0 0 0 0 0 0
Decorator 232 14 0 0 0 0 246
Electrician 18669 894 116 24 5 3 19711
Joiner 73 1 0 0 0 0 74
Kitchen 0 0 0 0 0 0 0
Landscaper 0 0 0 0 0 0 0
MTD 2405 64 9 4 3 0 2485
Maintenance 1250 38 11 1 0 0 1300
NTS 1430 43 8 3 2 0 1486
Other Trade 5461 243 31 17 2 0 5754
Plasterer 0 0 0 0 0 0 0
PlumbHeat 970 30 7 0 0 0 1007
Total Per Segment 30490 1327 182 49 12 3 32063
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Table C.2: Table showing the segmented numerical discrepancies between the categorized
and verified PlumbHeat trade-type

Topics No. Items
Transacted

(1-10) (11-20) (21-30) (31-40) (41-50) (51-60) (61-90) (91-200) Total
Per
Trade-
Types

Bathroom 42 4 2 0 0 0 0 0 48
Decorator 266 15 0 0 0 0 0 0 281
Electrician 657 25 2 0 0 0 0 0 684
Joiner 592 22 1 0 0 0 0 0 615
Kitchen 95 14 1 0 0 0 0 0 110
Landscaper 14 0 0 0 0 0 0 0 14
MTD 3857 158 22 8 3 1 0 0 4049
Maintenance 1966 72 7 3 0 0 0 0 2048
NTS 9343 140 13 1 0 0 0 0 9497
Other Trade 2215 69 9 1 0 0 0 0 2294
Plasterer 0 0 0 0 0 0 0 0 0
PlumbHeat 46641 2039 302 66 18 3 5 1 49075
Total Per Segment 65688 2558 359 79 21 4 5 1 68715
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Table C.3: Number of Items by Topics Transacted Per Trade-Type
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Abrasives 142 2221 3477 6031 262 857 18032 8839 65196 20534 125 2528
Access
Equipment &
Storage

73 500 1878 1113 60 275 4775 3325 13245 7337 66 1811

Automotive 251 1324 6528 4774 201 1265 18000 10519 71796 27859 178 5463
Bathrooms 833 1490 5652 4239 302 652 22180 15026 91935 20693 139 19133
Blades 771 3325 8447 17042 1155 1721 41917 15537 100515 31782 292 8539
Bolts 174 1392 7817 6251 159 2013 22811 12502 79593 43356 103 4443
Building 141 1243 3545 4644 123 1509 25662 7772 63089 14628 266 2449
Christmas 0 0 0 0 0 0 0 0 0 0 0 0
Cleaning 287 1560 3733 3224 239 796 15677 10130 42672 19413 150 4134
Conservatories 0 0 0 0 0 0 0 0 0 0 0 0
Decorating
Sundries

659 5768 6993 7579 288 1257 31467 18052 99457 28976 566 6655

Doors & Win-
dows

10 76 159 293 4 25 1081 462 3691 854 5 152

Drill Bits 1475 5279 36753 24697 1203 3371 76197 32559 229872 72051 640 28756
Electrical 3040 14407 243960 48118 3895 8912 243713 108173 952974 243927 1436 51164
Fixings 632 2969 12562 11039 804 2102 39430 19855 108986 42225 279 12450
Flooring 177 394 1177 1591 52 241 5733 2565 24819 5318 58 1064
Hand Tools 2880 11461 53938 48664 1884 7969 150129 70084 495530 141525 2379 56396
Heating &
Ventilation

626 2191 16550 6809 1166 854 35910 13918 106104 25257 179 7948

Ironmongery 680 7246 15368 34039 1452 3729 88607 49158 298416 83346 478 10996
Kitchens 212 987 2822 4144 550 347 12240 7144 52017 10590 69 6405
Landscape
Power

35 224 779 686 16 656 3484 2131 13222 3863 25 576

Lighting 937 4257 45943 11636 726 2663 63822 33082 230194 66263 565 12186
Nails 145 1305 3415 8231 187 1297 21534 7356 53371 15683 193 2104
New 1 3 11 10 2 3 27 16 94 28 0 23
Other 3 35 149 101 6 27 290 219 1383 625 8 106
Outdoor
Buildings

8 30 117 108 2 30 329 266 2107 597 4 109

Paint 72 1279 2194 2914 109 667 10324 6949 36816 13245 58 1532
Plumbing 10515 17206 62416 57722 7472 7336 282610 127019 876232 200827 1731 276797
Power Tools 948 5454 16836 19780 724 3028 64599 23739 175388 53791 751 14284
Screwdriver
Bits

279 1757 6941 9035 355 1037 22369 8787 60796 18174 263 4759

Screws 1471 6484 20498 28818 2120 4507 79940 35517 197709 72141 778 18058
Sealants &
Glues

2581 9347 28344 31882 2335 3326 107496 54268 358906 96848 1124 30395

Security 162 1738 6918 6965 226 1107 24660 16656 75137 28238 122 3360
Vouchers 0 0 0 0 0 0 0 0 0 0 0 0
Workplace
Safety

98 851 2092 1344 56 480 10220 6896 12963 14607 53 1172

Workwear 1083 4802 19689 16367 539 4147 61516 25939 165393 54437 806 16117
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Table C.4: Average ’Items by Topics’ Transacted Per Trade-Type
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Abrasives 0.20 0.51 0.21 0.43 0.52 0.31 0.45 0.40 0.22 0.33 0.19 0.22
Access
Equipment &
Storage

0.11 0.12 0.12 0.08 0.12 0.10 0.12 0.15 0.05 0.12 0.10 0.15

Automotive 0.36 0.31 0.40 0.34 0.40 0.46 0.45 0.47 0.24 0.44 0.27 0.47
Bathrooms 1.20 0.34 0.35 0.30 0.60 0.24 0.55 0.68 0.31 0.33 0.21 1.63
Blades 1.11 0.77 0.52 1.21 2.28 0.62 1.04 0.70 0.34 0.50 0.44 0.73
Bolts 0.25 0.32 0.48 0.44 0.31 0.73 0.57 0.56 0.27 0.69 0.16 0.38
Building 0.20 0.29 0.22 0.33 0.24 0.54 0.64 0.35 0.21 0.23 0.40 0.21
Christmas 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
Cleaning 0.41 0.36 0.23 0.23 0.47 0.29 0.39 0.46 0.15 0.31 0.23 0.35
Conservatories 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
Decorating
Sundries

0.95 1.33 0.43 0.54 0.57 0.45 0.78 0.81 0.34 0.46 0.86 0.57

Doors & Win-
dows

0.01 0.02 0.01 0.02 0.01 0.01 0.03 0.02 0.01 0.01 0.01 0.01

Drill Bits 2.13 1.22 2.26 1.75 2.37 1.22 1.89 1.47 0.78 1.14 0.97 2.46
Electrical 4.39 3.33 15.03 3.41 7.68 3.22 6.06 4.88 3.25 3.87 2.18 4.37
Fixings 0.91 0.69 0.77 0.78 1.59 0.76 0.98 0.90 0.37 0.67 0.42 1.06
Flooring 0.26 0.09 0.07 0.11 0.10 0.09 0.14 0.12 0.08 0.08 0.09 0.09
Hand Tools 4.16 2.65 3.32 3.45 3.72 2.87 3.73 3.16 1.69 2.25 3.60 4.82
Heating &
Ventilation

0.90 0.51 1.02 0.48 2.30 0.31 0.89 0.63 0.36 0.40 0.27 0.68

Ironmongery 0.98 1.67 0.95 2.41 2.86 1.35 2.20 2.22 1.02 1.32 0.72 0.94
Kitchens 0.31 0.23 0.17 0.29 1.08 0.13 0.30 0.32 0.18 0.17 0.10 0.55
Landscape
Power

0.05 0.05 0.05 0.05 0.03 0.24 0.09 0.10 0.05 0.06 0.04 0.05

Lighting 1.35 0.98 2.83 0.83 1.43 0.96 1.59 1.49 0.78 1.05 0.86 1.04
Nails 0.21 0.30 0.21 0.58 0.37 0.47 0.54 0.33 0.18 0.25 0.29 0.18
New 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
Other 0.00 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.00 0.01 0.01 0.01
Outdoor
Buildings

0.01 0.01 0.01 0.01 0.00 0.01 0.01 0.01 0.01 0.01 0.01 0.01

Paint 0.10 0.30 0.14 0.21 0.21 0.24 0.26 0.31 0.13 0.21 0.09 0.13
Plumbing 15.17 3.98 3.84 4.09 14.74 2.65 7.03 5.73 2.98 3.19 2.62 23.64
Power Tools 1.37 1.26 1.04 1.40 1.43 1.09 1.61 1.07 0.60 0.85 1.14 1.22
Screwdriver
Bits

0.40 0.41 0.43 0.64 0.70 0.37 0.56 0.40 0.21 0.29 0.40 0.41

Screws 2.12 1.50 1.26 2.04 4.18 1.63 1.99 1.60 0.67 1.15 1.18 1.54
Sealants &
Glues

3.72 2.16 1.75 2.26 4.61 1.20 2.67 2.45 1.22 1.54 1.70 2.60

Security 0.23 0.40 0.43 0.49 0.45 0.40 0.61 0.75 0.26 0.45 0.18 0.29
Vouchers 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
Workplace
Safety

0.14 0.20 0.13 0.10 0.11 0.17 0.25 0.31 0.04 0.23 0.08 0.10

Workwear 1.56 1.11 1.21 1.16 1.06 1.50 1.53 1.17 0.56 0.86 1.22 1.38
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Table C.5: Table showing the segmented numerical proportions of the Items by Topics
transacted by the verified Electrician trade-type

Topics No. Items
Transacted

(1-10) (11-20) (21-30) (31-40) (41-60) (61-90) Total Per
Trade-Type

Abrasives 347 60 17 1 1 0 426
Access
Equipment &
Storage

545 30 18 8 0 0 601

Automotive 1019 188 51 33 10 0 1301
Bathrooms 1125 68 6 8 0 0 1207
Blades 1384 221 56 20 12 6 1699
Bolts 1219 253 50 35 45 0 1602
Building 451 49 8 0 0 0 508
Christmas 0 0 0 0 0 0 0
Cleaning 884 99 42 10 3 0 1038
Conservatories 0 0 0 0 0 0 0
Decorating
Sundries

1106 223 32 11 7 0 1379

Doors & Win-
dows

33 0 0 0 0 0 33

Drill Bits 5853 1027 206 65 42 28 7221
Electrical 26679 7824 1934 639 222 128 37426
Fixings 2399 428 93 49 13 11 2993
Flooring 165 8 1 0 0 0 174
Hand Tools 6008 1472 381 344 79 12 8296
Heating &
Ventilation

2776 505 67 18 4 0 3370

Ironmongery 3073 297 56 20 4 0 3450
Kitchens 363 56 4 0 0 0 423
Landscape
Power

100 4 1 0 0 0 105

Lighting 6523 872 147 50 13 12 7617
Nails 514 47 21 7 1 0 590
New 2 0 0 0 0 0 2
Other 22 2 0 0 0 0 24
Outdoor
Buildings

24 0 0 0 0 0 24

Paint 462 54 6 0 0 0 522
Plumbing 6979 1842 515 138 14 0 9488
Power Tools 2655 156 47 20 8 1 2887
Screwdriver
Bits

878 161 28 15 6 0 1088

Screws 3549 907 222 72 30 26 4806
Sealants &
Glues

4319 755 196 78 31 7 5386

Security 1632 141 40 13 5 0 1831
Vouchers 0 0 0 0 0 0 0
Workplace
Safety

895 54 27 10 0 0 986

Workwear 2754 347 83 30 9 4 3227
Total Topic
Per Segment

86737 18150 4355 1694 559 235 111730
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Table C.6: Table showing the segmented proportions (averaged by number of orders) of
the Items by Topics transacted by the verified Electrician trade-type

Topics Average
No. Items
Transacted

(1-10) (11-20) (21-30) (31-40) (41-60) (61-90)
Abrasives 0.011381 0.045215 0.093407 0.020408 0.083333 0
Access
Equipment
and Storage

0.017875 0.022607 0.098901 0.163265 0 0

Automotive 0.033421 0.141673 0.28022 0.673469 0.833333 0
Bathrooms 0.036897 0.051243 0.032967 0.163265 0 0
Blades 0.045392 0.166541 0.307692 0.408163 1 2
Bolts 0.03998 0.190656 0.274725 0.714286 3.75 0
Building 0.014792 0.036925 0.043956 0 0 0
Christmas 0 0 0 0 0 0
Cleaning 0.028993 0.074604 0.230769 0.204082 0.25 0
Conservatories 0 0 0 0 0 0
Decorating
Sundries

0.036274 0.168048 0.175824 0.22449 0.583333 0

Doors & Win-
dows

0.001082 0 0 0 0 0

Drill Bits 0.191965 0.773926 1.131868 1.326531 3.5 9.333333
Electrical 0.875008 5.896006 10.62637 13.04082 18.5 42.66667
Fixings 0.078682 0.322532 0.510989 1 1.083333 3.666667
Flooring 0.005412 0.006029 0.005495 0 0 0
Hand Tools 0.197048 1.109269 2.093407 7.020408 6.583333 4
Heating and
Ventilation

0.091046 0.380558 0.368132 0.367347 0.333333 0

Ironmongery 0.100787 0.223813 0.307692 0.408163 0.333333 0
Kitchens 0.011906 0.0422 0.021978 0 0 0
Landscape
Power

0.00328 0.003014 0.005495 0 0 0

Lighting 0.213939 0.657121 0.807692 1.020408 1.083333 4
Nails 0.016858 0.035418 0.115385 0.142857 0.083333 0
New 6.56E-05 0 0 0 0 0
Other 0.000722 0.001507 0 0 0 0
Outdoor
Buildings

0.000787 0 0 0 0 0

Paint 0.015153 0.040693 0.032967 0 0 0
Plumbing 0.228895 1.388093 2.82967 2.816327 1.166667 0
Power Tools 0.087078 0.117558 0.258242 0.408163 0.666667 0.333333
Screwdriver
Bits

0.028796 0.121326 0.153846 0.306122 0.5 0

Screws 0.116399 0.683497 1.21978 1.469388 2.5 8.666667
Sealants &
Glues

0.141653 0.568953 1.076923 1.591837 2.583333 2.333333

Security 0.053526 0.106255 0.21978 0.265306 0.416667 0
Vouchers 0 0 0 0 0 0
Workplace
Safety

0.029354 0.040693 0.148352 0.204082 0 0

Workwear 0.090325 0.261492 0.456044 0.612245 0.75 1.333333
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Table C.7: Table showing the segmented proportions of the Items by Topics transacted
by the verified PlumbHeat trade-type

Topics No. Items
Transacted

(1-10) (11-20) (21-30) (31-40) (41-50) (51-60) (61-90) (91-200) Total Per
Topic

Abrasives 695 75 19 5 2 0 0 0 796
Access
Equipment &
Storage

793 38 18 1 4 0 0 0 854

Automotive 1687 172 43 6 7 0 4 0 1919
Bathrooms 6176 381 77 24 4 0 0 0 6662
Blades 3097 398 102 15 9 8 3 0 3632
Bolts 1565 249 72 10 5 0 1 0 1902
Building 800 61 9 0 1 0 0 0 871
Christmas 0 0 0 0 0 0 0 0 0
Cleaning 1387 213 39 13 6 1 0 0 1659
Conservatories 0 0 0 0 0 0 0 0 0
Decorating
Sundries

1797 306 35 15 7 1 2 0 2163

Doors & Win-
dows

43 2 0 0 0 0 0 0 45

Drill Bits 10762 1263 329 46 38 15 4 0 12457
Electrical 16947 3373 815 181 132 48 18 0 21514
Fixings 4441 723 143 50 28 5 5 0 5395
Flooring 272 14 5 1 0 0 0 0 292
Hand Tools 13907 2190 501 136 90 11 16 0 16851
Heating &
Ventilation

2878 334 56 10 7 0 7 0 3292

Ironmongery 3805 415 63 8 8 3 1 0 4303
Kitchens 2004 182 24 5 0 0 0 0 2215
Landscape
Power

220 6 1 0 0 0 0 0 227

Lighting 4115 395 65 23 3 0 2 0 4603
Nails 598 103 14 4 1 1 0 0 721
New 14 0 0 0 0 0 0 0 14
Other 31 3 1 1 0 0 0 0 36
Outdoor
Buildings

33 1 0 0 0 0 0 0 34

Paint 388 39 8 4 1 0 0 0 440
Plumbing 75395 20536 5296 2011 481 97 272 180 104268
Power Tools 5383 201 58 7 9 2 0 2 5662
Screwdriver
Bits

1600 165 29 8 5 3 0 0 1810

Screws 6220 1435 438 61 37 12 1 0 8204
Sealants &
Glues

8493 1254 292 86 48 8 9 0 10190

Security 1139 57 24 3 3 0 3 0 1229
Vouchers 0 0 0 0 0 0 0 0 0
Workplace
Safety

422 62 14 3 3 0 0 0 504

Workwear 5101 530 102 22 21 1 1 0 5778
Total Items
Per Segment

182208 35176 8692 2759 960 216 349 182 230542
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Table C.8: Table showing the segmented proportions (averaged by number of orders) of
the Items by Topics transacted by the verified PlumbHeat trade-type

Topics No. Items
Transacted

(1-10) (11-20) (21-30) (31-40) (41-50) (51-60) (61-90) (91-200)
Abrasives 0.01058 0.02932 0.052925 0.063291 0.095238 0 0 0
Access
Equipment &
Storage

0.012072 0.014855 0.050139 0.012658 0.190476 0 0 0

Automotive 0.025682 0.06724 0.119777 0.075949 0.333333 0 0.8 0
Bathrooms 0.09402 0.148944 0.214485 0.303797 0.190476 0 0 0
Blades 0.047147 0.15559 0.284123 0.189873 0.428571 2 0.6 0
Bolts 0.023825 0.097342 0.200557 0.126582 0.238095 0 0.2 0
Building 0.012179 0.023847 0.02507 0 0.047619 0 0 0
Christmas 0 0 0 0 0 0 0 0
Cleaning 0.021115 0.083268 0.108635 0.164557 0.285714 0.25 0 0
Conser-
vatories

0 0 0 0 0 0 0 0

Decorating
Sundries

0.027357 0.119625 0.097493 0.189873 0.333333 0.25 0.4 0

Doors & Win-
dows

0.000655 0.000782 0 0 0 0 0 0

Drill Bits 0.163835 0.493745 0.916435 0.582278 1.809524 3.75 0.8 0
Electrical 0.257992 1.318608 2.270195 2.291139 6.285714 12 3.6 0
Fixings 0.067607 0.282643 0.398329 0.632911 1.333333 1.25 1 0
Flooring 0.004141 0.005473 0.013928 0.012658 0 0 0 0
Hand Tools 0.211713 0.856138 1.395543 1.721519 4.285714 2.75 3.2 0
Heating &
Ventilation

0.043813 0.130571 0.155989 0.126582 0.333333 0 1.4 0

Ironmongery 0.057925 0.162236 0.175487 0.101266 0.380952 0.75 0.2 0
Kitchens 0.030508 0.071149 0.066852 0.063291 0 0 0 0
Landscape
Power

0.003349 0.002346 0.002786 0 0 0 0 0

Lighting 0.062645 0.154418 0.181058 0.291139 0.142857 0 0.4 0
Nails 0.009104 0.040266 0.038997 0.050633 0.047619 0.25 0 0
New 0.000213 0 0 0 0 0 0 0
Other 0.000472 0.001173 0.002786 0.012658 0 0 0 0
Outdoor
Buildings

0.000502 0.000391 0 0 0 0 0 0

Paint 0.005907 0.015246 0.022284 0.050633 0.047619 0 0 0
Plumbing 1.147774 8.028147 14.75209 25.4557 22.90476 24.25 54.4 180
Power Tools 0.081948 0.078577 0.16156 0.088608 0.428571 0.5 0 2
Screwdriver
Bits

0.024358 0.064504 0.08078 0.101266 0.238095 0.75 0 0

Screws 0.09469 0.560985 1.220056 0.772152 1.761905 3 0.2 0
Sealants &
Glues

0.129293 0.490227 0.81337 1.088608 2.285714 2 1.8 0

Security 0.01734 0.022283 0.066852 0.037975 0.142857 0 0.6 0
Vouchers 0 0 0 0 0 0 0 0
Workplace
Safety

0.006424 0.024238 0.038997 0.037975 0.142857 0 0 0

Workwear 0.077655 0.207193 0.284123 0.278481 1 0.25 0.2 0
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Appendix D

Figures showing the distributions of classess uniformly sampled

from Screwfix’s 2007 and 2008 transactional data.
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Figure D.1: Distribution of Classes of the Sampled 10000 Screwfix’s Transactions for 2007

Figure D.2: Distribution of Classes of the Sampled 50000 Screwfix’s Transactions for 2007
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Figure D.3: Distribution of Classes of the Sampled 100000 Screwfix’s Transactions for
2007

Figure D.4: Distribution of Classes of the Sampled 10000 Screwfix’s Transactions for 2008
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Figure D.5: Distribution of Classes of the Sampled 50000 Screwfix’s Transactions for 2008

Figure D.6: Distribution of Classes of the Sampled 100000 Screwfix’s Transactions for
2008
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Appendix E

Tables of Screwfix’s Transactional Data Attributes

Table E.1: List of Trade-types Identified in Screwfix’s Transactional Database

SNo. Trade-Type
1 Agricultural
2 Builder
3 Carpenter
4 CarpetFloorFitter
5 CleaningServices
6 DeclinedToAnswer
7 DIYHobbies
8 Electrician
9 Engineer
10 HandyMan
11 HotelCatering
12 LandscapeGardenMaintenance
13 LeisureIndustry
14 MaintenanceCollegeUni
15 MaintenancePropertyFacilities
16 MaintenanceSchool
17 Manufacturing
18 None
19 Other
20 PainterDecorator
21 pickOne
22 PlumberHeatGasFitter
23 RetailerShopFitting
24 Roofer
25 SecurityServices
26 trade
27 TransportAutomotive
28 Unknown
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Table E.2: List of Screwfix’s Topics

S.No. Topics
1 Power Tools
2 Electrical
3 Building
4 Conservatories
5 Lighting
6 Bathrooms
7 Workplace Safety
8 Drill Bits
9 Doors & Windows
10 Abrasives
11 Hand Tools
12 Sealants & Glues
13 Fixings
14 Screwdriver Bits
15 Flooring
16 Landscape Power
17 Heating and Ventilation
18 Workwear
19 Decorating Sundries
20 Automotive
21 Other
22 Ironmongery
23 Kitchens
24 Cleaning
25 Security
26 Plumbing
27 Vouchers
28 Screws
29 Access Equipment and Storage
30 Paint
31 Outdoor Buildings
32 Nails
33 Bolts
34 Blades
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Table E.3: Number of Screwfix’s Topics Transacted in 2007

Topics Number Transacted
Conservatories 4
Vouchers 5132
Outdoor Buildings 19446
Doors & Windows 25927
Landscape Power 72423
Access Equipment and Storage 94094
Flooring 116640
Workplace Safety 128710
Paint 230030
Kitchens 259634
Nails 277099
Bolts 283722
Cleaning 300071
Building 322305
Screwdriver Bits 343101
Fixings 347998
Abrasives 383090
Automotive 391122
Security 447075
Decorating Sundries 485104
Bathrooms 520249
Heating and Ventilation 536738
Blades 616555
Screws 653490
Workwear 769564
Power Tools 1068607
Drill Bits 1256343
Lighting 1347770
Ironmongery 1480908
Sealants & Glues 1804734
Hand Tools 2631306
Other 3207206
Plumbing 4412804
Electrical 4417499
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Table E.4: List of Screwfix’s Topics Transacted in 2008

Topics Number Transacted
Vouchers 6617
Outdoor Buildings 12721
New 17300
Doors & Windows 24232
Landscape Power 113241
Flooring 118334
Access Equipment and Storage 132644
Workplace Safety 176976
Paint 246310
Kitchens 313625
Cleaning 379055
Nails 389439
Screwdriver Bits 425669
Abrasives 439529
Building 445770
Automotive 501030
Security 561060
Decorating Sundries 600562
Bathrooms 630736
Heating and Ventilation 681403
Blades 792016
Bolts 829047
Fixings 1015226
Workwear 1145322
Power Tools 1225188
Lighting 1540062
Drill Bits 1598675
Ironmongery 1974102
Screws 2151845
Other 2217159
Sealants & Glues 2242442
Hand Tools 3051240
Electrical 5637409
Plumbing 6146210
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Table E.5: Cross-section of Sampled Screwfix’s Transactional Data

OrderID OrderDate CustomerID Trade-typeID Abrasives Access
Equip-
ment and
Storage

Automotive ...

101137349 2052007 12515385 1 0 0 0 ...
102803511 30052007 9345961 2 0 0 0 ...
108159113 15082007 12805602 3 0 0 0 ...
108808439 24082007 10094253 4 0 0 0 ...
108777650 28082007 12814741 5 0 0 4 ...
104721907 2072007 12223592 6 0 0 0 ...
108213464 15082007 12814104 7 0 0 0 ...
106542573 18072007 12593122 8 0 0 5 ...
101787112 14052007 10943002 9 0 0 0 ...
109156113 31082007 5991140 10 0 0 0 ...
106937558 25072007 11158304 11 0 0 0 ...
102720574 29052007 8439862 12 0 0 5 ...
103203866 6062007 10535462 13 0 0 0 ...
102052918 25052007 12065063 14 0 0 0 ...
102178637 18052007 234430 15 0 0 0 ...
106475196 17072007 1153170 16 0 0 0 ...
112321650 18102007 235271 17 0 0 0 ...
116797440 20122007 12001877 18 0 0 0 ...
109755323 10092007 6458108 19 0 0 0 ...
111450014 5102007 7459110 20 0 0 1 ...
114984674 25112007 343463 21 0 0 0 ...
109963893 13092007 10276919 22 0 0 0 ...
109800902 10092007 10225504 23 0 0 0 ...
109690201 8092007 10019128 24 0 0 0 ...
115873124 6122007 12225400 25 0 0 0 ...
111705644 9102007 7237994 26 0 0 0 ...
112682790 23102007 11370869 27 0 0 0 ...
113705188 7112007 782192 28 0 0 0 ...

Table E.6: Cross-section of Computed Screwfix’s Electrician and PlumbHeat Profiles.

CustomerID Electrical ... HandTools Plumbing ... WorkplaceSafety Workwear ClassId ClassName
12515385 116 ... 2 0 ... 0 0 1 Electrician
11370869 8 ... 10 44 ... 1 6 2 PlumbHeat
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Appendix F

Classification of Sampled Screwfix’s Data Experiments Matlab

Code

F.1 Classification: Cross-Validation Experiment Code

f unc t i on [ WeightedAverageTestError , TestErrorsPerClass ,

AssignedNumericLabels ] = c l a s s i f i c a t i o n E x p ( ˜ )

%This experiment uses PRTools ’ implementation o f c ros s−
v a l i d a t i o n to compute the e r r o r e s t imate s o f

%ldc ( ) , qdc ( ) , knn ( k=3) , stumpc c l a s s i f i e r s on

%uni formly sampled 10 ,000 , 50 ,000 and 100 ,000 Screwf ix ’ s

t r a n s a c t i o n data f o r 2007 and 2008

%The f i l e s are each imported from a s p e c i f i e d CSV F i l e l o ca t i on ,

the cros s−v a l i d a t i o n computed

%and the est imated e r r o r s d i sp layed on Matlab ’ s command window .

sampled2007Orders = importdata ( ’CSV F i l e l o c a t i o n f o r Sampled

Sc r ew f i x s 2007 t r a n s a c t i o n Data ’ ) ;

sampled2008Orders = importdata ( ’CSV F i l e l o c a t i o n f o r Sampled

Sc r ew f i x s 2008 t r a n s a c t i o n Data ’ ) ;

A = sampled2007Orders ( : , 5 : 3 8 ) ;

B = sampled2008Orders ( : , 5 : 3 8 ) ;

Alabs = sampled2007Orders ( : , 4 ) ;

Blabs = sampled2008Orders ( : , 4 ) ;
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C07 = datase t (A, Alabs ) ;

D08 = datase t (B, Blabs ) ;

data = {C07 , D08} ;

c l a s s i f i e r s = { ldc , qdc , knnc ( [ ] , 3 ) , stumpc } ;

[ WeightedAverageTestError , TestErrorsPerClass ,

AssignedNumericLabels ]= c r o s s v a l ( data , c l a s s i f i e r s , 1 0 , 30 ) ;

end
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Appendix G

SLIGRO Categories Data Description Table

Table G.1: Number of Transactions and Number of Items Transacted by SLIGRO Cate-
gories in the 3 Years Period.

Category Category Code No. Transactions No. Items

Supermarkt/rijdende winkel 100 3163 45182082

Avondwinkel/toko 101 163 722835

Bakkerij/banketbakkerij 110 2467 899771

AGF/groentezaak/fruitspeczaak 120 1564 742059

Slagerij 130 1956 485898

Vishandel 140 1068 108297

Poelier/wild en gevogelte 150 291 30594

Spec.zaak voeding (toko/reform 160 611 147848

Slijterij / drankenhandel 170 1142 1571280

Zoetwaren/chocolade/tabakszaak 180 1473 230516

Kapsalon/drogisterij/apotheek 190 11381 277788

Dierenspeciaalzaak 200 672 18699

Tankstations 210 1552 1512982

Diverse detailhandel food 220 2807 712289

Diverse detailhandel non-food 230 24734 998751

Caf/zalencentrum/bar 300 8596 2053682

Cafetaria/shoarma/fastfood 310 7245 3831822

Brasserie/lunchroom/croiss. 320 2494 1733624

Restaurant Nederlands-Frans 331 6974 5236685

Restaurant Chin-Ind.-overig Az 332 2307 355479

Restaurant Italiaans 333 771 210404

Restaurant Grieks 334 368 143512

Restaurant Spaans 335 101 41688

Restaurant overig Europees 336 371 163331

Restaurant overig Zuid-Amerika 337 184 77211

Restaurant overig internationa 338 438 118360

Logiesverstrekkers (hotel/mote 350 2014 1714545

Recreatie (camping/app./bungal 360 3871 2268079

Party- of lokatiecatering 380 3639 1992469

Kantine sportver./sporthal 390 5456 3803329

Kantine vereniging 391 3454 428757

Kookclubs 500 1133 78399

Diverse Horeca 590 4401 1015822

Contractcatering (bedrijfsrest 600 1090 7026124

Kinderdagverblijf 611 1270 285554

Basisschool 612 2927 191446

Voortgezet onderwijs 613 2307 1423996

HBO / Universiteit 614 543 187208

Continued on next page
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Table G.1 – continued from previous page

Category Category Code No. Transactions No. Items

Schoolcatering 615 178 662068

Keuken instelling/tehuis/ziekh 620 4645 6632638

Defensie 630 244 40140

Crematorium 640 279 12229

Penitentiaire instellingen 650 184 376687

EXPORT 660 112 258888

Bedrijven < 50 werknemers 701 217796 10557705

Bedrijven 50-99 werknemers 702 4472 1342253

Bedrijven 100-499 werknemers 703 3140 2148643

Bedrijven >= 500 werknemers 704 1685 2494418

Vereniging / stichting 800 27076 1144063

Landbouw / tuinbouw / veeteelt 820 4192 112184

Fokkers / kennels / asiels 830 1910 47392

Vrije beroepen 840 13149 432466

Bijzondere relatie 890 4541 160806

Eigen personeel 900 6498 155559

Sligrovestiging/-dochter 910 46 151281

Personeel Freshpartners 920 180 3711

EM-T 951 109 39532348

Inversco CD Magazijn 952 18 42192

SLIGRO LOCATIES 953 12 1396

Diversen 959 1 3694

Restaurants eigen vestigingen 961 67 187172

Inversco CD Institutioneel 963 365 106778

Inversco CD Horeca 964 547 83450

INVERSCO DIR Horeca 966 11 46439

Geen klantenkaart 999 169 2442217
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Appendix H

Figures Showing the Distribution of the Top 10 Products

Transacted by the Electricians and PlumbHeaters in the

Training and Test Datasets in the 3, 6, 9 and 12 Months Sliding

Windows.
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Electricians 3 Months Sliding Windows Transac-
tions

PlumbHeaters 3 Months Sliding Windows Trans-
actions

Electricians 6 Months Sliding Windows Transac-
tions

PlumbHeaters 6 Months Sliding Windows Trans-
actions

Electricians 9 Months Sliding Windows Transac-
tions

PlumbHeaters 9 Months Sliding Windows Trans-
actions

Electricians 12 Months Sliding Windows Transac-
tions

PlumbHeaters 12 Months Sliding Windows Trans-
actions

Figure H.1: Plots showing the Top 10 Products Transacted in Training Datasets by the
Electricians and the PlumbHeaters in the 3, 6, 9 and 12 Months Sliding Windows.
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Electricians 3 Months Sliding Windows Transac-
tions

PlumbHeaters 3 Months Sliding Windows Trans-
actions

Electricians 6 Months Sliding Windows Transac-
tions

PlumbHeaters 6 Months Sliding Windows Trans-
actions

Electricians 9 Months Sliding Windows Transac-
tions

PlumbHeaters 9 Months Sliding Windows Trans-
actions

Electricians 12 Months Sliding Windows Transac-
tions

PlumbHeaters 12 Months Sliding Windows Trans-
actions

Figure H.2: Plots showing the Top 10 Products Transacted in Test Datasets by the
Electricians and the PlumbHeaters in the 3, 6, 9 and 12 Months Sliding Windows.
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Appendix I

Figures Showing Comparative Performance of Adaptation

Strategies on Ensembles of Decision Trees (J48), Naive Bayes,

Linear Regression and Support Vector Machines for the 3, 6, 9

and 12 Months Sliding Windows.

Decision Tree Naive Bayes

Linear Regression Support Vector Machines

Figure I.1: Plots showing the Comparative Performance of Decision Trees, Naive Bayes,
Linear Regression and Support Vector Machines classifiers in the Three (3) Months Sliding
Windows.
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Decision Tree Naive Bayes

Linear Regression Support Vector Machines

Figure I.2: Plots showing the Comparative Performance of Decision Trees, Naive Bayes,
Linear Regression and Support Vector Machines classifiers in the Six (6) Months Sliding
Windows.

Decision Tree Naive Bayes

Linear Regression Support Vector Machines

Figure I.3: Plots showing the Comparative Performance of Decision Trees, Naive Bayes,
Linear Regression and Support Vector Machines classifiers in the Nine (9) Months Sliding
Windows.
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Decision Tree Naive Bayes

Linear Regression Support Vector Machines

Figure I.4: Plots showing the Comparative Performance of Decision Trees, Naive Bayes,
Linear Regression and Support Vector Machines classifiers in the Twelve (12) Months
Sliding Windows.
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Appendix J

Figures Showing Comparative Customer Profile Classification

Stability for the Decision Trees (J48), Naive Bayes, Linear

Regression and Support Vector Machines for the 3, 6, 9 and 12

Months Sliding Windows.
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Adaptive Decision Tree Classifiers Static Decision Tree Classifiers With Misclassified
Customer Profiles Relabelled

Adaptive Naive Bayes Classifiers Static Naive Bayes Classifiers With Misclassified
Customer Profiles Relabelled

Adaptive Linear Regression Classifiers Static Linear Regression Classifiers With Misclas-
sified Customer Profiles Relabelled

Adaptive SVM Classifiers Static SVM Classifiers With Misclassified Cus-
tomer Profiles Relabelled

Figure J.1: Plots showing the comparative customer profiles classifications stability for the
Decision Trees, Naive Bayes, Linear Regression and Support Vector Machines classifiers
in the Three (3) Months Sliding Windows.
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Adaptive Decision Tree Classifiers Static Decision Tree Classifiers With Misclassified
Customer Profiles Relabelled

Adaptive Naive Bayes Classifiers Static Naive Bayes Classifiers With Misclassified
Customer Profiles Relabelled

Adaptive Linear Regression Classifiers Static Linear Regression Classifiers With Misclas-
sified Customer Profiles Relabelled

Adaptive SVM Classifiers Static SVM Classifiers With Misclassified Cus-
tomer Profiles Relabelled

Figure J.2: Plots showing the comparative customer profiles classifications stability for the
Decision Trees, Naive Bayes, Linear Regression and Support Vector Machines classifiers
in the Three (3) Months Sliding Windows.
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Adaptive Decision Tree Classifiers Static Decision Tree Classifiers With Misclassified
Customer Profiles Relabelled

Adaptive Naive Bayes Classifiers Static Naive Bayes Classifiers With Misclassified
Customer Profiles Relabelled

Adaptive Linear Regression Classifiers Static Linear Regression Classifiers With Misclas-
sified Customer Profiles Relabelled

Adaptive SVM Classifiers Static SVM Classifiers With Misclassified Cus-
tomer Profiles Relabelled

Figure J.3: Plots showing the comparative customer profiles classifications stability for the
Decision Trees, Naive Bayes, Linear Regression and Support Vector Machines classifiers
in the Three (3) Months Sliding Windows.
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Adaptive Decision Tree Classifiers Static Decision Tree Classifiers With Misclassified
Customer Profiles Relabelled

Adaptive Naive Bayes Classifiers Static Naive Bayes Classifiers With Misclassified
Customer Profiles Relabelled

Adaptive Linear Regression Classifiers Static Linear Regression Classifiers With Misclas-
sified Customer Profiles Relabelled

Adaptive SVM Classifiers Static SVM Classifiers With Misclassified Cus-
tomer Profiles Relabelled

Figure J.4: Plots showing the comparative stability of customer profiles classifications
for the Decision Trees, Naive Bayes, Linear Regression and Support Vector Machines
classifiers in the Twelve (3) Months Sliding Windows.
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Appendix K

Tables Illustrating the Changing Classifications of an Electrician

and a PlumberHeater by Decision Trees (J48), Naive Bayes,

and Support Vector Machines for the 3, 6, 9 and 12 Months

Sliding Windows.
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(a) Adaptive Decision Tree Classifiers

(b) Static Decision Tree Classifiers With Misclassified Customer Profiles Relabelled (∗ Indicates
point of relabeling)

Table K.1: Tables illustrating the comparative stability of the Electrician (E1) and Plumb-
Heater(P1) customer profiles classifications for the Decision Tree Ensemble
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(a) Adaptive Naive Bayes Classifiers

(b) Static Naive Bayes Classifiers With Misclassified Customer Profiles Relabelled (∗ Indicates point
of relabeling)

Table K.2: Tables illustrating the comparative stability of the Electrician (E1) and Plumb-
Heater(P1) customer profiles classifications for the Naive Bayes Ensemble
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(a) Adaptive SVM Classifiers

(b) Static SVM Classifiers With Misclassified Customer Profiles Relabelled

Table K.3: Tables illustrating the comparative stability of the Electrician (E1) and Plumb-
Heater(P1) customer profiles classifications for the Support Vector Machine Ensemble
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Appendix L

Figures Illustrating the Changing Stability of Two Electricians

and Two PlumberHeaters obtained from using the majority,

weighted majority, weighted average majority and minority

voting combiners for Decision Trees (J48), Naive Bayes, and

Support Vector Machines in the 3, 6, 9 and 12 Months Sliding

Windows.
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Decision Tree Adaptation Majority Voting Stabil-
ity

Decision Tree Relabeling Majority Voting Stabil-
ity

Naive Bayes Adaptation Majority Voting Stability Naive Bayes Relabeling Majority Voting Stability

Linear Regression Adaptation Majority Voting
Stability

Linear Regression Relabeling Majority Voting Sta-
bility

Support Vector Machine (SVM) Adaptation Ma-
jority Voting Stability

Support Vector Machine (SVM) Relabeling Ma-
jority Voting Stability

Figure L.1: Plots showing the stability of customer profiles classifications using the major-
ity voting combiner for the Decision Trees, Naive Bayes, Linear Regression and Support
Vector Machines Ensembles.
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Decision Tree Adaptation Weighted Majority Vot-
ing Stability

Decision Tree Relabeling Weighted Majority Vot-
ing Stability

Naive Bayes Adaptation Weighted Majority Vot-
ing Stability

Naive Bayes Relabeling Weighted Majority Voting
Stability

Linear Regression Adaptation Weighted Majority
Voting Stability

Linear Regression Relabeling Weighted Majority
Voting Stability

Support Vector Machine (SVM) Adaptation
Weighted Majority Voting Stability

Support Vector Machine (SVM) Relabeling
Weighted Majority Voting Stability

Figure L.2: Plots showing the stability of customer profiles classifications using the
weighted majority voting combiner for the Decision Trees, Naive Bayes, Linear Regression
and Support Vector Machines Ensembles.
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Decision Tree Adaptation Weighted Average Vot-
ing Stability

Decision Tree Relabeling Weighted Average Vot-
ing Stability

Naive Bayes Naive Bayes Adaptation Weighted Average Voting
Stability

Linear Regression Adaptation Weighted Average
Voting Stability

Linear Regression Relabeling Weighted Average
Voting Stability

Support Vector Machine (SVM) Adaptation
Weighted Average Voting Stability

Support Vector Machine (SVM) Relabeling
Weighted Average Voting Stability

Figure L.3: Plots showing the stability of customer profiles classifications using the
weighted average voting combiner for the Decision Trees, Naive Bayes, Linear Regres-
sion and Support Vector Machines Ensembles.
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Decision Tree Adaptation Minority Voting Stabil-
ity

Decision Tree Relabeling Minority Voting Stabil-
ity

Naive Bayes Adaptation Minority Voting Stability Naive Bayes Relabeling Minority Voting Stability

Linear Regression Adaptation Minority Voting
Stability

Linear Regression Relabeling Minority Voting Sta-
bility

Support Vector Machine (SVM) Adaptation Mi-
nority Voting Stability

Support Vector Machine (SVM) Relabeling Mi-
nority Voting Stability

Figure L.4: Plots showing the stability of customer profiles classifications using the Minor-
ity Voting Combiner for the Decision Trees, Naive Bayes, Linear Regression and Support
Vector Machines Ensembles.
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T. Bäck. Evolution strategies: an alternative evolutionary algorithm. In Artificial Evolu-

tion, pages 3–20. Springer-Verlag, 1995.

F. Bergadano, A. Giordana, and L. Saitta. Automated concept acquisition in noisy en-

vironments. IEEE Trans. Pattern Anal. Mach. Intell., 10(4):555–578, 1988. ISSN

0162-8828. doi: http://dx.doi.org/10.1109/34.3917.

F. Bergadano, R. Gemello, A. Giordana, and L. Saitta. Ml-smart: A problem solver for

learning from examples. Fundamenta Informaticae, 12:29–50, 1989.

M. J. A. Berry and G. S. Linoff. Mastering Data Mining: The Art and Science of Customer

Relationship Management. John Wiley & Sons, January 2000.

M. J. A. Berry and G. S. Linoff. Data Mining Techniques: For Marketing, Sales, and

Customer Relationship Management. John Wiley & Sons, April 2004.

J. C. Bezdek and L. I. Kuncheva. Nearest prototype classifier designs: An experimental

study. International Journal of Intelligent Systems, 16(12):1445–1473, 2009.

J. Biethahn and V. Nissen. Evolutionary Algorithms in Management Applications.

Springer-Verlag New York, Inc., Secaucus, NJ, USA, 1995. ISBN 3540603824.

168
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