

LOAD MEASUREMENT OF IN-SERVICE MARINE

STRUCTURES

TO INFLUENCE THEIR DESIGN

Mohammad Reza Ramazani

A thesis submitted in partial fulfilment of the requirement of

Bournemouth University for the degree of Doctor of Philosophy

June 2013

Bournemouth University

This copy of the thesis has been supplied on condition that

anyone who consults it is understood to recognise that its copyright

rests with its author and due acknowledgment must always be made

of any material contained in, or derived from, this thesis.

III

Abstract

Current methods to predict hydrodynamic loads rely either on oversimplified and semi-

empirical methods or the use of numerical simulation and analysis techniques such as

Finite Element Analysis (FEA) or Boundary Element Analysis (BEA). These methods are

conservative which results in the over-design of these craft so they are heavier and slower

than they could otherwise be. Better understanding of load intensities will inform the

design process of marine structures and could result in lighter and more efficient designs.

This research investigates the possibility of solving these problems employing artificial

intelligence (AI) as an alternative to the current methods. Few studies have applied

Artificial Intelligence to the design of marine structures. Detailed review of the past and

present research shows that AI and in particular Artificial Neural Networks (ANN) can be

used as an inverse problem solver when there are no closed form relationships that exist

between the input and the output. An inverse approach is defined as the problem where

response of the structure is known but the load that caused that response is unknown. In

real problems/structures the response to a point load is experienced throughout the

structure with different levels of intensities which is the link between the external load and

these differential intensities. Determining this relationship will result in a unique solution

without the knowledge of material constitutive laws, material properties and structure size

or thickness. The aim of this investigation is to develop a real time in-service load

measurement tool using an inverse approach. To achieve this, ANN, experimental

techniques and FEA analysis are combined to form a hybrid inverse problem solver that

can be trained to use structural response, such as strains at various locations, to predict the

loads that caused them.

The main objective of this research is to investigate the suitability of the proposed

methodology for real time in-service load monitoring on large marine structures. The

proposed system must be able to measure both steady-state as well as transient load such as

equivalent slamming load. The outcome of this investigation was successful prediction of

the external loads in terms of their approximate location and load intensities. The only

disadvantage of this method is that the solver requires training and can only learn from

cases that it has been subjected to. However, once the system is trained it can predict both

static and dynamic loads quickly and accurately.

IV

Publications

The peer reviewed publications below have been published in international journals and

can be found in Appendix 6:

1. Ramazani, M. R., Noroozi, S., Koohgilani, M., Cripps, B., and Sewell, P., 2013a.

Determination of static pressure loads on a marine composite panel from strain

measurements utilising artificial neural networks. Proceedings of the Institution of

Mechanical Engineers, Part M: Journal of Engineering for the Maritime

Environment, 227, 12–21.

2. Ramazani, M. R., Noroozi, S., Sewell, P., Khandan, R., and Cripps, B., 2013b.

Using artificial neural networks and strain gauges for the determination of static

loads on a thin square fully-constrained composite marine panel subjected to a large

central displacement. Insight Journal: Non-Destructive Testing and Condition

Monitoring, 55(8), 442-448.

3. Ramazani, M. R., Sewell, P., Noroozi, S., Koohgilani, M., and Cripps, B., 2013c.

In-service transient load measurement on a large composite panel. Trans Tech

Publications, Switzerland: Applied Mechanics and Materials, 248, 204-211.

4. Ramazani, M. R., Sewell, P., Noroozi, S., Koohgilani, M., and Cripps, B., 2013d.

Sensor optimisation for in-service load measurement of a large composite panel

under small displacement. Trans Tech Publications, Switzerland Applied

Mechanics and Materials, 248, 153-161.

http://www.journaltocs.ac.uk/journalHomePage.php?id=5735&userID=0
http://www.journaltocs.ac.uk/journalHomePage.php?id=5735&userID=0

V

Abbreviations

AI Artificial Intelligence

ANN Artificial Neural Networks

BEA Boundary Element Analysis

DAQ Data Acquisition system

ERSG Electrical Resistance Strain Gauges

GA General Algorithm

GRFP Glass Reinforced Fibre Polymer

HIPE Hybrid Inverse Problem Engine

FEA Finite Element Analysis

FL Fuzzy Logic

MATLAB NNT MATLAB Neural Network Toolbox

MOD Ministry Of Defence

MSE Mean Squared Error

NI National Instruments

SSE Sum of Squared Error

 RIB Rigid Inflatable Boat

 RN Royal Navy

 RNLI Royal National Lifeboat Institution

 RMS Root Mean Square

VI

Contents

 Abstract ..III

 Publications ..IV

Abbreviations ...V

Contents ..VI

List of Figures ...IX

List of Tables ..XV

Acknowledgements ..XVI

Chapter 1. Introduction to Project and Literature Review ... 1

1.1 Introduction ... 1

1.1.1 BAE Systems Surface Ships Ltd .. 2

1.1.2 Aims of the Research ... 3

1.1.3 Research Question and Objectives ... 4

1.2 Background Research and Literature Review ... 4

1.2.1 Boat Design and Structural Analysis ... 5

1.2.2 Literature Review Findings .. 19

1.3 Summary .. 24

Chapter 2. Introduction to Methodology and Artificial Neural Networks (ANN) 27

2.1 Introduction ... 28

2.2 Description of the Methodology .. 29

2.3 Introduction to Artificial Neural Network ... 34

2.3.1 Definition of Artificial Neural Network .. 34

2.3.2 Neuron Model .. 37

2.3.3 ANN Types Based on Learning Approaches ... 44

VII

2.3.4 Advantages and disadvantages of ANNs over conventional computer

algorithms ..46

2.3.5 Design Principles ... 47

2.3.6 Improving Results .. 53

2.3.7 Why MATLAB Neural Network Toolbox ... 53

2.4 Equipment Set Up .. 55

2.4.1 Small Displacement Equipment Set Up ... 61

2.4.2 Sensor Optimisation Experimental Setup .. 62

2.4.3 Large Displacement Experimental Set Up ... 64

2.4.4 Drop Test Simulation Set Up ... 65

2.5 Summary .. 68

Chapter 3. General Behaviour of Composite Panel with Attached Strain Gauges under

Small Displacement ... 69

3.1 Introduction ... 70

3.2 General Behaviour of Composite Panel with Attached Strain Gauges under

Small Displacement (Static Load is Applied) .. 70

3.2.1 Methodology .. 70

3.2.2 Results and Discussion ... 76

3.2.3 Summary and Conclusion .. 86

3.3 Sensor Optimization .. 87

3.3.1 Methodology .. 87

3.3.2 Results and Discussion ... 89

3.4 Discussion and Conclusion .. 93

3.5 Summary .. 94

Chapter 4. General Behaviour of Composite Panel with Attached Strain Gauges under

a Large Displacement and Drop Test .. 95

4.1 Introduction ... 96

VIII

4.2 Large Displacement Experiment Setup under Static Loading condition 97

4.2.1 Methodology .. 97

4.2.2 Results .. 107

4.2.3 Conclusion.. 115

4.3 Predicting Impact Loads Using Artificial Neural Networks 117

4.3.1 Methodology .. 117

4.3.2 Results .. 125

4.3.3 Conclusion.. 130

4.4 Summary .. 130

Chapter 5. DISCUSSION, EVALUATION, FINAL CONCLUSION AND FUTURE

RESEARCH ..131

5.1 Summary and Discussion .. 132

5.2 Evaluation of the proposed In-Service Load Monitoring System 134

5.2.1 Experimental Set-up ... 135

5.2.2 Artificial Neural Network .. 136

5.2.3 Finite Element Analysis and Experimental Techniques 137

5.3 Final Conclusion .. 138

5.4 Future Research ... 138

References ..140

Appendices ...151

IX

List of Figures

Figure ‎1-1: BAE Systems Halmatic Range Pacific 950 and Pacific 24 (Shockmitigation

2013) .. 3

Figure ‎1-2: Hull structure of a cruiser (US Naval, 2013) .. 6

Figure ‎1-3: Slamming Phenomena (Petrov 2012)... 8

Figure ‎1-4: Green Water Phenomena (Hydrolance 2013) .. 8

Figure ‎1-5: The loading on a ship derives from two sources: gravity and water pressure

(Tupper 2004) .. 10

Figure ‎1-6: Still water hogging (Tupper 2004) .. 10

Figure ‎1-7: Sagging on a wave (Tupper 2004) .. 11

Figure ‎1-8: Typical loading, shearing force and bending moment curves for a boat/ship

(Tupper 2004) .. 12

Figure ‎2-1: Artificial Neural Network training loop to minimise error (Sewell et al.

2010) .. 30

Figure ‎2-2: A two-layer tansig/purelin feed-forward network (Hagan et al. 2002) 31

Figure ‎2-3: Over-fitting problem .. 32

Figure ‎2-4: Learning and the problem of over-fitting (Schmidt 1996) 33

Figure ‎2-5: Example of ANN problem solving model (Zaknich 2003) 34

Figure ‎2-6: Schematic of a single input neuron (Beale et al. 2012) 38

Figure ‎2-7: Linear transfer function (Beale et al. 2012) ... 39

Figure ‎2-8: Log-Sigmoid transfer function (Beale et al. 2012) 39

Figure ‎2-9: Tan-Sigmoid transfer function (Beale et al. 2012)....................................... 40

Figure ‎2-10: single neuron with an R-element input vector (Beale et al. 2012) 41

Figure ‎2-11: Single layer neural network (Beale et al. 2012) ... 42

X

Figure ‎2-12: Multiple Layers Neural Network (Beale et al. 2012) 43

Figure ‎2-13: Flowchart for building an ANN model .. 49

Figure ‎2-14: Schematic of the composite panel .. 57

Figure ‎2-15: Schematic of a strain gauge and how it work .. 58

Figure ‎2-16: Microlink 751 Multi-function USB Data Acquisition (Windmill 2011) ... 59

Figure ‎2-17: Microlink 594 Bridge Input Unit and Screw Terminals (Windmill 2011) 59

Figure ‎2-18: The Windmill Chart and Logger programs (Windmill 2011) 59

Figure ‎2-20: Panel drawing with the location of gauges and loading for small

displacement experiment ... 62

Figure ‎2-21: 5 Kg Weight and 0.05 Kg stand ... 62

Figure ‎2-22: Schematic of composite panel indicating strain gauge, loading and support

location (Sensor Optimisation experiment) ... 64

Figure ‎2-23: Schematic of composite panel indicating strain gauge, loading and support

location (Large Displacement experiment ... 65

Figure ‎2-24: Schematic of composite panel (Drop test) ... 67

Figure ‎2-25: Meshed FEA Panel ... 67

Figure ‎3-1: Theory of Superposition Example (Sewell et al. 2010) 72

Figure ‎3-2: Example of acquired data from experiment (Sewell et al. 2010) 72

Figure ‎3-3: Generation of training input (strains) (Sewell et al. 2010) 73

Figure ‎3-4: Generation of training output (load) (Sewell et al. 2010) 73

Figure ‎3-5: Example of the training file.. 74

Figure ‎3-6: MATLAB representation of optimum ANN architecture 75

Figure ‎3-7: Data Logger .. 78

XI

Figure ‎3-8: Data Reading set for loading 10 Kg on location 10 after 18 days 78

Figure ‎3-9: Data Reading set for loading 1 Kg on location 11 after 2 days 79

Figure ‎3-10: Examples of the linear relation between the loading and the response of the

structure ... 80

Figure ‎3-11: Net. Predicted vs. Expected Values for new data generated data by

superposition .. 82

Figure ‎3-12: Behaviour of the system prediction over a range of loading quantities 83

Figure ‎3-13: Net. Prediction vs. Expected Values for experimental data (one area

loaded) ... 84

Figure ‎3-14: Net. Prediction vs. Expected Values for experimental data (two areas

loaded) ... 85

Figure ‎3-15: Comparison of the experimental data and data generated by superposition

 ... 85

Figure ‎3-16: Estimated load data by ANN vs. expected load values (from superposition

at location L1) .. 91

Figure ‎3-17: Estimated load data by ANN vs. expected load values (from superposition

at location L6) .. 91

Figure ‎3-18: Estimated load data by ANN Vs. expected load values (from experiment at

location L6) .. 92

Figure ‎5-1: MATLAB representation of ANN architecture for method one 99

Figure ‎5-2: MATLAB representation of ANN architecture for method two 100

Figure ‎5-3: Flowchart of PYTHON Script of Large Displacement Experiment

Description ... 101

Figure ‎5-4: Partitioned panel (16 rectangles and 13 circles) .. 103

Figure ‎5-7: distributed Pressure load (Load_Surf_1) ... 105

XII

Figure ‎5-8: Schematic of a Large displacement experiment simulation result 106

Figure ‎5-9: Comparison of FEA and Experimental data selected strain gauges (S6)... 108

Figure ‎5-10: Comparison of FEA and Experimental data selected strain gauges (S10)

 ... 109

Figure ‎5-11: Error between FEA and Experimental data selected strain gauges (S6) .. 109

Figure ‎5-12: Error between FEA and Experimental data selected strain gauges (S10) 109

Figure ‎5-13: SSE Performance of network architecture 2 .. 111

Figure ‎5-14: Comparison of the SSE values of the two network architectures 111

Figure ‎5-16: ANN estimation for FEA and experimental data Vs. Expected real data for

L13 ... 114

Figure ‎5-17: ANN estimation for FEA and experimental data Vs. Expected real data for

L1 ... 114

Figure ‎5-18: ANN estimation for FEA and experimental data Vs. Expected real data for

L7 ... 115

Figure ‎5-19: Flowchart of PYTHON Script of Drop Test Experiment 119

Figure ‎5-21: Cylinder part in modelling of the drop test .. 121

Figure ‎5-22: Panel part is meshed and has 7031 elements ... 122

Figure ‎5-23: Cylinder part is meshed and has 40 elements .. 122

Figure ‎5-24: Fully Fixed Boundary condition for the panel edges 123

Figure ‎5-25: Velocity just before impact is calculated for specific free fall height of the

cylinder .. 124

Figure ‎5-26: Schematic of impact simulation results.. 124

Figure ‎5-27: FEA Vs. experimental test results .. 126

Figure ‎5-28: Typical FEA strain data during the impact for gauge S1 127

XIII

Figure ‎5-29: Estimated impact load data by ANN Vs. expected values from training

data (L3) ... 128

Figure ‎5-30: Estimated impact load data by ANN Vs. expected values from training

data (L9) ... 128

Figure ‎5-31: Estimated impact load data by ANN Vs. expected values from test data

(L1) .. 129

Figure ‎5-32: Estimated impact load data by ANN Vs. expected values from test data

(L6) .. 129

Figure ‎1-1: Flowchart of the MATLAB GUI ... 171

Figure ‎1-2: Developed MATLAB Programme main GUI .. 172

Figure ‎1-3: General Network Data Manager (nntool) GUI .. 173

Figure ‎1-4: number of loading locations, strain and load gauges configuration GUIs . 174

Figure ‎1-5: Strain data acquisition No.1 GUIs ... 175

Figure ‎1-6: Export the acquired data to the MATLAB workspace 176

Figure ‎1-7: Training data generation parameter configuration GUIs 177

Figure ‎1-8: Export the generated data to the MATLAB workspace 177

Figure ‎1-9: Network Parameter Configuration GUIs for ANN architecture 1 178

Figure ‎1-10: Neural network Training tool ... 179

Figure ‎1-11: Export the network and its main parameters to the MATLAB workspace

 ... 180

Figure ‎1-12: Load estimation results indicated as a bar chart....................................... 181

Figure ‎1-13: Export the network output to the MATLAB workspace 181

Figure ‎1-14: Nload networks hidden layer and neuron number configuration 182

Figure ‎1-15: General Network Data Manager GUI .. 198

XIV

Figure ‎1-16: Import to Network/Data Manager GUI .. 199

Figure ‎1-17: Export from Network/Data Manager GUI ... 199

Figure ‎1-18: Create Network or Data GUI ... 200

Figure ‎1-19: Network Architecture View ... 203

Figure ‎1-20: Network Train window (Training Info index) ... 203

Figure ‎1-21: Network Train window (Training Parameters index) 204

Figure ‎1-22: Network Adapt window (Adaption Info index) 204

Figure ‎1-23: Network Network Training GUI .. 205

Figure ‎1-24: Network Performance Plot ... 206

Figure ‎1-25: Network Regression Plot.. 207

Figure ‎1-26: Network Reinitialize Weights Window ... 208

Figure ‎1-27: Network View/Edit Weights Window ... 208

Figure ‎1-28: Network Simulate Window .. 209

XV

List of Tables

Table ‎2-1: Composite Panel Material Specification ... 57

Table ‎2-2: Windmill 751-TC Unit Specifications (Windmill 2011)............................... 60

Table ‎2-3: Rosette Strain Gauges Properties (Vishay_Group 2010) 62

Table ‎2-4: Strain gauge specification (Vishay_Group 2010) ... 65

Table ‎3-1: Architecture of the artificial neural network ... 75

Table ‎3-2: ANN architecture parameters (optimisation experiment) 88

Table ‎3-3: Comparison of ANN performance SSE for various sensor configurations ... 90

Table ‎4-1: ANN Architectures .. 110

Table ‎4-2: Optimum ANN Architecture (method 2) .. 112

Table ‎1-1: List of MATLAB NNT Training Functions (Beale, et al., 2012) 200

Table ‎1-2: List of MATLAB NNT Network Types (Beale, et al., 2012) 201

Table ‎1-3: List of MATLAB NNT Performance Functions (Beale, et al., 2012) 201

XVI

Acknowledgements

I would like to express my gratitude to Dr. Philip Sewell and Prof. Siamak Noroozi who

have supported me from the beginning right to the end of my study with their tremendous

supervision. The author would also like to thank Prof. Bob Cripps formally of BAE

Surface Ships and Dr. Mehran Koohgilani for their valuable time and guidance. This work

was supported by BAE Systems Surface Ships Ltd, Portsmouth and Bournemouth University.

The Author would like to thank the financial supports as well as Steve Austin, Head of

Engineering Support of the Royal National Lifeboat Institution for providing the marine

composite panel used in this investigation. Finally, I would like to thank my family for giving

me such a wonderful life and strong will and all of their endless care and support during this

course.

1

Chapter 1. Introduction to Project and Literature Review

This chapter introduces the research project including a background to the topic,

research aims and objectives. This chapter also covers brief introductions to a review of the

academic literature, its relation and contexts to the research problem.

1

1.1 Introduction

In-service Marine structural components are subjected to hydrodynamic loads that are

both complex and transient in nature which makes their measurement particularly difficult.

Current practices to predict these loads rely either on oversimplified and semi-empirical

methods or the use of numerical simulation and analysis techniques that can be subjective.

This means the methods are conservative which results in the over-design of these crafts so

they are heavier and slower than they could otherwise be. Measuring the actual load

history once the craft has been manufactured and put in-service can provide designers with

more accurate load information which informs them at the design stage with more accurate

and realistic design load data. Hence, the outcome helps progressive improvement in the

design of such crafts, improving operational safety and enabling more accurate remaining

life prediction. In-service load monitoring systems can also provide information relating to

the damage of the structure as a result of impact that may affect the structure‘s integrity as

well as ride quality and its dynamic characteristics/response.

The outcome of this study could result in important added value to academia and

industry. Providing more accurate load information from real life load history helps

designers avoid over-designing the structure by informing the design process which can

also affect and improve the operational safety.

The thesis consists of six chapters. In the first chapter an initial introduction to the

research project background and its original aim is covered. A literature review is

conducted in this chapter as well. Having an overview of the current literature about the

research topic, more detailed aims and objectives are presented at the end of first chapter.

Following the first chapter, the research plan including the proposed methodology and

the equipment set up is covered in the second chapter. In this chapter, Artificial Neural

Network (ANN) is introduced in more detail necessary to understand the methodology

employed in this research. This chapter includes brief ANN definition and historical

overview as well as common ANN models, architectures and training algorithms.

Furthermore, in the second chapter some important considerations and general rules in

design of a successful ANN model are presented. Finally, the ANN software employed in

this research is introduced.

2

The third Chapter describes a simple panel test rig that was donated by the RNLI to test

the inverse problem engine by predicting lateral static loads that causes small lateral

displacement. Also, further investigation was conducted in order to minimise the number

of sensors needed to predict unique approximate solutions on seven locations on the panel.

Chapter four concerns the use of the system to solve non-linear problems. Large lateral

load can cause large displacement of marine panels. In such cases using linear elastic/static

analysis fails to generate accurate training data for the ANN and ANN fails to converge.

To ensure convergence, a novel methodology is proposed, presented and tested that allows

convergence resulting in predicting both the magnitude and the location of the large

internal load. In Chapter five, conclusions and the possible future works are described.

1.1.1 BAE Systems Surface Ships Ltd

BAE Systems Surface Ships Ltd are interested in developing an in-service load

monitoring system to have practical load history of specific marine structure such as their

marine crafts. As a result, this project was funded by BAE Systems Surface Ships Ltd and

officially started from October 2009. The outcome of this study will result in important

added value to education and industry. Providing more accurate load information from real

life load history, it helps designers avoid the over-design of vessels and crafts and can

inform their design resulting in progressive improvement, improve operational safety and

enable remaining life to be predicted.

BAE Systems is the premier global defence, security and aerospace company delivering

a full range of products and services for air, land and naval forces, as well as advanced

electronics, security, information technology solutions and customer support services. With

approximately 106,400 employees worldwide, BAE Systems‘ sales exceeded £18.5 billion

(US $34.4 billion) in 2008 (Bae 2009).

BAE Systems Surface Ships was established in Nov 2009 following the formation of

BVT Surface Fleet in July 2008 that bought together the surface warship building and

through-life support operations of BAE Systems and VT Group, including their joint

venture, Fleet Support Limited and VT Halmatic, its small boat design and manufacturing

business. BAE Systems Surface Ships is the UK‘s leading provider of surface warships and

through-life support, a world-class industrial partner for the UK Ministry of Defence

3

(MOD) and a leader in the global export market for warships and innovative naval surface

ship support.

BAE Systems Surface Ships is also the strategic partner to Portsmouth‘s Naval Base

Commander, offering in-service support capability to the Royal Navy and manage

Portsmouth Naval Base and logistics and warehousing services to the Base and the Royal

Navy surface ship fleet based in Portsmouth.

BAE Systems Surface Ships has operations in Glasgow, Portsmouth and Filton near

Bristol, employing over 8,000 people and has the facilities, skills and partnerships to set

the global standard as a trusted and innovative through-life surface ship partner in the UK

and export markets.

BAE Systems Surface Ships Small Boat business was formed from the legacy Halmatic

business, building on over 50 years of experience of design and manufacturing high

performance military and paramilitary craft including its Rigid Inflatable Boats (RIBS),

such as the Pacific 24, the sea boat of choice for the UK Royal Navy and the Pacific 950,

the latest boat in the BAE Systems Surface Ships small boat range Figure ‎1-1.

Figure ‎1-1: BAE Systems Halmatic Range Pacific 950 and Pacific 24 (Shockmitigation 2013)

1.1.2 Aims of the Research

The general aim is to develop a technique that potentially can be used for real-time load

monitoring of marine structures to meet the requirements of the marine industry. This can

lead to the development of a tool for the study of static and dynamic characteristics of the

4

hull. The proposed system will potentially enable the determination of in-service, transient

loads in real-time and produce a load history of the vessel. This would provide valuable

information about characteristics of the hull of a vessel to inform their future design.

1.1.3 Research Question and Objectives

The research question is as follows:

―Is it possible to estimate the loads applied on a marine structure by means of

establishing a relationship between the applied loads and the structural responses to these

loads on a marine structure?‖

The following objectives will be carried out to meet the aim:

 Synthesis information from current practice and academic literature to critically

analyse the state of the art in load monitoring/measurement/prediction of structures.

 Investigate and develop a methodology to accurately quantify the load on a marine

structure, which may be influenced by:

1. the loading condition (static and transient loading).

2. the structure‘s response (linear or nonlinear response to load).

3. the structure‘s size.

 Validate the methodology utilising a representative structure under known loading

conditions.

 Optimise the methodology and develop a prototype tool that can be used potentially to

study and/or monitoring of marine structures.

 Provide new insights in load monitoring of structures.

1.2 Background Research and Literature Review

This section outlines some introductory information about boat design and structural

analysis as well as critical analysis of the state of the art in load monitoring /measurement/

prediction of structures. Furthermore, an investigation of the potential of using Artificial

Neural Networks as an inverse method to be used for load monitoring systems are

presented in this section.

5

1.2.1 Boat Design and Structural Analysis

Several key components make up the main structure of most boats. The hull is the main

structural component of the boat which provides buoyancy. The hull of a boat consists of

an internal network of frames that extend from side to side (transverse) and that run the

length of the boat (longitudinal), covered by outer shell plating, usually made of fibreglass

or metal. The roughly horizontal, but chambered structures spanning the hull of the boat

are referred to as the deck. In a ship there are often several decks, but a boat is unlikely to

have more than one, if any at all. Above the deck are the superstructures. The underside of

a deck is the deck head.

An enclosed space on a boat is referred to as a cabin. Several structures make up a

cabin: the similar but usually lighter structure which spans a raised cabin is a coach-roof.

The "floor" of a cabin is properly known as the sole, but is more likely to be called the

floor (a floor is properly, a structural member which ties a frame to the keelson and keel).

The vertical surfaces dividing the internal space are bulkheads. The keel is a lengthwise

structural member to which the frames are fixed (sometimes referred to as a backbone).

The front (or forward end) of a boat is called the bow. The rear (or aft end) of the boat is

called the stern. The right side (facing forward) is starboard and the left side is port. See

Figure ‎1-2 which indicates a typical hull structure of a cruiser.

6

Figure ‎1-2: Hull structure of a cruiser (US Naval, 2013)

 Possible loading conditions of a ship are calculated and information is supplied usually

in the form of a profile of the boat indicating the positions of all loads on board, a

statement of the end draughts, the trim of the boat and the meta-centric height. Stability

information in the form of curves of statical stability is often supplied. The usual loading

conditions covered are:

 the lightship

 fully loaded departure condition with homogeneous cargo

 fully loaded arrival condition with homogeneous cargo

 Ballast condition

 Other likely service conditions.

A booklet is prepared for the ship showing all these conditions of loading. Nowadays

the supply of much of this data is compulsory and, indeed, is one of the conditions for the

assignment of a freeboard (Tupper 2004).

7

There are different ways to classify the various loads that are exerted on a marine

structure (Koelbel and Jr. 1995). As a first approach, a ship is considered along with all its

equipment, cargo and fluids as the system under consideration. The loads exerted on this

system could be classified into the following two categories:

(1) Standard Loads

(2) Extreme Loads

Standard or operational loads are the ones that the ship will experience during most of

her lifetime. These loads act on the ship as a whole as concentrated loads. Such loads

include:

 Static still water and wave buoyancy: these are the hydrostatic forces that act on the

ship hull when the ship is afloat.

 Dynamic lift loads: for semi-displacement and planning hulls.

 Wind pressure: especially for ships with large superstructure area.

 Dry-dock loads: when a ship lays on the dry-dock platform.

 Mooring lines and anchors: these act as concentrated loads.

 Extreme loads are a class of loads which occur when the ship sails in harsh weather

conditions. The naval architect should keep in mind that these loads may occur rarely, such

as slamming, ship-ship and ship-obstacle collisions.

Slamming is the impact of the bottom structure of a ship onto the sea surface. It is

mainly observed while sailing in waves, when the bow rises from the water and

subsequently impacts on it (see Figure ‎1-3). Slamming induces extremely high loads to

ship structures and is taken under consideration when designing ships. Environmental

loads such as wave loads have to be taken into consideration in the design process as well.

8

Figure ‎1-3: Slamming Phenomena (Petrov 2012)

In heavy storms, the waves and ship motions can become so large that water flows onto

the deck of a ship. This problem is known as ‗green water loading‘. The term ‗green water‘

is used to distinguish between the spray (small amounts of water and foam) flying around

and the real solid seawater on the deck. Because seawater is rather more green than blue,

the term ‗green water‘ is widely used (see Figure ‎1-4).

Figure ‎1-4: Green Water Phenomena (Hydrolance 2013)

9

Assume that the designer has already determined the dimensions and shape of the hull,

and has made the first estimate of the weight and centre of gravity of the design. In

addition, assume that the designer has laid out the basic structural arrangement for the hull

(locations of the plate stiffeners, frames, girders, and bulkheads). Given all this, the

structural design procedure is as follows (Koelbel and Jr. 1995):

 1. Select the design sea state, or significant wave height.

2. Calculate the added resistance in waves and determine the maximum speed the boat can

achieve with the installed power,

3. Calculate the vertical accelerations at the centre of gravity for the design speed in the

design sea state.

4. Determine the total load on the bottom, and the peak pressure.

5. Calculate the design pressure for each structural element.

6. Calculate the required thickness for plating, and the required section modulus for frames

and girders.

To solve any of these complex structural engineering problems, it is necessary to reduce

it to a series of unit problems which can be dealt with individually and superimposed. The

smallest units of structure which have to be considered are the panels of plating and single

stiffeners which are supported at their extremities by items which are very stiff in

comparison; they are subject to normal and edge loads under the action of which their

dishing, bowing and buckling behaviour relative to the supports may be assessed. Many of

these small units together constitute of large curved surfaces of plating and sets of

stiffeners called grillages, supported at their edges by bulkheads or deck edges which are

very stiff in comparison. They are subject to normal and edge loading and their dishing and

buckling behaviour as a unit relative to their supports may be assessed. Finally, many

bulkheads, grillages and decks, together constitute a complete hollow box whose behaviour

as a box girder may be assessed.

Excluding inertia loads due to ship motion, the loading on a ship derives from only two

sources, gravity and water pressure. It is impossible to conceive a state of the sea whereby

the loads due to gravity and water pressure exactly cancel out along the ship's length. Even

in still water, this is exceedingly unlikely but in a seaway where the loading is changing

continuously, it is inconceivable. There is therefore an uneven loading along the ship and,

10

because it is an elastic structure, it bends. It bends as a whole unit, like a girder on an

elastic foundation and is called the ship girder. The ship will be examined as a floating

beam subject to the laws deduced in other textbooks for the behaviour of beams.

Figure ‎1-5: The loading on a ship derives from two sources: gravity and water pressure (Tupper 2004)

In still water, the loading due to gravity and water pressure are, of course, weight and

buoyancy. The distribution of buoyancy along the length follows the curve of areas while

the weight is conveniently assessed in unit lengths and might, typically, result in the block

diagram of Figure ‎1-6 (clearly, the areas representing total weight and total buoyancy must

be equal.). This figure would give the resultants dotted which would make the ship bend

concave downwards or hog.

Figure ‎1-6: Still water hogging (Tupper 2004)

11

The reverse condition is known as sagging. Because it is not difficult to make some of

the longer cargo ships break their backs when badly loaded, consideration of the still water

hogging or sagging is vital in assessing a suitable cargo disposition. It is the first mate's

yardstick of structural strength.

It is not difficult to imagine that the hog or sag of a ship could be much increased by

waves. A long wave with a crest amidships would increase the upward force there at the

expense of the ends and the hogging of the ship would be increased. If there were a hollow

amidships and crests towards the ends sagging would be increased (Figure ‎1-7).

Figure ‎1-7: Sagging on a wave (Tupper 2004)

The loads to which the complete hull girder is subject are, in fact:

a. Those due to the differing longitudinal distribution of the downward forces of weight

and the upward forces of buoyancy, the ship considered at rest in still water;

b. The additional loads due to the passage of a train of waves, the ship remaining at rest;

c. Loads due to the superposition on the train of the waves caused by the motion of the

ship itself through still water;

d. The variations of the weight distribution due to the accelerations caused by ship

motion.

Consideration of the worst likely loading effected by (a) and (b) is the basis of the

standard calculation. The effects of (c) and (d) are smaller and are not usually taken into

12

account. A graph for typical loading, shearing force and bending moment curves is shown

Figure ‎1-8.

Figure ‎1-8: Typical loading, shearing force and bending moment curves for a boat/ship (Tupper 2004)

State of the Art in Load Monitoring, Measurement and Prediction of Structures

Recent studies outline that the measurement of in-service hydrodynamic load on marine

structural components is particularly difficult (Guo-Dong and Wen-Yang 2009). This is

due to the transient nature of the load intensities. Current practices to predict these loads

are conservative and rely either on oversimplified and semi-empirical methods or the use

of numerical simulation and analysis techniques that can be subjective (Faltinsen 2007).

This results in the over-design of these craft so they are heavier and slower than they could

otherwise be. Developing novel load measurement methods leads to better understanding

of marine structure environmental and operating conditions. This means more realistic

loads are considered in the design stage which results in lighter and faster final solutions.

A review on methods for evaluating hydrodynamic loads on ships by Phelps (1997)

outlines that for given ship conditions, both hydrostatic and self-weight loads can be

evaluated with a high degree of confidence in ship structural design and analysis.

Having the buoyancy distribution and the self-weight distribution over the hull of boat

or ship, Finite Element (FE) programmes can be employed easily for the analysis of both

hydrostatic and self-weight loads. This is due to the fact that such loads are static, well

defined and are easily applied as pressure or self-weight load types available within FE

programs. Furthermore, detailed documents are available for the hull giving necessary

13

information about its underwater shape. This enables calculation of the buoyancy

distribution through Archimedes principle. The self-weight distribution can be determined

employing detailed weight knowledge of stores, cargo and fuel. This means FE

programmes will be able to analyse hydrostatic and self-weight loads. In contrast, the

determination of hydrodynamic loads generated by sea waves is less predictable.

Furthermore, reliable guidance for understanding of dynamic nature of the loading as well

as transient effects such as slamming is not available.

Research has provided improved knowledge of the nature of hydrodynamic loads in the

past five decades. The basis for the mathematical description of hydrodynamic loads on

ships has been provided by the work of St. Denis and Pierson (1953), Korvin-Kroukovsky

(1955), Korvin-Kroukovsky and Jacobs (1997) , Salvesen et al. (1970) and Hughes (1983).

These methods are basically linear and two-dimensional in nature and although reasonably

accurate for moderate sea conditions and ship speeds, they are less accurate for extreme

loading conditions which are also the most critical when considering hull structural

strength (Phelps 1997).

Non-linear theories and three-dimensional load prediction methods (panel methods)

mostly developed by Ochi and Motter (1973) and Belik et al. (1983) have been introduced

but these require greater computational effort and have not yet proven to be significantly

more accurate than the two dimensional methods.

The measurement of hydrodynamic impact loads has an important role in the design of

reliable cost and weight effective marine structures. Weight is a major factor to optimise

the speed of a marine structure. Although employing stiff and light materials such as

composites leads to increase in speed, structural damage is still significant (Bunting and

Sheahan 2009). It is expected that the structural damage may be influenced by global

hydroelastic behaviour from waves and/or local hydrodynamic impact loads from

slamming (Guo-Dong and Wen-Yang 2009). Wave impact is a random nonlinear

phenomenon which is very sensitive to relative motion and attack angle between the body

and free surface of the water. Since the duration of wave impact loads is very short,

hydroelastic effects are large. In addition, because of air trapping, the wave impact

phenomenon is difficult to describe. As the new generation of high speed naval craft gets

larger and faster, slamming impact loads on these vessels becomes a critical design

14

concern. However, the hydrodynamic impact load is one of the least understood areas of

marine structure design (Lee and Wilson 2009). Wave impact has challenged many

researchers for more than half century and yet more research for an accurate practical

estimation method of wave impact loads is required.

Many studies have been performed so far for evaluating hydrodynamic loads on ships.

Such methods are summarised in the reviews by Phelps (1997) and Guo-Dong and Wen-

Yang (2009). It is indicated that the evaluation of wave generated hydrodynamic loads is

less reliable than the static loads and there is less guidance as to how to handle the dynamic

nature of the loading as well as transient effects such as slamming. In the past four to five

decades, research has provided increased knowledge of the nature of hydrodynamic loads,

which together with the improvements in computing power have greatly enhanced the

capability to determine the effects of these loads on ship structures. Starting with the work

of Karman (1929), various research works have been carried out to describe hydrodynamic

loads in Naval Architecture, on motorboats and sailboats in parallel with rules and

regulations (Abs 2011; Allen et al. 1978; Bv 2008; Dnv 2011; Faltinsen 2000; Faltinsen

2007; Heller and Jasper 1961; Hentinen and Holm 1994; Iso 2008; Joubert 1982, 1996;

Kapsenberg et al. 2003; Ochi and Motter 1973; Reichard 1984; Savitsky and Brown 1976;

Stavovy and Chuang 1976) . Furthermore, the introduction of composite materials in

marine architecture, such as fast marine crafts, has brought new types of operational

failures in panels. In contrast to metallic materials, when the design makes use of

composite materials, different types of cracks can appear such as delaminations. This

usually happens due to the localised impacts from service loads (such as slamming loads)

often observed in composite high-speed crafts. Although, many studies have been carried

out to describe the slamming phenomenon and its consequences on the design of ships

made of metallic materials (Beukelman 1980; Chalmers 1993; Gerritsma and Beukelman

1964; Heller and Jasper 1961; Jones 1972; Ochi and Motter 1969; Ochi and Motter 1973;

Ssc 1995; Stavovy and Chuang 1976), there are limited studies in this area for composite

marine structures. In addition, as it is pointed out in various studies (Bunting and Sheahan

2009; Manganelli 2006), there is a need for more accurate knowledge of the hydrodynamic

impact on marine structure problems as the knowledge on wave impact is still far from

sufficient.

15

The work by Guo-Dong and Wen-Yang (2009), has reviewed the techniques used to

predict impact loads. In summary, these techniques can be categorised into four groups:

theoretical approaches, experiments, empirical formulas and numerical simulations.

Theoretical approaches and numerical simulations are most flexible and full of potential.

Experiments are thought to be most reliable, but it can be costly and suffers from scale

effect. The measured results such as a 2-D wedge, a 2-D cross section of a ship, a 3-D drop

cone or sphere, are usually used for the validation of a theoretical method or numerical

simulation. There are also sea-keeping tests conducted in the towing tank in either regular

or irregular waves. The goal of these experimental studies is to obtain the relationship

between the pressure magnitude and the velocity at the instant of impact of a given body.

The elasticity of the structure and the scale effect may play an important role in the

magnitude of pressure. A number of empirical equations have been developed to estimate

the impact loads in the time domain (Guo-Dong and Wen-Yang 2009).

For a more accurate prediction, a method involving complete determination of the loads

based on scientific principles is needed rather than empirical procedures. These

oversimplified approaches cannot give a designer the comprehensive information required.

Measurement of hydrodynamic loads generated by sea waves is difficult due to the fact

that the sea is highly irregular. The common practice to determine wave loads is based on

applying rules and standards which often relies on conservative methods due to large

uncertainties in the theoretical calculations used for wave load predictions for ships. In

addition, for unconventional ships with new structural designs, it can be sometimes

difficult to apply general standards and rules. Direct calculation procedures are needed

specifically for complex structures and designs. However, the direct calculation

procedures, especially the calculation of the wave loads, are less applied in the

shipbuilding industry (Kukkanen 2010). One reason is the rather large uncertainty in the

wave load predictions for ships as well as lack of experience. In addition, the theoretical

basis of the calculation methods is not necessarily sufficient to achieve reliable predictions.

Furthermore, uncertainties also exist in all assumptions involved in stochastic methods and

prediction procedures including environmental and operational conditions. Sometimes

these are difficult to determine accurately in advance and hence assumptions need to be

made to estimate them (Kukkanen 2010).

16

The current techniques to measure hydrodynamic loads indicate that many techniques

developed are either simplified or very expensive and time-consuming (Bai 2003). Many

studies have been performed to date for evaluating hydrodynamic loads on ships. Various

strip methods have been developed (Iwashita et al. 1993; Watanabe 1994) and used to

estimate wave induced ship motions and wave loads. The conventional strip theory is

successfully used in the sea-keeping analysis of normal displacement ships(Salvesen et al.

1970). However, its validity can be questioned when it is used for ships with higher

maximum operating speeds (Faltinsen 2005). Nonlinearities become more significant for

higher speed ships, however, the conventional strip theory is a linear theory. Strip methods

are extensively used as a standard tool to predict the nonlinear loads and motions (Jensen

and Pedersen 1979). Though, there are some concerns on the accuracy of the strip methods

for estimation in short waves as they do not precisely consider hydrodynamic interference

effects of reflected waves among strips lengthwise or three-dimensional effects.

In order to enhance the accuracy of estimation, especially in short waves, many

numerical methods considering the three-dimensional effects have been proposed. Among

them are the three-dimensional Green function method (Iwashita et al. 1993) and the

Rankine source method based on three-dimensional potential theory (Nakos and

Sclavounos 1990; Takagi 1993; Yasukawa 1990). However, nonlinear theories and three-

dimensional load prediction methods require greater computational effort and have not yet

proven to be significantly more accurate than the two dimensional methods (Guo-Dong

and Wen-Yang 2009; Phelps 1997).

At present all the modelling is based on some rational approximations, for example, it is

common that the fluid is assumed to be ideal and incompressible, and the solid body to be

rigid. Even with these assumptions, the problem is still very complicated. Almost all

models used to predict impact loads find it difficult to incorporate the hydrodynamic

impact into the sea-keeping prediction. Most of the sea-keeping theories are linear, and the

hydrodynamic impact is strongly nonlinear. Usually engineers would prefer to estimate the

relative speed between the waves and the ship hull, and then the calculation of

hydrodynamic force would be presented separately. Computational Fluid Dynamics (CFD)

techniques give a new way to solve these problems including overturning and wave

breaking (Guo-Dong and Wen-Yang 2009).

17

It has become popular to use CFD to solve fluid flow problems. This is due to the fact

that conventional engineering tools based on linear panel methods cannot accurately

describe the flow. Green water on deck and Slamming are particular examples on fluid

motions that have been investigated by CFD techniques (Faltinsen 2007).

Some CFD methods based on solving the Navier-Stokes equations are thought to be

effective in the violent fluid motion problems. Mixture between air and fluid may occur

and viscous effects can matter (Guo-Dong and Wen-Yang 2009).There is extensive work

worldwide in applying CFD to green water on deck. However, most work is related to two-

dimensional flow. An attempt has been made by Greco et al. (2007) to classify how the

different green water phenomena occur as a function of wave parameters in head sea

conditions for stationary ships, based on experimental and theoretical studies of a

restrained two-dimensional body. Slamming is of concern in many marine applications.

It seems generally accepted that CFD codes have difficulties in predicting impact loads

(Faltinsen 2007). Actually, hydro-elasticity may then play an important role. The fact that

the CFD methods are still time consuming makes statistical estimations of response

variables in sea difficult. It is not always easy to follow the fluid particles in the

simulations. A minor error at one point and at one time may cause the breakdown of the

entire simulation. One of the essential steps is to use mesh regeneration after several time

steps to avoid cluster or stretch of the elements. Smoothing has to be used regularly to

remove saw tooth behaviour of the free surface (Guo-Dong and Wen-Yang 2009).

According to Faltinsen (2007), Commercial CFD codes are generic in nature and special

physical features are specific for the different application fields, one cannot necessarily

trust documentation of verification and validation in other applications than those that one

is interested in. Therefore, A balance between analytical methods, CFD, model tests and

sea tests is recommended (Faltinsen 2007). Although CFD solutions have been greatly

improved in both speed and accuracy in recent years, it is still very challenging to perform

complete nonlinear three-dimensional computations for the present problem (Sun and

Faltinsen 2012). As vessels and craft, in most cases, are extremely complicated structures,

the mechanical properties, or relations between externally induced excitation and structural

responses, are difficult to formulate. An appropriate load monitoring system and technique

has to be developed for naval assets and large structures (Cao et al. 1998).

18

Finite Element Analysis (FEA) can be employed for ship structural strength assessment.

This requires a suitable method to apply loads to the FEA model. This approach is

dependent upon the accuracy of the methods used to define and calculate the loads in the

first place and also the specific FEA software being used. In addition it is more difficult to

apply hydrodynamic loads to finite element models than for static load cases. This is due to

the dynamic nature of the problem and less clearly defined loads.

According to Phelps (1997) who has reviewed methods used for determining

hydrodynamic loads on ships and their limitations, many documents have been written in

relation to various hydrodynamic loading theories and likewise on finite element analysis

of ship structures and components. He has outlined a review of wave load calculation

methods and their application to finite element models as well as their evaluation using

experimental data. This review indicates that although methods for static load

measurements are generally reliable, predicting wave loads on ships in different sea states,

ship speeds and headings are conservative and less accurate. Phelps (1997) concluded that

the works done so far were limited and correlation between numerical predictions and test

data and further evaluations were necessary. He has also recommended that further work

be done to validate results obtained against alternative methods and full scale

measurements. This would enable more realistic loading scenarios to be analysed with

greater confidence and within a shorter period of time.

Kukkanen (2010) investigated hydrodynamic load and strength analysis of marine

structures. He has categorised environmental and operational conditions as important

elements in the load and strength analysis of marine structures. In other words knowing

these two elements is the starting point for the structural design and analysis of the ships

and marine structures.

The main operational conditions for ships are the speed, the heading with respect to

waves and the sea state (i.e. height and length of the waves). The operational profile can

vary considerably between different ship and boat types. Depending on the ship type, other

operational conditions should also be taken into account, for instance, load condition of the

vessel and time spent in harbour. Furthermore, voluntary speed reduction or possible

restrictions in speed or heading in high waves should be considered in order to define the

sea states the ship can operate in safety.

19

Most designers of high-speed craft use the rules, guidelines, and procedures of the

various classification societies to calculate the bottom loads and pressures. Unfortunately

there are some uncertainties in these calculations that can lead to overdesign (Koelbel and

Jr. 1995).

1.2.2 Literature Review Findings

Based on current limitations of load monitoring methods, there is a need for a new

technique/system that is able to overcome some of these limitations. Therefore, such a

system ideally should have the following specifications:

 Available methods cannot be employed in real-time therefore the system should be

able to monitor applied loads in real-time for in-service purposes

 The system should be capable of monitoring the whole structure with a

minimum/optimum number of low maintenance sensors

 The system should be able to be adopted for measuring in-service transient

slamming loads

 The system should require as small as possible computational effort (should be fast

and respond in real time)

 Both experimental and computational stress analysis requires that the material

properties should obey constitutive laws and have well-defined geometrical data

such as size, thickness or constraints. However, an inverse approach that can

bypass the requirement for all of the above parameters may be an alternative

approach

Therefore this research aims to find a solution to the problem by focus on finding a

means of establishing a relationship between loads and structural responses that represents

hydro-dynamically the mechanical characteristics of the boat/ship structure. In other words

the research question is as follows:

―Is it possible to estimate the loads applied on a marine structure by means of

establishing a relationship between the applied loads and the structural responses to these

loads on a marine structure?‖

It is shown that other techniques should be developed to overcome current limitations in

practice used to measure loads employed in marine structure design procedures. A

20

literature survey is carried out to investigate the novelty of using Artificial Intelligence

(AI) approach in the marine industry, employed to relate the structural responses to the

hydrodynamic loads. Different approaches employing AI methods may be utilised to solve

the problems. Genetic Algorithm (GA), Fuzzy Logic (FL), Artificial Neural Network

(ANN) and many more are the examples of various AI techniques available (Mamdani and

Assilian 1975). These methods are utilised in many research areas where problems are

solved by pattern recognition, generalisation and pattern classification (Rao and Rao

1993).

As an inverse solving technique, one of the artificial intelligence mechanisms that can

be used is an ANN. A connectionist theory is the basis of ANN, where this modern

mathematical approach is made of neurons (units) and connections between them.

According to Kohonen (1998), W.S. McCulloch and W.A. Pitts introduced the methods as

the fundamentals of neural computing in 1943 for the first time. Introducing examples to

the ANN, it can learn the relationships through a training process. In fact, this technique is

based on simulating the way that the brain processes different data. Therefore, they are

able to perform behaviours similar to brain activities, such as: learning, generalisation,

categorisation, association, optimisation and feature extraction. Network topology or

structure is the way neurons are connected to each other. Common developed topologies

include networks with feedback connections called recurrent networks and feed-forward

networks which have only direct connections (M. Raudenský 1996). An important

advantage of an ANN is its ability to learn. It can learn relationships and patterns between

two sets of variables. Consequently, rather than using an analytical relationship derived

from mechanical principles to model a system, the ANN employs an adaptive training

process to learn the relationship between variables.

The most suitable applications for ANNs have the following characteristics (Lee et al.

1999):

1. A large database is available.

2. It is difficult to find an accurate solution to the problem by existing

mathematical approaches.

3. The dataset is incomplete, noisy or complex.

21

ANN have attracted considerable attention and shown promise for modelling complex

nonlinear relationships. This technique is based on the human brain having a number of

interconnected units (Neurons) (Schalkoff 1997). Artificial Neural Networks look

promising and have been used extensively in many fields (Amali et al. 2000; Amali et al.

2006; Cao et al. 1998; Rao and Rao 1993; Rosenblatt 1958; Sewell et al. 2010; Shar and

Palmieri 1990; Soo-Young et al. 2006; Xu et al. 2010; Ziemianski and Harpula 1999). For

instance, ANN is widely used for damage identification (Ziemianski and Harpula 1999).

Employment of such novel techniques allows the structural health during service to be

predicted, without the need to interrupt or terminate the usage of the structure. This is due

to the fact that when an ANN is trained and put in service, no additional information about

current environment and structure status (material, shape, etc.) is required. In a case study

on an aircraft structure, it has been proven that a strain-based damage prediction

methodology employing ANN leads to an accurate crack damage pattern recognition,

which has an error comparable to that of the conventional methods. The main advantages

of the methodology are its accuracy, reliability, independency from external load variations

or any experimental data and its easiness to the practically appllied to on-line System

Health Monitoring (SHM) methods (Katsikeros and Labeas 2009). Furthermore, the ANN

method has indicated promising efficiency for the identification and localisation of

imperfections (Efstathiades et al. 2007; Katsikeros and Labeas 2009).

According to a review on applications of ANN on composites by Zhang and Friedrich

(2003), the applications of ANNs to polymer composites are still in their basic stages and

the investigations of the implementation possibilities in different material research areas

and the improvements of the predictive qualities are still matters for further research.

Fatigue is one of the most complicated problems for fibre composites, and failure

mechanisms are still not well understood. Extensive tests must be carried out because of

the absence of a well-defined failure criterion that can be used to predict fatigue failure in

polymer composites. ANNs offer the possibility of developing models that will predict the

behaviour of composites without being linked to mechanistic arguments. They have,

therefore, been introduced to predict fatigue life by Lee et al. (1999) , Aymerich and

Serra (1998), Al-Assaf and El Kadi (2001) and El Kadi and Al-Assaf (2002). Other

publications on fatigue prediction in various metallic alloys using the ANN approach are

recommended to the composite community as further references to improve this technique

22

for their problems (Haque and Sudhakar 2001; Pleune and Chopra 2000; Venkatesh and

Rack 1999). Velten et al. (2000) and Zhang et al. (2002) were among the earliest pioneers

to explore this approach in polymer composites, using ANNs to predict the wear volume of

short-fiber/particle reinforced thermoplastics.

Applying artificial intelligence to the ship/boat has been limited to use of ANN as an

AI technique for only the preliminary ship design techniques (Rosenblatt 1958; Shar and

Palmieri 1990). Research proposed by Soo-Young et al. (2006) presents a new method to

classify surface plates effectively in preliminary ship design using Neural Networks as an

AI method.

Considering the literature review so far, the most relevant research performed in

monitoring of various structures are the SHM methods where a direct structure response is

utilised to analyse and monitor the structure status and integrity (Katsikeros and Labeas

2009; Ko and Ni 2005; Li et al. 2006; Lynch et al. 2004; Majumder et al. 2008; Zingoni

2005).

Efstathiades et al. (2007) developed a method for structural health monitoring and fault

detection in curtain-wall systems. In this study, ANN was utilised and it was proved to be

an efficient method for identification and localisation of imperfections in these systems.

In a study by Cao et al. (1998) an approach was developed to identify the loads acting

on aircraft wings where an artificial neural network was utilised to model the load-strain

relationship in structural analysis. The research demonstrated that using an artificial neural

network to identify loads is feasible and a well-trained artificial neural network reveals an

extremely fast convergence and a high degree of accuracy in the process of load

identification for a cantilevered beam model.

In a study by Amali et al. (2000), it is illustrated that AI as a modern mathematical

method can be mixed by the requirement for knowledge of material properties and

component geometry to create a hybrid inverse problem analysis tool or Inverse Problem

Engine. The hybrid approach can be applied to both direct and inverse problems that avoid

the need for having component geometry and material properties at the end stage of

problem solving (Amali et al. 2006). Furthermore, as a medical application, ANN

23

technique is successfully utilised as an inverse method by Sewell et al. (2010) to estimate

pressure distribution at the residual limb/socket interface of a lower-limb prosthesis.

In the case of complex structures, the relation cannot easily be formulated (Tang et al.

1995). As vessels and crafts in most cases, are extremely complicated structures thus the

mechanical properties or relations between external excitement and structural responses are

difficult to formulate, so an appropriate load monitoring system has to be developed (Cao

et al. 1998).

Different properties of the system can be monitored such as any change in system

physical properties, stress, strain, local or distributed loads. Load data can be employed

to locate damage, detect composite delaminating, measure residual stress recoveries. To

measure each of them, the appropriate transducer should be employed.

In order to perform load monitoring of a structure, a specific sensing system is required.

Sensing technology has witnessed significant progresses in the past decades and recently

some types of innovative sensing systems are now commercially available such as load

cells, fibre optic sensors and wireless sensors (Lynch et al. 2004; Spencer et al. 2004;

Sumitro and M.L. 2003).

Fibre optic sensors have successfully been applied for long-term structural health

monitoring like large scale bridges. Furthermore, Fibre Bragg grating (FBG) sensors have

been employed for monitoring, diagnostics and control in structures and the performance

was reliable. One of the main beneficial aspects of FBG sensors to other technologies is its

versatility in the structural sensing area (J.M. Ko July 2005; Mufti Aa 1997).

FBG sensors are appropriate solutions in longitudinal strain measurement in static and

dynamic strain sensing in a number of application areas. According to Mousumi Majumder

(2008), this is due to the inherent properties of FBG sensors such as:

 Lightweight

 Immunity to electromagnetic interference and harsh environment

 Ability to be multiplexed for distributive measurement

 lower integration costs with new shipboard optical network backbones

24

 optical sensors are self-referencing enabling long-term absolute strain

measurements without the need for frequent sensor calibrations and bridge

balancing such as that required by Electrical Resistance Strain Gauge (ERSG)

sensors

Modern composite laminate hulls have sensors integrated within them during

manufacture. Stresses and strains generated due to the loads acting on a craft are used to

monitor structural integrity, and also used to monitor stresses at key locations where there

are geometrical or material discontinuities. This system provides real time information

concerning the state of the ship structure and increases operational attainability and ship

service life and can lead to reductions in on-going maintenance costs (Baldwin et al. 2002).

To reduce overall maintenance costs, ships have been equipped with strain gauges so

information for estimating the structural health of ship hulls can be predicted when they are

in-service. To date, some naval ships have become able to collect data with this embedded

instrumentation and the data can be employed to validate computer models anticipating

damage accumulation over the expected service life of the vessel without actually

calculating the exerted load on the structure (Adamchak 1984; Baldwin et al. 2002; Sikora

et al. 1983).

Ideally, load monitoring systems should be constructed of an array of inexpensive,

spatially distributed, wirelessly powered and networked, embedded sensing devices which

support frequent and on demand acquisition of real-time information about the loading and

environmental effects, structural characteristics and responses (Ko and Ni 2005). Different

responses of the system can be monitored directly and related to applied loads such as any

change in the system‘s physical properties, stress, strain and local or distributed pressure.

To measure structure response to a load, the appropriate transducer should be employed.

1.3 Summary

In summary, current practices to predict hydrodynamic loads rely either on

oversimplified and semi-empirical methods or the use of numerical simulation and analysis

techniques. These methods are conservative which results in the over-design of these craft

so they are heavier and slower than they could otherwise be. Experimental data acquired

from sensors embedded in marine structures informs only on the structure response on load

25

and it does not give direct measurement of the load. To conclude, a novel technique is

required to overcome current limitations in practices used to measure loads employed in

marine structure design procedures.

The literature shows that there is a novel approach that has been used to relate response

to loads in other engineering fields, such as system health monitoring and damage

detection. The inherent properties of ANN, such as learning of the relations, makes it a

suitable potential candidate to be used in an in-service load monitoring system for marine

structures. Through such a method, knowledge of the component material constitutive laws

or detailed knowledge of the component geometry is not required. In fact the aim of this

inverse problem analysis approach is to find a function that relates the inputs to outputs

considering these parameters. This technique may be able to offer a fast solution for

monitoring in-service loads on marine structures when the relationship between the loading

and response of the structure has been established. The final system will immediately

predict the load by analysing any similar new response data introduced to the solver and no

great computational effort is required. However, it is required to investigate the capabilities

of such a system in the determination of in-service, transient loads in real-time and produce

a load history of the vessel.

Although there have been some works for load prediction employing AI in various areas

such as aircraft wing or prosthetics, the literature has shown that there has been no relevant

application of AI in hydrodynamic load monitoring of marine structures. In other words

based on this literature review, in-service load monitoring of marine structures to influence

their design is novel research. The Author hypothesises that AI can be employed to find an

inverse solution to predict hydrodynamic loads applied on marine structures which may be

used to inform designers in the stage of preliminary ship design. In this research, the aim is

to employ and investigate the ability of this approach to immediately predict/estimate the

load by analysing any similar new response data introduced to the solver. This brings the

following sub-questions to be answered from the research question:

 Can in-service loads be predicted on a vessel to inform design?

 How to measure in-service loads on a vessel or craft representative?

26

 Can Artificial Intelligence be used as an inverse method to relate acquired craft

responses and what load caused the responses?

 Which types of loads can be measured with this method?

 How to validate the predicted loads?

 Is it possible to optimise the number of sensors and improve the accuracy of the

method?

In order to investigate the applicability of the new system in online load monitoring of

marine structures such as Rigid Inflatable Boats (RIB), some critical objectives are

recognised and categorised to be investigated. This includes following items:

 General behaviour of a marine structure with attached strain gauges under small

displacement (static load is applied)

 General behaviour of a marine structure with attached strain gauges under large

displacement (static load is applied)

 Optimisation of the sensors quantity

 General behaviour of the marine structure with attached strain gauges under transient

load condition (dynamic load is applied)

 Develop a Graphical User Interface (GUI)

27

Chapter 2. Introduction to Methodology and Artificial Neural Networks

(ANN)

This chapter introduces the research methodology. This chapter also covers the

background to Artificial Neural Networks.

28

2.1 Introduction

Chapter one led to the hypothesis that utilising a hybrid approach that combined

experimental technique, FEA, and AI can provide a general purpose inverse problem

solver that is capable of solving most classes of linear problems. Once an ANN is trained

(converged) for a given problem it can be used to link the input to the output without any

processing time.

 This chapter proposes a methodology to answer the research question which is can

external forces be estimated by the ANN using the structure‘s response as input. This

chapter also gives more detailed information about the ANN used in the proposed

methodology.

Estimating in-service loads on marine crafts is highly desirable. Currently there are no

tools that can estimate the intensity and location of such loads. A novel methodology is

proposed that, if successful, can transform every marine structure into a transducer capable

of estimating any in-service transient loads. Better understanding of load intensities will

inform the design process and results in lighter and more efficient designs.

The philosophy is based on detailed investigation of different parameters used in the

Hybrid Inverse Problem Engine (HIPE) and their effect on the integrity of the solution

when applied to large structures.

Marine vessels, depending on their size, can generally be manufactured from a large

number of flat, shaped or reinforced panels. Better understanding of their response to

external load can affect the design, dynamics and structural integrity of the vessel.

This research begins with the investigation of the application of HIPE for determining

external load on a large flat marine panel and investigates (as explained in section ‎1.2.1)

the performance and suitability of using HIPE to monitor large structures. Here a large

marine composite panel is instrumented and calibrated and programmed to function as a

complex load cell capable of measuring both surface and reaction loads.

In summary, as a quantitative research, the following steps have been carried out:

 Design and develop a general purpose hybrid inverse problem solver suitable for

use in large marine structures.

29

 General understanding of the overall boat behaviour and its critical points is needed.

The appropriate data acquisition should be investigated. The material behaviour in terms of

linearity or nonlinearity needs to be investigated. Also, the most suitable AI method and

its parameters need to be investigated. Based on the literature review in Chapter 1, it is

important to consider the prediction of transient loads.

 Validate and Modify the method:

The suitability of the proposed methodology will be indicated by successful prediction

of the applied loads. Finally, a real time GUI should be developed allowing better

communication with the system and to change different parameters used for data

acquisition and to control ANN convergence rate etc. The performance of the load

monitoring system will be evaluated by performing various tests by means of applying this

system on a marine structure representative such as a cross section of the boat hull.

2.2 Description of the Methodology

The basis of the inverse problem analysis is to relate external load or boundary

conditions at specified locations to the amount of structural response at pre-determined

locations on the structure. In other words, loads are to be identified from the known

structural responses. Efstathiades et al. (2007) outline that throughout the past decade, AI

presented techniques are useful for solving inverse problems. In a study by Xu et al.

(2010), it is indicated that many fields of science and industry employ inverse analysis

such as material property estimation, radar tracking, medical tomography, residual stress

determination, oil reservoir identification and non-destructive testing. The basis of the

inverse technique is upon determining a relationship between causes and their effects. In

this study, finding the static or hydrodynamic loads (the cause) on marine structures such

as small craft is the main aim of the inverse problem. This is achievable by acquiring

repeatable structural response to the load such as strain (the effect) at one or more interior

points.

The ANN has to be trained so a specific input (strain as the structural response) leads to

a particular output (load). There are two basic paradigms of learning, supervised and

unsupervised, both of which have their models in biology. Supervised learning is a process

where both input vectors, and the desired outputs are given. Unsupervised learning works

30

only on the input vectors, and the desired output is not specified. This learning method is

commonly employed for adaptation to specific features, process of categorisation, or

discovering regularities.

In an ANN context, supervised learning is a process of memorising vector pairs. The

input vector together with the desired output vector is known. Training is based on

adjusting some weights and biases. This is achieved by comparison of the network

response and the desired response. This adjustment continues as a loop (see Figure ‎2-1)

until the network response matches the desired output or at least the error function

becomes an acceptably small value. Generalisation is a feature of the trained network

working similar to approximation. In other words, a well-trained network estimates

appropriate output data even for untrained patterns. Although training the network is time

consuming, the trained network operates quickly in an application process.

Figure ‎2-1: Artificial Neural Network training loop to minimise error (Sewell et al. 2010)

A network is constructed of one or multiple simple neurons. Some neurons can be put

together in a layer, and a typical network may have one or more such layers. The response

of a network is calculated from each individual element input. In a common feed-forward

network, inputs are multiplied by weights (a bias may be added here as well) and a transfer

function acts on it.

A simple and popular network is a two-layer feed-forward network with three layers

named as: input layer, hidden layer and output layer, as shown in Figure ‎2-2. In feed-

forward networks normally one or more hidden layers whose transfer function is log-sig

type is connected to an output layer with pure-lin transfer function (see section 2.3.2.2 for

detailed description of transfer functions). Having multiple hidden layers of neuron with

31

nonlinear transfer functions enables the network to understand both nonlinear and linear

relationships between input and output vectors.

Figure ‎2-2: A two-layer tansig/purelin feed-forward network (Hagan et al. 2002)

Back-propagation is one of the most popular ANN in use today. It is simple to

understand and it works well generally as a classifier or for non-linear continuous

multivariate function mapping. Mean Squared Error (MSE) is normally employed as the

back-propagation error function. The squared errors are calculated as differences between

the desired and network response. As the network weights approach a minimum solution in

the training stage of the network, the gradient becomes small and the step size reduces as

well. This results in slow convergence. Usually a factor called ‗‘momentum factor‘‘ is

added that makes this process faster. This also normally reduces the possibilities of getting

stuck in a local minimum. Pre-processing the input data before training can reduce the

training time.

A sufficiently trained ANN can be employed as an analytical tool on other data that it

has not previously seen or been trained with. This stage is called simulation and at this

point the output is retained and no back-propagation occurs. A properly trained ANN will

perform well as an interpolation tool, but usually has a very poor extrapolation

performance. Depending on how well the ANN is trained, it may have very good or poor

approximation capabilities. Usually, a well-trained ANN with good generalisation

capabilities performs well for both interpolation and approximation. Unfortunately there is

no general rule to find out if a new pattern is within the interpolation space (Helliwell et al.

1995) and to have a measure for the generalisation ability is very difficult. Each data set

determines how good the generalisation may be and what for one purpose can be

satisfactory may be useless for another (Holden and Rayner 1995).

32

Deciding on training stoppage time is difficult. Most of the time, having a network with

a small MSE, does not necessarily indicate acceptable predictions on new data from the

same domain. This problem in training is called over-fitting (overtraining). In general, this

problem happens if the trained ANN is more accurate in fitting known data but less

accurate in predicting new data. As it is indicated in Figure ‎2-3, Training error is shown in

blue and validation error in red where both of them are a function of the number of training

cycles. If the validation error upsurges (positive slope) while the training error steadily

decreases (negative slope) then an over-fitting situation may have occurred. In this case,

the training process goes on too long and the network is biased towards the training set.

This practically reduces the generalisation ability of the ANN. In contrast, stopping the

training process too early causes the decision to be very rough. Figure ‎2-4 illustrates the

various possibilities. In order to improve the generalisation of the ANN a set of noisy data

generated from the original data can be introduced in the training process. This also helps

to prevent the possibilities of over-fitting (Mackay 1992).

Figure ‎2-3: Over-fitting problem

33

Figure ‎2-4: Learning and the problem of over-fitting (Schmidt 1996)

For the proposed inverse problem solver to work efficiently the response of the structure

to load, must remain linear. However, nonlinear structures are also considered in later

chapters. The success of a good ANN as depends on the following key points:

 Accurate data collection

 Pre-processing acquired data

 Selection of a suitable ANN type and topology

 Selection of optimised ANN training parameters

 Testing and validation of ANN with new data set

When dealing with ANN, it is possible that the output may not be adequate on the first

design pass. In such situations, the process steps have to be repeated one or more times

until the problems are solved. On some occasions the ANN does not exhibit the

satisfactory performance. This can be due to a wide range of reasons needing to be

investigated such as:

 Unsuitable ANN architecture or learning method

 Insufficient representative data

 Inadequate pre processing

 Unsuitable ANN training parameters

34

However most of the time this is not the case and the ANN will be well trained and

performs satisfactory even on a new untrained data set. Figure ‎2-5 indicates an ANN

problem solving flowchart.

Figure ‎2-5: Example of ANN problem solving model (Zaknich 2003)

2.3 Introduction to Artificial Neural Network

In this section, after defining ANN, a brief historical overview of ANN is described.

Afterwards, simple neuron models as well as common ANN architectures and training

algorithms are introduced. Furthermore, in this section some important hints and general

rules in design of a successful ANN model are presented. Finally, the ANN software

employed in this research is introduced.

2.3.1 Definition of Artificial Neural Network

Artificial Neural Networks is one of the most popular methods of Artificial Intelligence

composed of simple elements inspired by brain biological nervous systems operating in

35

parallel. In fact, the function of the network is principally determined by the connections

between these elements. A neural network can be trained to achieve a specific purpose by

modifying some weights (connection values) of the neurons (elements). In general, the

ANN is trained in order to relate a specific input to a particular target output (Figure ‎2-1).

During the training process, output values are compared with the target ones in an iterative

manner until the target and the network output values are matched as much as possible.

Generally, in order to train a network enough pairs of input and target values (examples)

are required.

ANN can be considered as a black box which is employed to process information in the

way that inputs are taken and outputs are produced. Once an ANN is properly trained, it

can be utilised to do even complex functions in various fields such as learning,

generalisation, pattern recognition, non-linear system modelling or inverse modelling,

feature extraction, categorisation and optimisation. Indeed, a trained ANN is normally used

in applications which are challenging for conventional mathematical methods and the

problem data exhibit nonlinearities, high dimensionality and more often noisy, complex,

imprecise and imperfect sensor data are available.

Haykin (1994) has a more official definition of an ANN as follows:

"A neural network is a massively parallel-distributed processor that has a natural

propensity for storing experiential knowledge and making it available for use. It resembles

the brain in two respects:

1. Knowledge is acquired by the network through a learning process.

2. Inter-neurone connection strengths known as synaptic weights are used to store

knowledge.''

Another definition according to Zurada (1992) is:

"Artificial Neural systems or Neural Networks (NN) are physical cellular systems

which can acquire, store, and utilise experiential knowledge."

A Brief Historical Overview

36

The history of ANN from their roots starting in 1890 to 1987 is described in a work by

Anderson and Rosenfeld (1988). In summary, the first person to publish about the brain

structure and its function was James (1890) which was more related with

neuropsychological research and psychological theories. However, According to Kohonen

(1988), the fundamentals of neural computing were shaped from the theories of Mcculloch

and Pitts (1943). Hebb (1949) defined a technique to update synaptic weights, which is

now called the Hebbian learning method. The ANN was further developed by works of

Farely and Clark (1954), Rosenblatt (1958) and Caianiello (1961). In fact, it was

Rosenblatt who defined one of the most common ANN structures called the perceptron.

His model was simulated employing an IBM 704 computer which became famous as the

"learning machine".

The growth in computer technology in the 1960s was influential in the overall

development of artificial neural models. Nilson (1965) published a book in which he

organised various ANN research of the time. It is still believed that the ADALINE

(ADaptive LInear NEuron) introduced by Widrow and Hoff (1960) is one of the most

important ANN developments from an engineering point of view. This is due to the fact

that ADALINE employed a much faster learning algorithm called the least mean squares

algorithm. This algorithm is still being used in today's multi-layer perceptron.

In 1972, researches by Kohonen (1972) and Anderson (1972) on associative memory,

laid the groundwork for the development of the unsupervised learning or self-organising

networks. in 1982, Kohonen published his self-organising map method (Kohonen 1982). In

the late 1970s, a model for the visual pattern recognition mechanism emerged called the

NEOCOGNITRON (Fukushima 1980, 1982, 1986; Fukushima et al. 1983).

Several noteworthy publications, introduced from 1982 to 1986, had a major effect in

the development of ANN technology. Hopfield (1982) published a paper in 1982 and a

follow-on paper in 1984. These papers introduced ANN structures with the capability of

being generalised with a high degree of robustness. The first International Joint

Conference on Neural Networks was held in 1987 and since then there has been many

research interests in ANN theory and its applications. This era was named as the ―Age of

Neoconnectionism‘‘ by Cowan and Sharp (1988). From then, a number of regular journals

about ANN started such as Neural Computation by MIT Press, the IEEE Transactions on

37

Neural Networks and the Neural Networks Journal of the International Neural Networks

Society.

Nowadays ANNs are used to solve a wide variety of complex scientific and engineering

problems. ANNs can learn from examples, and therefore can be trained to find solutions of

the complex non-linear, multi-dimensional functional relationships without any prior

assumptions about their nature; further, the network is built directly from experimental

data by its self-organizing capabilities.

Various applications of ANN are outlined in many recent papers (Capecchi 2010;

Coello Coello and Lamont 2004; Liu and Li 2004; Livingstone 2008; Pan 2012; Panigrahi

et al. 2010; Rudas et al. 2010; Schumann and Liu 2010; Sivakumar et al. 2010; Xu and

Wunsch 2009; Yang 2010; Yu 2013; Zainun 2011; Zeng and Wang 2010).

 Details about the theory and mathematics behind the neural networks can be found in

several textbooks (Aleksander and Morton 1990; Beale et al. 2012; Bishop 1995; Fausett

1994; Haykin 1994; Swingler 1996). An introduction to the principles of ANN is outlined

below.

2.3.2 Neuron Model

In this section a simple neuron model is described.

2.3.2.1 The Basic Model of the Neuron

A single input neuron is the most basic building block in an ANN. Figure ‎2-6 indicates

a schematic of a single input neuron. Three different functional operations exist in a single

neuron. First, there is a multiplication between two scalar values, input p and the scalar

weight w, to form the product wp, which will be a scalar value as well. This process is

called the weight function. Second is a summation between two scalar values, the weighted

input wp and bias b, to form the net input n. Generally, the bias can be considered as a shift

of the function f to the left by an amount b. The name given to this process is the net input

function. Finally, the net input is passed through the transfer function f, to form the scalar

output a (Equation 1). The last process is called the transfer function.

 (Eq. 1)

38

Figure ‎2-6: Schematic of a single input neuron (Beale et al. 2012)

2.3.2.2 Transfer Functions

A linear or a nonlinear function of n can be used as the transfer function in Figure ‎2-6.

According to the particular specifications of the problem, each neuron may have its

individual specific transfer function. Many transfer functions are employed in various

neurons; however, the following three are the most commonly utilised:

1. The linear transfer function

In the final layer of multilayer networks, usually a linear transfer function is employed.

This is mostly due to the fact that the output of such a transfer function is the same as its

input. In other words, considering Figure ‎2-6, the relation is calculated from Equation 2.

This transfer function is generally used in many applications however it is particularly

common in function fitting problems. Figure ‎2-7 illustrates the graphical representation of

this transfer function. Most of the time, a transfer function is represented using the symbol

which it is indicated in the square to the right of the graph. The general f in Figure ‎2-6 can

be replaced by this symbol in the network diagram blocks to allow better representation of

the specific transfer function being used for each neuron.

 (Eq. 2)

39

Figure ‎2-7: Linear transfer function (Beale et al. 2012)

2. The Log-sigmoid transfer function

Another common transfer function is the log-sigmoid type which is often employed in

the hidden layers of multilayer networks. Due to the fact that this function is differentiable,

usually, the training algorithm used to train the neurons having log-sigmoid transfer

function is a powerful algorithm called back-propagation.

The argument of this transfer function can be any value between plus and minus

infinity, and the output will be scaled to a specific value in the range of 0 to 1 according to

Equation 4. The graphical representation of this function is indicated in Figure ‎2-8.

 (Eq. 4)

Figure ‎2-8: Log-Sigmoid transfer function (Beale et al. 2012)

3. The tan-sigmoid transfer function

Instead of the above functions, a tan-sigmoid transfer function may be used as the

transfer function of the neurons. This function is often employed in the output layer of

40

multilayer networks designed for pattern recognition problems. The tan-sigmoid transfer

function is very similar to the log-sigmoid one and its argument can be any value between

plus and minus infinity. However, the output range is from -1 to +1 according to Equation

5. The graphical representation of this function is indicated in Figure ‎2-9.

 (Eq. 5)

Figure ‎2-9: Tan-Sigmoid transfer function (Beale et al. 2012)

2.3.2.3 Neuron with Vector Input

The simple neuron indicated in Figure ‎2-6 can be easily extended in order to handle

vector inputs. Figure ‎2-10 indicates a single neuron with an R-element input vector.

Having a vector input, each input element is multiplied by its individual weight and the

weighted values are fed to the summing junction. The multiplication is the dot product of

the single row matrix W and the vector p which will be simply Wp (Equation 6). As in

single input neuron with single input, one scalar is achieved from this dot product. This

result is then added to the bias b of the neuron to form the net input n. As before, the

transfer function f acquires the net input n as its argument and the neuron output a will be

the output of this transfer function (Equation 7).

n=

 (Eq. 6)

 (Eq. 7)

41

Figure ‎2-10: single neuron with an R-element input vector (Beale et al. 2012)

2.3.2.4 Feedforward Neural Network Architectures

The multilayer feedforward neural network is the workhorse of many ANN problems

and is used commonly for general function approximation, pattern recognition and function

fitting problems. In fact, a fairly simple feedforward neural network can fit any practical

function. In this section, the architecture of the feedforward neural network as one of the

most common neural network architectures is described. A layer of neurons is created by

combination of two or more single neurons. A specific neural network may have one or

many more of such layers. In the following, a single layer feedforward neural network and

a multiple layer feedforward network will be described.

2.3.2.5 Single Layer Feedforward Neural Network

A single layer neural network which has R input elements and S neurons is illustrated in

Figure ‎2-11. Here, the same input vector p is introduced to a layer of neurons and therefore

each element of it will be connected to each neuron input through the weight matrix W.

The multiplication of Wp would be a vector matrix. Each neuron has a bias which will

be added to row of the vector matrix result of the multiplication Wp to form its own

scalar output . The various taken together form an S-element net input vector n

(Equation 8).

42

 (Eq. 8)

At the end, the transfer function vector f acquires the net input vector n as its argument

and forms the neuron layer output to be a column vector a (Equation 9).

 (Eq. 9)

It should be noted that most of the time the number of inputs to a layer is different from

the number of neurons. In other words R is not necessarily equal to S.

Figure ‎2-11: Single layer neural network (Beale et al. 2012)

2.3.2.6 Multiple Layers Feedforward Neural Network

A neural network can be designed to have more than one layer. In this case, each layer

is like a single layer network and has a weight matrix W, a bias vector b, and an output

vector a. However, in order to distinguish W, b, a, etc. for each of these layers, a particular

superscript is added to the notation of each variable. The utilisations of notations for a

three-layer network are indicated in Figure ‎2-12 and equations (Equation 10-13).

 (Eq. 10)

43

 (Eq. 11)

 (Eq. 12)

 (Eq. 13)

Figure ‎2-12: Multiple Layers Neural Network (Beale et al. 2012)

The layers of a multilayer network have different names. The first layer is called the

input layer. A layer that produces the network output is named an output layer. All other

layers are called hidden layers. The network illustrated in Figure ‎2-12 has one input layer

which has R inputs, two hidden layers and one output layer. The first hidden layer has

 neurons, the second hidden layer has neurons and the third hidden layer has

 neurons. It is common for different layers to have different numbers of neurons. In a

multiple layer neural network the outputs of each intermediate layer are the inputs to the

following layer. Therefore, hidden layer 2 can be considered as a one-layer network with

 inputs, neurons, and a weight matrix . The input to layer 2 is and the

output is . The output layer can be treated in the same way. This means that the input is

 and the output would be .

44

Hidden layers in a feedforward network usually have log-sigmoid or tan-sigmoid

transfer functions. However, most of the time the output layer of the feedforward

architectures has the linear transfer function (Darpa 1988). Having multiple layers of

neurons with nonlinear transfer functions (sigmoid type) allows the network to learn

nonlinear relationships between input and output vectors. The transfer function of the

output layer is most often set to be linear for function fitting (or nonlinear regression)

problems. Alternatively, in the case of pattern recognition problems it is more common to

use the sigmoid transfer function as the output layer transfer function (Lippman 1987).

2.3.3 ANN Types Based on Learning Approaches

The three main learning approaches used in various artificial neural networks are:

Supervised learning type, Reinforcement learning type and Self-organising (Unsupervised

learning) type (Kohonen 1987, 1997; Moller 1993). The first and most common learning

method for ANN is supervised learning. In this type, the ANN is trained using some

representative examples in the form of paired inputs/outputs. In this type of learning

process, the error between the actual network response and the desired one is computed

during each of the training iterations and the magnitude of this error is used to make

modifications to the network‘s weights according to a specific learning algorithm. Weights

are updated in each of the learning iterations so that the error value is gradually reduced

until it reaches a minimum or at least a reasonably small value. A schematic representation

of such learning process is indicated in Figure ‎2-1.

Another learning method is the reinforcement learning type. In this method, computing

the precise error between the actual network output and the desired response is not needed.

Instead, the teacher gives a pass or fail signal for each of the training iterations. In the case

of the fail signal, the network is designed to continue the modification of its parameters

until it reaches a pass signal or to continue for a fixed number of attempts, whichever

comes first. Some have categorised this reinforcement learning method as a special case of

the supervised learning method (Murray et al. 1992).

Finally, in the self-organising type, examples of the inputs are introduced to the ANN

and it will arrange them to form automatic various clustering or inter groupings according

to some previously defined measure of similarity or closeness. This will make it possible to

45

assign specific information to those clusters based on the nature of the problem (Lippman

1987).

2.3.3.1 Multilayer Networks and Back-propagation Training

One of the most common and popular ANN models among many specific ones is the

Back-propagation Neural Network. The popularity is due to its simplicity to understand as

well as its ability to solve many problems in general (Zaknich 2003). However, the ANN

users should bear in mind that back-propagation is a supervised training approach and it

needs enough examples to train. Previously, the term ―back-propagation‖ was used to

refer to the gradient descent algorithm applied to neural network training. However,

nowadays, due to the fact that the process of computing the gradient and Jacobian by

performing calculations backward through the network is applied in most of the training

functions, this terminology is not used most often (Caudill and Butler 1992) . Instead of

utilising this term alone, it is clearer to use the name of the specific optimisation algorithm

that is being used. Likewise, the multilayer network is sometimes recognised as a back-

propagation network. However, the back-propagation technique that is used to compute

gradients and Jacobians in a multilayer network can also be applied to many different

network architectures (Rumelhart et al. 1986).

In order to illustrate how the back-propagation training works, the simplest optimisation

algorithm, gradient descent, is considered here. Employing this algorithm, the network

weights and biases are updated in the direction in which the performance function

decreases most rapidly (Beale et al. 2012). One iteration of training using this algorithm is

according to the Equation 14:

 (Eq. 14)

In Equation 14, is a vector of current weights and biases, is the current gradient,

and is the learning rate. This equation is iterated until the network converges. However,

for large problems this training algorithm can be slow. To solve this, the training speed can

be improved by new learning laws or by putting constraints on some of the weights during

learning (Vogl et al. 1988).

Use of an Artificial Neural Network

46

In this section the principles of an artificial neural network design and usage is

discussed. In order to clarify when use of ANN is preferable over other conventional

methods, advantages and disadvantages of using ANN over conventional computer

algorithms are described.

2.3.4 Advantages and disadvantages of ANNs over conventional computer

algorithms

Although for many applications ANN can provide comparable answers to other

classical techniques, some attractive features of ANN makes it appealing. The two main

advantages of ANNs over conventional computer algorithms are:

1. Ability to handle some noise and error in data.

In reality, most of the signals have some inbuilt noise or errors which make the patterns

slightly different each time. Conventional computer algorithms cannot easily deal with the

error or noise in input data and may result in different output whereas an appropriate and

well-trained ANN can handle the noise in the input data.

2. Desired knowledge based on experience can directly be put into function.

The ANN‘s non-linear nature enables it to handle functions more than the capability of

even the best linear or conventional rule based processing methods. There are many

occasions where conventional methods are too hard. In contrast, a simple ANN can

determine appropriate rules employing its inherent self-organisation process. Due to the

fact that ANN is sensitive to statistical regularities in large data sets, it can derive

important information from actual relationships implicit in the data. Furthermore, as a

result of adaptive nature of ANN, changes and the characteristics of input data can be

adapted and learned in real-time (Caudill 1989).

 Conversely, there are some disadvantages of ANN over conventional computer

algorithms as well. Some major ones are introduced as follows:

1. No unique solution or general design theory.

2. Generally it is not guaranteed that the ANN will converge to its global minimum or

occasionally even will converge at all.

3. May be too slow in the case of large-scale problems when common serial processing

digital computers are employed.

47

4. The number of inputs to the ANN needs to be equal or greater than the number of

outputs.

2.3.5 Design Principles

While each ANN problem and application is unique and no general rule or solution

exists for all the applications, some broad principles can be used to guide the design

process and ensure better results. In fact the design of the specification and parameters of

a particular ANN should be targeted to provide the most appropriate system and best

overall performance according to the specific problem it is dealt with. It is important to not

expect the ANN to do too much on its own without enough related guidance and learning

examples. The ANN designer should perform preliminary feature extraction and data pre-

processing as much as possible to reduce the task of the network.

Various parts of a system or problem may employ an ANN. It is advised to fully

understand the system and what it will do. The input and output data formats should be

identified precisely according to the problem. When the data is collected or generated in a

suitable format, it should be pre-processed and the related features be chosen according to

the specific problem. Features should be selected based on their correlation to the desired

output. Often, it is wise to remove redundant or useless data from data sets. An ANN

generally needs sets of independent input/output vector pairs descriptive of the process.

Three vector sets are needed for training, testing and validation. Alternatively one data set

can be divided in a systematic or random manner to generate the required three vector sets.

The training set is used to train the network weights and biases. Test and validation data

sets are used to ensure better training of the ANN which avoids overfitting and ensures a

more general ANN.

Furthermore, appropriate approaches should be designed to verify and validate the

system performance. In general, it is not easy to measure the characteristics of performance

and limits of ANNs solely with analytical techniques. Hence, it is highly recommended

that a testing regime be defined to ensure its satisfactory performance. For this purpose,

one way is to present the ANN with selected extreme inputs within the possible limits of

system operation.

48

The design of an ANN application should aim to produce the best system and

performance overall. The general neural network design process has the following

principal steps (Hagan et al. 1996):

1. Collect and Prepare the Data.

2. Raw data pre-processing.

3. Network Creation and Configuration.

4. Network Training.

5. Network Validation and post-processing.

6. Use the network.

A typical flowchart of ANN designing is indicated in Figure ‎2-13. Each of the above

steps is described more as follows.

2.3.5.1 Collect and Prepare the Data

The first step to design and use a successful ANN is to collect and prepare sample data

sets. This step is very important due to the fact that the ANN can only be as accurate as the

data that are used to train it. Data sets should cover the whole range of inputs of the

problem (Hagan and Menhaj 1999). This is due to the fact that whilst ANNs are generally

capable of being trained to generalise well within the range of training data sets, they

cannot correctly extrapolate beyond this range. In addition, redundant or useless data

should be removed from data sets.

49

Figure ‎2-13: Flowchart for building an ANN model

Are the Performance and

Regression plots Acceptable?

 Start

Training Data Collection and Preparation

Pre-processing and Dividing of data into subsets

Network Creation and Configuration

1. Trials to find the best weights

2. Trials to find the best activation function

3. Trials to find the optimum no. of hidden layers

4. Trials to find the optimum no. of hidden neurons

5. Trials to find the max no. of iterations

6. Trials to find the optimal network

Save the Network output and training information

Post-processing of Network

No

Stop

Save and Use the Best Network

Yes

Is the Network Stable

and General Enough?

Yes

No

50

2.3.5.2 Pre-processing and Dividing Data into Subsets

Once enough data is collected, in order to have more efficient training, two major steps

have to be carried out before they can be used for training the network: pre-processing and

dividing data into subsets.

It is best to build the pre-processing as a part of the network objective, so whenever the

ANN is utilised, data coming into the network is pre-processed in the same way. One of

the standard pre-processing practices that help to improve training is normalisation of the

input data before applying them to the network. Normalisation should be applied to both

the input vectors and the target vectors in the data set. As a result of normalisation, the

network output will be in a normalised range. Reverse transformation of the network

outputs back into the units of the original target data must be done when the network is put

to use in the field.

Furthermore, the prepared and pre-processed data should be divided into three subsets.

The first subset is the training set, which is used for computing the gradient and updating

the network weights and biases. The others are the test and validation sets.

2.3.5.3 Network Creation and Configuration

Before training the network, the network should be created based on the desired

architecture and its weights and biases initiated according to the data sets. The weights and

biases are initiated according to the network type randomly or can be fixed values.

However, sometimes it may be necessary to reinitialise them. In most software, network

configuration is only possible after it is created. The network configuration includes

examining input and target data sets, setting the network‘s input and output sizes to match

the data, and choosing settings for processing inputs and outputs that will enable best

network performance. The configuration is normally done automatically, when the training

function is called and before the training process starts.

2.3.5.4 Train the Network

Various mathematical techniques can be employed as training and learning functions

where their duty is to perform the adjustment of the ANN weights and biases

automatically. As a matter of fact, the global algorithm affecting all the weights and biases

51

of the ANN is defined by the training function. In the training process, training data sets

prepared in previous steps are applied to the network as inputs and target outputs .

The training process of an ANN involves adjusting the weights and biases of the

network with the aim of network performance optimisation which is defined by a function

called the network performance function. Regularly, Mean Squared Error (MSE) or Sum

of Squared Error (SSE) is used as the performance function for a typical feedforward

network. MSE is the average squared error between the network outputs and the target

outputs (Equation 15). Similarly, SSE is the sum of squared error between the network

outputs and the target outputs (Equation 16) (Beale et al. 2012).

 (Eq. 15)

 (Eq. 16)

Generally two main training styles exist: incremental and batch training. In incremental

training the weights and biases of the network are updated each time an input is presented

to the network. In this case the inputs and targets are presented as sequences. In batch

training the weights and biases are only updated after all the inputs are presented. The

batch training methods are generally more efficient (Beale et al. 2012) .

2.3.5.5 Network Validation and Post-processing (post-training analysis)

Once the network is trained, its performance should be evaluated to see if any of the

training process parameters, the data sets or even network architecture need alteration. To

evaluate the performance of the network, all of the network information during the training

(which is normally saved during the training) should be checked. Most of the new

developed software for ANN contains algorithms that the training information is saved and

can be accessed numerically and graphically. One of the best ways to validate network

performance is to check the performance plot and regression plot.

The performance plot indicates three curves: training, validation and test performance

curves over certain training steps (epochs). Usually when training is performed

successfully all the curves are very similar and the performance values are decreased as the

training process proceeds. However, if the difference between test curve and training curve

52

increases significantly then the training should be stopped. This is due to the fact that the

training process is not converging anymore and it starts to diverge from the minimum

(best) performance value. Furthermore, if the test curve is increased considerably before

the increase of the validation curve, then most often some overfitting problem may happen

and network generalisation capability will largely decrease.

The other plot helpful in validating the network performance is the regression plot. In

this plot the relationship between the outputs of the network and the targets are indicated

by fitting a linear regression line between outputs and targets. In theory, the ideal is to have

a perfect network whose outputs and targets are exactly equal. However, in practice this is

not the case and the relationship is rarely perfect. As an indication of the relationship

between the outputs and targets, an index normally called R is calculated for each

particular regression plot which can be anything between 0 and 1. Considering R=1, there

will be an exact linear relationship between outputs and targets. In contrast, if it becomes

close or equal to zero, then it clearly means that there is no linear relationship between

them. Generally, validation test results with R value greater than 0.9 indicate a linear

relation between targets and network outputs and the training process can be accepted.

However, a decision should be made according to the particular regression plot of each

data set. The scatter plot of data on the regression graph will be very helpful as well to

indicate which certain data points have a poor fit (Beale et al. 2012).

2.3.5.6 Use the Network

After the network is trained and validated, the network object can be used to calculate

the network response to any input in the range of training data. The network can be called

to calculate the outputs for a set of input vectors. The network has its latest weights and

biases that are updated according to the best performance of the network during its training

with training data sets. As a batch mode form of simulation, all the input vectors can be

placed in one matrix which is much more efficient than presenting the vectors one at a

time. A properly trained network will provide reasonable outputs when presented with

inputs that they have never seen. Normally, presenting to the network a new input which is

similar to inputs employed in the training set results in an accurate output. This is known

as network generalisation capability and makes training a network possible with a sample

53

set of input/target pairs and the ANN achieves acceptable results without training with all

possible input/output pairs.

2.3.6 Improving Results

Since there is no general training rule for an ANN and the training process is a relative

process according to the training data set of a particular problem, it is very probable that

the network results may not be satisfactory on the first design pass. In this situation, it is

necessary to redo one or more of the process steps repeatedly until better results are

achieved. When the training process results in a network which is not accurate enough,

several approaches are highly recommended. One way is to initialise the network again and

perform the training again. Initialising a network leads to new initial weights and biases.

When the network parameters are changed, it might result in different solutions. Another

solution is to increase the number of hidden neurons, usually 20 or more. The reason is that

the network will have more flexibility having a larger numbers of neurons in the hidden

layer. It is recommended to increase the layer size gradually. Training a network with too

large a hidden layer is more time consuming and may cause the network to be under-

characterised as well. This means that the network has more parameters to optimise than

there are data vectors to constrain them. The third popular approach is to try a different

training function. Furthermore, different training data can be tried to train the network.

Additional data sets can be used in the training data set or in contrast redundant or

challenging data may be removed from the training data set. Presenting network additional

data is expected to produce a more general network that can handle new data well (Beale et

al. 2012).

Software Implementation

Nowadays, several general artificial neural work software packages are commercially

available and researchers use them in various engineering and science fields. One of the

most comprehensive and all-purpose ANN packages developed so far is the MATLAB

Neural Network Toolbox (MATLAB NNT).

2.3.7 Why MATLAB Neural Network Toolbox

MATLAB (MathWorks, Natick, Massachusetts, USA) a programming language

developed by MathWorks is used widely worldwide and is popular with researchers due to

its easily understood GUI and general programming language (Beale et al. 2012). Indeed,

54

the product families of MATLAB including its specific developed toolboxes are major

computational tools at educational institutions worldwide. This is due to the fact that

MATLAB is an interactive environment which enables the user to access its high-level

language for programming, numerical computation and visualisation of data through well-

developed graphical user interfaces. Various MATLAB toolboxes can be employed at the

same time in a script to perform a variety of functions such as data acquisition, numerical

computation and analysis of data, develop algorithms, and create models and applications.

Its general programming language, built-in maths functions and toolboxes enables the user

to achieve a solution much faster than with spreadsheets or even old-style programming

languages, like C/C++ or Java. MATLAB can be used to develop customised programmes

that can perform a range of functions simultaneously, including data acquisition and signal

processing, test and measurement, numerical computation, as well as code generation and

verification. Furthermore, MATLAB can communicate with most of the standard

commercial hardware and software easily to exchange data (Beale et al. 2012).

MATLAB NNT is popular due to the fact that a variety of architectures including

supervised and unsupervised networks as well as most of the common training algorithms

are supported. Researchers can use a modular approach of MATLAB NNT to build

different networks or even to develop custom network architectures for a specific problem.

Generally, pre-processing of the network inputs and targets improves the efficiency of

neural network training and post-processing enables detailed analysis of network

performance. MATLAB NNT has built-in pre-processing and post-processing

functions that can automatically reduce the dimensions of the input vectors and perform

regression analysis between the network response and the corresponding targets.

Furthermore, at the time of network creation MATLAB NNT performs an automatic data

preprocessing and data division. In addition, during the training process the input and

target values are automatically scaled to the range to improve the training speed

(Beale et al. 2012).

Overfitting is a common problem in the training stage of the neural network. An

overfitted network cannot handle new data or noise in data efficiently. In other words when

overfitting happens, the training set is memorised by the network very well but it cannot

generalise its knowledge to new inputs. MATLAB NNT improves generalisation through

two methods: regularisation and early stopping. The regularisation method automatically

55

modifies the network‘s measure of error and produces a network that performs well with

the training data and exhibits smoother behaviour when presented with new data. In the

early stopping method two different data sets are used. First is the training data set which is

employed to update the weights and biases. Second is the validation data set which is used

to stop training when the network begins to overfit the data (Beale et al. 2012).

The described introductory information about ANN helps to better understand the

methodology employed in this research. In the following chapters, the experiments

designed and performed in this research to fulfil the project objectives are presented.

2.4 Equipment Set Up

In order to investigate the behaviour of marine structures and the application of the

methodology, a 1 Glass Reinforced Fibre Polymer (GRFP) composite panel (as

explained in section ‎1.2.1) as a representative of panels used in a boat is employed to set

up a test rig. The panel is deemed as a suitable representation of a marine structure due to

the fact that most marine crafts are manufactured from a number of flat panels attached to

the frame structure.

The marine composite panel employed in this study is made of 7 layers of stitched

biaxial E-glass cloth and with Ampreg 22 epoxy resin system (all provided by SP

Gurit Systems), hand laid up with a total thickness of m (Figure ‎2-14). The panel

was divided into a four-by-four grid producing sixteen equal regions of area

m
2
 as shown in Figure 2-14. Table ‎2-1 shows the mechanical properties of the glass fibre

as provided by SP Gurit Systems. Whilst static loading is achieved by applying weights

normal to the panel surface, transient loading is achieved by free fall of a cylinder from

various heights normal to the panel surface. Since strain has direct relation with load, as a

suitable panel response to the load, strain gauges are used to measure structural response.

A strain gauge is made of strip of conductive metal which if it is stretched, it will become

skinnier and longer, both changes resulting in an increase of electrical resistance end-to-

end. Conversely, if a strip of conductive metal is placed under compressive force, it will

broaden and shorten. If these stresses are kept within the elastic limit of the metal strip (so

that the strip does not permanently deform), measuring the difference in electrical voltage

and resistance of strip end-to-end can be used as a measuring element for physical force.

56

Strain gauges are frequently used in various engineering research projects. Figure ‎2-15

indicates a strain gauge schematic.

In fact, marine craft are manufactured from a number of flat panels that are structural

members. Their characteristics are such that their thickness is small compared to their other

dimensions. It is important to note that depending on the loading condition and the panel

aspect ratio, the panel shows different behaviour under loading. Panels can be classified

according to their thickness and their lateral deflection compared to their thickness (Boresi

et al. 1993). They can be classified as: 1) thick plate small deflection; 2) thin plate and

small deflection; 3) thin plate large deflection or 4) very thin plate (membranes) with either

small deflection or large deflection. In all cases the solutions are approximate, not exact or

closed form. The deflection at the centre of a plate subject to pressure is offered by

Westergaard and Salter (1921) and is based on modified flexure theory of plates. Where,

depending on the plate aspect ratio, edge boundary conditions and load, different

approximate empirical solutions are found. In such cases a small displacement is defined as

a displacement less than or equal to half the thickness of the plate. If the displacement

exceeds this limit then the problem is treated as a non-linear problem where the

displacement can no longer be accurately predicted using the above theory. This is due to

highly nonlinear double curvature deformation unlike the displacement function stated

above. In large displacement analysis the transverse shear can also no longer be ignored

and if the panel is composite then transverse shear requires further special treatment. In

brief, small displacement leads to a linear relationship between the increase of load and the

panel deflection. In contrast, in the case of large displacement, the relation is no longer

linear and should be treated as a non-linear problem where the displacement can no longer

be accurately predicted using the linear theories.

In this research the linear problem is defined as a panel where the maximum

displacement due to lateral load is around 1/2 to 2/3 of the total panel thickness. Larger

loads causing large displacement are treated as nonlinear displacement, where

displacements is a nonlinear function of the applied load. In such a situation the theory of

superposition used so far can no longer be used to generate the large number of training

data that are required by the ANN. In such cases, alternative methods are needed to

57

generate the necessary training data. The methodology for solving nonlinear inverse

problems will be discussed in later chapters.

Figure ‎2-14: Schematic of the composite panel

Table ‎2-1: Composite Panel Material Specification

Material name XE905

Material type Stitched biaxial

Fibre Volume Fraction 0.46

Longitudinal PROPERTY N/mm
2
 Units

Longitudinal Tensile Modulus 21220
Poissons Ratio (Longitudinal

Strain)
 0.120

Longitudinal Tensile Strength 318.3
Poissons Ratio (Transverse

Strain)
 0.120

Longitudinal Compressive Modulus 21220
Longitudinal Coeff. of Thermal

Expansion
10-6/°K 14.62

Longitudinal Compressive Strength 254.6
Transverse Coeff. of Thermal

Expansion
10-6/°K 14.62

Transverse PROPERTY

Density kg/m
3
 1786

Transverse Tensile Modulus 21220 Structural Ply Thickness mm 0.75

Transverse Tensile Strength 318.3 Actual Ply Weight g/m
2
 1364

Transverse Compressive Modulus 21220 Shear thickness mm 0.75

Transverse Compressive Strength 254.6

SHEAR PROPERTIES

DERIVED SHEAR PROPERTIES @ ±45°

InterLaminar Shear Modulus 3050 Shear material name: 1 x XE905 @ ±45°

InterLaminar Shear Strength 36.6
Axial modulus with fibres

@±45°
N/mm

2
 9737

In-Plane Shear Modulus 3050
Shear modulus with fibres

@45°
N/mm

2
 9471

In-Plane Shear Strength 46.1
Poisson's ratio with fibres

@±45°
 0.596

58

Figure ‎2-15: Schematic of a strain gauge and how it work

Depending on the required number of analogue input channels for each experiment, one

of two Data Acquisition (DAQ) systems were used to acquire data in this project:

Microlink (up to 128 analogue input channels) and National Instruments Equipment (up to

16 analogue input channels).

1. Microlink Equipment

Generally, a DAQ system is constructed from two main parts: data logger and

conditioner. Microlink 751 Multi-function USB Data Acquisition (Figure ‎2-16) and

Microlink 594 conditioning units (Figure ‎2-17) with Windmill 7 Software (Figure ‎2-18)

(all by Biodata, Manchester, UK) are employed each featuring 16 analogue inputs for

strain measurement. Eight USB units can be connected to one computer to monitor up to

128 strain gauges. The Microlink 751-SG is supplied with Windmill data acquisition and

control software. This modular suite of software offers data logging, charting, alarm

indication, output control and real-time data transfer to other applications such as EXCEL,

MATLAB and FORTRAN. Specifications for Microlink 751 Multi-function USB Data

Acquisition are illustrated in Table ‎2-2. Using this data acquisition system, all the strain

gauges were wired and connected to the DAQ system in a quarter bridge configuration.

Although, both half-bridge and full-bridge configurations grant greater sensitivity over the

quarter-bridge circuit, often (specifically in marine structures) it is not possible to bond

complementary pairs of strain gauges to the test specimen. As a result, the quarter-bridge

circuit is frequently used in strain measurement systems. The strain data can be collected

59

directly via Windmill 7 Software or alternatively through bespoke data acquisition/ANN

software linked to the Windmill data acquisition system.

Figure ‎2-16: Microlink 751 Multi-function USB Data Acquisition (Windmill 2011)

Figure ‎2-17: Microlink 594 Bridge Input Unit and Screw Terminals (Windmill 2011)

Figure ‎2-18: The Windmill Chart and Logger programs (Windmill 2011)

60

Table ‎2-2: Windmill 751-TC Unit Specifications (Windmill 2011)

Microlink Equipment Specification

Analogue Inputs 16

Common mode range ±13 V

Resolution

12 bits

15 bits

16 bits

18 bits

Samples/Second

2.5 msec 80

20 msec 32

40 msec 16

160 msec 6

Input voltage range 0 to 5 V

Maximum count speed with low resolution 160 counts per second

2. National Instruments (NI) Equipment

CDAQ system provided by NI consists of a chassis, CDAQ modules, and software.

The chassis can connect to a host computer over USB. The CDAQ system employed in

this study includes NI CDAQ 9236 (350 Ohm) modules mounted on NI CDAQ 9174

Chassis (4 slots) which can provide the strain monitoring and control data acquisition

system with resolution of +/- 0.1 microstrain (Figure ‎2-19). The CDAQ 9236 module is

specifically designed for quarter-bridge strain gauge measurement and contains the

signal converter, connectivity, and conditioning circuitry in a single rugged package

which provides differential inputs to monitor eight strain gauges at up to 10000

samples per second. The strain data can be collected directly via NI Measurement &

Automation Explorer (MAX) or alternatively through bespoke data acquisition/ANN

software linked to the NI-DAQmx Driver.

Figure ‎2-19: NI CDAQ Equipment (Ni 2013)

Various experiments are performed employing the composite panel and data acquisition

systems during this research. The individual experiments set ups used for each of the

experiments are explained in following sections. Since the NI DAQ system is much more

61

reliable and faster than the Microlink one, the preference in DAQ selection was NI system.

As the drawback of the NI system was its maximum 16 analogue channels, should the

experiment need more than 8 channels, the Microlink DAQ system was employed.

2.4.1 Small Displacement Equipment Set Up

In order to investigate the general behaviour of composite a simple test rig is designed

in the form of a flat composite panel. The bottom surface of the composite panel is

supported at four points using rectangular section blocks, each 0.035 m wide, 0.009 m deep

and 0.025 m long (Figure ‎2-20). Loading is achieved by applying masses normal to the

panel surface at the 12 locations indicated in (L1-12). Loading is achieved using masses

lying on a Kg circular section stand (see Figure ‎2-21). When one mass is located on

an area, a small distributed load is applied on the surface.

The panel is divided into sixteen equal areas of and a rectangular strain

gauge rosette is attached to the top surface of the panel at the centre of each region SL1-16.

From sixteen rosette strain gauges attached, 48 strain readings can be acquired. The

specifications of the strain gauges are indicated in the Table ‎2-3. The Microlink DAQ

system is employed to acquire 48 strain readings for this experiment constructed from

three Microlink 751 Multi-function USB Data Acquisition and three 594 conditioning units

with Windmill 7 Software.

62

Figure ‎2-20: Panel drawing with the location of gauges and loading for small displacement experiment

Figure ‎2-21: 5 Kg Weight and 0.05 Kg stand

Table ‎2-3: Rosette Strain Gauges Properties (Vishay_Group 2010)

General purpose Rosette Strain Gauge Properties

Grid Resistance

(OHM)

Gauge Factor TC

(%/100)

Gauge Factor

@24

Gauge

length

Gauge

width

120.0 ±0.6% +1.3±0.2 2.100±0.5% 3.18 mm 1.78 mm

2.4.2 Sensor Optimisation Experimental Setup

In order to optimise the number of strain gauges utilised the same equipment set up is

used as described in Section 2.4.1. However, to investigate the effect of size sensitivity by

63

optimisation of the sensor quantity four more rectangular strain gauge rosettes were also

placed in the middle of the panel (SL17-20) attached at the corners of a m
2
 square

enabling 12 more strain readings (Figure ‎2-22). The additional strain gauges had the same

properties as the original gauges (Table ‎2-3).

The sensor optimisation is based on convenience sampling and some trial and error. A

simple FEA analysis helped to define critical edge distance so that mechanical cross talks

would be avoided and sensors will remain independent. What can cause problem is when

two sensors respond the same to the same load or vice versa. So the sensor optimisation

also helps to find locations to attach strain gauges.

Convenience sampling is a non-probability sampling technique where subjects are

selected because of their convenient accessibility and proximity to the researcher

(Frederick et al. 2011). The sensor locations are selected just because they are the easiest

places to attach the sensors for the study and the researcher did not consider selecting

subjects that are representative of the entire structure. Researchers use convenience

sampling not just because it is easy to use, but because it also has other research

advantages. In pilot studies, convenience sample is usually used because it allows the

researcher to obtain basic data and trends regarding his study without the complications of

using a randomised sample. In all forms of research, it would be ideal to test the entire

population, but in most cases, the population is just too large that it is impossible to include

every individual. This is the reason why most researchers rely on sampling techniques like

convenience sampling, the most common of all sampling techniques. Many researchers

prefer this sampling technique because it is fast, inexpensive, easy and the subjects are

readily available. The most obvious criticism about convenience sampling is sampling bias

and that the sample is not representative of the entire population (Frederick et al. 2011).

64

Figure ‎2-22: Schematic of composite panel indicating strain gauge, loading and support location (Sensor

Optimisation experiment)

2.4.3 Large Displacement Experimental Set Up

In order to investigate the general behaviour of the composite panel the previous test rig

was modified so it was fully fixed and higher loads could be applied. In fact, the previous

test set up could not handle high loads and would fail and change the boundary conditions.

Hence, the new test rig was designed to be fully fixed and the bottom surface of the GRFP

marine composite panel was supported on all four edges using aluminium bars, each

0.0381 m high, 0.01905 m wide and 1m long (Figure 2-23). Sixteen linear strain gauges

(S1-16) were bonded to the centre of each region (specification in Table ‎2-4: Strain gauge

specification). Normal loads were randomly applied to the top surface of the panel at

thirteen grid intersections (L1-13). NI Equipment is used to capture the response of the

structure to the applied loads. For this purpose, Two eight Channel NI cDAQ 9236 (350

Ohm) modules mounted on NI cDAQ 9174 Chassis were used to acquire data (see

Figure ‎2-19) using MATLAB (MathWorks, Natick, Massachusetts, USA) and its Data

65

Acquisition Toolbox capabilities. The gauge resistance is increased to 350 Ohm so better

strain readings can be achieved from composite materials.

Figure ‎2-23: Schematic of composite panel indicating strain gauge, loading and support location (Large

Displacement experiment

Table ‎2-4: Strain gauge specification (Vishay_Group 2010)

Type
General purpose linear

gauge

Resistance 350 ohms ± 0.6%

Gauge factor 2.100±0.5%

Gauge length 6.35 mm

Gauge width 2.54 mm

2.4.4 Drop Test Simulation Set Up

The structure under consideration is the same as the large displacement experiment

(Section 2.4.3) and strain readings (S1-16) are captured from the centre of each of the 16

regions on the top surface of the panel. Loading was achieved by simulating a free fall

66

impact of a rigid mild steel cylinder (length 0.103 m, diameter of 0.02 m and mass of 0.254

kg) normal to the panel surface at thirteen locations (L1-13) from various heights.

Figure ‎2-24 indicates the schematic of the drop test experiment. For this study, the finite

element models are developed and simulated in ABAQUS 6.10-1 (SIMULIA). The

ABAQUS element library provides a complete geometric modelling capability. For this

reason any combination of elements can be used to make up the model. All elements use

numerical integration to allow complete generality in material behaviour. In almost all

elements, primary vector quantities (such as displacements and rotations) are defined in

terms of nodal values with scalar interpolation functions where the interpolation functions

are written in terms of the parametric coordinates. Such isoparametric elements are

guaranteed to be able to represent all rigid body modes and homogeneous deformation

modes exactly, a necessary condition for convergence to the exact solution as the mesh is

refined. ABAQUS will use either "full" or "reduced" integration. For full integration the

number of integration points is sufficient to integrate the virtual work expression exactly,

at least for linear material behaviour. All triangular and tetrahedral elements in ABAQUS

use full integration. Reduced integration can be used for quadrilateral and hexahedral

elements; in this procedure the number of integration points is sufficient to integrate

exactly the contributions of the strain field. In this study, the panel has 7031 elements and

the cylinder has 40 elements. The mesh element type used is hexahedral isoparametric. The

advantage of the reduced integration elements is that the strains and stresses are calculated

at the locations that provide optimal accuracy. A second advantage is that the reduced

number of integration points decreases CPU time and storage requirements. In finite

element modelling, a finer mesh typically results in a more accurate solution. However, as

a mesh is made finer, the computation time increases. Generally, in order to select the

optimum number of mesh elements, a simple mesh convergence study is carried out. In

brief, to perform a mesh convergence study manually, a mesh is created using the fewest,

reasonable number of elements and the model is analysed. The mesh is then recreated with

a denser element distribution and reanalysed and the new results are compared to those of

the previous mesh. Increasing the mesh density and re-analysing the model continued until

the results converge satisfactorily. Figure ‎2-25 indicates a typical Finite Element Analysis

(FEA) model output employed in this study.

67

Figure ‎2-24: Schematic of composite panel (Drop test)

Figure ‎2-25: Meshed FEA Panel

68

2.5 Summary

In order to answer the research question, the proposed methodology is described in this

chapter. This chapter also gives more detailed information about the ANN used in the

proposed methodology as well as the experiment set ups employed in this research. In

brief, this research will explore relevant aspects of the application of hybrid combinations

of ANN, FEA and experimental techniques both in direct and inverse studies. The hybrid

technique will be used to produce solutions to problems that existing measurement or

computing techniques cannot solve. This technique can provide more information faster

than standard existing techniques without the need for knowledge of material/geometrical

properties. The suitability of the proposed methodology will be indicated by successful

prediction of the applied loads. Finally, a real time GUI should be developed allowing

better communication with the system and to change different parameters used for data

acquisition and to control ANN convergence rate etc. The performance of the load

monitoring system will be evaluated by performing various tests by means of applying this

system on a marine structure representative such as a cross section of the boat hull.

69

Chapter 3. General Behaviour of Composite Panel with Attached Strain

Gauges under Small Displacement

This chapter introduces the research undertaken to investigate the general behaviour of

a composite panel with attached strain gauges under small displacement as well as

optimisation of the number of sensors required for accurate load prediction.

70

3.1 Introduction

This chapter reports on the research undertaken to achieve two main objectives of this project

established in Chapter one. The first objective was to develop an ANN methodology for

quantifying static pressure loads on a marine composite panel from strain measurements

collected from the panel under small displacement. The suitability and performance of utilising

an ANN for this experiment is presented in the first section of this chapter. The aim of the first

experiment is to investigate the ANN‘s ability to accurately estimate static pressure loads applied

to up to 12 locations on the structure using 48 strain readings from 16 strain gauge rosettes when

the panel is under small displacement. The second objective covered in this chapter is to

investigate the effect of size sensitivity by optimisation of the sensor quantity. Therefore, in the

second section of this chapter, the research undertaken to optimise and reduce the minimum

possible required number of strain gauges to accurately estimate 12 loads is described.

3.2 General Behaviour of Composite Panel with Attached Strain Gauges under

Small Displacement (Static Load is Applied)

In order to investigate the applicability of the ANN methodology for in-service load

monitoring of marine structures, the first objective is to investigate the general behaviour of a

composite panel as a representative of a marine structure under static load condition. The static

pressure load condition represents the hydrostatic loads applied on a panel of a marine structure

in the water. The following sections describe the methodology and results of this experiment

employed to evaluate the proposed load monitoring system. The constant load equivalent to the

Root Mean Square (RMS) value of the hydrostatic load on the panel causes a small deflection at

the centre of the plate.

3.2.1 Methodology

The methodology and results employed to evaluate the suitability and performance of utilising

an ANN as an inverse problem solver for quantifying the load applied to the composite panel is

presented in this section. The first stage of the investigation was to design a load quantification

methodology for the panel utilising an ANN. In the second stage the load quantification

methodology was validated by comparing loads estimated by the ANN with the actual loads

applied to the panel.

71

3.2.1.1 Collecting the Training Data Using Superposition Theorem

In order to investigate the behaviour of a composite panel used in marine structures and the

application of the methodology, a simple composite panel is employed to set up a simple test rig

(see section ‎2.4.1 for equipment set up). The initial aim was to understand the material behaviour

and strain measurement sensitivity to various applied loads. Moreover, the aim is to

experimentally capture data which can be used to relate known loading conditions to the

response of the panel employing the proposed methodology. For this purpose, the GRFP

composite panel is loaded by applying weights normal to the panel surface at the 12 locations

indicated in Figure ‎2-20 (L1-12). Since strain has a direct relation with load, it is deemed a

suitable panel response to the load and is used in this research to measure structural response.

When one weight is located on an area, a small distributed load is applied on the surface. Known

loads were applied to the predetermined load locations and the corresponding voltages from the

strain gauges were recorded. It is worth noting that the strain gauge measurement is based on

measuring induced difference in voltage in the circuit for even small displacements. Employing

an ANN the exact value of the strain or any value proportional to it will be handled the same.

Therefore, it is also possible to determine the applied load from the value of voltage measured

from the gauge instead of the exact strain values.

In real circumstances the number of sensors needs to be optimised to reduce the cost and

weight as well as computation efforts. This means that the locations used to measure the

structural response must be selected carefully. These locations have to be sensitive to change in

applied load. Furthermore, the responses collected must be unique for each set of applied loads.

The load locations also should be fixed indicating the locations where load data are to be

predicted by the ANN. If strain is collected from non-sensitive regions of the panel and/or the

strain data collected is not unique for each load distribution the ANN is less likely to be able to

find a function relating the input and output.

In order to train a network at least two sets of data as inputs and the desired response pairs are

required. These sets of data (training data) should be enough to cover the whole range of applied

loads. Gathering all of this data can be time consuming especially when many data sets are

required and collecting each set individually should be avoided when possible. There are other

72

ways to create data sets based on manipulating only a small amount of the acquired data such as

curve fitting or superposition methods. In this investigation, should the structural response have a

linear behaviour within the range of applied loads, data collection can be achieved more quickly

employing the theory of superposition. In other words, if the material and structure of this test

behave linearly within the range of applied loads, the theory of superposition can be used to

generate data sets. This theory states that the strain at a point on a structure due to a series of

loads is equal to the sum of the strains from each individual load case (Sewell et al. 2010). For

example, applying loads L1 and L2 to a hanging plate causes the three strains (S1–S3). This can

alternatively be found by applying each load separately and summing the strains at each location

(Figure ‎3-1). This theory enables the generation of an infinite number of training patterns from

data collected by applying one known load to each location on the structure individually.

Figure ‎3-1: Theory of Superposition Example (Sewell et al. 2010)

Applying a load at each required position separately, a data matrix is generated where the

columns represent each load case and here the first three rows represent the strains captured due

to each load (Figure ‎3-2).

Figure ‎3-2: Example of acquired data from experiment (Sewell et al. 2010)

73

Using superposition any number of training patterns (n) can be generated using a random

number generator that produces values between the minimum and a maximum load value

specified. The maximum and minimum values should be the limits of the loads that can occur on

the component. Figure ‎3-3 and Figure ‎3-4 show the training input and target data sets generation

method using the example training file in Figure ‎3-2.

Figure ‎3-3: Generation of training input (strains) (Sewell et al. 2010)

Figure ‎3-4: Generation of training output (load) (Sewell et al. 2010)

Employing the superposition theorem, a training data matrix can be generated, where the

columns represent each load case having M strain readings and N load values for pre-determined

loading locations (see Figure ‎3-5). Using the superposition theorem, it is possible to have the

desired number (K) of data vectors using a random number generator that produces values

between the minimum and a maximum load value specified. Setting the limits of data according

to the maximum and minimum of possible applied loads domain enables the coverage of all load

scenarios for a specific application. In order to improve the generalisation of an ANN a set of

74

noisy data generated from the original data can be introduced in the training data. The noise

value can be either added or subtracted from a predefined number of the data in a random

manner.

Figure ‎3-5: Example of the training file

In this study, the panel was divided by 16 equal patches and in the middle of each patch one

strain gauge rosette was attached (see Figure ‎2-14). This means that 48 strain readings from 16

rosettes (inputs) and 12 load readings from 12 locations (outputs) were used with the

superposition method to generate 1396 sets of training data from which 700 data sets are for

cases when all 12 locations are loaded randomly and 696 data sets are for cases when only one

loading location is loaded randomly within the loading envelope (58 data sets for each loading

location). In fact, for each data set 12 random loads (zero or non zero) are applied at locations on

the panel and the resultant 48 strains caused by these random loads were acquired to find the

relationship between the input/output data. 280 data sets are used for test and validation during

training to ensure convergence. This represented almost twenty percent of the original 1396 total

patterns generated. 200 noisy patterns were also added to the training data based on the level of

noise in the data acquisition system (+/- 1 microstrain). It should be noted that if the structure

responses in terms of displacement indicate much bigger values than the noise and accuracy of

the DAQ system (which is the case), the small noise of the DAQ system can even be neglected.

 In this experiment, utilising the superposition theorem to generate training data from

experimental data and employing the inverse approach to relate strain response to the applied

loads, practically the material properties of the composite panel are not required at the training

stage. Furthermore, due to the major advantage of the inverse approach, the material properties

75

are not required to quantify the load applied to the structure after ANN training. ANN training is

achieved using MATLAB NNT capabilities.

3.2.1.2 ANN Architecture/Topology

An iterative process was used to determine the optimum network architecture for the panel

based on the value of the final MSE of each network tested. The number of layers chosen can

have an effect on the efficiency of the network. However, due to the relatively low number of

inputs and outputs involved in this example this was not deemed to be an important factor to

consider when selecting the architecture.

It was determined, through the testing of some random network architectures, that an ANN

network having one hidden layer with 22 neurons that each has tan-sig as transfer function

indicates acceptable training performance. The output layer had 12 neurons (representing the 12

loads to be estimated) and used a pure-lin transfer function (see Figure ‎3-6). The final

specification of the ANN is shown in Table 3-1.

Figure ‎3-6: MATLAB representation of optimum ANN architecture

Table ‎3-1: Architecture of the artificial neural network

Feature Details

Architecture Feed forward back-propagation

Number of layers 2

Data process Normalisation

Noise generator +/-1 microstrain on 200 of training patterns

Range of loads 0 to 196.2N

Number of inputs (surface strains) 48

Number neurons in output layer 12

Number of neurons in hidden layer 22

Number of training patterns 1116

Number of testing patterns 280

Number of problem patterns Depends on the number of patterns collected

76

It is always possible to over-train the ANN if not careful, which means that the ANN has been

trained to respond to only one type of input. To ensure the ANN was not over-trained the

training was supervised to ensure that the MSE of the testing data did not increase, which is an

indication of over-training. The ANN was trained to minimise the MSE. The final training MSE

was approximately 4x10
-3

, which took under three minutes to reach. In other words applying the

same data set employed in training to the network as inputs, the mean of squared errors between

the ANN estimated loads and desired ones are as small as 4x10
-3

 N.

3.2.1.3 ANN Validation and Performance

The validity and performance of the ANN method was evaluated by comparing the load

estimated by the ANN with known loads applied to the panel (problem data). What is referred as

experimental problem data is the captured strain data from the 48 strain gauges attached to the

panel while it is being loaded.

The first validation study utilised load and strain data generated from the original superposition

data collected to produce the training data. This meant that any issues with the repeatability of

the strains collected for a given load were removed. In the second study, problem strain data was

captured directly from the panel under different loading conditions (i.e. one or two random loads

were placed at random locations on the panel) and again the estimated loads compared with the

actual applied loads.

3.2.2 Results and Discussion

This section analyses and discusses the experimental results. In order to investigate the

general behaviour of the composite panel with attached strain gauges under small displacement,

a specific test rig and equipment setup is employed. This experiment is performed under static

loading condition. Loading is achieved by applying gravity force of various dead weights. In this

test, raw data is the strain readings from 16 rosette strain measurement sensors placed in the

centre of the composite panel. In total 48 strain readings are achieved in one data acquisition call

back. Three strain readings are set to be zero due to unreliable readings which was in result of

manual error at the time of soldering the wire to these small strain gauges. The collected data

77

then needs to be checked for reliability of results. This will be in terms of having stable,

repeatable data each time that the loading condition is the same.

3.2.2.1 Validity of Data Collection and Analysis

In this section, to ensure that data acquisition system reading is acceptable, validity of

assumptions is checked. For this purpose, a set of experiments were performed over several days

to investigate repeatability of the system as well as the amount of drift it may experience in a

normal room condition where it is located.

3.2.2.2 Reliability of Data readings

The strain data was collected through bespoke data acquisition/ANN software linked to the

Windmill data acquisition system. This software was developed by the author in MATLAB

utilising Windmill Direct Data Exchange (DDE) protocols to acquire the strain data and the

MATLAB Artificial Neural Network Toolbox capabilities. It is found that the data was

experiencing a very small drift over the time (usually in hours). These drifts in values are not a

big issue because they all experience the same drift. This can be easily removed by zeroing the

data acquisition system or using the difference in strain readings for loaded and unloaded

situations. In this study, to eliminate the effect of drift after some hours of running the device, it

is decided to introduce extra data acquisition when the system is unloaded before each loading.

This data set is then employed as a reference for zeroing the strain readings for the unloaded

system. The results indicated that this removed the effect of drift from the strain readings.

Although the system was assumed to have almost no effect of drift, there have been other

difficulties such as noise in data. Most of the readings experienced a maximum sudden change of

up to 7 microstrain (see Figure ‎3-7). This happened when DAQ system setting‘s resolution was

set to 15 bits. The noise issue was reduced by introducing an averaging algorithm in the data

acquisition function in the program.

Another important aspect is the repeatability of the data reading for the same loading

condition. This is confirmed by having the same pattern of data for the same loading condition.

For this purpose several data sets are acquired over a relatively long period. For instance,

Figure ‎3-8 depicts acquired data set for loading 10 kgf on location 10, eighteen days apart.

78

Furthermore, Figure ‎3-9 indicates acquired data set for loading 1 kgf on location 11, two days

apart. These figures show that the data acquisition gives acceptable repeatable readings over

time.

Figure ‎3-7: Data Logger

Figure ‎3-8: Data Reading set for loading 10 Kg on location 10 after 18 days

79

Figure ‎3-9: Data Reading set for loading 1 Kg on location 11 after 2 days

3.2.2.3 Fixed Supports to Rule out Twist Factor

It is important to note that the inverse problem relates one set of data to another set of data. In

other words, the network acts as a transfer function of a specific structure which recognises the

patterns of this specific structure response to certain loading conditions and employs them to

predict almost the same loading conditions another time for the same structure. This is done

without the need of having any information about the material properties and geometry of the

structure. This implies that the panel has to have the same geometry configuration all the time.

For this purpose it is reminded that the panel geometry in this test rig, which is constructed of the

panel itself and its supports, has to have the same geometry configuration. This can be achieved

by having fixed supports acting as negative loading in this configuration. In order to eliminate

the chance of lost contact between the supports and the table, the loading is limited to the gravity

force of masses up to 12 kg (experimentally tested). This is in fact due to the limitation of

experimental set up where the panel only rests on four supports and extra loading will change the

boundary condition and the testing condition may no longer be the same.

3.2.2.4 Linearity of Results

In this experiment, the acquired data is employed, as a set of known experimental data, for

generating two data sets: ANN training and experimental test data sets. In fact, acquired data is

used in a programme utilising random number generation and superposition theorem functions to

80

generate the required number of loading and response data sets. But before that, it is needed to

make sure that the superposition assumption of linearity relation is the case here.

As was described earlier, to utilise the superposition technique for data generation, data

should have a linear relation inherently. In order to check this, in the range of the loading (0-

12Kg), some experiments are performed and their data are compared. Investigations indicated a

linear relation between the loading from gravity force of the weights and the response of the

structure to that loading condition in the range of the loading (0-12Kg). Some examples of this

linear relation are illustrated in Figure ‎3-10 for randomly selected strain sensors and loading

locations. This confirms that superposition can be used.

Figure ‎3-10: Examples of the linear relation between the loading and the response of the structure

3.2.2.5 Small Displacement Test results (Network Prediction)

In order to generate the required number of loading and response data sets employing the

superposition method (the system shows linear behaviour), some loading and response data sets

are experimentally generated and normalised to generate a unique loading set. In this loading

data set, the structure strain readings as the response to specific loading conditions are required.

The specific loading conditions are when all twelve positions are individually loaded by the same

gravity force of mass at the time. Due to the fact that this data set is the resource for generating

all other different random load data sets employing the superposition theorem, a series of tests is

81

performed and then the average values are used to reduce the effect of human error. For this

purpose, each of the twelve loading points is loaded by the gravity force of five various masses

(selected in the range of 0-12Kg as 2Kg, 5Kg, 7Kg, 10Kg, and 12 Kg). The data acquisition

system acquired and saved the response of the system. All the data sets are normalised and

averaged to have twelve data sets for the load cases when one load at a time is applied to the

panel and the rest are zero. Each data set for loading cases is saved as a column vector with 60

rows. The first 48 rows are strain readings and rows 49-60 are the dead weight values applying

the loads. The complete one at a time loading cases will be a matrix of data set having 60 rows

and twelve Columns. In this thesis, this matrix is named: ―original reference data matrix‘‘.

Using the superposition theorem, this original reference data matrix is manipulated and the

number of desired training data sets are produced. Each training data set consists of a matrix with

size of strain readings as the training input data to network and a matrix with size of

 weight values as representative of the loads as the training target data. A back-

propagation network with a hidden layer is employed initially to be trained and tested.

In order to test the network, a set of data was generated employing the experimental set up

and test rig. Since this set of data is not seen by the network in thetraining stage, it is used to

evaluate the prediction of the system. In order to test the network, a set of experimental data was

generated employing the experimental set up and test rig. The training stage of the network is a

time consuming procedure and several characteristics of the network and data sets can be

configured to have a generalised trained network capable of good prediction. Figure ‎3-11 shows

the comparison between actual and predicted loads. The data for this graph is from a data set in

the form of a matrix of having K=1396 loading cases, each containing 60 data (48

Strain and 12 load representatives). This data was generated by the superposition method

randomly for gravity force of the dead weights between 0-20 Kg. In order to enhance the system

performance some noisy patterns (± 1 micro strain) are introduced to randomly chosen strain

data.

It is not possible generally to quantify the performance characteristics and bounds of an ANN

system by any analytical techniques. Therefore, it is very important to subject it to a thorough

testing regime to ensure it will perform adequately. Therefore, the performance accuracy,

82

reliability and robustness of the system are investigated by presenting it with some extreme

inputs which are within the possible bounds of system operation. For this purpose, the network

is presented with new data to check its functionality. The results in Figure ‎3-11 indicate an error

of less than between the predicted and expected values.

Figure ‎3-11: Net. Predicted vs. Expected Values for new data generated data by superposition

In order to check the prediction of the network, the same test is performed for different

loading conditions. The behaviour of the system prediction over a range of loading quantities

was studied. As it is illustrated in the Figure ‎3-12, the prediction is almost perfect for the range that

the system is trained with its data (0-20 Kg). This figure indicates behaviour of the system

prediction over a range of loading quantities where each time, all the 12 positions are loaded

equally. For instance once all the 12 positions are loaded with 5 Kg masses and the structural

responses are read through DAQ system. This set of strain readings are introduced to the

previously trained network. The network ideally has to predict 5 Kg for all the 12 loading

positions. With the same error margin discussed earlier, predictions agreed with what were

expected. Although the network was trained with data for load cases ranging 0-20 Kg, the

results indicate that the network is capable of prediction approximately up to 30 Kg. It can be

83

noted that as range of the load cases exceed that of which the network is trained with, the

prediction loses its accuracy. This is due to the inherent lack of extrapolation properties of ANN.

In other words, the network is able to predict best in the same criteria that it has been trained

with and is subject to upper and lower bound of the loading envelope. To subject the system to

extreme upper and lower bound loads of the working load envelope of the operating conditions,

the system should be trained with a bigger working load envelop to predict realistic loads.

Figure ‎3-12: Behaviour of the system prediction over a range of loading quantities

The results to date indicate the suitability of this method for load prediction. In the next

investigation, the ANN is experimentally validated. A MATLAB script is developed in the way

that it is able to acquire strain data directly from the panel and introduce it to the network as new

input data (see appendix 3-5 for the developed MATLAB program). The trained network is now

able to simulate and predict loading data in terms of the applied mass in Kg in real time and get

the panel responses as the input and relate them to the load that has caused them. As a testing

regime to ensure network performs adequately, the performance accuracy, reliability and

robustness of the system are investigated by presenting it with some extreme inputs which are

within the possible bounds of system operation. This can be having one load at one location and

the others are assumed zero. Figure ‎3-13 is a random example of the system performance for

84

load prediction. Figure ‎3-14 is another random example of the system performance for load

prediction where this time two loading locations are loaded and the rest are not loaded. The

negative values are due to the network approximation for the new set of inputs. In fact, due to the

errors in the data acquisition stage, a slightly different pattern is introduced to the system and the

network approximated the output with some error (see Figure ‎3-15). Further improvements in

terms of more accurate data acquisition and optimised training parameters for the network may

solve this issue.

Figure ‎3-13: Net. Prediction vs. Expected Values for experimental data (one area loaded)

85

Figure ‎3-14: Net. Prediction vs. Expected Values for experimental data (two areas loaded)

Figure ‎3-15: Comparison of the experimental data and data generated by superposition

86

3.2.3 Summary and Conclusion

It is shown that the inverse problem approach can be used to predict the loads applied on a

marine structure composite panel. Results from a small displacement experiment setup indicated

very good performance of the methodology in load prediction which can be achieved in real

time, providing an accurate load history for a component. This potentially makes the system

ideal for solving many classes of engineering problem that require load monitoring and/or

structural health monitoring. The results of this study can be summarised as follows:

 An ANN can be trained using experimental based data for direct and inverse problems.

 A real time experimental and an inverse problem engine can be created using a combination

of ANN and experimental data.

 It is shown that a mathematical relationship exist between the applied loads and the surface

strains and can be related by employing the ANN system which always converges and the

MSE is in the range of acceptable error.

 The system is effectively capable of predicting the static loads.

 Although there is no general rule to select the training parameters, changing various

parameters in the training stage of a network (structured or randomly) may result in

improvements in the network‘s learning ability.

 When obtaining response data from the composite panel, generally the higher the load the

higher structure response in terms of displacement values (in microstrain) are experienced.

Since the noise of the DAQ system is a fixed value (in microstrain), with higher loads the

effect of the noise in DAQ system is reduced and the system will indicate more accurate

results.

 The main source of error was found to be the difference between the experimental strains and

the strains acquired by the data acquisition system which is caused by human and device

error.

Furthermore, this experiment is performed employing a large number of strain readings.

However, it is not very practical and cost effective to attach many sensors to the panel.

Therefore, more research is needed to optimise the number of sensors and investigate the effect

of geometry size in predictions.

87

3.3 Sensor Optimization

In Section 3.2, the capability of the system to estimate the loads applied on a marine

structure composite panel was demonstrated. Furthermore, it was also concluded from the

previous study that more research is needed to optimise the number of sensors and

investigate the effect of geometry size in predictions. This is due to the fact that for an

ideal system, the number of sensors should be minimised to reduce the overall training

time, cost and weight of the system. In fact, the aim of this optimisation is to use the

minimum number of sensors with maximum coverage with respect to the load. In this

section, the research undertaken to investigate the number of sensors required for accurate

load estimation by optimising the method is presented. The methodology of the

experiment, results and discussions as well as this particular experiment conclusion are

described.

3.3.1 Methodology

The methodology employed to generate training data sets and optimise the quantity of

sensors based on the performance of various trained ANN as an inverse problem solver for

quantifying the load applied to the composite panel is presented in this section. The first

stage of the investigation was to design a load quantification methodology for the panel

utilising an ANN. In the second stage the load quantification methodology was validated

by comparing loads estimated by the ANN with the known loading cases of the panel.

3.3.1.1 Generation of ANN Training Data

The efficiency of the training data collection process can be increased by reducing the

amount of data collected. This is achieved again in this experiment by using the theory of

superposition (test is still small displacement loading and data are linear) to generate

training and testing patterns from the independent parent patterns, as discussed in

Section ‎3.2.1.1. The theory of superposition states that the strain at a point on a structure

due to a series of loads is equal to the sum of the strains from each individual load case.

Using this theory, an infinite number of training patterns can be generated by applying one

known load to each location on the structure individually.

88

3.3.1.2 ANN Architecture/Topology.

In this study a common Back-propagation ANN architecture is used and trained

employing MATLAB Artificial Neural Network toolbox capabilities. An iterative process

was used to determine the optimum network architecture for the panel based on the value

of the final Sum of the Squared Errors (SSE) of each network tested. As described before,

SSE is a measure of the discrepancy between the data and an estimation model. A small

SSE indicates a tight fit of the model to the data. Table ‎3-2 lists the major parameters of

the network architecture selected based on convenience sampling used in this study.

Table ‎3-2: ANN architecture parameters (optimisation experiment)

Architecture Feed Forward Back-propagation

Number of layers in each network 2

Range of load estimation 0-196.2 [N]

No. of inputs (surface strains) 48,18,15,12

No. of output layer neurons (loads) 12

No. of each hidden layer neurons [20 20]

Number of training patterns 1116

Number of testing patterns 280

3.3.1.3 Optimisation

The equipment set up of this experiment is described in Section ‎2.4.2. In order to

optimise the number of gauges, various sensor configurations are employed to acquire and

generate training data sets and the corresponding ANN is trained. The performance of each

ANN in terms of SSE is used for comparison. The aim of this optimisation is to minimise

the number of strain gauges needed to reasonably estimate the magnitude of load at twelve

loading locations on the composite panel.

In this study, the number of rosettes are reduced/optimised in several steps and the

effect on the performance of the load estimation methodology is investigated. Due to the

inherent characteristic of an ANN, reduction of the number of inputs is limited by the

number of outputs. Hence, a minimum of twelve strain inputs are required to be able to

successfully estimate twelve load outputs. Therefore, the minimum number of rosettes that

could be used to successfully predict twelve loads is four. In order to optimise the number

of the strain gauges, the number of gauges are reduced step by step from 16 (48 readings)

to 6 (18 readings), 5 (15 readings) and 4 rosettes (12 readings) respectively. There are

multiple permutations for selecting 6, 5 or 4 rosettes from the 16 rosettes attached to the

panel. Since the aim of this study was first to find the optimum number of gauges, random

89

permutations of gauges were based on convenience sampling and the ANN performance

using the SSE values for each ANN were compared. It was then possible to determine the

optimum number of gauges required to achieve a high quality estimation of the 12 loads

from this study. A further strategy for optimising the sensor locations was then also

investigated.

3.3.1.4 ANN Validation and Performance

Finally, the validity of the ANN using the optimised strain gauges was evaluated by

comparing the load estimated by the ANN with known loads applied to the panel (problem

data). Experimental problem data is the captured strain data from the optimised strain

gauges attached to the panel while it is being loaded. It is essential that the strain data is

captured at identical locations for both the training and problem data. The first validation

study utilised load and strain data generated from the original superposition data collected

to produce the training data of the optimised sensor configuration. This meant that any

issues with the repeatability of the strains collected for a given load were removed. In the

second study, problem strain data for the same sensor configuration was captured directly

from the panel under different loading conditions (i.e. one or two random loads were

placed at random locations on the panel) and again the estimated loads compared with the

actual applied loads.

3.3.2 Results and Discussion

Having introduced the proposed methodology, this section analyses and discusses the

results of this optimisation study.

3.3.2.1 Optimisation

A selection of the optimisation tests and the ANN performance results are presented in

Table ‎3-3. The results show that as the number of the rosettes is reduced, the SSE values as

performance indicators of various random tests are reasonably small values. The highest

SSE performance value is 2.963 which itself is a very low, even negligible error. This

implies that even for cases with only 6, 5 or 4 rosettes, the ANN is trained well and it is

capable of estimating the magnitude and position of the applied loads. The results indicated

that utilising only 4 rosettes (12 strain readings) it is possible to accurately estimate applied

loads on all 12 locations (L1-12).

90

Table ‎3-3: Comparison of ANN performance SSE for various sensor configurations

 16 Rosette Locations () Performance SSE

Random Test 1 1-16 1.520

 6 Rosette Locations () Performance SSE

Random Test 1 2 , 3, 6, 11, 14, 15 1.670

Random Test 2 3, 6, 8, 9,11, 14 0.842

Random Test 3 5, 6, 7, 10, 11, 12 2.376

Random Test 4 6,7, 8, 9, 10, 11 2.038

 5 Rosette Locations () Performance SSE

Random Test 1 2, 5, 7, 10, 15, 1.442

Random Test 2 3, 6, 7, 10, 14 2.963

 4 Rosette Locations () Performance SSE

Random Test 1 3, 6, 11, 14 2.643

Random Test 2 4, 7, 10 ,13 2.185

Random Test 3 5, 8, 9, 12 2.642

Random Test 4 5, 8, 9 ,12 1.208

Furthermore, in practice, it is more desirable to have the minimum number of strain

gauges attached only in one small area on the structure. Hence, 4 new rosettes were

attached much closer together in the middle of the panel (Figure ‎2-22, SL17-20) and the

performance of the ANN was investigated. Achieving reasonable results enables the

gauges to be placed in just a small portion of the panel and yet be able to accurately

estimate the position and the value of 12 externally applied loads (SL17-20). The SSE

performance value of this test was 8.259 which is still a small value and indicates a tight fit

of the model to the data.

3.3.2.2 Validation using Superposition Data

 In order to validate the trained network, a set of problem strain data was generated from

the panel using the 12 strain readings from the optimised patch (S49-60). Since this set of

data had not been seen by the network during the training stage, it can be used to evaluate

the accuracy of the ANN‘s load estimation. The theory of superposition was used to

generate problem data (12 loads and 12 strains generated on the panel surface from these

loads) for loads between 0 N and 196.2 N. These were introduced to the ANN and the

estimated loads calculated by the ANN compared to the expected load profile. Figure ‎3-16

and Figure ‎3-17 indicate typical examples where the estimated load value by ANN can be

compared with expected values from superposition. The figures indicate that ANN

estimates the load data very well from superimposed strain data.

91

Figure ‎3-16: Estimated load data by ANN vs. expected load values (from superposition at location L1)

Figure ‎3-17: Estimated load data by ANN vs. expected load values (from superposition at location L6)

3.3.2.3 Validation using Direct Data

In order to validate the generalisation performance of the trained ANN system, new

acquired strain data directly from the experiment (which ANN was not trained with) are

introduced to the trained network. This strain data was gathered by applying loads at the

extremes of the range that the network was trained to estimate (0-196.2 N). Figure 3-18

and Figure 3-19 indicate typical examples of the comparison between the actual loads

applied to the panel with the ANN estimated loads generated from the introduced problem

data. In these examples, one load is applied to the panel. For both sets of problem data it

can be seen that the ANN can again estimate the load at the loaded locations with a high

degree of accuracy. However, slightly different values (for instance in Figure 3-18: 51.16

-20

0

20

40

60

80

100

L1 L2 L3 L4 L5 L6 L7 L8 L9 L10 L11 L12

Lo
ad

 [
N

]

Loading Location

ANN output Superposition Test

Desired Output SuperpositionTest

-10

0

10

20

30

40

50

60

L1 L2 L3 L4 L5 L6 L7 L8 L9 L10 L11 L12

Lo
ad

 [
N

]

Loading Location

ANN output Superposition Test

Desired Output SuperpositionTest

92

N Vs. 49.59 N instead of 50 N and in Figure 3-19: 153.56 N Vs. 147.79 N instead of 150

N) are achieved. These small errors are related to the network generalisation capabilities to

handle a new set of inputs. In fact, due to the errors in the data acquisition stage, a slightly

different pattern is introduced to the system and the network estimated the output with

some error. Further improvements in terms of better data acquisition and optimised

training parameters for the network may solve or improve this issue.

Figure ‎3-18: Estimated load data by ANN Vs. expected load values (from experiment at location L6)

Figure ‎3-19: Estimated load data by ANN Vs. expected load values (from experiment at location L12)

93

3.4 Discussion and Conclusion

Establishing an inverse problem analysis approach for structural analysis can result in

important advantages over simulation, numerical or theoretical methods. Through utilising

such a method, knowledge of the component material constitutive laws and component

geometry are not required. In contrast, they are necessary for valid and accurate simulation,

numerical or theoretical analysis. The results presented in this section show that the inverse

problem method, utilising an ANN, can accurately estimate the position and magnitude of

12 static loads applied to the composite panel from 4 strain gauge rosettes placed close to

each other in the centre of the panel. The results indicate that the system always converges,

the SSE is small and in the range of acceptable error. This means that an ANN can be

trained using experimental data to solve inverse problems and accurately estimate the static

loads. Although, the first validation study indicated that the estimated load data by the

ANN almost perfectly fits the expected load values from superposition, small error values

were seen in the second validation study. The main source of error was found to be in the

reliability of the data acquisition system utilised due to the large variance in the strain data

collected at different time intervals. However, the noise to strain ratio decreases as the load

increases which results in less variances in strain data patterns. Having more similar strain

data patterns to those employed to train the network leads to a better load estimation

output.

The ability to measure the actual load history of a craft in-service would enable the

designer to validate the load estimation and structural design tools used during the design

stage of a craft. This would lead to the development of more optimal structure designs for

this type of craft. The operational safety of the craft can also be improved by having a real-

time load monitoring system that is able to detect any degradation of the structural integrity

and defects within the structure.

The aim of this experiment was to establish an inverse load monitoring approach based

on directly acquired structural response from an optimised set of sensors. It has been

shown that the inverse problem approach can be used to estimate 12 loads applied on a

composite marine panel from the strain measurements from 4 strain gauge rosettes. A

comparison of the optimised ANN loads with the actual applied loads indicated a very

good performance of the methodology. This was achieved in real-time, providing an

94

accurate load history for a component without requiring knowledge of the material

properties or component geometry. This potentially makes the system ideal for solving

many classes of complex engineering problem that require load monitoring. The results of

this study can be summarised as follows:

 An ANN can be trained using experimental based data from only 4 strain gauge

rosettes

 A real time experimental and an inverse problem engine can be created using a

combination of ANN and experimental data all from the middle of the panel close

together

 The system is effectively capable of predicting the static loads with the minimum

possible strain gauge readings

 The main source of error was found to be the difference between the experimental

strains and the strains acquired by data acquisition system which is caused by human

and device error.

3.5 Summary

The findings from both experiments of this chapter indicate that should the structural

response have a linear behaviour within the range of applied loads, the ANN can be trained

employing experimental based data. However, non-linear behaviour is inevitable for higher

load ranges and needs further investigations. In the next chapter, the general behaviour of a

composite panel with attached strain gauges under a large displacement and drop test will

be investigated.

95

Chapter 4. General Behaviour of Composite Panel with Attached Strain

Gauges under a Large Displacement and Drop Test

This chapter introduces the research undertaken to investigate the general behaviour of

a composite panel with attached strain gauges under large displacement as well as transient

loading condition.

96

4.1 Introduction

In the previous chapter the proposed methodology for quantifying static pressure loads on a

marine composite panel from strain measurements collected from the panel under small

displacement was investigated. The performance of utilising an ANN was acceptable and the

system proved to be satisfactory and is effectively capable of predicting the static loads.

Furthermore, the quantities of the sensors were optimised and acceptable load estimation was

still achieved. However, the proposed methodology can be used for situations when a linear

relation exists between the load and the structural response. In this chapter, the research

undertaken to further develop the methodology is presented. The ideal load monitoring system

should be able to successfully estimate applied loads on the structure even if the relation between

the load and structural response is not linear. Normally, nonlinear behaviour is exhibited from

marine panels. This is due to the fact that the panel deflections exceed the linear limit. Therefore,

the problem is treated as a non-linear problem where the displacement can no longer be

accurately predicted using the linear theories. In such cases, the classical inverse approach used

previously, based on utilising data generated from superposition, can no longer be employed due

to the complexity of the displacement function.

In this section, a new experiment is designed and performed having a larger load range. In the

first section of this chapter, the proposed load monitoring system is modified to handle the

nonlinear loading conditions. The aim of the first experiment is to investigate the ANN ability to

accurately estimate static pressure loads applied to up to 13 locations on the structure using 16

strain readings from 16 unidirectional strain gauges when the panel is under large displacement.

In addition to static loading conditions, it is necessary to perform more investigations on the

suitability of the proposed methodology for in-service load monitoring of marine structures

under transient load conditions such as slamming. For this purpose, an experiment is designed

and performed to further develop the ANN methodology for quantifying pressure loads on a

marine composite panel under transient load conditions from strain measurements.

Therefore, in the second section of this chapter, the research undertaken to develop a specific

methodology and to modify the proposed system for in-service load monitoring of a composite

panel under transient load conditions such as drop test are described.

97

4.2 Large Displacement Experiment Setup under Static Loading condition

This section reports on the research undertaken to further develop the ANN methodology to

quantify static pressure/central load on a composite marine panel from its non-linear

displacements.

4.2.1 Methodology

The methodology employed to evaluate the suitability of ANN as an inverse problem to relate

structural response to the loads applied is presented in this section. A back-propagation ANN

was designed and developed and trained within the MATLAB simulation environment to

measure transverse load on a flat composite marine panel. The estimated output was then

validated by comparing it against both experimental and numerical data.

4.2.1.1 Generation of Training Data

In order to investigate the general behaviour of a composite panel used in marine structures

and the application of the ANN methodology under large displacement, the same composite

panel is employed to set up a fully fixed test rig (see section ‎2.4.1for equipment set up). Normal

loads were randomly applied to the top surface of the panel at thirteen grid intersections (L1-13).

Depending on the proximity of the gauge and the applied loads different gauges exhibited

different levels of sensitivity which was as expected. To produce efficient training data the strain

data should be captured at the sensitive regions (i.e. the strain at those locations must vary

significantly due to changes in load level). In addition, the strain data collected must provide a

unique response for each load distribution. If strain is collected from non-sensitive regions of the

panel and/or the strain data collected is not unique for each load distribution the ANN is less

likely to be able to find a function relating the input and output.

For nonlinear structures an alternative approach is needed in order to generate the required

training data. There are two ways in which such data can be generated, a) experimentally or b)

using a nonlinear Finite Element Analysis (FEA) solver. Generating the required training data

experimentally is very time consuming and labour intensive. Therefore, nonlinear FEA analysis

using a script that allowed automatic generation of random load on the panel was utilised to

generate the training data. ABAQUS 6.10-1 FEA software (SIMULIA) was used. A script

98

function written in Python language was used to iteratively run the software in a batch using

different random loads applied at each of the thirteen loading locations on the panel. The FEA

model was initially validated to ensure that it represented the actual panel accurately. The

validation was achieved by comparing strains collected experimentally with the FEA strains

under the same loading conditions. Loads from 100 N to 800 N applied in 100 N increments

were placed on the panel one at a time on locations L1 to L13. The strain readings at locations

S1 to S16 on the panel were saved for each test. The same tests were performed with FEA to

compare with the experimental results.

Once validated, a large number of training (load/strain response) data was able to be

generated from the FEA model. In order to increase the efficiency of generating the training

data, it was possible to reduce the number of FEA models required to establish the nonlinear

strain response for each gauge location. This was achieved by fitting nonlinear curves to data

collected for each strain location and using the curves to interpolate strain data for different load

magnitudes.

The structural responses of the panel in terms of strain were saved to be used as the input

training data set. The corresponding load for each input data set was also saved and utilised as

the output training set. Some of these input and outputs were saved separately for testing the

network and error minimisation. In this study, sixteen single strain gauge readings (inputs) and

thirteen applied loads (outputs) constitute one training data set. At each loading location (L1-

L13), static load ranging between 24.525 N and 784.8 N was applied in steps of 24.525 N. In

total 1040 training data sets were generated from the nonlinear FEA model.

4.2.1.2 ANN Architecture/Topology

Due to inherent non-linearity in data of this experiment, it is expected that the training would

not be as fast as training of linear data. Therefore, in addition to the ANN architecture employed

in the small displacement experiment, a novel ANN architecture is introduced and investigated.

This means two different ANN architectures are studied for this experiment and their

performances are compared. The architectures utilised were:

1) One network with sixteen neurons in the input layer and thirteen neurons in the output layer

is trained to estimate the load on the panel from the strain responses (Figure ‎4-1).

99

2) Thirteen networks each with sixteen neurons in the input layer and one neuron in output

layer are trained and used to estimate the load on the panel from the strain responses

(Figure ‎4-2).

The number of hidden layers and neurons in each hidden layer of the two network

architectures were flexible. These were dependent on the complexity of the training data sets

and were optimised according to the network performance. The Sum of Squared Errors (SSE)

and Mean of Squared Errors (MSE) are common network performance indicators. Through the

testing of various network architectures, the optimum network having the lowest performance

indicator can be determined. Once the ANN is trained, it can be employed to estimate new

loading cases where the same patterns exist. In other words, whenever the same pattern of strain

reading as an input is introduced to the network, it will be able to estimate the loads that caused

those structure responses. Depending on how well the network is trained (the performance of the

network), there will be error between the output data set and the network estimated output (load).

Figure ‎4-1: MATLAB representation of ANN architecture for method one

100

Figure ‎4-2: MATLAB representation of ANN architecture for method two

4.2.1.3 ANN Validation and Performance

The validity and performance of the ANN method was evaluated by comparing the load

estimated by the ANN with known loads applied to the panel which were not seen by the

network during the training process. The first validation study utilised load and strain data

generated from the FEA model and was compared with estimated loads from the ANN. In the

second study, problem strain data was captured directly from the panel and again the estimated

loads were compared with the actual applied loads.

4.2.1.4 PYTHON Script of Large Displacement Experiment Description

As it was described earlier, training data for ANN is generated using FEA modelling. This

was due to the fact that for nonlinear structures an alternative approach to the superposition

theorem could be employed. Furthermore, since experimentally acquiring all the training data is

very time consuming and labour intensive, nonlinear FEA analysis using a script that allowed

automatic generation of random load on the panel was utilised to generate the training data. In

this section, the script utilised to model and simulate various experiments in ABAQUS 6.10-1

FEA software (SIMULIA) is described. Figure ‎4-3 indicates a flow diagram of this code. For

clarification purposes, this script is divided in several parts and can be accessed in Appendix 1.

101

Figure ‎4-3: Flowchart of PYTHON Script of Large Displacement Experiment Description

102

The first part is essential to recall different libraries in programme (script lines 1-15). In Part

2, Modelling of the panel has been defined. If there is no input in each parameter, a default input

number is considered. The script lines 16-20 define the test structure under consideration (see

section ‎2.4.1).

The script lines 21-53 define partitions on the panel surface. Within the Part module, Partition

toolset can be used to partition a part into additional regions. After a part is partitioned, different

properties can be assigned to the resulting regions. For instance, here this helps to define where

the loads are applied and where the structural responses are collected. As it is indicated in the

Figure ‎4-4, several partitions are defined on the panel part. This figure indicates that 13 circles

are defined to specify loading surface locations as well as 16 rectangles representing the location

of strain gauges.

In part 3 (script lines 54-62), the material properties as well as the section are defined and

related together. The assembly instance is defined and the part is meshed. The panel part is

meshed with seeds having approximate global seed size of 0.05 and the element type used is

hexahedral isoparametric. This seed global size is a relative value based on the size of the part

instance with no dimension and is selected based on a simple mesh convergence study. After

meshing the part, 7031 elements are generated on part. Furthermore, the meshed part as well as

all the resulting elements is illustrated in Figure ‎4-5.

103

Figure ‎4-4: Partitioned panel (16 rectangles and 13 circles)

Figure ‎4-5: Meshed Part (7031 elements)

In part 4, the partitions are selected in order and they are assigned to a specific surface feature

in the assembly toolset (script lines 63-96). Here, the partitions are used to define a new surface

list in the assembly toolset. Each of these surfaces will have particular names which can be easily

addressed in the script. This helps the program access each surface easily. The script line 97,

104

defines a row vector containing the name of each of the created surfaces. This vector can be then

accessed easier in the numerical manipulation in a loop.

Part 5 (script line 98) is for definition of the boundary conditions. Due to the fact that the

panel is fully fixed, ENCASTER (U1=U2=U3=UR1=UR2=UR3=0) is selected as the boundary

condition for all 4 edge surfaces of the panel. The boundary condition of the panel is illustrated

in Figure ‎4-6.

Figure ‎4-6: Fully fixed boundary condition

The field output requests are defined in Part 6 (script line 99). The necessary field output of

this model for this experiment is elastic strain components (EE). Furthermore, it is necessary to

define the loading of the structure before job creation. The loading is defined in Part 7 (script

lines 100_106). The loading of this experiment is modelled with distributed pressure type loads

over the circular area. The modelling simulates the loading from the pressure load applied from

the weights distributed over the circular area with radius of 16 mm. Figure ‎4-7 indicates the

loading of Load_Surf_1.

The PYTHON script is developed in the way that iteratively runs the software in a batch using

different random loads applied at each of the thirteen loading locations on the panel. For this

purpose, loops are defined in the script to iteratively simulate various loading scenarios. The

flowchart of this iteration in summary is that the model is defined in the first 6 parts and then a

105

loop is used to iteratively define loads over various loading locations as well as creating a job.

Each of the jobs are submitted for analysis individually and the results are post processed and the

necessary structural responses from the strain gauge locations are collected and saved in a

specific file with a particular order.

Figure ‎4-7: distributed Pressure load (Load_Surf_1)

The main iteration loop starts from part 7 where the loading location is defined and a pressure

load is applied on that location. In part 8 another loop is defined inside the previous one which

enables it to have several simulations for each loading scenario. In other words, in part 7 for

example, L1 is considered for loading and in part 8, the value of the load is updated in each

iteration and a new job is created and then submitted for analysis. It is important to note that by

the end of each analysis, ABAQUS saves all the results for the field output requests in an output

file (*.odb) which can be accessed anytime later. On the other hand, when the job is completed

by Python or by opening the desired *.odb file, all different output results can be viewed in

ABAQUS without the need for submitting the job again each time. Figure ‎4-8 indicates the

schematic of one simulation where the load is only applied at one loading location L1.

In the last part of this script (script lines 115-132), each of the simulation *.odb output files

are accessed and the desired results are read and saved in specific order in a text file. In this

106

experiment elastic strain components for particular element of the panel part are saved in a text

file.

FEA modelling is used to save time and cost compared to experimental analysis. However,

still it is possible to save more using curve fitting for data generation. In order to clarify this,

assume that a data set with 100 values between 1 and 100 is needed. One way is to randomly

generate loads in each simulation and after 100 simulations, all the data is ready. Az alternative

approach can do fewer simulations, which covers all the load range, and then fit a curve for each

loading condition. An infinite number of data can then be read from the curves to generate the

training data set.

Figure ‎4-8: Schematic of a Large displacement experiment simulation result

107

4.2.2 Results

As it was mentioned earlier in this chapter, in order to investigate the general behaviour of

composite panel with attached strain gauges under large displacement, a specific test rig and

equipment setup is employed and modelled in FEA as well. This experiment is performed under

static loading conditions. Loading is achieved by applying gravity force of various dead weights.

In this section, to ensure that the data acquisition system reading is acceptable, validity of

assumptions is checked. For this purpose, a set of experiments were performed over several days

to investigate repeatability of the system as well as the amount of drift it may experience in a

normal room condition where it is located. The strain data was collected through bespoke data

acquisition/ANN software linked to the NI cDAQ data acquisition system. This software was

developed by the author in MATLAB utilising NI Direct Data Exchange (DDE) protocols to

acquire the strain data and the MATLAB Artificial Neural Network Toolbox capabilities. It is

found that the data is experiencing a small drift over time (usually in just some microstrains in

hours). In order to eliminate the effect of drifts after some hours of running the device, it is

decided to introduce extra data acquisition when the system is unloaded before each loading.

This data set is then employed as a reference for zeroing the strain readings for the unloaded

system. The results indicated that there is no visible effect of drifts in strain reading anymore. In

reality this can be avoided by employing other gauges like FBG sensors or more accurate DAQ

systems with auto zeroing possibilities. Although the system was assumed to have almost no

effect of drifts anymore, there have been other difficulties such as very small noise in data. Most

of the readings experienced a maximum sudden change of up to 2 microstrains. Although, this

noise is very small and should not be an issue in reality, it can be reduced by introducing an

averaging algorithm in the data acquisition function in the program. However, in practice the

structural responses to the applied loads have much bigger variations (in hundreds) rather than

just one or two micro strain noise and it can be handled with a well-trained generalised network.

Another thing to check is the repeatability of the data reading for the same loading condition.

This is confirmed by having the same pattern of data for the same loading condition. For this

purpose several data sets are acquired over a relatively long period indicating that the data

acquisition gives acceptable repeatable readings over time. The validity of utilising FEA for

108

training data generation and the ANN validity and performance are detailed in the following

sections.

4.2.2.1 FEA Model Validation

For this study, the finite element models are developed and simulated and a script function

written in Python language was used to iteratively run the software in a batch using different

random loads applied at each of the thirteen loading locations on the panel.

The FEA model is initially validated to ensure that it represented the actual panel accurately.

The validation was achieved by comparing strains collected experimentally with the FEA strains

under the same loading conditions. Loads from 100 N to 800 N applied in 100 N increments

were placed on the panel one at a time on locations L1 to L13. The strain readings at locations

S1 to S16 on the panel were saved for each test. The same tests were performed with FEA to

compare with the experimental results. Figure ‎4-9 and Figure ‎4-10 indicate comparison of FEA

and experimental data for two example strain gauges (S6 and S10) when only location L13 is

loaded. It can be illustrated that there is reasonable agreement between the strain readings of

FEA tests and experimental tests. The average percentage error between FEA and Experimental

data for the selected strain gauges are less than 7% (Figure ‎4-11 and Figure ‎4-12). These results

indicate that the FEA model can be confidently used to simulate various loading conditions and

to generate the required training input data.

Figure ‎4-9: Comparison of FEA and Experimental data selected strain gauges (S6)

0

20

40

60

80

100

120

140

0 100 200 300 400 500 600 700 800

St
ra

in
 (

M
ic

ro
 s

tr
ai

n
)

Load (N)

Strain S6

Experimental Test

FEA Test

109

Figure ‎4-10: Comparison of FEA and Experimental data selected strain gauges (S10)

Figure ‎4-11: Error between FEA and Experimental data selected strain gauges (S6)

Figure ‎4-12: Error between FEA and Experimental data selected strain gauges (S10)

0

20

40

60

80

100

120

140

0 100 200 300 400 500 600 700 800

St
ra

in
 (

M
ic

ro
 s

tr
ai

n
)

Load (N)

Strain S10

Experimental Test

FEA Test

0

2

4

6

8

10

0 200 400 600 800

Er
ro

r
(%

)

Load (N)

Strain S6

Strain 6

0

2

4

6

8

10

0 200 400 600 800

Er
ro

r
(%

)

Load (N)

Strain S10

Strain 10

110

4.2.2.2 ANN Validation and Performance

As mentioned in section ‎4.2.1.2, two different methods are employed to define the networks.

Table ‎4-1 lists the major parameters of the network architecture used in the two methods. It was

determined, through the testing of various network architectures that the optimum network

(lowest SSE) for method one had two hidden layers with twenty neurons and used a tan-sig

transfer function. The output layer had thirteen neurons (representing the thirteen loads to be

estimated) and used a pure-lin transfer function. Similarly, it was determined that the thirteen

networks for method two had one hidden layer each with fifty neurons and used a tan-sig transfer

function. The output layer of each network had one neuron (each network estimates

corresponding load of one location) and used a pure-lin transfer function.

Table ‎4-1: ANN Architectures

 1 Network with 16

Strain input and 13 Load

outputs

13 Networks each 16 Strain

input and 1 Load output

Number of networks 1 13

Architecture Feed Forward Back-propagation

Number of layers in each network 2 1
Range of load estimation 24.525 –784.8 (N) 24.525 - 784.8 (N)
No. of inputs (surface strains) 16 16
No. of output layer neurons (loads) 13 1
No. of each hidden layer neurons [20 20] [50]

Number of training patterns 1040 1040

Number of testing patterns 1040 1040

In this study, SSE is used as performance indicator. Once the networks were trained, SSE

values between the estimated loads and training load data were calculated. Each network has an

individual SSE value. This means that although the first method has only one SSE value, the

second method had thirteen SSE values. Figure ‎4-13 indicates SSE performance of all thirteen

networks each having sixteen inputs (all strain readings) and one output (load at one location)

111

generated from the second network architecture.

Figure ‎4-13: SSE Performance of network architecture 2

In order to compare the two methods, the summation of all the networks SSE values in the

second method is compared to the SSE value of the first method when only a network with

sixteen inputs and thirteen outputs were used to train the system. As it is indicated in

Figure ‎4-14, a better performance for the second method is achieved.

Figure ‎4-14: Comparison of the SSE values of the two network architectures

0
5

10
15
20
25
30
35
40

SSE
Net_1

SSE
Net_2

SSE
Net_3

SSE
Net_4

SSE
Net_5

SSE
Net_6

SSE
Net_7

SSE
Net_8

SSE
Net_9

SSE
Net_10

SSE
Net_11

SSE
Net_12

SSE
Net_13

SS
E

Loading Location Number

13 Networks each 16 input and 1 output Performance

Second Method Test 1

118/563

4،217/000

0

1000

2000

3000

4000

5000

13 nets 16_1 Sum
SSE

1 nets 16_13 SSE

Sum of Squared Error Comparison

Test 1

112

In addition to having a better performance, the second method has more flexibility. This

means having thirteen independent networks, for each load location a separate new network

architecture and parameters can be employed. For instance, the sum of the estimation

performances of networks in the second method can be improved by changing the network

architecture of those networks (eight and twelve from Figure ‎4-13) having relatively higher SSE

values. As it is illustrated in Table ‎4-2, for locations eight and twelve, networks with two layers

with twenty neurons are used. The improvement in SSE for networks eight and twelve with the

new architectures can be seen in Figure ‎4-15.

Table ‎4-2: Optimum ANN Architecture (method 2)

13 Networks each 16 Strain input and 1 Load output

Number of networks 13

Architecture Feed Forward Back-propagation

Number of layers in each network Most of it has 1 and for location 8 and 12

are 2

Range of loads 0 - 809.3 (N)

Number of inputs (surface strains) 16

Number neurons in output layer (normal loads) 1

Number of neurons in in each hidden layer [50] or [20 20]

Number of training patterns 1040

Number of testing patterns 1040

Figure ‎4-15: Flexibility of Second method in training stage

33/873

32/320

14/870

10/836

0

5

10

15

20

25

30

35

40

1 2 3 4 5 6 7 8 9 10 11 12 13

SS
E

Network Number

13 Networks each 16 input and 1 output Performance

Second Method Test 1

Second Method Test 2

113

In order to investigate the capability of the ANN to estimate loads in real time, once the ANN

is trained, new strain data from different loading cases are introduced to it. Having a good

performance, the ANN should be able to estimate the external pressure loads that caused those

structure responses. For instance, introducing new sets of strain data that have not been used to

train the network, the ANN estimates the corresponding load data. Depending on how well the

network is trained (the performance of the network), there will be error between the expected

output data set and the network estimated output (loads). Figure ‎4-16 depict a random example

of estimated loads with the ANN for both FEA and experimental tests against the desired loads

applied in tests when there is only one external load of 300 N at location L13 (data is used to

train the network). Figure ‎4-17 and Figure ‎4-18 indicate other examples when there is only one

external load of 200 N at location L1 and load of 200 N at location L7. For both sets of problem

data it can be seen that the ANN can again estimate the load at the loaded locations with a high

degree of accuracy. However, the error size of estimated loads with the ANN for experimental

tests is slightly bigger. Such small error is normal and it could be from initial error between FEA

data and experimental data, errors induced from the repeatability of the data acquisition system

with resolution of +/- 0.1 microstrain as well as possible overtraining of the ANN.

The estimated negative load values at the unloaded locations were due to the differences

between the strain data collected to generate the training data and the collected problem strain

data. Due to these errors, slightly different strain patterns are introduced to the ANN producing

the errors in the estimated loads. The introduction of further noisy patterns in the training data set

may reduce these small errors, indicating that further work could be carried out to improve the

accuracy further.

114

Figure ‎4-16: ANN estimation for FEA and experimental data Vs. Expected real data for L13

Figure ‎4-17: ANN estimation for FEA and experimental data Vs. Expected real data for L1

-50

0

50

100

150

200

250

300

350

1 2 3 4 5 6 7 8 9 10 11 12 13

Lo
ad

 (
N

)

Loading Location Number

ANN Load Estimation comparison

Actual External Load

ANN Estimation from FEA data

ANN Estimation from Experimental data

-50

0

50

100

150

200

250

1 2 3 4 5 6 7 8 9 10 11 12 13

Lo
ad

 (
N

)

Loading Location Number

ANN Load Estimation comparison

Actual External Load

ANN Estimation from FEA data

ANN Estimation from Experimental data

115

Figure ‎4-18: ANN estimation for FEA and experimental data Vs. Expected real data for L7

4.2.3 Conclusion

In this study, it is shown that that the inverse problem method, utilising an ANN, is capable of

estimating magnitude and position of the static pressure loads on a marine composite panel under

large displacement from nonlinear strain measurements. The results of this study can be

summarised as follows:

 FEA data can be used to generate training data for ANN inverse load estimation problems.

 Two different ANN architectures are used and the performances are compared.

 Having nonlinear relationships between the applied load and the surface strains, the system

always converges and the SSE is in the range of acceptable error.

 The system is capable of estimating the position and magnitude of static pressure loads on a

marine composite panel under large displacement.

 Having a large difference between the training data sets and the problem data set makes the

ANN unable to estimate the load accurately.

 The main source of error was found to be in initial error between FEA data and experimental

data.

-100

-50

0

50

100

150

200

250

300

350

1 2 3 4 5 6 7 8 9 10 11 12 13

Lo
ad

 (
N

)

Loading Location Number

ANN Load Estimation comparison

Actual External Load

ANN Estimation from FEA data

ANN Estimation from Experimental
data

116

In this study, a comparison of the ANN loads with the actual applied loads indicated a very

good performance of the methodology. This was achieved in real-time, providing an accurate

load history. This potentially makes the system ideal for solving many classes of complex

engineering problem that require load monitoring.

It is proposed that the ANN methodology, with further research and development, could be

utilised for the quantification of in-service, transient loads in real-time acting on the craft from

the craft‘s structural response (strain response to load). This would provide valuable information

to influence future craft design. In order to fully evaluate the proposed methodology for in-

service load monitoring of marine structures the following areas require investigation:

 The behaviour of marine structures under transient load conditions (dynamic load is

applied).

 The effect of size of the structure on the ANN estimation accuracy.

 Validation of the methodology on a craft in-service.

Finally, a GUI should be developed allowing control of various parameters of the data

acquisition and load monitoring system, as well as graphical display in real-time.

117

4.3 Predicting Impact Loads Using Artificial Neural Networks

So far, it is shown that the inverse problem approach can be used to estimate the static loads

applied on a marine composite panel from the strain measurements when behaving both linearly

and nonlinearly. A comparison of the ANN loads with the actual applied loads indicated a very

good performance of the methodology. However, it was discussed that more investigation is

necessary to further evaluate the suitability of the proposed methodology for in-service load

monitoring of marine structures under transient load conditions such as slamming. In brief,

transient or impact loading is important due to the fact that they can cause damage and

delamination. Furthermore, the impulses from an impact are substantially larger than static loads

which cause larger displacement and excitation of the hull structure and leads to shock transfer

into the hull and passengers which can also affect the stability of the craft. For reasons like these,

it is desirable to link the effect of impact on the hull to the knowledge of the dynamic or transient

load intensities and their locations. That is why it is needed to develop a test that detects impact

and the impact loads are substantially larger than static loads causing larger displacement. This

section reports on the research undertaken to further develop the ANN methodology for

quantifying pressure loads on a marine composite panel under transient load conditions such as a

drop test from strain measurements. For this purpose, an experiment is designed and performed

to further develop the ANN methodology for quantifying pressure loads on a marine composite

panel under transient load conditions from strain measurements (see section ‎2.4.3 for equipment

set up). In this study, the impact loads (the cause/output) on a composite panel are quantified by

acquiring repeatable peak strain responses (the effect/input) to these loads from the panel.

4.3.1 Methodology

The methodology employed to evaluate the suitability and performance of utilising an ANN

as an inverse problem solver for quantifying the transient load applied to the composite panel is

presented in this section. The first stage of the investigation was to design an impact load

quantification methodology for the panel utilising an ANN. In the second stage the load

quantification methodology was validated by comparing loads estimated by the ANN with the

known loading cases of the panel.

118

4.3.1.1 Simulation Setup and Generation of ANN Training Data

The structure under consideration is described earlier in section ‎2.4.3. Loading in this

experiment is achieved by simulating a free fall impact of a rigid mild steel cylinder (length

0.103 m, diameter of 0.02 m and mass of 0.254 kg) normal to the panel surface at 13 locations

(L1-13) from various heights. For this study, the finite element models are developed and

simulated in ABAQUS 6.10-1 (SIMULIA). The panel has 7031 elements and the cylinder has 40

elements. Mesh type used is hexahedral isoparametric.

Generating the required training data sets may be through experimental tests or the use of

simulation such as FEA. However, having a validated FEA model would dramatically save in

time and costs compared to the experimental tests. In this study, an FEA model is developed and

validated against experimental results. Employing a Python script in the FEA model allows

automatic generation of various loading conditions by changing the velocity of cylinder just

before impact. The structural response of the panel in terms of strain readings and velocity values

for specific locations are evaluated.

4.3.1.2 PYTHON Script of Drop Test Experiment

This section describes the script written in PYTHON language for automatic modelling and

simulation of various loading scenarios used in the drop test experiment. The panel model

employed for this test is the same one that has already been validated with static loads.

Figure ‎4-19 indicates a flow diagram of this code. For clarification purposes, this script is

divided in several parts as well and can be accessed in Appendix 2. The script is developed in the

way that iteratively runs the software in a batch using different random heights which is used to

calculate the velocity of cylinder just before impact. The cylinder position can be changed in

each of the iterations so that the impact can happen at each of the thirteen loading locations on

the panel. In this script, loops are defined to iteratively simulate various impact loading

scenarios. The flowchart of this iteration in summary is that the model is defined in first 4 parts

and then a loop is used to iteratively define loads over various loading locations as well as

creating a job. Each of the jobs are submitted for analysis individually and the results are post

processed and the necessary structural responses from the strain gauge locations are collected

and saved in a specific file with a particular order.

119

Figure ‎4-19: Flowchart of PYTHON Script of Drop Test Experiment

120

As in the previous script, the first part is essential to recall different libraries in the

programme (script lines 1-14). In Part 2, modelling of the panel and the cylinder are defined. The

script lines 15-57 define the test structure under consideration which was a 1 m
2
 GFRP

composite panel and a mild steel cylinder. Figure ‎4-20 and Figure ‎4-21 indicate the modelled

panel and cylinder as a part in ABAQUS. In this part partitions are defined on the panel surface

as well. After a part is partitioned, different properties can be assigned to or read from the

resulting regions. For instance, here this helps to define different mesh values to different regions

of the panel as well as having the same sized element for all the strain locations. As is indicated

in the Figure ‎4-20, several rectangular and circular partitions are defined on the panel part.

Figure ‎4-20: Panel part in modelling of the drop test

121

Figure ‎4-21: Cylinder part in modelling of the drop test

In part 3 (script lines 58-72), the material properties as well as the sections are defined, related

together and the assembly instance is defined. In this part, the panel part is meshed with seeds

having approximate global seed size of 0.05 and the mesh element type used is hexahedral

isoparametric. After meshing the part, 7031 elements are generated on part. Furthermore, the

cylinder part is meshed with seeds having approximate global seed size of 0.01 and the mesh

element type used is hexahedral isoparametric. After meshing the part, 40 elements are generated

on the part. It should be noted that these global seed sizes are selected based on simple mesh

convergence studies. The meshed parts as well as all the resulting elements are illustrated in

Figure ‎4-22 and Figure ‎4-23.

122

Figure ‎4-22: Panel part is meshed and has 7031 elements

Figure ‎4-23: Cylinder part is meshed and has 40 elements

In part 4 (script lines 73-84), the dynamic step and field output requests are defined. The

necessary field output of this model for this experiment is calculated in 100 increments in just

0.02 (dynamic step time) seconds after impact. Furthermore the panel boundary conditions are

defined in this part. Due to the fact that the panel is fully fixed, ENCASTER

(U1=U2=U3=UR1=UR2=UR3=0) is selected as the boundary condition for all 4 edge surfaces

123

of the panel. The boundary condition of the panel is illustrated in Figure ‎4-24. In this part, the

contact properties between the panel and the cylinder parts are defined. In addition an initial

velocity is defined for the cylinder. This is the velocity of the cylinder just before impact.

However the value of this velocity is updated later in the loops of the script based on the desired

free fall height.

Figure ‎4-24: Fully Fixed Boundary condition for the panel edges

The main iteration loop starts from part 5 (script lines 85-97), where the loading location and

the height of cylinder are defined and an impact happens at that location. The impact is defined

in each iteration based on the value of the free fall height defined in script line 92-93. The energy

from the falling cylinder is transferred to the panel during the impact. The modelling simulates

the loading from the impact as well as the system response to the impact. Figure ‎4-25 indicates

the defined velocity of the cylinder just before impact.

124

Figure ‎4-25: Velocity just before impact is calculated for specific free fall height of the cylinder

Once the value of the height is updated in each iteration and a new job is created and then will

be submitted for analysis. Figure ‎4-26 indicates the schematic of one simulation where the load is

only applied at one loading location.

Figure ‎4-26: Schematic of impact simulation results

125

In the last part of this script (script lines 98-121), each of the simulation *.odb output files are

accessed and the desired results are read and saved in specific order in a text file. In this

experiment normal strain, elastic strain and displacement components for particular elements of

the panel part are saved in a text file. Furthermore, the velocity of the cylinder in each interval is

saved as well.

4.3.1.3 ANN Architecture/Topology

In this study a common Back-propagation, ANN architecture is used and trained employing

MATLAB Artificial Neural Network toolbox capabilities. The network has an input layer with

16 neurons (as there are 16 strain readings), output layer with13 neurons (as there are 13 loading

positions) and some hidden layers each having any number of neurons. An iterative process was

used to determine the optimum network architecture for the panel based on the performance of

each network tested. In this study, three hidden layers each having 20 neurons was found to be

the optimum.

4.3.1.4 ANN Validation and Performance

The validity and the performance of the ANN method were evaluated by comparing the load

estimated by the ANN with known loads applied to the panel (problem data). Experimental

problem data is the strain data from the same 16 nodes on the panel while it is being loaded. The

Sum of Squared Errors (SSE) between a known target and ANN estimation is a common

network performance indicator. For this validation study, new loading cases simulated by FEA

and corresponding load and strain data is employed to evaluate ANN estimation performance

when it is introduced with new data sets.

4.3.2 Results

A script written in Python language is used to model the structure and simulate various

loading scenarios up to 0.02 seconds after impact. Since this test is under high loads, large

displacements analysis is used to simulate the model using a nonlinear solver. Furthermore, the

structural response of the panel in terms of strain as well as the cylinder velocity over the

simulation time is saved to be used to generate training data sets. In order to validate the FEA

126

model against the real structure, the panel is loaded from 100 to 800 N in 100 N increments at all

13 load locations (L1 – L13) separately. The strain readings at all 16 locations (S1 - S16) on the

panel are saved for each test. The same tests are performed with FEA to compare the results with

the experimental results. For instance, Figure ‎4-27 indicates that for loading only location L13,

there is reasonable agreement between the strain curves (S7 and S11) of the FEA model and

experimental tests.

Figure ‎4-27: FEA Vs. experimental test results

Once the model is validated, it can be simulated for various loading conditions to generate the

required data. Having strain readings from the FEA model at selected nodes S1-16, the

corresponding peak strain value of the first impulse is used as input training data. Figure ‎4-28

shows example FEA strain data collected from the gauge S1 when the impact location was L1.

127

Figure ‎4-28: Typical FEA strain data during the impact for gauge S1

In order to calculate the impact force of the first impulse, Equation 17 is used where is the

velocity of cylinder just before impact and is its velocity after impact. is the duration of

peak impulse. Impact forces of each loading cases are saved and utilised as training data set

targets.

 (Eq. 17)

In this study 16 strain readings (inputs) and 13 load readings from 13 locations (outputs) are

needed to have one set of training data. Enough training sets of 13 various loads at each location

on the panel and the resultant 16 strains caused by these loads were required to find the

relationship between the input/output data. For each loading location (L1 - L13), 75 training data

sets are generated by loadings from 600 N to 6071N making a total of 975 training data sets from

FEA. Loadings are changed based on the velocity of the cylinder just before impact. Introducing

the training data to the trained network, the ANN output should be as similar as possible to the

impact load set that the ANN has been trained with. Figure ‎4-29 and Figure ‎4-30 indicate some

random examples of estimated impact load data by the ANN compared with the expected values

for impact locations L3 and L9. It can be noticed that there is reasonable agreement between the

scatters.

0

20

40

60

80

100

120

0 0/005 0/01 0/015 0/02 0/025

St
ra

in
 [

m
ic

ro
 s

tr
ai

n
]

Time [s]

S1

S1

128

Figure ‎4-29: Estimated impact load data by ANN Vs. expected values from training data (L3)

Figure ‎4-30: Estimated impact load data by ANN Vs. expected values from training data (L9)

4.3.2.1 Validation using FEA Data

For each loading location (L1- L13), 25 training data sets are generated by loading from 600

N to 6071N making a total of 325 training data sets from FEA. This set of problem data was not

introduced to the network during its training procedure. The strain set of this problem data set is

0

1000

2000

3000

4000

5000

6000

7000

0 5 10 15

Im
p

ac
t

Fo
rc

e
 [

N
]

Velocity Before Impact [m/s]

L3

FEA Output data

ANN Estimation from FEA data

0

1000

2000

3000

4000

5000

6000

7000

0 5 10 15

Im
p

ac
t

Fo
rc

e
 [

N
]

Velocity Before Impact [m/s]

L9

FEA Output data

ANN Estimation from FEA data

129

introduced to the previously trained ANN and the corresponding estimated load values are

calculated. Figure ‎4-31 and Figure ‎4-32 show some random examples of estimated impact load

data by ANN and is compared with the expected values.

Figure ‎4-31: Estimated impact load data by ANN Vs. expected values from test data (L1)

Figure ‎4-32: Estimated impact load data by ANN Vs. expected values from test data (L6)

-1000

0

1000

2000

3000

4000

5000

6000

L 1 L 2 L 3 L 4 L 5 L 6 L 7 L 8 L 9 L 10 L 11 L 12 L 13

Im
p

ac
t

Lo
ad

 [
N

]

Loading Location

L1

ANN Estimation from FEA Test data

FEA Test data

-500

0

500

1000

1500

2000

2500

3000

3500

4000

4500

L 1 L 2 L 3 L 4 L 5 L 6 L 7 L 8 L 9 L 10 L 11 L 12 L 13

Im
p

ac
t

Lo
ad

 [
N

]

Loading Location

L6

ANN Estimation from FEA Test data

FEA Test data

130

4.3.3 Conclusion

The results presented in this section show that the inverse problem method, utilising an ANN,

can accurately estimate the position and magnitude of 13 impact loads applied to the composite

panel from the captured strain data of 16 nodes spread over the panel surface. The results

indicate that the system always converges and the ANN can be trained using FEA data to solve

inverse problems and accurately estimate the impact loads. Once the ANN is sufficiently trained

it can be utilised to estimate the output in real-time where new inputs (problem data) are

presented and processed by the ANN and impact loads are estimated.

4.4 Summary

The findings from both experiments of this chapter indicate that should the structural response

have a nonlinear behaviour or transient nature, the ANN can be trained employing FEA data. In

the first experiment of this chapter, it is shown that that the inverse problem method, utilising an

ANN, is capable of estimating magnitude and position of the static pressure loads on a marine

composite panel under large displacement from nonlinear strain measurements. The comparison

of the ANN loads with the actual applied loads indicated a very good performance of the

methodology. Furthermore, the results from the drop test show that the system always converges

and the ANN can be trained using FEA data to solve inverse problems and accurately estimate

the impact loads.

131

Chapter 5. DISCUSSION, EVALUATION, FINAL CONCLUSION AND

FUTURE RESEARCH

This chapter is a summary and evaluation of the topics and results outlined in this thesis.

Furthermore, future research is described

132

5.1 Summary and Discussion

The Author hypothesised that ANN can be employed to find an inverse solution to predict

hydrodynamic loads applied on marine structures which may be used to inform designers in the

stage of preliminary ship design. In this research, the aim was to employ and investigate the

ability of this approach to immediately predict/estimate the load by analysing any similar new

response data introduced to the solver. The suitability of the proposed methodology could be

indicated by successful prediction of the applied loads.

In order to investigate the applicability of the new system in online load monitoring of marine

structures such as Rigid Inflatable Boats (RIB), some critical objectives were recognised that

have not been investigated before and are novel. To answer the research question and investigate

the research objectives, the performance of the load monitoring system (in terms of MSE or SSE)

is evaluated by performing some experimental tests by means of applying this monitoring system

on a marine structure representative such as composite panel. The developed system used the

surface strains from the structure and computed the weight/forces by ANN trained using FEA/

experimental data. Several tests were performed and experimental tests were carried out to

validate the results.

 The first objective of this research was to investigate the general behaviour of a marine

structure representative with attached strain gauges under small displacement. In order to achieve

this, the small displacement experiment is designed and performed in which a composite panel

representative of a boat‘s hull structure is instrumented and calibrated to function as a complex

load cell capable of measuring external normal loads. The panel is divided into 16 patches (one

strain gauge rosettes placed in middle of each patch) and 12 loading positions are picked to be

loaded utilising weights. Structure response is collected with a data acquisition system directly to

the written programme in MATLAB. Generated superimposed data from these readings are used

to train an Artificial Neural Networks. A satisfactory trained ANN can be used as an alternative

analytical tool on other new collected data. New structural response as inputs can be presented to

the network to predict load data as outputs. Preliminary results from static loading of a composite

panel indicated very promising results with a very low error margin. The results were

encouraging and lead to the Hybrid Inverse Problem Engine.

133

However, for an ideal system, the number of sensors should be minimised to reduce the time

to train the system, cost and weight. To achieve another objective of the research, an

optimisation experiment is designed and carried out in which the small displacement test is

optimised in terms of the required sensors for accurate load estimation. The optimisation results

indicated an area of 1 with 12 loading positions can be efficiently monitored with only 4

rosettes attached close together in the middle of the panel.

Since more research was needed to investigate the effect of higher loads and non-linearity,

other experiments were performed having a larger load range. Higher loads lead to large

displacement in panels and non-linearity cannot be ignored. Another objective of this research

was to investigate the general behaviour of a marine structure representative with attached strain

gauges under large displacement. In order to achieve this objective, the large displacement

experiment is designed and performed. In large displacement cases, since the system responses

to applied loads were not linear anymore, superposition could not be employed to generate

training data. To save in costs and time, a FEA model was developed in ABAQUS and validated

using experimental data. The validated model was then employed to simulate various nonlinear

loading conditions. In this study, two different ANN structures capable of relating the load data

set to the corresponding strain data set were described and the performances were compared. The

results from this experiment indicate that that the inverse problem method, utilising an ANN, is

capable of estimating magnitude and position of the static pressure loads on a marine composite

panel under large displacement from nonlinear strain measurements. Therefore, this novel load

monitoring system can also be utilised for load monitoring of marine structures effectively even

when the relation between the applied loads and the structural responses are nonlinear.

In addition to static loading conditions, another objective of the research was to perform more

investigations on the suitability of the proposed methodology for in-service load monitoring of

marine structures under transient load conditions such as slamming. This objective is achieved

by satisfactory results of the drop test experiment designed and performed to further develop the

ANN methodology for quantifying pressure loads on a marine composite panel under transient

load conditions from strain measurements. In this study, the impact loads (the cause/output) on a

composite panel were quantified by acquiring repeatable peak strain responses (the effect/input)

134

to these loads from the panel. The training data were generated employing a validated FEA

model (developed in ABAQUS) and used to train the networks. The results indicate that the

system can be trained to relate applied loads and structural responses and accurately estimate the

impact loads.

 The last objective of this research was to develop a GUI which can be used easily to develop

a load monitoring system. This objective is also achieved by developing a GUI in MATLAB

allowing control of various parameters of the data acquisition and load monitoring system, as

well as graphical display in real-time.

In summary, according to the project time and budget constraints the research objectives were

defined and investigated. The results of the experiments indicated that these objectives are

achieved satisfactorily and the research question is answered. It is concluded that the ANN

methodology could be utilised for the quantification of in-service, transient loads in real-time

acting on the marine structure from its structural response (strain response to load). This would

provide valuable information to influence its future design. Furthermore, the inherent advantages

of the load monitoring system using ANN as an inverse method over other methods make the

load estimation possible in real time without the need for information about the material and the

geometry of the marine structure. The ability to measure the actual load history of a marine

structure in-service would enable the designer to validate the load estimation and structural

design tools used during the design stage. This would lead to the development of more optimal

structure designs for this type of marine structure. The operational safety of the craft can also be

improved by having a real-time load monitoring system that is able to detect any degradation of

the structural integrity and defects within the structure. Providing an accurate load history

potentially makes the system ideal for solving many classes of complex engineering problem that

require load monitoring.

5.2 Evaluation of the proposed In-Service Load Monitoring System

It is very important to evaluate the outcomes of this research, which is the application of hybrid

methods for in-service monitoring of marine structures. The main aim of this study was an

investigation into computing the loads applied on a composite panel as a marine structure

representative using artificial intelligence. Since during the term of this research ANN, FEA,

135

experimental techniques were employed frequently, the evaluation of the proposed in-service load

monitoring system was broken into the following sections: Artificial Neural Network, Finite

Element Analysis, and experimental techniques.

5.2.1 Experimental Set-up

During the course of this research, a series of novel experiments were designed and various

quantitative tests were performed. In order to investigate the behaviour of marine structures and

the application of the methodology, a 1 Glass Reinforced Fibre Polymer (GRFP) composite

panel as a representative of panels in a boat is employed. The panel is chosen as a representative

of a marine structure due to the fact that marine crafts are manufactured from a number of flat

panels attached to the hull frames.

The experiments of the project employed two different data acquisition systems. Results

gained from Microlink data acquisition system used for the small displacement test have some

noises which have also affected the accuracy of the results. Although care was taken to reduce

the error, still this system was not as accurate as the new standard NI cDAQ data acquisition

system used for other tests. Further to this it was not possible to use the Microlink data

acquisition system to perform dynamic tests. This was due to the fact that it has very slow data

acquisition speed and high level of noise in data.

The attachment process of the strain gauges is very time consuming and demands related

experience. Due to the fact the strain gauges are very small and delicate objects; extra caution is

needed to avoid possible misplacement and breakage. However, many types of strain gauges are

commercially available and can be employed to save time. Loading the panel was achieved

manually in this research which was very time consuming and hazardous. Possible alternatives

could be design and manufacturing of a specific device to automatically apply loads.

The final load monitoring system from this approach requires wide general knowledge of

engineering from different fields including preparing the test set up, operating with the FE

software, connecting strain gauges, training an ANN, working with different technical devices

such as data acquisition, etc. It is not possible to leave all the technical work to one operator or

engineer. Despite valid results gained by the author from different tests, the system is not ready

136

to be used commercially yet. The system should be designed in such a manner that it can be used

by an operator with a short training course.

5.2.2 Artificial Neural Network

In this study due to the lack of a clearly stated mathematical solution or algorithm the ANN

was considered as the most suitable technique. ANN can provide suitable solutions for problems

with a high degree of non-linearity and high dimensionality. ANN also provides accurate

solutions for noisy, complex, imprecise, imperfect and/or error prone sensor data. ANN can

provide accurate results for some problems that cannot be analysed using standard techniques.

When an ANN is trained the output of the system can be computed in a fraction of second which

make it suitable for dynamic and real time analysis.

The ANN was widely used during the course of this project. Despite the encouraging results

gained by ANN, it has its own limitations. These limitations can be summarised as follows:

 Training an ANN requires producing sufficient amounts of training and testing patterns,

which is a time consuming and expensive procedure.

 In general, when employing ANNs, no unique solution or general design theory exists.

Generally it is not guaranteed that an ANN will converge to its global minimum or

occasionally even will converge at all. Training an ANN requires consideration about the

local and global minimas as well as poor training.

 There is no standard regulation to select the most efficient network's parameters such as

learning weight, momentum parameter, transfer function or even the number of training and

testing patterns.

 It is difficult to determine which ANN gives the best solution when considering several well-

trained ANNs for a batch of training and testing patterns.

 Obtaining a low performance value for training and testing patterns requires a high effort. It

is not always possible to consider a low pre-selected performance value and reach that just by

continuing the training procedure.

 May be too slow in the case of large-scale problems when common serial processing digital

computers are employed.

137

 The number of inputs to the ANN needs to be equal or greater than the number of outputs.

Since there is no general training rule for an ANN and the training process is a relative

process according to the training data set of a particular problem, it is very probable that the

network results may not be satisfactory on the first design pass. In this situation, it is necessary to

redo one or more of the process steps repeatedly until better results are achieved. When the

training process results in the network which is not accurate enough, several approaches are

highly recommended. One way is to initialise the network again and perform the training again.

Initialising a network leads to new weights and biases. When the network parameters are

changed, it might result in different solutions. Another solution is to increase the number of

hidden neurons, usually 20 or more. The reason is that the network will have more flexibility

having a larger numbers of neurons in the hidden layer. It is recommended to increase the layer

size gradually. Training a network with too large a hidden layer is more time consuming and

may cause the network to be under-characterised as well. This means that the network has more

parameters to optimise than there are data vectors to constrain them. The third popular approach

is to try a different training function. Furthermore, different training data can be tried to train the

network. Additional data sets can be used in the training data set or in contrast redundant or

challenging data may be removed from the training data set. Presenting a network with

additional data is expected to produce a more general network that can handle new data well.

5.2.3 Finite Element Analysis and Experimental Techniques

Finite element analysis (FEA) is widely used in this research for predicting the responses of

the model to environmental factors such as velocity, force and strain values. The process starts

with the creation of a geometric model, which is then divided into smaller shapes connected at

specific nodal points. Finally, the material behaviour and boundary conditions are applied to

each element, and the analysis is performed.

Despite the advantage of FEA for fast stress/strain/deflection computing it has its own

limitations. Usually for simplistic models, FE results are close to those obtained from the

experiments. When the subject is complicated not only modelling but also the validation of FEA

results is a very difficult task. In this research modelling the composite panel using FEA had

138

some limitations which make the validation difficult. This is due to the fact that modelling

complex geometries and new materials such composites is more difficult as well as time and

labour intensive. Sometimes such modelling may have results which show poor repeatability

behaviour of the system and a poor correlation between the FEA and experiential strains.

Considering these characteristics of the system it is very difficult or sometimes impossible to use

the standard techniques, because similar loads do not produce similar strains in FEA models with

even slightly different parameters (such as mesh type).

Due to the manufacturing and budget restriction, it was not possible to manufacture a uniform

thickness panel. From the other point of view, it was difficult to compare the FEA and

experimental results due the varying thickness of the actual panel. As the results of using an even

thickness for the panel, some error (less than 7 percent) between the FEA and experimental

results were obtained. However, the panel modelling was a simple task compared to the

modelling of the whole marine structure like a boat or ship.

5.3 Final Conclusion

This research has explored relevant aspects of the application of hybrid combinations of

ANN, FEA and experimental techniques both in direct and inverse studies. The hybrid technique

was found to produce solutions to problems that existing measurement/computing techniques

could not solve. This technique can provide more information faster than standard existing

techniques without the need for knowledge of material/geometrical properties. The findings

presented in this study should stimulate future research in the area of in-service load monitoring

of marine structures (internal structures, hull, panels, etc.) and provides a powerful tool to

determine the position of the high loads or impact areas and information regarding the

rectification required for a more efficient design of the marine structure to produce lighter, faster

and more durable marine structures.

5.4 Future Research

The final aim of this research could be developing a load monitoring system capable of in

service load monitoring of various marine structures. The future of this research should be to

139

develop a system which is commercially available and easy to use for a variety of marine

structures. To achieve this goal several considerations should be made:

1) Developing a general and standard routine to define the loading circumstances of the marine

structures in real life time.

2) Investigate in possibility of employing re-attachable strain gauges. This reduces the technical

work, time and cost radically.

3) Developing a system which analyses the marine structure using identified load sensitive areas

to estimate the best position of strain gauges.

4) Designing an automatic and repeatable load applicator. Using this device, it is possible to

apply different loads to different positions of the marine structure considering load sensitive

and tolerant areas.

5) Validation of methodology using a real marine structure such as a boat in sea condition.

6) Optimisation of the quantity of sensors quantity and investigate the effects of network

training parameters for a specific marine structure.

7) Full investigation of the effect of geometry size, DAQ system and quantity and type of

gauges in load estimations.

8) Further investigations in how to turn this load monitoring system into a commercial system.

140

Reference

Abs. 2011. Guide for building and classing high speed craft. American Bureau of Shipping.

Adamchak, J. C., 1984. An approximate method for estimating the collapse of a ship’s hull in

preliminary design. Paper presented at the Ship Structural Symposium, Arlington,

Virginia.

Al-Assaf, Y., and El Kadi, H. 2001. Fatigue life prediction of unidirectional glass fiber/epoxy

composite laminate using neural networks (Vol. 53, pp. 65–71): Composite Structures.

Aleksander, I., and Morton, H., 1990. An introduction to neural computing. Chapman and Hall.

Allen, R., Jones, R., and Taylor, D., 1978. A simplified method for determining structural design

limit pressures on high performance marine vehicles. Paper presented at the Proceedings

of AIAA/SNAME Advanced Marine Vehicle Conference, San Diego.

Amali, R., Noroozi, S., and Vinney, J., 2000. The application of combined artificial neural

network and finite element method in domain problems. Paper presented at the Sixth

International Conference on Engineering Applications of Neural Networks (EANN

2000), Kingston upon Thames.

Amali, R., Noroozi, S., Vinney, J., Sewell, P., and Andrews, S., 2006. Predicting interfacial loads

between the prosthetic socket and the residual limb for below-knee amputees—a case

study.

Anderson, J. A., 1972. A simple neural network generating on interactive memory. Mathematical

Biosciences, 14, 197-220

Anderson, J. A., and Rosenfeld, E. E., 1988. Neurocomputing, foundations of research. MIT

Press.

Aymerich, F., and Serra, M. 1998. Prediction of fatigue strength of composite laminates by

means of neural networks (Vol. 144, pp. 231-240): Key Engineering Materials.

Bae. 2009. Bae systems annual report 2008.

Bai, Y., 2003. Marine structural design. Oxford: ELSEVIER SCIENCE Ltd.

Baldwin, C., Niemczuk, J., Kiddy, J., Chen, P., Christiansen, M., and Chen, S., 2002. Structural

testing of navy vessels using bragg gratings and a prototype digital spatial wavelength

domain multiplexing (dswdm) system. NAVAL ENGINEERS JOURNAL, 63-70.

141

Beale, M. H., Hagan, M. T., and Demuth, H. B. Neural network toolbox 7 user‘s guide.

Available from: [Accessed.

Belik, O., Bishop, R. E. D., and Price, W. G., 1983. A simulation of ship responses due to

slamming in irregular head waves. Trans R.I.N.A. , 125.

Beukelman, W., 1980. Bottom impact pressures due to forced oscillation. International

Shipbuilding Progress, 27 (309).

Bishop, C. M. 1995. Neural networks for pattern recognition. Oxford: Oxford University Press.

Boresi, A. P., Schmidt, R. J., and Sidebottom, O. M., 1993. Advanced mechanics of materials.

John Wiley.

Bunting, E., and Sheahan, M. 2009. Broken by design?, Yachting World (pp. 66-79): IPC

INSPIRE Ltd.

Bv. 2008. Rules for the classification and certification of yachts. Bureau Veritas.

Caianiello, E. R., 1961. Outline of a theory of thought-processes and thinking machines. Journal

of Theoretical Biology, 2, 204-235.

Cao, X., Sugiyama, Y., and Mitsui, Y., 1998. Application of artificial neural networks to load

identification. Computers & Structures, 69, 63-67.

Capecchi, V., 2010. Applications of mathematics in models, artificial neural networks and arts :

Mathematics and society. Dordrecht ; New York: Springer.

Caudill, M., 1989. Neural networks primer. San Francisco: Miller Freeman Publications.

Caudill, M., and Butler, C., 1992. Understanding neural networks:Caudill, m., and c. Butler,

understanding neural networks. Computer Explorations, 1 and 2.

Chalmers, D. W., 1993. Design of ship's structure, London.

Coello Coello, C. A., and Lamont, G. B., 2004. Applications of multi-objective evolutionary

algorithms. World Scientific. Available from:

http://search.ebscohost.com/login.aspx?authtype=ip,shib&custid=s7547708&direct=true

&db=nlebk&db=nlabk&site=ehost-live&scope=site&AN=148582.

Cowan, J. D., and Sharp, D. H., 1988. Neural nets and artificial intelligence. Daedalus, 117 (1),

85-121.

Darpa. 1988. Neural network study. Lexington: MA: M.I.T. Lincoln Laboratory.

Dnv. 2011. Rules for classification of high speed light craft. Det Norske Veritas.

http://search.ebscohost.com/login.aspx?authtype=ip,shib&custid=s7547708&direct=true&db=nlebk&db=nlabk&site=ehost-live&scope=site&AN=148582
http://search.ebscohost.com/login.aspx?authtype=ip,shib&custid=s7547708&direct=true&db=nlebk&db=nlabk&site=ehost-live&scope=site&AN=148582

142

Efstathiades, C., Baniotopoulos, C. C., Nazarko, P., Ziemianskib, L., and Stavroulakis, G. E.,

2007. Application of neural networks for the structural health monitoring in curtain-wall

systems. Engineering Structures, 29, 3475–3484.

El Kadi, H., and Al-Assaf, Y. 2002. Prediction of the fatigue life of unidirectional glass

fiber/epoxy composite laminate using different neural network paradigms (Vol. 55, pp.

239–246): Composite Structures.

Faltinsen, O., 2000. Hydroelastic slamming. J. Marine Science and Technology, 5 (2), 49-65.

Faltinsen, O. M., 2005. Hydrodynamics of high-speed marine vehicles. New York: Cambridge

University Press.

Faltinsen, O. M., 2007. Challenges in hydrodynamics of ships and ocean structures. J.

Naval Architecture and Shipbuilding Industry, 5 (3), 268-277.

Farely, B. G., and Clark, W. A., 1954. Simulation of self-organising systems by digital computer.

IRE Transactions of Professional Group of Information Theory.

Fausett, L. V. 1994. Fundamentals of neural networks (1st ed.): Prentice Hall.

Frederick, J., Gravetter, Lori-Ann, B., Forzano, 2011, Research Methods for the Behavioral

Sciences.

Fukushima, K., 1980. Neocognitron: A self-organizing neural network model for a mechanism of

pattern recognition unaffected by shift in position. Biol. Cybernetics, 36, 193-202.

Fukushima, K., 1982. Neocognitron: A new algorithm for pattern recognition of deformations

and shifts in position. Pattern Recognition, 15, 455-469.

Fukushima, K., 1986. A neural network model for selective attention in visual pattern

recognition. Biol. Cybernetics, 55, 5-15.

Fukushima, K., Miyake, S., and Ito, T., 1983. Ieee transactions on systems. Man and

Cybernetics.

Gerritsma, J., and Beukelman, W., 1964. The distribution of the hydrodynamic forces on a

heaving and pitching ship model in still water. Paper presented at the Fifth Symposium

on Naval Hydrodynamics, Washington.

Greco, M., Colicchio, G., and Faltinsen, O. M., 2007. Shipping of water on a two-dimensional

structure, part ii,.

143

Guo-Dong, X., and Wen-Yang, D., 2009. Review of prediction techniques on hydrodynamic

impact of ships. Marine Science Application, 8, 204-210.

Hagan, M. T., Demuth, H. B., and Beale, M. H., 1996. Neural network design. Boston: MA:

PWS Publishing.

Hagan, M. T., and Menhaj, M., 1999. Training feed-forward networks with the marquardt

algorithm. IEEE Transactions on Neural Networks, 5 (6), 989-993.

Haque, M., and Sudhakar, K. V. 2001. Prediction of corrosion-fatigue behaviour of dp steel

through artificial neural network (Vol. 23, pp. 1-4): InternationalJournal of Fatigue.

Haykin, S., 1994. Neural networks, a comprehensive foundation. Macmillan College Publishing

Co. Inc.

Hebb, D. O., 1949. The organisation of behaviour. In. New York: Wiley, 60-78.

Heller, S., and Jasper, N., 1961. On the structural design of planing craft. Transaction of RINA,

103, 49-65.

Helliwell, I. S., Turega, M. A., and Cottis, R. A., 1995. Accountability of neural networks trained

with 'real world' data. Paper presented at the Artificial Neural Networks.

Hentinen, M., and Holm, G., 1994. Load measurement on the 9.4m sailing yacht sail lab. 13th

International Symposium Yacht Design and Yacht Construction, 131-161.

Holden, S. B., and Rayner, P. J. W., 1995. Generalization and pac learning: Some new results

for the class of generalized single-layer networks. Paper presented at the Transactions on

Neural Networks.

Hopfield, J. J., 1982. Neural networks and physical systems with emergent collective

computational abilities. Proceedings of the National Academy of Sciences, 79, 2554-

2558.

Hughes, O. F., 1983. Ship structural design. A rationally-based, computer-aided, optimisation

approach. New York: John Wiley and Sons.

Hydrolance. 2013. Available from: http://www.hydrolance.net/Common/DeakWash-ship.jpg,

[Accessed: 05/04/2013].

Iso. 2008. Small craft – hull construction and scantlings, part 5: Design pressures for monohulls

design stresses, scantlings determination.: International Organization for Standardization.

Iwashita, H., Ito, A., Okada, T., Ohkusu, M., Takaki, M., and Mizoguchi, S., 1993. Wave force

acting on a blunt ship with forward speed in oblique sea. 173, 195-208.

144

J.M. Ko, Y. Q. N., July 2005. Technology developments in structural health monitoring of large-

scale bridges. Engineering Structures, 1715–1725.

James, W., 1890. Psychology (briefer course). In. New York: Holt, 253-279.

Jensen, J. J., and Pedersen, P. T., 1979. Wave-induced bending moments in ships:A quadratic

theory. J. Trans. Roy. Soc. Nav. Archit., 121, 151-165.

Jones, N., 1972. Slamming damage,. MIT Department of Ocean Engineering.

Joubert, P., 1982. Strength of bottom plating of yachts. J. Ship Research, 26 (1), 45-49.

Joubert, P., 1996. Tests on yacht hull plating. J. Marine Technology, 33, 130-140.

Kapsenberg, G., Veer, A., Hackett, J., and Levadou, M., 2003. Aftbody slamming and whipping

loads. SNAME Annual Meeting, 111, 213-231.

Karman, T. V., 1929. The impact on seaplane floats during landing - technical report. Aachen:

Aerodynamical Institute of the Technical High School.

Katsikeros, C. E., and Labeas, G. N., 2009. Development andvalidationofastrain-

basedstructuralhealth. Mechanical Systemsand Signal Processing, 23, 372-383.

Ko, J. M., and Ni, Y. Q., 2005. Technology developments in structural health monitoring of

large-scale bridges. Engineering Structures, 1715–1725.

Koelbel, G., and Jr., J., 1995. Comments on the structural design of high speed craft. Marine

Technology, 32 (2).

Kohonen, T., 1972. Correlation matrix memories. IEEE Transaction on Computers, 21 (4), 353-

359.

Kohonen, T., 1982. Self-organized formation of topologically correct feature maps. Biological

Cybernetics, 43, 59-69

Kohonen, T., 1987. Self-organization and associative memory. Berlin: Springer-Verlag.

Kohonen, T., 1988. An introduction to neural computing. Neural Networks, 1, 3-16.

Kohonen, T., 1997. Self-organizing maps. Berlin: Springer-Verlag.

Kohonen, T., 1998. An introduction to neural computing. Neural Networks, 1.

Korvin-Kroukovsky, B. V., 1955. Investigation of ship motions in regular waves. Transactions of

SNAME.

Korvin-Kroukovsky, B. V., and Jacobs, W. R., 1997. "Pitching and heaving motions of a ship in

regular waves. Trans SNAME.

145

Kukkanen, T., 2010. Wave load predictions for marine structures. Rakenteiden Mekaniikka

(Journal of Structural Mechanics), 43 (3), 150-166.

Lee, J., and Wilson, P. A., 2009. Experimental study of the hydro-impact of slamming in a

modern racing sailboat J. ships Marine Science Application, 8, 204-210.

Lee, J. A., Almond, D. P., and B., H. 1999. The use of neural networks for the prediction of

fatigue lives of composite materials (Vol. 30, pp. 1159–1169): Composites Part A:

Applied Science and Manufacturing.

Li, H. C. H., Herszberg, I., Davis, C. E., Mouritz, A. P., and Galea, S. C., 2006. Health

monitoring of marine composite structural joints using fibre optic sensors. Composite

Structures, 75, 321–327.

Lippman, R. P., 1987. An introduction to computing with neural nets. IEEE ASSP Magazine, 4–

22.

Liu, P., and Li, H.-X., 2004. Fuzzy neural network theory and application. World Scientific.

Available from:

http://search.ebscohost.com/login.aspx?authtype=ip,shib&custid=s7547708&direct=true

&db=nlebk&db=nlabk&site=ehost-live&scope=site&AN=235586.

Livingstone, D., 2008. Artificial neural networks : Methods and applications. Totowa, NJ:

Humana Press.

Lynch, J. P., Law, K. H., Kiremidjian , A. S., Carryer, E., Farrar, C. R., and Sohn, H., 2004.

Design and performance validation of a wireless sensing unit for structural monitoring

applications. Structural Engineering and Mechanics, 17(13–14):393–408.

M. Raudenský, J. H., J. Krejsa and L. Sláma. 1996. Usage of artificial intelligence methods in

inverse problems for estimation of material parameters. INT. J. NUM. METH. HEAT

FLUID FLOW, 6, 19-29.

Mackay, D. J. C., 1992. Bayesian interpolation. Neural Computation, 4 (3), 415–447.

Majumder, M., Gangopadhyay, T. K., and Chakraborty, A. K., 2008. Fibre bragg gratings in

structural health monitoring—present status and applications. Sensors and Actuators A:

Physical.

Mamdani, E. H., and Assilian, S., 1975. An experiment in linguistic synthesis with a fuzzy logic

controller. Journal of Man-Machine Studies, 7, 1-13.

http://search.ebscohost.com/login.aspx?authtype=ip,shib&custid=s7547708&direct=true&db=nlebk&db=nlabk&site=ehost-live&scope=site&AN=235586
http://search.ebscohost.com/login.aspx?authtype=ip,shib&custid=s7547708&direct=true&db=nlebk&db=nlabk&site=ehost-live&scope=site&AN=235586

146

Manganelli, P., 2006. Experimental investigation of dynamic loads on offshore racing yachts.

University of Southampton,UK: Ph.D thesis.

Mcculloch, W. S., and Pitts, W. A., 1943. A logical calculus of the ideas immanent in nervous

activity. Buttetin of Mathematics and Biophysics, 5, 115-133.

Moller, M. F., 1993. A scaled conjugate gradient algorithm for fast supervised learning. Neural

Networks, 6, 525–533.

Mousumi Majumder, T. K. G., Ashim Kumar Chakraborty,. 2008. Fibre bragg gratings in

structural health monitoring—present status and applications. Sensors and Actuators A:

Physical.

Mufti Aa, T. G., Jones Pr. 1997. Field assessment of fibre-optic bragg grating strain sensors in

the confederation bridge. Canadian Journal of Civil Engineering, 24(26):963–966.

Murray, R., Neumerkel, D., and Sbarbaro, D., 1992. Neural networks for modeling and control

of a non-linear dynamic system.

Nakos, D., and Sclavounos, P., 1990. Ship motions by a three-dimensional rankine panel

method. Paper presented at the Proceedings of 18th symposium on naval hydrodynamics,

Ann Arbor.

Ni. 2013. Ni compactdaq - national instruments.

Nilson, N. J., 1965. Learning machines. McGraw-Hill.

Ochi, M. K., and Motter, L. E., 1969. Prediction of extreme values of impact pressures

associated with ship slamming. J. Ship Research, 13 (2).

Ochi, M. K., and Motter, L. E., 1973. Prediction of slamming characteristics and hull responses

for ship design. SNAME Trans, 8, 144 - 176.

Pan, S. A., 2012. On demand dbs for parkinson's disease : Tremor prediction using artificial

neural networks. Thesis. University of Reading.

Panigrahi, B. K., Abraham, A., and Das, S., 2010. Computational intelligence in power

engineering. Berlin: Springer.

Petrov, S. 2012. Berge stahl, Available from: http://maritimebg.com/wp-

content/uploads/Berge_Stahl_Bulk_carrier.jpg [Accessed: 06/04/2013].

Phelps, B. P., 1997, November. Determination of wave loads for ship structural analysis. DSTO

Aeronautical and Maritime Research Laboratory: Maritime Platforms Division (MPD),

http://maritimebg.com/wp-content/uploads/Berge_Stahl_Bulk_carrier.jpg
http://maritimebg.com/wp-content/uploads/Berge_Stahl_Bulk_carrier.jpg

147

DSTO-RR-0116, 29 pages. Available from:

http://dspace.dsto.defence.gov.au/dspace/bitstream/1947/3313/1/DSTO-RR-

0116%20PR.pdf [Accessed: 02/04/2013].

 Pleune, T. T., and Chopra, O. K. 2000. Using artificial neural networks to predict the fatigue

life of carbon and low-alloy steels (Vol. 197, pp. 1–12): Nuclear Engineering and Design.

Rao, V. B., and Rao, H. V., 1993. C++ neural networks and fuzzy logic. Management

Information Source.

Rawson, K. J., and Tupper, E. C., 1976. Basic ship theory vol. 2. 2nd ed. ed. [S.l.]: Longman.

Rawson, K. J., and Tupper, E. C., 2001. Basic ship theory. 5th ed. ed. Oxford: Butterworth-

Heinemann, 2002.

Rawson, K. J. A. T., and Tupper, E. C., 1968. Basic ship theory. Harlow: Longmans.

Reichard, R., 1984. The structural response of small craft to dynamic loading. Proceedings of the

14th AIAA Symposium on the Aero/Hydronautics of Sailing, 30, 105-110.

Rosenblatt, F., 1958. The perceptron: A probabilistic model for information storage and

organization in the brain. Psychological Review, 65 (6), 386–408.

Rudas, I. J., Fodor, J., and Kacprzyk, J., 2010. Computational intelligence in engineering. Berlin:

Springer.

Rumelhart, D. E., Hinton, G. E., and Williams, R. J., 1986. Learning internal representations by

error propagation. In: Vol. 1. Cambridge: The M.I.T.Press, 318–362.

Salvesen, N., Tuck, E. O., and Faltinsen, O., 1970. Ship motions and sea loads, 78, 250 - 287.

Savitsky, D., and Brown, P. W., 1976. Procedures for hydrodynamic evaluation of planing hulls

in smooth and rough water. 13 (4).

Schalkoff, R., 1997. Artificial neural network. Singapore: The McGRAW-HILL Companies, Inc.

Schmidt, A., 1996. A modular neural network architecture with additional generalization

abilities for high dimensional input vectors.

Schumann, J. M., and Liu, Y., 2010. Applications of neural networks in high assurance systems.

Berlin: Springer.

Sewell, P., Noroozi, S., Vinney, J., Amali, R., and Andrews, S., 2010. Improvements in the

accuracy of an inverse problem engine‘s output for the prediction of below-knee

148

prosthetic socket interfacial loads. Engineering Applications of Artificial Intelligence, 23,

1000–1011.

Shar, S., and Palmieri, F., 1990. Meka-a fast, local algorithm for training feed forward neural

networks. Paper presented at the International Joint Conference on Neural Networks.

Shockmitigation. Bae systems halmatic fast interceptor craft. Available from:

http://www.shockmitigationdirectory.com/inner-category/3/6/313/ [Accessed.

Sikora, J. P., Dinsenbacher, A., and Beach, J. E., 1983. A method for estimating lifetime loads

and fatigue lives for swath and conventional monohull ships. Naval Engineers Journal.

Sivakumar, B., Berndtsson, R., and Ebrary Inc., 2010. Advances in data-based approaches for

hydrologic modeling and forecasting. World Scientific. Available from:

http://site.ebrary.com/lib/bournemouth/Doc?id=10479909.

Soo-Young, K., Moon, B.-Y., Kim, D.-E., and Shin, S. C., 2006. Automation of hull plates

classification in ship design system using neural network method. Mechanical Systems

and Signal Processing, 20 (2), 493–504.

Spencer, J. B. F., Ruiz-Sandoval, M. E., and N., K., 2004. Smart sensory technology:

Opportunities and challenges. Structural Control and Health Monitoring [CDROM],

11(14):349–368.

Ssc. 1995. Hydrodynamic impact on displacement ship hulls. an assessment of the state of the art

Ship Structure Committee 385.

St. Denis, M., and Pierson, W. J., 1953. On the motions of ships in confused sea. Transactions of

SNAME.

Stavovy, A., and Chuang, S., 1976. Analytical determination of slamming pressures for high-

speed vehicles in waves. J. Ship Research, 20 (4), 190-198.

Sumitro, S., and M.L., W., 2003. Sustainable structural health monitoring system. Paper

presented at the Proceedings of the international workshop on advancedsensors, structural

health monitoring and smart structures.

Sun, H., and Faltinsen, O. M., 2012. Hydrodynamic forces on a semi-displacement ship at high

speed. J.Applied Ocean Research, 34, 68-77.

Swingler, K. 1996. Applying neural networks: A practical guide: Academic Press.

http://www.shockmitigationdirectory.com/inner-category/3/6/313/
http://site.ebrary.com/lib/bournemouth/Doc?id=10479909

149

Takagi, K., 1993. Takagi k. Calculation of unsteady pressure by rankine source method. J Kansai

Soc Nav Archit, 219, 47–56.

Tang, J., Cao, X., and Mitsui, Y., 1995. A study on determining the vertical tail loads of an

aircraft by strain method. Paper presented at the PICAST'95 (Proceedings of Second

Pacifc International Conference on Aerospace Science & Technology), Australia.

Tupper, E. C., 2004. Introduction to naval architecture. 4th ed. ed. Amsterdam ; London:

Elsevier, Butterworth Heinemann.

Velten, K., Reinicke, R., and Friedrich, K. 2000. Wear volume prediction with artificial neural

networks. (Vol. 33, pp. 731–736): Tribology International

Venkatesh, V., and Rack, H. J. 1999. A neural network approach to elevated temperature creep-

fatigue life prediction (Vol. 21, pp. 225–234): International Journal of Fatigue.

Vishay_Group. 2010. Strain gage selection: Criteria, procedures, recommendations. Available

from: http://www.vishaypg.com/docs/11055/tn505.pdf [Accessed.

Vogl, T. P., Mangis, J. K., Rigler, A. K., Zink, W. T., and Alkon, D. L., 1988. Accelerating the

convergence of the back-propagation method. Biological Cybernetics,, 59, 256–264.

Watanabe, I., 1994. Practical method for diffraction pressure on a ship running in oblique wave.

J. Kansai Soc. Nav. Archit., 221, 83-89 [in Japanese].

Westergaard, H. M., and Salter, W. A., 1921. Moments and stresses in slabs. Proceeding of

Amer. Concrete Inst., 17, 415-538.

Widrow, B., and Hoff, M. E., 1960. Adaptive switching circuits. 96-104: WESTCON

Convention.

Windmill. 2011. Windmill data acquisition catalogue, http://www.windmillsoft.com: Windmill

Software Ltd.

Xu, R., and Wunsch, D. C., 2009. Clustering. Wiley. Available from:

http://search.ebscohost.com/login.aspx?authtype=ip,shib&custid=s7547708&direct=true

&db=nlebk&db=nlabk&site=ehost-live&scope=site&AN=254099.

Xu, S., Deng, X., Tiwar, V., Sutton, M. A., and Fourney, W. L., 2010. An inverse approach for

pressure load identification. International Journal of Impact Engineering, 37 (7), 865-

877.

http://www.vishaypg.com/docs/11055/tn505.pdf
http://www.windmillsoft.com/
http://search.ebscohost.com/login.aspx?authtype=ip,shib&custid=s7547708&direct=true&db=nlebk&db=nlabk&site=ehost-live&scope=site&AN=254099
http://search.ebscohost.com/login.aspx?authtype=ip,shib&custid=s7547708&direct=true&db=nlebk&db=nlabk&site=ehost-live&scope=site&AN=254099

150

Yang, J. Intelligent data mining using artificial neural networks and genetic algorithms

[electronic resource] : Techniques and applications. Available from:

http://wrap.warwick.ac.uk/3831/ [Accessed.

Yasukawa, H., 1990. A rankine panel method to calculate unsteady ship hydrodynamic forces. J

Soc Nav Archit, 168, 131–140.

Yu, T., 2013. Computational intelligent data analysis for sustainable development. Boca Raton:

Taylor & Francis.

Zainun, N. Y. B. A., 2011. Computerized model to forecast low-cost housing demand in urban

area in malaysia using artificial neural networks (ann). Thesis. Loughborough

University.

Zaknich, A. 2003. Neural networks for intelligent signal processing. Singapore: World Scientific

publishing co.

Zeng, Z., and Wang, J., 2010. Advances in neural network research and applications. Berlin:

Springer Verlag.

Zhang, Z., and Friedrich, K. 2003. Artificial neural networks applied to polymer composites: A

review (Vol. 63, pp. 2029–2044): Composites Science and Technology.

Zhang, Z., Friedrich, K., and Velten, K. 2002. Prediction of tribological properties of short fiber

composites using artificial neural networks (Vol. 252, pp. 668–675): Wear.

Ziemianski, L., and Harpula, G., 1999. The use of neural networks for damage detection in eight

storey frames. Proceedings of the 5th international conference: Engineering applications

of neural networks, 292–297.

Zingoni, A., 2005. Structural health monitoring, damage detection and long-term performance.

Engineering Structures, 1713-1714.

Zurada, J. M., 1992. Introduction to artificial neural systems. Boston: PWS Publishing

Company.

http://wrap.warwick.ac.uk/3831/

151

Appendices

Appendix 1: PYTON Script of Large Displacement Experiment

Part 1

1. # -*- coding: mbcs -*-

2. import sys,math

3. import visualization

4. from part import *

5. from material import *

6. from section import *

7. from assembly import *

8. from step import *

9. from interaction import *

10. from load import *

11. from mesh import *

12. from job import *

13. from sketch import *

14. from visualization import *

15. from connectorBehavior import *

Part 2

16. mdb.models['Model-1'].ConstrainedSketch(name='__profile__', sheetSize=.200)

17. mdb.models['Model-1'].sketches['__profile__'].rectangle(point1=(.500, .500),

 point2=(-.500, -.500))

18. mdb.models['Model-1'].Part(dimensionality=THREE_D, name='Part-1', type=

 DEFORMABLE_BODY)

19. mdb.models['Model-1'].parts['Part-1'].BaseSolidExtrude(depth=.005, sketch=

152

 mdb.models['Model-1'].sketches['__profile__'])

20. del mdb.models['Model-1'].sketches['__profile__']

21. mdb.models['Model-1'].ConstrainedSketch(gridSpacing=.07071, name='__profile__',

 sheetSize=2.82844, transform=mdb.models['Model-1'].parts['Part-

1'].MakeSketchTransform(

 sketchPlane=mdb.models['Model-1'].parts['Part-1'].faces[4],

 sketchPlaneSide=SIDE1,

 sketchUpEdge=mdb.models['Model-1'].parts['Part-1'].edges[4],

 sketchOrientation=RIGHT, origin=(0.0, 0.0, .005)))

22. mdb.models['Model-1'].parts['Part-1'].projectReferencesOntoSketch(filter=

 COPLANAR_EDGES, sketch=mdb.models['Model-1'].sketches['__profile__'])

23. mdb.models['Model-1'].sketches['__profile__'].CircleByCenterPerimeter(center=(0.0,

0.0), point1=(0.0, .016))

24. mdb.models['Model-1'].sketches['__profile__'].CircleByCenterPerimeter(center=(-0.375,

0.250), point1=(-0.375, 0.266))

25. mdb.models['Model-1'].sketches['__profile__'].CircleByCenterPerimeter(center=(-0.375,

-0.250), point1=(-0.375, -0.266))

26. mdb.models['Model-1'].sketches['__profile__'].CircleByCenterPerimeter(center=(-0.375,

0.0), point1=(-0.375, 0.016))

27. mdb.models['Model-1'].sketches['__profile__'].CircleByCenterPerimeter(center=(-0.125,

0.250), point1=(-0.125, 0.266))

28. mdb.models['Model-1'].sketches['__profile__'].CircleByCenterPerimeter(center=(-0.125,

0.0), point1=(-0.125, 0.016))

29. mdb.models['Model-1'].sketches['__profile__'].CircleByCenterPerimeter(center=(0.375,

0.250), point1=(0.375, 0.266))

153

30. mdb.models['Model-1'].sketches['__profile__'].CircleByCenterPerimeter(center=(0.375,

0.0), point1=(0.375, 0.016))

31. mdb.models['Model-1'].sketches['__profile__'].CircleByCenterPerimeter(center=(0.125,

0.250), point1=(0.125, 0.266))

32. mdb.models['Model-1'].sketches['__profile__'].CircleByCenterPerimeter(center=(-0.125,

-0.250), point1=(-0.125, -0.266))

33. mdb.models['Model-1'].sketches['__profile__'].CircleByCenterPerimeter(center=(0.125,

0.0), point1=(0.125, 0.016))

34. mdb.models['Model-1'].sketches['__profile__'].CircleByCenterPerimeter(center=(0.125, -

0.250), point1=(0.125, -0.266))

35. mdb.models['Model-1'].sketches['__profile__'].CircleByCenterPerimeter(center=(0.375, -

0.250), point1=(0.375, -0.266))

36. mdb.models['Model-1'].sketches['__profile__'].rectangle(point1=(-0.1285, -0.3765),

point2=(-0.1215, -0.3735))

37. mdb.models['Model-1'].sketches['__profile__'].rectangle(point1=(-0.1285, 0.3765),

point2=(-0.1215, 0.3735))

38. mdb.models['Model-1'].sketches['__profile__'].rectangle(point1=(0.1285, -0.3765),

point2=(0.1215, -0.3735))

39. mdb.models['Model-1'].sketches['__profile__'].rectangle(point1=(0.1285, 0.3765),

point2=(0.1215, 0.3735))

40. mdb.models['Model-1'].sketches['__profile__'].rectangle(point1=(-0.3785, -0.3765),

point2=(-0.3715, -0.3735))

41. mdb.models['Model-1'].sketches['__profile__'].rectangle(point1=(-0.3785, 0.3765),

point2=(-0.3715, 0.3735))

42. mdb.models['Model-1'].sketches['__profile__'].rectangle(point1=(0.3785, -0.3765),

point2=(0.3715, -0.3735))

43. mdb.models['Model-1'].sketches['__profile__'].rectangle(point1=(0.3785, 0.3765),

point2=(0.3715, 0.3735))

154

44. mdb.models['Model-1'].sketches['__profile__'].rectangle(point1=(-0.1285, -0.1265),

point2=(-0.1215, -0.1235))

45. mdb.models['Model-1'].sketches['__profile__'].rectangle(point1=(-0.1285, 0.1265),

point2=(-0.1215, 0.1235))

46. mdb.models['Model-1'].sketches['__profile__'].rectangle(point1=(0.1285, -0.1265),

point2=(0.1215, -0.1235))

47. mdb.models['Model-1'].sketches['__profile__'].rectangle(point1=(0.1285, 0.1265),

point2=(0.1215, 0.1235))

48. mdb.models['Model-1'].sketches['__profile__'].rectangle(point1=(-0.3785, -0.1265),

point2=(-0.3715, -0.1235))

49. mdb.models['Model-1'].sketches['__profile__'].rectangle(point1=(-0.3785, 0.1265),

point2=(-0.3715, 0.1235))

50. mdb.models['Model-1'].sketches['__profile__'].rectangle(point1=(0.3785, -0.1265),

point2=(0.3715, -0.1235))

51. mdb.models['Model-1'].sketches['__profile__'].rectangle(point1=(0.3785, 0.1265),

point2=(0.3715, 0.1235))

52. mdb.models['Model-1'].parts['Part-1'].PartitionFaceBySketch(faces=

mdb.models['Model-1'].parts['Part-1'].faces.getSequenceFromMask(('[#10]',

),), sketch=mdb.models['Model-1'].sketches['__profile__'], sketchUpEdge=

 mdb.models['Model-1'].parts['Part-1'].edges[4])

53. del mdb.models['Model-1'].sketches['__profile__']

Part 3

54. mdb.models['Model-1'].Material(name='Material-1')

55. mdb.models['Model-1'].materials['Material-1'].Density(table=((1786.0,),))

56. mdb.models['Model-1'].materials['Material-1'].Elastic(table=((21220000000, 0.128),))

57. mdb.models['Model-1'].HomogeneousSolidSection(material='Material-1', name=

58. 'Section-1', thickness=None)

155

59. mdb.models['Model-1'].rootAssembly.DatumCsysByDefault(CARTESIAN)

60. mdb.models['Model-1'].rootAssembly.Instance(dependent=ON, name='Part-1-1',

part=mdb.models['Model-1'].parts['Part-1'])

61. mdb.models['Model-1'].parts['Part-1'].seedPart(deviationFactor=0.1, size=0.05)

62. mdb.models['Model-1'].parts['Part-1'].generateMesh()

Part 4

63. mdb.models['Model-1'].rootAssembly.regenerate()

64. mdb.models['Model-1'].parts['Part-1'].SectionAssignment(offset=0.0,

 offsetField='', offsetType=MIDDLE_SURFACE, region=Region(

 cells=mdb.models['Model-1'].parts['Part-1'].cells.getSequenceFromMask(

 mask=('[#1]',),)), sectionName='Section-1', thicknessAssignment=

 FROM_SECTION)

65. mdb.models['Model-1'].rootAssembly.regenerate()

66. mdb.models['Model-1'].StaticStep(name='Step-1', nlgeom=ON,

previous='Initial',initialInc=0.1, minInc=5e-5, maxInc=0.1)

67. mdb.models['Model-1'].rootAssembly.Instance(dependent=ON, name='Part-1-1',

 part=mdb.models['Model-1'].parts['Part-1'])

68. mdb.models['Model-1'].rootAssembly.Surface(name='Surf-1', side1Faces=

mdb.models['Model-1'].rootAssembly.instances['Part-1-1'].faces.getSequenceFromMask(

('[#4000000]',),))

69. mdb.models['Model-1'].rootAssembly.Surface(name='Surf-2', side1Faces=

mdb.models['Model-1'].rootAssembly.instances['Part-1-1'].faces.getSequenceFromMask(

('[#1000000]',),))

70. mdb.models['Model-1'].rootAssembly.Surface(name='Surf-3', side1Faces=

mdb.models['Model-1'].rootAssembly.instances['Part-1-1'].faces.getSequenceFromMask(

('[#200000]',),))

156

71. mdb.models['Model-1'].rootAssembly.Surface(name='Surf-4', side1Faces=

mdb.models['Model-1'].rootAssembly.instances['Part-1-1'].faces.getSequenceFromMask(

('[#800000]',),))

72. mdb.models['Model-1'].rootAssembly.Surface(name='Surf-5', side1Faces=

mdb.models['Model-1'].rootAssembly.instances['Part-1-1'].faces.getSequenceFromMask(

('[#10000000]',),))

73. mdb.models['Model-1'].rootAssembly.Surface(name='Surf-6', side1Faces=

mdb.models['Model-1'].rootAssembly.instances['Part-1-1'].faces.getSequenceFromMask(

('[#0 #2]',),))

74. mdb.models['Model-1'].rootAssembly.Surface(name='Surf-7', side1Faces=

mdb.models['Model-1'].rootAssembly.instances['Part-1-1'].faces.getSequenceFromMask(

('[#2000000]',),))

75. mdb.models['Model-1'].rootAssembly.Surface(name='Surf-8', side1Faces=

mdb.models['Model-1'].rootAssembly.instances['Part-1-1'].faces.getSequenceFromMask(

('[#8000000]',),))

76. mdb.models['Model-1'].rootAssembly.Surface(name='Surf-9', side1Faces=

mdb.models['Model-1'].rootAssembly.instances['Part-1-1'].faces.getSequenceFromMask(

('[#1]',),))

77. mdb.models['Model-1'].rootAssembly.Surface(name='Surf-10', side1Faces=

mdb.models['Model-1'].rootAssembly.instances['Part-1-1'].faces.getSequenceFromMask(

('[#4]',),))

78. mdb.models['Model-1'].rootAssembly.Surface(name='Surf-11', side1Faces=

mdb.models['Model-1'].rootAssembly.instances['Part-1-1'].faces.getSequenceFromMask(

('[#20]',),))

79. mdb.models['Model-1'].rootAssembly.Surface(name='Surf-12', side1Faces=

mdb.models['Model-1'].rootAssembly.instances['Part-1-1'].faces.getSequenceFromMask(

('[#8]',),))

80. mdb.models['Model-1'].rootAssembly.Surface(name='Surf-13', side1Faces=

mdb.models['Model-1'].rootAssembly.instances['Part-1-1'].faces.getSequenceFromMask(

('[#10]',),))

157

81. mdb.models['Model-1'].rootAssembly.Surface(name='Surf-14', side1Faces=

mdb.models['Model-1'].rootAssembly.instances['Part-1-1'].faces.getSequenceFromMask(

('[#40]',),))

82. mdb.models['Model-1'].rootAssembly.Surface(name='Surf-15', side1Faces=

mdb.models['Model-1'].rootAssembly.instances['Part-1-1'].faces.getSequenceFromMask(

('[#400000]',),))

83. mdb.models['Model-1'].rootAssembly.Surface(name='Surf-16', side1Faces=

mdb.models['Model-1'].rootAssembly.instances['Part-1-1'].faces.getSequenceFromMask(

('[#80]',),))

84. mdb.models['Model-1'].rootAssembly.Surface(name='Load_Surf-17', side1Faces=

mdb.models['Model-1'].rootAssembly.instances['Part-1-1'].faces.getSequenceFromMask(

('[#100]',),))

85. mdb.models['Model-1'].rootAssembly.Surface(name='Load_Surf-18', side1Faces=

mdb.models['Model-1'].rootAssembly.instances['Part-1-1'].faces.getSequenceFromMask(

('[#100000]',),))

86. mdb.models['Model-1'].rootAssembly.Surface(name='Load_Surf-19', side1Faces=

mdb.models['Model-1'].rootAssembly.instances['Part-1-1'].faces.getSequenceFromMask(

('[#80000]',),))

87. mdb.models['Model-1'].rootAssembly.Surface(name='Load_Surf-20', side1Faces=

mdb.models['Model-1'].rootAssembly.instances['Part-1-1'].faces.getSequenceFromMask(

('[#2000]',),))

88. mdb.models['Model-1'].rootAssembly.Surface(name='Load_Surf-21', side1Faces=

mdb.models['Model-1'].rootAssembly.instances['Part-1-1'].faces.getSequenceFromMask(

('[#40000]',),))

89. mdb.models['Model-1'].rootAssembly.Surface(name='Load_Surf-22', side1Faces=

mdb.models['Model-1'].rootAssembly.instances['Part-1-1'].faces.getSequenceFromMask(

('[#200]',),))

90. mdb.models['Model-1'].rootAssembly.Surface(name='Load_Surf-23', side1Faces=

mdb.models['Model-1'].rootAssembly.instances['Part-1-1'].faces.getSequenceFromMask(

('[#20000]',),))

158

91. mdb.models['Model-1'].rootAssembly.Surface(name='Load_Surf-24', side1Faces=

mdb.models['Model-1'].rootAssembly.instances['Part-1-1'].faces.getSequenceFromMask(

('[#10000]',),))

92. mdb.models['Model-1'].rootAssembly.Surface(name='Load_Surf-25', side1Faces=

mdb.models['Model-1'].rootAssembly.instances['Part-1-1'].faces.getSequenceFromMask(

('[#800]',),))

93. mdb.models['Model-1'].rootAssembly.Surface(name='Load_Surf-26', side1Faces=

mdb.models['Model-1'].rootAssembly.instances['Part-1-1'].faces.getSequenceFromMask(

('[#400]',),))

94. mdb.models['Model-1'].rootAssembly.Surface(name='Load_Surf-27', side1Faces=

mdb.models['Model-1'].rootAssembly.instances['Part-1-1'].faces.getSequenceFromMask(

('[#1000]',),))

95. mdb.models['Model-1'].rootAssembly.Surface(name='Load_Surf-28', side1Faces=

mdb.models['Model-1'].rootAssembly.instances['Part-1-1'].faces.getSequenceFromMask(

('[#8000]',),))

96. mdb.models['Model-1'].rootAssembly.Surface(name='Load_Surf-29', side1Faces=

mdb.models['Model-1'].rootAssembly.instances['Part-1-1'].faces.getSequenceFromMask(

('[#4000]',),))

97. Surfacelist=['Surf-0','Surf-1','Surf-2','Surf-3','Surf-4','Surf-5','Surf-6','Surf-7','Surf-8','Surf-

9','Surf-10','Surf-11','Surf-12','Surf-13','Surf-14','Surf-15','Surf-16','Load_Surf-

17','Load_Surf-18','Load_Surf-19','Load_Surf-20','Load_Surf-21','Load_Surf-

22','Load_Surf-23','Load_Surf-24','Load_Surf-25','Load_Surf-26','Load_Surf-

27','Load_Surf-28','Load_Surf-29']

Part 5

98. mdb.models['Model-1'].EncastreBC(createStepName='Step-1', name='BC-1', region=

 Region(

159

 faces=mdb.models['Model-1'].rootAssembly.instances['Part-1-

1'].faces.getSequenceFromMask(

 mask=('[#e0000000 #1]',),)))

Part 6

99. mdb.models['Model-1'].fieldOutputRequests['F-Output-1'].setValues(variables=(

 'S', 'E', 'VE', 'PE', 'VEEQ', 'PEEQ', 'PEEQT', 'PEEQMAX', 'PEMAG', 'PEQC',

 'EE', 'IE', 'THE', 'NE', 'LE', 'ER', 'SE', 'SPE', 'SEPE', 'SEE', 'SEP',

 'SALPHA', 'U', 'RF', 'CF', 'CSTRESS', 'CDISP'))

Part 7

Note that for pressure applied to circular area with radius of 16 mm equals 1kg weight(9.81

N) = 12203.92118 N/m2

100. unit_load_pressure=12266.123

101. Initial_load_step=2.5

102. desired_load_step=2.5

103. for j in range(1,14):

104. loadName ='Load_%s' % (j)

105. surfName='Load_Surf-%s'%(j+16)

106. mdb.models['Model-1'].Pressure(amplitude=UNSET, createStepName='Step-1',

 distributionType=UNIFORM, field='', magnitude=12440.2866,

name=loadName,

 region=mdb.models['Model1'].rootAssembly.surfaces[Surfacelist[16+j]])

Part 8

107. for i in range(1,33):

160

108. pressure_value=(unit_load_pressure*Initial_load_step)

+((unit_load_pressure*desired_load_step)*(i-1))

109. mdb.models['Model-1'].Pressure(amplitude=UNSET,

createStepName='Step-1', distributionType=UNIFORM, field='' ,

magnitude=pressure_value, name=loadName, region= mdb.models['Model-1']

.rootAssembly.surfaces[Surfacelist[16+j]])

110. jobName ='Test_surf_%s_JOB_%s' % (j,i)

111. print jobName

112. mdb.Job(atTime=None, contactPrint=OFF, description='', echoPrint=OFF,

 explicitPrecision=SINGLE, getMemoryFromAnalysis=True, historyPrint=OFF,

 memory=98, memoryUnits=PERCENTAGE, model='Model-1', modelPrint=OFF,

 multiprocessingMode=DEFAULT,

name=jobName,nodalOutputPrecision=SINGLE,

 numCpus=1, queue=None, scratch='', type=ANALYSIS, userSubroutine='',

 waitHours=0, waitMinutes=0)

113. mdb.jobs[jobName].submit()

114. mdb.jobs[jobName].waitForCompletion()

Part 9

115. print jobName

116. openOdb(path=jobName + '.odb')

117. myViewport = session.Viewport(name='myviewport', origin=(0, 0),

width=250, height=135)

118. myOdb = visualization.openOdb(path=jobName + '.odb')

119. myViewport.setValues(displayedObject=myOdb)

161

120.

myViewport.odbDisplay.display.setValues(plotState=CONTOURS_ON_DEF)

121. myViewport.odbDisplay.commonOptions.setValues(renderStyle=FILLED)

122. myOdb.steps['Step-1'].frames[1].fieldOutputs['EE'].values[5].data*1000000

123. mystring=[5,7, 8, 6 , 1, 3, 4 , 2, 68, 66, 65, 67, 64, 62, 61, 63]

124. outputFile = open('Strain_EE_'+jobName + '.txt','w')

125. outputFile.write('

Element\tmaxPrincipal\tmidPrincipal\tminPrincipal\tEE[11]\t\tEE[22]\t\tEE[33]\t\tpressu

re_value\n')

126. for m in range(0,16):

127. k=mystring[m]

128. v=myOdb.steps['Step-1'].frames[10].fieldOutputs['EE'].values[k-1]

129. outputFile.write('%d\t%.6e\t%.6e\t%.6e\t%.6e\t%.6e\t%.6e\t%.6e\n' %

(v.elementLabel,v.maxPrincipal,v.midPrincipal,v.minPrincipal ,v.data[0], v.data[1],

v.data[3],pressure_value))

130. outputFile.close()

131. myOdb.close()

132. del mdb.models['Model-1'].loads[loadName]

162

Appendix 2: PYTON Script of Drop Test Experiment

Part 1

-*- coding: mbcs -*-

1. import sys,math

2. import visualization

3. from part import *

4. from material import *

5. from section import *

6. from assembly import *

7. from step import *

8. from interaction import *

9. from load import *

10. from mesh import *

11. from job import *

12. from sketch import *

13. from visualization import *

14. from connectorBehavior import *

Part 2

15. mdb.models['Model-1'].ConstrainedSketch(name='__profile__', sheetSize=.200)

16. mdb.models['Model-1'].sketches['__profile__'].rectangle(point1=(.500, .500), point2=(-

.500, -.500))

17. mdb.models['Model-1'].Part(dimensionality=THREE_D, name='Part-1',

type=DEFORMABLE_BODY)

18. mdb.models['Model-1'].parts['Part-1'].BaseSolidExtrude(depth=.005, sketch=

mdb.models['Model-1'].sketches['__profile__'])

19. del mdb.models['Model-1'].sketches['__profile__']

163

20. mdb.models['Model-1'].ConstrainedSketch(gridSpacing=.07071, name='__profile__',

sheetSize=2.82844, transform=mdb.models['Model-1'].parts['Part-

1'].MakeSketchTransform(sketchPlane=mdb.models['Model-1'].parts['Part-1'].faces[4],

sketchPlaneSide=SIDE1, sketchUpEdge=mdb.models['Model-1'].parts['Part-1'].edges[4],

sketchOrientation=RIGHT, origin=(0.0, 0.0, .005)))

21. mdb.models['Model-1'].parts['Part-

1'].projectReferencesOntoSketch(filter=COPLANAR_EDGES,

sketch=mdb.models['Model-1'].sketches['__profile__'])

22. mdb.models['Model-1'].sketches['__profile__'].CircleByCenterPerimeter(center=(0.0,

0.0), point1=(0.0, .016))

23. mdb.models['Model-1'].sketches['__profile__'].CircleByCenterPerimeter(center=(-0.375,

0.250), point1=(-0.375, 0.266))

24. mdb.models['Model-1'].sketches['__profile__'].CircleByCenterPerimeter(center=(-0.375,

-0.250), point1=(-0.375, -0.266))

25. mdb.models['Model-1'].sketches['__profile__'].CircleByCenterPerimeter(center=(-0.375,

0.0), point1=(-0.375, 0.016))

26. mdb.models['Model-1'].sketches['__profile__'].CircleByCenterPerimeter(center=(-0.125,

0.250), point1=(-0.125, 0.266))

27. mdb.models['Model-1'].sketches['__profile__'].CircleByCenterPerimeter(center=(-0.125,

0.0), point1=(-0.125, 0.016))

28. mdb.models['Model-1'].sketches['__profile__'].CircleByCenterPerimeter(center=(0.375,

0.250), point1=(0.375, 0.266))

29. mdb.models['Model-1'].sketches['__profile__'].CircleByCenterPerimeter(center=(0.375,

0.0), point1=(0.375, 0.016))

30. mdb.models['Model-1'].sketches['__profile__'].CircleByCenterPerimeter(center=(0.125,

0.250), point1=(0.125, 0.266))

31. mdb.models['Model-1'].sketches['__profile__'].CircleByCenterPerimeter(center=(-0.125,

-0.250), point1=(-0.125, -0.266))

32. mdb.models['Model-1'].sketches['__profile__'].CircleByCenterPerimeter(center=(0.125,

0.0), point1=(0.125, 0.016))

164

33. mdb.models['Model-1'].sketches['__profile__'].CircleByCenterPerimeter(center=(0.125, -

0.250), point1=(0.125, -0.266))

34. mdb.models['Model-1'].sketches['__profile__'].CircleByCenterPerimeter(center=(0.375, -

0.250), point1=(0.375, -0.266))

35. mdb.models['Model-1'].sketches['__profile__'].rectangle(point1=(-0.1285, -0.3765),

point2=(-0.1215, -0.3735))

36. mdb.models['Model-1'].sketches['__profile__'].rectangle(point1=(-0.1285, 0.3765),

point2=(-0.1215, 0.3735))

37. mdb.models['Model-1'].sketches['__profile__'].rectangle(point1=(0.1285, -0.3765),

point2=(0.1215, -0.3735))

38. mdb.models['Model-1'].sketches['__profile__'].rectangle(point1=(0.1285, 0.3765),

point2=(0.1215, 0.3735))

39. mdb.models['Model-1'].sketches['__profile__'].rectangle(point1=(-0.3785, -0.3765),

point2=(-0.3715, -0.3735))

40. mdb.models['Model-1'].sketches['__profile__'].rectangle(point1=(-0.3785, 0.3765),

point2=(-0.3715, 0.3735))

41. mdb.models['Model-1'].sketches['__profile__'].rectangle(point1=(0.3785, -0.3765),

point2=(0.3715, -0.3735))

42. mdb.models['Model-1'].sketches['__profile__'].rectangle(point1=(0.3785, 0.3765),

point2=(0.3715, 0.3735))

43. mdb.models['Model-1'].sketches['__profile__'].rectangle(point1=(-0.1285, -0.1265),

point2=(-0.1215, -0.1235))

44. mdb.models['Model-1'].sketches['__profile__'].rectangle(point1=(-0.1285, 0.1265),

point2=(-0.1215, 0.1235))

45. mdb.models['Model-1'].sketches['__profile__'].rectangle(point1=(0.1285, -0.1265),

point2=(0.1215, -0.1235))

46. mdb.models['Model-1'].sketches['__profile__'].rectangle(point1=(0.1285, 0.1265),

point2=(0.1215, 0.1235))

47. mdb.models['Model-1'].sketches['__profile__'].rectangle(point1=(-0.3785, -0.1265),

point2=(-0.3715, -0.1235))

165

48. mdb.models['Model-1'].sketches['__profile__'].rectangle(point1=(-0.3785, 0.1265),

point2=(-0.3715, 0.1235))

49. mdb.models['Model-1'].sketches['__profile__'].rectangle(point1=(0.3785, -0.1265),

point2=(0.3715, -0.1235))

50. mdb.models['Model-1'].sketches['__profile__'].rectangle(point1=(0.3785, 0.1265),

point2=(0.3715, 0.1235))

51. mdb.models['Model-1'].parts['Part-1'].PartitionFaceBySketch(faces=mdb.models['Model-

1'].parts['Part-1'].faces.getSequenceFromMask(('[#10]',),),

sketch=mdb.models['Model-1'].sketches['__profile__'], sketchUpEdge=

mdb.models['Model-1'].parts['Part-1'].edges[4])

52. del mdb.models['Model-1'].sketches['__profile__']

53. mdb.models['Model-1'].ConstrainedSketch(name='__profile__', sheetSize=200.0)

54. mdb.models['Model-1'].sketches['__profile__'].CircleByCenterPerimeter(center=(0.0,

0.0), point1=(0.01, 0.0))

55. mdb.models['Model-1'].Part(dimensionality=THREE_D, name='cylinder', type=

DEFORMABLE_BODY)

56. mdb.models['Model-1'].parts['cylinder'].BaseSolidExtrude(depth=0.103,

sketch=mdb.models['Model-1'].sketches['__profile__'])

57. del mdb.models['Model-1'].sketches['__profile__']

Part 3

58. mdb.models['Model-1'].HomogeneousSolidSection(material='Material-1', name=

'Section-1', thickness=None)

59. mdb.models['Model-1'].HomogeneousSolidSection(material='Material-2', name=

'Section-2', thickness=None)

60. mdb.models['Model-1'].parts['Part-1'].SectionAssignment(offset=0.0, offsetField='',

offsetType=MIDDLE_SURFACE, region=Region(cells=mdb.models['Model-

1'].parts['Part-1'].cells.getSequenceFromMask(mask=('[#1]',),)),

sectionName='Section-1', thicknessAssignment= FROM_SECTION)

61. mdb.models['Model-1'].rootAssembly.regenerate()

166

62. mdb.models['Model-1'].parts['cylinder'].Set(cells= mdb.models['Model-

1'].parts['cylinder'].cells.getSequenceFromMask(('[#1]',),), name='Set-1')

63. mdb.models['Model-1'].parts['cylinder'].SectionAssignment(offset=0.0, offsetField='',

offsetType=MIDDLE_SURFACE, region=mdb.models['Model-

1'].parts['cylinder'].sets['Set-1'], sectionName='Section-2',

thicknessAssignment=FROM_SECTION)

64. mdb.models['Model-1'].rootAssembly.DatumCsysByDefault(CARTESIAN)

65. mdb.models['Model-1'].rootAssembly.Instance(dependent=ON, name='Part-1-1',

part=mdb.models['Model-1'].parts['Part-1'])

66. mdb.models['Model-1'].parts['Part-1'].seedPart(deviationFactor=0.1, size=0.05)

67. mdb.models['Model-1'].parts['Part-1'].generateMesh()

68. mdb.models['Model-1'].rootAssembly.regenerate()

69. mdb.models['Model-1'].rootAssembly.Instance(dependent=OFF, name='cylinder-1',

part=mdb.models['Model-1'].parts['cylinder'])

70. mdb.models['Model-1'].rootAssembly.seedPartInstance(deviationFactor=0.1,

minSizeFactor=0.1, regions=(mdb.models['Model-1'].rootAssembly.instances['cylinder-

1'],), size=0.01)

71. mdb.models['Model-1'].rootAssembly.generateMesh(regions=(mdb.models['Model-

1'].rootAssembly.instances['cylinder-1'],))

72. mdb.models['Model-1'].rootAssembly.translate(instanceList=('cylinder-1',),

vector=(0.0, 0.0, 0.005))

Part 4

73. mdb.models['Model-1'].ExplicitDynamicsStep(name='Step-1', previous='Initial',

timePeriod=0.03)

74. mdb.models['Model-1'].FieldOutputRequest(createStepName='Step-1', name= 'F-

Output-1', variables=('S', 'MISES', 'MISESMAX', 'E', 'PE', 'NE', 'LE', 'ER', 'ERV', 'U',

'UT', 'UR', 'V', 'VT', 'VR', 'A'))

75. mdb.models['Model-1'].fieldOutputRequests['F-Output-1'].setValues(numIntervals= 100)

167

76. mdb.models['Model-1'].rootAssembly.Set(faces=mdb.models['Model-

1'].rootAssembly.instances['Part-1-1'].faces.getSequenceFromMask(('[#e0000000 #1]',

),), name='Set-1')

77. mdb.models['Model-1'].EncastreBC(createStepName='Step-1', localCsys=None, name=

'BC-1', region=mdb.models['Model-1'].rootAssembly.sets['Set-1'])

78. mdb.models['Model-1'].rootAssembly.Set(faces= mdb.models['Model-

1'].rootAssembly.instances['cylinder-1'].faces.getSequenceFromMask(('[#3]',),),

name='Set-2')

79. mdb.models['Model-1'].ContactProperty('fric')

80. mdb.models['Model-1'].interactionProperties['fric'].TangentialBehavior(dependencies=0,

directionality=ISOTROPIC, elasticSlipStiffness=None, formulation=PENALTY,

fraction=0.005, maximumElasticSlip=FRACTION, pressureDependency=OFF,

shearStressLimit=None, slipRateDependency=OFF,

table=((0.3,),), temperatureDependency=OFF)

81. mdb.models['Model-1'].ContactExp(createStepName='Step-1', name='Int-1')

82. mdb.models['Model-1'].interactions['Int-1'].includedPairs.setValuesInStep(

stepName='Step-1', useAllstar=ON)

83. mdb.models['Model1'].interactions['Int1'].contactPropertyAssignments.appendInStep(

assignments=((GLOBAL, SELF, 'fric'),), stepName='Step-1')

84. mdb.models['Model-1'].Velocity(distributionType=MAGNITUDE, field='', name=

'Predefined Field-1', omega=0.0, region= mdb.models['Model-1'].rootAssembly.sets['Set-

2'], velocity1=0.0, velocity2= 0.0, velocity3=-3.0)

Part 5

85. Xstring=[-0.25,-0.25,-0.25,-0.25, 0.0 ,0.0 ,0.0 ,0.0, 0.25, 0.25, 0.25, 0.25, 0,0]

86. Ystring=[-0.375, -0.125, 0.125, 0.375, -0.375, -0.125, 0.125, 0.375, -0.375, -0.125, 0.125,

0.375, 0,0]

87. g=9.81

88. for L in range (1,14):

168

89. mdb.models['Model-1'].rootAssembly.translate(instanceList=('cylinder-1',),

vector=(Xstring[L-1], Ystring[L-1], 0.0))

90. for j in range(1,11):

91. Jobname ='Job_%s_Location_%s' % (j,L)

92. h=(.5*(j-1))+.5

93. velocity=-sqrt(2*g*h)

94. mdb.models['Model-1'].predefinedFields['Predefined Field-1'].setValues(omega=

0.0, velocity1=0.0, velocity2=0.0, velocity3=velocity)

95. mdb.Job(activateLoadBalancing=False, atTime=None,

contactPrint=OFF, description='', echoPrint=OFF, explicitPrecision=SINGLE,

historyPrint=OFF, model='Model-1', modelPrint=OFF,

multiprocessingMode=DEFAULT, name=Jobname, nodalOutputPrecision=SINGLE,

numCpus=1, numDomains=1, parallelizationMethodExplicit=DOMAIN, queue=None,

scratch='', type=ANALYSIS, userSubroutine='', waitHours=0, waitMinutes=0)

96. mdb.jobs[Jobname].submit(consistencyChecking=OFF)

97. mdb.jobs[Jobname].waitForCompletion()

Part 6

 # Open the output database and display a

 # default contour plot.

98. openOdb(path=Jobname + '.odb')

99. myViewport = session.Viewport(name='myviewport', origin=(0, 0), width=250,

height=135)

100. myOdb = visualization.openOdb(path=Jobname + '.odb')

101. myViewport.setValues(displayedObject=myOdb)

102. myViewport.odbDisplay.display.setValues(plotState=

CONTOURS_ON_DEF)

169

103. myViewport.odbDisplay.commonOptions.setValues(

renderStyle=FILLED)

104. mystring=[5,7, 8, 6 , 1, 3, 4 , 2, 68, 66, 65, 67, 64, 62, 61, 63]

105. outputFile = open('disp_U_'+Jobname + '.txt','w')

106. outputFile.write('Node\tmagnitude\tU[1]\t\tU[2]\t\tU[3]\n')

107. for i in range(0,16):

108. m=mystring[i]

109. for k in range(0,100):

110. v=myOdb.steps['Step-1'].frames[k].fieldOutputs['U'].values[m]

111. outputFile.write ('%d\t%.6e\t%.6e\t%.6e\t%.6e\n' % (v.nodeLabel,

v.magnitude,v.data[0], v.data[1], v.data[2]))

112. outputFile.close()

113. outputFile = open('Strain_NE_'+Jobname + '.txt','w')

114. outputFile.write

('Element\tmaxPrincipal\tmidPrincipal\tminPrincipal\tEE[11]\t\tEE[22]\t\tEE[33]\t\tEE[1

2]\t\tEE[13]\t\tEE[23]\n')

115. for i in range(0,16):

116. m=mystring[i]

117. for k in range(0,100):

118. v=myOdb.steps['Step-1'].frames[j].fieldOutputs['NE'].values[i]

119.

outputFile.write('%d\t%.6e\t%.6e\t%.6e\t%.6e\t%.6e\t%.6e\t%.6e\t%.6e\t%.6e\n' %

(v.elementLabel,v.maxPrincipal,v.midPrincipal,v.minPrincipal ,v.data[0], v.data[1],

v.data[2], v.data[3], v.data[4], v.data[5]))

120. outputFile.close()

121. mdb.models['Model-1'].rootAssembly.translate(instanceList=('cylinder-1',),

vector=(-Xstring[L-1], -Ystring[L-1], 0.0))

170

Appendix 3: GUI Development Description

As was mentioned previously in Chapter 2, MATLAB NNT can be used in different ways

such as directly from MATLAB basic command-line operations as well as predefined GUIs.

Alternatively, in order to access the full functionality of various MATLAB toolboxes as well as

MATLAB NNT all at the same time, it is possible to employ the capabilities of M-file scripts

using MATLAB programming language to write one customised programme for a particular

project. Throughout this project, MATLAB has been widely used in order to acquire data

directly from data acquisition systems, for pre-processing and analysing the data as well as ANN

training and estimation of various data sets. Furthermore, a GUI is developed in MATLAB

allowing control of various parameters of the data acquisition and load monitoring system, as

well as graphical display in real time. All the necessary steps in developing a load monitoring

system are gathered in one user friendly MATLAB program through a GUI. This allows the

operator to modify and set the necessary information in the program according to the specific test

experiment setup. In this section, the MATLAB program is described in brief. Figure 1-1

indicates a flow diagram of this code. For clarification purposes, this script is divided in several

parts and can be accessed in Appendix 4. In addition, in order to introduce MATLAB NNT, a

training example is described in Appendix 5.

171

Figure ‎5-1: Flowchart of the MATLAB GUI

The first part of this script has functions that appear when the MATLAB GUIDE generates

the code after designing the GUI. One function is the first initialisation code generated by

MATLAB for the GUI and should not be edited. The next function executes just before

Prediction is made visible in the GUI. The Outputs from the last function of this part are returned

to the command line. Once the user runs the script, the main GUI window will be illustrated and

the user can press any button to run the desired function. The main GUI window is indicated in

Figure 1-2. The main GUI has several push buttons which pressing any of them calls its call back

function. In addition an axis type element is also added to the GUI. This enables the graphical

display of the results (loads) in this window (no. 6 in). Push buttons are sorted in order at both

sides of this diagram. The six buttons at the right side are all related to the functions specifically

developed for this project experiment enabling a load monitoring system. The other five buttons

at the left side are all for using the pre-defined GUIs of the MATLAB NNT directly from this

main GUI. Although the GUI is designed particularly for linear cases (small displacement

experiment), it is possible to use it for training networks with nonlinear data (large displacement

and drop test experiments).

172

Figure ‎1-2: Developed MATLAB Programme main GUI

The second part of the script includes several functions which appear when MATLAB

GUIDE generates the code after designing the GUI as well. They are for file, open, print and

close Menu options in the designed GUI.

Part 3 of the script allows the user to easily call any of the main five general pre-defined GUIs

of the MATLAB NNT and employ their full functionality straight from this GUI. All the five

push buttons at the left side of the main GUI indicated in are defined in part 3 in the following

order: The main GUIs are:

1. General Network Data Manager (nntool button no. 1 in Figure 1-2)

nntool command opens the Network/Data Manager window, which allows to import,

create, use, and export all sorts of neural networks and data available in MATLAB (Figure 1-

3).

173

Figure ‎1-3: General Network Data Manager (nntool) GUI

2. Neural Network Fitting Tool (nftool button no. 2 in Figure 1-2)

3. Neural network time series tool (ntstool button no. 3 in Figure 1-2)

4. Neural network pattern recognition tool (nprtool button no. 4 in Figure 1-2)

5. Neural network classification or clustering tool (nctool button no. 5 in Figure 1-2)

In the part 4 of the M-file script, a function is defined in order to acquire data using MATLAB

data acquisition toolbox directly into MATLAB from NI DAQ systems. Whenever this function

is called back, structural responses are acquired from NI driver software through windows

dynamic data exchange protocols. Depending on the DAQ system used to acquire data for each

experiment either this function is used or the function defined in part 5. In part of the M-file

script, a function is defined in order to acquire data using windows dynamic data exchange

requests from WINDMILL Logger software (the commercial package for MICROLINK 751

devices). It should be noted that to have successful data acquisition from this function, Windmill

Logger should be set up already and be running at the same time as MATLAB file execution.

These functions are called in the program whenever an experimental data acquisition is

needed.

174

In the part 6 of the M-file script, a call back button is defined which executes training data

acquisition (button no. 7 in Figure 1-1). The first step in data acquisition is to configure the

number of loading locations, strain and load gauges used in the experiment (Figure 1-4). These

GUIs are defined in part 7 of M-file script. Once the system gets the inputs from the user, a loop

is used to get data from all the strain gauges for particular number of loading locations. Several

functions are called back in this part and at the end the acquired data is saved and exported to

MATLAB workspace.

Figure ‎1-4: number of loading locations, strain and load gauges configuration GUIs

The load monitoring system is designed in the way that for each loading location, two

separate data set readings from all strain gauges are collected from the structure. One is when the

structure is unloaded and the other is when it is only loaded at that specific loading location. This

is defined in a function in part 8 of M-file script. Once both readings are acquired the system

asks the user to verify and check that these data acquisitions are performed accurately. Should

the user be happy about the procedure, the yes button is selected and the differences in two data

set readings are used to indicate the deflections at the certain strain gauge locations due to that

specific applied load. However, should the user be not sure about the consistency of the data

175

acquisition process, no button is selected and the same procedure would be repeated until the

user is pleased with the procedure. The checking function is defined in part 9 of M-file script.

Figure 1-5 indicates sample GUIs designed for this stage when strain readings are collected for

loading location number one. Once deflections of the systems due to the one applied load at the

time to the first loading location are achieved, the same procedure applies to the next loading

location.

Figure ‎1-5: Strain data acquisition No.1 GUIs

The loop in part 7 continues till all the loading locations are covered. At the end of part 7

when all the locations are loaded at once and the strain readings for each loading location is

collected, data sets are put in order in matrices, saved and should the user be willing, data sets

can be exported to the MATLAB workspace (Figure 1-6). Strain data sets and load data sets are

put together in one matrix (original reference data matrix) which is used later to generate more

data.

176

Figure ‎1-6: Export the acquired data to the MATLAB workspace

Once the original reference data matrix is built employing the experimental data acquired

from the structure, for a linear system it can be used to generate enough training data using the

superposition theorem. In the part 10 of M-file script, a call back button is defined which

executes training data generation algorithm (button no. 8 in Figure 1-2). The algorithm is based

on superposition theorem and uses a random generation function defined in the part 11 to

generate random loading case scenarios having random numbers in the range lower limit to

higher limit of the linear loading response defined by the user. Training data generation

parameters are configured first by the user employing GUIs indicated in Figure 1-7. Training

data generated with this script consist of two parts. One part has loading scenarios where all the

locations are loaded with random loads and the other part has loading scenarios where only one

loading location is loaded with random load values. All the generated data sets are put in specific

order in various matrices, saved and should the user be willing, data sets can be exported to the

MATLAB workspace (Figure 1-8).

177

Figure ‎1-7: Training data generation parameter configuration GUIs

Figure ‎1-8: Export the generated data to the MATLAB workspace

When training data is ready, it is time to create an ANN and train it. In this research two

different back-propagation ANN architectures are used to relate structural response to the applied

loads. The architectures utilised are:

178

1) One network with Nstrain (number of strain gauges) neurons in the input layer and Nload

(number of loading locations) neurons in the output layer is trained to estimate the load on

the panel from the strain responses.

2) Nload networks each with Nstrain neurons in the input layer and one neuron in output layer

are trained and used to estimate the load on the panel from the strain responses.

Other network parameters such as the number of hidden layers and neurons in each hidden

layer are flexible and can be configured by the user according to the data sets.

In part 12 of this M-file script, first ANN architecture is used to create and train the network.

The user first selects a call back button designed to execute training with one network (button no.

9 in Figure 1-2) then configures the network parameters using GUIs indicated in Figure 1-9.

Figure ‎1-9: Network Parameter Configuration GUIs for ANN architecture 1

This part of the script will then create a network according to these network parameters. The

network will be trained with the input and target data sets of the training data. During the training

process, the neural network training tool GUI will be displayed. The user will be able to monitor

the training process. This window indicates the state of the training progress in terms of training

time and epochs, the network performance, the magnitude of the gradient of performance and the

number of validation checks. These values are of most interest to monitor during the training

progress. This is due to the fact that the user may use the early stopping method to achieve a

more general network. The training process could be stopped at any time of the progress by

clicking the Stop Training button in the training window. This is usually done when the

performance function fails to decrease considerably over many training iterations. From the

179

Neural Network Training GUI, three main plots can be accessed as well for post-processing:

performance, training state and regression plots. Figure 1-10 indicates the neural network

training tool GUI.

Figure ‎1-10: Neural network Training tool

180

Once the training is done, the network and the main parameters of the training state will be

saved and should the user be willing, data sets can be exported to the MATLAB workspace

(Figure 1-11).

Figure ‎1-11: Export the network and its main parameters to the MATLAB workspace

Having a well-trained network, the ANN should be able to estimate the external loads from

new introduced structure response data sets. In the part 13 of the M-file script, a call back button

is defined which executes new load estimation using the trained network having the first ANN

architecture (button no. 10 in Figure 1-2). By pressing this button a new set of data is acquired

and introduced to a trained network. The data acquisition would be performed once only in two

parts again. One is when the structure is unloaded and the other is when it is only loaded at

desired specific loading locations. The GUIs used to guide through the data acquisition process

are indicated in Figure 1-5. The network will simulate and predict load from this new set of data.

The loads are then indicated as a bar graph in the main GUI (Figure 1-12). Once the load

181

estimation is done, the network output will be saved and should the user be willing, data sets can

be exported to the MATLAB workspace (Figure 1-13).

Figure ‎1-12: Load estimation results indicated as a bar chart

Figure ‎1-13: Export the network output to the MATLAB workspace

In part 14 of this M-file script, the second ANN architecture is used to create and train the

network. A call back button should be selected to execute training with Nload networks (button

182

no. 11 in Figure 1-2) which then configures the number of network hidden layers and neurons in

each hidden layer using the GUI indicated in Figure 1-14.

Figure ‎1-14: Nload networks hidden layer and neuron number configuration

This part of the script will then create Nload target data sets from the training target data set

using a loop and Nload networks according to the network parameters are created. Each of the

networks will be trained with the input and one of the target data sets created earlier from the

training data. During the training process, the neural network training tool GUI will be displayed

for each of the networks and the user will be able to monitor the training processes. Once the

training is done, the networks and the main parameters of the training states will be saved.

Having well-trained networks, the ANN should be able to estimate the external loads from

new introduced structure response data sets. In the part 15 of the M-file script, a call back button

is defined which executes new load estimation using the trained network having the second ANN

architecture (button no. 12 in Figure 1-2). By pressing this button a new set of data is acquired

and introduced to a trained network. The data acquisition would be performed once only in two

parts again. One is when the structure is unloaded and the other is when it is only loaded at

desired specific loading locations. The GUIs used to guide through the data acquisition process

are indicated in . The networks will simulate and estimate loads from this new set of data. Each

network will estimate a load which is related to one location only. However, the results of all the

networks together provide the estimation of all loading locations from the same strain data set

input. The loads are then indicated as a bar graph in the main GUI. Once the load estimation is

done, the network output will be saved and should the user be willing, data sets can be exported

to the MATLAB workspace (Figure 1-3).

183

Finally, in part 16 of this the M-file script, a call back button is defined which updates the

main GUI graph based on its popup menu (button no. 13 in Figure 1-2). The user should first

select from the menu between new strain reading and load estimation. Once the update button is

selected, there will be a new data acquisition and the strain readings are used to update the graph.

Throughout this project, MATLAB has been widely used in order to acquire data directly

from data acquisition systems, for pre-processing and analysing the data as well as ANN training

and estimation of various data sets, the main developed MATLAB program was described in this

chapter. In fact, the capabilities of M-file script using MATLAB programming language is

employed to write one customised programme for this particular project. As described in detail

in this chapter, all the necessary steps in developing a load monitoring system are gathered in

one user friendly MATLAB program through a GUI which allows the operator to modify and set

the necessary information in the program according to the specific test experiment setup.

Furthermore, the user can control various parameters of the data acquisition and load monitoring

system and visualise data in real time. In the next chapter, a summary and evaluation of the

topics and results of this thesis as well as possible future research and recommendations are

covered.

184

Appendix 4: MATLAB Script

Part 1

function varargout = General_DAQ_GUI_Two_Methods(varargin)
% GENERAL_DAQ_GUI_TWO_METHODS MATLAB code for

General_DAQ_GUI_Two_Methods.fig
gui_Singleton = 1;
gui_State = struct('gui_Name', mfilename, ...
 'gui_Singleton', gui_Singleton, ...
 'gui_OpeningFcn',

@General_DAQ_GUI_Two_Methods_OpeningFcn, ...
 'gui_OutputFcn',

@General_DAQ_GUI_Two_Methods_OutputFcn, ...
 'gui_LayoutFcn', [] , ...
 'gui_Callback', []);
if nargin && ischar(varargin{1})
 gui_State.gui_Callback = str2func(varargin{1});
end

if nargout
 [varargout{1:nargout}] = gui_mainfcn(gui_State, varargin{:});
else
 gui_mainfcn(gui_State, varargin{:});
end

 %{

This function appears when MATLAB GUIDE generates the code after designing the GUI.

It is the first initialization code generated by MATLAB for GUI.

%}

% End initialization code - DO NOT EDIT
% --- Executes just before General_DAQ_GUI_Two_Methods is made visible.
function General_DAQ_GUI_Two_Methods_OpeningFcn(hObject, eventdata,

handles, varargin)
% Choose default command line output for General_DAQ_GUI_Two_Methods
handles.output = hObject;
 % Update handles structure
guidata(hObject, handles);
 % This sets up the initial plot - only do when we are invisible
% so window can get raised using General_DAQ_GUI_Two_Methods.
 %load('C:\Users\Mohammad\Desktop\Hosptest1\Train_leg.mat')
if strcmp(get(hObject,'Visible'),'off')
 plot(zeros(16));
 end
 %{ This function appears when MATLAB GUIDE generates the code after designing the GUI.

It executes just before Prediction is made visible in GUI.%}

% --- Outputs from this function are returned to the command line.
function varargout = General_DAQ_GUI_Two_Methods_OutputFcn(hObject,

eventdata, handles)

185

% Get default command line output from handles structure
varargout{1} = handles.output;

%{ This function appears when MATLAB GUIDE generates the code after designing the GUI.

Outputs from this function are returned to the command line.%}

Part 2

% --
function FileMenu_Callback(hObject, eventdata, handles)

 %{ This function appears when MATLAB GUIDE generates the code after designing the GUI.

It is for the File Menu option in the designed GUI.

%}

% --
function OpenMenuItem_Callback(hObject, eventdata, handles)
% hObject handle to OpenMenuItem (see GCBO)

% eventdata reserved - to be defined in a future version of MATLAB

% handles structure with handles and user data (see GUIDATA)

file = uigetfile('*.fig');

if ~isequal(file, 0)

 open(file);

end
uiopen('LOAD');

 %{ This function appears when MATLAB GUIDE generates the code after designing the GUI.

It is for the Open Menu option in the designed GUI.%}

% --
function PrintMenuItem_Callback(hObject, eventdata, handles)
printdlg(handles.figure1)

%{ This function appears when MATLAB GUIDE generates the code after designing the GUI.

It is for the Print option in the designed GUI.%}

% --
function CloseMenuItem_Callback(hObject, eventdata, handles)
selection = questdlg(['Close ' get(handles.figure1,'Name') '?'],...
 ['Close ' get(handles.figure1,'Name') '...'],...
 'Yes','No','Yes');
if strcmp(selection,'No')
 return;
end
 delete(handles.figure1)
 %{ This function appears when MATLAB GUIDE generates the code after designing the GUI.

It is for the close option in the designed GUI.%}

186

Part 3

% --- Executes on button press in nntool.
function nntool_Callback(hObject, eventdata, handles)
nntool
 % --- Executes on button press in nftool.
function nftool_Callback(hObject, eventdata, handles)
nftool
% --- Executes on button press in ntstool.
function ntstool_Callback(hObject, eventdata, handles)

 ntstool
% --- Executes on button press in nprtool.
function nprtool_Callback(hObject, eventdata, handles)
nprtool
% --- Executes on button press in nctool.
function nctool_Callback(hObject, eventdata, handles)
nctool
%{ This function appears when MATLAB GUIDE generates the code after designing the GUI.

It is for predefined MATLAB NNT GUI options access in the designed GUI.

The first function will be executed on button press in of nntool in GUI and will open predefined GUIs for nntool

function. The second function will be executed on button press in of nftool in GUI and will open predefined GUIs

for nftool function. The third function will be executed on button press in of ntstool in GUI and will open predefined

GUIs for ntstool function. The third function will be executed on button press in of ntstool in GUI and will open

predefined GUIs for ntstool function. The fourth function will be executed on button press in of nprtool in GUI and

will open predefined GUIs for nprtool function. The fifth function will be executed on button press in of nctool in

GUI and will open predefined GUIs for nctool function.%}

Part 4

function [data]=data_session
DAQ_Logger_Set_No=2;
DAQ_Logger_Channel_No=8;
 s = daq.createSession('ni');
s.Rate=10000;
for j=1:DAQ_Logger_Set_No
for i=0:DAQ_Logger_Channel_No-1
S=['ch',num2str(i),'=s.addAnalogInputChannel(''cDAQ1Mod',num2str(j),''',

''ai',num2str(i),''', ''Bridge'');'];
eval(S);
S=['ch',num2str(i),'.ADCTimingMode = ''HighSpeed'';'];
eval(S);
S=['ch',num2str(i),'.BridgeMode = ''Quarter'';'];
eval(S);
S=['ch',num2str(i),'.NominalBridgeResistance=350;'];
eval(S);
end
end

 data = 1000000*s.startForeground;
data=mean(data,1);

187

checkLabels = {'Save acquired to variable named:'};
varNames = {'Signal_1'};
items = {data};
export2wsdlg(checkLabels,varNames,items,...
 'Save Sums to Workspace');
s.release()

%{ This function is defined in order to acquire data using MATLAB data acquisition toolbox directly into

MATLAB from NI DAQ systems. Whenever this function is called back, structural responses are acquired from NI

driver software through windows dynamic data exchange .

Note: In order to have successful data acquisition NI drivers should be installed set up already %}

Part 5

function [DAQ]=DAQ_Logger
DAQ_Logger_Set_No=2;
DAQ_Logger_Channel_No=15;
channel = ddeinit('Logger','Data');
for j=0:DAQ_Logger_Set_No-1
for i=0:DAQ_Logger_Channel_No-1
 S=['DAQ(1,j*(DAQ_Logger_Channel_No)+i+1) =

ddereq(channel,''',num2str(j),'000',num2str(i),''')'];
 eval(S);
end
end
 %{ This function is written by the author. Whenever this function is called back through windows dynamic

data exchange request s, structural responses are acquired from WINDMILL Logger software (the commercial

package for MICROLINK 751 devices).

Note: In order to have successful data acquisition Windmill Logger should be set up already and be running at

the same time as MATLAB file execution.%}

 Part 6

% --- Executes on button press in Training Data Acquisation.
function Training_data_Aquisation_Callback(hObject, eventdata, handles)
strain_data_Null=data_session;
data=Training_data_acqisition;
 %{ This function appears when MATLAB GUIDE generates the code after designing the GUI.

Whatever written in this function will be executed on button press in Training Data Acquisation in GUI.%}

Part 7

function [strain_data,load_data,NStrain_Gauge,Nload_location]=

Training_data_acqisition
input_answer{1,1}='1';

188

prompt = {'Enter Number of loading locations that you want to do the test

:'};
dlg_title = 'Number of loading locations ';
num_lines = 1;
def = {'16'};
input_answer = inputdlg(prompt,dlg_title,num_lines,def);
Nload_location=str2num(input_answer{1,1});

 input_answer{1,1}='1';
prompt = {'Enter Number of strain Gauges :'};
dlg_title = 'Number of strain Gauges ';
num_lines = 1;
def = {'16'};
input_answer = inputdlg(prompt,dlg_title,num_lines,def);
NStrain_Gauge=str2num(input_answer{1,1})
input_answer{1,1}='1';
prompt = {'Enter Number of load Gauges :'};
dlg_title = 'Number of Load Gauge ';
num_lines = 1;
def = {'2'};
input_answer = inputdlg(prompt,dlg_title,num_lines,def);
NLoad_Gauge=str2num(input_answer{1,1})
for i=1:Nload_location
strain_data_all(i,:)=get_one_set_data(i,NStrain_Gauge,NLoad_Gauge);
end
size(strain_data_all)
strain_data=strain_data_all(:,1:NStrain_Gauge);
size(strain_data)
load_data=strain_data_all(:,NStrain_Gauge+1:NStrain_Gauge+NLoad_Gauge);
size(load_data)
 Sum_strain_load=strain_data;
 for i=1:NLoad_Gauge
 Sum_strain_load(:,NStrain_Gauge+i)=load_data(:,i);
 end
Sum_strain_load
checkLabels = {'Save acquired to variable named:','Save acquired to

variable named:','Save acquired to variable named:','Save acquired to

variable named:','Save acquired to variable named:'};
varNames =

{'strain_data','load_data','Sum_strain_load','NStrain_Gauge','NLoad_Gauge'};
items = {strain_data,load_data,Sum_strain_load,NStrain_Gauge,NLoad_Gauge};
export2wsdlg(checkLabels,varNames,items,...
 'Save Sums to Workspace');
 name=[num2str(NStrain_Gauge) '_Strain_Gauge_'

num2str(Nload_location) '_loading_location_' num2str(NLoad_Gauge)

'_Load_Gauge'];
 save name 'name'
 save(name, 'strain_data', 'load_data', 'Sum_strain_load',

'NStrain_Gauge', 'NLoad_Gauge', 'Nload_location','name');

Part 8

function

[strain_data]=get_one_set_data(Ndata_location,NStrain_Gauge,NLoad_Gauge)

189

 S=strcat('strain data aquisation Number: ', num2str(Ndata_location));
 helpdlg1=helpdlg('Change the load configuration to no loading

position,then press Enter: ',S);
 waitfor(helpdlg1);
 strain_data_Null=data_session;
 helpdlg2=helpdlg('Change the load configuration to desired loading

position,then press Enter:',S);
 waitfor(helpdlg2);
 strain_data=data_session-strain_data_Null;
 checking(Ndata_location)

Part 9

function checking(Ndata_location)
 choice = questdlg('Was the current test DAQ Carried out correctly?', ...

 'Test Check', 'Yes','No','Yes');
 switch choice
 case 'Yes'
 case 'No'
 msgbox1= msgbox('Do the same loading test again');
 waitfor(msgbox1);
 get_one_set_data(Ndata_location)
 end

Part 10

% --- Executes on button press in Training_Data_Generation.
function Training_Data_Generation_Callback(hObject, eventdata, handles)
 prompt = {'Enter Number of strain Gauges :','Enter the number of loading

locations:'};
dlg_title = 'Training Data generation Parameters';
num_lines = 1;
def = {'16','16'};
input_answer = inputdlg(prompt,dlg_title,num_lines,def);

Nstrain=str2num(input_answer{1,1})
Nload=str2num(input_answer{2,1});
Data_Generation(Nstrain,Nload)

 %{ This function appears when MATLAB GUIDE generates the code after designing the GUI.

Whatever written in this function will be executed on button press in Training Data Generation in GUI.%}

function Data_Generation(Nstrain,Nload)
 prompt = {'Enter Number of Superposition :','Enter the desired iteration

higher limit:','Enter the desired iteration lower limit:','Enter the desired

Test Data:'};
dlg_title = 'Training Data generation Parameters';
num_lines = 1;
def = {'700','300','0', '150'};
input_answer = inputdlg(prompt,dlg_title,num_lines,def);
NSuperposition=str2num(input_answer{1,1})
Niteration_higher_limit=str2num(input_answer{2,1});

190

Niteration_lower_limit=str2num(input_answer{3,1});
NTest_data=str2num(input_answer{4,1})

 load('C:\Users\Mohammad\Desktop\Matlab Final\name.mat');
S=['C:\Users\Mohammad\Desktop\Matlab Final\' name '.mat']
load(S)
%the random number in the range lower limit to higher limit for the first

part
Sum=strain_data;
 for i=1:Nload
 Sum(Nstrain+i,i)=load_data(i,1);
 end
Sum
for i=1:Nload
Sum(:,i)=Sum(:,i)/Sum(Nstrain+i,i);
end
 % the random number in the range Niteration_lower_limit to

Niteration_higher_limit for the first part
% First part consist of NSuperposition data (set initially 700) which is
% summation of all the Nload data sets (Nload +Nstrain in Nload coloumns
% where each coloumn is randomized and then all the coumn are added
% together to demonstrate the randome cases for when all the locations are

loaded at the same time with random loads
Temp_Column_NEW_SUM=zeros(Nstrain+Nload,NSuperposition);
for k=1:(NSuperposition)

NEW_SUM=randomized_data(Nload,Niteration_lower_limit,Niteration_higher_limit,

Sum);
 for j=1:Nload
 Temp_Column_NEW_SUM(:,k)=Temp_Column_NEW_SUM(:,k)+NEW_SUM(:,j);
 end
end
Randomized_set=Temp_Column_NEW_SUM;
%the random number in the range Niteration_lower_limit to

Niteration_higher_limit for the Second part
%Second part consists of round(NSuperposition/Nload)* Nload coloumns which
%is one random load at a time on each location
for k=1:round(NSuperposition/Nload)

NEW_SUM=randomized_data(Nload,Niteration_lower_limit,Niteration_higher_limit,

Sum);
tempsum(:,:,k)=NEW_SUM(:,:);
end
for k=1:round(NSuperposition/Nload)
 for i=1:Nload
 Randomized_set(:,NSuperposition+i-Nload+(k*Nload))=tempsum(:,i,k);
 end
end

for i=1:Nstrain
 Input(i,:)= Randomized_set(i,:);
end
Input;
 for i=Nstrain+1:Nstrain+Nload
 for j=1:(round(NSuperposition/Nload)*Nload)+NSuperposition
 Output(i-Nstrain,j)= Randomized_set(i,j);

191

 end
end
Output;
% This part is the test data where NTest_data * Nload data sets with
% order is generated this means that each loading location is loaded from 1
% to NTest_data individually and data sets are generated
for k=1:NTest_data
 for i=1:Nstrain+Nload
Temp_test_data(i,:,k)=k*Sum(i,:);
 end
end
for k=1:150
 for i=1:Nstrain+Nload
 for j=1:Nload
 test_data(i,((k-1)*Nload)+j)=Temp_test_data(i,j,k);
 end
 end
end

for i=1:Nstrain
test_Input(i,:)=test_data(i,:);
end

for i=Nstrain+1:Nstrain+Nload
test_Output(i-Nstrain,:)=test_data(i,:);
end
name2=['General_data_' num2str(NStrain_Gauge) '_Strain_Gauge_'

num2str(Nload_location) '_loading_location_' num2str(NLoad_Gauge)

'_Load_Gauge'];
 save name2 'name2'
 save(name2, 'Randomized_set' , 'Input', 'Output', 'test_Input',

'test_Output', 'NStrain_Gauge', 'NLoad_Gauge', 'Nstrain',

'Nload','name','Nload_location');

checkLabels = {'Save acquired to variable named:','Save acquired to

variable named:','Save acquired to variable named:','Save acquired to

variable named:','Save acquired to variable named:','Save acquired to

variable named:','Save acquired to variable named:','Save acquired to

variable named:','Save acquired to variable named:','Save acquired to

variable named:'};
varNames = {'Randomized_set','Input','Output','test_Input',

'test_Output','Nload_location','NStrain_Gauge','NLoad_Gauge','Nstrain','Nload

'};
items = {Randomized_set,Input,Output,test_Input,

test_Output,Nload_location,NStrain_Gauge,NLoad_Gauge,Nstrain,Nload};
export2wsdlg(checkLabels,varNames,items,...
 'Save Sums to Workspace');

 Part 11

 function[NEW_SUM]

=randomized_data(Nload,Niteration_lower_limit,Niteration_higher_limit,Sum)

192

Rand= Niteration_lower_limit + (Niteration_higher_limit-

Niteration_lower_limit).*rand(1,Nload);
 for j=1:Nload
NEW_SUM(:,j)=Rand(1,j)*Sum(:,j);
end

Part 12

% --- Executes on button press in Train Network.
function Train_1_Network_Callback(hObject, eventdata, handles)
net=Train_1_Network;
 %{

This function appears when MATLAB GUIDE generates the code after designing the GUI.

Whatever written in this function will be executed on button press in Train 1 Network in GUI.

%}

 function [net]=Train_1_Network
load('C:\Users\Mohammad\Desktop\Matlab Final\name2.mat');
S=['C:\Users\Mohammad\Desktop\Matlab Final\' name2 '.mat'];
load(S)

 prompt = {'Enter Number of Hidden Layers :'};
dlg_title = 'Network Parameters ';
num_lines = 1;
def = {'20'};
input_answer = inputdlg(prompt,dlg_title,num_lines,def);
 Nhidden_lay=str2num(input_answer{1,1});

 net = feedforwardnet(Nhidden_lay);

 prompt = {'Enter Number of Epochs :','Enter the desired goal:'};
dlg_title = 'Network Parameters ';
num_lines = 1;
def = {'100','0.1'};
input_answer = inputdlg(prompt,dlg_title,num_lines,def);
net.trainParam.epochs=str2num(input_answer{1,1})
net.trainParam.goal=str2num(input_answer{2,1})
%net.trainParam.goal=0.1;
%net.trainParam.epochs=100;
net = train(net,Input,Output);
timenow=datestr(clock);
filename=strcat('Randomized_numbers_',date,'_',timenow(13:14),'_',timenow(1

6:17),'_',timenow(19:20));
name3=['General_net_data_' num2str(NStrain_Gauge) '_Strain_Gauge_'

num2str(Nload_location) '_loading_location_' num2str(NLoad_Gauge)

'_Load_Gauge'];
 save name3 'name3'
 save(name3, 'timenow', 'net' ,'Randomized_set' , 'Input',

'Output', 'test_Input', 'test_Output', 'NStrain_Gauge', 'NLoad_Gauge',

'Nstrain', 'Nload','name');

193

checkLabels = {'Save acquired to variable named:','Save acquired to

variable named:','Save acquired to variable named:','Save acquired to

variable named:','Save acquired to variable named:','Save acquired to

variable named:','Save acquired to variable named:','Save acquired to

variable named:','Save acquired to variable named:','Save acquired to

variable named:','Save acquired to variable named:'};
varNames = {'timenow','net','Randomized_set','Input','Output','test_Input',

'test_Output','NStrain_Gauge','NLoad_Gauge','Nstrain','Nload'};

items = {timenow,net,Randomized_set,Input,Output,test_Input,

test_Output,NStrain_Gauge,NLoad_Gauge,Nstrain,Nload};
export2wsdlg(checkLabels,varNames,items,...
 'Save Sums to Workspace');

 Part 13

%{ This function appears when MATLAB GUIDE generates the code after designing the GUI.

Whatever written in this function will be executed on button press in Estimate 1 Net loads in GUI.

By pressing this button a new set of data is acquired and introduced to a trained network. The network will

simulate and predict load from this new set of data. The loads are then indicated as a bar graph in GUI. At the end

there will be the option to save key data such as: ‗timenow', 'Strain_reading_average', 'test_output' and

‗first_reading_average'.%}

% --- Executes on button press in Estimate Load.
function Estimate_1_Net_loads_Callback(hObject, eventdata, handles)
load('C:\Users\Mohammad\Desktop\Matlab Final\name3.mat');
S=['C:\Users\Mohammad\Desktop\Matlab Final\' name3 '.mat']
load(S)
location=5;
strain_data_all(1,:)=get_one_set_data(1,NStrain_Gauge,NLoad_Gauge);
strain_data=strain_data_all(:,1:NStrain_Gauge)';
load_data=zeros(Nstrain,1);
load_data(location,1)=strain_data_all(:,NStrain_Gauge+1)';

checkLabels = {'Save aquired to variable named:','Save aquired to variable

named:','Save aquired to variable named:'};
varNames = {'test_strain_data','test_load_data','estimated_test_load'};
estimated_test_load=sim(net,strain_data);
bar(estimated_test_load);
items = {strain_data,load_data,estimated_test_load};
export2wsdlg(checkLabels,varNames,items,...
 'Save Sums to Workspace');

Part 14

% --- Executes on button press in Train_n_1_Network.
function Train_n_1_Network_Callback(hObject, eventdata, handles)
mean_nets_mse=Train_n_1_Network;
function [mean_nets_mse]=Train_n_1_Network
load('C:\Users\Mohammad\Desktop\Matlab Final\name2.mat');
S=['C:\Users\Mohammad\Desktop\Matlab Final\' name2 '.mat'];
load(S)
 prompt = {'Enter Number of Hidden Layers :'};

194

dlg_title = 'Network Parameters ';
num_lines = 1;
def = {'50'};
input_answer = inputdlg(prompt,dlg_title,num_lines,def);
Nhidden_lay=str2num(input_answer{1,1});
N_temp=size(Output);
Nload=N_temp(1,1);
N_temp=size(Input);
Nstrain=N_temp(1,1);
for i=1:Nstrain
s=strcat('Output_',num2str(i),'=Output(i,:);')
eval(s)
s=strcat('net_',num2str(i),' = feedforwardnet([' ,num2str(Nhidden_lay),

']);')
eval(s)
s=strcat('[net_',num2str(i),',tr_',num2str(i),'] =

train(net_',num2str(i),',Input,Output_',num2str(i),');')
eval(s)
end
for i=1:Nstrain
s=strcat('net_esstimation(i,:)=sim(net_',num2str(i),',Input);')
eval(s)
s=strcat('nets_mse(1,i)=mse(net_',num2str(i),',Output_',num2str(i),',net_es

stimation(i,:));')
eval(s)
end
error_net_esstimation= net_esstimation - Output;
mean_nets_mse=mean(nets_mse)
name4=['General_n_1_net_data_' num2str(NStrain_Gauge) '_Strain_Gauge_'

num2str(Nload_location) '_loading_location_' num2str(NLoad_Gauge)

'_Load_Gauge'];
 save name4 'name4'
for i=1:Nstrain

 S= ['netdata.net_',num2str(i),'=net_',num2str(i),';'];
 eval(S)
 S= ['netdata.tr_',num2str(i),'=tr_',num2str(i),';'];
 eval(S)
 save(name4, 'netdata'

,'error_net_esstimation','nets_mse','net_esstimation','Randomized_set' ,

'Input', 'Output', 'test_Input', 'test_Output', 'NStrain_Gauge',

'NLoad_Gauge', 'Nstrain', 'Nload','name4');
end

Part 15

 % --- Executes on button press in Estimate_n_1_Net_loads.
function Estimate_n_1_Net_loads_Callback(hObject, eventdata, handles)
load('C:\Users\Mohammad\Desktop\Matlab Final\name4.mat');
S=['C:\Users\Mohammad\Desktop\Matlab Final\' name4 '.mat'];
load(S)
location=5;
strain_data_all(1,:)=get_one_set_data(1,NStrain_Gauge,NLoad_Gauge)

195

size(strain_data_all)
Input=strain_data_all(:,1:NStrain_Gauge)';
Output=zeros(Nstrain,1);
Output(location,1)=strain_data_all(:,NStrain_Gauge+1)';
for i=1:Nstrain
s=strcat('net_esstimation(i,:)=sim(netdata.net_',num2str(i),',Input);')
eval(s)
end
checkLabels = {'Save aquired to variable named:','Save aquired to variable

named:','Save aquired to variable named:'};
varNames = {'test_strain_data','test_load_data','estimated_test_load'};
bar(net_esstimation);
items = {Input,Output,net_esstimation};
export2wsdlg(checkLabels,varNames,items,...
 'Save Sums to Workspace');

Part 16

% --- Executes on selection change in popupmenu1.
function popupmenu1_Callback(hObject, eventdata, handles)
% --- Executes during object creation, after setting all properties.
function popupmenu1_CreateFcn(hObject, eventdata, handles)
if ispc && isequal(get(hObject,'BackgroundColor'),

get(0,'defaultUicontrolBackgroundColor'))
 set(hObject,'BackgroundColor','white');
end
set(hObject, 'String', { 'Strain Reading', 'Load Estimation (Bar)', });
% --- Executes on button press in Update_Graph.
function Update_Graph_Callback(hObject, eventdata, handles)
axes(handles.axes1);
cla;
load('C:\Users\Mohammad\Desktop\Matlab Final\name3.mat');
S=['C:\Users\Mohammad\Desktop\Matlab Final\' name3 '.mat']
load(S)
strain_data_all(1,:)=get_one_set_data(1,NStrain_Gauge,NLoad_Gauge);
strain_data=strain_data_all(:,1:NStrain_Gauge)';
load_data=strain_data_all(:,NStrain_Gauge+1:NLoad_Gauge)';
estimatedload=sim(net,strain_data);
for i=1:NStrain_Gauge
if estimatedload(i,1)<=0
 estimatedload(i,1)=0;
end
end
popup_sel_index = get(handles.popupmenu1, 'Value');
switch popup_sel_index

 case 1

 plot(strain_data);

 case 2

 bar(estimatedload);

 end

196

Appendix 5: Introduction to MATLAB NNT through a Training Example

MATLAB NNT can be used in different ways. First is to employ predefined GUIs designed

for many problems of pattern recognition, clustering, function fitting and time series analysis.

The second is to use basic command-line operations which use simple argument with default

settings for function parameters (all of the default settings can be accessed and overridden)

The third approach is customization of the toolbox and create own customised neural

networks, while still having access to the full functionality of the toolbox. The fourth approach is

to employ M-file scripts of MATLAB and access all the above ways of using toolbox at one

customised programme. In this thesis, the first two methods will be described.

Using MATLAB NNT Predefined GUIs

In this section, how to use MATLAB NNT predefined GUIs is briefly described through a

simple example. In order to open any of the GUIs, their specific command should be written in

MATLAB command line. The main GUIs are:

1. General Network Data Manager (nntool)

nntool command opens the Network/Data Manager window, which allows to import,

create, use, and export all sorts of neural networks and data available in MATLAB.

2. Neural Network Fitting Tool (nftool)

nftool opens a window which leads the user step by step through solving a data fitting

problem employing a two-layer feed-forward network.

3. Neural network time series tool (ntstool)

ntstool opens the neural network time series wizard and leads the user through solving a

nonlinear time series problem with a dynamic neural network.

4. Neural network pattern recognition tool (nprtool)

nprtool opens the neural network pattern-recognition GU I which guides the user through

solving a pattern recognition or classification problem using a two-layer feed-forward

network with sigmoid output neurons

5. Neural network classification or clustering tool (nctool)

197

nctool opens the neural network clustering GUI which guides the user through solving a

clustering problem using a self-organizing map.

The MATLAB NNT predefined GUIs are very straight forward and clear and lead the user

through solving the problem employing various neural networks. In this thesis, the most general

GUI, General Network Data Manager (nntool), is described through an example. For this

purpose, training data set was already available and it is only needed to load it into MATLAB

workspace. Data set includes strain values from 8 sensors (strain gauges) when various weights

in the range of 0 to 20 Kg are applied on 2 locations. The aim is to design a network which

relates these strain data to the weight values. In other words, strain values are inputs to network

and weight values are targets. Training data set consists of 1396 random loading scenarios.

Imported input/target pairs (examples) are in the form of two matrices: Input and Output. In this

example, Input is a matrix of elements (1396 columns each has 8 strain readings) and

Output is a matrix of elements (1396 columns each has 2 weight values).

As it was stated earlier, in order to call a particular GUI, its command (nntool) should be

written in MATLAB command line. The first window of General Network Data Manager GUI

will be opened (Figure ‎1-15). In this window, the user can import, export MATLAB workspace

data (Figure ‎1-16 and Figure ‎1-17) or alternatively use open option to load data from hardware.

Once necessary data are loaded to the GUI, the user should create the network using. Selecting

create new option leads the user to a new window (Figure ‎1-18) where a new network or data set

can be created. In the Network index of this window, a new network can be selected and

configured. Main features of a network can be customized for the new network including: type,

input and output data, training and learning functions, number of layers (hidden layers), number

of neurons and their type of transfer functions in each hidden layer of the network.

In this example, data should be imported first to General Network Data Manager GUI. Input

data set is imported as Input and Output data set as target Data. This will categorize data for

easier use later in GUI. Once the data set are imported, the user should define the specific

network for the problem. In this example, a back-propagation feedforward network is selected

with one hidden layer each having 10 neurons. The training and performance functions are set to

be the default of the MATLAB NNT: the Levenberg-Marquardt (trainlm) training method and

198

the mean square error performance function (MSE). In fact this GUI enables many different

configurations of ANN architecture to be employed. A list of possible network types, training

and performance functions are listed in Table ‎1-2-Table ‎1-3. In general, the default training

function for feedforwardnet, trainlm, is the fastest training function in MATLAB NNT. The

quasi-Newton method, trainbfg, is pretty fast as well. However, for large networks with

thousands of weights, due to the fact that more memory and more computation time are required,

both of these training functions are less efficient. Furthermore, trainlm indicates better

performances on nonlinear regression problems than on pattern recognition problems (Hagan &

Menhaj, 1999). For training very large networks, and pattern recognition problems, trainscg and

trainrp are good selections. This is mostly due to their relatively small memory requirements. In

addition, their algorithms are much faster than standard gradient descent algorithms (Beale, et al.,

2012).

Figure ‎1-15: General Network Data Manager GUI

199

Figure ‎1-16: Import to Network/Data Manager GUI

Figure ‎1-17: Export from Network/Data Manager GUI

200

Figure ‎1-18: Create Network or Data GUI

Table ‎1-1: List of MATLAB NNT Training Functions (Beale, et al., 2012)

Training Functions

Function Algorithm

trainlm Levenberg-Marquardt

trainbr Bayesian Regularization

traingd Gradient Descent

trainrp Resilient Backpropagation

trainscg Scaled Conjugate Gradient

traincgb Conjugate Gradient with Powell/Beale Restarts

traincgf Fletcher-Powell Conjugate Gradient

traincgp Polak-Ribiére Conjugate Gradient

trainoss One Step Secant

traingdx Variable Learning Rate Gradient Descent

traingdm Gradient Descent with Momentum

trainbfg BFGS Quasi-Newton

201

Table ‎1-2: List of MATLAB NNT Network Types (Beale, et al., 2012)

Network Types

New Networks

Functions

Description

network Create custom neural network

cascadeforwardnet Cascade-forward neural network

competlayer Competitive neural layer

distdelaynet Distributed delay neural network

elmannet Elman neural network

feedforwardnet Feed-forward neural network

fitnet fitnet

layrecnet Layer recurrent neural network

linearlayer Linear neural layer

lvqnet Learning vector quantization (LVQ) neural network

narnet Nonlinear auto-associative time series network

narxnet Nonlinear auto-associative time series network with external input

newgrnn Generalized regression neural network

newlind Designed linear layer

newpnn Probabilistic neural network

newrb Radial basis network

newrbe Exact radial basis network

patternnet Pattern recognition network

perceptron Perceptron

selforgmap Self-organizing map

timedelaynet Time-delay neural network

Table ‎1-3: List of MATLAB NNT Performance Functions (Beale, et al., 2012)

Performance Functions

Function Description

mae Mean absolute error performance function

mse Mean squared error performance function

sse Sum squared error performance function

Once network is created, MATLAB NNT automatically initiated the required number of

weights and biases according to the network and its input and target data sets. Double clicking on

the network in the General Network Data Manager GUI opens a new window that enables the

user to employ the network. The first index of this window (Figure ‎1-19), View, indicates the

202

neural network as a graphical diagram that clearly describes network type and its number of

layers. Other indexes of network GUI enable its principle functions such as training, simulation

as well as weight and biases set up. As mentioned earlier there are two training styles:

incremental and batch training. MATLAB NNT enables the user to train the network in either

way employing specific window or functions. In the network GUI, Train index employs batch

training style. The user can use the predefined parameter or override them as required (Figure ‎1-20

and Figure ‎1-21). In contrast to the Train index, the Adopt index uses incremental training style

(Figure ‎1-22).

For this example, batch training is employed. This means that the user should use Train index

options to train the network. Training Inputs/Targets are selected from imported data sets and

training parameters are set to be the default values of the GUI (Figure ‎1-20 and Figure ‎1-21).

Selecting the train button begins the training process. This opens the Neural Network Training

GUI indicated in Figure ‎1-23 automatically. During training, the progress is constantly updated in

the training GUI. It can be illustrated from this window that the data is divided using the

dividerand function, and the Levenberg-Marquardt (trainlm) training method is employed with

the mean square error performance function. With the dividerand setting, the input vectors and

target vectors will be randomly divided, by default 70% is used for training, 15% for validation

and 15% for testing.

This window also indicates the state of training progress in terms of training time and epochs,

the network performance, the magnitude of the gradient of performance and the number of

validation checks. These values are of most interest to monitor during the training progress. This

is due to the fact that the user may use early stopping method to achieve a more general network.

The training process could be stopped at any time of the progress by clicking the Stop Training

button in the training window. This is usually done when the performance function fails to

decrease considerably over many training iterations.

The magnitude of the training time and epochs as well as the gradient and the number of

validation checks are utilised to terminate the training. The gradient will become very small as

the training reaches a minimum of the performance. In this example, should the magnitude of the

gradient become less than , the training process will stop. The number of validation checks

203

denotes the number of consecutive iterations that the validation performance has not decreased.

In this example the magnitude is 6 and reaching to this number stops the training process.

Reaching to the magnitude of any of these limit values during the training progress stops the

progress. . In this run, the training did stop because of the number of validation checks after just

40 iterations.

Figure ‎1-19: Network Architecture View

Figure ‎1-20: Network Train window (Training Info index)

204

Figure ‎1-21: Network Train window (Training Parameters index)

Figure ‎1-22: Network Adapt window (Adaption Info index)

205

Figure ‎1-23: Network Network Training GUI

From the Neural Network Training GUI, three plots can be accessed: performance, training

state and regression plots. The performance plot indicates the value of the performance function

versus the iteration number (Figure ‎1-24). Training, validation and test performances diagrams are

plotted simultaneously and their trends can be compared. In this example, no major problems are

illustrated with the training in the performance plot. The validation and test curves are very

similar.

206

The training state plot shows the progress of other training variables, such as the gradient

magnitude, the number of validation checks, etc. The regression plot shows a regression between

network outputs and network targets and is used mainly for post-processing purposes to validate

network performance. The regression plot shows the relationship between the outputs of the

network and the targets. The regression plot for this example is shown in the Figure ‎1-25. The

three axes represent the training, validation and testing data. The solid line represents the best fit

linear regression line between outputs and targets. The R value is an indication of the

relationship between the outputs and targets. For this example, the training data indicates a good

fit. The validation and test results also show R values that greater than 0.99.

Figure ‎1-24: Network Performance Plot

207

Figure ‎1-25: Network Regression Plot

If the network is not sufficiently accurate, the network initialization and the training can be

performed again. Each time a network is initialized, the network parameters may be different and

different solutions might be produced. In order to reinitialize the network weights and biases

automatically based on the training data sets, the Reinitialize Weights index of the network

window can be used (Figure ‎1-26). Furthermore, View/Edit Weights index enables to view and

edit individual or all the weight and biases of a layer (Figure ‎1-27). As a second approach, due to

the fact the larger numbers of neurons in the hidden layer give the network more flexibility, the

number of hidden neurons can be increased to above 20. As another option a different training

208

function can be used. For instance, sometimes Bayesian regularization training (trainbr) can

produce better generalization capability than using early stopping (Beale, et al., 2012). At last

additional training data can be employed as well. Having a trained and validated network, the

network object can be used to calculate the network response to any input. Properly trained

multilayer networks tend to give reasonable answers when presented with inputs that they have

never seen. Typically, a new input leads to an accurate output, if the new input is similar to

inputs used in the training set. The Simulate index of the network GUI enables the user to present

new inputs to the trained network and save the output of the network as a new data set

(Figure ‎1-28).

Figure ‎1-26: Network Reinitialize Weights Window

Figure ‎1-27: Network View/Edit Weights Window

209

Figure ‎1-28: Network Simulate Window

Using MATLAB NNT Command-Line Functions

In this section, how to solve the same simple example by using command-line functions is

described. Following scripts are the functions that perform major tasks of the GUIs directly from

MATLAB command-line. Again it is assumed that training variables are available and should be

loaded:

Load training_data

In order to create a feedforward network with the default tan-sigmoid transfer functions in the

hidden layer and pure_linear in output output layer, following script is written in the comman-

line:

network1 = feedforwardnet([10],'trainlm');

Note that ten neurons (somewhat arbitrary) are assigned to the one hidden layer and

Levenberg-Marquardt (trainlm) training method is selected. In order to view the network

architechture following command can be employed:

210

view(network1);

The network has some default values for dividing training data set to three data sets. By

default 70% is used for training, 15% for validation and 15% for testing. However, these ratios

can be set as the user wish using following scripts:

network1.divideParam.trainRatio = 70/100;

network1.divideParam.valRatio = 15/100;

network1.divideParam.testRatio = 15/100;

In order to train and save the training results with the default values for the feedforward

network following script is used:

[network1,tr] = train(network1,Input,Output);

Notice that no configuration or initialization commands are used. This is due to the fact that

weight and bias initialization and network configuration is done automatically by the train

function. Since there are two target values associated with each input vector having 8 elements,

the network will have 2 output neurons. By default, the training window will appear during

training (Figure ‎1-23). Should the user wish to have this window not displayed during training, the

network parameter network1.trainParam.showWindow to 0 otherwise it should be 1.

Once the training is finished by early stopping or reaching one of the limits, the performance

of the network should be tested. Below is the script that computes the network outputs for the

same input data set presented at training process, errors and overall performance:

net_outputs = network1(Input);

errors = gsubtract(Output, net_outputs);

performance = perform(network1, Output, net_outputs);

In general, some post-processing is needed to decide on network performance and check if

any changes need to be made to the training process, the network architecture or the data sets.

The first thing to do is to check the training record, tr, which was the second argument returned

from the training function. This structure contains all of the necessary information regarding the

211

network training process. For instance, tr.trainInd, tr.valInd and tr.testInd contain the indices of

the data points that were used in the training, validation and test sets, respectively. If the user

decides to retrain the network using the same division of data, net.divideFcn can be set to

`divideInd', net.divideParam.trainInd to tr.trainInd, net.divideParam.valInd to tr.valInd,

net.divideParam.testInd to tr.testInd. These codes can be written in command line as below:

network1.divideFcn= 'divideind';

network1. divideParam.trainInd= tr.trainInd;

network1. net.divideParam.valInd= tr.valInd;

network1..divideParam.testInd= tr.testInd;

The tr structure also keeps track of several variables during the course of training, such as the

value of the performance function, the magnitude of the gradient, best iteration, etc. For instance,

employing tr.best_epoch, the iteration at which the validation performance reached a minimum

can be identified. In order to plot the training, validation and test performance, following code

can be used:

plotperform(tr);

In order to plot training state graph following code can be used:

plottrainstate(tr);

In order to plot training state graph following code can be used:

plotregression(Output,net_outputs,'Train');

The regression plot can be created with the following commands: The first command

calculates the trained network response to all of the inputs in the data set. The following six

commands extract the outputs and targets that belong to the training, validation and test subsets.

The final command creates three regression plots for training, testing and validation.

net_outputs = network1(Input);

trOut = net_outputs (tr.trainInd);

vOut = net_outputs (tr.valInd);

tsOut = net_outputs (tr.testInd);

trTarg = Output (tr.trainInd);

212

vTarg = Output (tr.valInd);

tsTarg = Output (tr.testInd);

plotregression(trTarg,trOut,'Train',vTarg,vOut,'Validation',tsTarg,tsOut,'Testing');

In case it is desired to initialize the network, following command can be employed:

network1= init(network1);

[network1,tr] = train(network1,Input,Output);

If it is required to increase the number of hidden neurons, say to 20, and train the network

again the following codes can be used:

network1 = feedforwardnet([20],'trainlm');

[network1,tr] = train(network1,Input,Output);

And finally, to try a different training function like Bayesian regularization training, trainbr,

for a possible better generalization capability, the following codes can be used:

network1 = feedforwardnet([20],' trainbr');

[network1,tr] = train(network1,Input,Output);

Once the user is satisfied with the training process and the network performance is validated,

the network can be used to calculate the network response to any input. For instance, the network

response to the 5th input vector in the building data set, the following code can be used:

a = network1 (Input (:,5));

213

Appendix 6: Publications

Paper 1: Determination of the static pressure loads on a marine composite panel from

strain measurements utilising artificial neural networks

Original Article

Proc IMechE Part M:
J Engineering for the Maritime Environment
227(1) 12–21
� IMechE 2013
Reprints and permissions:
sagepub.co.uk/journalsPermissions.nav
DOI: 10.1177/1475090212449231
pim.sagepub.com

Determination of the static pressure
loads on a marine composite panel
from strain measurements utilising
artificial neural networks

Mohammad Reza Ramazani1, Siamak Noroozi1,
Mehran Koohgilani1, Bob Cripps2 and Philip Sewell1

Abstract
One of the first steps in marine structural design is to calculate the wave-induced loads and load combinations. In con-
trast with both the hydrostatic loads and the self-weight loads which can be evaluated with a high degree of confidence,
it is more difficult to measure the in-service hydrodynamic loads generated by sea waves. Direct pressure load measure-
ment techniques can currently provide only data at finite locations while classical analytical techniques require knowledge
of all the parameters that influence the load and that each parameter is studied independently. Therefore, a novel tech-
nique is required to overcome these limitations by providing a method of measuring the pressure load over large areas
with relatively few sensors and minimal data collection. This paper reports research undertaken to develop an inverse
problem approach utilising an artificial neural network for measurement of the pressure loads experienced by marine
structures. The suitability and performance of utilising an artificial neural network for quantifying the pressure load
applied to a marine structure is presented. It was found that the artificial neural network was able to estimate accurately
the pressure loads applied to up to 12 locations on the structure. It is concluded that the inverse problem approach can
be used to estimate the applied loads on the marine structure in real time from strain measurements.

Keywords
Composite, marine, artificial intelligence, artificial neural network, structural analysis, load

Date received: 18 August 2011; accepted: 30 April 2012

Introduction

A review of methods for evaluating the hydrodynamic
loads on ships by Phelps1 outlined that, for given ship
conditions, both the hydrostatic loads and the self-
weight loads can be evaluated with a high degree of
confidence. In contrast, the determination of the hydro-
dynamic loads generated by sea waves is more difficult
to quantify. Most designers of high-speed craft use the
rules, guidelines and procedures of the various classifi-
cation societies to calculate the bottom loads and pres-
sures. Unfortunately, there are some uncertainties in
these calculations that can lead to overdesign.2 Recent
studies demonstrated that measurement of the in-
service hydrodynamic load on marine structural
components is also particularly difficult owing to the
transient nature of the load intensities.3

Xu and Duan3 have reviewed the techniques used to
estimate the impact loads (slamming, wave slap, flare
slamming and green water on the deck). In summary,

these techniques can be categorised into four groups:
theoretical approaches, experiments, empirical formu-
lae and numerical simulations. Theoretical approaches
and numerical simulations are the most flexible
approaches. Experimental methods are thought to be
most reliable but can be costly and suffer from scale
effects. The measured results, such as a two-
dimensional wedge, a two-dimensional cross section of
a ship and a three-dimensional drop cone or sphere,
are usually used for validation of a theoretical method

1School of Design, Engineering and Computing, Bournemouth University,

Poole, Dorset, UK
2Longitude Consulting Engineers Ltd, Southampton, UK

Corresponding author:

Mohammad Reza Ramazani, School of Design, Engineering and

Computing, Bournemouth University, Fern Barrow, Poole, Dorset BH12

5BB, UK.

Email: mramazani@bournemouth.ac.uk

or numerical simulation. There are also sea-keeping
tests conducted in the towing tank in either regular
waves or irregular waves. The objective of these experi-
mental studies is to obtain the relationship between the
pressure magnitude and the velocity at the instant of
impact on a given body.

Some modern composite laminate hulls have sensors
integrated within them during manufacture. Stresses
and strains generated because of the loads acting on a
craft are used to monitor the structural integrity, and
also to monitor stresses at key locations where there
are geometrical or material discontinuities. These sys-
tems provide real-time information concerning the state
of the ship structure, can be employed to validate com-
puter models, increase operational attainability and
ship service life and can lead to reductions in the
ongoing maintenance costs.4–6

Computational fluid dynamics (CFD) techniques
provide a method to solve these problems; however, it
is generally accepted that CFD codes have difficulties
in estimating the impact loads.7 CFD methods are time
consuming, making statistical estimations of the
response variables in the sea difficult.3

Finite element analysis (FEA) can be employed for
assessment of a ship’s structural strength. This requires
a suitable method for applying loads to the FEA model.
This approach is dependent upon the accuracy of the
methods used to define and calculate the loads in the
first place and also the specific FEA software being
used. It is more difficult to apply hydrodynamic loads
to finite element models than to apply static loads. This
is due to the dynamic nature of the problem and less
clearly defined loads. In addition, the material proper-
ties are usually not available, difficult or too costly to
obtain and are very variable for typical marine-type
laminates. According to Phelps,1 the work carried out
so far has been limited and correlation between numeri-
cal predictions, test data and further evaluations are
necessary.

As vessels and craft, in most cases, are extremely
complicated structures, the mechanical properties, or
relations between externally induced excitation and
structural responses, are difficult to formulate. An
appropriate load-monitoring system and technique
have to be developed for naval assets and large
structures.8

A novel approach for determination of the pressure
loads experienced by marine structures is the utilisation
of artificial intelligence (AI). Different approaches
employing AI methods may be utilised to solve com-
plex problems. Fuzzy logic and artificial neural net-
works (ANNs) are examples of various AI techniques
available.9 These methods have been utilised in research
areas where problems are solved by pattern recognition,
generalisation and pattern classification.10 ANNs have
attracted considerable attention and show promise for
modelling complex non-linear relationships.

This approach has the potential to overcome issues
related to both direct measurement of pressure and

other analytical estimation techniques. Transducers
allow measurement of the pressure in only a finite num-
ber of regions, provide data at only the location at
which they are attached and are relatively heavy.
Therefore, to provide an adequate profile of the pres-
sure on the boat a large number of transducers would
be required, adding significant weight to it. A common
analytical estimation technique involves developing a
complex relationship relating the load to all the key
design parameters. The sensitivity constants and influ-
ence factors for the relationship can then systematically
be calculated by a parametric study using linear regres-
sion analysis. Once all the constants have been deter-
mined, the relationship can be transformed into an
empirical formula, relating the pressure load to the
design parameters. This technique requires knowledge
of all the parameters that influence the load and that
each parameter is studied independently of all others to
find the relationship between each parameter and the
applied load. This methodology therefore requires a
large amount of testing to collect the required data.

ANNs have been used extensively in other fields.
For instance, ANNs have been widely used for damage
identification.11 In a study by Cao et al.,8 an approach
was developed to identify the loads acting on aircraft
wings where an ANN was utilised to model the load–
strain relationship for structural analysis. The research
demonstrated that using an ANN to identify loads is
feasible and a well-trained ANN reveals an extremely
fast convergence and a high degree of accuracy in the
process of load identification for a cantilevered beam
model. In a study by Amali et al.,12 it was demon-
strated that an ANN can be combined with experimen-
tal methods to create a hybrid inverse problem analysis
tool or inverse problem engine. The hybrid approach
can be applied to both direct problems (calculation of
the structural response from known loads applied to
the structure) and inverse problems (calculation of the
applied load from a known structural response).
Additionally, the approach avoids the need for having
information on the component geometry and the mate-
rial properties.13

Applying AI to a ship or a boat has been limited to
the use of an ANN for preliminary ship design.14,15

Research by Kim et al.16 presented a new method to
classify surface hull plates effectively in preliminary
ship design using neural networks.

This paper reports the research undertaken to
develop an ANN methodology for quantifying the sta-
tic pressure loads on a marine composite panel from
strain measurements collected from the panel.

Methodology

The methodology employed to evaluate the suitability
and performance of utilising an ANN as an inverse
problem solver for quantifying the load applied to the
composite panel is presented in this section. The first

Ramazani et al. 13

stage of the investigation was to design a load quantifi-
cation methodology for the panel utilising an ANN. In
the second stage the load quantification methodology
was validated by comparing loads estimated by the
ANN with the actual loads applied to the panel.

Inverse problem analysis methodology

Inverse problem analysis is based on accurately calcu-
lating the external loads or boundary conditions that
generate a known amount of strain, stress or displace-
ment at predetermined locations on a structure. An
ANN, as an inverse problem solver, can be utilised to
solve structural problems where the structure’s response
to the load is known but the load which causes this
response is not. In a study by Xu et al.,17 it was indi-
cated that many fields of science and industry employ
inverse analysis such as material property estimation,
radar tracking, medical tomography, residual stress
determination, oil reservoir identification and non-
destructive testing.

According to Kohonen,18 WS McCulloch and WA
Pitts introduced the fundamentals of neural computing
for the first time in 1943. An ANN, consisting of neu-
rons (units) and connections between them, is based on
simulating the way that the brain processes different
data. Therefore, ANNs are able to perform behaviours
similar to brain activities such as learning, generalisa-
tion, categorisation, association, optimisation and fea-
ture extraction.

The inverse method is used to determine a relation-
ship between the cause and its effect. In this study, the
static loads (the cause (output)) on a composite panel
are quantified by acquiring repeatable strain responses
(the effect (input)) to these loads from the panel. By
introducing examples to an ANN, it can learn the rela-
tionships between the input and the output through a
training process. The ANN requires a number of
known input and output data for training (i.e. relating
the ANN inputs to outputs using a transfer function
and series of weighting values). New input strain data
can then be introduced to the trained ANN (problem
data) to quantify or estimate the load (Figure 1).

The ANN is adjusted or trained such that a particu-
lar input leads to a unique and specific desired response
(testing inputs). Weight adjustment (described in the
section on the ANN architecture or topology) is based

on a comparison of the network response and the
desired response. Looping continues until the network
response matches the desired response or at least the
error function becomes an acceptably small value (i.e.
minimisation of the error function or convergence). A
back-propagation ANN uses a mean square error
(MSE) function which is defined as a sum of the
squared errors between the desired response and the
network response over all the network responses for all
the input–desired response pairs.

Further input–desired response pairs, which have
not been seen previously by the network (testing pat-
terns), are introduced after each loop and fed through
the network to find the MSE between the desired
response and the network response. This is a further
check to ensure that the error function is being reduced
and that the network is moving towards the global
minima or convergence. The testing MSE value also
indicates the level of accuracy of the network (i.e. if the
testing MSE is 10%, then the network should estimate
accurately to within 90%).

ANN analysis often requires a high number of indi-
vidual loops to determine the best solution. However,
the training time can be reduced (i.e. the number of
loops to minimise the error equation can be reduced)
by pre-processing the data that are given to the net-
work to train. Introducing noisy data to the ANN is
one technique to improve the ANN’s training effi-
ciency. These data are generated from the original
input and output data and have a noise level either
added to or subtracted from a predefined proportion of
the training data. The noise level depends on the nature
of the input and output data collected (i.e. if data are
collected from strain gauges the noise value will depend
on the accuracy of the data acquisition equipment).
Introducing noisy data during training allows the ANN
still to recognise input data that may have some ran-
dom fluctuation in its magnitude owing to the accuracy
of the data acquisition device.

Once the ANN is sufficiently trained, it can be uti-
lised to estimate the output in real time. New inputs
(problem data) are presented and processed by the
ANN as though training were taking place. However,
at this point the output is retained and no back propa-
gation occurs. Establishing an inverse problem analysis
approach can result in important advantages over
simulation, numerical or theoretical methods. Through
utilising such a method, knowledge of the component
material constitutive laws and component geometry are
not required. In contrast, they are necessary for valid
and accurate simulation, numerical or theoretical
analysis.

Experimental set-up

The structure under consideration was a 1m2 glass-
reinforced fibre polymer marine composite panel
(Figure 2(a)). The properties of the composite material
were unknown; however, as discussed in the section onFigure 1. ANN training loop to minimise the error.

14 Proc IMechE Part M: J Engineering for the Maritime Environment 227(1)

inverse problem analysis methodology, a major advan-
tage of the inverse approach is that the material proper-
ties are not required to quantify the load applied to the
structure.

The panel was divided into a four-by-four grid, pro-
ducing 16 equal regions of area 0.25m3 0.25m (Figure
2(b)). The positions of the strain readings collected
from the panel are also important. To produce efficient
training data the strain data should be captured in the
sensitive regions (i.e. the strain at those locations must
vary significantly owing to changes in the load level).
In addition, the strain data collected must provide a
unique response for each load distribution. If strain
data are collected from non-sensitive regions of the
panel and/or the strain data collected are not unique
for each load distribution, the ANN is less likely to be
able to find a function relating the input and the out-
put. A rectangular strain gauge rosette was attached to
the top surface of the panel at the centre of each region,
giving 48 strain readings (S1 to S48). The specifications
of the strain gauges used are detailed in Table 1.

The bottom surface of the panel was supported at
four points using blocks, each 0.035m wide, 0.009m
deep and 0.025m tall (Figure 2(b)). Loading was
achieved by applying weights normal to the panel

surface at the 12 locations indicated in Figure 2(b) (L1

to L12).
A Windmill 751-SG strain-monitoring and control

data acquisition system (Windmill Software Ltd,
Manchester, UK) with a resolution of 61 microstrain
was used to capture the strain data. The 751-SG pack-
age consists of Windmill 6 software, a universal serial
bus (USB) unit which provides differential inputs to
monitor 16 strain gauges at up to 80 samples/s. Eight
USB units can be connected to one computer to moni-
tor up to 128 strain gauges.

Generation of the ANN training data

The efficiency of the process for collection of the training
data can be increased by reducing the amount of data
collected. This is achieved by using the theory of super-
position to generate training and testing patterns from
the independent parent patterns, as discussed in detail
elsewhere.19 The theory of superposition states that the
strain at a point on a structure due to a series of loads is
equal to the sum of the strains from each individual load
case. Using this theory an infinite number of training
patterns can be generated by applying one known load
to each location on the structure individually. However,
the superposition method is only valid if the structure
under investigation has a linear stress–strain or load–
displacement response within the expected load range
applied to it. The results of the investigation to study the
linearity of the panel can be found in the section on the
linearity of the composite panel.

In this study, 48 strain readings from 16 rosettes
(inputs) and 12 load readings from 12 locations (out-
puts) were used with the superposition method to

Figure 2. Top view of the marine composite panel showing (a) the weights used for loading and (b) the locations L of the loads, the
locations S of the strain gauges and the locations C of the constraints (all dimensions are in metres).

Table 1. Strain gauge rosette specifications.

Type Rectangular rosette
Resistance 120 O6 0.6%
Gauge factor 2.100 6 0.5%
Gauge length 3.18 mm
Gauge width 1.78 mm

Ramazani et al. 15

generate 1116 sets of training data. This meant that
1116 sets of 12 random loads at each location on the
panel and the resultant 48 strains caused by these ran-
dom loads were required to find the relationship
between the input data and the output data. Some 280
testing patterns were also generated using the superpo-
sition method and introduced to the network during
training to ensure convergence. This represented 20%
of the original 1396 total patterns generated. Some 200
noisy patterns were also added to the training data
based on the level of noise in the data acquisition sys-
tem (61 microstrain). Once training data and testing
data had been generated, they were normalised by con-
verting all data to a range between 0 and 1 to improve
the accuracy of the solution.

ANN architecture or topology

Network architecture or topology is the way that neu-
rons are connected to each other in the ANN. Key
architectural issues are as follows:

(a) the number of layers in the ANN;
(b) the number of neurons per layer;
(c) the type and parameters of the neuron, which are

usually the same throughout;
(d) the number of calculations per iteration during

learning and recall.

An example of a back-propagation neural network
with three layers, namely an input layer, a hidden layer
and an output layer, is shown in Figure 3.

A common network has one or more hidden layer
with a log-sig transfer function connected to an output
layer with a pure-lin function: pure-lin is a linear trans-
fer function used for linear approximation, and log-sig

is a non-linear sigmoid transfer function that accepts
any value as an input between +N and 2N. If the last
layer of a network has a sigmoid function, then the out-
puts of the network are limited to a small range. If a
linear function is used as the final layer, the network
outputs can take on any value as is required to estimate
the actual load on the panel. Since the log-sig function
is differentiable, it is usually utilised in back-
propagation networks.

A transfer function calculates the layer’s output
from its input. The input data are fed through the
ANN and they are adjusted using the transfer func-
tions. The input to the transfer function is the sum of
the weighted inputs W and the bias b (Figure 4). The
values of these parameters are randomly generated
when training is initiated. The weight controls the slope
of the transfer function while the bias allows the trans-
fer function to shift from left to right. Having multiple
hidden layers of neurons with non-linear transfer func-
tions enables the network to understand both non-
linear and linear relationships between the input data
and the output data.

Unsatisfactory performance of the ANN can be due
to a wide range of reasons, such as the following:

(a) an unsuitable ANN architecture or learning
method;

(b) insufficient representative data (not a sufficient
number of example strain–load data);

(c) inadequate pre-processing (noisy data from data
acquisition system have been ignored);

(d) unsuitable ANN training parameters.

However, most of the time this is not the case, and
the ANN will be well trained and performs satisfacto-
rily even on a new untrained data set. An iterative pro-
cess was used to determine the optimum network
architecture for the panel based on the value of the
final MSE of each network tested. The number of
layers chosen can have an effect on the efficiency of the
network. However, because of the relatively low num-
ber of inputs and outputs involved in this example this
was not deemed to be an important factor to consider
when selecting the architecture.

It was determined, through the testing of various
network architectures, that the optimum network (low-
est MSE) had one hidden layer with 22 neurons and
used a tan-sig transfer function which is similar to a
log-sig function but compresses the output to a value
between 21 and +1 (Figure 4). The output layer had
12 neurons (representing the 12 loads to be estimated)
and used a pure-lin transfer function. The final specifi-
cation of the ANN is shown in Table 2.

It is possible to over-train the ANN, which means
that the ANN has been trained to respond to only one
type of input. If this should happen, then learning can
no longer occur. In real-world applications this situa-
tion is not very useful as a separate over-trained
ANN for each new kind of input would be required.

Figure 3. Three-layer back-propagation ANN, where the
inputs are denoted X, the outputs are denoted Y and the output
from every neuron in the hidden layer is denoted Z. The V
values are the weights between the neurons in the input layer
and the neurons in the hidden layer. Similarly the W values are
the weights between the neurons in the hidden layer and
neurons in the output layer.

16 Proc IMechE Part M: J Engineering for the Maritime Environment 227(1)

To confirm that the ANN was not over-trained the
training was supervised to ensure that the MSE of the
testing data did not increase, which is an indication of
over-training. The ANN was trained to minimise the
MSE (Figure 5). The final testing MSE was approxi-
mately 43 1023%, which took under 3min to reach.
This meant that the ANN should estimate accurately
to within 99.9% of the actual load value.

ANN validation and performance

The validity and performance of the ANN method
were evaluated by comparing the load estimated by the

ANN with known loads applied to the panel (problem
data). Experimental problem data are the captured
strain data from the 48 strain gauges attached to the
panel while it is being loaded. It is essential that the
strain data are captured at identical locations for both
the training data and the problem data.

The first validation study utilised load and strain
data generated from the original superposition data col-
lected to produce the training data. This meant that any
issues with the repeatability of the strains collected for a
given load were removed. In the second study, problem
strain data were captured directly from the panel under
different loading conditions (i.e. one or two random
loads were placed at random locations on the panel)
and again the estimated loads were compared with the
actual applied loads.

The strain data were collected through bespoke data
acquisition and ANN software linked to the Windmill
data acquisition system. This software was developed
by the present authors in MATLAB (MathWorks,
Natick, Massachusetts, USA) utilising Windmill Direct
Data Exchange protocols to acquire the strain data
and the MATLAB Artificial Neural Network Toolbox
capabilities.

Results

The validity of utilising the theory of superposition for
the panel and the ANN validity and performance are
detailed in the following sections.

Linearity of the composite panel

The application of the theory of superposition was
shown to be valid through studying the linearity of the
material within the expected load range used in this
study (discussed in the section on the generation of
ANN training data). The load was applied in incre-
ments between 19.62N and 117.72N at each of the 12
locations and the 48 strains were collected. Figure 6
shows the typical strain response to the applied load.
The strains decreased as the load increased as the strain
gauges were attached to the compressive surface of the
panel. Plotting a linear trend line through the data
showed that the strain changed linearly with load for
all gauge locations as the coefficient of determination
(R2 value) was very close to one in each case.

Figure 4. MATLAB representation of the optimum ANN architecture.

Table 2. Architecture of the ANN.

Architecture Feedforward back propagation
Number of layers 2
Data process Normalisation
Noise generator 61 microstrain on 200 of the

training patterns
Range of loads 0–196.2 N
Number of inputs (surface

strains)
48

Number neurons in the
output layer (normal

loads)

12

Number of neurons in the
hidden layer

22

Number of training patterns 1116
Number of testing patterns 280
Number of problem patterns Depends on the number of

patterns collected

Figure 5. Training and testing errors graph.

Ramazani et al. 17

ANN validation and performance

In order to validate the trained network, a set of prob-
lem strain data was generated from the panel. Since this
set of data had not been seen by the network during the
training stage, it can be used to evaluate the accuracy of
the ANN’s load estimation.

Validation using superposition data. The theory of superpo-
sition was used to generate problem data (12 loads and
48 strains generated on the panel surface from these
loads) for loads between 0N and 196.2N. Figure 7
shows example strain data collected from the 48 gauges
used as the problem data in the trained ANN.

Table 3 shows the ANN estimated loads for all 12
load locations for actual loads of 9.81N and 196.2N
applied to all 12 locations at once. The average of the
estimated loads together with the average estimated
loads for all load increments were used to generate
Figure 8.

Figure 8 shows the comparison of the actual loads
applied to the panel with the ANN estimated loads gen-
erated from the introduced problem data. If the ANN
estimates the loads accurately, the actual load data and
the ANN load data should be identical. In this exam-
ple, loads were applied to all 12 locations on the panel
at once for loads ranging from 0N to 981N.

The accuracy of the estimated load is high within
the range of loads (0–196.2N) that the ANN was
trained to estimate, thus indicating the suitability of

Figure 6. Typical linear response of the composite panel to the applied load.

Figure 7. Typical problem strain data.

Table 3. ANN estimated loads for 9.81 N and 196.2 N loads
applied to all 12 load locations.

Load location ANN estimated load (N)

9.81 N applied 196.2 N applied

1 9.72 200.91
2 9.76 195.04
3 9.65 196.45
4 9.59 187.23
5 10.09 205.00
6 9.84 191.51
7 9.82 195.39
8 9.69 198.70
9 9.83 198.09
10 9.90 198.86
11 9.76 196.07
12 9.80 195.26

Average 9.79 196.54

ANN: artificial neural network.

18 Proc IMechE Part M: J Engineering for the Maritime Environment 227(1)

this method for load estimation. The results, however,
indicate that the network is capable of accurate estima-
tion up to 294.3N. As the applied loads increase fur-
ther outside the trained load range, the accuracy of the
estimated load decreases. In summary, the network is
most accurate in the load range that it has been trained
to estimate, as would be expected. However, loads just
outside the training envelope can still be estimated
accurately.

Validation usingdirect data. The MATLAB program
was developed to be able to acquire strain data directly
from panel and to introduce them to the ANN as new
problem data. This enabled the system to estimate the
applied load on the panel in real time. The robustness
of the system was investigated by introducing strain
data gathered by applying loads at the extremes of the
range that it was trained to estimate (0–196.2N).
Figure 9 shows typical examples of the comparison
between the actual loads applied to the panel with the
ANN estimated loads generated from the introduced
problem data. In these examples, either one or two

loads are applied to the panel. For both sets of problem
data it can be seen that the ANN can again estimate
the load at the loaded locations with a high degree of
accuracy.

The estimated negative load values at the unloaded
locations were due to the differences between the strain
data collected to generate the training data and the col-
lected problem strain data. Beacause of these errors,
slightly different strain patterns are introduced to the
ANN, producing the errors in the estimated loads. The
introduction of further noisy patterns in the training
data set may reduce these small errors, indicating that
further work could be carried out to improve the accu-
racy further.

Discussion

The results presented in this paper show that the inverse
problem method, utilising an ANN, can accurately esti-
mate the position and magnitude of a number of static
loads applied to the composite panel from the captured
strain data. The results of this study can be summarised
as follows.

1. An ANN can be trained using experimental data to
solve inverse problems.

2. As there is a mathematical relationship between
the applied load and the surface strains, the system
always converges and the MSE is in the range of
acceptable error.

3. The system is capable of accurately estimating the
static loads.

4. Using a combination of pure and noisy data (as
used in this study) improves the accuracy of the
results.

5. The main source of error was found to be in the
reliability of the data acquisition system utilised
owing to the large variance in the strain data col-
lected at different time intervals. The ANN cannot
estimate the load accurately if there is a large var-
iance in the strain data used to generate the train-
ing data set and the problem data set collected at a
later date.

Figure 8. Comparison of the actual loads and the ANN loads.
ANN: artificial neural network.

Figure 9. Example comparisons of the ANN estimated loads
and the actual applied loads.
ANN: artificial neural network.

Ramazani et al. 19

The ability to measure the actual load history of a
craft in service would enable the designer to validate the
load estimation and structural design tools used during
the design stage of a craft. This would lead to the devel-
opment of more optimal structure designs for this type
of craft. The operational safety of the craft can also be
improved by having a real-time load-monitoring system
that is able to detect any degradation of the structural
integrity and defects within the structure.

It is proposed that the ANN methodology, with fur-
ther research and development, could be utilised for the
quantification of in-service transient loads in real time
acting on the craft from the craft’s structural response
(strain response to the load). This would provide valu-
able information to influence future craft design. In
order to evaluate fully the proposed methodology for
in-service load monitoring of marine structures the fol-
lowing areas require investigation:

(a) the behaviour of marine structures under large
displacement (a static load is applied) where the
structure may behave non-linearly;

(b) the behaviour of marine structures under transient
load conditions (a dynamic load is applied);

(c) the effect of size of the structure on the ANN esti-
mation accuracy;

(d) the number of sensors required for accurate load
estimation by optimising the method (while some
vessels do have integrated sensors, most do not;
the number of sensors should be minimised to
reduce the time to train the system, the cost and
the weight);

(e) the effect of modifying the ANN training para-
meters, including the number and type of training
patterns introduced to the ANN;

(f) validation of the methodology on an in-service
craft.

Finally, a graphical user interface should be devel-
oped, allowing control of various parameters of the
data acquisition and load-monitoring system as well as
a graphical display in real time.

Conclusion

It was shown that the inverse problem approach can be
used to estimate the loads applied on a marine compo-
site panel from the strain measurements. A comparison
of the ANN loads with the actual applied loads indi-
cated a very good performance of the methodology.
This was achieved in real time, providing an accurate
load history for a component without requiring knowl-
edge of the material properties or the component geo-
metry. This potentially makes the system ideal for
solving many classes of complex engineering problem
that require load monitoring. Areas for future investi-
gation including evaluation of the suitability of the
approach for estimating transient loads were discussed.

Funding

This work was supported by BAE Systems Surface
Ships Ltd, Portsmouth and Bournemouth University
(grant no. DAKG22X).

Acknowledgement

The authors would like to thank Steve Austen, Head of
Engineering Support of the Royal National Lifeboat
Institution, for providing the marine composite panel
used in this investigation.

References

1. Phelps BP. Determination of wave loads for ship struc-

tural analysis. Report DSTO-RR-0116, Aeronautical and

Maritime Research Laboratory, Defence Science and

Technology Organisation, Melbourne, Victoria, Austra-

lia, 1997.
2. Koelbel Jr JG. Comments on the structural design of

high speed craft. Mar Technol 1995; 32(2): 77–100.
3. Xu G-D and Duan W-Y. Review of prediction tech-

niques on hydrodynamic impact of ships. Mar Sci Applic

2009; 8: 204–210.
4. Adamchak JC. An approximate method for estimating

the collapse of a ship’s hull in preliminary design. In:

SSC-SNAME structural symposium, Arlington, VA,

USA, 15–16 October 1984, pp. 37–61.
5. Baldwin C, Niemczuk J, Kiddy J, et al. Structural testing

of navy vessels using bragg gratings and a prototype digi-

tal spatial wavelength domain multiplexing (DSWDM)

system. Nav Engrs J 2002; 114(1): 63–70.
6. Sikora JP, Dinsenbacher A and Beach JE. A method for

estimating lifetime loads and fatigue lives for swath and

conventional monohull ships. Nav Engrs J 1983; 95(3):

63–85.
7. Faltinsen OM. Challenges in hydrodynamics of ships

and ocean structures. J Nav Archit Shipbuilding Ind 2007;

58(3): 268–277.
8. Cao X, Sugiyama Y and Mitsui Y. Application of artifi-

cial neural networks to load identification. Comput

Structs 1998; 69: 63–67.
9. Mamdani EH and Assilian S. An experiment in linguistic

synthesis with a fuzzy logic controller. J Man–Mach Stud

1975; 7(1): 1–13.
10. Rao VB and Rao HV. C++ neural networks and fuzzy

logic. New York: M & T Books, 1995.
11. Ziemianski L and Harpula G. The use of neural net-

works for damage detection in eight storey frames.

In: 5th international conference on engineering applica-

tions of neural networks, Warsaw, Poland, 13–15 Sep-

tember 1999, pp. 292–297. Toruń: Wydawnictwa Adam

Marsza1ek.
12. Amali R, Noroozi S and Vinney J. The application of

combined artificial neural network and finite element

method in domain problems. In: 6th international confer-

ence on engineering applications of neural networks

(EANN 2000), Kingston upon Thames, Surrey, UK, 17–

19 July 2000, pp. 1–7. London: Kingston University.
13. Amali R, Noroozi S, Vinney J et al. Predicting interfacial

loads between the prosthetic socket and the residual limb

for below-knee amputees – a case study. Strain 2006;

42(1): 3–10.

20 Proc IMechE Part M: J Engineering for the Maritime Environment 227(1)

14. Rosenblatt F. The perceptron: a probabilistic model for
information storage and organization in the brain. Psy-
chol Rev 1958; 65(6): 386–408.

15. Shar S and Palmieri F. MEKA – a fast, local algorithm
for training feed forward neural networks. In: Interna-
tional joint conference on neural networks, Como, Italy,
24–27 July 1990, vol 3, pp. 41–46. New York: IEEE.

16. Kim S-Y, Moon B-Y, Kim D-E and Shin SC. Automa-
tion of hull plates classification in ship design system
using neural network method. Mech Systems Signal Pro-
cessing 2006; 20(2): 493–504.

17. Xu S, Deng X, Tiwar V, et al. An inverse approach for
pressure load identification. Int J Impact Engng 2010;
37(7): 865–877.

18. Kohonen T. An introduction to neural computing.
Neural Networks 1998; 1(1): 3–16.

19. Sewell P, Noroozi S, Vinney J, et al. Improvements in the
accuracy of an inverse problem engine’s output for the
prediction of below-knee prosthetic socket interfacial
loads. Engng Applic Artif Intell 2010; 23(6): 1000–1011.

Appendix

Notation

b bias
C locations of constraints
L locations of loads

S locations of strain gauges
V weights between the neurons in the input

layer and the neurons in the hidden layer
W weights between the neurons in the hidden

layer and the neurons in the output layer
X artificial neural network inputs
Y artificial neural network outputs
Z output from the hidden layer of the

artificial neural network

Abbreviations

AI artificial intelligence
ANN artificial neural network
CFD computational fluid dynamics
FEA finite element analysis
MSE mean square error
USB universal serial bus

Ramazani et al. 21

224

Paper 2: Sensor Optimisation for In-service Load Measurement of a Large Composite

Panel under Small Displacement

Sensor Optimisation for In-service Load Measurement of a Large
Composite Panel Under Small Displacement

Mohammad Reza Ramazani1,a, Philip Sewell1,b ,Siamak Noroozi1,c,
Mehran Koohgilani1,d and Bob Cripps2,e

1School of Design, Engineering & Computing, Bournemouth University, Poole, UK.

2Longitude Consulting Engineers Ltd, Southampton, UK.

amramazani@bournemouth.ac.uk, bpsewell@bournemouth.ac.uk, csnoroozi@bournemouth.ac.uk,
dmkoohgil@bournemouth.ac.uk, eb.cripps@longitude.uk.com

Keywords: Composite, Marine, Artificial Intelligence, Artificial Neural Network, Structural Analysis,
Load, Sensor Optimisation

Abstract. Current methods to estimate the behaviour of composite structures are based on trial and

error or oversimplification. Normally the nonlinearities in these structures are neglected and in order

to cover this inadequacy in design of composite structures, an overestimate safety factor is used.

These methods are often conservative and leading to the heavier structures. A novel technique

employs Artificial Neural Network (ANN) as an inverse problem approach to estimate the pressure

loads experienced by marine structures applied on a composite marine panel from the strain

measurements. This can be used in real-time to provide an accurate load history for a marine structure

without requiring knowledge of the material properties or component geometry. It is proposed that

the ANN methodology, with further research and development, could be utilised for the

quantification of in-service, transient loads in real-time acting on the craft from the craft’s structural

response (strain response to load). However, to fully evaluate this methodology for load monitoring

of marine structures further research and development is required such as sensor optimisation. The

number of sensors should be minimised to reduce the time to train the system, cost and weight. This

study investigates the number of sensors required for accurate load estimation by optimising the

method.

Introduction

Measurement of hydrodynamic loads generated by sea waves is difficult due to the fact that the sea is

highly irregular. The common practice to determine wave loads is based on applying rules and

standards which often relies on conservative methods due to large uncertainties in the theoretical

calculations used for wave load predictions for ships. In addition, for unconventional ships with new

structural designs, it can be sometimes difficult to apply general standards and rules. Direct

calculation procedures are needed specifically for complex structures and designs. However, the

direct calculation procedures, especially the calculation of the wave loads, are less applied in the

shipbuilding industry [1]. One reason is the rather large uncertainties in the wave load predictions for

ships as well as lack of experience. In addition, the theoretical basis of the calculation methods is not

necessarily sufficient to achieve reliable predictions. Furthermore, uncertainties exist also in all

assumptions involved in stochastic methods and prediction procedures including environmental and

operational conditions. Sometimes these are difficult to determine accurately in advance and hence

assumptions need to be made to estimate them [1].

The current techniques to measure hydrodynamic loads indicate that many techniques developed

are either simplified or very expensive and time-consuming [2]. Many studies have been performed to

date for evaluating hydrodynamic loads on ships. Such methods are summarised in the reviews by

Phelps [3] and Guo-Dong and Wen-Yang [4]. Various strip methods [5,6] have been developed and

used to estimate wave induced ship motions and wave loads. The conventional strip theory [7] is

successfully used in the seakeeping analysis of normal displacement ships. However, its validity can

be questioned when it is used for ships with higher maximum operating speeds [8]. Nonlinearities

Applied Mechanics and Materials Vol. 248 (2013) pp 153-161
© (2013) Trans Tech Publications, Switzerland
doi:10.4028/www.scientific.net/AMM.248.153

All rights reserved. No part of contents of this paper may be reproduced or transmitted in any form or by any means without the written permission of TTP,
www.ttp.net. (ID: 87.236.211.227-29/11/12,19:28:02)

http://www.ttp.net

become more significant for higher speed ships, however, the conventional strip theory is a linear

theory. Strip methods are extensively used as a standard tool to predict the nonlinear loads and

motions [9]. Though, there are some concerns on the accuracy of the strip methods for estimation in

short waves as they do not precisely consider hydrodynamic interference effects of reflected waves

among strips lengthwise or three-dimensional effects.

In order to enhance the accuracy of estimation especially in short waves, many numerical methods

considering the three-dimensional effects have been proposed. Among them are the

three-dimensional Green function method [10] and Rankine source method [11–13] based on

three-dimensional potential theory. However, nonlinear theories and three-dimensional load

prediction methods require greater computational effort and have not yet proven to be significantly

more accurate than the two dimensional methods [3,4].

Computational Fluid Dynamics (CFD) techniques provide a method to solve these problems. So

far, it is generally accepted that CFD codes have difficulties in estimating impact loads [14]. CFD

methods are time consuming, making statistical estimations of response variables in sea difficult [4].

Although CFD solutions have been greatly improved in both speed and accuracy in recent years, it is

still very challenging to perform complete nonlinear three-dimensional computations for the present

problem [15]. As vessels and craft, in most cases, are extremely complicated structures, the

mechanical properties, or relations between externally induced excitation and structural responses,

are difficult to formulate. An appropriate load monitoring system and technique has to be developed

for naval assets and large structures [16].

A novel approach for the determination of pressure loads experienced by marine structures is the

utilisation of Artificial Neural Networks (ANN) [17]. ANN methods are utilised in research areas

where problems are solved by pattern recognition, generalisation and pattern classification [18].

ANN has attracted considerable attention and shown promise for modelling complex nonlinear

relationships. ANNs have been used extensively in many fields [16, 19-24].

Ramazani et al. [17] have recently shown that the inverse problem approach can be used to

estimate the loads applied on a composite marine panel from the strain measurements when

responding linearly under load. A comparison of the ANN loads with the actual applied loads

indicated a very good performance of the methodology. However, it was discussed that more

investigation is necessary to further evaluate the suitability of the proposed methodology for

in-service load monitoring of marine structures. For instance, the number of sensors required for

accurate load estimation needs to be optimised. This is due to the fact that while some vessels do have

integrated sensors most do not. Hence, the minimum number of sensors should be employed to

reduce the time to train the system, cost and weight.

This paper reports on the research undertaken to further develop the ANN methodology for

quantifying static pressure loads on a marine composite panel under large displacement from

nonlinear strain measurements collected from the panel.

Methodology

The methodology employed to generate training data sets and optimise the quantity of sensors based

on the performance of various trained ANN as an inverse problem solver for quantifying the load

applied to the composite panel is presented in this section. The first stage of the investigation was to

design a load quantification methodology for the panel utilising an ANN. In the second stage the load

quantification methodology was validated by comparing loads estimated by the ANN with the known

loading cases of the panel.

Inverse Problem Analysis Methodology. Inverse problem analysis is based on accurately

calculating the external loads or boundary conditions that generate a known amount of strain at

pre-determined locations on a structure. An ANN, as an inverse problem solver, can be utilised to

determine a relationship between the cause and its effect [17]. In this study, the static loads (the

cause/output) on a composite panel are quantified by acquiring repeatable strain responses (the

effect/input) to these loads from the panel. By introducing examples to an ANN, it can learn the

relationships between the input and output through a training process. Once the ANN is sufficiently

154 Mechanical Materials and Manufacturing Engineering II

trained it can be utilised to estimate the output in real-time. New inputs (problem data) are presented

and processed by the ANN to quantify/estimate the load.

Experimental Setup. The structure under consideration was a 1 Glass Reinforced Fibre Polymer

(GRFP) marine composite panel made of 7 layers of stitched biaxial E-glass cloth and with Ampreg

22 epoxy resin system (all provided by SP Gurit Systems), hand laid up with a total thickness of m

(Fig. 1). The panel was divided into a four-by-four grid producing sixteen equal regions of area m
2
. A

120 ohm rectangular strain gauge rosette was attached to the top surface of the panel at the centre of

each region giving 16 gauges () with 48 strain readings (S1-48). Four rectangular strain gauge rosettes

were also placed in the middle of the panel with 12 strain readings (S49-60) attached at the corners of a

m
2
 square. The specifications of the strain gauges used are detailed in Table 1.

 Table 1. Strain gauge specification.

Type Rectangular Rosette

Resistance 120 [ohms] ±0.6%

Gauge factor 2.100±0.5%

Gauge length [m]

Gauge width [m]

Fig 1. Schematic of composite panel indicating strain gauge, loading and support locations.

The bottom surface of the panel was supported at four points using blocks, each 0.035 m wide,

0.009 m deep and 0.025 m high (Fig. 1). Loading was achieved by applying weights normal to the

panel surface at the 12 locations indicated in Fig. 1 (L1-12). A Windmill 751-SG strain monitoring and

control data acquisition system (Windmill Software Ltd, Manchester, UK) with a resolution of +/- 1

microstrain was used to capture the strain data. The 751-SG package comprises of Windmill 6

software, a Universal Serial Bus (USB) unit which provides differential inputs to monitor 16 strain

gauges at up to 80 samples per second. Eight USB units can be connected to one computer to monitor

up to 128 strain gauges. The strain data was collected through bespoke data acquisition/ANN

software linked to the Windmill data acquisition system. This software was developed by the authors

in MATLAB (MathWorks, Natick, Massachusetts, USA) utilising Windmill Direct Data Exchange

(DDE) protocols to acquire the strain data and the MATLAB Artificial Neural Network Toolbox

capabilities.

Generation of ANN Training Data. The efficiency of the training data collection process can be

increased by reducing the amount of data collected. This is achieved by using the theory of

superposition to generate training and testing patterns from the independent parent patterns, as

discussed in detail elsewhere [19]. The theory of superposition states that the strain at a point on a

structure due to a series of loads is equal to the sum of the strains from each individual load case.

Using this theory, an infinite number of training patterns can be generated by applying one known

load to each location on the structure individually. However, the superposition method is only valid if

the structure under investigation has a linear stress/strain or load/displacement response within the

expected load range applied to it. The results of the investigation to study the linearity of the panel

indicate a linear relation between load and strain readings. For instance Fig. 2 indicates that the strain

changed linearly with load for strain readings S49 when location L9 was loaded.

Applied Mechanics and Materials Vol. 248 155

Fig. 2. Linearity of strain data for S49 when loaded on location L9 is increased from 0 to 196.2 N.

In this study, 48 strain readings (S1-48) from 16 rosettes (inputs) and 12 load readings from 12

locations (outputs) were used with the superposition method to generate 1116 sets of training data.

This meant that 1116 sets of 12 random loads at each location on the panel and the resultant 48 strains

caused by these random loads were aquired to find the relationship between the input/output data. 280

testing patterns were also generated using the superposition method and introduced to the network

during training to ensure convergence. 200 noisy patterns were also added to the training data based

on the level of noise in the data acquisition system (+/- 1 microstrain). Once training and testing data

had been generated it was normalised by converting all data to a range of between zero and one to

improve the accuracy of the solution.

ANN Architecture/Topology. In this study a common Backpropagation ANN architecture is used

and trained employing MATLAB Artificial Neural Network toolbox capabilities. An iterative

process was used to determine the optimum network architecture for the panel based on the value of

the final Sum of the Squares Errors (SSE) of each network tested. SSE is a measure of the discrepancy

between the data and an estimation model. A small SSE indicates a tight fit of the model to the data.

Table 2 lists the major parameters of the network architecture used in this study.

Table 2. ANN architecture parameters.

Architecture Feed Forward Backpropagation

Number of layers in each network 2

Range of load estimation 0-196.2 [N]

No. of inputs (surface strains) 48,18,15,12

No. of output layer neurons (loads) 12

No. of each hidden layer neurons [20 20]

Number of training patterns 1116

Number of testing patterns 280

Optimisation. In order to optimise the number of gauges, various sensor configurations are

employed to acquire and generate training data sets and the corresponding ANN is trained. The

performance of each ANN in terms of SSE is used for comparison. The aim of this optimisation is to

minimise the number of strain gauges needed to reasonably estimate the magnitude of load at 12

loading locations on the composite panel.

In this study, the number rosettes are reduced/optimised in several steps and the effect on the

performance of the load estimation methodology is investigated. Due to the inherent characteristic of

an ANN, reduction of the number of inputs is limited by the number of outputs. Hence, a minimum of

12 strain inputs are required to be able to successfully estimate 12 load outputs. Therefore, the

minimum number of rosettes that could be used to successfully predict 12 loads is 4. In order to

optimise the number of the strain gauges, the number of gauges are reduced step by step from 16 (48

readings) to 6 (18 readings), 5 (15 readings) and 4 rosettes (12 readings) respectively. There are

multiple permutations for selecting 6, 5 or 4 rosettes from the 16 rosettes attached to the panel. Since

156 Mechanical Materials and Manufacturing Engineering II

the aim of this study was first to find the optimum number of gauges, random permutations of gauges

were selected and the ANN performance using the SSE values for each ANN were compared. It was

then possible to determine the optimum number of gauges required to achieve a high quality

estimation of the 12 loads from this study. A further strategy for also optimising the sensor locations

was then also investigated.

ANN Validation and Performance. Finally, the validity of the ANN using the optimised strain

gauges was evaluated by comparing the load estimated by the ANN with known loads applied to the

panel (problem data). Experimental problem data is the captured strain data from the optimised strain

gauges attached to the panel while it is being loaded. It is essential that the strain data is captured at

identical locations for both the training and problem data. The first validation study utilised load and

strain data generated from the original superposition data collected to produce the training data of the

optimised sensor configuration. This meant that any issues with the repeatability of the strains

collected for a given load were removed. In the second study, problem strain data for the same sensor

configuration was captured directly from the panel under different loading conditions (i.e. one or two

random loads were placed at random locations on the panel) and again the estimated loads compared

with the actual applied loads.

Results

Optimisation. A selection of the optimisation tests and the ANN performance results are presented in

Table 3. The results show that as the number of the rosettes is reduced, the SSE values as performance

indicators of various random tests are reasonably small values. This implies that even for cases with

only 6, 5 or 4 rosettes, the ANN is trained well and it is capable of estimating the magnitude and

position of the applied loads. The results indicated that utilising only 4 rosettes (12 strain readings) it

is possible to accurately estimate applied loads on all 12 locations (L1-12).

Table 3. Comparison of ANN performance SSE for various sensor configurations.

 16 Rosette Locations () Performance SSE

Random Test 1 1-16 1.520

 6 Rosette Locations () Performance SSE

Random Test 1 2 3 6 11 14 15 1.670

Random Test 2 3 6 8 9 11 14 0.842

Random Test 3 5 6 7 10 11 12 2.376

Random Test 4 6 7 8 9 10 11 2.038

 5 Rosette Locations () Performance SSE

Random Test 1 2 5 7 10 15 1.442

Random Test 2 3 6 7 10 114 2.963

 4 Rosette Locations () Performance SSE

Random Test 1 3 6 11 14 2.643

Random Test 2 4 7 10 13 2.185

Random Test 3 5 8 9 12 2.642

Random Test 4 5 8 9 12 1.208

Furthermore, in practice, it is more desirable to have the minimum number of strain gauges

attached only in one small area on the structure. Hence, 4 new rosettes were attached much closer

together in the middle of the panel (Fig. 1, SL17-20) and the performance of ANN was investigated.

Achieving reasonable results enables the gauges to be placed in just a small portion of the panel and

yet be able to accurately estimate the position and the value of 12 externally applied loads. The SSE

performance value of this test was 8.259 which is still small value and indicates a tight fit of the model

to the data.

Applied Mechanics and Materials Vol. 248 157

Validation using Superposition Data. In order to validate the trained network, a set of problem

strain data was generated from the panel using the 12 strain readings from the optimised patch

(S49-60). Since this set of data had not been seen by the network during the training stage, it can be

used to evaluate the accuracy of the ANN’s load estimation.

The theory of superposition was used to generate problem data (12 loads and 12 strains generated

on the panel surface from these loads) for loads between 0 N and 196.2 N. These were introduced to

the ANN and the estimated loads calculated by the ANN compared to the expected load profile (Fig.

3).

Fig. 3. Estimated load data by ANN vs. expected load values from superposition.

Validation using Direct Data. The MATLAB program was developed to be able to acquire strain

data directly from the panel and introduce it to the ANN as new problem data. This enabled the

system to estimate the applied load on the panel in real-time. The robustness of the system was

investigated by introducing strain data gathered by applying loads at the extremes of the range it was

trained to estimate (0-196.2 N). Fig. 4 shows typical examples of the comparison between the actual

loads applied to the panel with the ANN estimated loads generated from the introduced problem data.

In these examples, one load is applied to the panel. For both sets of problem data it can be seen that

the ANN can again estimate the load at the loaded locations with a high degree of accuracy.

Fig. 4. Estimated load data by ANN Vs. expected load values from experiment.

158 Mechanical Materials and Manufacturing Engineering II

Discussion

Establishing an inverse problem analysis approach for structural analysis can result in important

advantages over simulation, numerical or theoretical methods. Through utilising such a method,

knowledge of the component material constitutive laws and component geometry are not required. In

contrast, they are necessary for valid and accurate simulation, numerical or theoretical analysis. The

results presented in this paper show that the inverse problem method, utilising an ANN, can

accurately estimate the position and magnitude of 12 static loads applied to the composite panel from

4 strain gauge rosettes placed close to each other in centre of the panel. The results indicate that the

system always converges, the SSE is small and in the range of acceptable error. This means that an

ANN can be trained using experimental data to solve inverse problems and accurately estimate the

static loads. Although, the first validation study indicated that the estimated load data by the ANN

almost perfectly fits the expected load values from superposition, small error values were seen in

second validation study. The main source of error was found to be in the reliability of the data

acquisition system utilised due to the large variance in the strain data collected at different time

intervals. However, the noise to strain ratio decreases as the load increase which results in less

variances in strain data patterns. Having more similar strain data patterns to those employed to train

the network leads to better load estimation output.

The ability to measure the actual load history of a craft in-service would enable the designer to

validate the load estimation and structural design tools used during the design stage of a craft. This

would lead to the development of more optimal structure designs for this type of craft. The

operational safety of the craft can also be improved by having a real-time load monitoring system that

is able to detect any degradation of the structural integrity and defects within the structure.

Conclusion

The aim of this research was to establish an inverse load monitoring approach based on directly

acquired structural response from an optimised set of sensors. It has been shown that the inverse

problem approach can be used to estimate 12 loads applied on a composite marine panel from the

strain measurements from 4 strain gauge rosettes. A comparison of the optimised ANN loads with the

actual applied loads indicated a very good performance of the methodology. This was achieved in

real-time, providing an accurate load history for a component without requiring knowledge of the

material properties or component geometry. This potentially makes the system ideal for solving many

classes of complex engineering problem that require load monitoring.

Acknowledgement and Funding

This work was supported by BAE Systems Surface Ships Ltd, Portsmouth and Bournemouth

University. The Authors would like to thank Steve Austen, Head of Engineering Support of the Royal

National Lifeboat Institution for providing the marine composite panel used in this investigation.

References

[1] T. Kukkanen, Wave load predictions for marine structures, Rakenteiden Mekaniikka (J.Structural

Mechanics), 43(3) (2010) 150-166.

[2] Y. Bai, Marine structural design, ELSEVIER SCIENCE Ltd, Oxford, 2003.

[3] B.P. Phelps, Determination of Wave Loads for Ship Structural Analysis, DSTO Aeronautical and

Maritime Research Laboratory, Australia, 1997.

[4] X. Guo-dong, D. Wen-yang, Review of prediction techniques on hydrodynamic impact of ships, J.

Marine Science Application, 8 (2009) 204-210.

[5] A. Ito, S. Mizoguchi, Hydrodynamic pressure acting on a full ship in oblique short waves, J. Soc.

Nav. Archit. Jpn., 222 (1994) 125–32 [in Japanese].

Applied Mechanics and Materials Vol. 248 159

[6] I. Watanabe, Practical method for diffraction pressure on a ship running in oblique wave, J.

Kansai Soc. Nav. Archit., 221 (1994) 83–9 [in Japanese].

[7] N. Salvesen, E.O. Tuck, O.M. Faltinsen, Ship motions and sea loads, J. Trans. SNAME, 78 (1970)

250–87.

[8] O.M. Faltinsen, Hydrodynamics of high-speed marine vehicles, Cambridge University Press,

New York, 2005.

[9] J.J. Jensen, P.T. Pedersen, Wave-induced bending moments in ships:a quadratic theory, J. Trans.

Roy. Soc. Nav. Archit. 121(1979) 151–65.

[10] H. Iwashita, A. Ito, T. Okada, M. Ohkusu, M. Takaki, S. Mizoguchi. Wave force acting on a

blunt ship with forward speed in oblique sea, J. Soc. Nav. Archit. Jpn., 173 (1993) 195–208 [in

Japanese].

[11] H. Yasukawa, A Rankine panel method to calculate unsteady ship hydrodynamic forces, J. Soc.

Nav. Archit. Jpn. 168 (1990) 131–40 [in Japanese].

[12] D. Nakos, P. Sclavounos, Ship motions by a three-dimensional Rankine panel method, Proc. of

18th symp. on nav. hydrodynamics, Ann Arbor, (1990) 21–40.

[13] K. Takagi, Calculation of unsteady pressure by Rankine source method, J. Kansai Soc. Nav.

Archit., 219 (1993) 47–56 [in Japanese].

[14] O.M. Faltinsen, Challenges in Hydrodynamics of Ships and Ocean Structures, J. Nav. Archit.

and Shipbuilding Industry, 58(3) (2007) 268-277.

[15] H. Sun, O.M. Faltinsen, Hydrodynamic forces on a semi-displacement ship at high speed, J.

Applied Ocean Research, 34 (2012) 68– 77.

[16] X. Cao, Y. Sugiyama, Y. Mitsui, Application of artificial neural networks to load identification,

J. Computers and Structures, 69 (1998) 63-67.

[17] M.R. Ramazani, S. Noroozi, M. Koohgilani, B. Cripps, P. Sewell, Determination of static

pressure loads on a marine composite panel from strain measurements utilising artificial neural

networks, submitted to Proceedings of the Institution of Mechanical Engineers, Part M: J. Eng.

for the Maritime Environment, (2012).

[18] V.B. Rao, H.V. Rao, C++ Neural Networks and Fuzzy Logic, M & T Books, New York, 1995.

[19] L. Ziemianski, G. Harpula, The use of neural networks for damage detection in eight storey

frames, Proceedings of the 5th international conference: Engineering applications of neural

networks, (1999) 292–297.

[20] R. Amali, S. Noroozi, J. Vinney, The application of combined artificial neural network and finite

element method in domain problems, Proceedings of the Sixth International Conference on

Engineering Applications of Neural Networks (EANN 2000), (2000) 1-7.

[21] R. Amali, S. Noroozi, J. Vinney, P. Sewell, S. Andrews, Predicting interfacial loads between the

prosthetic socket and the residual limb for below-knee amputees: a case study, J. Strain, 42(1)

(2006) 3-10.

[22] F. Rosenblatt, The perceptron: a probabilistic model for information storage and organization in

the brain, J. Psychological Review, 65(6) (1958) 386–408.

[23] S. Shar, F. Palmieri, MEKA: a fast, local algorithm for training feed forward neural networks,

Proceedings of the International Joint Conference on Neural Networks, (1990) 41–46.

160 Mechanical Materials and Manufacturing Engineering II

[22] K. Soo-Young, B.Y. Moon, D.E. Kim, S.C. Shin, Automation of hull plates classification in ship

design system using neural network method, J. Mechanical Systems and Signal Processing 20(2)

(2006) 493–504.

[23] S. Xu, X. Deng, V. Tiwar, M.A, Sutton, W.L. Fourney, An inverse approach for pressure load

identification, Int. J. Impact Engineering, 37(7) (2010) 865–877.

[24] R. Amali, S. Noroozi, J. Vinney, P. Sewell, S. Andrews, Improvements in the accuracy of an

Inverse Problem Engine’s output for the prediction of below-knee prosthetic socket interfacial

loads, J. Engineering Applications of Artificial Intelligence, 23(6) (2010) 1000–1.

Applied Mechanics and Materials Vol. 248 161

234

Paper 3: Using Artificial Neural Networks and Strain Gauges For The Determination of

Static Loads On A Thin Square Fully-Constrained Composite Marine Panel Subjected to a

Large Central Displacement

MARINE COMPOSITES

Current methods of estimating the behaviour of marine
composite structures under pressure due to slamming
as a result of high waves are based on trial and error or
oversimplification. Normally under these conditions the
non-linearities of these structures are often neglected and,
in order to compensate, an overestimated safety factor is
employed. These conservative approaches can result in
heavier and overdesigned structures. In this paper, a new
semi-empirical method is proposed that overcomes some of

these problems. This work involved the use of an artificial
neural network (ANN) combined with strain gauge data
to enable real-time in-service load monitoring of large
marine structural panels. Such a tool has other important
applications, such as monitoring slamming or other
transient hydrostatic loads that can ultimately affect fatigue
life. To develop this system, a glass fibre-reinforced polymer
(GFRP) composite panel was used due to its potential for
providing a non-linear response to pressure or slamming
loads. It was found that the ANN was able to predict normal
loads applied at different locations on the panel accurately.
This method is also capable of predicting loads on the
marine structure in real time.

Keywords:	Composite, marine, artificial intelligence, artificial
neural network, structural analysis, load, non-linear
structures, large displacement analysis.

1.	Introduction
In addition to hydrostatic and mass-related loads that can be
evaluated with a high degree of accuracy and confidence, it is also
desirable to measure transient loads due to slamming as a result of
high waves. The current practice to determine wave loads is based
on applying standard rules, which often relies on conservative
methods due to large uncertainties in the theoretical treatment used
for wave load predictions. This leads to a craft that is heavier and
slower than it could otherwise be.

Although sea has an irregular and arbitrary condition, the overall
condition can be predicted statistically by superimposing a series of
different regular waves of varying heights, lengths, directions and
phase[1-3]. In order to define the sea-state that the craft are expected
to encounter during their lifetime, an enormous amount of data
regarding ocean waves has been collected. Hogben et al[4] collected
comprehensive data regarding ocean waves from 104 ocean areas
covering all major shipping routes. Having more information about
sea states, the wave-induced loads on the craft structure and the
response to such loads may be estimated.

Techniques used to measure hydrodynamic loads use non-
linear equations due to the random and irregular nature of the
sea, resulting in a very expensive and time-consuming analysis.
Methods have been developed in order to simplify such an
analysis[5]. Strip theory is one of the most well-known techniques
used to determine the wave-induced loads[6,7]. The principle is that
the craft’s hull is divided into a number of segments or strips. The
forces acting on the hull are then calculated separately on each
segment using a two-dimensional flow theory. This method ignores
the longitudinal component of relative velocity and any type of
interaction between the different segments. Other shortcomings of
this theory include ignoring three-dimensional or viscous effects

Using artificial neural networks and strain gauges
for the determination of static loads on a thin square
fully-constrained composite marine panel subjected
to a large central displacement

M R Ramazani, S Noroozi, P Sewell, R Khandan and B Cripps
Submitted 19.07.12
Accepted 06.09.12

Mohammad Reza Ramazani received his MEng degree in mechanical
engineering from the University of Birmingham in 2009. He is currently
studying for a PhD jointly funded by Bournemouth University and BAE
Surface Ships Ltd to investigate in-service load monitoring of marine
structures. His interests include artificial intelligence and computer-aided
engineering.

Professor Siamak Noroozi received his PhD from Sheffield University
in 1986 in the area of finite element analysis coupled with boundary
element analysis. He currently holds the Chair in Advanced Technology at
Bournemouth University. His research interests are finite element analysis,
boundary element analysis, biomechanics, condition monitoring, general
stress analysis, photoelasticity, alternative numerical analysis, composite
technology and aeroelasticity.

Dr Philip Sewell received his BEng degree in mechanical engineering from
the University of the West of England in 1999 and a PhD in the field of
prosthetic design in 2003. He is currently employed as a Senior Academic
in Design Simulation at Bournemouth University. His research interests
include the design of novel tools for prosthetic fitting, the development of
techniques to determine prosthetic interfacial pressure distributions and
experimental and numerical stress analysis.

Rasoul Khandan received his BSc degree in mechanical engineering from
the Isfahan University of Technology in 2004 and an MSc in mechanical
engineering (applied design) in 2008 from Shiraz University. He is
currently working on modelling, simulation and optimisation of composite
materials as a PhD researcher in the Design Simulation Research Centre
at Bournemouth University. His main research interest is modelling and the
application of composite and smart materials.

Professor Bob Cripps received his degree in ship science from the
University of Southampton in 1976. He was awarded an Honorary Doctor
of Engineering from Bournemouth University in 2005. He is currently a
Director of Longitude Consulting Engineering, part of London Offshore
Consultants (LOC). He is a Visiting Professor at Bournemouth University
and a Royal Academy of Engineering Visiting Professor in the Principles of
Engineering Design at the University of Southampton.

Mohammad Reza Ramazani*, Siamak Noroozi, Philip Sewell and Rasoul
Khandan are with the School of Design, Engineering & Computing,
Bournemouth University, Bournemouth, UK.

Bob Cripps is with Longitude Consulting Engineers Ltd, Southampton, UK.

*Corresponding author. Tel: 01202 961528; Email: mramazani@
bournemouth.ac.uk

DOI: 10.1784/insi.2012.55.8.442

442 Insight Vol 55 No 8 August 2013

Insight Vol 55 No 8 August 2013 443
 	

as well as the inability to account for the above-water hull form.
In order to resolve the problem with compatibility between strips,
flexible beam strip theories were developed that account for the
bending and shear stiffness of the hull[8]. Although this kind of
theory can estimate the distortional higher frequency responses of
a hull to slamming and lashing excitation, it is still linear analysis
and extreme response is not well modelled.

The accuracy of the strip theory and other codes has been
investigated by several researchers and the error associated with
predicting a mid-ship bending moment using strip theory is of the
order of 10% to 20%. This accuracy is reduced further towards
the ends of the vessel and as seas become progressively more
beam-on[9]. Clarke[10] conducted many on-board measurements
employing several Royal Navy (RN) ships. The results indicated
that strip theory over-estimates wave bending moments,
particularly at larger wave heights. Furthermore, the hogging
bending moment was over-predicted more so than the sagging
moment. It is concluded that these techniques are only accurate for
moderate sea conditions and ship speeds meaning an extreme load
causing a large displacement in panels is impossible to measure.
Moreover, doubts also exist in many of the assumptions that involve
stochastic/random data or procedures involving environmental
and operational conditions. This is due to the fact that sometimes
environmental and operational conditions are difficult to define
accurately in advance and therefore assumptions are needed[11].

In order to improve the accuracy of estimation, especially in
short waves, many numerical methods considering the three-
dimensional effects have been introduced. Among them are the
three-dimensional Green function method[12] and Rankine source
method[13-15] based on three-dimensional potential theory. The
benefits of these methods include taking the three-dimensional
effects into account, having good stability of computations and a
moderate computing time. Hence, they are considered as suitable
design tools replacing the strip methods.

A review by Phelps[9] indicates that non-linear theories and
three-dimensional load prediction methods have been introduced,
but these require greater computational effort and have not yet
proven to be significantly more accurate than the two-dimensional
methods. It is concluded that a novel technique is required to
overcome current limitations in the practices used to measure
and estimate loads experienced by the hull of a small, high-speed
boat operating in a seaway. Furthermore, as vessels and craft are,
in most cases, extremely complicated structures, the mechanical
properties, or relationship between externally-induced excitation
and structural responses, are difficult to formulate. An appropriate
load monitoring system and technique has to be developed for
naval assets and large structures[16].

A novel approach for the determination of pressure loads
experienced by marine structures is the utilisation of artificial
neural networks (ANN) as an inverse method. In a study by Cao
et al[16], an approach was developed to identify the loads acting on
aircraft wings, where an ANN was utilised to model the load-strain
relationship for structural analysis. The research demonstrated
that using an ANN to identify loads is feasible and a well-trained
ANN reveals an extremely fast convergence and a high degree of
accuracy in the process of load identification for a cantilevered
beam model. In a study by Amali et al[17], it is illustrated that
ANN can be combined with experimental methods to create a
hybrid inverse problem analysis tool or inverse problem engine.
The hybrid approach can be applied to both direct problems
(calculation of the structural response from known loads applied
to the structure) and inverse problems (calculation of the applied
load from a known structural response). Additionally, the approach
avoids the need to have information on the component geometry
and material properties[18,19].

Ramazani et al[20] have recently shown that the inverse
problem approach can be used to estimate low loads applied on a

composite marine panel from a small deflection and its associated
strain measurements. A comparison of the ANN loads with the
actual applied loads indicated a very good performance of the
methodology. This was achieved in real time, providing an accurate
load history for a component without requiring knowledge of the
material properties or component geometry. However, a large load
results in a large displacement in the panel, where the displacement
is no longer predictable. This implies that the superposition method
of generating training data for a small displacement can no longer
be applied here. However, marine structures do experience large
displacement and for that reason load prediction is essential. This
paper reports on the research undertaken to further develop the
ANN methodology to quantify static pressure/central load on a
composite marine panel from its non-linear structural response.

2.	Methodology
The methodology employed to evaluate the suitability of an ANN as
an inverse problem is presented in this section. A backpropagation
ANN was designed, developed and trained within the Matlab
simulation environment (Mathworks, Natick, Massachusetts,
USA) to measure transverse load on a flat composite marine panel.
The estimated output was then validated by comparing it against
both experimental and numerical data.

2.1 Inverse problem analysis methodology
Inverse problem analysis is based on accurately calculating the
external loads or boundary conditions that generate a known strain
at pre-determined locations on a structure. An ANN, as an inverse
problem solver, can be utilised to determine a relationship between
the cause and its effect[20]. In this study, the static loads (the cause/
output) on a composite panel are quantified by acquiring repeatable
strain responses (the effect/input) to these loads from the panel.
Introducing these examples to an ANN, the system can learn
and form the relationships between the input (strains) and output
(load) through the transfer function. The ANN requires a number
of known input and output data for training (ie relating the ANN
inputs to outputs using a transfer function and series of weighting
values). Once the ANN is sufficiently trained it can be utilised to
estimate the output in real time. New inputs (problem data) can
then be presented and the load can be estimated in real time.

2.2 Experimental set-up
The structure under consideration was a 1 m2 glass fibre-reinforced
fibre polymer/plastic (GFRP) marine composite panel (Figure 1).
The sample GFRP composite panel used was made of seven layers
of stitched biaxial ±45 E-glass cloth with Ampreg 22 epoxy resin
system, hand laid-up with a total thickness of 5 × 10–3 m. The fibres
were aligned parallel to the edges of the panel. Table 1 shows the
experimental mechanical properties of the glass fibre as provided
by the manufacturer.

The panel was divided into a four-by-four grid producing
sixteen equal regions, each with an area of 0.25 × 0.25 m2 (Figure

Figure 1. Schematic of composite panel indicating strain gauge
and loading locations

1). The bottom surface of the panel was supported on all four edges
using aluminium bars, each 0.0381 m high, 0.01905 m wide and
1 m long. Sixteen linear electrical resistance strain gauges (ERSG)
(S1-16) were bonded to the centre of each region (specification
in Table 2). Two eight-channel NI cDAQ 9236 modules mounted
on NI cDAQ 9174 chassis (National Instruments Corporation,
Austin, Texas, USA) were used as the strain monitoring and control
data acquisition system with a resolution of +/– 0.1 microstrain.
The system provides differential inputs to monitor sixteen strain
gauges at up to 10,000 samples per second. The strain data was
collected using Matlab, utilising Matlab Data Acquisition Toolbox
capabilities.

Table 2. Strain gauge specification

Type General purpose linear gauge

Resistance 350 ohms ± 0.6%

Gauge factor 2.100 ± 0.5%

Gauge length 6.35 mm

Gauge width 2.54 mm

Normal loads were randomly applied to the top surface of
the panel at thirteen grid intersections (L1-13). Depending on
the proximity of the gauge to the applied loads, different gauges
exhibited different levels of sensitivity, which was as expected. To
produce efficient training data the strain data should be captured
at the sensitive regions (ie the strain at those locations must vary
significantly due to changes in load level). In addition, the strain
data collected must provide a unique response for each load
distribution. If strain is collected from non-sensitive regions of the
panel and/or the strain data collected is not unique for each load
distribution the ANN is less likely to be able to find a function
relating the input and output.

2.3 Generation of training data
Many small marine craft hulls are manufactured from fibreglass
strengthened by wood or foam. Their characteristics are such that
their thickness is small compared to their other dimensions. In this
study, a GFRP panel has been utilised to represent a section of
the hull. Panels can be classified according to their thickness and
their lateral deflection compared to their thickness[21]. They can be

classified as: (1) thick plate, small deflection; (2) thin plate and
small deflection; (3) thin plate, large deflection; or (4) very thin
plate (membranes) with either small deflection or large deflection.
In all cases the solutions are approximate, not exact or closed form.
The deflection at the centre of a plate subject to pressure is offered
by Westergaard and Slater[22] and is based on the modified flexure
theory of plates where, depending on the plate aspect ratio, edge
boundary conditions and load, different approximate empirical
solutions are found. In such cases, a small displacement is defined
as displacement less than or equal to half the thickness of the plate.
If the displacement exceeds this limit then the problem is treated
as a non-linear problem where the displacement can no longer be
accurately predicted using the above theory. This is due to highly
non-linear double curvature deformation, unlike the displacement
function stated above. In large displacement analysis, the transverse
shear can also no longer be ignored and if the panel is composite
then the transverse shear requires further special treatment. In
such cases, the classical inverse approach used previously, based
on utilising data generated from superposition, can no longer be
employed due to the complexity of the displacement function.

For non-linear structures an alternative approach is needed in
order to generate the required training data. There are two ways
in which such data can be generated: (a) experimentally; or (b)
using a non-linear finite element analysis (FEA) solver. Generating
the required training data experimentally is very time consuming
and labour intensive. Therefore, non-linear FEA analysis using a
script that allowed automatic generation of a random load on the
panel was utilised to generate the training data. Abaqus 6.10-1 FEA
software (Dassault Systèmes Simulia Corp, Rhode Island, USA)
was used. A script function written in Python language was used to
iteratively run the software in a batch using different random loads
applied at each of the thirteen loading locations on the panel. The
FEA model was initially validated to ensure that it represented the
actual panel accurately. The validation was achieved by comparing
strains collected experimentally with the FEA strains under the
same loading conditions. Loads from 100 N to 800 N applied in 100
N increments were placed on the panel one at a time at locations
L1 to L13. The strain readings at locations S1 to S16 on the panel
were saved for each test. The same tests were performed with FEA
to compare with the experimental results.

Once validated, a large number of training (load/strain

Table 1. Panel material specification provided by SP Gurit Systems (Newport, Isle of Wight, UK)

Material name XE905

Material type Stitched biaxial

Fibre volume fraction 0.46

Longitudinal property Units Units

Longitudinal tensile modulus N/mm2 21220 Poisson’s ratio (longitudinal strain) 0.120

Longitudinal tensile strength N/mm2 318.3 Poisson’s ratio (transverse strain) 0.120

Longitudinal compressive modulus N/mm2 21220 Longitudinal coeff. of thermal expansion 10-6/°K 14.62

Longitudinal compressive strength N/mm2 254.6 Transverse coeff. of thermal expansion 10-6/°K 14.62

Transverse property Density kg/m3 1786

Transverse tensile modulus N/mm2 21220 Structural ply thickness mm 0.75

Transverse tensile strength N/mm2 318.3 Actual ply weight g/m2 1364

Transverse compressive modulus N/mm2 21220 Shear thickness mm 0.75

Transverse compressive strength N/mm2 254.6

Shear properties Derived shear properties @ ±45°

Interlaminar shear modulus N/mm2 3050 Shear material name 1 x XE905 @ ±45°

Interlaminar shear strength N/mm2 36.6 Axial modulus with fibres @±45° N/mm2 9737

In-plane shear modulus N/mm2 3050 Shear modulus with fibres @45° N/mm2 9471

In-plane shear strength N/mm2 46.1 Poisson’s ratio with fibres @±45° 0.596

444 Insight Vol 55 No 8 August 2013

Insight Vol 55 No 8 August 2013 445
 	

response) data was able to be generated from the FEA model. In
order to increase the efficiency of generating the training data,
it was possible to reduce the number of FEA models required to
establish the non-linear strain response for each gauge location.
This was achieved by fitting non-linear curves to data collected for
each strain location and using the curves to interpolate strain data
for different load magnitudes.

The structural responses of the panel in terms of strain were
saved to be used as the input training dataset. The corresponding
load for each input dataset was also saved and utilised as the output
training set. Some of these input and outputs were saved separately
for testing the network and error minimisation. In this study, sixteen
single strain gauge readings (inputs) and thirteen applied loads
(outputs) constitute one training dataset. At each loading location
(L1-L13), a static load ranging between 24.525 N and 784.8 N was
applied in steps of 24.525 N. In total, 1040 training datasets were
generated from the non-linear FEA model.

2.4 ANN architecture/topology
ANN analysis often requires a high number of individual loops
to determine the best solution. However, the training time can
be reduced (ie reduce the number of loops to minimise the error
equation) by pre-processing the data that is given to the network
to train. Having multiple hidden layers of neurons with non-linear
transfer functions (such as tan-sig and log-sig) enables the network
to understand both non-linear and linear relationships between
input and output data. Unsatisfactory performance of the ANN can
be due to a wide range of reasons, such as:
q	 an unsuitable ANN architecture or learning method;
q	 insufficient representative data (not enough example strain/load

data);
q	 inadequate pre-processing (noisy data from data acquisition

system ignored);
q	 unsuitable ANN training parameters.

Most of the time this is not the case and the ANN will be well
trained and perform satisfactorily, even on a new untrained dataset.
Key architectural issues that can be optimised include: (i) the
number of layers in the ANN; (ii) the number of neurons per layer;
(iii) the type and parameters of the neuron, which are usually the
same throughout; and (iv) the number of calculations per iteration
during learning and recall.

The Matlab Artificial Neural Network toolbox was used in this
study to generate two different backpropagation ANN architectures in
order to compare their performance. The architectures utilised were:
q	 One network with sixteen neurons in the input layer and thirteen

neurons in the output layer is trained to estimate the load on the
panel from the strain responses (Figure 2).

q	 Thirteen networks each with sixteen neurons in the input layer
and one neuron in the output layer are trained and used to estimate
the load on the panel from the strain responses (Figure 3).

The number of hidden layers and neurons
in each hidden layer of the two network
architectures were flexible. These were
dependent on the complexity of the training
datasets and were optimised according to the
network performance. The sum of squared
errors (SSE) and mean of squared errors
(MSE) are common network performance
indicators. Through the testing of various
network architectures, the optimum network
having the lowest performance indicator can
be determined. Once the ANN is trained, it
can be employed to estimate new loading
cases where the same patterns exist. In
other words, whenever the same pattern of

strain reading as an input is introduced to the network, it will be
able to estimate the loads that caused those structure responses.
Depending on how well the network is trained (the performance of
the network), there will be an error between the output dataset and
the network estimated output (load).

2.5 ANN validation and performance
The validity and performance of the ANN method was evaluated
by comparing the load estimated by the ANN with known loads
applied to the panel, which were not seen by the network during
the training process. The first validation study utilised load and
strain data generated from the FEA model and was compared with
estimated loads from the ANN. In the second study, problem strain
data was captured directly from the panel and again the estimated
loads were compared with the actual applied loads.

3.	Results
The validity of utilising FEA for training data generation and
the ANN validity and performance are detailed in the following
sections.

3.1 FEA model validation
Figure 4 indicates that for loading only location L13, there is
reasonable agreement between the strain readings (S6 and S10) of
FEA tests and experimental tests. The average percentage error is

Table 3. ANN architectures

1 network with 16 strain inputs
and 13 load outputs

13 networks each with 16
strain inputs and 1 load output

Number of networks 1 13

Architecture Feed forward backpropagation

Number of layers in each network 2 1

Range of load estimation 24.525-784.8 (N) 24.525-784.8 (N)

No of inputs (surface strains) 16 16

No of output layer neurons (loads) 13 1

No of each hidden layer of neurons [20 20] [50]

Number of training patterns 1040 1040

Number of testing patterns 1040 1040

Figure 2. Matlab representation of ANN architecture 1

Figure 3. Matlab representation of ANN architecture 2

less than 7%. These results indicate that the FEA model can be used
confidently to simulate various loading conditions and to generate
the required training input data.

3.2 ANN validation and performance
As mentioned in Section 2.4, two different methods are employed
to define the networks. Table 3 lists the major parameters of the
network architecture used in the two methods. It was determined,
through the testing of various network architectures, that the
optimum network (lowest SSE) for method one had two hidden
layers with twenty neurons and used a tan-sig transfer (Figure 2).
The output layer had thirteen neurons (representing the thirteen
loads to be estimated) and used a pure-lin transfer function.
Similarly, it was determined that the thirteen networks for method
two had one hidden layer each with fifty neurons and used a tan-
sig transfer (Figure 3). The output layer of each network had one
neuron (each network estimates the corresponding load of one
location) and used a pure-lin transfer function.

In this study, SSE is used as a performance indicator. Once the
networks were trained, SSE values between the estimated loads and
training load data were calculated. Each network has an individual
SSE value. This means that although the first method has only one
SSE value, the second method had thirteen SSE values. Figure
5 indicates the SSE performance of all thirteen networks, each
having sixteen inputs (all strain readings) and one output (load at
one location) generated from the second network architecture.

In order to compare the two methods, the summation of all the
networks’ SSE values in the second method is compared to the SSE
value of the first method, when only a network with sixteen inputs
and thirteen outputs were used to train the system. As it is indicated
in Figure 6, a better performance for the second method is achieved.

In addition to having a better performance, the second method
has more flexibility. This means having thirteen independent
networks; for each load location a separate new network
architecture and parameters can be employed.
For instance, the sum of the estimation
performances of networks in the second
method can be improved by changing the
network architecture of those networks (eight
and twelve from Figure 5) having relatively
higher SSE values. As it is illustrated in Table
4, for locations eight and twelve, networks
with two layers with twenty neurons are
used. The improvement in SSE for networks
eight and twelve with the new architectures
can be seen in Figure 7.

In order to investigate the capability of the
ANN to estimate loads in real time, once the
ANN is trained new strain data from different

loading cases were introduced to it. Having a good performance,
the ANN should be able to estimate the external pressure loads that
caused those structure responses. For instance, introducing new
sets of strain data that have not been used to train the network, the
ANN estimates the corresponding load data. Depending on how
well the network is trained (the performance of the network), there
will be errors between the expected output dataset and the network
estimated output (loads). Figure 8 depicts three random examples
of the comparison of the ANN results (trained with both FEA and
experimental data) with actual externally applied loads of 300 N,
200 N and 300 N applied individually at locations L13, L1 and L7,
respectively. For both sets of problem data it can be seen that the
ANN can again estimate the load at the loaded locations with a high

Table 4. Optimum ANN architecture 2

13 networks each with 16 strain inputs and 1 load output

Number of networks 13

Architecture Feed forward backpropagation

Number of layers in each network Most of it has 1 and for location 8 and 12 are 2

Range of loads 0-809.3 (N)

Number of inputs (surface strains) 16

Number of neurons in output layer (normal loads) 1

Number of neurons in each hidden layer [50] or [20 20]

Number of training patterns 1040

Number of testing patterns 1040

Figure 4. Comparison of FEA and experimental data of selected
strain gauges

Figure 5. SSE performance of network architecture 2

Figure 6. Comparison of the SSE values of the two network
architectures

Figure 7. Flexibility of ANN architecture 2 in training stage

446 Insight Vol 55 No 8 August 2013

Insight Vol 55 No 8 August 2013 447
 	

degree of accuracy. However, the error size of estimated loads with
the ANN for experimental tests is slightly bigger. Such a small error
is normal and it could be from an initial error between the FEA data
and experimental data, errors induced from the repeatability of the
data acquisition system with a resolution of +/– 0.1 microstrain as
well as possible overtraining of the ANN.

The estimated negative load values at the unloaded locations
were due to the differences between the strain data collected to
generate the training data and the collected problem strain data.
Due to these errors, slightly different strain patterns are introduced
to the ANN producing the errors in the estimated loads. The
introduction of further noisy patterns in the training dataset may
reduce these small errors, indicating that further work could be
carried out to improve the accuracy further.

4.	Discussion
In this study, it is shown that the inverse problem method, utilising
an ANN, is capable of estimating magnitude and position of the
static pressure loads on a marine composite panel under large
displacement from non-linear strain measurements. The results of
this study can be summarised as follows:
q	 FEA data can be used to generate training data for ANN inverse

load estimation problems.
q	 Two different ANN architectures are used and the performances

are compared.
q	 Having non-linear relationships between the applied load and

the surface strains, the system always converges and the SSE is
in the range of acceptable error.

q	 The system is capable of estimating the position and magnitude
of static pressure loads on a marine composite panel under large
displacement.

q	 Having a large difference between the training datasets and the
problem dataset makes the ANN unable to estimate the load
accurately.

q	 The main source of error was found to be an initial error between
the FEA data and experimental data.

The ability to measure the actual load history of a craft in-service
would enable the designer to validate the load estimation and
structural design tools used during the design stage of a craft. This
would lead to the development of more optimal structure designs
for this type of craft. The operational safety of the craft can also
be improved by having a real-time load monitoring system that is
able to detect any degradation of the structural integrity and defects
within the structure.

It is proposed that the ANN methodology, with further research
and development, could be utilised for the quantification of
in-service, transient loads in real-time acting on the craft from the
craft’s structural response (strain response to load). This would
provide valuable information to influence future craft design. In
order to fully evaluate the proposed methodology for in-service
load monitoring of marine structures, the following areas require
investigation:
q	 The behaviour of marine structures under transient load

conditions (dynamic load is applied).
q	 The effect of the size of the structure on the ANN estimation

accuracy.
q	 The number of sensors required for accurate load estimation by

optimising the method. While some vessels do have integrated
sensors most do not. The number of sensors should be minimised
to reduce the time to train the system, cost and weight.

q	 The effect of modifying ANN training parameters, including the
number and type of training patterns introduced to the ANN.

q	 Validation of the methodology on a craft in-service.

Finally, a graphical user interface (GUI) should be developed
allowing control of various parameters of the data acquisition and
load monitoring system, as well as graphical display in real time.

5.	Conclusions
It has been shown that the inverse problem approach can be used
to estimate the magnitude and position of static pressure loads on
a marine composite panel under large displacement from non-
linear strain measurements. A comparison of the ANN loads with
the actual applied loads indicated a very good performance of the
methodology. This was achieved in real time, providing an accurate
load history. This potentially makes the system ideal for solving
many classes of complex engineering problem that require load
monitoring.

References
1.	 W J Pierson, ‘A unified mathematical theory for the analysis of

propagation and refraction of storm-generated ocean surface
waves’, part i and ii, New York University, New York, 1952.

2.	 M St Denis and W J Pierson, ‘On the motions of ships in
confused seas’, SNAME Transactions, Vol 61, 1953.

3.	 W J Pierson, G Neumann and R W James, ‘Practical methods
for observing and forecasting ocean waves by means of wave
spectra and statistics’, Hydrographic Office Publication, 1955.

4.	 N Hogben, N M C Dacunha and G F Olliver, Global Wave
Statistics, Unwin Brothers Ltd, UK, 1986.

5.	 Y Bai, Marine Structural Design, Elsevier Science Ltd, Oxford,
2003.

6.	 B V Korvin-Kroukovsky, ‘Investigation of ship motions in
regular waves’, SNAME Transactions, Vol 63, pp 386-435,
1955.

7.	 J Gerritsma and W Beukelman, ‘The distribution of the

Figure 8. ANN estimation for FEA and experimental data versus
expected real data

hydrodynamic forces on a heaving and pitching ship model in
still water’, paper presented at the Fifth Symposium on Naval
Hydrodynamics, Washington, 1964.

8.	 R E D Bishop and W G Price, Hydroelasticity of Ships,
Cambridge University Press, Cambridge, 1979.

9.	 B P Phelps, ‘Determination of wave loads for ship structural
analysis’, DSTO Aeronautical and Maritime Research
Laboratory, Melbourne, 1997.

10.	 J D Clarke, ‘Wave loading of warships’, Journal of Naval
Science, Vol 12, No 4, 1986.

11.	 T Kukkanen, ‘Wave load predictions for marine structures’,
Rakenteiden Mekaniikka (Journal of Structural Mechanics),
Vol 43, No 3, pp 150-166, 2010.

12.	 H Iwashita, A Ito, T Okada, M Ohkusu, M Takaki and
S Mizoguchi, ‘Wave force acting on a blunt ship with forward
speed in oblique sea’, Journal of Society Naval Architecture
Japan, Vol 176, 1994.

13.	 D Nakos and P Sclavounos, ‘Ship motions by a three-
dimensional rankine panel method’, paper presented at the
Proceedings of 18th Symposium on Naval Hydrodynamics,
Ann Arbor, 1990.

14.	 K Takagi, ‘Calculation of unsteady pressure by rankine source
method’, Journal of Kansai Society of Naval Architecture, Vol
219, pp 47-56, 1993.

15.	 H Yasukawa, ‘A rankine panel method to calculate unsteady
ship hydrodynamic forces’, Journal of Society Naval
Architecture, Vol 168, pp 131-140, 1990.

16.	 X Cao, Y Sugiyama and Y Mitsui, ‘Application of artificial

neural networks to load identification’, Computers &
Structures, Vol 69, pp 63-67, 1998.

17.	 R Amali, S Noroozi and J Vinney, ‘The application of
combined artificial neural network and finite element method
in domain problems’, paper presented at the Sixth International
Conference on Engineering Applications of Neural Networks
(EANN 2000), Kingston upon Thames, 2000.

18.	 R Amali, S Noroozi, J Vinney, P Sewell and S Andrews,
‘Predicting interfacial loads between the prosthetic socket and
the residual limb for below-knee amputees – a case study’,
Strain, Vol 42, pp 3-10, 2006.

19.	 P Sewell, S Noroozi, J Vinney, R Amali and S Andrews,
‘Improvements in the accuracy of an inverse problem engine’s
output for the prediction of below-knee prosthetic socket
interfacial loads’, Engineering Applications of Artificial
Intelligence, Vol 23, pp 1000-1011, 2010.

20.	M R Ramazani, S Noroozi, M Koohgilani, B Cripps and P
Sewell, ‘Determination of static pressure loads on a marine
composite panel from strain measurements utilising artificial
neural networks’, submitted to Proceedings of the Institution
of Mechanical Engineers, Part M: J Eng for the Maritime
Environment, 1475090212449231, first published on 25 June
2012, doi:10.1177/1475090212449231

21.	 A P Boresi, R J Schmidt and O M Sidebottom, Advanced
Mechanics of Materials, Fifth Edition, John Wiley, 1993.

22.	 H M Westergaard and W A Salter, ‘Moments and stresses in
slabs’, Proceedings of Amer Concrete Inst, Vol 17, pp 415-538,
1921.

Published by The British Institute of Non-Destructive Testing
on behalf of its Condition Monitoring Group (COMADIT)

Infrared Thermography Handbooks
Volume 1: Principles and Practice
by Norman Walker

This book will provide guidance on the subject of Infrared Thermography (IRT), namely
heat transfer theory, equipment selection, applications and operational factors; and as
such can be used as an information source to support IRT operations.

Volume 2: Applications
by A N Nowicki

This book is aimed at thermographers who have attained at least Level 1 accreditation
in IRT. It is recommended that the reader also has some operational experience in order
to have the required level of knowledge to understand the terminology and diagnostic
descriptions included.

Order online via the BINDT Bookstore at www.bindt.org/Books

Volume One: Principles & Practice – BINDT Members: £60; Non-Members: £65
Volume Two: Applications – BINDT Members: £60; Non-Members: £65
Both Volume One & Two – BINDT Members: £100; Non-Members: £110

Available from: The British Institute of Non-Destructive Testing, Newton Building, St George’s Avenue,
Northampton NN2 6JB, UK. Tel: +44 (0)1604 89 3811; Fax: +44 (0)1604 89 3861; Email: info@bindt.org

448 Insight Vol 55 No 8 August 2013

Copyright of Insight: Non-Destructive Testing & Condition Monitoring is the property of
British Institute of Non-Destructive Testing and its content may not be copied or emailed to
multiple sites or posted to a listserv without the copyright holder's express written permission.
However, users may print, download, or email articles for individual use.

243

Paper 4: In-service Transient Load Measurement on a Large Composite Panel

In-service Transient Load Measurement on a Large Composite Panel

Mohammad Reza Ramazani1,a, Philip Sewell1,b ,Siamak Noroozi1,c,

Mehran Koohgilani1,d and Bob Cripps2,e
1School of Design, Engineering & Computing, Bournemouth University, Poole, UK.

2Longitude Consulting Engineers Ltd, Southampton, UK.

amramazani@bournemouth.ac.uk, bpsewell@bournemouth.ac.uk, csnoroozi@bournemouth.ac.uk,
dmkoohgil@bournemouth.ac.uk, eb.cripps@longitude.uk.com

Keywords: Composite, Marine, Artificial Intelligence, Artificial Neural Network, Structural Analysis,
Impact Load, Slamming

Abstract. Current practices to estimate the pressure loads on the hull of small high-speed craft in a

seaway are based on determination of the wave loads by applying rules and standards which itself

relies either on often conservative methods, leading to a craft that is heavier and slower than it could

be otherwise. There are rather large uncertainties in the wave load predictions for ships mainly caused

by not necessarily sufficient theoretical basis of the calculation methods. Direct pressure

measurement techniques can only provide data at each transducer location and classical analytical

techniques require a large amount of experimental data to be collected to relate pressure to the

structures response. The evaluation of wave generated hydrodynamic loads is less reliable as the

dynamic nature of the loading as well as transient effects such as slamming and green water on deck

still demands more investigations. Therefore, a novel technique is required to overcome these

limitations by providing a method of measuring the pressure load with relatively few sensors and

minimal data collection. This paper reports on research undertaken to develop an inverse problem

approach utilising an Artificial Neural Network (ANN) for quantification of in-service, transient

loads in real-time acting on the craft from the craft’s structural response (strain response to load). This

study investigates suitability and performance of utilising ANN as an inverse problem approach to

estimate impact loads applied to up to 13 locations on the structure in real-time from 16 strain

measurements.

Introduction

The measurement of hydrodynamic impact loads has an important role in the design of reliable cost

and weight effective marine structures. Weight is a major factor to optimise the speed of a marine

structure. Although employing stiff and light materials such as composites leads to increase in speed,

structural damage is still significant [1]. It is expected that the structural damage may be influenced

by global hydroelastic behaviour from waves and/or local hydrodynamic impact loads from

slamming [2]. Wave impact is a random nonlinear phenomenon which is very sensitive to relative

motion and attack angle between the body and free surface of the water. Since the duration of wave

impact loads is very short, hydroelastic effects are large. In addition, due to air trapping, the wave

impact phenomenon is difficult to describe. As the new generation of high speed naval craft gets

larger and faster, slamming impact loads on these vessels becomes a critical design concern.

However, the hydrodynamic impact load is one of the least understood areas of marine structure

design [3]. Wave impact has challenged many researchers for more than half century and yet more

research for an accurate practical estimation method of wave impact loads is required.

Many studies have been performed so far for evaluating hydrodynamic loads on ships. Such

methods are summarised in the reviews by Phelps [4] and Guo-Dong and Wen-Yang [3]. It is

indicated that the evaluation of wave generated hydrodynamic loads is less reliable than the static

loads and there is less guidance as to how to handle the dynamic nature of the loading as well as

transient effects such as slamming. In the past four to five decades, research has provided increased

knowledge of the nature of hydrodynamic loads, which together with the improvements in computing

Applied Mechanics and Materials Vol. 248 (2013) pp 204-211
© (2013) Trans Tech Publications, Switzerland
doi:10.4028/www.scientific.net/AMM.248.204

All rights reserved. No part of contents of this paper may be reproduced or transmitted in any form or by any means without the written permission of TTP,
www.ttp.net. (ID: 87.236.211.227-29/11/12,19:28:10)

http://www.ttp.net

power have greatly enhanced the capability to determine the effects of these loads on ship structures.

Starting with the work of von Karman [5], various research works have been carried out to describe

hydrodynamic loads in Naval Architecture, on motorboats and sailboats in parallel with rules and

regulations [6-19]. Furthermore, the introduction of composite materials in marine architecture, such

as fast marine crafts, has brought new types of operational failures in panels. In contrast to metallic

materials, when the design makes use of composite materials, different types of cracks can appear

such as delaminations. This usually happens due to the localised impacts from service loads (such as

slamming loads) often observed in composite high-speed crafts. Although, many studies have been

carried out to describe the slamming phenomenon and its consequences on the design of ships made

of metallic materials [10, 20-26], there are limited studies in this area for composite marine structures.

In addition, as it is pointed out in various studies [1, 27], there is a need for more accurate knowledge

of the hydrodynamic impact on marine structure problems as the knowledge on wave impact is still

far from sufficient.

A novel approach for the determination of pressure loads experienced by marine structures is the

utilisation of Artificial Neural Networks (ANN) [28]. ANN methods are utilised in research areas

where problems are solved by pattern recognition, generalisation and pattern classification [29].

ANN has attracted considerable attention and shown promise for modelling complex nonlinear

relationships. ANNs have been used extensively in many fields [29-38].

In a recent study by the authors [28], it is shown that the inverse problem approach can be used to

estimate the loads applied on a marine composite panel from the strain measurements when behaving

linearly. A comparison of the ANN loads with the actual applied loads indicated a very good

performance of the methodology. However, it was discussed that more investigation is necessary to

further evaluate the suitability of the proposed methodology for in-service load monitoring of marine

structures under transient load conditions such as slamming. This paper reports on the research

undertaken to further develop the ANN methodology for quantifying pressure loads on a marine

composite panel under transient load conditions from strain measurements.

Methodology

The methodology employed to evaluate the suitability and performance of utilising an ANN as an

inverse problem solver for quantifying the transient load applied to the composite panel is presented

in this section. The first stage of the investigation was to design an impact load quantification

methodology for the panel utilising an ANN. In the second stage the load quantification methodology

was validated by comparing loads estimated by the ANN with the known loading cases of the panel.

Inverse Problem Analysis Methodology. Inverse problem analysis is based on accurately

calculating the external loads or boundary conditions that generate a known amount of strain at

predetermined locations on a structure. An ANN, as an inverse problem solver, can be utilised to

determine a relationship between the cause and its effect [28]. In this study, the impact loads (the

cause/output) on a composite panel are quantified by acquiring repeatable peak strain responses (the

effect/input) to these loads from the panel. By introducing examples to an ANN, it can learn the

relationships between the input and output through a training process. Once the ANN is sufficiently

trained it can be utilised to estimate the output in real-time. New inputs (problem data) are presented

and processed by the ANN to quantify/estimate the load.

Simulation Setup. The structure under consideration was a 1 m
2
 glass Reinforced Fibre Polymer

(GRFP) marine composite panel made of 7 layers of stitched biaxial ±45 E-glass cloth and with

Ampreg 22 epoxy resin system (all provided by SP Gurit Systems), hand laid up with a total thickness

of 5 × 10�� m. Fig. 1 shows a schematic of composite panel indicating strain node, loading and

support locations. The panel was divided into a four-by-four grid producing sixteen equal regions of

area 0.25	 × 0.25	m
 . The bottom surface of the panel was supported on all four edges using

aluminium bars, each 0.0381 m high, 0.01905 m wide and 1m long (Fig. 1). Strain readings (S1-16)

were captured from the centre of each of the 16 regions on the top surface of the panel. Loading was

achieved by simulating a free fall impact of a rigid mild steel cylinder (length 0.103 m, diameter of

Applied Mechanics and Materials Vol. 248 205

0.02 m and mass of 0.254 kg) normal to the panel surface at 13 locations (L1-13) from various

heights. For this study, the finite element models are developed and simulated in ABAQUS 6.10-1

(SIMULIA). The panel has 7096 elements and the cylinder has 40 elements. Mesh type used is

hexagonal. Fig. 2 indicates a typical Finite Element Analysis (FEA) model output employed in this

study.

Fig 1. Schematic of composite panel. Fig 2. Meshed FEA Panel.

Generation of ANN Training Data. Generating the required training data sets may be through

experimental tests or the use of simulation such as FEA. However, having a validated FEA model

would dramatically save in time and costs compared to the experimental tests. In this study, an FEA

model is developed and validated against experimental results. Employing a Python script in the FEA

model allows automatic generation of various loading conditions by changing the velocity of cylinder

just before impact. The structural response of the panel in terms of strain readings and velocity values

for specific locations are evaluated.

ANN Architecture/Topology. In this study a common Backpropagation, ANN architecture is used

and trained employing MATLAB Artificial Neural Network toolbox capabilities. The network has an

input layer with 16 neurons (as there are 16 strain readings), output layer with13 neurons (as there are

13 loading positions) and some hidden layers each having any number of neurons. An iterative

process was used to determine the optimum network architecture for the panel based on the

performance of each network tested. In this study, three hidden layers each having 20 neurons was

found to be the optimum.

ANN Validation and Performance. The validity and the performance of the ANN method were

evaluated by comparing the load estimated by the ANN with known loads applied to the panel

(problem data). Experimental problem data is the strain data from the same 16 nodes on the panel

while it is being loaded. The Sum of Squared Errors (SSE) between a known target and ANN

estimation is a common network performance indicator. For this validation study, new loading cases

simulated by FEA and corresponding load and strain data is employed to evaluate ANN estimation

performance when it is introduced with new data sets.

206 Mechanical Materials and Manufacturing Engineering II

Results

A script written in Python language is used to model the structure and simulate various loading

scenarios up to 0.02 seconds after impact. Since this test is under high loads, large displacements

analysis is used to simulate the model using a nonlinear solver. Furthermore, the structural response

of the panel in terms of strain as well as the cylinder velocity over the simulation time is saved to be

used to generate training data sets. In order to validate the FEA model against the real structure, the

panel is loaded from 100 to 800 N in 100 N increments at all 13 load locations (L1 – L13) seperately.

The strain readings at all 16 locations (S1 - S16) on the panel are saved for each test. The same tests

are performed with FEA to compare the results with the experimental results. For instance, Fig. 3

indicates that for loading only location L13, there is reasonable agreement between the strain readings

(S7 and S11) of the FEA model and experimental tests.

Fig 3. FEA Vs. experimental test results

Once the model is validated, it can be simulated for various loading conditions to generate the

required data. The corresponding peak strain values of the first impulse from locations S1-16 (Fig. 1)

of the FEA model is used as input training data. Fig. 4 shows example FEA strain data collected from

the gauge location S1 when impact location was L1.

Fig 4. Typical strain data during the impact for gauge S1.

In order to calculate, the impact force of the first impulse (F), Eq. 1 is used where �� is the velocity

of cylinder just before impact and �
 is its velocity after impact. ∆�	is the duration of peak impulse.

Impact forces of each loading cases are saved and utilised as training data set targets.

� �
�	����	���

	∆�
 (1)

0

20

40

60

80

100

120

0 0.005 0.01 0.015 0.02 0.025

S
tr

a
in

 [
m

ic
ro

 s
tr

a
in

]

Time [s]

Applied Mechanics and Materials Vol. 248 207

In this study 16 strain readings (inputs) and 13 load readings from 13 locations (outputs) are

needed to have one set of training data. Enough training sets of 13 various loads at each location on

the panel and the resultant 16 strains caused by these loads were required to find the relationship

between the input/output data. For each loading location (L1 - L13), 75 training data sets are

generated by loadings from 600 N to 6071N making a total of 975 training data sets from FEA.

Loadings are changed based on the velocity of the cylinder just before impact. Introducing the

training data to the trained network, ANN output should be as similar as possible to the impact load

set that the ANN has been trained with. Fig. 5 indicates some random examples of estimated impact

load data by the ANN compared with the expected values for impact locations L3 and L9.

Fig 5. Estimated impact load data by ANN Vs. expected values from training data.

Validation using FEA Data. For each loading location (L1- L13), 25 training data sets are generated

by loadings from 600 N to 6071N making a total of 325 training data sets from FEA. This set of

problem data was not introduced to the network during its training procedure. The strain set of this

problem data set is introduced to the previously trained ANN and the corresponding estimated load

values are calculated. Fig. 6 shows some random examples of estimated impact load data by ANN

and is compared with the expected values.

Fig 6. Estimated impact load data by ANN Vs. expected values from test data.

The results presented in this paper show that the inverse problem method, utilising an ANN, can

accurately estimate the position and magnitude of 13 impact loads applied to the composite panel

from the captured strain data of 16 nodes spread over the panel surface. The results indicate that the

system always converges and ANN can be trained using FEA data to solve inverse problems and

accurately estimate the impact loads. Once the ANN is sufficiently trained it can be utilised to

estimate the output in real-time where new inputs (problem data) are presented and processed by the

ANN and impact loads are estimated.

0

1000

2000

3000

4000

5000

6000

7000

0 5 10 15

Im
p

a
ct

 F
o

rc
e

 [
N

]

Velocity Before Impact [m/s]

L3
 FEA Output data

 ANN Estimation

from FEA data

0

1000

2000

3000

4000

5000

6000

7000

0 5 10 15

Im
p

a
ct

 F
o

rc
e

 [
N

]

Velocity Before Impact [m/s]

L9
 FEA Output data

 ANN Estimation

from FEA data

-500

0

500

1000

1500

2000

2500

3000

3500

4000

4500

L 1 L 2 L 3 L 4 L 5 L 6 L 7 L 8 L 9 L 10 L 11 L 12 L 13

Im
p

a
ct

 L
o

a
d

 [
N

]

Loading Location

 ANN Estimation from

FEA Test data
 FEA Test data

-1000

0

1000

2000

3000

4000

5000

6000

L 1 L 2 L 3 L 4 L 5 L 6 L 7 L 8 L 9 L 10L 11L 12L 13

Im
p

a
ct

 L
o

a
d

 [
N

]

Loading Location

 ANN Estimation from

FEA Test data
 FEA Test data

208 Mechanical Materials and Manufacturing Engineering II

 The ability to measure the actual load history of a craft in service would enable the designer to

validate the load estimation and structural design tools used during the design stage of a craft. This

would lead to the development of more optimal structure designs for this type of craft. The

operational safety of the craft can also be improved by having a real-time load monitoring system that

is able to detect any degradation of the structural integrity and defects within the structure.

Conclusion

The aim of this research was to establish an inverse impact load monitoring approach based on

structural response from a set of nodes simulated in FEA. It has been shown that the inverse problem

approach can be used to estimate 13 impact loads applied on a composite marine panel from the strain

measurements of 16 strain gauges. A comparison of the ANN estimated impact loads with the actual

applied impact loads indicated a very good performance of the methodology. Once the ANN is

sufficiently trained it can be utilised to estimate the output in real-time. This potentially makes the

system ideal for solving many classes of complex engineering problem that require impact load

monitoring.

Acknowledgement and Funding

This work was supported by BAE Systems Surface Ships Ltd, Portsmouth and Bournemouth

University. The Authors would like to thank Steve Austen, Head of Engineering Support of the Royal

National Lifeboat Institution for providing the marine composite panel used in this investigation.

References

[1] E. Bunting, M. Sheahan, Broken by design?, Yachting World, IPC INSPIRE Ltd, (2009) 66-79.

[2] X. Guo-dong, D. Wen-yang, Review of prediction techniques on hydrodynamic impact of ships J.

Marine Science Application, 8 (2009) 204-210.

[3] J. Lee, P. A. Wilson, Experimental Study Of The Hydro-Impact Of Slamming In A Modern

Racing Sailboat, J. ships Marine Science Application, 8 (2009) 204-210.

[4] Phelps, B.P. Determination of Wave Loads for Ship Structural Analysis, DSTO Aeronautical and

Maritime Research Laboratory, Australia, 1997.

[5] T.V. Karman, The impact on seaplane floats during landing - Technical report, Aerodynamical

Institute of the Technical High School, Aachen, 1929.

[6] M. Ochi, L. Motter, Prediction of slamming characteristics and hull responses for ship design, J.

Transactions of SNAME, 81(1973) 144-176.

[7] O. Faltinsen, Hydroelastic slamming, J. Marine Science and Technology, 5(2) (2000) 49-65.

[8] G. Kapsenberg, A. Veer, J. Hackett, M. Levadou, Aftbody slamming and whipping loads,

SNAME Annual Meeting, 111 (2003) 213-231.

[9] S. Heller, N. Jasper, On the structural design of planing craft, Transaction of RINA, 103 (1961)

49-65.

[10] A. Stavovy, S. Chuang, Analytical determination of slamming pressures for high-speed vehicles

in waves, J. Ship Research, 20(4) (1976) 190-198.

[11] D. Savitsky, P. Brown, Procedures for hydrodynamic evaluation of planning hulls in smooth and

rough water, J. Marine Technology, 13(4) (1976) 381-400.

Applied Mechanics and Materials Vol. 248 209

[12] R. Allen, R. Jones, D. Taylor, A simplified method for determining structural design limit

pressures on high performance marine vehicles, Proceedings of AIAA/SNAME Advanced

Marine Vehicle Conference, San Diego, (1978).

[13] P. Joubert, Strength of bottom plating of yachts, J. Ship Research, 26 (1) (1982) 45-49.

[14] R. Reichard, The structural response of small craft to dynamic loading, Proceedings of the 14th

AIAA Symposium on the Aero/Hydronautics of Sailing, 30 (1984) 105-110.

[15] M. Hentinen, G. Holm, Load measurement on the 9.4m sailing yacht sail lab, 13th International

Symposium Yacht Design and Yacht Construction, Netherlands, (1994) 131-161.

[16] P. Joubert, Tests on yacht hull plating, J. Marine Technology, 33, (1996) 130-140.

[17] ABS, Guide for building and classing offshore racing yachts, American Bureau of Shipping,

1994.

[18] ISO, ISO 12215 Small craft – Hull construction and scantlings, Part 5: Design pressures for

monohulls design stresses, scantlings determination. International Organization for

Standardization, 2008.

[19] BV, Rules for the Classification and Certification of Yachts. Bureau Veritas, 2008.

[20] M.K. Ochi, L.E. Motter, Prediction of extreme values of impact pressures associated with ship

slamming, J. Ship Res, 13(2) (1969).

[21] M.K. Ochi, L.E. Motter, Prediction of slamming characteristics and hull responses for ship

design, J. Trans SNAME, (1973).

[22] D.W Chalmers, Design of ship's structures, HMSO Publications Centre, London, 1993.

[23] N. Jones, Slamming damage, MIT Department of Ocean Engineering, Report No 72-4, 1972.

[24] Ship Structure Committee, Hydrodynamic impact on displacement ship hulls, an assessment of

the state of the art, SSC 385, 1995.

[25] S.R Heller, N.H. Jasper. On the structural design of planing craft, RINA Quarter Trans, 1960.

[26] W. Beukelman, Bottom impact pressures due to forced oscillation, Int Shipbuilding Progress,

27(309) (1980).

[27] P. Manganelli, Experimental investigation of dynamic loads on offshore racing yachts, Ph.D

thesis, University of Southampton, UK, 2006.

[28] M.R. Ramazani, S. Noroozi, M. Koohgilani, B. Cripps, P. Sewell, Determination of static

pressure loads on a marine composite panel from strain measurements utilising artificial neural

networks, submitted to Proceedings of the Institution of Mechanical Engineers, Part M: J. Eng.

for the Maritime Environment.

[29] V.B. Rao, H.V. Rao, C++ Neural Networks and Fuzzy Logic, M & T Books, New York, 1995.

[30] X. Cao, Y. Sugiyama, Y. Mitsui, Application of artificial neural networks to load identification J.

Computers and Structures, 69 (1998) 63-67.

[31] L. Ziemianski, G. Harpula, The use of neural networks for damage detection in eight storey

frames, Proceedings of the 5th international conference: Engineering applications of neural

networks, (1999) 292–297.

[32] R. Amali, S. Noroozi, J. Vinney, The application of combined artificial neural network and finite

element method in domain problems, Proceedings of the Sixth International Conference on

Engineering Applications of Neural Networks (EANN 2000), (2000) 1-7.

210 Mechanical Materials and Manufacturing Engineering II

[33] R. Amali, S. Noroozi, J. Vinney, P. Sewell, S. Andrews, Predicting interfacial loads between the

prosthetic socket and the residual limb for below-knee amputees: a case study, J. Strain, 42(1)

(2006) 3-10.

[34] F. Rosenblatt, The perceptron: a probabilistic model for information storage and organization in

the brain Psychological Review, 65(6) (1958) 386–408.

[35] S. Shar, F. Palmieri, MEKA: a fast, local algorithm for training feed forward neural networks,

Proceedings of the International Joint Conference on Neural Networks, (1990) 41–46.

[36] K. Soo-Young, B.Y. Moon, D.E. Kim, S.C. Shin, Automation of hull plates classification in ship

design system using neural network method, Mechanical Systems and Signal Processing 20(2)

(2006) 493–504.

[37] S. Xu, X. Deng, V. Tiwar, M.A, Sutton, W.L. Fourney, An inverse approach for pressure load

identification, International Journal of Impact Engineering, 37(7) (2010) 865–877.

[38] R. Amali, S. Noroozi, J. Vinney, P. Sewell, S. Andrews, Improvements in the accuracy of an

Inverse Problem Engine’s output for the prediction of below-knee prosthetic socket interfacial

loads, Engineering Applications of Artificial Intelligence, 23(6) (2010) 1000–1.

Applied Mechanics and Materials Vol. 248 211

