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Abstract 

Current methods to predict hydrodynamic loads rely either on oversimplified and semi-

empirical methods or the use of numerical simulation and analysis techniques such as 

Finite Element Analysis (FEA) or Boundary Element Analysis (BEA). These methods are 

conservative which results in the over-design of these craft so they are heavier and slower 

than they could otherwise be. Better understanding of load intensities will inform the 

design process of marine structures and could result in lighter and more efficient designs. 

This research investigates the possibility of solving these problems employing artificial 

intelligence (AI) as an alternative to the current methods.  Few studies have applied 

Artificial Intelligence to the design of marine structures.   Detailed review of the past and 

present research shows that AI and in particular Artificial Neural Networks (ANN) can be 

used as an inverse problem solver when there are no closed form relationships that exist 

between the input and the output.   An inverse approach is defined as the problem where 

response of the structure is known but the load that caused that response is unknown. In 

real problems/structures the response to a point load is experienced throughout the 

structure with different levels of intensities which is the link between the external load and 

these differential intensities. Determining this relationship will result in a unique solution 

without the knowledge of material constitutive laws, material properties and structure size 

or thickness. The aim of this investigation is to develop a real time in-service load 

measurement tool using an inverse approach.  To achieve this, ANN, experimental 

techniques and FEA analysis are combined to form a hybrid inverse problem solver that 

can be trained to use structural response, such as strains at various locations, to predict the 

loads that caused them. 

The main objective of this research is to investigate the suitability of the proposed 

methodology for real time in-service load monitoring on large marine structures. The 

proposed system must be able to measure both steady-state as well as transient load such as 

equivalent slamming load.  The outcome of this investigation was successful prediction of 

the external loads in terms of their approximate location and load intensities. The only 

disadvantage of this method is that the solver requires training and can only learn from 

cases that it has been subjected to. However, once the system is trained it can predict both 

static and dynamic loads quickly and accurately.  
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Chapter 1. Introduction to Project and Literature Review   

This chapter introduces the research project including a background to the topic, 

research aims and objectives. This chapter also covers brief introductions to a review of the 

academic literature, its relation and contexts to the research problem.  
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1.1 Introduction      

In-service Marine structural components are subjected to hydrodynamic loads that are 

both complex and transient in nature which makes their measurement particularly difficult. 

Current practices to predict these loads rely either on oversimplified and semi-empirical 

methods or the use of numerical simulation and analysis techniques that can be subjective. 

This means the methods are conservative which results in the over-design of these crafts so 

they are heavier and slower than they could otherwise be. Measuring the actual load 

history once the craft has been manufactured and put in-service can provide designers with 

more accurate load information which informs them at the design stage with more accurate 

and realistic design load data. Hence, the outcome helps progressive improvement in the 

design of such crafts, improving operational safety and enabling more accurate remaining 

life prediction. In-service load monitoring systems can also provide information relating to 

the damage of the structure as a result of impact that may affect the structure‘s integrity as 

well as ride quality and its dynamic characteristics/response.  

The outcome of this study could result in important added value to academia and 

industry. Providing more accurate load information from real life load history helps 

designers avoid over-designing the structure by informing the design process which can 

also affect and improve the operational safety.  

The thesis consists of six chapters.  In the first chapter an initial introduction to the 

research project background and its original aim is covered. A literature review is 

conducted in this chapter as well. Having an overview of the current literature about the 

research topic, more detailed aims and objectives are presented at the end of first chapter. 

Following the first chapter, the research plan including the proposed methodology and 

the equipment set up is covered in the second chapter. In this chapter, Artificial Neural 

Network (ANN) is introduced in more detail necessary to understand the methodology 

employed in this research.  This chapter includes brief ANN definition and historical 

overview as well as common ANN models, architectures and training algorithms. 

Furthermore, in the second chapter some important considerations and general rules in 

design of a successful ANN model are presented. Finally, the ANN software employed in 

this research is introduced. 
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The third Chapter describes a simple panel test rig that was donated by the RNLI to test 

the inverse problem engine by predicting lateral static loads that causes small lateral 

displacement.  Also, further investigation was conducted in order to minimise the number 

of sensors needed to predict unique approximate solutions on seven locations on the panel. 

Chapter four concerns the use of the system to solve non-linear problems. Large lateral 

load can cause large displacement of marine panels. In such cases using linear elastic/static 

analysis fails to generate accurate training data for the ANN and ANN fails to converge. 

To ensure convergence, a novel methodology is proposed, presented and tested that allows 

convergence resulting in predicting both the magnitude and the location of the large 

internal load. In Chapter five, conclusions and the possible future works are described.  

1.1.1 BAE Systems Surface Ships Ltd    

BAE Systems Surface Ships Ltd  are interested in developing an in-service load 

monitoring system to have practical load history of specific marine structure such as their 

marine crafts. As a result, this project was funded by BAE Systems Surface Ships Ltd and 

officially started from October 2009. The outcome of this study will result in important 

added value to education and industry. Providing more accurate load information from real 

life load history, it helps designers avoid the over-design of vessels and crafts and can 

inform their design resulting in progressive improvement, improve operational safety and 

enable remaining life to be predicted.  

BAE Systems is the premier global defence, security and aerospace company delivering 

a full range of products and services for air, land and naval forces, as well as advanced 

electronics, security, information technology solutions and customer support services. With 

approximately 106,400 employees worldwide, BAE Systems‘ sales exceeded £18.5 billion 

(US $34.4 billion) in 2008 (Bae 2009). 

BAE Systems Surface Ships was established in Nov 2009 following the formation of 

BVT Surface Fleet in July 2008 that bought together the surface warship building and 

through-life support operations of BAE Systems and VT Group, including their joint 

venture, Fleet Support Limited and VT Halmatic, its small boat design and manufacturing 

business. BAE Systems Surface Ships is the UK‘s leading provider of surface warships and 

through-life support, a world-class industrial partner for the UK Ministry of Defence 
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(MOD) and a leader in the global export market for warships and innovative naval surface 

ship support. 

BAE Systems Surface Ships is also the strategic partner to Portsmouth‘s Naval Base 

Commander, offering in-service support capability to the Royal Navy and manage 

Portsmouth Naval Base and logistics and warehousing services to the Base and the Royal 

Navy surface ship fleet based in Portsmouth. 

BAE Systems Surface Ships has operations in Glasgow, Portsmouth and Filton near 

Bristol, employing over 8,000 people and has the facilities, skills and partnerships to set 

the global standard as a trusted and innovative through-life surface ship partner in the UK 

and export markets.  

BAE Systems Surface Ships Small Boat business was formed from the legacy Halmatic 

business, building on over 50 years of experience of design and manufacturing high 

performance military and paramilitary craft including its Rigid Inflatable Boats (RIBS), 

such as the Pacific 24, the sea boat of choice for the UK Royal Navy and the Pacific 950, 

the latest boat in the BAE Systems Surface Ships small boat range Figure 1-1. 

 

Figure 1-1: BAE Systems Halmatic Range Pacific 950 and Pacific 24 (Shockmitigation 2013) 

 

1.1.2 Aims of the Research 

The general aim is to develop a technique that potentially can be used for real-time load 

monitoring of marine structures to meet the requirements of the marine industry. This can 

lead to the development of a tool for the study of static and dynamic characteristics of the 
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hull. The proposed system will potentially enable the determination of in-service, transient 

loads in real-time and produce a load history of the vessel. This would provide valuable 

information about characteristics of the hull of a vessel to inform their future design.       

1.1.3 Research Question and Objectives 

The research question is as follows: 

―Is it possible to estimate the loads applied on a marine structure by means of 

establishing a relationship between the applied loads and the structural responses to these 

loads on a marine structure?‖ 

The following objectives will be carried out to meet the aim: 

 Synthesis information from current practice and academic literature to critically 

analyse the state of the art in load monitoring/measurement/prediction of structures. 

 Investigate and develop a methodology to accurately quantify the load on a marine 

structure, which may be influenced by: 

1. the loading condition (static and transient loading). 

2. the structure‘s response (linear or nonlinear response to load). 

3. the structure‘s size. 

 Validate the methodology utilising a representative structure under known loading 

conditions. 

 Optimise the methodology and develop a prototype tool that can be used potentially to 

study and/or monitoring of marine structures. 

 Provide new insights in load monitoring of structures. 

1.2 Background Research and Literature Review 

This section outlines some introductory information about boat design and structural 

analysis as well as critical analysis of the state of the art in load monitoring /measurement/ 

prediction of structures. Furthermore, an investigation of the potential of using Artificial 

Neural Networks as an inverse method to be used for load monitoring systems are 

presented in this section. 
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1.2.1 Boat Design and Structural Analysis 

Several key components make up the main structure of most boats. The hull is the main 

structural component of the boat which provides buoyancy. The hull of a boat consists of 

an internal network of frames that extend from side to side (transverse) and that run the 

length of the boat (longitudinal), covered by outer shell plating, usually made of fibreglass 

or metal. The roughly horizontal, but chambered structures spanning the hull of the boat 

are referred to as the deck. In a ship there are often several decks, but a boat is unlikely to 

have more than one, if any at all. Above the deck are the superstructures. The underside of 

a deck is the deck head. 

An enclosed space on a boat is referred to as a cabin. Several structures make up a 

cabin: the similar but usually lighter structure which spans a raised cabin is a coach-roof. 

The "floor" of a cabin is properly known as the sole, but is more likely to be called the 

floor (a floor is properly, a structural member which ties a frame to the keelson and keel). 

The vertical surfaces dividing the internal space are bulkheads. The keel is a lengthwise 

structural member to which the frames are fixed (sometimes referred to as a backbone). 

The front (or forward end) of a boat is called the bow. The rear (or aft end) of the boat is 

called the stern. The right side (facing forward) is starboard and the left side is port. See 

Figure 1-2 which indicates a typical hull structure of a cruiser.  
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Figure 1-2: Hull structure of a cruiser (US Naval,  2013) 

 Possible loading conditions of a ship are calculated and information is supplied usually 

in the form of a profile of the boat indicating the positions of all loads on board, a 

statement of the end draughts, the trim of the boat and the meta-centric height. Stability 

information in the form of curves of statical stability is often supplied. The usual loading 

conditions covered are: 

 the lightship 

 fully loaded departure condition with homogeneous cargo 

 fully loaded arrival condition with homogeneous cargo 

 Ballast condition 

 Other likely service conditions. 

A booklet is prepared for the ship showing all these conditions of loading. Nowadays 

the supply of much of this data is compulsory and, indeed, is one of the conditions for the 

assignment of a freeboard (Tupper 2004). 
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There are different ways to classify the various loads that are exerted on a marine 

structure (Koelbel and Jr. 1995). As a first approach, a ship is considered along with all its 

equipment, cargo and fluids as the system under consideration. The loads exerted on this 

system could be classified into the following two categories: 

(1) Standard Loads 

(2) Extreme Loads 

Standard or operational loads are the ones that the ship will experience during most of 

her lifetime. These loads act on the ship as a whole as concentrated loads. Such loads 

include: 

 Static still water and wave buoyancy: these are the hydrostatic forces that act on the 

ship hull when the ship is afloat. 

 Dynamic lift loads: for semi-displacement and planning hulls. 

 Wind pressure: especially for ships with large superstructure area. 

 Dry-dock loads: when a ship lays on the dry-dock platform. 

 Mooring lines and anchors: these act as concentrated loads. 

 Extreme loads are a class of loads which occur when the ship sails in harsh weather 

conditions. The naval architect should keep in mind that these loads may occur rarely, such 

as slamming, ship-ship and ship-obstacle collisions.  

Slamming is the impact of the bottom structure of a ship onto the sea surface. It is 

mainly observed while sailing in waves, when the bow rises from the water and 

subsequently impacts on it (see Figure 1-3). Slamming induces extremely high loads to 

ship structures and is taken under consideration when designing ships. Environmental 

loads such as wave loads have to be taken into consideration in the design process as well.  
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Figure 1-3: Slamming Phenomena (Petrov 2012) 

In heavy storms, the waves and ship motions can become so large that water flows onto 

the deck of a ship. This problem is known as ‗green water loading‘. The term ‗green water‘ 

is used to distinguish between the spray (small amounts of water and foam) flying around 

and the real solid seawater on the deck. Because seawater is rather more green than blue, 

the term ‗green water‘ is widely used (see Figure 1-4). 

 

Figure 1-4: Green Water Phenomena (Hydrolance 2013) 
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Assume that the designer has already determined the dimensions and shape of the hull, 

and has made the first estimate of the weight and centre of gravity of the design. In 

addition, assume that the designer has laid out the basic structural arrangement for the hull 

(locations of the plate stiffeners, frames, girders, and bulkheads). Given all this, the 

structural design procedure is as follows (Koelbel and Jr. 1995):  

 1. Select the design sea state, or significant wave height.  

2. Calculate the added resistance in waves and determine the maximum speed the boat can 

achieve with the installed power,  

3. Calculate the vertical accelerations at the centre of gravity for the design speed in the 

design sea state.  

4. Determine the total load on the bottom, and the peak pressure.  

5. Calculate the design pressure for each structural element. 

6. Calculate the required thickness for plating, and the required section modulus for frames 

and girders.  

To solve any of these complex structural engineering problems, it is necessary to reduce 

it to a series of unit problems which can be dealt with individually and superimposed. The 

smallest units of structure which have to be considered are the panels of plating and single 

stiffeners which are supported at their extremities by items which are very stiff in 

comparison; they are subject to normal and edge loads under the action of which their 

dishing, bowing and buckling behaviour relative to the supports may be assessed. Many of 

these small units together constitute of large curved surfaces of plating and sets of 

stiffeners called grillages, supported at their edges by bulkheads or deck edges which are 

very stiff in comparison. They are subject to normal and edge loading and their dishing and 

buckling behaviour as a unit relative to their supports may be assessed. Finally, many 

bulkheads, grillages and decks, together constitute a complete hollow box whose behaviour 

as a box girder may be assessed.    

Excluding inertia loads due to ship motion, the loading on a ship derives from only two 

sources, gravity and water pressure. It is impossible to conceive a state of the sea whereby 

the loads due to gravity and water pressure exactly cancel out along the ship's length. Even 

in still water, this is exceedingly unlikely but in a seaway where the loading is changing 

continuously, it is inconceivable. There is therefore an uneven loading along the ship and, 
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because it is an elastic structure, it bends. It bends as a whole unit, like a girder on an 

elastic foundation and is called the ship girder. The ship will be examined as a floating 

beam subject to the laws deduced in other textbooks for the behaviour of beams. 

 

Figure 1-5: The loading on a ship derives from two sources: gravity and water pressure (Tupper 2004) 

In still water, the loading due to gravity and water pressure are, of course, weight and 

buoyancy. The distribution of buoyancy along the length follows the curve of areas while 

the weight is conveniently assessed in unit lengths and might, typically, result in the block 

diagram of Figure 1-6 (clearly, the areas representing total weight and total buoyancy must 

be equal.). This figure would give the resultants dotted which would make the ship bend 

concave downwards or hog.  

 

Figure 1-6: Still water hogging ( Tupper 2004) 
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The reverse condition is known as sagging. Because it is not difficult to make some of 

the longer cargo ships break their backs when badly loaded, consideration of the still water 

hogging or sagging is vital in assessing a suitable cargo disposition. It is the first mate's 

yardstick of structural strength. 

It is not difficult to imagine that the hog or sag of a ship could be much increased by 

waves. A long wave with a crest amidships would increase the upward force there at the 

expense of the ends and the hogging of the ship would be increased. If there were a hollow 

amidships and crests towards the ends sagging would be increased (Figure 1-7). 

 

Figure 1-7: Sagging on a wave ( Tupper 2004) 

The loads to which the complete hull girder is subject are, in fact: 

a. Those due to the differing longitudinal distribution of the downward forces of weight 

and the upward forces of buoyancy, the ship considered at rest in still water; 

b. The additional loads due to the passage of a train of waves, the ship remaining at rest; 

c. Loads due to the superposition on the train of the waves caused by the motion of the 

ship itself through still water; 

d. The variations of the weight distribution due to the accelerations caused by ship 

motion. 

Consideration of the worst likely loading effected by (a) and (b) is the basis of the 

standard calculation. The effects of (c) and (d) are smaller and are not usually taken into 
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account. A graph for typical loading, shearing force and bending moment curves is shown 

Figure 1-8. 

 

Figure 1-8: Typical loading, shearing force and bending moment curves for a boat/ship (Tupper 2004) 

State of the Art in Load Monitoring, Measurement and Prediction of Structures      

Recent studies outline that the measurement of in-service hydrodynamic load on marine 

structural components is particularly difficult (Guo-Dong and Wen-Yang 2009).  This is 

due to the transient nature of the load intensities. Current practices to predict these loads 

are conservative and rely either on oversimplified and semi-empirical methods or the use 

of numerical simulation and analysis techniques that can be subjective (Faltinsen 2007). 

This results in the over-design of these craft so they are heavier and slower than they could 

otherwise be. Developing novel load measurement methods leads to better understanding 

of marine structure environmental and operating conditions. This means more realistic 

loads are considered in the design stage which results in lighter and faster final solutions. 

A review on methods for evaluating hydrodynamic loads on ships by Phelps (1997) 

outlines that for given ship conditions, both hydrostatic and self-weight loads can be 

evaluated with a high degree of confidence in ship structural design and analysis.  

Having the buoyancy distribution and the self-weight distribution over the hull of boat 

or ship, Finite Element (FE) programmes can be employed easily for the analysis of both 

hydrostatic and self-weight loads. This is due to the fact that such loads are static, well 

defined and are easily applied as pressure or self-weight load types available within FE 

programs. Furthermore, detailed documents are available for the hull giving necessary 
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information about its underwater shape. This enables calculation of the buoyancy 

distribution through Archimedes principle. The self-weight distribution can be determined 

employing detailed weight knowledge of stores, cargo and fuel.  This means FE 

programmes will be able to analyse hydrostatic and self-weight loads. In contrast, the 

determination of hydrodynamic loads generated by sea waves is less predictable. 

Furthermore, reliable guidance for understanding of dynamic nature of the loading as well 

as transient effects such as slamming is not available.  

Research has provided improved knowledge of the nature of hydrodynamic loads in the 

past five decades. The basis for the mathematical description of hydrodynamic loads on 

ships has been provided by the work of  St. Denis and Pierson (1953), Korvin-Kroukovsky 

(1955), Korvin-Kroukovsky and Jacobs (1997) , Salvesen et al. (1970) and Hughes (1983). 

These methods are basically linear and two-dimensional in nature and although reasonably 

accurate for moderate sea conditions and ship speeds, they are less accurate for extreme 

loading conditions which are also the most critical when considering hull structural 

strength (Phelps 1997).  

Non-linear theories and three-dimensional load prediction methods (panel methods) 

mostly developed by Ochi and Motter (1973) and Belik et al. (1983) have been introduced 

but these require greater computational effort and have not yet proven to be significantly 

more accurate than the two dimensional methods.  

The measurement of hydrodynamic impact loads has an important role in the design of 

reliable cost and weight effective marine structures. Weight is a major factor to optimise 

the speed of a marine structure. Although employing stiff and light materials such as 

composites leads to increase in speed, structural damage is still significant (Bunting and 

Sheahan 2009). It is expected that the structural damage may be influenced by global 

hydroelastic behaviour from waves and/or local hydrodynamic impact loads from 

slamming (Guo-Dong and Wen-Yang 2009). Wave impact is a random nonlinear 

phenomenon which is very sensitive to relative motion and attack angle between the body 

and free surface of the water. Since the duration of wave impact loads is very short, 

hydroelastic effects are large. In addition, because of air trapping, the wave impact 

phenomenon is difficult to describe. As the new generation of high speed naval craft gets 

larger and faster, slamming impact loads on these vessels becomes a critical design 
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concern. However, the hydrodynamic impact load is one of the least understood areas of 

marine structure design (Lee and Wilson 2009). Wave impact has challenged many 

researchers for more than half century and yet more research for an accurate practical 

estimation method of wave impact loads is required.  

Many studies have been performed so far for evaluating hydrodynamic loads on ships. 

Such methods are summarised in the reviews by Phelps (1997) and Guo-Dong and Wen-

Yang (2009).  It is indicated that the evaluation of wave generated hydrodynamic loads is 

less reliable than the static loads and there is less guidance as to how to handle the dynamic 

nature of the loading as well as transient effects such as slamming. In the past four to five 

decades, research has provided increased knowledge of the nature of hydrodynamic loads, 

which together with the improvements in computing power have greatly enhanced the 

capability to determine the effects of these loads on ship structures. Starting with the work 

of Karman (1929), various research works have been carried out to describe hydrodynamic 

loads in Naval Architecture, on motorboats and sailboats in parallel with rules and 

regulations (Abs 2011; Allen et al. 1978; Bv 2008; Dnv 2011; Faltinsen 2000; Faltinsen 

2007; Heller and Jasper 1961; Hentinen and Holm 1994; Iso 2008; Joubert 1982,  1996; 

Kapsenberg et al. 2003; Ochi and Motter 1973; Reichard 1984; Savitsky and Brown 1976; 

Stavovy and Chuang 1976) . Furthermore, the introduction of composite materials in 

marine architecture, such as fast marine crafts, has brought new types of operational 

failures in panels. In contrast to metallic materials, when the design makes use of 

composite materials, different types of cracks can appear such as delaminations. This 

usually happens due to the localised impacts from service loads (such as slamming loads) 

often observed in composite high-speed crafts. Although, many studies have been carried 

out to describe the slamming phenomenon and its consequences on the design of ships 

made of metallic materials (Beukelman 1980; Chalmers 1993; Gerritsma and Beukelman 

1964; Heller and Jasper 1961; Jones 1972; Ochi and Motter 1969; Ochi and Motter 1973; 

Ssc 1995; Stavovy and Chuang 1976), there are limited studies in this area for composite 

marine structures.  In addition, as it is pointed out in various studies (Bunting and Sheahan 

2009; Manganelli 2006), there is a need for more accurate knowledge of the hydrodynamic 

impact on marine structure problems as the knowledge on wave impact is still far from 

sufficient. 
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The work by Guo-Dong and Wen-Yang (2009), has reviewed the techniques used to 

predict impact loads. In summary, these techniques can be categorised into four groups: 

theoretical approaches, experiments, empirical formulas and numerical simulations. 

Theoretical approaches and numerical simulations are most flexible and full of potential. 

Experiments are thought to be most reliable, but it can be costly and suffers from scale 

effect. The measured results such as a 2-D wedge, a 2-D cross section of a ship, a 3-D drop 

cone or sphere, are usually used for the validation of a theoretical method or numerical 

simulation. There are also sea-keeping tests conducted in the towing tank in either regular 

or irregular waves. The goal of these experimental studies is to obtain the relationship 

between the pressure magnitude and the velocity at the instant of impact of a given body. 

The elasticity of the structure and the scale effect may play an important role in the 

magnitude of pressure. A number of empirical equations have been developed to estimate 

the impact loads in the time domain (Guo-Dong and Wen-Yang 2009).  

For a more accurate prediction, a method involving complete determination of the loads 

based on scientific principles is needed rather than empirical procedures. These 

oversimplified approaches cannot give a designer the comprehensive information required. 

Measurement of hydrodynamic loads generated by sea waves is difficult due to the fact 

that the sea is highly irregular. The common practice to determine wave loads is based on 

applying rules and standards which often relies on conservative methods due to large 

uncertainties in the theoretical calculations used for wave load predictions for ships. In 

addition, for unconventional ships with new structural designs, it can be sometimes 

difficult to apply general standards and rules. Direct calculation procedures are needed 

specifically for complex structures and designs. However, the direct calculation 

procedures, especially the calculation of the wave loads, are less applied in the 

shipbuilding industry (Kukkanen 2010). One reason is the rather large uncertainty in the 

wave load predictions for ships as well as lack of experience. In addition, the theoretical 

basis of the calculation methods is not necessarily sufficient to achieve reliable predictions. 

Furthermore, uncertainties also exist in all assumptions involved in stochastic methods and 

prediction procedures including environmental and operational conditions. Sometimes 

these are difficult to determine accurately in advance and hence assumptions need to be 

made to estimate them (Kukkanen 2010). 



 

16 

 

The current techniques to measure hydrodynamic loads indicate that many techniques 

developed are either simplified or very expensive and time-consuming (Bai 2003). Many 

studies have been performed to date for evaluating hydrodynamic loads on ships. Various 

strip methods have been developed (Iwashita et al. 1993; Watanabe 1994) and used to 

estimate wave induced ship motions and wave loads. The conventional strip theory  is 

successfully used in the sea-keeping analysis of normal displacement ships(Salvesen et al. 

1970). However, its validity can be questioned when it is used for ships with higher 

maximum operating speeds (Faltinsen 2005). Nonlinearities become more significant for 

higher speed ships, however, the conventional strip theory is a linear theory.  Strip methods 

are extensively used as a standard tool to predict the nonlinear loads and motions (Jensen 

and Pedersen 1979). Though, there are some concerns on the accuracy of the strip methods 

for estimation in short waves as they do not precisely consider hydrodynamic interference 

effects of reflected waves among strips lengthwise or three-dimensional effects.  

In order to enhance the accuracy of estimation, especially in short waves, many 

numerical methods considering the three-dimensional effects have been proposed. Among 

them are the three-dimensional Green function method (Iwashita et al. 1993) and the 

Rankine source method based on three-dimensional potential theory (Nakos and 

Sclavounos 1990; Takagi 1993; Yasukawa 1990). However, nonlinear theories and three-

dimensional load prediction methods require greater computational effort and have not yet 

proven to be significantly more accurate than the two dimensional methods (Guo-Dong 

and Wen-Yang 2009; Phelps 1997).    

At present all the modelling is based on some rational approximations, for example, it is 

common that the fluid is assumed to be ideal and incompressible, and the solid body to be 

rigid. Even with these assumptions, the problem is still very complicated. Almost all 

models used to predict impact loads find it difficult to incorporate the hydrodynamic 

impact into the sea-keeping prediction. Most of the sea-keeping theories are linear, and the 

hydrodynamic impact is strongly nonlinear. Usually engineers would prefer to estimate the 

relative speed between the waves and the ship hull, and then the calculation of 

hydrodynamic force would be presented separately. Computational Fluid Dynamics (CFD) 

techniques give a new way to solve these problems including overturning and wave 

breaking (Guo-Dong and Wen-Yang 2009). 
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It has become popular to use CFD to solve fluid flow problems. This is due to the fact 

that conventional engineering tools based on linear panel methods cannot accurately 

describe the flow. Green water on deck and Slamming are particular examples on fluid 

motions that have been investigated by CFD techniques (Faltinsen 2007).   

Some CFD methods based on solving the Navier-Stokes equations are thought to be 

effective in the violent fluid motion problems. Mixture between air and fluid may occur 

and viscous effects can matter (Guo-Dong and Wen-Yang 2009).There is extensive work 

worldwide in applying CFD to green water on deck. However, most work is related to two-

dimensional flow. An attempt has been made by Greco et al. (2007) to classify how the 

different green water phenomena occur as a function of wave parameters in head sea 

conditions for stationary ships, based on experimental and theoretical studies of a 

restrained two-dimensional body. Slamming is of concern in many marine applications. 

It seems generally accepted that CFD codes have difficulties in predicting impact loads 

(Faltinsen 2007). Actually, hydro-elasticity may then play an important role. The fact that 

the CFD methods are still time consuming makes statistical estimations of response 

variables in sea difficult. It is not always easy to follow the fluid particles in the 

simulations. A minor error at one point and at one time may cause the breakdown of the 

entire simulation. One of the essential steps is to use mesh regeneration after several time 

steps to avoid cluster or stretch of the elements. Smoothing has to be used regularly to 

remove saw tooth behaviour of the free surface (Guo-Dong and Wen-Yang 2009).  

According to Faltinsen (2007), Commercial CFD codes are generic in nature and special 

physical features are specific for the different application fields, one cannot necessarily 

trust documentation of verification and validation in other applications than those that one 

is interested in.  Therefore, A balance between analytical methods, CFD, model tests and 

sea tests is recommended (Faltinsen 2007). Although CFD solutions have been greatly 

improved in both speed and accuracy in recent years, it is still very challenging to perform 

complete nonlinear three-dimensional computations for the present problem (Sun and 

Faltinsen 2012). As vessels and craft, in most cases, are extremely complicated structures, 

the mechanical properties, or relations between externally induced excitation and structural 

responses, are difficult to formulate. An appropriate load monitoring system and technique 

has to be developed for naval assets and large structures (Cao et al. 1998). 
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Finite Element Analysis (FEA) can be employed for ship structural strength assessment. 

This requires a suitable method to apply loads to the FEA model. This approach is 

dependent upon the accuracy of the methods used to define and calculate the loads in the 

first place and also the specific FEA software being used. In addition it is more difficult to 

apply hydrodynamic loads to finite element models than for static load cases. This is due to 

the dynamic nature of the problem and less clearly defined loads.  

According to Phelps (1997) who has reviewed methods used for determining 

hydrodynamic loads on ships and their limitations, many documents have been written in 

relation to various hydrodynamic loading theories and likewise on finite element analysis 

of ship structures and components. He has outlined a review of wave load calculation 

methods and their application to finite element models as well as their evaluation using 

experimental data. This review indicates that although methods for static load 

measurements are generally reliable, predicting wave loads on ships in different sea states, 

ship speeds and headings are conservative and less accurate. Phelps (1997) concluded that 

the works done so far were limited and correlation between numerical predictions and test 

data and further evaluations were necessary. He has also recommended that further work 

be done to validate results obtained against alternative methods and full scale 

measurements. This would enable more realistic loading scenarios to be analysed with 

greater confidence and within a shorter period of time. 

Kukkanen (2010) investigated hydrodynamic load and strength analysis of marine 

structures. He has categorised environmental and operational conditions as important 

elements in the load and strength analysis of marine structures. In other words knowing 

these two elements is the starting point for the structural design and analysis of the ships 

and marine structures.  

The main operational conditions for ships are the speed, the heading with respect to 

waves and the sea state (i.e. height and length of the waves). The operational profile can 

vary considerably between different ship and boat types. Depending on the ship type, other 

operational conditions should also be taken into account, for instance, load condition of the 

vessel and time spent in harbour. Furthermore, voluntary speed reduction or possible 

restrictions in speed or heading in high waves should be considered in order to define the 

sea states the ship can operate in safety. 
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Most designers of high-speed craft use the rules, guidelines, and procedures of the 

various classification societies to calculate the bottom loads and pressures.  Unfortunately 

there are some uncertainties in these calculations that can lead to overdesign (Koelbel and 

Jr. 1995). 

1.2.2 Literature Review Findings 

Based on current limitations of load monitoring methods, there is a need for a new 

technique/system that is able to overcome some of these limitations. Therefore, such a 

system ideally should have the following specifications:  

 Available methods cannot be employed in real-time therefore the system should be 

able to monitor applied loads in real-time for in-service purposes  

 The system should be  capable of monitoring the whole structure with a  

minimum/optimum number of low maintenance sensors  

 The system should be able to be adopted for measuring in-service transient 

slamming loads 

 The system should require as small as possible computational effort (should be fast 

and respond in real time) 

 Both experimental and computational stress analysis requires that the material 

properties should obey constitutive laws and have well-defined geometrical data 

such as size, thickness or constraints. However, an inverse approach that can 

bypass the requirement for all of the above parameters may be an alternative 

approach 

Therefore this research aims to find a solution to the problem by focus on finding a 

means of establishing a relationship between loads and structural responses that represents 

hydro-dynamically the mechanical characteristics of the boat/ship structure. In other words 

the research question is as follows:  

―Is it possible to estimate the loads applied on a marine structure by means of 

establishing a relationship between the applied loads and the structural responses to these 

loads on a marine structure?‖ 

It is shown that other techniques should be developed to overcome current limitations in 

practice used to measure loads employed in marine structure design procedures. A 
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literature survey is carried out to investigate the novelty of using Artificial Intelligence 

(AI) approach in the marine industry, employed to relate the structural responses to the 

hydrodynamic loads. Different approaches employing AI methods may be utilised to solve 

the problems. Genetic Algorithm (GA), Fuzzy Logic (FL), Artificial Neural Network 

(ANN) and many more are the examples of various AI techniques available (Mamdani and 

Assilian 1975). These methods are utilised in many research areas where problems are 

solved by pattern recognition, generalisation and pattern classification (Rao and Rao 

1993).  

As an inverse solving technique, one of the artificial intelligence mechanisms that can 

be used is an ANN. A connectionist theory is the basis of ANN, where this modern 

mathematical approach is made of neurons (units) and connections between them. 

According to Kohonen (1998), W.S. McCulloch and W.A. Pitts introduced the methods as 

the fundamentals of neural computing in 1943 for the first time. Introducing examples to 

the ANN, it can learn the relationships through a training process. In fact, this technique is 

based on simulating the way that the brain processes different data. Therefore, they are 

able to perform behaviours similar to brain activities, such as: learning, generalisation, 

categorisation, association, optimisation and feature extraction. Network topology or 

structure is the way neurons are connected to each other. Common developed topologies 

include  networks with feedback connections called recurrent networks and feed-forward 

networks which have only direct connections (M. Raudenský 1996). An important 

advantage of an ANN is its ability to learn. It can learn relationships and patterns between 

two sets of variables. Consequently, rather than using an analytical relationship derived 

from mechanical principles to model a system, the ANN employs an adaptive training 

process to learn the relationship between variables.  

The most suitable applications for ANNs have the following characteristics (Lee et al. 

1999): 

1. A large database is available. 

2. It is difficult to find an accurate solution to the problem by existing 

mathematical approaches. 

3. The dataset is incomplete, noisy or complex. 
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ANN have attracted considerable attention and shown promise for modelling complex 

nonlinear relationships. This technique is based on the human brain having a number of 

interconnected units (Neurons) (Schalkoff 1997). Artificial Neural Networks look 

promising and have been used extensively in many fields (Amali et al. 2000; Amali et al. 

2006; Cao et al. 1998; Rao and Rao 1993; Rosenblatt 1958; Sewell et al. 2010; Shar and 

Palmieri 1990; Soo-Young et al. 2006; Xu et al. 2010; Ziemianski and Harpula 1999). For 

instance, ANN is widely used for damage identification  (Ziemianski and Harpula 1999). 

Employment of such novel techniques allows the structural health during service to be 

predicted, without the need to interrupt or terminate the usage of the structure. This is due 

to the fact that when an ANN is trained and put in service, no additional information about 

current environment and structure status (material, shape, etc.) is required. In a case study 

on an aircraft structure, it has been proven that a strain-based damage prediction 

methodology employing ANN leads to an accurate crack damage pattern recognition, 

which has an error comparable to that of the conventional methods. The main advantages 

of the methodology are its accuracy, reliability, independency from external load variations 

or any experimental data and its easiness to the practically appllied to on-line System 

Health Monitoring (SHM) methods  (Katsikeros and Labeas 2009). Furthermore, the ANN 

method has indicated promising efficiency for the identification and localisation of 

imperfections (Efstathiades et al. 2007; Katsikeros and Labeas 2009). 

According to a review on applications of ANN on composites by Zhang and Friedrich 

(2003), the applications of ANNs to polymer composites are still in their basic stages and 

the investigations of the implementation possibilities in different material research areas 

and the improvements of the predictive qualities are still matters for further research. 

Fatigue is one of the most complicated problems for fibre composites, and failure 

mechanisms are still not well understood. Extensive tests must be carried out because of 

the absence of a well-defined failure criterion that can be used to predict fatigue failure in 

polymer composites. ANNs offer the possibility of developing models that will predict the 

behaviour of composites without being linked to mechanistic arguments. They have, 

therefore, been introduced to predict fatigue life by Lee et al. (1999) , Aymerich and 

Serra (1998), Al-Assaf and El Kadi (2001) and El Kadi and Al-Assaf (2002). Other 

publications on fatigue prediction in various metallic alloys using the ANN approach are 

recommended to the composite community as further references to improve this technique 
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for their problems (Haque and Sudhakar 2001; Pleune and Chopra 2000; Venkatesh and 

Rack 1999). Velten et al. (2000) and Zhang et al. (2002) were among the earliest pioneers 

to explore this approach in polymer composites, using ANNs to predict the wear volume of 

short-fiber/particle reinforced thermoplastics. 

Applying  artificial intelligence to the ship/boat has been limited to use of ANN as an 

AI technique for only the preliminary ship design techniques (Rosenblatt 1958; Shar and 

Palmieri 1990). Research proposed by Soo-Young et al. (2006) presents a new method to 

classify surface plates effectively in preliminary ship design using Neural Networks as an 

AI method. 

Considering the literature review so far, the most relevant research performed in 

monitoring of various structures are the SHM methods where a direct structure response is 

utilised to analyse and monitor the structure status and integrity (Katsikeros and Labeas 

2009; Ko and Ni 2005; Li et al. 2006; Lynch et al. 2004; Majumder et al. 2008; Zingoni 

2005). 

Efstathiades et al. (2007) developed a method for structural health monitoring and fault 

detection in curtain-wall systems. In this study, ANN was utilised and it was proved to be 

an efficient method for identification and localisation of imperfections in these systems. 

In a study by Cao et al. (1998) an approach was developed to identify the loads acting 

on aircraft wings where an artificial neural network was utilised to model the load-strain 

relationship in structural analysis. The research demonstrated that using an artificial neural 

network to identify loads is feasible and a well-trained artificial neural network reveals an 

extremely fast convergence and a high degree of accuracy in the process of load 

identification for a cantilevered beam model. 

In a study by Amali et al. (2000), it is illustrated that AI as a modern mathematical 

method can be mixed by the requirement for knowledge of material properties and 

component geometry  to create a hybrid inverse problem analysis tool or Inverse Problem 

Engine. The hybrid approach can be applied to both direct and inverse problems that avoid 

the need for having component geometry  and material properties at the end stage of 

problem solving (Amali et al. 2006). Furthermore, as a medical application, ANN 
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technique is successfully utilised as an inverse method by Sewell et al. (2010) to estimate 

pressure distribution at the residual limb/socket interface of a lower-limb prosthesis. 

In the case of complex structures, the relation cannot easily be formulated (Tang et al. 

1995).   As vessels and crafts in most cases, are extremely complicated structures thus the 

mechanical properties or relations between external excitement and structural responses are 

difficult to formulate, so an appropriate load monitoring system has to be developed (Cao 

et al. 1998).  

Different properties of the system can be monitored such as any change in system 

physical properties, stress, strain, local or distributed loads. Load data can be employed 

to locate damage, detect composite delaminating, measure residual stress recoveries. To 

measure each of them, the appropriate transducer should be employed.  

In order to perform load monitoring of a structure, a specific sensing system is required. 

Sensing technology has witnessed significant progresses in the past decades and recently 

some types of innovative sensing systems are now commercially available such as load 

cells, fibre optic sensors and wireless sensors (Lynch et al. 2004; Spencer et al. 2004; 

Sumitro and M.L. 2003).  

Fibre optic sensors have successfully been applied for long-term structural health 

monitoring like large scale bridges. Furthermore, Fibre Bragg grating (FBG) sensors have 

been employed for monitoring, diagnostics and control in structures and the performance 

was reliable. One of the main beneficial aspects of FBG sensors to other technologies is its 

versatility in the structural sensing area (J.M. Ko July 2005; Mufti Aa 1997). 

FBG sensors are appropriate solutions in longitudinal strain measurement in static and 

dynamic strain sensing in a number of application areas. According to Mousumi Majumder 

(2008), this is due to the inherent properties of FBG sensors such as: 

 Lightweight 

 Immunity to electromagnetic interference and harsh environment  

 Ability to be multiplexed for distributive measurement 

 lower integration costs with new shipboard optical network backbones 
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 optical sensors are self-referencing enabling long-term absolute strain 

measurements without the need for frequent sensor calibrations and bridge 

balancing such as that required by Electrical Resistance Strain Gauge (ERSG)  

sensors 

Modern composite laminate hulls have sensors integrated within them during 

manufacture. Stresses and strains generated due to the loads acting on a craft are used to 

monitor structural integrity, and also used to monitor stresses at key locations where there 

are geometrical or material discontinuities. This system provides real time information 

concerning the state of the ship structure and increases operational attainability and ship 

service life and can lead to reductions in on-going maintenance costs (Baldwin et al. 2002). 

To reduce overall maintenance costs, ships have been equipped with strain gauges so 

information for estimating the structural health of ship hulls can be predicted when they are 

in-service. To date, some naval ships have become able to collect data with this embedded 

instrumentation and the data can be employed to validate computer models anticipating 

damage accumulation over the expected service life of the vessel without actually 

calculating the exerted load on the structure (Adamchak 1984; Baldwin et al. 2002; Sikora 

et al. 1983).  

Ideally, load monitoring systems should be constructed of an array of inexpensive, 

spatially distributed, wirelessly powered and networked, embedded sensing devices which 

support frequent and on demand acquisition of real-time information about the loading and 

environmental effects, structural characteristics and responses (Ko and Ni 2005). Different 

responses of the system can be monitored directly and related to applied loads such as any 

change in the system‘s physical properties, stress, strain and local or distributed pressure. 

To measure structure response to a load, the appropriate transducer should be employed.  

1.3 Summary 

In summary, current practices to predict hydrodynamic loads rely either on 

oversimplified and semi-empirical methods or the use of numerical simulation and analysis 

techniques. These methods are conservative which results in the over-design of these craft 

so they are heavier and slower than they could otherwise be. Experimental data acquired 

from sensors embedded in marine structures informs only on the structure response on load 
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and it does not give direct measurement of the load. To conclude, a novel technique is 

required to overcome current limitations in practices used to measure loads employed in 

marine structure design procedures.  

The literature shows that there is a novel approach that has been used to relate response 

to loads in other engineering fields, such as system health monitoring and damage 

detection.  The inherent properties of ANN, such as learning of the relations, makes it a 

suitable potential candidate to be used in an in-service load monitoring system for marine 

structures. Through such a method, knowledge of the component material constitutive laws 

or detailed knowledge of the component geometry is not required. In fact the aim of this 

inverse problem analysis approach is to find a function that relates the inputs to outputs 

considering these parameters. This technique may be able to offer a fast solution for 

monitoring in-service loads on marine structures when the relationship between the loading 

and response of the structure has been established. The final system will immediately 

predict the load by analysing any similar new response data introduced to the solver and no 

great computational effort is required. However, it is required to investigate the capabilities 

of such a system in the determination of in-service, transient loads in real-time and produce 

a load history of the vessel.  

Although there have been some works for load prediction employing AI in various areas 

such as aircraft wing or prosthetics, the literature has shown that there has been no relevant 

application of AI in hydrodynamic load monitoring of marine structures. In other words 

based on this literature review, in-service load monitoring of marine structures to influence 

their design is novel research.  The Author hypothesises that AI can be employed to find an 

inverse solution to predict hydrodynamic loads applied on marine structures which may be 

used to inform designers in the stage of preliminary ship design. In this research, the aim is 

to employ and investigate the ability of this approach to immediately predict/estimate the 

load by analysing any similar new response data introduced to the solver. This brings the 

following sub-questions to be answered from the research question: 

 Can in-service loads be predicted on a vessel to inform design? 

 How to measure in-service loads on a vessel or craft representative? 
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 Can Artificial Intelligence be used as an inverse method to relate acquired craft 

responses and what load caused the responses?   

 Which types of loads can be measured with this method? 

 How to validate the predicted loads? 

 Is it possible to optimise the number of sensors and improve the accuracy of the 

method?  

In order to investigate the applicability of the new system in online load monitoring of 

marine structures such as Rigid Inflatable Boats (RIB), some critical objectives are 

recognised and categorised to be investigated. This includes following items: 

 General behaviour of a marine structure with attached strain gauges under small 

displacement (static load is applied) 

 General behaviour of a marine structure with attached strain gauges under large 

displacement (static load is applied) 

 Optimisation of the sensors quantity  

 General behaviour of the marine structure with attached strain gauges under transient 

load condition (dynamic load is applied) 

 Develop a Graphical User Interface (GUI) 
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Chapter 2. Introduction to Methodology and Artificial Neural Networks 

(ANN) 

This chapter introduces the research methodology. This chapter also covers the 

background to Artificial Neural Networks.
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2.1 Introduction 

Chapter one led to the hypothesis that utilising a hybrid approach that combined 

experimental technique, FEA, and AI can provide a general purpose inverse problem 

solver that is capable of solving most classes of linear problems. Once an ANN is trained 

(converged) for a given problem it can be used  to link the input to the output without any 

processing time.  

 This chapter proposes a methodology to answer the research question which is can 

external forces be estimated by the ANN using the structure‘s response as input. This 

chapter also gives more detailed information about the ANN used in the proposed 

methodology. 

Estimating in-service loads on marine crafts is highly desirable. Currently there are no 

tools that can estimate the intensity and location of such loads. A novel methodology is 

proposed that, if successful, can transform every marine structure into a transducer capable 

of estimating any in-service transient loads. Better understanding of load intensities will 

inform the design process and results in lighter and more efficient designs.  

The philosophy is based on detailed investigation of different parameters used in the 

Hybrid Inverse Problem Engine (HIPE) and their effect on the integrity of the solution 

when applied to large structures.  

Marine vessels, depending on their size, can generally be manufactured from a large 

number of flat, shaped or reinforced panels. Better understanding of their response to 

external load can affect the design, dynamics and structural integrity of the vessel.   

This research begins with the investigation of the application of HIPE for determining 

external load on a large flat marine panel and investigates (as explained in section 1.2.1) 

the performance and suitability of using HIPE to monitor large structures. Here a large 

marine composite panel is instrumented and calibrated and programmed to function as a 

complex load cell capable of measuring both surface and reaction loads.  

In summary, as a quantitative research, the following steps have been carried out: 

 Design and develop a general purpose hybrid inverse problem solver suitable for 

use in large marine structures. 
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 General understanding of the overall boat behaviour and its critical points is needed.  

The appropriate data acquisition should be investigated. The material behaviour in terms of 

linearity or nonlinearity needs to be investigated.  Also, the most suitable AI method and 

its parameters need to be investigated. Based on the literature review in Chapter 1, it is 

important to consider the prediction of transient loads. 

 Validate and Modify the method:  

The suitability of the proposed methodology will be indicated by successful prediction 

of the applied loads. Finally, a real time GUI should be developed allowing better 

communication with the system and to change different parameters used for  data 

acquisition and to control ANN convergence rate etc.  The performance of the load 

monitoring system will be evaluated by performing various tests by means of applying this 

system on a marine structure representative such as a cross section of the boat hull. 

2.2 Description of the Methodology  

The basis of the inverse problem analysis is to relate external load or boundary 

conditions at specified locations to the amount of structural response at pre-determined 

locations on the structure. In other words, loads are to be identified from the known 

structural responses. Efstathiades et al. (2007) outline that throughout the past decade, AI 

presented techniques are useful for solving inverse problems. In a study by Xu et al. 

(2010), it is indicated that many fields of science and industry employ inverse analysis 

such as material property estimation, radar tracking, medical tomography, residual stress 

determination, oil reservoir identification and non-destructive testing. The basis of the 

inverse technique is upon determining a relationship between causes and their effects. In 

this study, finding the static or hydrodynamic loads (the cause) on marine structures such 

as small craft is the main aim of the inverse problem. This is achievable by acquiring 

repeatable structural response to the load such as strain (the effect) at one or more interior 

points. 

The ANN has to be trained so a specific input (strain as the structural response) leads to 

a particular output (load). There are two basic paradigms of learning, supervised and 

unsupervised, both of which have their models in biology. Supervised learning is a process 

where both input vectors, and the desired outputs are given.  Unsupervised learning works 
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only on the input vectors, and the desired output is not specified. This learning method is 

commonly employed for adaptation to specific features, process of categorisation, or 

discovering regularities. 

In an ANN context, supervised learning is a process of memorising vector pairs. The 

input vector together with the desired output vector is known. Training is based on 

adjusting some weights and biases. This is achieved by comparison of the network 

response and the desired response. This adjustment continues as a loop (see Figure 2-1) 

until the network response matches the desired output or at least the error function 

becomes an acceptably small value. Generalisation is a feature of the trained network 

working similar to approximation. In other words, a well-trained network estimates 

appropriate output data even for untrained patterns. Although training the network is time 

consuming, the trained network operates quickly in an application process.  

 

Figure 2-1: Artificial Neural Network training loop to minimise error (Sewell et al. 2010) 

A network is constructed of one or multiple simple neurons. Some neurons can be put 

together in a layer, and a typical network may have one or more such layers. The response 

of a network is calculated from each individual element input. In a common feed-forward 

network, inputs are multiplied by weights (a bias may be added here as well) and a transfer 

function acts on it.  

A simple and popular network is a two-layer feed-forward network with three layers 

named as: input layer, hidden layer and output layer, as shown in Figure 2-2.  In feed-

forward networks normally one or more hidden layers whose transfer function is log-sig 

type is connected to an output layer with pure-lin transfer function (see section 2.3.2.2 for 

detailed description of transfer functions). Having multiple hidden layers of neuron with 
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nonlinear transfer functions enables the network to understand both nonlinear and linear 

relationships between input and output vectors.  

 

Figure 2-2: A two-layer tansig/purelin feed-forward network (Hagan et al. 2002) 

Back-propagation is one of the most popular ANN in use today. It is simple to 

understand and it works well generally as a classifier or for non-linear continuous 

multivariate function mapping. Mean Squared Error (MSE) is normally employed as the 

back-propagation error function. The squared errors are calculated as differences between 

the desired and network response. As the network weights approach a minimum solution in 

the training stage of the network, the gradient becomes small and the step size reduces as 

well. This results in slow convergence. Usually a factor called ‗‘momentum factor‘‘ is 

added that makes this process faster. This also normally reduces the possibilities of getting 

stuck in a local minimum. Pre-processing the input data before training can reduce the 

training time.  

A sufficiently trained ANN can be employed as an analytical tool on other data that it 

has not previously seen or been trained with. This stage is called simulation and at this 

point the output is retained and no back-propagation occurs.  A properly trained ANN will 

perform well as an interpolation tool, but usually has a very poor extrapolation 

performance. Depending on how well the ANN is trained, it may have very good or poor 

approximation capabilities. Usually, a well-trained ANN with good generalisation 

capabilities performs well for both interpolation and approximation. Unfortunately there is 

no general rule to find out if a new pattern is within the interpolation space (Helliwell et al. 

1995) and to have a measure for the generalisation ability is very difficult. Each data set 

determines how good the generalisation may be and what for one purpose can be  

satisfactory may be useless for another (Holden and Rayner 1995). 
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Deciding on training stoppage time is difficult. Most of the time, having a network with 

a small MSE, does not necessarily indicate acceptable predictions on new data from the 

same domain. This problem in training is called over-fitting (overtraining). In general, this 

problem happens if the trained ANN is more accurate in fitting known data but less 

accurate in predicting new data. As it is indicated in Figure 2-3, Training error is shown in 

blue and validation error in red where both of them are a function of the number of training 

cycles. If the validation error upsurges (positive slope) while the training error steadily 

decreases (negative slope) then an over-fitting situation may have occurred. In this case, 

the training process goes on too long and the network is biased towards the training set. 

This practically reduces the generalisation ability of the ANN. In contrast, stopping the 

training process too early causes the decision to be very rough. Figure 2-4 illustrates the 

various possibilities.  In order to improve the generalisation of the ANN a set of noisy data 

generated from the original data can be introduced in the training process. This also helps 

to prevent the possibilities of over-fitting (Mackay 1992).  

 

Figure 2-3: Over-fitting problem 
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Figure 2-4: Learning and the problem of over-fitting  (Schmidt 1996) 

For the proposed inverse problem solver to work efficiently the response of the structure 

to load, must remain linear. However, nonlinear structures are also considered in later 

chapters. The success of a good ANN as depends on the following key points: 

 Accurate data collection 

 Pre-processing acquired data  

 Selection of a suitable ANN type and topology  

 Selection of optimised ANN training parameters 

 Testing and validation of ANN with new data set 

When dealing with ANN, it is possible that the output may not be adequate on the first 

design pass. In such situations, the process steps have to be repeated one or more times 

until the problems are solved. On some occasions the ANN does not exhibit the 

satisfactory performance. This can be due to a wide range of reasons needing to be 

investigated such as:  

 Unsuitable ANN architecture or learning method 

 Insufficient representative data 

 Inadequate pre processing 

 Unsuitable ANN training parameters 



 

34 

 

However most of the time this is not the case and the ANN will be well trained and 

performs satisfactory even on a new untrained data set. Figure 2-5 indicates an ANN 

problem solving flowchart.   

 

Figure 2-5: Example of ANN problem solving model (Zaknich 2003) 

2.3 Introduction to Artificial Neural Network 

In this section, after defining ANN, a brief historical overview of ANN is described. 

Afterwards, simple neuron models as well as common ANN architectures and training 

algorithms are introduced. Furthermore, in this section some important hints and general 

rules in design of a successful ANN model are presented. Finally, the ANN software 

employed in this research is introduced. 

2.3.1 Definition of Artificial Neural Network  

Artificial Neural Networks is one of the most popular methods of Artificial Intelligence 

composed of simple elements inspired by brain biological nervous systems operating in 
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parallel. In fact, the function of the network is principally determined by the connections 

between these elements. A neural network can be trained to achieve a specific purpose by 

modifying some weights (connection values) of the neurons (elements).  In general, the 

ANN is trained in order to relate a specific input to a particular target output (Figure 2-1). 

During the training process, output values are compared with the target ones in an iterative 

manner until the target and the network output values are matched as much as possible. 

Generally, in order to train a network enough pairs of input and target values (examples) 

are required. 

ANN can be considered as a black box which is employed to process information in the 

way that inputs are taken and outputs are produced. Once an ANN is properly trained, it 

can be utilised to do even complex functions in various fields such as learning, 

generalisation, pattern recognition, non-linear system modelling or inverse modelling, 

feature extraction, categorisation and optimisation. Indeed, a trained ANN is normally used 

in applications which are challenging for conventional mathematical methods and the 

problem data exhibit nonlinearities, high dimensionality and more often noisy, complex, 

imprecise and imperfect sensor data are available.  

Haykin (1994) has a more official definition of an ANN as follows:  

"A neural network is a massively parallel-distributed processor that has a natural 

propensity for storing experiential knowledge and making it available for use. It resembles 

the brain in two respects: 

1. Knowledge is acquired by the network through a learning process. 

2. Inter-neurone connection strengths known as synaptic weights are used to store 

knowledge.'' 

Another definition according to Zurada (1992) is: 

"Artificial Neural systems or Neural Networks (NN) are physical cellular systems 

which can acquire, store, and utilise experiential knowledge."  

A Brief Historical Overview  
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The history of ANN from their roots starting in 1890 to 1987 is described in a work by 

Anderson and Rosenfeld (1988). In summary, the first person to publish about the brain 

structure and its function was James (1890) which was more related with 

neuropsychological research and psychological theories. However, According to Kohonen 

(1988), the fundamentals of neural computing were shaped from the theories of  Mcculloch 

and Pitts (1943). Hebb (1949) defined a technique to update synaptic weights, which is 

now called the Hebbian learning method. The ANN was further developed by works of 

Farely and Clark (1954), Rosenblatt (1958) and Caianiello (1961). In fact, it was 

Rosenblatt who defined one of the most common ANN structures called the perceptron. 

His model was simulated employing an IBM 704 computer which became famous as the 

"learning machine".  

The growth in computer technology in the 1960s was influential in the overall 

development of artificial neural models. Nilson (1965) published a book in which he 

organised various ANN research of the time. It is still believed that the ADALINE 

(ADaptive LInear NEuron) introduced by Widrow and Hoff (1960) is one of the most 

important ANN developments from an engineering point of view. This is due to the fact 

that ADALINE employed a much faster learning algorithm called the least mean squares 

algorithm. This algorithm is still being used in today's multi-layer perceptron.  

In 1972, researches by Kohonen (1972) and Anderson (1972) on associative memory, 

laid the groundwork for the development of the unsupervised learning or self-organising 

networks. in 1982, Kohonen published his self-organising map method (Kohonen 1982). In 

the late 1970s, a model for the visual pattern recognition mechanism emerged called the 

NEOCOGNITRON (Fukushima 1980,  1982,  1986; Fukushima et al. 1983). 

Several noteworthy publications, introduced from 1982 to 1986, had a major effect in 

the development of ANN technology. Hopfield (1982) published a paper in 1982 and a 

follow-on paper in 1984. These papers introduced ANN structures with the capability of 

being generalised with a high degree of robustness.  The first International Joint 

Conference on Neural Networks was held in 1987 and since then there has been many 

research interests in ANN theory and its applications. This era was named as the ―Age of 

Neoconnectionism‘‘ by Cowan and Sharp (1988).  From then, a number of regular journals 

about ANN started such as Neural Computation by MIT Press, the IEEE Transactions on 
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Neural Networks and the Neural Networks Journal of the International Neural Networks 

Society.  

Nowadays ANNs are used to solve a wide variety of complex scientific and engineering 

problems. ANNs can learn from examples, and therefore can be trained to find solutions of 

the complex non-linear, multi-dimensional functional relationships without any prior 

assumptions about their nature; further, the network is built directly from experimental 

data by its self-organizing capabilities. 

Various applications of ANN are outlined in many recent papers (Capecchi 2010; 

Coello Coello and Lamont 2004; Liu and Li 2004; Livingstone 2008; Pan 2012; Panigrahi 

et al. 2010; Rudas et al. 2010; Schumann and Liu 2010; Sivakumar et al. 2010; Xu and 

Wunsch 2009; Yang 2010; Yu 2013; Zainun 2011; Zeng and Wang 2010). 

 

 Details about the theory and mathematics behind the neural networks can be found in 

several textbooks (Aleksander and Morton 1990; Beale et al. 2012; Bishop 1995; Fausett 

1994; Haykin 1994; Swingler 1996). An introduction to the principles of ANN is outlined 

below. 

 

2.3.2 Neuron Model 

In this section a simple neuron model is described. 

2.3.2.1 The Basic Model of the Neuron 

A single input neuron is the most basic building block in an ANN.  Figure 2-6 indicates 

a schematic of a single input neuron. Three different functional operations exist in a single 

neuron. First, there is a multiplication between two scalar values, input p and the scalar 

weight w, to form the product wp, which will be a scalar value as well. This process is 

called the weight function. Second is a summation between two scalar values, the weighted 

input wp and bias b, to form the net input n. Generally, the bias can be considered as a shift 

of the function f to the left by an amount b. The name given to this process is the net input 

function. Finally, the net input is passed through the transfer function f, to form the scalar 

output a (Equation 1). The last process is called the transfer function. 

 

                                                                           (Eq. 1) 
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Figure 2-6: Schematic of a single input neuron (Beale et al. 2012) 

2.3.2.2 Transfer Functions 

A linear or a nonlinear function of n can be used as the transfer function in Figure 2-6. 

According to the particular specifications of the problem, each neuron may have its 

individual specific transfer function. Many transfer functions are employed in various 

neurons; however, the following three are the most commonly utilised:  

1.  The linear transfer function  

In the final layer of multilayer networks, usually a linear transfer function is employed. 

This is mostly due to the fact that the output of such a transfer function is the same as its 

input. In other words, considering Figure 2-6, the relation is calculated from Equation 2. 

This transfer function is generally used in many applications however it is particularly 

common in function fitting problems. Figure 2-7 illustrates the graphical representation of 

this transfer function. Most of the time, a transfer function is represented using the symbol 

which it is indicated in the square to the right of the graph. The general f in Figure 2-6 can 

be replaced by this symbol in the network diagram blocks to allow better representation of 

the specific transfer function being used for each neuron. 

                                                   (Eq. 2) 
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Figure 2-7: Linear transfer function (Beale et al. 2012) 

2. The Log-sigmoid transfer function 

Another common transfer function is the log-sigmoid type which is often employed in 

the hidden layers of multilayer networks. Due to the fact that this function is differentiable, 

usually, the training algorithm used to train the neurons having log-sigmoid transfer 

function is a powerful algorithm called back-propagation.  

The argument of this transfer function can be any value between plus and minus 

infinity, and the output will be scaled to a specific value in the range of 0 to 1 according to 

Equation 4. The graphical representation of this function is indicated in Figure 2-8. 

 

  
 

                                                  (Eq. 4) 

 
 

 

Figure 2-8: Log-Sigmoid transfer function (Beale et al. 2012) 

3. The tan-sigmoid transfer function 

Instead of the above functions, a tan-sigmoid transfer function may be used as the 

transfer function of the neurons. This function is often employed in the output layer of 
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multilayer networks designed for pattern recognition problems. The tan-sigmoid transfer 

function is very similar to the log-sigmoid one and its argument can be any value between 

plus and minus infinity. However, the output range is from -1 to +1 according to Equation 

5. The graphical representation of this function is indicated in Figure 2-9. 

  
      

                                                   (Eq. 5) 

 

 

Figure 2-9: Tan-Sigmoid transfer function (Beale et al. 2012) 

 

2.3.2.3 Neuron with Vector Input 

The simple neuron indicated in Figure 2-6 can be easily extended in order to handle 

vector inputs. Figure 2-10 indicates a single neuron with an R-element input vector. 

Having a vector input, each input element is multiplied by its individual weight and the 

weighted values are fed to the summing junction. The multiplication is the dot product of 

the single row matrix W and the vector p which will be simply Wp (Equation 6). As in 

single input neuron with single input, one scalar is achieved from this dot product. This 

result is then added to the bias b of the neuron to form the net input n. As before, the 

transfer function f acquires the net input n as its argument and the neuron output a will be 

the output of this transfer function (Equation 7). 

n=      

  

  

 
  

                                                         (Eq. 6) 

                                                                                           (Eq. 7) 
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Figure 2-10: single neuron with an R-element input vector (Beale et al. 2012) 

2.3.2.4 Feedforward Neural Network Architectures 

The multilayer feedforward neural network is the workhorse of many ANN problems 

and is used commonly for general function approximation, pattern recognition and function 

fitting problems. In fact, a fairly simple feedforward neural network can fit any practical 

function. In this section, the architecture of the feedforward neural network as one of the 

most common neural network architectures is described. A layer of neurons is created by 

combination of two or more single neurons. A specific neural network may have one or 

many more of such layers. In the following, a single layer feedforward neural network and 

a multiple layer feedforward network will be described.  

2.3.2.5 Single Layer Feedforward Neural Network 

A single layer neural network which has R input elements and S neurons is illustrated in 

Figure 2-11. Here, the same input vector p is introduced to a layer of neurons and therefore 

each element of it will be connected to each neuron input through the weight matrix W.  

The multiplication of Wp would be a vector matrix. Each neuron has a bias    which will 

be added to     row of the vector matrix result of the multiplication Wp to form its own 

scalar output   . The various    taken together form an S-element net input vector n 

(Equation 8). 
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            (Eq. 8) 

 

At the end, the transfer function vector f acquires the net input vector n as its argument 

and forms the neuron layer output to be a column vector a (Equation 9).  

                                                                                           (Eq. 9) 

It should be noted that most of the time the number of inputs to a layer is different from 

the number of neurons. In other words R is not necessarily equal to S.  

 

Figure 2-11: Single layer neural network (Beale et al. 2012) 

2.3.2.6 Multiple Layers Feedforward Neural Network 

A neural network can be designed to have more than one layer. In this case, each layer 

is like a single layer network and has a weight matrix W, a bias vector b, and an output 

vector a. However, in order to distinguish W, b, a, etc. for each of these layers, a particular 

superscript is added to the notation of each variable. The utilisations of notations for a 

three-layer network are indicated in Figure 2-12 and equations (Equation 10-13). 

                                                                                        (Eq. 10) 
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                                                                                      (Eq. 11) 

                                                                                     (Eq. 12) 

                                                              (Eq. 13) 

 

 

Figure 2-12: Multiple Layers Neural Network (Beale et al. 2012) 

The layers of a multilayer network have different names. The first layer is called the 

input layer. A layer that produces the network output is named an output layer. All other 

layers are called hidden layers. The network illustrated in Figure 2-12 has one input layer 

which has R inputs, two hidden layers and one output layer. The first hidden layer has 

   neurons, the second hidden layer has    neurons and the third hidden layer has 

   neurons. It is common for different layers to have different numbers of neurons. In a 

multiple layer neural network the outputs of each intermediate layer are the inputs to the 

following layer. Therefore, hidden layer 2 can be considered as a one-layer network with   

   inputs,    neurons, and a       weight matrix    . The input to layer 2 is    and the 

output is   . The output layer can be treated in the same way. This means that the input is 

    and the output would be   . 
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Hidden layers in a feedforward network usually have log-sigmoid or tan-sigmoid 

transfer functions. However, most of the time the output layer of the feedforward 

architectures has the linear transfer function (Darpa 1988). Having multiple layers of 

neurons with nonlinear transfer functions (sigmoid type) allows the network to learn 

nonlinear relationships between input and output vectors. The transfer function of the 

output layer is most often set to be linear for function fitting (or nonlinear regression) 

problems. Alternatively, in the case of pattern recognition problems it is more common to 

use the sigmoid transfer function as the output layer transfer function (Lippman 1987).  

2.3.3 ANN Types Based on Learning Approaches 

The three main learning approaches used in various artificial neural networks are: 

Supervised learning type, Reinforcement learning type and Self-organising (Unsupervised 

learning) type (Kohonen 1987,  1997; Moller 1993). The first and most common learning 

method for ANN is supervised learning. In this type, the ANN is trained using some 

representative examples in the form of paired inputs/outputs.  In this type of learning 

process, the error between the actual network response and the desired one is computed 

during each of the training iterations and the magnitude of this error is used to make 

modifications to the network‘s weights according to a specific learning algorithm. Weights 

are updated in each of the learning iterations so that the error value is gradually reduced 

until it reaches a minimum or at least a reasonably small value. A schematic representation 

of such learning process is indicated in Figure 2-1. 

Another learning method is the reinforcement learning type. In this method, computing 

the precise error between the actual network output and the desired response is not needed. 

Instead, the teacher gives a pass or fail signal for each of the training iterations. In the case 

of the fail signal, the network is designed to continue the modification of its parameters 

until it reaches a pass signal or to continue for a fixed number of attempts, whichever 

comes first. Some have categorised this reinforcement learning method as a special case of 

the supervised learning method (Murray et al. 1992). 

Finally, in the self-organising type, examples of the inputs are introduced to the ANN 

and it will arrange them to form automatic various clustering or inter groupings according 

to some previously defined measure of similarity or closeness. This will make it possible to 
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assign specific information to those clusters based on the nature of the problem (Lippman 

1987).  

2.3.3.1 Multilayer Networks and Back-propagation Training 

One of the most common and popular ANN models among many specific ones is the 

Back-propagation Neural Network. The popularity is due to its simplicity to understand as 

well as its ability to solve many problems in general (Zaknich 2003). However, the ANN 

users should bear in mind that back-propagation is a supervised training approach and it 

needs enough examples to train.  Previously, the term ―back-propagation‖ was used to 

refer to the gradient descent algorithm applied to neural network training. However, 

nowadays, due to the fact that the process of computing the gradient and Jacobian by 

performing calculations backward through the network is applied in most of the training 

functions, this terminology is not used most often (Caudill and Butler 1992) . Instead of 

utilising this term alone, it is clearer to use the name of the specific optimisation algorithm 

that is being used. Likewise, the multilayer network is sometimes recognised as a back-

propagation network. However, the back-propagation technique that is used to compute 

gradients and Jacobians in a multilayer network can also be applied to many different 

network architectures (Rumelhart et al. 1986). 

In order to illustrate how the back-propagation training works, the simplest optimisation 

algorithm, gradient descent, is considered here. Employing this algorithm, the network 

weights and biases are updated in the direction in which the performance function 

decreases most rapidly (Beale et al. 2012). One iteration of training using this algorithm is 

according to the Equation 14: 

 

                                                                (Eq. 14) 

 

In Equation 14,    is a vector of current weights and biases,    is the current gradient, 

and    is the learning rate. This equation is iterated until the network converges. However, 

for large problems this training algorithm can be slow. To solve this, the training speed can 

be improved by new learning laws or by putting constraints on some of the weights during 

learning (Vogl et al. 1988). 

Use of an Artificial Neural Network  
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In this section the principles of an artificial neural network design and usage is 

discussed. In order to clarify when use of ANN is preferable over other conventional 

methods, advantages and disadvantages of using ANN over conventional computer 

algorithms are described.  

2.3.4 Advantages and disadvantages of ANNs over conventional computer 

algorithms 

Although for many applications ANN can provide comparable answers to other 

classical techniques, some attractive features of ANN makes it appealing. The two main 

advantages of ANNs over conventional computer algorithms are: 

1. Ability to handle some noise and error in data. 

In reality, most of the signals have some inbuilt noise or errors which make the patterns 

slightly different each time. Conventional computer algorithms cannot easily deal with the 

error or noise in input data and may result in different output whereas an appropriate and 

well-trained ANN can handle the noise in the input data.  

2. Desired knowledge based on experience can directly be put into function.  

The ANN‘s non-linear nature enables it to handle functions more than the capability of 

even the best linear or conventional rule based processing methods. There are many 

occasions where conventional methods are too hard. In contrast, a simple ANN can 

determine appropriate rules employing its inherent self-organisation process. Due to the 

fact that ANN is sensitive to statistical regularities in large data sets, it can derive 

important information from actual relationships implicit in the data. Furthermore, as a 

result of adaptive nature of ANN, changes and the characteristics of input data can be 

adapted and learned in real-time (Caudill 1989). 

     Conversely, there are some disadvantages of ANN over conventional computer 

algorithms as well. Some major ones are introduced as follows:  

1. No unique solution or general design theory.  

2. Generally it is not guaranteed that the ANN will converge to its global minimum or 

occasionally even will converge at all.  

3. May be too slow in the case of large-scale problems when common serial processing 

digital computers are employed.  
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4. The number of inputs to the ANN needs to be equal or greater than the number of 

outputs.  

2.3.5 Design Principles 

While each ANN problem and application is unique and no general rule or solution 

exists for all the applications, some broad principles can be used to guide the design 

process and ensure better results.  In fact the design of the specification and parameters of 

a particular ANN should be targeted to provide the most appropriate system and best 

overall performance according to the specific problem it is dealt with. It is important to not 

expect the ANN to do too much on its own without enough related guidance and learning 

examples. The ANN designer should perform preliminary feature extraction and data pre-

processing as much as possible to reduce the task of the network.  

Various parts of a system or problem may employ an ANN. It is advised to fully 

understand the system and what it will do. The input and output data formats should be 

identified precisely according to the problem. When the data is collected or generated in a 

suitable format, it should be pre-processed and the related features be chosen according to 

the specific problem. Features should be selected based on their correlation to the desired 

output. Often, it is wise to remove redundant or useless data from data sets. An ANN 

generally needs sets of independent input/output vector pairs descriptive of the process. 

Three vector sets are needed for training, testing and validation. Alternatively one data set 

can be divided in a systematic or random manner to generate the required three vector sets. 

The training set is used to train the network weights and biases. Test and validation data 

sets are used to ensure better training of the ANN which avoids overfitting and ensures a 

more general ANN. 

Furthermore, appropriate approaches should be designed to verify and validate the 

system performance. In general, it is not easy to measure the characteristics of performance 

and limits of ANNs solely with analytical techniques. Hence, it is highly recommended 

that a testing regime be defined to ensure its satisfactory performance. For this purpose, 

one way is to present the ANN with selected extreme inputs within the possible limits of 

system operation.  
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The design of an ANN application should aim to produce the best system and 

performance overall. The general neural network design process has the following 

principal steps (Hagan et al. 1996): 

1. Collect and Prepare the Data. 

2. Raw data pre-processing. 

3. Network Creation and Configuration. 

4. Network Training. 

5. Network Validation and post-processing. 

6. Use the network. 

A typical flowchart of ANN designing is indicated in Figure 2-13. Each of the above 

steps is described more as follows. 

2.3.5.1 Collect and Prepare the Data 

The first step to design and use a successful ANN is to collect and prepare sample data 

sets. This step is very important due to the fact that the ANN can only be as accurate as the 

data that are used to train it. Data sets should cover the whole range of inputs of the 

problem (Hagan and Menhaj 1999). This is due to the fact that whilst ANNs are generally 

capable of being trained to generalise well within the range of training data sets, they 

cannot correctly extrapolate beyond this range. In addition, redundant or useless data 

should be removed from data sets. 
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Figure 2-13: Flowchart for building an ANN model 

Are the Performance and 
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Pre-processing and Dividing of data into subsets  

Network Creation and Configuration 

1. Trials to find the best weights 
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3. Trials to find the optimum no. of hidden layers  

4. Trials to find the optimum no. of hidden neurons  

5. Trials to find the max no. of iterations  

6. Trials to find the optimal network 
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2.3.5.2 Pre-processing and Dividing Data into Subsets 

Once enough data is collected, in order to have more efficient training, two major steps 

have to be carried out before they can be used for training the network: pre-processing and 

dividing data into subsets. 

It is best to build the pre-processing as a part of the network objective, so whenever the 

ANN is utilised, data coming into the network is pre-processed in the same way.  One of 

the standard pre-processing practices that help to improve training is normalisation of the 

input data before applying them to the network. Normalisation should be applied to both 

the input vectors and the target vectors in the data set. As a result of normalisation, the 

network output will be in a normalised range. Reverse transformation of the network 

outputs back into the units of the original target data must be done when the network is put 

to use in the field. 

Furthermore, the prepared and pre-processed data should be divided into three subsets. 

The first subset is the training set, which is used for computing the gradient and updating 

the network weights and biases. The others are the test and validation sets.  

2.3.5.3 Network Creation and Configuration 

Before training the network, the network should be created based on the desired 

architecture and its weights and biases initiated according to the data sets. The weights and 

biases are initiated according to the network type randomly or can be fixed values. 

However, sometimes it may be necessary to reinitialise them. In most software, network 

configuration is only possible after it is created. The network configuration includes 

examining input and target data sets, setting the network‘s input and output sizes to match 

the data, and choosing settings for processing inputs and outputs that will enable best 

network performance. The configuration is normally done automatically, when the training 

function is called and before the training process starts.  

2.3.5.4 Train the Network 

Various mathematical techniques can be employed as training and learning functions 

where their duty is to perform the adjustment of the ANN weights and biases 

automatically. As a matter of fact, the global algorithm affecting all the weights and biases 
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of the ANN is defined by the training function.  In the training process, training data sets 

prepared in previous steps are applied to the network as inputs   and target outputs  . 

The training process of an ANN involves adjusting the weights and biases of the 

network with the aim of network performance optimisation which is defined by a function 

called the network performance function.  Regularly, Mean Squared Error (MSE) or Sum 

of Squared Error (SSE) is used as the performance function for a typical feedforward 

network. MSE is the average squared error between the network outputs   and the target 

outputs   (Equation 15). Similarly, SSE is the sum of squared error between the network 

outputs   and the target outputs   (Equation 16) (Beale et al. 2012). 

 

    
 

 
     

  
    

 

 
        

  
                                   (Eq. 15) 

 

    
 

 
     

  
    

 

 
        

  
                                       (Eq. 16) 

 

Generally two main training styles exist: incremental and batch training. In incremental 

training the weights and biases of the network are updated each time an input is presented 

to the network. In this case the inputs and targets are presented as sequences.  In batch 

training the weights and biases are only updated after all the inputs are presented. The 

batch training methods are generally more efficient (Beale et al. 2012) .  

2.3.5.5 Network Validation and Post-processing (post-training analysis) 

Once the network is trained, its performance should be evaluated to see if any of the 

training process parameters, the data sets or even network architecture need alteration. To 

evaluate the performance of the network, all of the network information during the training 

(which is normally saved during the training) should be checked. Most of the new 

developed software for ANN contains algorithms that the training information is saved and 

can be accessed numerically and graphically. One of the best ways to validate network 

performance is to check the performance plot and regression plot.  

The performance plot indicates three curves: training, validation and test performance 

curves over certain training steps (epochs). Usually when training is performed 

successfully all the curves are very similar and the performance values are decreased as the 

training process proceeds. However, if the difference between test curve and training curve 
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increases significantly then the training should be stopped. This is due to the fact that the 

training process is not converging anymore and it starts to diverge from the minimum 

(best) performance value. Furthermore, if the test curve is increased considerably before 

the increase of the validation curve, then most often some overfitting problem may happen 

and network generalisation capability will largely decrease. 

The other plot helpful in validating the network performance is the regression plot. In 

this plot the relationship between the outputs of the network and the targets are indicated 

by fitting a linear regression line between outputs and targets. In theory, the ideal is to have 

a perfect network whose outputs and targets are exactly equal. However, in practice this is 

not the case and the relationship is rarely perfect. As an indication of the relationship 

between the outputs and targets, an index normally called R is calculated for each 

particular regression plot which can be anything between 0 and 1.  Considering R=1, there 

will be an exact linear relationship between outputs and targets. In contrast, if it becomes 

close or equal to zero, then it clearly means that there is no linear relationship between 

them. Generally, validation test results with R value greater than 0.9 indicate a linear 

relation between targets and network outputs and the training process can be accepted. 

However, a decision should be made according to the particular regression plot of each 

data set. The scatter plot of data on the regression graph will be very helpful as well to 

indicate which certain data points have a poor fit (Beale et al. 2012).  

2.3.5.6 Use the Network 

After the network is trained and validated, the network object can be used to calculate 

the network response to any input in the range of training data. The network can be called 

to calculate the outputs for a set of input vectors. The network has its latest weights and 

biases that are updated according to the best performance of the network during its training 

with training data sets. As a batch mode form of simulation, all the input vectors can be 

placed in one matrix which is  much more efficient than presenting the vectors one at a 

time. A properly trained network will provide reasonable outputs when presented with 

inputs that they have never seen. Normally, presenting to the network a new input which is 

similar to inputs employed in the training set results in an accurate output. This is known 

as network generalisation capability and makes training a network possible with a sample 
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set of input/target pairs and the ANN achieves acceptable results without training with all 

possible input/output pairs. 

2.3.6 Improving Results 

Since there is no general training rule for an ANN and the training process is a relative 

process according to the training data set of a particular problem, it is very probable that 

the network results may not be satisfactory on the first design pass. In this situation, it is 

necessary to redo one or more of the process steps repeatedly until better results are 

achieved.  When the training process results in a network which is not accurate enough, 

several approaches are highly recommended. One way is to initialise the network again and 

perform the training again. Initialising a network leads to new initial weights and biases. 

When the network parameters are changed, it might result in different solutions. Another 

solution is to increase the number of hidden neurons, usually 20 or more. The reason is that 

the network will have more flexibility having a larger numbers of neurons in the hidden 

layer. It is recommended to increase the layer size gradually. Training a network with too 

large a hidden layer is more time consuming and may cause the network to be under-

characterised as well. This means that the network has more parameters to optimise than 

there are data vectors to constrain them. The third popular approach is to try a different 

training function. Furthermore, different training data can be tried to train the network. 

Additional data sets can be used in the training data set or in contrast redundant or 

challenging data may be removed from the training data set. Presenting network additional 

data is expected to produce a more general network that can handle new data well (Beale et 

al. 2012). 

Software Implementation 

Nowadays, several general artificial neural work software packages are commercially 

available and researchers use them in various engineering and science fields. One of the 

most comprehensive and all-purpose ANN packages developed so far is the MATLAB 

Neural Network Toolbox (MATLAB NNT).  

2.3.7 Why MATLAB Neural Network Toolbox 

MATLAB (MathWorks, Natick, Massachusetts, USA) a programming language 

developed by MathWorks is used widely worldwide and is popular with researchers due to 

its easily understood GUI and general programming language (Beale et al. 2012). Indeed, 
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the product families of MATLAB including its specific developed toolboxes are major 

computational tools at educational institutions worldwide. This is due to the fact that 

MATLAB is an interactive environment which enables the user to access its high-level 

language for programming, numerical computation and visualisation of data through well-

developed graphical user interfaces. Various MATLAB toolboxes can be employed at the 

same time in a script to perform a variety of functions such as data acquisition, numerical 

computation and analysis of data, develop algorithms, and create models and applications. 

Its general programming language, built-in maths functions and toolboxes enables the user 

to achieve a solution much faster than with spreadsheets or even old-style programming 

languages, like C/C++ or Java. MATLAB can be used to develop customised programmes 

that can perform a range of functions simultaneously, including data acquisition and signal 

processing, test and measurement, numerical computation, as well as code generation and 

verification. Furthermore, MATLAB can communicate with most of the standard 

commercial hardware and software easily to exchange data (Beale et al. 2012).  

MATLAB NNT is popular due to the fact that a variety of architectures including 

supervised and unsupervised networks as well as most of the common training algorithms 

are supported. Researchers can use a modular approach of MATLAB NNT to build 

different networks or even to develop custom network architectures for a specific problem.   

Generally, pre-processing of the network inputs and targets improves the efficiency of 

neural network training and post-processing enables detailed analysis of network 

performance. MATLAB NNT has built-in pre-processing and post-processing 

functions that can automatically reduce the dimensions of the input vectors and perform 

regression analysis between the network response and the corresponding targets. 

Furthermore, at the time of network creation MATLAB NNT performs an automatic data 

preprocessing and data division. In addition, during the training process the input and 

target values are automatically scaled to the range       to improve the training speed 

(Beale et al. 2012).  

Overfitting is a common problem in the training stage of the neural network. An 

overfitted network cannot handle new data or noise in data efficiently. In other words when 

overfitting happens, the training set is memorised by the network very well but it cannot 

generalise its knowledge to new inputs. MATLAB NNT improves generalisation through 

two methods: regularisation and early stopping.  The regularisation method automatically 



 

55 

 

modifies the network‘s measure of error and produces a network that performs well with 

the training data and exhibits smoother behaviour when presented with new data. In the 

early stopping method two different data sets are used. First is the training data set which is 

employed to update the weights and biases. Second is the validation data set which is used 

to stop training when the network begins to overfit the data (Beale et al. 2012). 

The described introductory information about ANN helps to better understand the 

methodology employed in this research. In the following chapters, the experiments 

designed and performed in this research to fulfil the project objectives are presented. 

2.4 Equipment Set Up  

In order to investigate the behaviour of marine structures and the application of the 

methodology, a 1    Glass Reinforced Fibre Polymer (GRFP) composite panel (as 

explained in section 1.2.1) as a representative of panels used in a boat is employed to set 

up a test rig. The panel is deemed as a suitable representation of a marine structure due to 

the fact that most marine crafts are manufactured from a number of flat panels attached to 

the frame structure.   

The marine composite panel employed in this study is made of 7 layers of stitched 

biaxial     E-glass cloth and with Ampreg 22 epoxy resin system (all provided by SP 

Gurit Systems), hand laid up with a total thickness of        m (Figure 2-14). The panel 

was divided into a four-by-four grid producing sixteen equal regions of area            

m
2
 as shown in Figure 2-14.  Table 2-1 shows the mechanical properties of the glass fibre 

as provided by SP Gurit Systems. Whilst static loading is achieved by applying weights 

normal to the panel surface, transient loading is achieved by free fall of a cylinder from 

various heights normal to the panel surface. Since strain has direct relation with load, as a 

suitable panel response to the load, strain gauges are used to measure structural response. 

A strain gauge is made of strip of conductive metal which if it is stretched, it will become 

skinnier and longer, both changes resulting in an increase of electrical resistance end-to-

end. Conversely, if a strip of conductive metal is placed under compressive force, it will 

broaden and shorten. If these stresses are kept within the elastic limit of the metal strip (so 

that the strip does not permanently deform), measuring the difference in electrical voltage 

and resistance of strip end-to-end can be used as a measuring element for physical force. 
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Strain gauges are frequently used in various engineering research projects. Figure 2-15 

indicates a strain gauge schematic. 

In fact, marine craft are manufactured from a number of flat panels that are structural 

members. Their characteristics are such that their thickness is small compared to their other 

dimensions. It is important to note that depending on the loading condition and the panel 

aspect ratio, the panel shows different behaviour under loading. Panels can be classified 

according to their thickness and their lateral deflection compared to their thickness (Boresi 

et al. 1993). They can be classified as: 1) thick plate small deflection; 2) thin plate and 

small deflection; 3) thin plate large deflection or 4) very thin plate (membranes) with either 

small deflection or large deflection. In all cases the solutions are approximate, not exact or 

closed form. The deflection at the centre of a plate subject to pressure is offered by 

Westergaard and Salter (1921) and is based on modified flexure theory of plates.  Where, 

depending on the plate aspect ratio, edge boundary conditions and load, different 

approximate empirical solutions are found. In such cases a small displacement is defined as 

a displacement less than or equal to half the thickness of the plate. If the displacement 

exceeds this limit then the problem is treated as a non-linear problem where the 

displacement can no longer be accurately predicted using the above theory. This is due to 

highly nonlinear double curvature deformation unlike the displacement function stated 

above. In large displacement analysis the transverse shear can also no longer be ignored 

and if the panel is composite then transverse shear requires further special treatment.  In 

brief, small displacement leads to a linear relationship between the increase of load and the 

panel deflection. In contrast, in the case of large displacement, the relation is no longer 

linear and should be treated as a non-linear problem where the displacement can no longer 

be accurately predicted using the linear theories.  

In this research the linear problem is defined as a panel where the maximum 

displacement due to lateral load is around 1/2 to 2/3 of the total panel thickness. Larger 

loads causing large displacement are treated as nonlinear displacement, where 

displacements is a nonlinear function of the applied load. In such a situation the theory of 

superposition used so far can no longer be used to generate the large number of training 

data that are required by the ANN. In such cases, alternative methods are needed to 
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generate the necessary training data. The methodology for solving nonlinear inverse 

problems will be discussed in later chapters. 

 

Figure 2-14: Schematic of the composite panel 

Table 2-1: Composite Panel Material Specification 

Material name XE905  

Material type Stitched biaxial 

Fibre Volume Fraction 0.46 

Longitudinal PROPERTY N/mm
2
  Units  

Longitudinal Tensile Modulus 21220 
Poissons Ratio (Longitudinal 

Strain) 
 0.120 

Longitudinal Tensile Strength 318.3 
Poissons Ratio (Transverse 

Strain) 
 0.120 

Longitudinal Compressive Modulus 21220 
Longitudinal Coeff. of Thermal 

Expansion 
10-6/°K 14.62 

Longitudinal Compressive Strength 254.6 
Transverse Coeff. of Thermal 

Expansion 
10-6/°K 14.62 

Transverse PROPERTY 
 

Density kg/m
3
 1786 

Transverse Tensile Modulus 21220 Structural Ply Thickness mm 0.75 

Transverse Tensile Strength 318.3 Actual Ply Weight g/m
2
 1364 

Transverse Compressive Modulus 21220 Shear thickness mm 0.75 

Transverse Compressive Strength 254.6 
 

  

SHEAR PROPERTIES 
 

DERIVED SHEAR PROPERTIES @ ±45° 

InterLaminar Shear Modulus 3050 Shear material name: 1 x XE905 @ ±45° 

InterLaminar Shear Strength 36.6 
Axial modulus with fibres 

@±45° 
N/mm

2
 9737 

In-Plane Shear Modulus 3050 
Shear modulus with fibres 

@45° 
N/mm

2
 9471 

In-Plane Shear Strength 46.1 
Poisson's ratio with fibres 

@±45° 
 0.596 
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Figure 2-15: Schematic of a strain gauge and how it work 

Depending on the required number of analogue input channels for each experiment, one 

of two Data Acquisition (DAQ) systems were used to acquire data in this project: 

Microlink (up to 128 analogue input channels) and National Instruments Equipment (up to 

16 analogue input channels).  

1. Microlink Equipment 

Generally, a DAQ system is constructed from two main parts: data logger and 

conditioner. Microlink 751 Multi-function USB Data Acquisition (Figure 2-16) and 

Microlink 594 conditioning units (Figure 2-17) with Windmill 7 Software (Figure 2-18) 

(all by Biodata, Manchester, UK) are employed each featuring 16 analogue inputs for 

strain measurement. Eight USB units can be connected to one computer to monitor up to 

128 strain gauges. The Microlink 751-SG is supplied with Windmill data acquisition and 

control software. This modular suite of software offers data logging, charting, alarm 

indication, output control and real-time data transfer to other applications such as EXCEL, 

MATLAB and FORTRAN. Specifications for Microlink 751 Multi-function USB Data 

Acquisition are illustrated in Table 2-2.  Using this data acquisition system, all the strain 

gauges were wired and connected to the DAQ system in a quarter bridge configuration. 

Although, both half-bridge and full-bridge configurations grant greater sensitivity over the 

quarter-bridge circuit, often (specifically in marine structures) it is not possible to bond 

complementary pairs of strain gauges to the test specimen. As a result, the quarter-bridge 

circuit is frequently used in strain measurement systems. The strain data can be collected 
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directly via Windmill 7 Software or alternatively through bespoke data acquisition/ANN 

software linked to the Windmill data acquisition system.  

 

Figure 2-16: Microlink 751 Multi-function USB Data Acquisition (Windmill 2011)   

 

Figure 2-17: Microlink 594 Bridge Input Unit and Screw Terminals (Windmill 2011)   

 

Figure 2-18: The Windmill Chart and Logger programs (Windmill 2011)   
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Table 2-2: Windmill 751-TC Unit Specifications (Windmill 2011)   

Microlink Equipment Specification 

Analogue Inputs 16 

Common mode range ±13 V 

Resolution 

12 bits 

15 bits 

16 bits 

18 bits 

Samples/Second 

2.5 msec          80 

20 msec            32 

40 msec            16 

160 msec            6 

Input voltage range 0 to 5 V 

Maximum count speed with low resolution 160 counts per second 

 

2. National Instruments (NI) Equipment 

CDAQ system provided by NI consists of a chassis, CDAQ modules, and software. 

The chassis can connect to a host computer over USB. The CDAQ system employed in 

this study includes NI CDAQ 9236 (350 Ohm) modules mounted on NI CDAQ 9174 

Chassis (4 slots) which can provide the strain monitoring and control data acquisition 

system with resolution of +/- 0.1 microstrain (Figure 2-19). The CDAQ 9236 module is 

specifically designed for quarter-bridge strain gauge measurement and contains the 

signal converter, connectivity, and conditioning circuitry in a single rugged package 

which provides differential inputs to monitor eight strain gauges at up to 10000 

samples per second.  The strain data can be collected directly via NI Measurement & 

Automation Explorer (MAX) or alternatively through bespoke data acquisition/ANN 

software linked to the NI-DAQmx Driver.  

 

Figure 2-19: NI CDAQ Equipment (Ni 2013)  

Various experiments are performed employing the composite panel and data acquisition 

systems during this research. The individual experiments set ups used for each of the 

experiments are explained in following sections. Since the NI DAQ system is much more 
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reliable and faster than the Microlink one, the preference in DAQ selection was NI system. 

As the drawback of the NI system was its maximum 16 analogue channels, should the 

experiment need more than 8 channels, the Microlink DAQ system was employed.   

2.4.1 Small Displacement Equipment Set Up  

In order to investigate the general behaviour of composite a simple test rig is designed 

in the form of a flat composite panel.  The bottom surface of the composite panel is 

supported at four points using rectangular section blocks, each 0.035 m wide, 0.009 m deep 

and 0.025 m long (Figure 2-20).  Loading is achieved by applying masses normal to the 

panel surface at the 12 locations indicated in (L1-12). Loading is achieved using masses 

lying on a      Kg circular section stand (see Figure 2-21). When one mass is located on 

an area, a small distributed load is applied on the surface. 

The panel is divided into sixteen equal areas of              and a rectangular strain 

gauge rosette is attached to the top surface of the panel at the centre of each region SL1-16. 

From sixteen rosette strain gauges attached, 48 strain readings can be acquired. The 

specifications of the strain gauges are indicated in the Table 2-3. The Microlink DAQ 

system is employed to acquire 48 strain readings for this experiment constructed from 

three Microlink 751 Multi-function USB Data Acquisition and three 594 conditioning units 

with Windmill 7 Software.  
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Figure 2-20: Panel drawing with the location of gauges and loading for small displacement experiment 

 

Figure 2-21: 5 Kg Weight and 0.05 Kg stand 

Table 2-3: Rosette Strain Gauges Properties (Vishay_Group 2010)

General purpose Rosette Strain Gauge Properties 

Grid Resistance 

(OHM) 

Gauge Factor TC 

(%/100  ) 

Gauge Factor 

@24   

Gauge 

length 

Gauge 

width 

120.0 ±0.6% +1.3±0.2 2.100±0.5% 3.18 mm 1.78 mm 

2.4.2 Sensor Optimisation Experimental Setup  

In order to optimise the number of strain gauges utilised the same equipment set up is 

used as described in Section 2.4.1. However, to investigate the effect of size sensitivity by 
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optimisation of the sensor quantity four more rectangular strain gauge rosettes were also 

placed in the middle of the panel (SL17-20) attached at the corners of a         m
2
 square 

enabling 12 more strain readings (Figure 2-22). The additional strain gauges had the same 

properties as the original gauges (Table 2-3).  

The sensor optimisation is based on convenience sampling and some trial and error. A 

simple FEA analysis helped to define critical edge distance so that mechanical cross talks 

would be avoided and sensors will remain independent. What can cause problem is when 

two sensors respond the same to the same load or vice versa. So the sensor optimisation 

also helps to find locations to attach strain gauges.  

Convenience sampling is a non-probability sampling technique where subjects are 

selected because of their convenient accessibility and proximity to the researcher 

(Frederick et al. 2011). The sensor locations are selected just because they are the easiest 

places to attach the sensors for the study and the researcher did not consider selecting 

subjects that are representative of the entire structure. Researchers use convenience 

sampling not just because it is easy to use, but because it also has other research 

advantages. In pilot studies, convenience sample is usually used because it allows the 

researcher to obtain basic data and trends regarding his study without the complications of 

using a randomised sample. In all forms of research, it would be ideal to test the entire 

population, but in most cases, the population is just too large that it is impossible to include 

every individual. This is the reason why most researchers rely on sampling techniques like 

convenience sampling, the most common of all sampling techniques. Many researchers 

prefer this sampling technique because it is fast, inexpensive, easy and the subjects are 

readily available. The most obvious criticism about convenience sampling is sampling bias 

and that the sample is not representative of the entire population (Frederick et al. 2011). 
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Figure 2-22: Schematic of composite panel indicating strain gauge, loading and support location (Sensor 

Optimisation experiment)      

2.4.3 Large Displacement Experimental Set Up 

In order to investigate the general behaviour of the composite panel the previous test rig 

was modified so it was fully fixed and higher loads could be applied. In fact, the previous 

test set up could not handle high loads and would fail and change the boundary conditions. 

Hence, the new test rig was designed to be fully fixed and the bottom surface of the GRFP 

marine composite panel was supported on all four edges using aluminium bars, each 

0.0381 m high, 0.01905 m wide and 1m long (Figure 2-23).  Sixteen linear strain gauges 

(S1-16) were bonded to the centre of each region (specification in Table 2-4: Strain gauge 

specification). Normal loads were randomly applied to the top surface of the panel at 

thirteen grid intersections (L1-13). NI Equipment is used to capture the response of the 

structure to the applied loads. For this purpose, Two eight Channel NI cDAQ 9236 (350 

Ohm) modules mounted on NI cDAQ 9174 Chassis were used to acquire data (see 

Figure 2-19) using MATLAB (MathWorks, Natick, Massachusetts, USA) and its Data 



 

65 

 

Acquisition Toolbox capabilities. The gauge resistance is increased to 350 Ohm so better 

strain readings can be achieved from composite materials. 

 

Figure 2-23: Schematic of composite panel indicating strain gauge, loading and support location (Large 

Displacement experiment 

Table 2-4: Strain gauge specification (Vishay_Group 2010) 

Type 
General purpose linear 

gauge 

Resistance 350 ohms ± 0.6% 

Gauge factor 2.100±0.5% 

Gauge length 6.35 mm 

Gauge width 2.54 mm 

2.4.4 Drop Test Simulation Set Up 

The structure under consideration is the same as the large displacement experiment 

(Section 2.4.3) and strain readings (S1-16) are captured from the centre of each of the 16 

regions on the top surface of the panel. Loading was achieved by simulating a free fall 
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impact of a rigid mild steel cylinder (length 0.103 m, diameter of 0.02 m and mass of 0.254 

kg) normal to the panel surface at thirteen locations (L1-13) from various heights. 

Figure 2-24 indicates the schematic of the drop test experiment. For this study, the finite 

element models are developed and simulated in ABAQUS 6.10-1 (SIMULIA). The 

ABAQUS element library provides a complete geometric modelling capability. For this 

reason any combination of elements can be used to make up the model. All elements use 

numerical integration to allow complete generality in material behaviour. In almost all 

elements, primary vector quantities (such as displacements and rotations) are defined in 

terms of nodal values with scalar interpolation functions where the interpolation functions 

are written in terms of the parametric coordinates. Such isoparametric elements are 

guaranteed to be able to represent all rigid body modes and homogeneous deformation 

modes exactly, a necessary condition for convergence to the exact solution as the mesh is 

refined. ABAQUS will use either "full" or "reduced" integration. For full integration the 

number of integration points is sufficient to integrate the virtual work expression exactly, 

at least for linear material behaviour. All triangular and tetrahedral elements in ABAQUS 

use full integration. Reduced integration can be used for quadrilateral and hexahedral 

elements; in this procedure the number of integration points is sufficient to integrate 

exactly the contributions of the strain field.  In this study, the panel has 7031 elements and 

the cylinder has 40 elements. The mesh element type used is hexahedral isoparametric. The 

advantage of the reduced integration elements is that the strains and stresses are calculated 

at the locations that provide optimal accuracy. A second advantage is that the reduced 

number of integration points decreases CPU time and storage requirements. In finite 

element modelling, a finer mesh typically results in a more accurate solution. However, as 

a mesh is made finer, the computation time increases. Generally, in order to select the 

optimum number of mesh elements, a simple mesh convergence study is carried out. In 

brief, to perform a mesh convergence study manually, a mesh is created using the fewest, 

reasonable number of elements and the model is analysed. The mesh is then recreated with 

a denser element distribution and reanalysed and the new results are compared to those of 

the previous mesh. Increasing the mesh density and re-analysing the model continued until 

the results converge satisfactorily.  Figure 2-25 indicates a typical Finite Element Analysis 

(FEA) model output employed in this study.  



 

67 

 

 

Figure 2-24: Schematic of composite panel (Drop test) 

 

Figure 2-25: Meshed FEA Panel 
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2.5 Summary 

In order to answer the research question, the proposed methodology is described in this 

chapter. This chapter also gives more detailed information about the ANN used in the 

proposed methodology as well as the experiment set ups employed in this research. In 

brief, this research will explore relevant aspects of the application of hybrid combinations 

of ANN, FEA and experimental techniques both in direct and inverse studies. The hybrid 

technique will be used to produce solutions to problems that existing measurement or 

computing techniques cannot solve. This technique can provide more information faster 

than standard existing techniques without the need for knowledge of material/geometrical 

properties. The suitability of the proposed methodology will be indicated by successful 

prediction of the applied loads. Finally, a real time GUI should be developed allowing 

better communication with the system and to change different parameters used for  data 

acquisition and to control ANN convergence rate etc.  The performance of the load 

monitoring system will be evaluated by performing various tests by means of applying this 

system on a marine structure representative such as a cross section of the boat hull. 
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Chapter 3. General Behaviour of Composite Panel with Attached Strain 

Gauges under Small Displacement 

This chapter introduces the research undertaken to investigate the general behaviour of 

a composite panel with attached strain gauges under small displacement as well as 

optimisation of the number of sensors required for accurate load prediction. 
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3.1 Introduction    

This chapter reports on the research undertaken to achieve two main objectives of this project 

established in Chapter one. The first objective was to develop an ANN methodology for 

quantifying static pressure loads on a marine composite panel from strain measurements 

collected from the panel under small displacement. The suitability and performance of utilising 

an ANN for this experiment is presented in the first section of this chapter. The aim of the first 

experiment is to investigate the ANN‘s ability to accurately estimate static pressure loads applied 

to up to 12 locations on the structure using 48 strain readings from 16 strain gauge rosettes when 

the panel is under small displacement. The second objective covered in this chapter is to 

investigate the effect of size sensitivity by optimisation of the sensor quantity. Therefore, in the 

second section of this chapter, the research undertaken to optimise and reduce the minimum 

possible required number of strain gauges to accurately estimate 12 loads is described.   

3.2 General Behaviour of Composite Panel with Attached Strain Gauges under 

Small Displacement (Static Load is Applied) 

In order to investigate the applicability of the ANN methodology for in-service load 

monitoring of marine structures, the first objective is to investigate the general behaviour of a 

composite panel as a representative of a marine structure under static load condition. The static 

pressure load condition represents the hydrostatic loads applied on a panel of a marine structure 

in the water.  The following sections describe the methodology and results of this experiment 

employed to evaluate the proposed load monitoring system.  The constant load equivalent to the 

Root Mean Square (RMS) value of the hydrostatic load on the panel causes a small deflection at 

the centre of the plate.  

3.2.1 Methodology 

The methodology and results employed to evaluate the suitability and performance of utilising 

an ANN as an inverse problem solver for quantifying the load applied to the composite panel is 

presented in this section. The first stage of the investigation was to design a load quantification 

methodology for the panel utilising an ANN. In the second stage the load quantification 

methodology was validated by comparing loads estimated by the ANN with the actual loads 

applied to the panel.  
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3.2.1.1 Collecting the Training Data Using Superposition Theorem 

In order to investigate the behaviour of a composite panel used in marine structures and the 

application of the methodology, a simple composite panel is employed to set up a simple test rig 

(see section 2.4.1 for equipment set up). The initial aim was to understand the material behaviour 

and strain measurement sensitivity to various applied loads. Moreover, the aim is to 

experimentally capture data which can be used to relate known loading conditions to the 

response of the panel employing the proposed methodology. For this purpose, the GRFP 

composite panel is loaded by applying weights normal to the panel surface at the 12 locations 

indicated in Figure 2-20 (L1-12). Since strain has a direct relation with load, it is deemed a 

suitable panel response to the load and is used in this research to measure structural response. 

When one weight is located on an area, a small distributed load is applied on the surface. Known 

loads were applied to the predetermined load locations and the corresponding voltages from the 

strain gauges were recorded.  It is worth noting that the strain gauge measurement is based on 

measuring induced difference in voltage in the circuit for even small displacements. Employing 

an ANN the exact value of the strain or any value proportional to it will be handled the same. 

Therefore, it is also possible to determine the applied load from the value of voltage measured 

from the gauge instead of the exact strain values. 

In real circumstances the number of sensors needs to be optimised to reduce the cost and 

weight as well as computation efforts. This means that the locations used to measure the 

structural response must be selected carefully. These locations have to be sensitive to change in 

applied load. Furthermore, the responses collected must be unique for each set of applied loads. 

The load locations also should be fixed indicating the locations where load data are to be 

predicted by the ANN.  If strain is collected from non-sensitive regions of the panel and/or the 

strain data collected is not unique for each load distribution the ANN is less likely to be able to 

find a function relating the input and output.   

In order to train a network at least two sets of data as inputs and the desired response pairs are 

required. These sets of data (training data) should be enough to cover the whole range of applied 

loads. Gathering all of this data can be time consuming especially when many data sets are 

required and collecting each set individually should be avoided when possible. There are other 
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ways to create data sets based on manipulating only a small amount of the acquired data such as 

curve fitting or superposition methods. In this investigation, should the structural response have a 

linear behaviour within the range of applied loads, data collection can be achieved more quickly 

employing the theory of superposition. In other words, if the material and structure of this test 

behave linearly within the range of applied loads, the theory of superposition can be used to 

generate data sets. This theory states that the strain at a point on a structure due to a series of 

loads is equal to the sum of the strains from each individual load case (Sewell et al. 2010).  For 

example, applying loads L1 and L2 to a hanging plate causes the three strains (S1–S3). This can 

alternatively be found by applying each load separately and summing the strains at each location 

(Figure 3-1).  This theory enables the generation of an infinite number of training patterns from 

data collected by applying one known load to each location on the structure individually.  

 

Figure 3-1: Theory of Superposition Example (Sewell et al. 2010) 

Applying a load at each required position separately, a data matrix is generated where the 

columns represent each load case and here the first three rows represent the strains captured due 

to each load (Figure 3-2). 

 

Figure 3-2: Example of acquired data from experiment (Sewell et al. 2010) 
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Using superposition any number of training patterns (n) can be generated using a random 

number generator that produces values between the minimum and a maximum load value 

specified. The maximum and minimum values should be the limits of the loads that can occur on 

the component. Figure 3-3 and Figure 3-4 show the training input and target data sets generation 

method using the example training file in Figure 3-2. 

 

Figure 3-3: Generation of training input (strains) (Sewell et al. 2010) 

 

Figure 3-4: Generation of training output (load) (Sewell et al. 2010) 

Employing the superposition theorem, a training data matrix can be generated, where the 

columns represent each load case having M strain readings and N load values for pre-determined 

loading locations (see Figure 3-5). Using the superposition theorem, it is possible to have the 

desired number (K) of data vectors using a random number generator that produces values 

between the minimum and a maximum load value specified. Setting the limits of data according 

to the maximum and minimum of possible applied loads domain enables the coverage of all load 

scenarios for a specific application.  In order to improve the generalisation of an ANN a set of 
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noisy data generated from the original data can be introduced in the training data. The noise 

value can be either added or subtracted from a predefined number of the data in a random 

manner. 

 

Figure 3-5: Example of the training file 

In this study, the panel was divided by 16 equal patches and in the middle of each patch one 

strain gauge rosette was attached (see Figure 2-14). This means that 48 strain readings from 16 

rosettes (inputs) and 12 load readings from 12 locations (outputs) were used with the 

superposition method to generate 1396 sets of training data from which 700 data sets are for 

cases when all 12 locations are loaded randomly and 696 data sets are for cases when only one 

loading location is loaded randomly within the loading envelope (58 data sets for each loading 

location). In fact, for each data set 12 random loads (zero or non zero) are applied at locations on 

the panel and the resultant 48 strains caused by these random loads were acquired to find the 

relationship between the input/output data.  280 data sets are used for test and validation during 

training to ensure convergence.  This represented almost twenty percent of the original 1396 total 

patterns generated.  200 noisy patterns were also added to the training data based on the level of 

noise in the data acquisition system (+/- 1 microstrain). It should be noted that if the structure 

responses in terms of displacement indicate much bigger values than the noise and accuracy of 

the DAQ system (which is the case), the small noise of the DAQ system can even be neglected. 

 In this experiment, utilising the superposition theorem to generate training data from 

experimental data and employing the inverse approach to relate strain response to the applied 

loads, practically the material properties of the composite panel are not required at the training 

stage. Furthermore, due to the major advantage of the inverse approach, the material properties 
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are not required to quantify the load applied to the structure after ANN training. ANN training is 

achieved using MATLAB NNT capabilities.  

3.2.1.2 ANN Architecture/Topology 

An iterative process was used to determine the optimum network architecture for the panel 

based on the value of the final MSE of each network tested.  The number of layers chosen can 

have an effect on the efficiency of the network.  However, due to the relatively low number of 

inputs and outputs involved in this example this was not deemed to be an important factor to 

consider when selecting the architecture.    

It was determined, through the testing of some random network architectures, that an ANN 

network having one hidden layer with 22 neurons that each has tan-sig as transfer function 

indicates acceptable training performance.  The output layer had 12 neurons (representing the 12 

loads to be estimated) and used a pure-lin transfer function (see Figure 3-6).  The final 

specification of the ANN is shown in Table 3-1.   

 

Figure 3-6: MATLAB representation of optimum ANN architecture 

Table 3-1: Architecture of the artificial neural network 

Feature Details 

Architecture Feed forward back-propagation 

Number of layers 2 

Data process Normalisation 

Noise generator +/-1 microstrain on 200 of training patterns 

Range of loads 0 to 196.2N 

Number of  inputs (surface strains) 48 

Number  neurons in output layer  12 

Number of neurons in hidden layer 22 

Number of training patterns 1116 

Number of testing patterns 280 

Number of problem  patterns Depends on the number of patterns collected 
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It is always possible to over-train the ANN if not careful, which means that the ANN has been 

trained to respond to only one type of input.  To ensure the ANN was not over-trained the 

training was supervised to ensure that the MSE of the testing data did not increase, which is an 

indication of over-training.  The ANN was trained to minimise the MSE. The final training MSE 

was approximately 4x10
-3

, which took under three minutes to reach. In other words applying the 

same data set employed in training to the network as inputs, the mean of squared errors between 

the ANN estimated loads and desired ones are as small as 4x10
-3

 N.   

3.2.1.3 ANN Validation and Performance 

The validity and performance of the ANN method was evaluated by comparing the load 

estimated by the ANN with known loads applied to the panel (problem data).  What is referred as 

experimental problem data is the captured strain data from the 48 strain gauges attached to the 

panel while it is being loaded.   

The first validation study utilised load and strain data generated from the original superposition 

data collected to produce the training data.  This meant that any issues with the repeatability of 

the strains collected for a given load were removed.  In the second study, problem strain data was 

captured directly from the panel under different loading conditions (i.e. one or two random loads 

were placed at random locations on the panel) and again the estimated loads compared with the 

actual applied loads.   

3.2.2 Results and Discussion  

This section analyses and discusses the experimental results.  In order to investigate the 

general behaviour of the composite panel with attached strain gauges under small displacement, 

a specific test rig and equipment setup is employed. This experiment is performed under static 

loading condition. Loading is achieved by applying gravity force of various dead weights. In this 

test, raw data is the strain readings from 16 rosette strain measurement sensors placed in the 

centre of the composite panel. In total 48 strain readings are achieved in one data acquisition call 

back. Three strain readings are set to be zero due to unreliable readings which was in result of 

manual error at the time of soldering the wire to these small strain gauges. The collected data 
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then needs to be checked for reliability of results. This will be in terms of having stable, 

repeatable data each time that the loading condition is the same.  

3.2.2.1 Validity of Data Collection and Analysis  

In this section, to ensure that data acquisition system reading is acceptable, validity of 

assumptions is checked. For this purpose, a set of experiments were performed over several days 

to investigate repeatability of the system as well as the amount of drift it may experience in a 

normal room condition where it is located.     

3.2.2.2 Reliability of Data readings 

The strain data was collected through bespoke data acquisition/ANN software linked to the 

Windmill data acquisition system.  This software was developed by the author in MATLAB 

utilising Windmill Direct Data Exchange (DDE) protocols to acquire the strain data and the 

MATLAB Artificial Neural Network Toolbox capabilities. It is found that the data was 

experiencing a very small drift over the time (usually in hours). These drifts in values are not a 

big issue because they all experience the same drift. This can be easily removed by zeroing the 

data acquisition system or using the difference in strain readings for loaded and unloaded 

situations. In this study, to eliminate the effect of drift after some hours of running the device, it 

is decided to introduce extra data acquisition when the system is unloaded before each loading. 

This data set is then employed as a reference for zeroing the strain readings for the unloaded 

system. The results indicated that this removed the effect of drift from the strain readings. 

Although the system was assumed to have almost no effect of drift, there have been other 

difficulties such as noise in data. Most of the readings experienced a maximum sudden change of 

up to 7 microstrain (see Figure 3-7).  This happened when DAQ system setting‘s resolution was 

set to 15 bits. The noise issue was reduced by introducing an averaging algorithm in the data 

acquisition function in the program.  

Another important aspect is the repeatability of the data reading for the same loading 

condition. This is confirmed by having the same pattern of data for the same loading condition. 

For this purpose several data sets are acquired over a relatively long period. For instance, 

Figure 3-8 depicts acquired data set for loading 10 kgf on location 10, eighteen days apart. 
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Furthermore, Figure 3-9 indicates acquired data set for loading 1 kgf on location 11, two days 

apart. These figures show that the data acquisition gives acceptable repeatable readings over 

time. 

 
Figure 3-7: Data Logger 

 

Figure 3-8: Data Reading set for loading 10 Kg on location 10 after 18 days 
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Figure 3-9: Data Reading set for loading 1 Kg on location 11 after 2 days 

 

3.2.2.3 Fixed Supports to Rule out Twist Factor 

It is important to note that the inverse problem relates one set of data to another set of data. In 

other words, the network acts as a transfer function of a specific structure which recognises the 

patterns of this specific structure response to certain loading conditions and employs them to 

predict almost the same loading conditions another time for the same structure. This is done 

without the need of having any information about the material properties and geometry of the 

structure.  This implies that the panel has to have the same geometry configuration all the time. 

For this purpose it is reminded that the panel geometry in this test rig, which is constructed of the 

panel itself and its supports, has to have the same geometry configuration. This can be achieved 

by having fixed supports acting as negative loading in this configuration. In order to eliminate 

the chance of lost contact between the supports and the table, the loading is limited to the gravity 

force of masses up to 12 kg (experimentally tested). This is in fact due to the limitation of 

experimental set up where the panel only rests on four supports and extra loading will change the 

boundary condition and the testing condition may no longer be the same. 

3.2.2.4 Linearity of Results 

In this experiment, the acquired data is employed, as a set of known experimental data, for 

generating two data sets: ANN training and experimental test data sets. In fact, acquired data is 

used in a programme utilising random number generation and superposition theorem functions to 
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generate the required number of loading and response data sets. But before that, it is needed to 

make sure that the superposition assumption of linearity relation is the case here. 

As was described earlier, to utilise the superposition technique for data generation, data 

should have a linear relation inherently. In order to check this, in the range of the loading (0-

12Kg), some experiments are performed and their data are compared. Investigations indicated a 

linear relation between the loading from gravity force of the weights and the response of the 

structure to that loading condition in the range of the loading (0-12Kg). Some examples of this 

linear relation are illustrated in Figure 3-10 for randomly selected strain sensors and loading 

locations. This confirms that superposition can be used. 

 

Figure 3-10: Examples of the linear relation between the loading and the response of the structure 

3.2.2.5 Small Displacement Test results (Network Prediction) 

In order to generate the required number of loading and response data sets employing the 

superposition method (the system shows linear behaviour), some loading and response data sets 

are experimentally generated and normalised to generate a unique loading set. In this loading 

data set, the structure strain readings as the response to specific loading conditions are required. 

The specific loading conditions are when all twelve positions are individually loaded by the same 

gravity force of mass at the time. Due to the fact that this data set is the resource for generating 

all other different random load data sets employing the superposition theorem, a series of tests is 
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performed and then the average values are used to reduce the effect of human error.  For this 

purpose, each of the twelve loading points is loaded by the gravity force of five various masses 

(selected in the range of 0-12Kg as 2Kg, 5Kg, 7Kg, 10Kg, and 12 Kg). The data acquisition 

system acquired and saved the response of the system. All the data sets are normalised and 

averaged to have twelve data sets for the load cases when one load at a time is applied to the 

panel and the rest are zero. Each data set for loading cases is saved as a column vector with 60 

rows. The first 48 rows are strain readings and rows 49-60 are the dead weight values applying 

the loads. The complete one at a time loading cases will be a matrix of data set having 60 rows 

and twelve Columns. In this thesis, this matrix is named: ―original reference data matrix‘‘.  

Using the superposition theorem, this original reference data matrix is manipulated and the 

number of desired training data sets are produced. Each training data set consists of a matrix with 

size of      strain readings as the training input data to network and a matrix with size of 

     weight values as representative of the loads as the training target data. A back-

propagation network with a hidden layer is employed initially to be trained and tested.  

In order to test the network, a set of data was generated employing the experimental set up 

and test rig. Since this set of data is not seen by the network in thetraining stage, it is used to 

evaluate the prediction of the system. In order to test the network, a set of experimental data was 

generated employing the experimental set up and test rig. The training stage of the network is a 

time consuming procedure and several characteristics of the network and data sets can be 

configured to have a generalised trained network capable of good prediction. Figure 3-11  shows 

the comparison between actual and predicted loads. The data for this graph is from a data set in 

the form of a matrix of         having K=1396 loading cases, each containing 60 data (48 

Strain and 12 load representatives). This data was generated by the superposition method 

randomly for gravity force of the dead weights between 0-20 Kg. In order to enhance the system 

performance some noisy patterns (± 1 micro strain) are introduced to randomly chosen strain 

data.  

It is not possible generally to quantify the performance characteristics and bounds of an ANN 

system by any analytical techniques. Therefore, it is very important to subject it to a thorough 

testing regime to ensure it will perform adequately. Therefore, the performance accuracy, 



 

82 

 

reliability and robustness of the system are investigated by presenting it with some extreme 

inputs which are within the possible bounds of system operation.  For this purpose, the network 

is presented with new data to check its functionality. The results in Figure 3-11 indicate an error 

of less than             between the predicted and expected values. 

 

Figure 3-11: Net. Predicted vs. Expected Values for new data generated data by superposition  

In order to check the prediction of the network, the same test is performed for different 

loading conditions. The behaviour of the system prediction over a range of loading quantities 

was studied. As it is illustrated in the Figure 3-12, the prediction is almost perfect for the range that 

the system is trained with its data (0-20 Kg). This figure indicates behaviour of the system 

prediction over a range of loading quantities where each time, all the 12 positions are loaded 

equally. For instance once all the 12 positions are loaded with 5 Kg masses and the structural 

responses are read through DAQ system.  This set of strain readings are introduced to the 

previously trained network. The network ideally has to predict 5 Kg for all the 12 loading 

positions. With the same error margin discussed earlier, predictions agreed with what were 

expected.  Although the network was trained with data for load cases ranging 0-20 Kg, the 

results indicate that the network is capable of prediction approximately up to 30 Kg. It can be 
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noted that as range of the load cases exceed that of which the network is trained with, the 

prediction loses its accuracy. This is due to the inherent lack of extrapolation properties of ANN. 

In other words, the network is able to predict best in the same criteria that it has been trained 

with and is subject to upper and lower bound of the loading envelope. To subject the system to 

extreme upper and lower bound loads of the working load envelope of the operating conditions, 

the system should be trained with a bigger working load envelop to predict realistic loads.  

 

Figure 3-12: Behaviour of the system prediction over a range of loading quantities 

The results to date indicate the suitability of this method for load prediction. In the next 

investigation, the ANN is experimentally validated.  A MATLAB script is developed in the way 

that it is able to acquire strain data directly from the panel and introduce it to the network as new 

input data (see appendix 3-5 for the developed MATLAB program). The trained network is now 

able to simulate and predict loading data in terms of the applied mass in Kg in real time and get 

the panel responses as the input and relate them to the load that has caused them.  As a testing 

regime to ensure network performs adequately, the performance accuracy, reliability and 

robustness of the system are investigated by presenting it with some extreme inputs which are 

within the possible bounds of system operation. This can be having one load at one location and 

the others are assumed zero. Figure 3-13 is a random example of the system performance for 
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load prediction. Figure 3-14 is another random example of the system performance for load 

prediction where this time two loading locations are loaded and the rest are not loaded. The 

negative values are due to the network approximation for the new set of inputs. In fact, due to the 

errors in the data acquisition stage, a slightly different pattern is introduced to the system and the 

network approximated the output with some error (see Figure 3-15). Further improvements in 

terms of more accurate data acquisition and optimised training parameters for the network may 

solve this issue. 

 

Figure 3-13: Net. Prediction vs. Expected Values for experimental data (one area loaded) 
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Figure 3-14: Net. Prediction vs. Expected Values for experimental data (two areas loaded) 

 

Figure 3-15: Comparison of the experimental data and data generated by superposition 
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3.2.3 Summary and Conclusion 

It is shown that the inverse problem approach can be used to predict the loads applied on a 

marine structure composite panel. Results from a small displacement experiment setup indicated 

very good performance of the methodology in load prediction which can be achieved in real 

time, providing an accurate load history for a component. This potentially makes the system 

ideal for solving many classes of engineering problem that require load monitoring and/or 

structural health monitoring. The results of this study can be summarised as follows: 

 An ANN can be trained using experimental based data for direct and inverse problems. 

 A real time experimental and an inverse problem engine can be created using a combination 

of ANN and experimental data. 

 It is shown that a mathematical relationship exist between the applied loads and the surface 

strains and can be related by employing the ANN system which always converges and the 

MSE is in the range of acceptable error. 

 The system is effectively capable of predicting the static loads. 

 Although there is no general rule to select the training parameters, changing various 

parameters in the training stage of a network (structured or randomly) may result in 

improvements in the network‘s learning ability. 

 When obtaining response data from the composite panel, generally the higher the load the 

higher structure response in terms of displacement values (in microstrain) are experienced. 

Since the noise of the DAQ system is a fixed value (in microstrain), with higher loads the 

effect of the noise in DAQ system is reduced and the system will indicate more accurate 

results. 

 The main source of error was found to be the difference between the experimental strains and 

the strains acquired by the data acquisition system which is caused by human and device 

error. 

Furthermore, this experiment is performed employing a large number of strain readings. 

However, it is not very practical and cost effective to attach many sensors to the panel. 

Therefore, more research is needed to optimise the number of sensors and investigate the effect 

of geometry size in predictions.    
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3.3 Sensor Optimization  

In Section 3.2, the capability of the system to estimate the loads applied on a marine 

structure composite panel was demonstrated. Furthermore, it was also concluded from the 

previous study that more research is needed to optimise the number of sensors and 

investigate the effect of geometry size in predictions. This is due to the fact that for an 

ideal system, the number of sensors should be minimised to reduce the overall training 

time, cost and weight of the system. In fact, the aim of this optimisation is to use the 

minimum number of sensors with maximum coverage with respect to the load. In this 

section, the research undertaken to investigate the number of sensors required for accurate 

load estimation by optimising the method is presented. The methodology of the 

experiment, results and discussions as well as this particular experiment conclusion are 

described.  

3.3.1 Methodology 

The methodology employed to generate training data sets and optimise the quantity of 

sensors based on the performance of various trained ANN as an inverse problem solver for 

quantifying the load applied to the composite panel is presented in this section. The first 

stage of the investigation was to design a load quantification methodology for the panel 

utilising an ANN. In the second stage the load quantification methodology was validated 

by comparing loads estimated by the ANN with the known loading cases of the panel.  

3.3.1.1 Generation of ANN Training Data 

The efficiency of the training data collection process can be increased by reducing the 

amount of data collected. This is achieved again in this experiment by using the theory of 

superposition (test is still small displacement loading and data are linear) to generate 

training and testing patterns from the independent parent patterns, as discussed in 

Section 3.2.1.1.  The theory of superposition states that the strain at a point on a structure 

due to a series of loads is equal to the sum of the strains from each individual load case. 

Using this theory, an infinite number of training patterns can be generated by applying one 

known load to each location on the structure individually.  
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3.3.1.2 ANN Architecture/Topology.  

In this study a common Back-propagation ANN architecture is used and trained 

employing MATLAB Artificial Neural Network toolbox capabilities. An iterative process 

was used to determine the optimum network architecture for the panel based on the value 

of the final Sum of the Squared Errors (SSE) of each network tested. As described before, 

SSE is a measure of the discrepancy between the data and an estimation model. A small 

SSE indicates a tight fit of the model to the data. Table 3-2 lists the major parameters of 

the network architecture selected based on convenience sampling used in this study.  

Table 3-2: ANN architecture parameters (optimisation experiment) 

Architecture Feed Forward Back-propagation 

Number of layers in each network 2 

Range of load estimation 0-196.2 [N] 

No. of inputs (surface strains) 48,18,15,12 

No. of output layer neurons (loads) 12 

No. of each  hidden layer neurons [20 20] 

Number of training patterns 1116 

Number of testing patterns 280 

3.3.1.3 Optimisation 

The equipment set up of this experiment is described in Section 2.4.2.  In order to 

optimise the number of gauges, various sensor configurations are employed to acquire and 

generate training data sets and the corresponding ANN is trained. The performance of each 

ANN in terms of SSE is used for comparison. The aim of this optimisation is to minimise 

the number of strain gauges needed to reasonably estimate the magnitude of load at twelve 

loading locations on the composite panel.   

In this study, the number of rosettes are reduced/optimised in several steps and the 

effect on the performance of the load estimation methodology is investigated.  Due to the 

inherent characteristic of an ANN, reduction of the number of inputs is limited by the 

number of outputs. Hence, a minimum of twelve strain inputs are required to be able to 

successfully estimate twelve load outputs.  Therefore, the minimum number of rosettes that 

could be used to successfully predict twelve loads is four.  In order to optimise the number 

of the strain gauges, the number of gauges are reduced step by step from 16 (48 readings) 

to 6 (18 readings), 5 (15 readings) and 4 rosettes (12 readings) respectively.  There are 

multiple permutations for selecting 6, 5 or 4 rosettes from the 16 rosettes attached to the 

panel.  Since the aim of this study was first to find the optimum number of gauges, random 
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permutations of gauges were based on convenience sampling and the ANN performance 

using the SSE values for each ANN were compared.  It was then possible to determine the 

optimum number of gauges required to achieve a high quality estimation of the 12 loads 

from this study.  A further strategy for optimising the sensor locations was then also 

investigated.   

3.3.1.4 ANN Validation and Performance 

Finally, the validity of the ANN using the optimised strain gauges was evaluated by 

comparing the load estimated by the ANN with known loads applied to the panel (problem 

data). Experimental problem data is the captured strain data from the optimised strain 

gauges attached to the panel while it is being loaded. It is essential that the strain data is 

captured at identical locations for both the training and problem data.  The first validation 

study utilised load and strain data generated from the original superposition data collected 

to produce the training data of the optimised sensor configuration. This meant that any 

issues with the repeatability of the strains collected for a given load were removed. In the 

second study, problem strain data for the same sensor configuration was captured directly 

from the panel under different loading conditions (i.e. one or two random loads were 

placed at random locations on the panel) and again the estimated loads compared with the 

actual applied loads.   

3.3.2 Results and Discussion 

Having introduced the proposed methodology, this section analyses and discusses the 

results of this optimisation study.  

3.3.2.1 Optimisation  

A selection of the optimisation tests and the ANN performance results are presented in 

Table 3-3. The results show that as the number of the rosettes is reduced, the SSE values as 

performance indicators of various random tests are reasonably small values. The highest 

SSE performance value is 2.963 which itself is a very low, even negligible error. This 

implies that even for cases with only 6, 5 or 4 rosettes, the ANN is trained well and it is 

capable of estimating the magnitude and position of the applied loads. The results indicated 

that utilising only 4 rosettes (12 strain readings) it is possible to accurately estimate applied 

loads on all 12 locations (L1-12).  
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Table 3-3: Comparison of ANN performance SSE for various sensor configurations 

 16 Rosette Locations (  ) Performance SSE 

Random Test 1 1-16 1.520 

 6 Rosette Locations (  ) Performance SSE 

Random Test 1 2 , 3, 6, 11, 14, 15 1.670 

Random Test 2 3, 6, 8, 9,11, 14 0.842 

Random Test 3 5, 6, 7, 10, 11, 12 2.376 

Random Test 4 6,7, 8, 9, 10, 11 2.038 

 5 Rosette Locations (  ) Performance SSE 

Random Test 1 2, 5, 7, 10, 15, 1.442 

Random Test 2 3, 6, 7, 10, 14 2.963 

 4 Rosette Locations (  ) Performance SSE 

Random Test 1 3, 6, 11, 14 2.643 

Random Test 2 4, 7, 10 ,13 2.185 

Random Test 3 5, 8, 9, 12 2.642 

Random Test 4 5, 8, 9 ,12 1.208 

Furthermore, in practice, it is more desirable to have the minimum number of strain 

gauges attached only in one small area on the structure.  Hence, 4 new rosettes were 

attached much closer together in the middle of the panel (Figure 2-22, SL17-20) and the 

performance of the ANN was investigated. Achieving reasonable results enables the 

gauges to be placed in just a small portion of the panel and yet be able to accurately 

estimate the position and the value of 12 externally applied loads (SL17-20). The SSE 

performance value of this test was 8.259 which is still a small value and indicates a tight fit 

of the model to the data.  

3.3.2.2 Validation using Superposition Data 

 In order to validate the trained network, a set of problem strain data was generated from 

the panel using the 12 strain readings from the optimised patch (S49-60). Since this set of 

data had not been seen by the network during the training stage, it can be used to evaluate 

the accuracy of the ANN‘s load estimation. The theory of superposition was used to 

generate problem data (12 loads and 12 strains generated on the panel surface from these 

loads) for loads between 0 N and 196.2 N.  These were introduced to the ANN and the 

estimated loads calculated by the ANN compared to the expected load profile. Figure 3-16 

and Figure 3-17 indicate typical examples where the estimated load value by ANN can be 

compared with expected values from superposition. The figures indicate that ANN 

estimates the load data very well from superimposed strain data. 
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Figure 3-16: Estimated load data by ANN vs. expected load values (from superposition at location L1) 

 

Figure 3-17: Estimated load data by ANN vs. expected load values (from superposition at location L6) 

3.3.2.3 Validation using Direct Data 

In order to validate the generalisation performance of the trained ANN system, new 

acquired strain data directly from the experiment (which ANN was not trained with) are 

introduced to the trained network. This strain data was gathered by applying loads at the 

extremes of the range that the network was trained to estimate (0-196.2 N). Figure 3-18 

and Figure 3-19 indicate typical examples of the comparison between the actual loads 

applied to the panel with the ANN estimated loads generated from the introduced problem 

data. In these examples, one load is applied to the panel. For both sets of problem data it 

can be seen that the ANN can again estimate the load at the loaded locations with a high 

degree of accuracy. However, slightly different values (for instance in Figure 3-18:  51.16 
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N Vs. 49.59 N instead of 50 N and in Figure 3-19: 153.56 N Vs. 147.79 N instead of 150 

N) are achieved. These small errors are related to the network generalisation capabilities to 

handle a new set of inputs. In fact, due to the errors in the data acquisition stage, a slightly 

different pattern is introduced to the system and the network estimated the output with 

some error. Further improvements in terms of better data acquisition and optimised 

training parameters for the network may solve or improve this issue. 

 

Figure 3-18: Estimated load data by ANN Vs. expected load values (from experiment at location L6) 

 

Figure 3-19: Estimated load data by ANN Vs. expected load values (from experiment at location L12) 
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3.4 Discussion and Conclusion 

Establishing an inverse problem analysis approach for structural analysis can result in 

important advantages over simulation, numerical or theoretical methods. Through utilising 

such a method, knowledge of the component material constitutive laws and component 

geometry are not required. In contrast, they are necessary for valid and accurate simulation, 

numerical or theoretical analysis. The results presented in this section show that the inverse 

problem method, utilising an ANN, can accurately estimate the position and magnitude of 

12 static loads applied to the composite panel from 4 strain gauge rosettes placed close to 

each other in the centre of the panel. The results indicate that the system always converges, 

the SSE is small and in the range of acceptable error. This means that an ANN can be 

trained using experimental data to solve inverse problems and accurately estimate the static 

loads. Although, the first validation study indicated that the estimated load data by the 

ANN almost perfectly fits the expected load values from superposition, small error values 

were seen in the second validation study. The main source of error was found to be in the 

reliability of the data acquisition system utilised due to the large variance in the strain data 

collected at different time intervals. However, the noise to strain ratio decreases as the load 

increases which results in less variances in strain data patterns. Having more similar strain 

data patterns to those employed to train the network leads to a better load estimation 

output.  

The ability to measure the actual load history of a craft in-service would enable the 

designer to validate the load estimation and structural design tools used during the design 

stage of a craft. This would lead to the development of more optimal structure designs for 

this type of craft. The operational safety of the craft can also be improved by having a real-

time load monitoring system that is able to detect any degradation of the structural integrity 

and defects within the structure. 

The aim of this experiment was to establish an inverse load monitoring approach based 

on directly acquired structural response from an optimised set of sensors. It has been 

shown that the inverse problem approach can be used to estimate 12 loads applied on a 

composite marine panel from the strain measurements from 4 strain gauge rosettes. A 

comparison of the optimised ANN loads with the actual applied loads indicated a very 

good performance of the methodology. This was achieved in real-time, providing an 
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accurate load history for a component without requiring knowledge of the material 

properties or component geometry. This potentially makes the system ideal for solving 

many classes of complex engineering problem that require load monitoring. The results of 

this study can be summarised as follows: 

 An ANN can be trained using experimental based data from only 4 strain gauge 

rosettes   

 A real time experimental and an inverse problem engine can be created using a 

combination of ANN and experimental data all from the middle of the panel close 

together 

 The system is effectively capable of predicting the static loads with the minimum 

possible strain gauge readings 

 The main source of error was found to be the difference between the experimental 

strains and the strains acquired by data acquisition system which is caused by human 

and device error. 

3.5 Summary 

 

The findings from both experiments of this chapter indicate that should the structural 

response have a linear behaviour within the range of applied loads, the ANN can be trained 

employing experimental based data. However, non-linear behaviour is inevitable for higher 

load ranges and needs further investigations. In the next chapter, the general behaviour of a 

composite panel with attached strain gauges under a large displacement and drop test will 

be investigated. 
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Chapter 4. General Behaviour of Composite Panel with Attached Strain 

Gauges under a Large Displacement and Drop Test 

This chapter introduces the research undertaken to investigate the general behaviour of 

a composite panel with attached strain gauges under large displacement as well as transient 

loading condition.
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4.1 Introduction    

In the previous chapter the proposed methodology for quantifying static pressure loads on a 

marine composite panel from strain measurements collected from the panel under small 

displacement was investigated. The performance of utilising an ANN was acceptable and the 

system proved to be satisfactory and is effectively capable of predicting the static loads. 

Furthermore, the quantities of the sensors were optimised and acceptable load estimation was 

still achieved. However, the proposed methodology can be used for situations when a linear 

relation exists between the load and the structural response. In this chapter, the research 

undertaken to further develop the methodology is presented. The ideal load monitoring system 

should be able to successfully estimate applied loads on the structure even if the relation between 

the load and structural response is not linear.  Normally, nonlinear behaviour is exhibited from 

marine panels. This is due to the fact that the panel deflections exceed the linear limit. Therefore, 

the problem is treated as a non-linear problem where the displacement can no longer be 

accurately predicted using the linear theories. In such cases, the classical inverse approach used 

previously, based on utilising data generated from superposition, can no longer be employed due 

to the complexity of the displacement function.  

In this section, a new experiment is designed and performed having a larger load range.  In the 

first section of this chapter, the proposed load monitoring system is modified to handle the 

nonlinear loading conditions. The aim of the first experiment is to investigate the ANN ability to 

accurately estimate static pressure loads applied to up to 13 locations on the structure using 16 

strain readings from 16 unidirectional strain gauges when the panel is under large displacement. 

In addition to static loading conditions, it is necessary to perform more investigations on the 

suitability of the proposed methodology for in-service load monitoring of marine structures 

under transient load conditions such as slamming. For this purpose, an experiment is designed 

and performed to further develop the ANN methodology for quantifying pressure loads on a 

marine composite panel under transient load conditions from strain measurements. 

Therefore, in the second section of this chapter, the research undertaken to develop a specific 

methodology and to modify the proposed system for in-service load monitoring of a composite 

panel under transient load conditions such as drop test are described.   
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4.2 Large Displacement Experiment Setup under Static Loading condition 

This section reports on the research undertaken to further develop the ANN methodology to 

quantify static pressure/central load on a composite marine panel from its non-linear 

displacements.  

4.2.1 Methodology 

The methodology employed to evaluate the suitability of ANN as an inverse problem to relate 

structural response to the loads applied is presented in this section. A back-propagation ANN 

was designed and developed and trained within the MATLAB simulation environment to 

measure transverse load on a flat composite marine panel. The estimated output was then 

validated by comparing it against both experimental and numerical data.  

4.2.1.1 Generation of Training Data 

In order to investigate the general behaviour of a composite panel used in marine structures 

and the application of the ANN methodology under large displacement, the same composite 

panel is employed to set up a fully fixed test rig (see section 2.4.1for equipment set up). Normal 

loads were randomly applied to the top surface of the panel at thirteen grid intersections (L1-13).  

Depending on the proximity of the gauge and the applied loads different gauges exhibited 

different levels of sensitivity which was as expected.  To produce efficient training data the strain 

data should be captured at the sensitive regions (i.e. the strain at those locations must vary 

significantly due to changes in load level). In addition, the strain data collected must provide a 

unique response for each load distribution. If strain is collected from non-sensitive regions of the 

panel and/or the strain data collected is not unique for each load distribution the ANN is less 

likely to be able to find a function relating the input and output. 

For nonlinear structures an alternative approach is needed in order to generate the required 

training data. There are two ways in which such data can be generated, a) experimentally or b) 

using a nonlinear Finite Element Analysis (FEA) solver.  Generating the required training data 

experimentally is very time consuming and labour intensive.  Therefore, nonlinear FEA analysis 

using a script that allowed automatic generation of random load on the panel was utilised to 

generate the training data.  ABAQUS 6.10-1 FEA software (SIMULIA) was used. A script 
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function written in Python language was used to iteratively run the software in a batch using 

different random loads applied at each of the thirteen loading locations on the panel.  The FEA 

model was initially validated to ensure that it represented the actual panel accurately.  The 

validation was achieved by comparing strains collected experimentally with the FEA strains 

under the same loading conditions.  Loads from 100 N to 800 N applied in 100 N increments 

were placed on the panel one at a time on locations L1 to L13.  The strain readings at locations 

S1 to S16 on the panel were saved for each test.  The same tests were performed with FEA to 

compare with the experimental results. 

Once validated, a large number of training (load/strain response) data was able to be 

generated from the FEA model.  In order to increase the efficiency of generating the training 

data, it was possible to reduce the number of FEA models required to establish the nonlinear 

strain response for each gauge location.  This was achieved by fitting nonlinear curves to data 

collected for each strain location and using the curves to interpolate strain data for different load 

magnitudes.   

The structural responses of the panel in terms of strain were saved to be used as the input 

training data set. The corresponding load for each input data set was also saved and utilised as 

the output training set. Some of these input and outputs were saved separately for testing the 

network and error minimisation.  In this study, sixteen single strain gauge readings (inputs) and 

thirteen applied loads (outputs) constitute one training data set.  At each loading location (L1-

L13), static load ranging between 24.525 N and 784.8 N was applied in steps of 24.525 N.  In 

total 1040 training data sets were generated from the nonlinear FEA model. 

4.2.1.2 ANN Architecture/Topology 

Due to inherent non-linearity in data of this experiment, it is expected that the training would 

not be as fast as training of linear data. Therefore, in addition to the ANN architecture employed 

in the small displacement experiment, a novel ANN architecture is introduced and investigated. 

This means two different ANN architectures are studied for this experiment and their 

performances are compared.  The architectures utilised were: 

1) One network with sixteen neurons in the input layer and thirteen neurons in the output layer 

is trained to estimate the load on the panel from the strain responses (Figure 4-1). 
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2) Thirteen networks each with sixteen neurons in the input layer and one neuron in output 

layer are trained and used to estimate the load on the panel from the strain responses 

(Figure 4-2).   

The number of hidden layers and neurons in each hidden layer of the two network 

architectures were flexible.  These were dependent on the complexity of the training data sets 

and were optimised according to the network performance. The Sum of Squared Errors (SSE) 

and Mean of Squared Errors (MSE) are common network performance indicators. Through the 

testing of various network architectures, the optimum network having the lowest performance 

indicator can be determined. Once the ANN is trained, it can be employed to estimate new 

loading cases where the same patterns exist. In other words, whenever the same pattern of strain 

reading as an input is introduced to the network, it will be able to estimate the loads that caused 

those structure responses.  Depending on how well the network is trained (the performance of the 

network), there will be error between the output data set and the network estimated output (load).  

 

Figure 4-1: MATLAB representation of ANN architecture for method one 
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Figure 4-2: MATLAB representation of ANN architecture for method two 

4.2.1.3 ANN Validation and Performance 

The validity and performance of the ANN method was evaluated by comparing the load 

estimated by the ANN with known loads applied to the panel which were not seen by the 

network during the training process. The first validation study utilised load and strain data 

generated from the FEA model and was compared with estimated loads from the ANN. In the 

second study, problem strain data was captured directly from the panel and again the estimated 

loads were compared with the actual applied loads. 

4.2.1.4 PYTHON Script of Large Displacement Experiment Description  

As it was described earlier, training data for ANN is generated using FEA modelling. This 

was due to the fact that for nonlinear structures an alternative approach to the superposition 

theorem could be employed. Furthermore, since experimentally acquiring all the training data is 

very time consuming and labour intensive, nonlinear FEA analysis using a script that allowed 

automatic generation of random load on the panel was utilised to generate the training data. In 

this section, the script utilised to model and simulate various experiments in ABAQUS 6.10-1 

FEA software (SIMULIA) is described.  Figure 4-3 indicates a flow diagram of this code. For 

clarification purposes, this script is divided in several parts and can be accessed in Appendix 1.   
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Figure 4-3: Flowchart of PYTHON Script of Large Displacement Experiment Description 
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The first part is essential to recall different libraries in programme (script lines 1-15). In Part 

2, Modelling of the panel has been defined. If there is no input in each parameter, a default input 

number is considered. The script lines 16-20 define the test structure under consideration (see 

section 2.4.1).  

The script lines 21-53 define partitions on the panel surface. Within the Part module, Partition 

toolset can be used to partition a part into additional regions. After a part is partitioned, different 

properties can be assigned to the resulting regions. For instance, here this helps to define where 

the loads are applied and where the structural responses are collected. As it is indicated in the 

Figure 4-4, several partitions are defined on the panel part. This figure indicates that 13 circles 

are defined to specify loading surface locations as well as 16 rectangles representing the location 

of strain gauges. 

In part 3 (script lines 54-62), the material properties as well as the section are defined and 

related together. The assembly instance is defined and the part is meshed. The panel part is 

meshed with seeds having approximate global seed size of 0.05 and the element type used is 

hexahedral isoparametric. This seed global size is a relative value based on the size of the part 

instance with no dimension and is selected based on a simple mesh convergence study. After 

meshing the part, 7031 elements are generated on part. Furthermore, the meshed part as well as 

all the resulting elements is illustrated in Figure 4-5. 
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Figure 4-4: Partitioned panel (16 rectangles and 13 circles) 

 

Figure 4-5: Meshed Part (7031 elements) 

 

In part 4, the partitions are selected in order and they are assigned to a specific surface feature 

in the assembly toolset (script lines 63-96). Here, the partitions are used to define a new surface 

list in the assembly toolset. Each of these surfaces will have particular names which can be easily 

addressed in the script. This helps the program access each surface easily. The script line 97, 
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defines a row vector containing the name of each of the created surfaces. This vector can be then 

accessed easier in the numerical manipulation in a loop.  

Part 5 (script line 98) is for definition of the boundary conditions. Due to the fact that the 

panel is fully fixed, ENCASTER (U1=U2=U3=UR1=UR2=UR3=0) is selected as the boundary 

condition for all 4 edge surfaces of the panel. The boundary condition of the panel is illustrated 

in Figure 4-6.  

 

Figure 4-6: Fully fixed boundary condition 

The field output requests are defined in Part 6 (script line 99). The necessary field output of 

this model for this experiment is elastic strain components (EE). Furthermore, it is necessary to 

define the loading of the structure before job creation. The loading is defined in Part 7 (script 

lines 100_106). The loading of this experiment is modelled with distributed pressure type loads 

over the circular area. The modelling simulates the loading from the pressure load applied from 

the weights distributed over the circular area with radius of 16 mm.  Figure 4-7 indicates the 

loading of Load_Surf_1. 

The PYTHON script is developed in the way that iteratively runs the software in a batch using 

different random loads applied at each of the thirteen loading locations on the panel. For this 

purpose, loops are defined in the script to iteratively simulate various loading scenarios. The 

flowchart of this iteration in summary is that the model is defined in the first 6 parts and then a 
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loop is used to iteratively define loads over various loading locations as well as creating a job. 

Each of the jobs are submitted for analysis individually and the results are post processed and the 

necessary structural responses from the strain gauge locations are collected and saved in a 

specific file with a particular order.  

 

Figure 4-7: distributed Pressure load (Load_Surf_1) 

The main iteration loop starts from part 7 where the loading location is defined and a pressure 

load is applied on that location. In part 8 another loop is defined inside the previous one which 

enables it to have several simulations for each loading scenario. In other words, in part 7 for 

example, L1 is considered for loading and in part 8, the value of the load is updated in each 

iteration and a new job is created and then submitted for analysis. It is important to note that by 

the end of each analysis, ABAQUS saves all the results for the field output requests in an output 

file (*.odb) which can be accessed anytime later. On the other hand, when the job is completed 

by Python or by opening the desired *.odb file, all different output results can be viewed in 

ABAQUS without the need for submitting the job again each time. Figure 4-8 indicates the 

schematic of one simulation where the load is only applied at one loading location L1. 

In the last part of this script (script lines 115-132), each of the simulation *.odb output files 

are accessed and the desired results are read and saved in specific order in a text file. In this 
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experiment elastic strain components for particular element of the panel part are saved in a text 

file.  

FEA modelling is used to save time and cost compared to experimental analysis. However, 

still it is possible to save more using curve fitting for data generation. In order to clarify this, 

assume that a data set with 100 values between 1 and 100 is needed. One way is to randomly 

generate loads in each simulation and after 100 simulations, all the data is ready. Az alternative 

approach can do fewer simulations, which covers all the load range, and then fit a curve for each 

loading condition. An infinite number of data can then be read from the curves to generate the 

training data set.    

 

 

Figure 4-8: Schematic of a Large displacement experiment simulation result 
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4.2.2 Results  

As it was mentioned earlier in this chapter, in order to investigate the general behaviour of 

composite panel with attached strain gauges under large displacement, a specific test rig and 

equipment setup is employed and modelled in FEA as well. This experiment is performed under 

static loading conditions. Loading is achieved by applying gravity force of various dead weights.  

In this section, to ensure that the data acquisition system reading is acceptable, validity of 

assumptions is checked. For this purpose, a set of experiments were performed over several days 

to investigate repeatability of the system as well as the amount of drift it may experience in a 

normal room condition where it is located. The strain data was collected through bespoke data 

acquisition/ANN software linked to the NI cDAQ data acquisition system.  This software was 

developed by the author in MATLAB utilising NI Direct Data Exchange (DDE) protocols to 

acquire the strain data and the MATLAB Artificial Neural Network Toolbox capabilities. It is 

found that the data is experiencing a small drift over time (usually in just some microstrains in 

hours). In order to eliminate the effect of drifts after some hours of running the device, it is 

decided to introduce extra data acquisition when the system is unloaded before each loading.  

This data set is then employed as a reference for zeroing the strain readings for the unloaded 

system. The results indicated that there is no visible effect of drifts in strain reading anymore. In 

reality this can be avoided by employing other gauges like FBG sensors or more accurate DAQ 

systems with auto zeroing possibilities. Although the system was assumed to have almost no 

effect of drifts anymore, there have been other difficulties such as very small noise in data. Most 

of the readings experienced a maximum sudden change of up to 2 microstrains. Although, this 

noise is very small and should not be an issue in reality, it can be reduced by introducing an 

averaging algorithm in the data acquisition function in the program. However, in practice the 

structural responses to the applied loads have much bigger variations (in hundreds) rather than 

just one or two micro strain noise and it can be handled with a well-trained generalised network.  

Another thing to check is the repeatability of the data reading for the same loading condition. 

This is confirmed by having the same pattern of data for the same loading condition. For this 

purpose several data sets are acquired over a relatively long period indicating that the data 

acquisition gives acceptable repeatable readings over time. The validity of utilising FEA for 
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training data generation and the ANN validity and performance are detailed in the following 

sections. 

4.2.2.1 FEA Model Validation 

For this study, the finite element models are developed and simulated and a script function 

written in Python language was used to iteratively run the software in a batch using different 

random loads applied at each of the thirteen loading locations on the panel.   

The FEA model is initially validated to ensure that it represented the actual panel accurately.  

The validation was achieved by comparing strains collected experimentally with the FEA strains 

under the same loading conditions. Loads from 100 N to 800 N applied in 100 N increments 

were placed on the panel one at a time on locations L1 to L13.  The strain readings at locations 

S1 to S16 on the panel were saved for each test.  The same tests were performed with FEA to 

compare with the experimental results. Figure 4-9 and Figure 4-10 indicate comparison of FEA 

and experimental data for two example strain gauges (S6 and S10) when only location L13 is 

loaded. It can be illustrated that there is reasonable agreement between the strain readings of 

FEA tests and experimental tests.  The average percentage error between FEA and Experimental 

data for the selected strain gauges are less than 7% (Figure 4-11 and Figure 4-12).  These results 

indicate that the FEA model can be confidently used to simulate various loading conditions and 

to generate the required training input data. 

 

Figure 4-9: Comparison of FEA and Experimental data selected strain gauges (S6) 
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Figure 4-10: Comparison of FEA and Experimental data selected strain gauges (S10) 

 

Figure 4-11: Error between FEA and Experimental data selected strain gauges (S6) 

 

Figure 4-12: Error between FEA and Experimental data selected strain gauges (S10) 
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4.2.2.2 ANN Validation and Performance 

As mentioned in section 4.2.1.2, two different methods are employed to define the networks.  

Table 4-1 lists the major parameters of the network architecture used in the two methods. It was 

determined, through the testing of various network architectures that the optimum network 

(lowest SSE) for method one had two hidden layers with twenty neurons and used a tan-sig 

transfer function. The output layer had thirteen neurons (representing the thirteen loads to be 

estimated) and used a pure-lin transfer function. Similarly, it was determined that the thirteen 

networks for method two had one hidden layer each with fifty neurons and used a tan-sig transfer 

function. The output layer of each network had one neuron (each network estimates 

corresponding load of one location) and used a pure-lin transfer function. 

Table 4-1: ANN Architectures 

 1 Network with 16 

Strain input and 13 Load 

outputs 

13 Networks each 16 Strain 

input and 1 Load output 

Number of networks 1 13 

Architecture  Feed Forward Back-propagation 

Number of layers in each network 2 1 
Range of load estimation 24.525  –784.8 (N) 24.525  - 784.8 (N) 
No. of inputs (surface strains)  16 16 
No. of output layer neurons (loads) 13 1 
No. of each  hidden layer neurons  [20 20] [50] 

Number of training patterns  1040 1040 

Number of testing patterns  1040 1040 

 

In this study, SSE is used as performance indicator. Once the networks were trained, SSE 

values between the estimated loads and training load data were calculated.  Each network has an 

individual SSE value. This means that although the first method has only one SSE value, the 

second method had thirteen SSE values. Figure 4-13 indicates SSE performance of all thirteen 

networks each having sixteen inputs (all strain readings) and one output (load at one location) 



 

111 

 

generated from the second network architecture.

 

Figure 4-13: SSE Performance of network architecture 2 

In order to compare the two methods, the summation of all the networks SSE values in the 

second method is compared to the SSE value of the first method when only a network with 

sixteen inputs and thirteen outputs were used to train the system. As it is indicated in 

Figure 4-14, a better performance for the second method is achieved.  

 

 

Figure 4-14: Comparison of the SSE values of the two network architectures 
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In addition to having a better performance, the second method has more flexibility. This 

means having thirteen independent networks, for each load location a separate new network 

architecture and parameters can be employed.  For instance, the sum of the estimation 

performances of networks in the second method can be improved by changing the network 

architecture of those networks (eight and twelve from Figure 4-13) having relatively higher SSE 

values. As it is illustrated in Table 4-2, for locations eight and twelve, networks with two layers 

with twenty neurons are used.  The improvement in SSE for networks eight and twelve with the 

new architectures can be seen in Figure 4-15.  

Table 4-2: Optimum ANN Architecture (method 2) 

13 Networks each 16 Strain input and 1 Load output 

Number of networks 13 

Architecture  Feed Forward Back-propagation 

Number of layers in each network Most of it has 1 and for location 8 and 12 

are 2 

Range of loads  0 - 809.3 (N) 

Number of inputs (surface strains)  16 

Number neurons in output layer (normal loads) 1 

Number of neurons in in each  hidden layer  [50] or [20 20] 

Number of training patterns  1040 

Number of testing patterns  1040 

 

 

Figure 4-15: Flexibility of Second method in training stage 
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In order to investigate the capability of the ANN to estimate loads in real time, once the ANN 

is trained, new strain data from different loading cases are introduced to it. Having a good 

performance, the ANN should be able to estimate the external pressure loads that caused those 

structure responses. For instance, introducing new sets of strain data that have not been used to 

train the network, the ANN estimates the corresponding load data. Depending on how well the 

network is trained (the performance of the network), there will be error between the expected 

output data set and the network estimated output (loads).  Figure 4-16 depict a random example 

of estimated loads with the ANN for both FEA and experimental tests against the desired loads 

applied in tests when there is only one external load of 300 N at location L13 (data is used to 

train the network). Figure 4-17 and Figure 4-18 indicate other examples when there is only one 

external load of 200 N at location L1 and load of 200 N at location L7. For both sets of problem 

data it can be seen that the ANN can again estimate the load at the loaded locations with a high 

degree of accuracy. However, the error size of estimated loads with the ANN for experimental 

tests is slightly bigger. Such small error is normal and it could be from initial error between FEA 

data and experimental data, errors induced from the repeatability of the data acquisition system 

with resolution of +/- 0.1 microstrain as well as possible overtraining of the ANN. 

The estimated negative load values at the unloaded locations were due to the differences 

between the strain data collected to generate the training data and the collected problem strain 

data. Due to these errors, slightly different strain patterns are introduced to the ANN producing 

the errors in the estimated loads. The introduction of further noisy patterns in the training data set 

may reduce these small errors, indicating that further work could be carried out to improve the 

accuracy further. 
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Figure 4-16: ANN estimation for FEA and experimental data Vs. Expected real data for L13 

 

Figure 4-17: ANN estimation for FEA and experimental data Vs. Expected real data for L1 
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Figure 4-18: ANN estimation for FEA and experimental data Vs. Expected real data for L7 
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In this study, a comparison of the ANN loads with the actual applied loads indicated a very 

good performance of the methodology. This was achieved in real-time, providing an accurate 

load history. This potentially makes the system ideal for solving many classes of complex 

engineering problem that require load monitoring.  

It is proposed that the ANN methodology, with further research and development, could be 

utilised for the quantification of in-service, transient loads in real-time acting on the craft from 

the craft‘s structural response (strain response to load). This would provide valuable information 

to influence future craft design.  In order to fully evaluate the proposed methodology for in-

service load monitoring of marine structures the following areas require investigation: 

 The behaviour of marine structures under transient load conditions (dynamic load is 

applied). 

 The effect of size of the structure on the ANN estimation accuracy. 

 Validation of the methodology on a craft in-service. 

Finally, a GUI should be developed allowing control of various parameters of the data 

acquisition and load monitoring system, as well as graphical display in real-time. 
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4.3 Predicting Impact Loads Using Artificial Neural Networks 

So far, it is shown that the inverse problem approach can be used to estimate the static loads 

applied on a marine composite panel from the strain measurements when behaving both linearly 

and nonlinearly. A comparison of the ANN loads with the actual applied loads indicated a very 

good performance of the methodology. However, it was discussed that more investigation is 

necessary to further evaluate the suitability of the proposed methodology for in-service load 

monitoring of marine structures under transient load conditions such as slamming. In brief, 

transient or impact loading is important due to the fact that they can cause damage and 

delamination. Furthermore, the impulses from an impact are substantially larger than static loads 

which cause larger displacement and excitation of the hull structure and leads to shock transfer 

into the hull and passengers which can also affect the stability of the craft. For reasons like these, 

it is desirable to link the effect of impact on the hull to the knowledge of the dynamic or transient 

load intensities and their locations. That is why it is needed to develop a test that detects impact 

and the impact loads are substantially larger than static loads causing larger displacement. This 

section reports on the research undertaken to further develop the ANN methodology for 

quantifying pressure loads on a marine composite panel under transient load conditions such as a 

drop test from strain measurements. For this purpose, an experiment is designed and performed 

to further develop the ANN methodology for quantifying pressure loads on a marine composite 

panel under transient load conditions from strain measurements (see section 2.4.3 for equipment 

set up). In this study, the impact loads (the cause/output) on a composite panel are quantified by 

acquiring repeatable peak strain responses (the effect/input) to these loads from the panel. 

4.3.1 Methodology 

The methodology employed to evaluate the suitability and performance of utilising an ANN 

as an inverse problem solver for quantifying the transient load applied to the composite panel is 

presented in this section. The first stage of the investigation was to design an impact load 

quantification methodology for the panel utilising an ANN. In the second stage the load 

quantification methodology was validated by comparing loads estimated by the ANN with the 

known loading cases of the panel.  



 

118 

 

4.3.1.1 Simulation Setup and Generation of ANN Training Data 

The structure under consideration is described earlier in section 2.4.3. Loading in this 

experiment is achieved by simulating a free fall impact of a rigid mild steel cylinder (length 

0.103 m, diameter of 0.02 m and mass of 0.254 kg) normal to the panel surface at 13 locations 

(L1-13) from various heights.  For this study, the finite element models are developed and 

simulated in ABAQUS 6.10-1 (SIMULIA). The panel has 7031 elements and the cylinder has 40 

elements. Mesh type used is hexahedral isoparametric.  

Generating the required training data sets may be through experimental tests or the use of 

simulation such as FEA. However, having a validated FEA model would dramatically save in 

time and costs compared to the experimental tests. In this study, an FEA model is developed and 

validated against experimental results. Employing a Python script in the FEA model allows 

automatic generation of various loading conditions by changing the velocity of cylinder just 

before impact. The structural response of the panel in terms of strain readings and velocity values 

for specific locations are evaluated.  

4.3.1.2 PYTHON Script of Drop Test Experiment 

This section describes the script written in PYTHON language for automatic modelling and 

simulation of various loading scenarios used in the drop test experiment. The panel model 

employed for this test is the same one that has already been validated with static loads. 

Figure 4-19 indicates a flow diagram of this code. For clarification purposes, this script is 

divided in several parts as well and can be accessed in Appendix 2. The script is developed in the 

way that iteratively runs the software in a batch using different random heights which is used to 

calculate the velocity of cylinder just before impact. The cylinder position can be changed in 

each of the iterations so that the impact can happen at each of the thirteen loading locations on 

the panel. In this script, loops are defined to iteratively simulate various impact loading 

scenarios. The flowchart of this iteration in summary is that the model is defined in first 4 parts 

and then a loop is used to iteratively define loads over various loading locations as well as 

creating a job. Each of the jobs are submitted for analysis individually and the results are post 

processed and the necessary structural responses from the strain gauge locations are collected 

and saved in a specific file with a particular order.  
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Figure 4-19: Flowchart of PYTHON Script of Drop Test Experiment 
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As in the previous script, the first part is essential to recall different libraries in the 

programme (script lines 1-14). In Part 2, modelling of the panel and the cylinder are defined. The 

script lines 15-57 define the test structure under consideration which was a 1 m
2
 GFRP 

composite panel and a mild steel cylinder. Figure 4-20 and Figure 4-21 indicate the modelled 

panel and cylinder as a part in ABAQUS. In this part partitions are defined on the panel surface 

as well. After a part is partitioned, different properties can be assigned to or read from the 

resulting regions. For instance, here this helps to define different mesh values to different regions 

of the panel as well as having the same sized element for all the strain locations. As is indicated 

in the Figure 4-20, several rectangular and circular partitions are defined on the panel part.  

 

Figure 4-20: Panel part in modelling of the drop test 
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Figure 4-21: Cylinder part in modelling of the drop test 

In part 3 (script lines 58-72), the material properties as well as the sections are defined, related 

together and the assembly instance is defined. In this part, the panel part is meshed with seeds 

having approximate global seed size of 0.05 and the mesh element type used is hexahedral 

isoparametric. After meshing the part, 7031 elements are generated on part.  Furthermore, the 

cylinder part is meshed with seeds having approximate global seed size of 0.01 and the mesh 

element type used is hexahedral isoparametric. After meshing the part, 40 elements are generated 

on the part. It should be noted that these global seed sizes are selected based on simple mesh 

convergence studies.   The meshed parts as well as all the resulting elements are illustrated in 

Figure 4-22 and Figure 4-23. 
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Figure 4-22: Panel part is meshed and has 7031 elements 

 

Figure 4-23: Cylinder part is meshed and has 40 elements 

 

In part 4 (script lines 73-84), the dynamic step and field output requests are defined. The 

necessary field output of this model for this experiment is calculated in 100 increments in just 

0.02 (dynamic step time) seconds after impact. Furthermore the panel boundary conditions are 

defined in this part. Due to the fact that the panel is fully fixed, ENCASTER 

(U1=U2=U3=UR1=UR2=UR3=0) is selected as the boundary condition for all 4 edge surfaces 
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of the panel. The boundary condition of the panel is illustrated in Figure 4-24. In this part, the 

contact properties between the panel and the cylinder parts are defined. In addition an initial 

velocity is defined for the cylinder. This is the velocity of the cylinder just before impact. 

However the value of this velocity is updated later in the loops of the script based on the desired 

free fall height.  

 

Figure 4-24: Fully Fixed Boundary condition for the panel edges 

The main iteration loop starts from part 5 (script lines 85-97), where the loading location and 

the height of cylinder are defined and an impact happens at that location. The impact is defined 

in each iteration based on the value of the free fall height defined in script line 92-93. The energy 

from the falling cylinder is transferred to the panel during the impact. The modelling simulates 

the loading from the impact as well as the system response to the impact.  Figure 4-25 indicates 

the defined velocity of the cylinder just before impact.  
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Figure 4-25: Velocity just before impact is calculated for specific free fall height of the cylinder 

Once the value of the height is updated in each iteration and a new job is created and then will 

be submitted for analysis. Figure 4-26 indicates the schematic of one simulation where the load is 

only applied at one loading location. 

 

Figure 4-26: Schematic of impact simulation results 
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In the last part of this script (script lines 98-121), each of the simulation *.odb output files are 

accessed and the desired results are read and saved in specific order in a text file. In this 

experiment normal strain, elastic strain and displacement components for particular elements of 

the panel part are saved in a text file. Furthermore, the velocity of the cylinder in each interval is 

saved as well. 

4.3.1.3 ANN Architecture/Topology 

In this study a common Back-propagation, ANN architecture is used and trained employing 

MATLAB Artificial Neural Network toolbox capabilities. The network has an input layer with 

16 neurons (as there are 16 strain readings), output layer with13 neurons (as there are 13 loading 

positions) and some hidden layers each having any number of neurons. An iterative process was 

used to determine the optimum network architecture for the panel based on the performance of 

each network tested. In this study, three hidden layers each having 20 neurons was found to be 

the optimum. 

4.3.1.4 ANN Validation and Performance 

The validity and the performance of the ANN method were evaluated by comparing the load 

estimated by the ANN with known loads applied to the panel (problem data). Experimental 

problem data is the strain data from the same 16 nodes on the panel while it is being loaded. The 

Sum of Squared Errors (SSE) between a known target and ANN estimation is a common 

network performance indicator. For this validation study, new loading cases simulated by FEA 

and corresponding load and strain data is employed to evaluate ANN estimation performance 

when it is introduced with new data sets. 

4.3.2 Results 

A script written in Python language is used to model the structure and simulate various 

loading scenarios up to 0.02 seconds after impact. Since this test is under high loads, large 

displacements analysis is used to simulate the model using a nonlinear solver.  Furthermore, the 

structural response of the panel in terms of strain as well as the cylinder velocity over the 

simulation time is saved to be used to generate training data sets. In order to validate the FEA 
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model against the real structure, the panel is loaded from 100 to 800 N in 100 N increments at all 

13 load locations (L1 – L13) separately. The strain readings at all 16 locations (S1 - S16) on the 

panel are saved for each test. The same tests are performed with FEA to compare the results with 

the experimental results. For instance, Figure 4-27 indicates that for loading only location L13, 

there is reasonable agreement between the strain curves (S7 and S11) of the FEA model and 

experimental tests.  

 

Figure 4-27: FEA Vs. experimental test results 

Once the model is validated, it can be simulated for various loading conditions to generate the 

required data. Having strain readings from the FEA model at selected nodes S1-16, the 

corresponding peak strain value of the first impulse is used as input training data. Figure 4-28 

shows example FEA strain data collected from the gauge S1 when the impact location was L1. 
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Figure 4-28: Typical FEA strain data during the impact for gauge S1 

In order to calculate the impact force of the first impulse, Equation 17 is used where    is the 

velocity of cylinder just before impact and    is its velocity after impact.    is the duration of 

peak impulse. Impact forces of each loading cases are saved and utilised as training data set 

targets.  

  
          

   
                                                                           (Eq. 17) 

In this study 16 strain readings (inputs) and 13 load readings from 13 locations (outputs) are 

needed to have one set of training data. Enough training sets of 13 various loads at each location 

on the panel and the resultant 16 strains caused by these loads were required to find the 

relationship between the input/output data. For each loading location (L1 - L13), 75 training data 

sets are generated by loadings from 600 N to 6071N making a total of 975 training data sets from 

FEA. Loadings are changed based on the velocity of the cylinder just before impact. Introducing 

the training data to the trained network, the ANN output should be as similar as possible to the 

impact load set that the ANN has been trained with. Figure 4-29 and Figure 4-30 indicate some 

random examples of estimated impact load data by the ANN compared with the expected values 

for impact locations L3 and L9. It can be noticed that there is reasonable agreement between the 

scatters.  
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Figure 4-29: Estimated impact load data by ANN Vs. expected values from training data (L3) 

 

Figure 4-30: Estimated impact load data by ANN Vs. expected values from training data (L9) 
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introduced to the previously trained ANN and the corresponding estimated load values are 

calculated.  Figure 4-31 and Figure 4-32 show some random examples of estimated impact load 

data by ANN and is compared with the expected values. 

 

Figure 4-31: Estimated impact load data by ANN Vs. expected values from test data (L1) 

 

Figure 4-32: Estimated impact load data by ANN Vs. expected values from test data (L6) 
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4.3.3 Conclusion 

The results presented in this section show that the inverse problem method, utilising an ANN, 

can accurately estimate the position and magnitude of 13 impact loads applied to the composite 

panel from the captured strain data of 16 nodes spread over the panel surface. The results 

indicate that the system always converges and the ANN can be trained using FEA data to solve 

inverse problems and accurately estimate the impact loads. Once the ANN is sufficiently trained 

it can be utilised to estimate the output in real-time where new inputs (problem data) are 

presented and processed by the ANN and impact loads are estimated. 

4.4 Summary  

The findings from both experiments of this chapter indicate that should the structural response 

have a nonlinear behaviour or transient nature, the ANN can be trained employing FEA data. In 

the first experiment of this chapter, it is shown that that the inverse problem method, utilising an 

ANN, is capable of estimating magnitude and position of the static pressure loads on a marine 

composite panel under large displacement from nonlinear strain measurements. The comparison 

of the ANN loads with the actual applied loads indicated a very good performance of the 

methodology. Furthermore, the results from the drop test show that the system always converges 

and the ANN can be trained using FEA data to solve inverse problems and accurately estimate 

the impact loads. 
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Chapter 5. DISCUSSION, EVALUATION, FINAL CONCLUSION AND 

FUTURE RESEARCH  

 

This chapter is a summary and evaluation of the topics and results outlined in this thesis. 

Furthermore, future research is described 
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5.1 Summary and Discussion 

The Author hypothesised that ANN can be employed to find an inverse solution to predict 

hydrodynamic loads applied on marine structures which may be used to inform designers in the 

stage of preliminary ship design. In this research, the aim was to employ and investigate the 

ability of this approach to immediately predict/estimate the load by analysing any similar new 

response data introduced to the solver. The suitability of the proposed methodology could be 

indicated by successful prediction of the applied loads.  

In order to investigate the applicability of the new system in online load monitoring of marine 

structures such as Rigid Inflatable Boats (RIB), some critical objectives were recognised that 

have not been investigated before and are novel. To answer the research question and investigate 

the research objectives, the performance of the load monitoring system (in terms of MSE or SSE) 

is evaluated by performing some experimental tests by means of applying this monitoring system 

on a marine structure representative such as composite panel. The developed system used the 

surface strains from the structure and computed the weight/forces by ANN trained using FEA/ 

experimental data. Several tests were performed and experimental tests were carried out to 

validate the results.  

 The first objective of this research was to investigate the general behaviour of a marine 

structure representative with attached strain gauges under small displacement. In order to achieve 

this, the small displacement experiment is designed and performed in which a composite panel 

representative of a boat‘s hull structure is instrumented and calibrated to function as a complex 

load cell capable of measuring external normal loads. The panel is divided into 16 patches (one 

strain gauge rosettes placed in middle of each patch) and 12 loading positions are picked to be 

loaded utilising weights. Structure response is collected with a data acquisition system directly to 

the written programme in MATLAB. Generated superimposed data from these readings are used 

to train an Artificial Neural Networks. A satisfactory trained ANN can be used as an alternative 

analytical tool on other new collected data. New structural response as inputs can be presented to 

the network to predict load data as outputs. Preliminary results from static loading of a composite 

panel indicated very promising results with a very low error margin. The results were 

encouraging and lead to the Hybrid Inverse Problem Engine.   
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However, for an ideal system, the number of sensors should be minimised to reduce the time 

to train the system, cost and weight. To achieve another objective of the research, an 

optimisation experiment is designed and carried out in which the small displacement test is 

optimised in terms of the required sensors for accurate load estimation. The optimisation results 

indicated an area of 1    with 12 loading positions can be efficiently monitored with only 4 

rosettes attached close together in the middle of the panel.  

Since more research was needed to investigate the effect of higher loads and non-linearity, 

other experiments were performed having a larger load range. Higher loads lead to large 

displacement in panels and non-linearity cannot be ignored. Another objective of this research 

was to investigate the general behaviour of a marine structure representative with attached strain 

gauges under large displacement. In order to achieve this objective, the large displacement 

experiment is designed and performed.  In large displacement cases, since the system responses 

to applied loads were not linear anymore, superposition could not be employed to generate 

training data. To save in costs and time, a FEA model was developed in ABAQUS and validated 

using experimental data. The validated model was then employed to simulate various nonlinear 

loading conditions. In this study, two different ANN structures capable of relating the load data 

set to the corresponding strain data set were described and the performances were compared. The 

results from this experiment indicate that that the inverse problem method, utilising an ANN, is 

capable of estimating magnitude and position of the static pressure loads on a marine composite 

panel under large displacement from nonlinear strain measurements. Therefore, this novel load 

monitoring system can also be utilised for load monitoring of marine structures effectively even 

when the relation between the applied loads and the structural responses are nonlinear. 

In addition to static loading conditions, another objective of the research was to perform more 

investigations on the suitability of the proposed methodology for in-service load monitoring of 

marine structures under transient load conditions such as slamming.  This objective is achieved 

by satisfactory results of the drop test experiment designed and performed to further develop the 

ANN methodology for quantifying pressure loads on a marine composite panel under transient 

load conditions from strain measurements. In this study, the impact loads (the cause/output) on a 

composite panel were quantified by acquiring repeatable peak strain responses (the effect/input) 
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to these loads from the panel. The training data were generated employing a validated FEA 

model (developed in ABAQUS) and used to train the networks. The results indicate that the 

system can be trained to relate applied loads and structural responses and accurately estimate the 

impact loads. 

 The last objective of this research was to develop a GUI which can be used easily to develop 

a load monitoring system. This objective is also achieved by developing a GUI in MATLAB 

allowing control of various parameters of the data acquisition and load monitoring system, as 

well as graphical display in real-time. 

In summary, according to the project time and budget constraints the research objectives were 

defined and investigated. The results of the experiments indicated that these objectives are 

achieved satisfactorily and the research question is answered. It is concluded that the ANN 

methodology could be utilised for the quantification of in-service, transient loads in real-time 

acting on the marine structure from its structural response (strain response to load). This would 

provide valuable information to influence its future design. Furthermore, the inherent advantages 

of the load monitoring system using ANN as an inverse method over other methods make the 

load estimation possible in real time without the need for information about the material and the 

geometry of the marine structure. The ability to measure the actual load history of a marine 

structure in-service would enable the designer to validate the load estimation and structural 

design tools used during the design stage.  This would lead to the development of more optimal 

structure designs for this type of marine structure. The operational safety of the craft can also be 

improved by having a real-time load monitoring system that is able to detect any degradation of 

the structural integrity and defects within the structure.  Providing an accurate load history 

potentially makes the system ideal for solving many classes of complex engineering problem that 

require load monitoring.  

5.2 Evaluation of the proposed In-Service Load Monitoring System 

It is very important to evaluate the outcomes of this research, which is the application of hybrid 

methods for in-service monitoring of marine structures. The main aim of this study was an 

investigation into computing the loads applied on a composite panel as a marine structure 

representative using artificial intelligence. Since during the term of this research ANN, FEA, 
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experimental techniques were employed frequently, the evaluation of the proposed in-service load 

monitoring system was broken into the following sections: Artificial Neural Network, Finite 

Element Analysis, and experimental techniques. 

5.2.1 Experimental Set-up 

During the course of this research, a series of novel experiments were designed and various 

quantitative tests were performed. In order to investigate the behaviour of marine structures and 

the application of the methodology, a 1    Glass Reinforced Fibre Polymer (GRFP) composite 

panel as a representative of panels in a boat is employed. The panel is chosen as a representative 

of a marine structure due to the fact that marine crafts are manufactured from a number of flat 

panels attached to the hull frames.  

The experiments of the project employed two different data acquisition systems. Results 

gained from Microlink data acquisition system used for the small displacement test have some 

noises which have also affected the accuracy of the results. Although care was taken to reduce 

the error, still this system was not as accurate as the new standard NI cDAQ data acquisition 

system used for other tests. Further to this it was not possible to use the Microlink data 

acquisition system to perform dynamic tests. This was due to the fact that it has very slow data 

acquisition speed and high level of noise in data.  

The attachment process of the strain gauges is very time consuming and demands related 

experience. Due to the fact the strain gauges are very small and delicate objects; extra caution is 

needed to avoid possible misplacement and breakage. However, many types of strain gauges are 

commercially available and can be employed to save time. Loading the panel was achieved 

manually in this research which was very time consuming and hazardous. Possible alternatives 

could be design and manufacturing of a specific device to automatically apply loads.    

The final load monitoring system from this approach requires wide general knowledge of 

engineering from different fields including preparing the test set up, operating with the FE 

software, connecting strain gauges, training an ANN, working with different technical devices 

such as data acquisition, etc. It is not possible to leave all the technical work to one operator or 

engineer. Despite valid results gained by the author from different tests, the system is not ready 
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to be used commercially yet. The system should be designed in such a manner that it can be used 

by an operator with a short training course.  

5.2.2 Artificial Neural Network 

In this study due to the lack of a clearly stated mathematical solution or algorithm the ANN 

was considered as the most suitable technique. ANN can provide suitable solutions for problems 

with a high degree of non-linearity and high dimensionality. ANN also provides accurate 

solutions for noisy, complex, imprecise, imperfect and/or error prone sensor data. ANN can 

provide accurate results for some problems that cannot be analysed using standard techniques. 

When an ANN is trained the output of the system can be computed in a fraction of second which 

make it suitable for dynamic and real time analysis.  

The ANN was widely used during the course of this project. Despite the encouraging results 

gained by ANN, it has its own limitations. These limitations can be summarised as follows: 

 Training an ANN requires producing sufficient amounts of training and testing patterns, 

which is a time consuming and expensive procedure.  

 In general, when employing ANNs, no unique solution or general design theory exists. 

Generally it is not guaranteed that an ANN will converge to its global minimum or 

occasionally even will converge at all. Training an ANN requires consideration about the 

local and global minimas as well as poor training.  

 There is no standard regulation to select the most efficient network's parameters such as 

learning weight, momentum parameter, transfer function or even the number of training and 

testing patterns.   

 It is difficult to determine which ANN gives the best solution when considering several well-

trained ANNs for a batch of training and testing patterns.  

 Obtaining a low performance value for training and testing patterns requires a high effort. It 

is not always possible to consider a low pre-selected performance value and reach that just by 

continuing the training procedure. 

 May be too slow in the case of large-scale problems when common serial processing digital 

computers are employed.  



 

137 

 

 The number of inputs to the ANN needs to be equal or greater than the number of outputs.  

Since there is no general training rule for an ANN and the training process is a relative 

process according to the training data set of a particular problem, it is very probable that the 

network results may not be satisfactory on the first design pass. In this situation, it is necessary to 

redo one or more of the process steps repeatedly until better results are achieved. When the 

training process results in the network which is not accurate enough, several approaches are 

highly recommended. One way is to initialise the network again and perform the training again. 

Initialising a network leads to new weights and biases. When the network parameters are 

changed, it might result in different solutions. Another solution is to increase the number of 

hidden neurons, usually 20 or more. The reason is that the network will have more flexibility 

having a larger numbers of neurons in the hidden layer. It is recommended to increase the layer 

size gradually. Training a network with too large a hidden layer is more time consuming and 

may cause the network to be under-characterised as well. This means that the network has more 

parameters to optimise than there are data vectors to constrain them. The third popular approach 

is to try a different training function. Furthermore, different training data can be tried to train the 

network. Additional data sets can be used in the training data set or in contrast redundant or 

challenging data may be removed from the training data set. Presenting a network with 

additional data is expected to produce a more general network that can handle new data well. 

5.2.3 Finite Element Analysis and Experimental Techniques 

Finite element analysis (FEA) is widely used in this research for predicting the responses of 

the model to environmental factors such as velocity, force and strain values. The process starts 

with the creation of a geometric model, which is then divided into smaller shapes connected at 

specific nodal points. Finally, the material behaviour and boundary conditions are applied to 

each element, and the analysis is performed.  

Despite the advantage of FEA for fast stress/strain/deflection computing it has its own 

limitations. Usually for simplistic models, FE results are close to those obtained from the 

experiments. When the subject is complicated not only modelling but also the validation of FEA 

results is a very difficult task.  In this research modelling the composite panel using FEA had 
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some limitations which make the validation difficult. This is due to the fact that modelling 

complex geometries and new materials such composites is more difficult as well as time and 

labour intensive. Sometimes such modelling may have results which show poor repeatability 

behaviour of the system and a poor correlation between the FEA and experiential strains. 

Considering these characteristics of the system it is very difficult or sometimes impossible to use 

the standard techniques, because similar loads do not produce similar strains in FEA models with 

even slightly different parameters (such as mesh type).  

Due to the manufacturing and budget restriction, it was not possible to manufacture a uniform 

thickness panel. From the other point of view, it was difficult to compare the FEA and 

experimental results due the varying thickness of the actual panel. As the results of using an even 

thickness for the panel, some error (less than 7 percent) between the FEA and experimental 

results were obtained. However, the panel modelling was a simple task compared to the 

modelling of the whole marine structure like a boat or ship. 

5.3 Final Conclusion 

This research has explored relevant aspects of the application of hybrid combinations of 

ANN, FEA and experimental techniques both in direct and inverse studies. The hybrid technique 

was found to produce solutions to problems that existing measurement/computing techniques 

could not solve. This technique can provide more information faster than standard existing 

techniques without the need for knowledge of material/geometrical properties. The findings 

presented in this study should stimulate future research in the area of in-service load monitoring 

of marine structures (internal structures, hull, panels, etc.) and provides a powerful tool to 

determine the position of the high loads or impact areas and information regarding the 

rectification required for a more efficient design of the marine structure to produce lighter, faster 

and more durable marine structures. 

5.4 Future Research 

The final aim of this research could be developing a load monitoring system capable of in 

service load monitoring of various marine structures. The future of this research should be to 
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develop a system which is commercially available and easy to use for a variety of marine 

structures. To achieve this goal several considerations should be made:  

1) Developing a general and standard routine to define the loading circumstances of the marine 

structures in real life time.  

2) Investigate in possibility of employing re-attachable strain gauges. This reduces the technical 

work, time and cost radically. 

3) Developing a system which analyses the marine structure using identified load sensitive areas 

to estimate the best position of strain gauges. 

4) Designing an automatic and repeatable load applicator. Using this device, it is possible to 

apply different loads to different positions of the marine structure considering load sensitive 

and tolerant areas. 

5) Validation of methodology using a real marine structure such as a boat in sea condition. 

6) Optimisation of the quantity of sensors quantity and investigate the effects of network 

training parameters for a specific marine structure. 

7) Full investigation of the effect of geometry size, DAQ system and quantity and type of 

gauges in load estimations. 

8) Further investigations in how to turn this load monitoring system into a commercial system.  
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Appendices 

Appendix 1: PYTON Script of Large Displacement Experiment   

Part 1 

1. # -*- coding: mbcs -*- 

2. import sys,math 

3. import visualization 

4. from part import * 

5. from material import * 

6. from section import * 

7. from assembly import * 

8. from step import * 

9. from interaction import * 

10. from load import * 

11. from mesh import * 

12. from job import * 

13. from sketch import * 

14. from visualization import * 

15. from connectorBehavior import * 

Part 2 

16. mdb.models['Model-1'].ConstrainedSketch(name='__profile__', sheetSize=.200) 

17. mdb.models['Model-1'].sketches['__profile__'].rectangle(point1=(.500, .500),  

    point2=(-.500, -.500)) 

18. mdb.models['Model-1'].Part(dimensionality=THREE_D, name='Part-1', type= 

    DEFORMABLE_BODY) 

19. mdb.models['Model-1'].parts['Part-1'].BaseSolidExtrude(depth=.005, sketch= 
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    mdb.models['Model-1'].sketches['__profile__']) 

20. del mdb.models['Model-1'].sketches['__profile__'] 

21. mdb.models['Model-1'].ConstrainedSketch(gridSpacing=.07071, name='__profile__',  

    sheetSize=2.82844, transform=mdb.models['Model-1'].parts['Part-

1'].MakeSketchTransform( 

    sketchPlane=mdb.models['Model-1'].parts['Part-1'].faces[4],  

    sketchPlaneSide=SIDE1,  

    sketchUpEdge=mdb.models['Model-1'].parts['Part-1'].edges[4],  

    sketchOrientation=RIGHT, origin=(0.0, 0.0, .005))) 

22. mdb.models['Model-1'].parts['Part-1'].projectReferencesOntoSketch(filter= 

    COPLANAR_EDGES, sketch=mdb.models['Model-1'].sketches['__profile__']) 

23. mdb.models['Model-1'].sketches['__profile__'].CircleByCenterPerimeter(center=(0.0,    

0.0), point1=(0.0, .016)) 

24. mdb.models['Model-1'].sketches['__profile__'].CircleByCenterPerimeter(center=(-0.375, 

0.250), point1=(-0.375, 0.266)) 

25. mdb.models['Model-1'].sketches['__profile__'].CircleByCenterPerimeter(center=(-0.375, 

-0.250), point1=(-0.375, -0.266)) 

26. mdb.models['Model-1'].sketches['__profile__'].CircleByCenterPerimeter(center=(-0.375, 

0.0), point1=(-0.375, 0.016)) 

27. mdb.models['Model-1'].sketches['__profile__'].CircleByCenterPerimeter(center=(-0.125, 

0.250), point1=(-0.125, 0.266)) 

28. mdb.models['Model-1'].sketches['__profile__'].CircleByCenterPerimeter(center=(-0.125, 

0.0), point1=(-0.125, 0.016)) 

29. mdb.models['Model-1'].sketches['__profile__'].CircleByCenterPerimeter(center=(0.375, 

0.250), point1=(0.375, 0.266)) 



 

153 

 

30. mdb.models['Model-1'].sketches['__profile__'].CircleByCenterPerimeter(center=(0.375, 

0.0), point1=(0.375, 0.016)) 

31. mdb.models['Model-1'].sketches['__profile__'].CircleByCenterPerimeter(center=(0.125, 

0.250), point1=(0.125, 0.266)) 

32. mdb.models['Model-1'].sketches['__profile__'].CircleByCenterPerimeter(center=(-0.125, 

-0.250), point1=(-0.125, -0.266)) 

33. mdb.models['Model-1'].sketches['__profile__'].CircleByCenterPerimeter(center=(0.125, 

0.0), point1=(0.125, 0.016)) 

34. mdb.models['Model-1'].sketches['__profile__'].CircleByCenterPerimeter(center=(0.125, -

0.250), point1=(0.125, -0.266)) 

35. mdb.models['Model-1'].sketches['__profile__'].CircleByCenterPerimeter(center=(0.375, -

0.250), point1=(0.375, -0.266)) 

36. mdb.models['Model-1'].sketches['__profile__'].rectangle(point1=(-0.1285, -0.3765), 

point2=(-0.1215, -0.3735)) 

37. mdb.models['Model-1'].sketches['__profile__'].rectangle(point1=(-0.1285, 0.3765), 

point2=(-0.1215, 0.3735)) 

38. mdb.models['Model-1'].sketches['__profile__'].rectangle(point1=(0.1285, -0.3765), 

point2=(0.1215, -0.3735)) 

39. mdb.models['Model-1'].sketches['__profile__'].rectangle(point1=(0.1285, 0.3765), 

point2=(0.1215, 0.3735)) 

40. mdb.models['Model-1'].sketches['__profile__'].rectangle(point1=(-0.3785, -0.3765), 

point2=(-0.3715, -0.3735)) 

41. mdb.models['Model-1'].sketches['__profile__'].rectangle(point1=(-0.3785, 0.3765), 

point2=(-0.3715, 0.3735)) 

42. mdb.models['Model-1'].sketches['__profile__'].rectangle(point1=(0.3785, -0.3765), 

point2=(0.3715, -0.3735)) 

43. mdb.models['Model-1'].sketches['__profile__'].rectangle(point1=(0.3785, 0.3765), 

point2=(0.3715, 0.3735)) 
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44. mdb.models['Model-1'].sketches['__profile__'].rectangle(point1=(-0.1285, -0.1265), 

point2=(-0.1215, -0.1235)) 

45. mdb.models['Model-1'].sketches['__profile__'].rectangle(point1=(-0.1285, 0.1265), 

point2=(-0.1215, 0.1235)) 

46. mdb.models['Model-1'].sketches['__profile__'].rectangle(point1=(0.1285, -0.1265), 

point2=(0.1215, -0.1235)) 

47. mdb.models['Model-1'].sketches['__profile__'].rectangle(point1=(0.1285, 0.1265), 

point2=(0.1215, 0.1235)) 

48. mdb.models['Model-1'].sketches['__profile__'].rectangle(point1=(-0.3785, -0.1265), 

point2=(-0.3715, -0.1235)) 

49. mdb.models['Model-1'].sketches['__profile__'].rectangle(point1=(-0.3785, 0.1265), 

point2=(-0.3715, 0.1235)) 

50. mdb.models['Model-1'].sketches['__profile__'].rectangle(point1=(0.3785, -0.1265), 

point2=(0.3715, -0.1235)) 

51. mdb.models['Model-1'].sketches['__profile__'].rectangle(point1=(0.3785, 0.1265), 

point2=(0.3715, 0.1235)) 

52. mdb.models['Model-1'].parts['Part-1'].PartitionFaceBySketch(faces= 

mdb.models['Model-1'].parts['Part-1'].faces.getSequenceFromMask(('[#10 ]',  

    ), ), sketch=mdb.models['Model-1'].sketches['__profile__'], sketchUpEdge= 

    mdb.models['Model-1'].parts['Part-1'].edges[4]) 

53. del mdb.models['Model-1'].sketches['__profile__'] 

Part 3 

54. mdb.models['Model-1'].Material(name='Material-1') 

55. mdb.models['Model-1'].materials['Material-1'].Density(table=((1786.0, ), )) 

56. mdb.models['Model-1'].materials['Material-1'].Elastic(table=((21220000000, 0.128), )) 

57. mdb.models['Model-1'].HomogeneousSolidSection(material='Material-1', name= 

58. 'Section-1', thickness=None) 
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59. mdb.models['Model-1'].rootAssembly.DatumCsysByDefault(CARTESIAN) 

60. mdb.models['Model-1'].rootAssembly.Instance(dependent=ON, name='Part-1-1',  

part=mdb.models['Model-1'].parts['Part-1']) 

61. mdb.models['Model-1'].parts['Part-1'].seedPart(deviationFactor=0.1, size=0.05) 

62. mdb.models['Model-1'].parts['Part-1'].generateMesh() 

Part 4 

63. mdb.models['Model-1'].rootAssembly.regenerate() 

64. mdb.models['Model-1'].parts['Part-1'].SectionAssignment(offset=0.0,  

    offsetField='', offsetType=MIDDLE_SURFACE, region=Region( 

    cells=mdb.models['Model-1'].parts['Part-1'].cells.getSequenceFromMask( 

    mask=('[#1 ]', ), )), sectionName='Section-1', thicknessAssignment= 

    FROM_SECTION) 

65. mdb.models['Model-1'].rootAssembly.regenerate() 

66. mdb.models['Model-1'].StaticStep(name='Step-1', nlgeom=ON, 

previous='Initial',initialInc=0.1, minInc=5e-5, maxInc=0.1) 

67. mdb.models['Model-1'].rootAssembly.Instance(dependent=ON, name='Part-1-1',  

    part=mdb.models['Model-1'].parts['Part-1']) 

68. mdb.models['Model-1'].rootAssembly.Surface(name='Surf-1', side1Faces=    

mdb.models['Model-1'].rootAssembly.instances['Part-1-1'].faces.getSequenceFromMask(    

('[#4000000 ]', ), )) 

69. mdb.models['Model-1'].rootAssembly.Surface(name='Surf-2', side1Faces=    

mdb.models['Model-1'].rootAssembly.instances['Part-1-1'].faces.getSequenceFromMask( 

('[#1000000 ]', ), )) 

70. mdb.models['Model-1'].rootAssembly.Surface(name='Surf-3', side1Faces=    

mdb.models['Model-1'].rootAssembly.instances['Part-1-1'].faces.getSequenceFromMask(    

('[#200000 ]', ), )) 
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71. mdb.models['Model-1'].rootAssembly.Surface(name='Surf-4', side1Faces=    

mdb.models['Model-1'].rootAssembly.instances['Part-1-1'].faces.getSequenceFromMask(    

('[#800000 ]', ), )) 

72. mdb.models['Model-1'].rootAssembly.Surface(name='Surf-5', side1Faces=    

mdb.models['Model-1'].rootAssembly.instances['Part-1-1'].faces.getSequenceFromMask( 

('[#10000000 ]', ), )) 

73. mdb.models['Model-1'].rootAssembly.Surface(name='Surf-6', side1Faces=    

mdb.models['Model-1'].rootAssembly.instances['Part-1-1'].faces.getSequenceFromMask(    

('[#0 #2 ]', ), )) 

74. mdb.models['Model-1'].rootAssembly.Surface(name='Surf-7', side1Faces=    

mdb.models['Model-1'].rootAssembly.instances['Part-1-1'].faces.getSequenceFromMask(    

('[#2000000 ]', ), )) 

75. mdb.models['Model-1'].rootAssembly.Surface(name='Surf-8', side1Faces=    

mdb.models['Model-1'].rootAssembly.instances['Part-1-1'].faces.getSequenceFromMask(    

('[#8000000 ]', ), )) 

76. mdb.models['Model-1'].rootAssembly.Surface(name='Surf-9', side1Faces=    

mdb.models['Model-1'].rootAssembly.instances['Part-1-1'].faces.getSequenceFromMask(    

('[#1 ]', ), )) 

77. mdb.models['Model-1'].rootAssembly.Surface(name='Surf-10', side1Faces=    

mdb.models['Model-1'].rootAssembly.instances['Part-1-1'].faces.getSequenceFromMask(    

('[#4 ]', ), )) 

78. mdb.models['Model-1'].rootAssembly.Surface(name='Surf-11', side1Faces=    

mdb.models['Model-1'].rootAssembly.instances['Part-1-1'].faces.getSequenceFromMask(    

('[#20 ]', ), )) 

79. mdb.models['Model-1'].rootAssembly.Surface(name='Surf-12', side1Faces=    

mdb.models['Model-1'].rootAssembly.instances['Part-1-1'].faces.getSequenceFromMask(    

('[#8 ]', ), )) 

80. mdb.models['Model-1'].rootAssembly.Surface(name='Surf-13', side1Faces=    

mdb.models['Model-1'].rootAssembly.instances['Part-1-1'].faces.getSequenceFromMask(    

('[#10 ]', ), )) 
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81. mdb.models['Model-1'].rootAssembly.Surface(name='Surf-14', side1Faces=    

mdb.models['Model-1'].rootAssembly.instances['Part-1-1'].faces.getSequenceFromMask(    

('[#40 ]', ), )) 

82. mdb.models['Model-1'].rootAssembly.Surface(name='Surf-15', side1Faces=    

mdb.models['Model-1'].rootAssembly.instances['Part-1-1'].faces.getSequenceFromMask(    

('[#400000 ]', ), )) 

83. mdb.models['Model-1'].rootAssembly.Surface(name='Surf-16', side1Faces=    

mdb.models['Model-1'].rootAssembly.instances['Part-1-1'].faces.getSequenceFromMask(    

('[#80 ]', ), )) 

84. mdb.models['Model-1'].rootAssembly.Surface(name='Load_Surf-17', side1Faces=    

mdb.models['Model-1'].rootAssembly.instances['Part-1-1'].faces.getSequenceFromMask(    

('[#100 ]', ), )) 

85. mdb.models['Model-1'].rootAssembly.Surface(name='Load_Surf-18', side1Faces=    

mdb.models['Model-1'].rootAssembly.instances['Part-1-1'].faces.getSequenceFromMask(    

('[#100000 ]', ), )) 

86. mdb.models['Model-1'].rootAssembly.Surface(name='Load_Surf-19', side1Faces=    

mdb.models['Model-1'].rootAssembly.instances['Part-1-1'].faces.getSequenceFromMask(    

('[#80000 ]', ), )) 

87. mdb.models['Model-1'].rootAssembly.Surface(name='Load_Surf-20', side1Faces=    

mdb.models['Model-1'].rootAssembly.instances['Part-1-1'].faces.getSequenceFromMask(    

('[#2000 ]', ), )) 

88. mdb.models['Model-1'].rootAssembly.Surface(name='Load_Surf-21', side1Faces=    

mdb.models['Model-1'].rootAssembly.instances['Part-1-1'].faces.getSequenceFromMask(    

('[#40000 ]', ), )) 

89. mdb.models['Model-1'].rootAssembly.Surface(name='Load_Surf-22', side1Faces=    

mdb.models['Model-1'].rootAssembly.instances['Part-1-1'].faces.getSequenceFromMask(    

('[#200 ]', ), )) 

90. mdb.models['Model-1'].rootAssembly.Surface(name='Load_Surf-23', side1Faces=    

mdb.models['Model-1'].rootAssembly.instances['Part-1-1'].faces.getSequenceFromMask(    

('[#20000 ]', ), )) 
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91. mdb.models['Model-1'].rootAssembly.Surface(name='Load_Surf-24', side1Faces=    

mdb.models['Model-1'].rootAssembly.instances['Part-1-1'].faces.getSequenceFromMask(    

('[#10000 ]', ), )) 

92. mdb.models['Model-1'].rootAssembly.Surface(name='Load_Surf-25', side1Faces=    

mdb.models['Model-1'].rootAssembly.instances['Part-1-1'].faces.getSequenceFromMask(    

('[#800 ]', ), )) 

93. mdb.models['Model-1'].rootAssembly.Surface(name='Load_Surf-26', side1Faces=    

mdb.models['Model-1'].rootAssembly.instances['Part-1-1'].faces.getSequenceFromMask(    

('[#400 ]', ), )) 

94. mdb.models['Model-1'].rootAssembly.Surface(name='Load_Surf-27', side1Faces=    

mdb.models['Model-1'].rootAssembly.instances['Part-1-1'].faces.getSequenceFromMask(    

('[#1000 ]', ), )) 

95. mdb.models['Model-1'].rootAssembly.Surface(name='Load_Surf-28', side1Faces=    

mdb.models['Model-1'].rootAssembly.instances['Part-1-1'].faces.getSequenceFromMask(    

('[#8000 ]', ), )) 

96. mdb.models['Model-1'].rootAssembly.Surface(name='Load_Surf-29', side1Faces=    

mdb.models['Model-1'].rootAssembly.instances['Part-1-1'].faces.getSequenceFromMask(    

('[#4000 ]', ), )) 

 

97. Surfacelist=['Surf-0','Surf-1','Surf-2','Surf-3','Surf-4','Surf-5','Surf-6','Surf-7','Surf-8','Surf-

9','Surf-10','Surf-11','Surf-12','Surf-13','Surf-14','Surf-15','Surf-16','Load_Surf-

17','Load_Surf-18','Load_Surf-19','Load_Surf-20','Load_Surf-21','Load_Surf-

22','Load_Surf-23','Load_Surf-24','Load_Surf-25','Load_Surf-26','Load_Surf-

27','Load_Surf-28','Load_Surf-29'] 

Part 5 

98. mdb.models['Model-1'].EncastreBC(createStepName='Step-1', name='BC-1', region= 

    Region( 
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    faces=mdb.models['Model-1'].rootAssembly.instances['Part-1-

1'].faces.getSequenceFromMask( 

    mask=('[#e0000000 #1 ]', ), ))) 

Part 6 

99. mdb.models['Model-1'].fieldOutputRequests['F-Output-1'].setValues(variables=( 

    'S', 'E', 'VE', 'PE', 'VEEQ', 'PEEQ', 'PEEQT', 'PEEQMAX', 'PEMAG', 'PEQC',  

    'EE', 'IE', 'THE', 'NE', 'LE', 'ER', 'SE', 'SPE', 'SEPE', 'SEE', 'SEP',  

    'SALPHA', 'U', 'RF', 'CF', 'CSTRESS', 'CDISP')) 

Part 7 

# Note that for pressure applied to circular area with radius of 16 mm equals 1kg weight(9.81 

N) = 12203.92118 N/m2 

100. unit_load_pressure=12266.123 

101. Initial_load_step=2.5 

102. desired_load_step=2.5 

103. for j in range(1,14): 

104. loadName ='Load_%s' % (j) 

105. surfName='Load_Surf-%s'%(j+16) 

106. mdb.models['Model-1'].Pressure(amplitude=UNSET, createStepName='Step-1',  

                                distributionType=UNIFORM, field='', magnitude=12440.2866, 

name=loadName, 

                                 region=mdb.models['Model1'].rootAssembly.surfaces[Surfacelist[16+j]]) 

Part 8 

107. for i in range(1,33): 
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108.         pressure_value=( unit_load_pressure*Initial_load_step)  

+((unit_load_pressure*desired_load_step)*(i-1)) 

109.         mdb.models['Model-1'].Pressure(amplitude=UNSET, 

createStepName='Step-1', distributionType=UNIFORM, field='' , 

magnitude=pressure_value, name=loadName,  region= mdb.models['Model-1'] 

.rootAssembly.surfaces[ Surfacelist[16+j]]) 

110.         jobName ='Test_surf_%s_JOB_%s' % (j,i) 

111.         print jobName 

112.         mdb.Job(atTime=None, contactPrint=OFF, description='', echoPrint=OFF,  

                 explicitPrecision=SINGLE, getMemoryFromAnalysis=True, historyPrint=OFF,  

                 memory=98, memoryUnits=PERCENTAGE, model='Model-1', modelPrint=OFF,  

                 multiprocessingMode=DEFAULT, 

name=jobName,nodalOutputPrecision=SINGLE,  

                 numCpus=1, queue=None, scratch='', type=ANALYSIS, userSubroutine='',  

                 waitHours=0, waitMinutes=0) 

113.         mdb.jobs[jobName].submit() 

114.         mdb.jobs[jobName].waitForCompletion()   

Part 9 

     

115.         print jobName        

116.         openOdb(path=jobName + '.odb') 

117.         myViewport = session.Viewport(name='myviewport', origin=(0, 0), 

width=250, height=135) 

118.         myOdb = visualization.openOdb(path=jobName + '.odb') 

119.         myViewport.setValues(displayedObject=myOdb) 
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120.         

myViewport.odbDisplay.display.setValues(plotState=CONTOURS_ON_DEF) 

121.         myViewport.odbDisplay.commonOptions.setValues(renderStyle=FILLED) 

122.         myOdb.steps['Step-1'].frames[1].fieldOutputs['EE'].values[5].data*1000000 

123.         mystring=[5,7, 8, 6 , 1, 3, 4 , 2, 68, 66, 65, 67, 64, 62, 61, 63 ]  

124.         outputFile = open('Strain_EE_'+jobName + '.txt','w') 

125.         outputFile.write(' 

Element\tmaxPrincipal\tmidPrincipal\tminPrincipal\tEE[11]\t\tEE[22]\t\tEE[33]\t\tpressu

re_value\n')      

126.         for m in range(0,16): 

127.                   k=mystring[m] 

128.                   v=myOdb.steps['Step-1'].frames[10].fieldOutputs['EE'].values[k-1]   

129.                   outputFile.write('%d\t%.6e\t%.6e\t%.6e\t%.6e\t%.6e\t%.6e\t%.6e\n' % 

(v.elementLabel,v.maxPrincipal,v.midPrincipal,v.minPrincipal ,v.data[0], v.data[1], 

v.data[3],pressure_value )) 

130.                   outputFile.close() 

131.                   myOdb.close() 

132. del mdb.models['Model-1'].loads[loadName] 
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Appendix 2: PYTON Script of Drop Test Experiment 

Part 1 

# -*- coding: mbcs -*- 

1. import sys,math 

2. import visualization 

3. from part import * 

4. from material import * 

5. from section import * 

6. from assembly import * 

7. from step import * 

8. from interaction import * 

9. from load import * 

10. from mesh import * 

11. from job import * 

12. from sketch import * 

13. from visualization import * 

14. from connectorBehavior import * 

Part 2 

15. mdb.models['Model-1'].ConstrainedSketch(name='__profile__', sheetSize=.200) 

16. mdb.models['Model-1'].sketches['__profile__'].rectangle(point1=(.500, .500),  point2=(-

.500, -.500)) 

17. mdb.models['Model-1'].Part(dimensionality=THREE_D, name='Part-1', 

type=DEFORMABLE_BODY) 

18. mdb.models['Model-1'].parts['Part-1'].BaseSolidExtrude(depth=.005, sketch=  

mdb.models['Model-1'].sketches['__profile__']) 

19. del mdb.models['Model-1'].sketches['__profile__'] 
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20. mdb.models['Model-1'].ConstrainedSketch(gridSpacing=.07071, name='__profile__',    

sheetSize=2.82844, transform=mdb.models['Model-1'].parts['Part-

1'].MakeSketchTransform(sketchPlane=mdb.models['Model-1'].parts['Part-1'].faces[4], 

sketchPlaneSide=SIDE1,  sketchUpEdge=mdb.models['Model-1'].parts['Part-1'].edges[4], 

sketchOrientation=RIGHT, origin=(0.0, 0.0, .005))) 

21. mdb.models['Model-1'].parts['Part-

1'].projectReferencesOntoSketch(filter=COPLANAR_EDGES, 

sketch=mdb.models['Model-1'].sketches['__profile__']) 

22. mdb.models['Model-1'].sketches['__profile__'].CircleByCenterPerimeter(center=(0.0,    

0.0), point1=(0.0, .016)) 

23. mdb.models['Model-1'].sketches['__profile__'].CircleByCenterPerimeter(center=(-0.375, 

0.250), point1=(-0.375, 0.266)) 

24. mdb.models['Model-1'].sketches['__profile__'].CircleByCenterPerimeter(center=(-0.375, 

-0.250), point1=(-0.375, -0.266)) 

25. mdb.models['Model-1'].sketches['__profile__'].CircleByCenterPerimeter(center=(-0.375, 

0.0), point1=(-0.375, 0.016)) 

26. mdb.models['Model-1'].sketches['__profile__'].CircleByCenterPerimeter(center=(-0.125, 

0.250), point1=(-0.125, 0.266)) 

27. mdb.models['Model-1'].sketches['__profile__'].CircleByCenterPerimeter(center=(-0.125, 

0.0), point1=(-0.125, 0.016)) 

28. mdb.models['Model-1'].sketches['__profile__'].CircleByCenterPerimeter(center=(0.375, 

0.250), point1=(0.375, 0.266)) 

29. mdb.models['Model-1'].sketches['__profile__'].CircleByCenterPerimeter(center=(0.375, 

0.0), point1=(0.375, 0.016)) 

30. mdb.models['Model-1'].sketches['__profile__'].CircleByCenterPerimeter(center=(0.125, 

0.250), point1=(0.125, 0.266)) 

31. mdb.models['Model-1'].sketches['__profile__'].CircleByCenterPerimeter(center=(-0.125, 

-0.250), point1=(-0.125, -0.266)) 

32. mdb.models['Model-1'].sketches['__profile__'].CircleByCenterPerimeter(center=(0.125, 

0.0), point1=(0.125, 0.016)) 
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33. mdb.models['Model-1'].sketches['__profile__'].CircleByCenterPerimeter(center=(0.125, -

0.250), point1=(0.125, -0.266)) 

34. mdb.models['Model-1'].sketches['__profile__'].CircleByCenterPerimeter(center=(0.375, -

0.250), point1=(0.375, -0.266)) 

35. mdb.models['Model-1'].sketches['__profile__'].rectangle(point1=(-0.1285, -0.3765), 

point2=(-0.1215, -0.3735)) 

36. mdb.models['Model-1'].sketches['__profile__'].rectangle(point1=(-0.1285, 0.3765), 

point2=(-0.1215, 0.3735)) 

37. mdb.models['Model-1'].sketches['__profile__'].rectangle(point1=(0.1285, -0.3765), 

point2=(0.1215, -0.3735)) 

38. mdb.models['Model-1'].sketches['__profile__'].rectangle(point1=(0.1285, 0.3765), 

point2=(0.1215, 0.3735)) 

39. mdb.models['Model-1'].sketches['__profile__'].rectangle(point1=(-0.3785, -0.3765), 

point2=(-0.3715, -0.3735)) 

40. mdb.models['Model-1'].sketches['__profile__'].rectangle(point1=(-0.3785, 0.3765), 

point2=(-0.3715, 0.3735)) 

41. mdb.models['Model-1'].sketches['__profile__'].rectangle(point1=(0.3785, -0.3765), 

point2=(0.3715, -0.3735)) 

42. mdb.models['Model-1'].sketches['__profile__'].rectangle(point1=(0.3785, 0.3765), 

point2=(0.3715, 0.3735)) 

43. mdb.models['Model-1'].sketches['__profile__'].rectangle(point1=(-0.1285, -0.1265), 

point2=(-0.1215, -0.1235)) 

44. mdb.models['Model-1'].sketches['__profile__'].rectangle(point1=(-0.1285, 0.1265), 

point2=(-0.1215, 0.1235)) 

45. mdb.models['Model-1'].sketches['__profile__'].rectangle(point1=(0.1285, -0.1265), 

point2=(0.1215, -0.1235)) 

46. mdb.models['Model-1'].sketches['__profile__'].rectangle(point1=(0.1285, 0.1265), 

point2=(0.1215, 0.1235)) 

47. mdb.models['Model-1'].sketches['__profile__'].rectangle(point1=(-0.3785, -0.1265), 

point2=(-0.3715, -0.1235)) 
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48. mdb.models['Model-1'].sketches['__profile__'].rectangle(point1=(-0.3785, 0.1265), 

point2=(-0.3715, 0.1235)) 

49. mdb.models['Model-1'].sketches['__profile__'].rectangle(point1=(0.3785, -0.1265), 

point2=(0.3715, -0.1235)) 

50. mdb.models['Model-1'].sketches['__profile__'].rectangle(point1=(0.3785, 0.1265), 

point2=(0.3715, 0.1235)) 

51. mdb.models['Model-1'].parts['Part-1'].PartitionFaceBySketch(faces=mdb.models['Model-

1'].parts['Part-1'].faces.getSequenceFromMask(('[#10 ]',    ), ), 

sketch=mdb.models['Model-1'].sketches['__profile__'], sketchUpEdge=   

mdb.models['Model-1'].parts['Part-1'].edges[4]) 

52. del mdb.models['Model-1'].sketches['__profile__'] 

53. mdb.models['Model-1'].ConstrainedSketch(name='__profile__', sheetSize=200.0) 

54. mdb.models['Model-1'].sketches['__profile__'].CircleByCenterPerimeter(center=( 0.0, 

0.0), point1=(0.01, 0.0)) 

55. mdb.models['Model-1'].Part(dimensionality=THREE_D, name='cylinder', type= 

DEFORMABLE_BODY) 

56. mdb.models['Model-1'].parts['cylinder'].BaseSolidExtrude(depth=0.103, 

sketch=mdb.models['Model-1'].sketches['__profile__']) 

57. del mdb.models['Model-1'].sketches['__profile__'] 

Part 3 

58. mdb.models['Model-1'].HomogeneousSolidSection(material='Material-1', name=  

'Section-1', thickness=None) 

59. mdb.models['Model-1'].HomogeneousSolidSection(material='Material-2', name=  

'Section-2', thickness=None) 

60. mdb.models['Model-1'].parts['Part-1'].SectionAssignment(offset=0.0,     offsetField='', 

offsetType=MIDDLE_SURFACE, region=Region(    cells=mdb.models['Model-

1'].parts['Part-1'].cells.getSequenceFromMask( mask=('[#1 ]', ), )), 

sectionName='Section-1', thicknessAssignment= FROM_SECTION) 

61. mdb.models['Model-1'].rootAssembly.regenerate() 
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62. mdb.models['Model-1'].parts['cylinder'].Set(cells=    mdb.models['Model-

1'].parts['cylinder'].cells.getSequenceFromMask(('[#1 ]',  ), ), name='Set-1') 

63. mdb.models['Model-1'].parts['cylinder'].SectionAssignment(offset=0.0,     offsetField='', 

offsetType=MIDDLE_SURFACE, region=mdb.models['Model-

1'].parts['cylinder'].sets['Set-1'], sectionName='Section-2', 

thicknessAssignment=FROM_SECTION) 

64. mdb.models['Model-1'].rootAssembly.DatumCsysByDefault(CARTESIAN) 

65. mdb.models['Model-1'].rootAssembly.Instance(dependent=ON, name='Part-1-1', 

part=mdb.models['Model-1'].parts['Part-1']) 

66. mdb.models['Model-1'].parts['Part-1'].seedPart(deviationFactor=0.1, size=0.05) 

67. mdb.models['Model-1'].parts['Part-1'].generateMesh() 

68. mdb.models['Model-1'].rootAssembly.regenerate() 

69. mdb.models['Model-1'].rootAssembly.Instance(dependent=OFF, name='cylinder-1', 

part=mdb.models['Model-1'].parts['cylinder']) 

70. mdb.models['Model-1'].rootAssembly.seedPartInstance(deviationFactor=0.1,     

minSizeFactor=0.1, regions=(mdb.models['Model-1'].rootAssembly.instances['cylinder-

1'], ), size=0.01) 

71. mdb.models['Model-1'].rootAssembly.generateMesh(regions=(mdb.models['Model-

1'].rootAssembly.instances['cylinder-1'], )) 

72. mdb.models['Model-1'].rootAssembly.translate(instanceList=('cylinder-1', ),   

vector=(0.0, 0.0, 0.005))    

Part 4 

73. mdb.models['Model-1'].ExplicitDynamicsStep(name='Step-1', previous='Initial', 

timePeriod=0.03) 

74. mdb.models['Model-1'].FieldOutputRequest(createStepName='Step-1', name=    'F-

Output-1', variables=('S',  'MISES', 'MISESMAX',   'E', 'PE',  'NE', 'LE', 'ER', 'ERV',  'U', 

'UT', 'UR', 'V', 'VT', 'VR', 'A')) 

75. mdb.models['Model-1'].fieldOutputRequests['F-Output-1'].setValues(numIntervals= 100) 
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76. mdb.models['Model-1'].rootAssembly.Set(faces=mdb.models['Model-

1'].rootAssembly.instances['Part-1-1'].faces.getSequenceFromMask( ('[#e0000000 #1 ]', 

), ), name='Set-1') 

77. mdb.models['Model-1'].EncastreBC(createStepName='Step-1', localCsys=None, name=    

'BC-1', region=mdb.models['Model-1'].rootAssembly.sets['Set-1']) 

78. mdb.models['Model-1'].rootAssembly.Set(faces=  mdb.models['Model-

1'].rootAssembly.instances['cylinder-1'].faces.getSequenceFromMask(  ('[#3 ]', ), ), 

name='Set-2') 

79. mdb.models['Model-1'].ContactProperty('fric') 

80. mdb.models['Model-1'].interactionProperties['fric'].TangentialBehavior( dependencies=0, 

directionality=ISOTROPIC, elasticSlipStiffness=None,    formulation=PENALTY, 

fraction=0.005, maximumElasticSlip=FRACTION,  pressureDependency=OFF, 

shearStressLimit=None, slipRateDependency=OFF,  

table=((0.3, ), ), temperatureDependency=OFF) 

81. mdb.models['Model-1'].ContactExp(createStepName='Step-1', name='Int-1') 

82. mdb.models['Model-1'].interactions['Int-1'].includedPairs.setValuesInStep( 

stepName='Step-1', useAllstar=ON) 

83. mdb.models['Model1'].interactions['Int1'].contactPropertyAssignments.appendInStep(  

assignments=((GLOBAL, SELF, 'fric'), ), stepName='Step-1') 

84. mdb.models['Model-1'].Velocity(distributionType=MAGNITUDE, field='', name=    

'Predefined Field-1', omega=0.0, region= mdb.models['Model-1'].rootAssembly.sets['Set-

2'], velocity1=0.0, velocity2=   0.0, velocity3=-3.0) 

Part 5 

85. Xstring=[-0.25,-0.25,-0.25,-0.25, 0.0 ,0.0 ,0.0 ,0.0, 0.25, 0.25, 0.25, 0.25, 0,0] 

86. Ystring=[-0.375, -0.125, 0.125, 0.375, -0.375, -0.125, 0.125, 0.375, -0.375, -0.125, 0.125, 

0.375, 0,0 ]  

87. g=9.81 

88. for L in range (1,14): 
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89.        mdb.models['Model-1'].rootAssembly.translate(instanceList=('cylinder-1', ), 

vector=(Xstring[L-1], Ystring[L-1], 0.0))       

90.        for j in range(1,11): 

91.             Jobname ='Job_%s_Location_%s' % (j,L)  

92.             h=(.5*(j-1))+.5  

93.             velocity=-sqrt(2*g*h)  

94.             mdb.models['Model-1'].predefinedFields['Predefined Field-1'].setValues(omega= 

0.0, velocity1=0.0, velocity2=0.0, velocity3=velocity) 

95.             mdb.Job(activateLoadBalancing=False, atTime=None,                               

contactPrint=OFF,  description='', echoPrint=OFF, explicitPrecision=SINGLE, 

historyPrint=OFF, model='Model-1', modelPrint=OFF, 

multiprocessingMode=DEFAULT, name=Jobname,  nodalOutputPrecision=SINGLE, 

numCpus=1, numDomains=1, parallelizationMethodExplicit=DOMAIN, queue=None, 

scratch='', type=ANALYSIS, userSubroutine='', waitHours=0, waitMinutes=0) 

96.             mdb.jobs[Jobname].submit(consistencyChecking=OFF) 

97.             mdb.jobs[Jobname].waitForCompletion() 

      

Part 6 

        # Open the output database and display a 

        # default contour plot. 

98. openOdb(path=Jobname + '.odb') 

99.             myViewport = session.Viewport(name='myviewport', origin=(0, 0), width=250, 

height=135) 

100.             myOdb = visualization.openOdb(path=Jobname + '.odb') 

101.             myViewport.setValues(displayedObject=myOdb) 

102.             myViewport.odbDisplay.display.setValues(plotState= 

CONTOURS_ON_DEF) 



 

169 

 

103.             myViewport.odbDisplay.commonOptions.setValues( 

renderStyle=FILLED) 

104.             mystring=[5,7, 8, 6 , 1, 3, 4 , 2, 68, 66, 65, 67, 64, 62, 61, 63 ]           

105.             outputFile = open('disp_U_'+Jobname + '.txt','w') 

106.             outputFile.write('Node\tmagnitude\tU[1]\t\tU[2]\t\tU[3]\n') 

107.             for i in range(0,16): 

108.                   m=mystring[i] 

109.                   for k in range(0,100):   

110.                          v=myOdb.steps['Step-1'].frames[k].fieldOutputs['U'].values[m]   

111.                          outputFile.write ('%d\t%.6e\t%.6e\t%.6e\t%.6e\n' % (v.nodeLabel, 

v.magnitude,v.data[0], v.data[1], v.data[2] )) 

112.             outputFile.close() 

113.             outputFile = open('Strain_NE_'+Jobname + '.txt','w') 

114.             outputFile.write 

('Element\tmaxPrincipal\tmidPrincipal\tminPrincipal\tEE[11]\t\tEE[22]\t\tEE[33]\t\tEE[1

2]\t\tEE[13]\t\tEE[23]\n')      

115.             for i in range(0,16): 

116.                   m=mystring[i] 

117.                   for k in range(0,100):   

118.                         v=myOdb.steps['Step-1'].frames[j].fieldOutputs['NE'].values[i]   

119.                         

outputFile.write('%d\t%.6e\t%.6e\t%.6e\t%.6e\t%.6e\t%.6e\t%.6e\t%.6e\t%.6e\n' % 

(v.elementLabel,v.maxPrincipal,v.midPrincipal,v.minPrincipal ,v.data[0], v.data[1], 

v.data[2], v.data[3], v.data[4], v.data[5] ))             

120.         outputFile.close() 

121.        mdb.models['Model-1'].rootAssembly.translate(instanceList=('cylinder-1', ), 

vector=(-Xstring[L-1], -Ystring[L-1], 0.0))   



 

170 

 

Appendix 3: GUI Development Description 

As was mentioned previously in Chapter 2, MATLAB NNT can be used in different ways 

such as directly from MATLAB basic command-line operations as well as predefined GUIs. 

Alternatively, in order to access the full functionality of various MATLAB toolboxes as well as 

MATLAB NNT all at the same time, it is possible to employ the capabilities of M-file scripts 

using MATLAB programming language to write one customised programme for a particular 

project. Throughout this project, MATLAB has been widely used in order to acquire data 

directly from data acquisition systems, for pre-processing and analysing the data as well as ANN 

training and estimation of various data sets. Furthermore, a GUI is developed in MATLAB 

allowing control of various parameters of the data acquisition and load monitoring system, as 

well as graphical display in real time. All the necessary steps in developing a load monitoring 

system are gathered in one user friendly MATLAB program through a GUI. This allows the 

operator to modify and set the necessary information in the program according to the specific test 

experiment setup. In this section, the MATLAB program is described in brief. Figure 1-1 

indicates a flow diagram of this code. For clarification purposes, this script is divided in several 

parts and can be accessed in Appendix 4. In addition, in order to introduce MATLAB NNT, a 

training example is described in Appendix 5. 
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Figure 5-1: Flowchart of the MATLAB GUI 

The first part of this script has functions that appear when the MATLAB GUIDE generates 

the code after designing the GUI. One function is the first initialisation code generated by 

MATLAB for the GUI and should not be edited. The next function executes just before 

Prediction is made visible in the GUI. The Outputs from the last function of this part are returned 

to the command line. Once the user runs the script, the main GUI window will be illustrated and 

the user can press any button to run the desired function. The main GUI window is indicated in 

Figure 1-2. The main GUI has several push buttons which pressing any of them calls its call back 

function. In addition an axis type element is also added to the GUI. This enables the graphical 

display of the results (loads) in this window (no. 6 in ). Push buttons are sorted in order at both 

sides of this diagram. The six buttons at the right side are all related to the functions specifically 

developed for this project experiment enabling a load monitoring system. The other five buttons 

at the left side are all for using the pre-defined GUIs of the MATLAB NNT directly from this 

main GUI. Although the GUI is designed particularly for linear cases (small displacement 

experiment), it is possible to use it for training networks with nonlinear data (large displacement 

and drop test experiments). 
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Figure 1-2: Developed MATLAB Programme main GUI 

The second part of the script includes several functions which appear when MATLAB 

GUIDE generates the code after designing the GUI as well. They are for file, open, print and 

close Menu options in the designed GUI. 

Part 3 of the script allows the user to easily call any of the main five general pre-defined GUIs 

of the MATLAB NNT and employ their full functionality straight from this GUI. All the five 

push buttons at the left side of the main GUI indicated in  are defined in part 3 in the following 

order: The main GUIs are: 

1. General Network Data Manager (nntool button no. 1 in Figure 1-2)  

nntool command opens the Network/Data Manager window, which allows to import, 

create, use, and export all sorts of neural networks and data available in MATLAB (Figure 1-

3). 



 

173 

 

 

Figure 1-3: General Network Data Manager (nntool) GUI 

2. Neural Network Fitting Tool (nftool button no. 2 in Figure 1-2) 

3. Neural network time series tool (ntstool button no. 3 in Figure 1-2) 

4. Neural network pattern recognition tool (nprtool button no. 4 in Figure 1-2) 

5. Neural network classification or clustering tool (nctool button no. 5 in Figure 1-2) 

In the part 4 of the M-file script, a function is defined in order to acquire data using MATLAB 

data acquisition toolbox directly into MATLAB from NI DAQ systems. Whenever this function 

is called back, structural responses are acquired from NI driver software through windows 

dynamic data exchange protocols. Depending on the DAQ system used to acquire data for each 

experiment either this function is used or the function defined in part 5.  In part of the M-file 

script, a function is defined in order to acquire data using windows dynamic data exchange 

requests from WINDMILL Logger software (the commercial package for MICROLINK 751 

devices).  It should be noted that to have successful data acquisition from this function, Windmill 

Logger should be set up already and be running at the same time as MATLAB file execution. 

These functions are called in the program whenever an experimental data acquisition is 

needed. 
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In the part 6 of the M-file script, a call back button is defined which executes training data 

acquisition (button no. 7 in Figure 1-1). The first step in data acquisition is to configure the 

number of loading locations, strain and load gauges used in the experiment (Figure 1-4). These 

GUIs are defined in part 7 of M-file script. Once the system gets the inputs from the user, a loop 

is used to get data from all the strain gauges for particular number of loading locations. Several 

functions are called back in this part and at the end the acquired data is saved and exported to 

MATLAB workspace.  

 

Figure 1-4: number of loading locations, strain and load gauges configuration GUIs 

The load monitoring system is designed in the way that for each loading location, two 

separate data set readings from all strain gauges are collected from the structure. One is when the 

structure is unloaded and the other is when it is only loaded at that specific loading location. This 

is defined in a function in part 8 of M-file script. Once both readings are acquired the system 

asks the user to verify and check that these data acquisitions are performed accurately. Should 

the user be happy about the procedure, the yes button is selected and the differences in two data 

set readings are used to indicate the deflections at the certain strain gauge locations due to that 

specific applied load. However, should the user be not sure about the consistency of the data 
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acquisition process, no button is selected and the same procedure would be repeated until the 

user is pleased with the procedure. The checking function is defined in part 9 of M-file script. 

Figure 1-5 indicates sample GUIs designed for this stage when strain readings are collected for 

loading location number one. Once deflections of the systems due to the one applied load at the 

time to the first loading location are achieved, the same procedure applies to the next loading 

location.  

 

Figure 1-5: Strain data acquisition No.1 GUIs 

The loop in part 7 continues till all the loading locations are covered. At the end of part 7 

when all the locations are loaded at once and the strain readings for each loading location is 

collected, data sets are put in order in matrices, saved and should the user be willing, data sets 

can be exported to the MATLAB workspace (Figure 1-6). Strain data sets and load data sets are 

put together in one matrix (original reference data matrix) which is used later to generate more 

data.  
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Figure 1-6: Export the acquired data to the MATLAB workspace 

Once the original reference data matrix is built employing the experimental data acquired 

from the structure, for a linear system it can be used to generate enough training data using the 

superposition theorem. In the part 10 of M-file script, a call back button is defined which 

executes training data generation algorithm (button no. 8 in Figure 1-2). The algorithm is based 

on superposition theorem and uses a random generation function defined in the part 11 to 

generate random loading case scenarios having random numbers in the range lower limit to 

higher limit of the linear loading response defined by the user. Training data generation 

parameters are configured first by the user employing GUIs indicated in Figure 1-7. Training 

data generated with this script consist of two parts. One part has loading scenarios where all the 

locations are loaded with random loads and the other part has loading scenarios where only one 

loading location is loaded with random load values. All the generated data sets are put in specific 

order in various matrices, saved and should the user be willing, data sets can be exported to the 

MATLAB workspace (Figure 1-8). 
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Figure 1-7: Training data generation parameter configuration GUIs 

 

Figure 1-8: Export the generated data to the MATLAB workspace 

When training data is ready, it is time to create an ANN and train it. In this research two 

different back-propagation ANN architectures are used to relate structural response to the applied 

loads. The architectures utilised are: 
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1) One network with Nstrain (number of strain gauges) neurons in the input layer and Nload 

(number of loading locations) neurons in the output layer is trained to estimate the load on 

the panel from the strain responses. 

2) Nload networks each with Nstrain neurons in the input layer and one neuron in output layer 

are trained and used to estimate the load on the panel from the strain responses. 

Other network parameters such as the number of hidden layers and neurons in each hidden 

layer are flexible and can be configured by the user according to the data sets.   

In part 12 of this M-file script, first ANN architecture is used to create and train the network. 

The user first selects a call back button designed to execute training with one network (button no. 

9 in Figure 1-2) then configures the network parameters using GUIs indicated in Figure 1-9. 

 

Figure 1-9: Network Parameter Configuration GUIs for ANN architecture 1 

This part of the script will then create a network according to these network parameters. The 

network will be trained with the input and target data sets of the training data. During the training 

process, the neural network training tool GUI will be displayed. The user will be able to monitor 

the training process. This window indicates the state of the training progress in terms of training 

time and epochs, the network performance, the magnitude of the gradient of performance and the 

number of validation checks. These values are of most interest to monitor during the training 

progress. This is due to the fact that the user may use the early stopping method to achieve a 

more general network. The training process could be stopped at any time of the progress by 

clicking the Stop Training button in the training window. This is usually done when the 

performance function fails to decrease considerably over many training iterations. From the 
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Neural Network Training GUI, three main plots can be accessed as well for post-processing: 

performance, training state and regression plots. Figure 1-10 indicates the neural network 

training tool GUI. 

 

Figure 1-10: Neural network Training tool 
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Once the training is done, the network and the main parameters of the training state will be 

saved and should the user be willing, data sets can be exported to the MATLAB workspace 

(Figure 1-11). 

 

Figure 1-11: Export the network and its main parameters to the MATLAB workspace 

Having a well-trained network, the ANN should be able to estimate the external loads from 

new introduced structure response data sets. In the part 13 of the M-file script, a call back button 

is defined which executes new load estimation using the trained network having the first ANN 

architecture (button no. 10 in Figure 1-2). By pressing this button a new set of data is acquired 

and introduced to a trained network. The data acquisition would be performed once only in two 

parts again. One is when the structure is unloaded and the other is when it is only loaded at 

desired specific loading locations.  The GUIs used to guide through the data acquisition process 

are indicated in Figure 1-5. The network will simulate and predict load from this new set of data. 

The loads are then indicated as a bar graph in the main GUI (Figure 1-12). Once the load 
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estimation is done, the network output will be saved and should the user be willing, data sets can 

be exported to the MATLAB workspace (Figure 1-13). 

 

Figure 1-12: Load estimation results indicated as a bar chart 

 

Figure 1-13: Export the network output to the MATLAB workspace 

In part 14 of this M-file script, the second ANN architecture is used to create and train the 

network. A call back button should be selected to execute training with Nload networks (button 
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no. 11 in Figure 1-2) which then configures the number of network hidden layers and neurons in 

each hidden layer using the GUI indicated in Figure 1-14.  

 

Figure 1-14: Nload networks hidden layer and neuron number configuration 

This part of the script will then create Nload target data sets from the training target data set 

using a loop and Nload networks according to the network parameters are created. Each of the 

networks will be trained with the input and one of the target data sets created earlier from the 

training data. During the training process, the neural network training tool GUI will be displayed 

for each of the networks and the user will be able to monitor the training processes. Once the 

training is done, the networks and the main parameters of the training states will be saved. 

Having well-trained networks, the ANN should be able to estimate the external loads from 

new introduced structure response data sets. In the part 15 of the M-file script, a call back button 

is defined which executes new load estimation using the trained network having the second ANN 

architecture (button no. 12 in Figure 1-2). By pressing this button a new set of data is acquired 

and introduced to a trained network. The data acquisition would be performed once only in two 

parts again. One is when the structure is unloaded and the other is when it is only loaded at 

desired specific loading locations.  The GUIs used to guide through the data acquisition process 

are indicated in . The networks will simulate and estimate loads from this new set of data. Each 

network will estimate a load which is related to one location only. However, the results of all the 

networks together provide the estimation of all loading locations from the same strain data set 

input. The loads are then indicated as a bar graph in the main GUI. Once the load estimation is 

done, the network output will be saved and should the user be willing, data sets can be exported 

to the MATLAB workspace (Figure 1-3). 



 

183 

 

Finally, in part 16 of this the M-file script, a call back button is defined which updates the 

main GUI graph based on its popup menu (button no. 13 in Figure 1-2). The user should first 

select from the menu between new strain reading and load estimation. Once the update button is 

selected, there will be a new data acquisition and the strain readings are used to update the graph.  

Throughout this project, MATLAB has been widely used in order to acquire data directly 

from data acquisition systems, for pre-processing and analysing the data as well as ANN training 

and estimation of various data sets, the main developed MATLAB program was described in this 

chapter. In fact, the capabilities of M-file script using MATLAB programming language is 

employed to write one customised programme for this particular project. As described in detail 

in this chapter, all the necessary steps in developing a load monitoring system are gathered in 

one user friendly MATLAB program through a GUI which allows the operator to modify and set 

the necessary information in the program according to the specific test experiment setup. 

Furthermore, the user can control various parameters of the data acquisition and load monitoring 

system and visualise data in real time. In the next chapter, a summary and evaluation of the 

topics and results of this thesis as well as possible future research and recommendations are 

covered. 
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Appendix 4: MATLAB Script 

Part 1 

function varargout = General_DAQ_GUI_Two_Methods(varargin) 
% GENERAL_DAQ_GUI_TWO_METHODS MATLAB code for 

General_DAQ_GUI_Two_Methods.fig 
gui_Singleton = 1; 
gui_State = struct('gui_Name',       mfilename, ... 
                   'gui_Singleton',  gui_Singleton, ... 
                   'gui_OpeningFcn', 

@General_DAQ_GUI_Two_Methods_OpeningFcn, ... 
                   'gui_OutputFcn',  

@General_DAQ_GUI_Two_Methods_OutputFcn, ... 
                   'gui_LayoutFcn',  [] , ... 
                   'gui_Callback',   []); 
if nargin && ischar(varargin{1}) 
    gui_State.gui_Callback = str2func(varargin{1}); 
end 

  
if nargout 
    [varargout{1:nargout}] = gui_mainfcn(gui_State, varargin{:}); 
else 
    gui_mainfcn(gui_State, varargin{:}); 
end 

  

 %{    

This function appears when MATLAB GUIDE generates the code after designing the GUI. 

It is the first initialization code generated by MATLAB for GUI. 

%} 

% End initialization code - DO NOT EDIT 
% --- Executes just before General_DAQ_GUI_Two_Methods is made visible. 
function General_DAQ_GUI_Two_Methods_OpeningFcn(hObject, eventdata, 

handles, varargin) 
% Choose default command line output for General_DAQ_GUI_Two_Methods 
handles.output = hObject; 
 % Update handles structure 
guidata(hObject, handles); 
 % This sets up the initial plot - only do when we are invisible 
% so window can get raised using General_DAQ_GUI_Two_Methods. 
 %load('C:\Users\Mohammad\Desktop\Hosptest1\Train_leg.mat') 
if strcmp(get(hObject,'Visible'),'off') 
    plot(zeros(16)); 
       end 
 %{   This function appears when MATLAB GUIDE generates the code after designing the GUI. 

It executes just before Prediction is made visible in GUI.%} 

% --- Outputs from this function are returned to the command line. 
function varargout = General_DAQ_GUI_Two_Methods_OutputFcn(hObject, 

eventdata, handles) 
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% Get default command line output from handles structure 
varargout{1} = handles.output; 

  

%{   This function appears when MATLAB GUIDE generates the code after designing the GUI. 

Outputs from this function are returned to the command line.%} 

Part 2  

% -------------------------------------------------------------------- 
function FileMenu_Callback(hObject, eventdata, handles) 

 

  %{   This function appears when MATLAB GUIDE generates the code after designing the GUI. 

It is for the File Menu option in the designed GUI. 

%} 

% -------------------------------------------------------------------- 
function OpenMenuItem_Callback(hObject, eventdata, handles) 
% hObject    handle to OpenMenuItem (see GCBO) 

% eventdata  reserved - to be defined in a future version of MATLAB 

% handles    structure with handles and user data (see GUIDATA) 

file = uigetfile('*.fig'); 

if ~isequal(file, 0) 

    open(file); 

end 
uiopen('LOAD'); 

  

 %{  This function appears when MATLAB GUIDE generates the code after designing the GUI. 

It is for the Open Menu option in the designed GUI.%} 

% -------------------------------------------------------------------- 
function PrintMenuItem_Callback(hObject, eventdata, handles) 
printdlg(handles.figure1) 
  

%{   This function appears when MATLAB GUIDE generates the code after designing the GUI. 

It is for the Print option in the designed GUI.%} 

% -------------------------------------------------------------------- 
function CloseMenuItem_Callback(hObject, eventdata, handles) 
selection = questdlg(['Close ' get(handles.figure1,'Name') '?'],... 
                     ['Close ' get(handles.figure1,'Name') '...'],... 
                     'Yes','No','Yes'); 
if strcmp(selection,'No') 
    return; 
end 
 delete(handles.figure1) 
 %{   This function appears when MATLAB GUIDE generates the code after designing the GUI. 

It is for the close option in the designed GUI.%} 
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Part 3 

% --- Executes on button press in nntool. 
function nntool_Callback(hObject, eventdata, handles) 
nntool 
 % --- Executes on button press in nftool. 
function nftool_Callback(hObject, eventdata, handles) 
nftool 
% --- Executes on button press in ntstool. 
function ntstool_Callback(hObject, eventdata, handles) 

  ntstool 
% --- Executes on button press in nprtool. 
function nprtool_Callback(hObject, eventdata, handles) 
nprtool 
% --- Executes on button press in nctool. 
function nctool_Callback(hObject, eventdata, handles) 
nctool 
%{   This function appears when MATLAB GUIDE generates the code after designing the GUI. 

It is for predefined MATLAB NNT GUI options access in the designed GUI. 

The first function will be executed on button press in of nntool in GUI and will open predefined GUIs for nntool 

function. The second function will be executed on button press in of nftool in GUI and will open predefined GUIs 

for nftool function. The third function will be executed on button press in of ntstool in GUI and will open predefined 

GUIs for ntstool function. The third function will be executed on button press in of ntstool in GUI and will open 

predefined GUIs for ntstool function. The fourth function will be executed on button press in of nprtool in GUI and 

will open predefined GUIs for nprtool function. The fifth function will be executed on button press in of nctool in 

GUI and will open predefined GUIs for nctool function.%} 

Part 4 

function [data]=data_session  
DAQ_Logger_Set_No=2; 
DAQ_Logger_Channel_No=8; 
 s = daq.createSession('ni'); 
s.Rate=10000; 
for j=1:DAQ_Logger_Set_No 
for i=0:DAQ_Logger_Channel_No-1 
S=['ch',num2str(i),'=s.addAnalogInputChannel(''cDAQ1Mod',num2str(j),''', 

''ai',num2str(i),''', ''Bridge'');']; 
eval(S); 
S=['ch',num2str(i),'.ADCTimingMode = ''HighSpeed'';']; 
eval(S); 
S=['ch',num2str(i),'.BridgeMode = ''Quarter'';']; 
eval(S); 
S=['ch',num2str(i),'.NominalBridgeResistance=350;']; 
eval(S); 
end 
end 

  data = 1000000*s.startForeground; 
data=mean(data,1); 
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checkLabels = {'Save acquired to variable named:'};  
varNames = {'Signal_1'};  
items = {data}; 
export2wsdlg(checkLabels,varNames,items,... 
             'Save Sums to Workspace'); 
s.release() 

 

%{   This function is defined in order to acquire data using MATLAB data acquisition toolbox directly into 

MATLAB from NI DAQ systems. Whenever this function is called back, structural responses are acquired from NI 

driver software through windows dynamic data exchange . 

Note: In order to have successful data acquisition NI drivers should be installed set up already %} 

 

Part 5 

function [DAQ]=DAQ_Logger 
DAQ_Logger_Set_No=2; 
DAQ_Logger_Channel_No=15; 
channel = ddeinit('Logger','Data'); 
for j=0:DAQ_Logger_Set_No-1 
for i=0:DAQ_Logger_Channel_No-1 
      S=['DAQ(1,j*(DAQ_Logger_Channel_No)+i+1) =            

ddereq(channel,''',num2str(j),'000',num2str(i),''')']; 
   eval(S); 
end 
end 
 %{   This function is written by the author. Whenever this function is called back through windows dynamic 

data exchange request s, structural responses are acquired from WINDMILL Logger software (the commercial 

package for MICROLINK 751 devices).  

Note: In order to have successful data acquisition Windmill Logger should be set up already and be running at 

the same time as MATLAB file execution.%} 

 

 Part 6 

% --- Executes on button press in Training Data Acquisation. 
function Training_data_Aquisation_Callback(hObject, eventdata, handles) 
strain_data_Null=data_session; 
data=Training_data_acqisition; 
   %{ This function appears when MATLAB GUIDE generates the code after designing the GUI. 

Whatever written in this function will be executed on button press in Training Data Acquisation in GUI.%} 

 

Part 7 

function [strain_data,load_data,NStrain_Gauge,Nload_location]= 

Training_data_acqisition 
input_answer{1,1}='1'; 
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prompt = {'Enter Number of loading locations that you want to do the test 

:'}; 
dlg_title = 'Number of loading locations '; 
num_lines = 1; 
def = {'16'}; 
input_answer = inputdlg(prompt,dlg_title,num_lines,def); 
Nload_location=str2num(input_answer{1,1}); 

 input_answer{1,1}='1'; 
prompt = {'Enter Number of strain Gauges :'}; 
dlg_title = 'Number of strain Gauges  '; 
num_lines = 1; 
def = {'16'}; 
input_answer = inputdlg(prompt,dlg_title,num_lines,def); 
NStrain_Gauge=str2num(input_answer{1,1}) 
input_answer{1,1}='1'; 
prompt = {'Enter Number of load Gauges :'}; 
dlg_title = 'Number of Load Gauge  '; 
num_lines = 1; 
def = {'2'}; 
input_answer = inputdlg(prompt,dlg_title,num_lines,def); 
NLoad_Gauge=str2num(input_answer{1,1}) 
for i=1:Nload_location 
strain_data_all(i,:)=get_one_set_data(i,NStrain_Gauge,NLoad_Gauge); 
end 
size(strain_data_all) 
strain_data=strain_data_all(:,1:NStrain_Gauge); 
size(strain_data) 
load_data=strain_data_all(:,NStrain_Gauge+1:NStrain_Gauge+NLoad_Gauge); 
size(load_data) 
 Sum_strain_load=strain_data; 
         for i=1:NLoad_Gauge 
             Sum_strain_load(:,NStrain_Gauge+i)=load_data(:,i); 
         end 
Sum_strain_load    
checkLabels = {'Save acquired to variable named:','Save acquired to 

variable named:','Save acquired to variable named:','Save acquired to 

variable named:','Save acquired to variable named:'};  
varNames = 

{'strain_data','load_data','Sum_strain_load','NStrain_Gauge','NLoad_Gauge'};  
items = {strain_data,load_data,Sum_strain_load,NStrain_Gauge,NLoad_Gauge}; 
export2wsdlg(checkLabels,varNames,items,... 
             'Save Sums to Workspace');    
         name=[num2str(NStrain_Gauge) '_Strain_Gauge_' 

num2str(Nload_location) '_loading_location_'  num2str(NLoad_Gauge) 

'_Load_Gauge' ]; 
         save name 'name' 
         save(name, 'strain_data', 'load_data', 'Sum_strain_load', 

'NStrain_Gauge', 'NLoad_Gauge', 'Nload_location','name'); 

 

Part 8 

function 

[strain_data]=get_one_set_data(Ndata_location,NStrain_Gauge,NLoad_Gauge) 
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  S=strcat('strain data aquisation Number: ', num2str(Ndata_location)); 
 helpdlg1=helpdlg('Change the load configuration to no loading 

position,then press Enter: ',S); 
 waitfor(helpdlg1); 
 strain_data_Null=data_session; 
 helpdlg2=helpdlg('Change the load configuration to desired loading 

position,then press Enter:',S); 
  waitfor(helpdlg2); 
  strain_data=data_session-strain_data_Null; 
  checking(Ndata_location) 
  

Part 9 

function checking(Ndata_location) 
 choice = questdlg('Was the current test DAQ Carried out correctly?', ... 

    'Test Check', 'Yes','No','Yes'); 
 switch choice 
    case 'Yes' 
        case 'No' 
       msgbox1= msgbox('Do the same loading test again');  
        waitfor(msgbox1); 
        get_one_set_data(Ndata_location) 
   end 

 

Part 10 

% --- Executes on button press in Training_Data_Generation. 
function Training_Data_Generation_Callback(hObject, eventdata, handles) 
  prompt = {'Enter Number of strain Gauges :','Enter the number of loading 

locations:'}; 
dlg_title = 'Training Data generation Parameters'; 
num_lines = 1; 
def = {'16','16'}; 
input_answer = inputdlg(prompt,dlg_title,num_lines,def); 

  
Nstrain=str2num(input_answer{1,1}) 
Nload=str2num(input_answer{2,1});  
Data_Generation(Nstrain,Nload) 

  %{ This function appears when MATLAB GUIDE generates the code after designing the GUI. 

Whatever written in this function will be executed on button press in Training Data Generation in GUI.%} 

function Data_Generation(Nstrain,Nload) 
 prompt = {'Enter Number of Superposition :','Enter the desired iteration 

higher limit:','Enter the desired iteration lower limit:','Enter the desired 

Test Data:'}; 
dlg_title = 'Training Data generation Parameters'; 
num_lines = 1; 
def = {'700','300','0', '150'}; 
input_answer = inputdlg(prompt,dlg_title,num_lines,def); 
NSuperposition=str2num(input_answer{1,1}) 
Niteration_higher_limit=str2num(input_answer{2,1});   
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Niteration_lower_limit=str2num(input_answer{3,1}); 
NTest_data=str2num(input_answer{4,1}) 

  load('C:\Users\Mohammad\Desktop\Matlab Final\name.mat'); 
S=['C:\Users\Mohammad\Desktop\Matlab Final\' name '.mat'] 
load(S) 
%the random number in the range lower limit to higher limit for the first 

part 
Sum=strain_data; 
         for i=1:Nload 
             Sum(Nstrain+i,i)=load_data(i,1); 
         end 
Sum 
for i=1:Nload 
Sum(:,i)=Sum(:,i)/Sum(Nstrain+i,i); 
end 
 % the random number in the range Niteration_lower_limit to 

Niteration_higher_limit for the first part 
% First part consist of NSuperposition data (set initially 700) which is 
% summation of all the Nload  data sets (Nload +Nstrain in Nload coloumns 
% where each coloumn is randomized and then all the coumn are added 
% together to demonstrate the randome cases for when all the locations are 

loaded at the same time with random loads  
Temp_Column_NEW_SUM=zeros(Nstrain+Nload,NSuperposition); 
for k=1:(NSuperposition)    

NEW_SUM=randomized_data(Nload,Niteration_lower_limit,Niteration_higher_limit,

Sum); 
    for j=1:Nload 
        Temp_Column_NEW_SUM(:,k)=Temp_Column_NEW_SUM(:,k)+NEW_SUM(:,j); 
    end 
end 
Randomized_set=Temp_Column_NEW_SUM; 
%the random number in the range Niteration_lower_limit to 

Niteration_higher_limit for the Second part 
%Second part consists of round(NSuperposition/Nload)* Nload  coloumns which 
%is one random load at a time on each location 
for k=1:round(NSuperposition/Nload) 
     

NEW_SUM=randomized_data(Nload,Niteration_lower_limit,Niteration_higher_limit,

Sum); 
tempsum(:,:,k)=NEW_SUM(:,:); 
end 
for k=1:round(NSuperposition/Nload) 
   for i=1:Nload 
       Randomized_set(:,NSuperposition+i-Nload+(k*Nload))=tempsum(:,i,k); 
   end 
end 

  
for i=1:Nstrain 
  Input(i,:)=  Randomized_set(i,:); 
end 
Input; 
 for i=Nstrain+1:Nstrain+Nload 
  for j=1:(round(NSuperposition/Nload)*Nload)+NSuperposition 
  Output(i-Nstrain,j)=  Randomized_set(i,j); 
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  end 
end 
Output;    
% This part is the test data where NTest_data * Nload   data sets with 
% order is generated this means that each loading location is loaded from 1 
% to NTest_data individually and  data sets are generated  
for k=1:NTest_data 
           for i=1:Nstrain+Nload 
Temp_test_data(i,:,k)=k*Sum(i,:); 
           end     
end 
for k=1:150 
    for i=1:Nstrain+Nload 
        for j=1:Nload 
            test_data(i,((k-1)*Nload)+j)=Temp_test_data(i,j,k); 
        end 
    end 
end 

  
for i=1:Nstrain 
test_Input(i,:)=test_data(i,:); 
end 

  
for i=Nstrain+1:Nstrain+Nload 
test_Output(i-Nstrain,:)=test_data(i,:); 
end        
name2=['General_data_' num2str(NStrain_Gauge) '_Strain_Gauge_' 

num2str(Nload_location) '_loading_location_'  num2str(NLoad_Gauge) 

'_Load_Gauge' ]; 
         save name2 'name2' 
         save(name2, 'Randomized_set' , 'Input', 'Output', 'test_Input',  

'test_Output', 'NStrain_Gauge', 'NLoad_Gauge', 'Nstrain', 

'Nload','name','Nload_location'); 

  
checkLabels = {'Save acquired to variable named:','Save acquired to 

variable named:','Save acquired to variable named:','Save acquired to 

variable named:','Save acquired to variable named:','Save acquired to 

variable named:','Save acquired to variable named:','Save acquired to 

variable named:','Save acquired to variable named:','Save acquired to 

variable named:'};  
varNames = {'Randomized_set','Input','Output','test_Input', 

'test_Output','Nload_location','NStrain_Gauge','NLoad_Gauge','Nstrain','Nload

'};   
items = {Randomized_set,Input,Output,test_Input, 

test_Output,Nload_location,NStrain_Gauge,NLoad_Gauge,Nstrain,Nload}; 
export2wsdlg(checkLabels,varNames,items,... 
             'Save Sums to Workspace');          

 Part 11 

    function[NEW_SUM] 

=randomized_data(Nload,Niteration_lower_limit,Niteration_higher_limit,Sum) 
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Rand= Niteration_lower_limit + (Niteration_higher_limit-

Niteration_lower_limit).*rand(1,Nload); 
 for j=1:Nload 
NEW_SUM(:,j)=Rand(1,j)*Sum(:,j);             
end   

   

Part 12 

% --- Executes on button press in Train Network. 
function Train_1_Network_Callback(hObject, eventdata, handles) 
net=Train_1_Network;      
  %{  

This function appears when MATLAB GUIDE generates the code after designing the GUI. 

Whatever written in this function will be executed on button press in Train 1 Network in GUI. 

%} 

 function [net]=Train_1_Network 
load('C:\Users\Mohammad\Desktop\Matlab Final\name2.mat'); 
S=['C:\Users\Mohammad\Desktop\Matlab Final\' name2 '.mat']; 
load(S) 

  
 prompt = {'Enter Number of Hidden Layers :'}; 
dlg_title = 'Network Parameters '; 
num_lines = 1; 
def = {'20'}; 
input_answer = inputdlg(prompt,dlg_title,num_lines,def); 
 Nhidden_lay=str2num(input_answer{1,1}); 

 net = feedforwardnet(Nhidden_lay); 

 prompt = {'Enter Number of Epochs :','Enter the desired goal:'}; 
dlg_title = 'Network Parameters '; 
num_lines = 1; 
def = {'100','0.1'}; 
input_answer = inputdlg(prompt,dlg_title,num_lines,def); 
net.trainParam.epochs=str2num(input_answer{1,1}) 
net.trainParam.goal=str2num(input_answer{2,1}) 
%net.trainParam.goal=0.1; 
%net.trainParam.epochs=100; 
net = train(net,Input,Output); 
timenow=datestr(clock); 
filename=strcat('Randomized_numbers_',date,'_',timenow(13:14),'_',timenow(1

6:17),'_',timenow(19:20)); 
name3=['General_net_data_' num2str(NStrain_Gauge) '_Strain_Gauge_' 

num2str(Nload_location) '_loading_location_'  num2str(NLoad_Gauge) 

'_Load_Gauge' ]; 
         save name3 'name3' 
         save(name3, 'timenow', 'net' ,'Randomized_set' , 'Input', 

'Output', 'test_Input',  'test_Output', 'NStrain_Gauge', 'NLoad_Gauge', 

'Nstrain', 'Nload','name'); 
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checkLabels = {'Save acquired to variable named:','Save acquired to 

variable named:','Save acquired to variable named:','Save acquired to 

variable named:','Save acquired to variable named:','Save acquired to 

variable named:','Save acquired to variable named:','Save acquired to 

variable named:','Save acquired to variable named:','Save acquired to 

variable named:','Save acquired to variable named:'};  
varNames = {'timenow','net','Randomized_set','Input','Output','test_Input', 

'test_Output','NStrain_Gauge','NLoad_Gauge','Nstrain','Nload'};  

  
items = {timenow,net,Randomized_set,Input,Output,test_Input, 

test_Output,NStrain_Gauge,NLoad_Gauge,Nstrain,Nload}; 
export2wsdlg(checkLabels,varNames,items,... 
             'Save Sums to Workspace');  

 Part 13 

%{   This function appears when MATLAB GUIDE generates the code after designing the GUI. 

Whatever written in this function will be executed on button press in Estimate 1 Net loads in GUI. 

By pressing this button a new set of data is acquired and introduced to a trained network. The network will 

simulate and predict load from this new set of data. The loads are then indicated as a bar graph in GUI. At the end 

there will be the option to save key data such as: ‗timenow', 'Strain_reading_average', 'test_output' and 

‗first_reading_average'.%} 

% --- Executes on button press in Estimate Load. 
function Estimate_1_Net_loads_Callback(hObject, eventdata, handles) 
load('C:\Users\Mohammad\Desktop\Matlab Final\name3.mat'); 
S=['C:\Users\Mohammad\Desktop\Matlab Final\' name3 '.mat'] 
load(S) 
location=5; 
strain_data_all(1,:)=get_one_set_data(1,NStrain_Gauge,NLoad_Gauge); 
strain_data=strain_data_all(:,1:NStrain_Gauge)'; 
load_data=zeros(Nstrain,1); 
load_data(location,1)=strain_data_all(:,NStrain_Gauge+1)'; 

  
checkLabels = {'Save aquired to variable named:','Save aquired to variable 

named:','Save aquired to variable named:'};  
varNames = {'test_strain_data','test_load_data','estimated_test_load'};  
estimated_test_load=sim(net,strain_data); 
bar(estimated_test_load); 
items = {strain_data,load_data,estimated_test_load}; 
export2wsdlg(checkLabels,varNames,items,... 
             'Save Sums to Workspace'); 

Part 14 

% --- Executes on button press in Train_n_1_Network. 
function Train_n_1_Network_Callback(hObject, eventdata, handles) 
mean_nets_mse=Train_n_1_Network;    
function [mean_nets_mse]=Train_n_1_Network 
load('C:\Users\Mohammad\Desktop\Matlab Final\name2.mat'); 
S=['C:\Users\Mohammad\Desktop\Matlab Final\' name2 '.mat']; 
load(S) 
 prompt = {'Enter Number of Hidden Layers :'}; 
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dlg_title = 'Network Parameters '; 
num_lines = 1; 
def = {'50'}; 
input_answer = inputdlg(prompt,dlg_title,num_lines,def); 
Nhidden_lay=str2num(input_answer{1,1}); 
N_temp=size(Output); 
Nload=N_temp(1,1); 
N_temp=size(Input); 
Nstrain=N_temp(1,1); 
for i=1:Nstrain 
s=strcat('Output_',num2str(i),'=Output(i,:);') 
eval(s) 
s=strcat('net_',num2str(i),' = feedforwardnet([' ,num2str(Nhidden_lay), 

']);') 
eval(s) 
s=strcat('[net_',num2str(i),',tr_',num2str(i),'] = 

train(net_',num2str(i),',Input,Output_',num2str(i),');') 
eval(s) 
end 
for i=1:Nstrain 
s=strcat('net_esstimation(i,:)=sim(net_',num2str(i),',Input);') 
eval(s) 
s=strcat('nets_mse(1,i)=mse(net_',num2str(i),',Output_',num2str(i),',net_es

stimation(i,:) );') 
eval(s) 
end 
error_net_esstimation= net_esstimation - Output; 
mean_nets_mse=mean(nets_mse) 
name4=['General_n_1_net_data_' num2str(NStrain_Gauge) '_Strain_Gauge_' 

num2str(Nload_location) '_loading_location_'  num2str(NLoad_Gauge) 

'_Load_Gauge' ]; 
         save name4 'name4' 
for i=1:Nstrain 

     
        S= ['netdata.net_',num2str(i),'=net_',num2str(i),';']; 
        eval(S) 
         S= ['netdata.tr_',num2str(i),'=tr_',num2str(i),';']; 
        eval(S) 
        save(name4,  'netdata' 

,'error_net_esstimation','nets_mse','net_esstimation','Randomized_set' , 

'Input', 'Output', 'test_Input',  'test_Output', 'NStrain_Gauge', 

'NLoad_Gauge', 'Nstrain', 'Nload','name4'); 
end 

  

Part 15 

 % --- Executes on button press in Estimate_n_1_Net_loads. 
function Estimate_n_1_Net_loads_Callback(hObject, eventdata, handles) 
load('C:\Users\Mohammad\Desktop\Matlab Final\name4.mat'); 
S=['C:\Users\Mohammad\Desktop\Matlab Final\' name4 '.mat']; 
load(S) 
location=5; 
strain_data_all(1,:)=get_one_set_data(1,NStrain_Gauge,NLoad_Gauge) 
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size(strain_data_all) 
Input=strain_data_all(:,1:NStrain_Gauge)'; 
Output=zeros(Nstrain,1); 
Output(location,1)=strain_data_all(:,NStrain_Gauge+1)'; 
for i=1:Nstrain 
s=strcat('net_esstimation(i,:)=sim(netdata.net_',num2str(i),',Input);') 
eval(s) 
end 
checkLabels = {'Save aquired to variable named:','Save aquired to variable 

named:','Save aquired to variable named:'};  
varNames = {'test_strain_data','test_load_data','estimated_test_load'};  
bar(net_esstimation); 
items = {Input,Output,net_esstimation}; 
export2wsdlg(checkLabels,varNames,items,... 
             'Save Sums to Workspace'); 
  

Part 16  

% --- Executes on selection change in popupmenu1. 
function popupmenu1_Callback(hObject, eventdata, handles) 
% --- Executes during object creation, after setting all properties. 
function popupmenu1_CreateFcn(hObject, eventdata, handles) 
if ispc && isequal(get(hObject,'BackgroundColor'), 

get(0,'defaultUicontrolBackgroundColor')) 
     set(hObject,'BackgroundColor','white'); 
end 
set(hObject, 'String', { 'Strain Reading', 'Load Estimation (Bar)', }); 
% --- Executes on button press in Update_Graph. 
function Update_Graph_Callback(hObject, eventdata, handles) 
axes(handles.axes1); 
cla; 
load('C:\Users\Mohammad\Desktop\Matlab Final\name3.mat'); 
S=['C:\Users\Mohammad\Desktop\Matlab Final\' name3 '.mat'] 
load(S) 
strain_data_all(1,:)=get_one_set_data(1,NStrain_Gauge,NLoad_Gauge); 
strain_data=strain_data_all(:,1:NStrain_Gauge)'; 
load_data=strain_data_all(:,NStrain_Gauge+1:NLoad_Gauge)'; 
estimatedload=sim(net,strain_data); 
for i=1:NStrain_Gauge 
if estimatedload(i,1)<=0 
    estimatedload(i,1)=0; 
end 
end 
popup_sel_index = get(handles.popupmenu1, 'Value'); 
switch popup_sel_index 

    case 1 

         plot(strain_data); 

    case 2 

          bar(estimatedload); 

      end    
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Appendix 5: Introduction to MATLAB NNT through a Training Example  

MATLAB NNT can be used in different ways. First is to employ predefined GUIs designed 

for many problems of pattern recognition, clustering, function fitting and time series analysis. 

The second is to use basic command-line operations which use simple argument with default 

settings for function parameters (all of the default settings can be accessed and overridden) 

The third approach is customization of the toolbox and create own customised neural 

networks, while still having access to the full functionality of the toolbox. The fourth approach is 

to employ M-file scripts of MATLAB and access all the above ways of using toolbox at one 

customised programme. In this thesis, the first two methods will be described. 

Using MATLAB NNT Predefined GUIs 

In this section, how to use MATLAB NNT predefined GUIs is briefly described through a 

simple example.  In order to open any of the GUIs,   their specific command should be written in 

MATLAB command line. The main GUIs are: 

1. General Network Data Manager (nntool) 

nntool command opens the Network/Data Manager window, which allows to import, 

create, use, and export all sorts of neural networks and data available in MATLAB. 

2. Neural Network Fitting Tool (nftool) 

nftool opens a window which leads the user step by step through solving a data fitting 

problem employing a two-layer feed-forward network. 

3. Neural network time series tool (ntstool) 

ntstool opens the neural network time series wizard and leads the user through solving a 

nonlinear time series problem with a dynamic neural network. 

4. Neural network pattern recognition tool (nprtool) 

nprtool opens the neural network pattern-recognition GU I which guides the user through 

solving a pattern recognition or classification problem using a two-layer feed-forward 

network with sigmoid output neurons 

5. Neural network classification or clustering tool (nctool) 
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nctool opens the neural network clustering GUI which guides the user through solving a 

clustering problem using a self-organizing map.  

The MATLAB NNT predefined GUIs are very straight forward and clear and lead the user 

through solving the problem employing various neural networks. In this thesis, the most general 

GUI, General Network Data Manager (nntool), is described through an example. For this 

purpose, training data set was already available and it is only needed to load it into MATLAB 

workspace. Data set includes strain values from 8 sensors (strain gauges) when various weights 

in the range of 0 to 20 Kg are applied on 2 locations. The aim is to design a network which 

relates these strain data to the weight values. In other words, strain values are inputs to network 

and weight values are targets. Training data set consists of 1396 random loading scenarios. 

Imported input/target pairs (examples) are in the form of two matrices: Input and Output.  In this 

example, Input is a matrix of         elements (1396 columns each has 8 strain readings) and 

Output is a matrix of         elements (1396 columns each has 2 weight values). 

As it was stated earlier, in order to call a particular GUI, its command (nntool) should be 

written in MATLAB command line. The first window of General Network Data Manager GUI 

will be opened (Figure 1-15). In this window, the user can import, export MATLAB workspace 

data (Figure 1-16 and Figure 1-17) or alternatively use open option to load data from hardware. 

Once necessary data are loaded to the GUI, the user should create the network using. Selecting 

create new option leads the user to a new window (Figure 1-18) where a new network or data set 

can be created. In the Network index of this window, a new network can be selected and 

configured. Main features of a network can be customized for the new network including: type, 

input and output data, training and learning functions, number of layers (hidden layers), number 

of neurons and their type of transfer functions in each hidden layer of the network.  

In this example, data should be imported first to General Network Data Manager GUI. Input 

data set is imported as Input and Output data set as target Data. This will categorize data for 

easier use later in GUI. Once the data set are imported, the user should define the specific 

network for the problem. In this example, a back-propagation feedforward network is selected 

with one hidden layer each having 10 neurons. The training and performance functions are set to 

be the default of the MATLAB NNT: the Levenberg-Marquardt (trainlm) training method and 
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the mean square error performance function (MSE). In fact this GUI enables many different 

configurations of ANN architecture to be employed. A list of possible network types, training 

and performance functions are listed in Table 1-2-Table 1-3.  In general, the default training 

function for feedforwardnet, trainlm, is the fastest training function in MATLAB NNT. The 

quasi-Newton method, trainbfg, is pretty fast as well. However, for large networks with 

thousands of weights, due to the fact that more memory and more computation time are required, 

both of these training functions are less efficient. Furthermore, trainlm indicates better 

performances on nonlinear regression problems than on pattern recognition problems (Hagan & 

Menhaj, 1999). For training very large networks, and pattern recognition problems, trainscg and 

trainrp are good selections. This is mostly due to their relatively small memory requirements. In 

addition, their algorithms are much faster than standard gradient descent algorithms (Beale, et al., 

2012). 

 

Figure 1-15: General Network Data Manager GUI 
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Figure 1-16: Import to Network/Data Manager GUI 

 

Figure 1-17: Export from Network/Data Manager GUI 



 

200 

 

 

Figure 1-18: Create Network or Data GUI 

Table 1-1: List of MATLAB NNT Training Functions (Beale, et al., 2012) 

Training Functions 

Function Algorithm 

trainlm  Levenberg-Marquardt 

trainbr Bayesian Regularization 

traingd Gradient Descent 

trainrp Resilient Backpropagation 

trainscg Scaled Conjugate Gradient 

traincgb Conjugate Gradient with Powell/Beale Restarts 

traincgf Fletcher-Powell Conjugate Gradient 

traincgp Polak-Ribiére Conjugate Gradient 

trainoss One Step Secant 

traingdx Variable Learning Rate Gradient Descent 

traingdm Gradient Descent with Momentum 

trainbfg BFGS Quasi-Newton 
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Table 1-2: List of MATLAB NNT Network Types (Beale, et al., 2012) 

Network Types 

New Networks 

Functions 

Description 

network Create custom neural network 

cascadeforwardnet Cascade-forward neural network 

competlayer Competitive neural layer 

distdelaynet Distributed delay neural network 

elmannet Elman neural network 

feedforwardnet Feed-forward neural network 

fitnet fitnet 

layrecnet Layer recurrent neural network 

linearlayer Linear neural layer 

lvqnet Learning vector quantization (LVQ) neural network 

narnet Nonlinear auto-associative time series network 

narxnet Nonlinear auto-associative time series network with external input 

newgrnn Generalized regression neural network 

newlind Designed linear layer 

newpnn Probabilistic neural network 

newrb Radial basis network 

newrbe Exact radial basis network 

patternnet Pattern recognition network 

perceptron Perceptron 

selforgmap Self-organizing map 

timedelaynet Time-delay neural network 

 

Table 1-3: List of MATLAB NNT Performance Functions (Beale, et al., 2012) 

Performance Functions 

Function Description 

mae  Mean absolute error performance function 

mse  Mean squared error performance function 

sse Sum squared error performance function 

Once network is created, MATLAB NNT automatically initiated the required number of 

weights and biases according to the network and its input and target data sets. Double clicking on 

the network in  the General Network Data Manager GUI opens a new window that enables the 

user to employ the network. The first index of this window (Figure 1-19), View, indicates the 
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neural network as a graphical diagram that clearly describes network type and its number of 

layers. Other indexes of network GUI enable its principle functions such as training, simulation 

as well as weight and biases set up. As mentioned earlier there are two training styles: 

incremental and batch training.  MATLAB NNT enables the user to train the network in either 

way employing specific window or functions.  In the network GUI, Train index employs batch 

training style. The user can use the predefined parameter or override them as required (Figure 1-20 

and Figure 1-21). In contrast to the Train index, the Adopt index uses incremental training style 

(Figure 1-22).   

For this example, batch training is employed. This means that the user should use Train index 

options to train the network. Training Inputs/Targets are selected from imported data sets and 

training parameters are set to be the default values of the GUI (Figure 1-20 and Figure 1-21). 

Selecting the train button begins the training process. This opens the Neural Network Training 

GUI indicated in Figure 1-23 automatically.  During training, the progress is constantly updated in 

the training GUI. It can be illustrated from this window that the data is divided using the 

dividerand function, and the Levenberg-Marquardt (trainlm) training method is employed with 

the mean square error performance function. With the dividerand setting, the input vectors and 

target vectors will be randomly divided, by default 70% is used for training, 15% for validation 

and 15% for testing. 

This window also indicates the state of training progress in terms of training time and epochs, 

the network performance, the magnitude of the gradient of performance and the number of 

validation checks. These values are of most interest to monitor during the training progress. This 

is due to the fact that the user may use early stopping method to achieve a more general network. 

The training process could be stopped at any time of the progress by clicking the Stop Training 

button in the training window. This is usually done when the performance function fails to 

decrease considerably over many training iterations. 

The magnitude of the training time and epochs as well as the gradient and the number of 

validation checks are utilised to terminate the training. The gradient will become very small as 

the training reaches a minimum of the performance. In this example, should the magnitude of the 

gradient become less than     , the training process will stop. The number of validation checks 
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denotes the number of consecutive iterations that the validation performance has not decreased. 

In this example the magnitude is 6 and reaching to this number stops the training process.  

Reaching to the magnitude of any of these limit values during the training progress stops the 

progress. . In this run, the training did stop because of the number of validation checks after just 

40 iterations.   

 

Figure 1-19: Network Architecture View 

 

 

Figure 1-20: Network Train window (Training Info index) 
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Figure 1-21: Network Train window (Training Parameters index) 

 

Figure 1-22: Network Adapt window (Adaption Info index) 



 

205 

 

 

Figure 1-23: Network Network Training GUI 

From the Neural Network Training GUI, three plots can be accessed: performance, training 

state and regression plots. The performance plot indicates the value of the performance function 

versus the iteration number (Figure 1-24). Training, validation and test performances diagrams are 

plotted simultaneously and their trends can be compared. In this example, no major problems are 

illustrated with the training in the performance plot. The validation and test curves are very 

similar.  
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The training state plot shows the progress of other training variables, such as the gradient 

magnitude, the number of validation checks, etc. The regression plot shows a regression between 

network outputs and network targets and is used mainly for post-processing purposes to validate 

network performance. The regression plot shows the relationship between the outputs of the 

network and the targets. The regression plot for this example is shown in the Figure 1-25. The 

three axes represent the training, validation and testing data. The solid line represents the best fit 

linear regression line between outputs and targets. The R value is an indication of the 

relationship between the outputs and targets.  For this example, the training data indicates a good 

fit. The validation and test results also show R values that greater than 0.99.  

 

Figure 1-24: Network Performance Plot 
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Figure 1-25: Network Regression Plot 

If the network is not sufficiently accurate, the network initialization and the training can be 

performed again. Each time a network is initialized, the network parameters may be different and 

different solutions might be produced. In order to reinitialize the network weights and biases 

automatically based on the training data sets, the Reinitialize Weights index of the network 

window can be used (Figure 1-26).  Furthermore, View/Edit Weights index enables to view and 

edit individual or all the weight and biases of a layer (Figure 1-27). As a second approach, due to 

the fact the larger numbers of neurons in the hidden layer give the network more flexibility, the 

number of hidden neurons can be increased to above 20.  As another option a different training 
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function can be used. For instance, sometimes Bayesian regularization training (trainbr) can 

produce better generalization capability than using early stopping (Beale, et al., 2012). At last 

additional training data can be employed as well.  Having a trained and validated network, the 

network object can be used to calculate the network response to any input. Properly trained 

multilayer networks tend to give reasonable answers when presented with inputs that they have 

never seen. Typically, a new input leads to an accurate output, if the new input is similar to 

inputs used in the training set. The Simulate index of the network GUI enables the user to present 

new inputs to the trained network and save the output of the network as a new data set 

(Figure 1-28).  

 

Figure 1-26: Network Reinitialize Weights Window 

 

Figure 1-27: Network View/Edit Weights Window 



 

209 

 

 

 

Figure 1-28: Network Simulate Window 

Using MATLAB NNT Command-Line Functions 

In this section, how to solve the same simple example by using command-line functions is 

described. Following scripts are the functions that perform major tasks of the GUIs directly from 

MATLAB command-line. Again it is assumed that training variables are available and should be 

loaded: 

Load training_data  

In order to create a feedforward network with the default tan-sigmoid transfer functions in the 

hidden layer and pure_linear in output output layer,  following script is written in the comman-

line: 

network1 = feedforwardnet([10],'trainlm'); 

Note that ten neurons (somewhat arbitrary) are assigned to the one hidden layer and 

Levenberg-Marquardt (trainlm) training method is selected. In order to view the network 

architechture following command can be employed:  
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view(network1); 

The network has some default values for dividing training data set to three data sets. By 

default 70% is used for training, 15% for validation and 15% for testing. However, these ratios 

can be set as the user wish using following scripts: 

network1.divideParam.trainRatio = 70/100; 

network1.divideParam.valRatio = 15/100; 

network1.divideParam.testRatio = 15/100; 

In order to train and save the training results with the default values for the feedforward 

network following script is used: 

[network1,tr] = train(network1,Input,Output); 

Notice that no configuration or initialization commands are used. This is due to the fact that 

weight and bias initialization and network configuration is done automatically by the train 

function. Since there are two target values associated with each input vector having 8 elements, 

the network will have 2 output neurons. By default, the training window will appear during 

training (Figure 1-23). Should the user wish to have this window not displayed during training, the 

network parameter network1.trainParam.showWindow to 0 otherwise it should be 1.  

Once the training is finished by early stopping or reaching one of the limits, the performance 

of the network should be tested. Below is the script that computes the network outputs for the 

same input data set presented at training process, errors and overall performance: 

net_outputs = network1(Input); 

errors = gsubtract(Output, net_outputs); 

performance = perform(network1, Output, net_outputs); 

In general, some post-processing is needed to decide on network performance and check if 

any changes need to be made to the training process, the network architecture or the data sets. 

The first thing to do is to check the training record, tr, which was the second argument returned 

from the training function. This structure contains all of the necessary information regarding the 
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network training process. For instance, tr.trainInd, tr.valInd and tr.testInd contain the indices of 

the data points that were used in the training, validation and test sets, respectively. If the user 

decides to retrain the network using the same division of data, net.divideFcn can be set to 

`divideInd', net.divideParam.trainInd to tr.trainInd, net.divideParam.valInd to tr.valInd, 

net.divideParam.testInd to tr.testInd. These codes can be written in command line as below: 

network1.divideFcn= 'divideind'; 

network1. divideParam.trainInd= tr.trainInd; 

network1. net.divideParam.valInd= tr.valInd; 

network1..divideParam.testInd= tr.testInd; 

The tr structure also keeps track of several variables during the course of training, such as the 

value of the performance function, the magnitude of the gradient, best iteration, etc. For instance, 

employing tr.best_epoch, the iteration at which the validation performance reached a minimum 

can be identified. In order to plot the training, validation and test performance, following code 

can be used: 

plotperform(tr); 

In order to plot training state graph following code can be used: 

plottrainstate(tr); 

In order to plot training state graph following code can be used: 

plotregression(Output,net_outputs,'Train'); 

The regression plot can be created with the following commands: The first command 

calculates the trained network response to all of the inputs in the data set. The following six 

commands extract the outputs and targets that belong to the training, validation and test subsets. 

The final command creates three regression plots for training, testing and validation. 

net_outputs = network1(Input); 

trOut = net_outputs (tr.trainInd); 

vOut = net_outputs (tr.valInd); 

tsOut = net_outputs (tr.testInd); 

trTarg = Output (tr.trainInd); 
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vTarg = Output (tr.valInd); 

tsTarg = Output (tr.testInd); 

plotregression(trTarg,trOut,'Train',vTarg,vOut,'Validation',tsTarg,tsOut,'Testing'); 

In case it is desired to initialize the network, following command can be employed: 

network1= init(network1); 

[network1,tr] = train(network1,Input,Output); 

If it is required to increase the number of hidden neurons, say to 20, and train the network 

again the following codes can be used: 

network1 = feedforwardnet([20],'trainlm'); 

[network1,tr] = train(network1,Input,Output); 

And finally, to try a different training function like Bayesian regularization training, trainbr, 

for a possible better generalization capability, the following codes can be used:  

network1 = feedforwardnet([20],' trainbr'); 

[network1,tr] = train(network1,Input,Output); 

Once the user is satisfied with the training process and the network performance is validated, 

the network can be used to calculate the network response to any input. For instance, the network 

response to the 5th input vector in the building data set, the following code can be used: 

a = network1 (Input (:,5)); 



 

213 

 

Appendix 6: Publications 

Paper 1: Determination of the static pressure loads on a marine composite panel from 

strain measurements utilising artificial neural networks 
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from strain measurements utilising
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Abstract
One of the first steps in marine structural design is to calculate the wave-induced loads and load combinations. In con-
trast with both the hydrostatic loads and the self-weight loads which can be evaluated with a high degree of confidence,
it is more difficult to measure the in-service hydrodynamic loads generated by sea waves. Direct pressure load measure-
ment techniques can currently provide only data at finite locations while classical analytical techniques require knowledge
of all the parameters that influence the load and that each parameter is studied independently. Therefore, a novel tech-
nique is required to overcome these limitations by providing a method of measuring the pressure load over large areas
with relatively few sensors and minimal data collection. This paper reports research undertaken to develop an inverse
problem approach utilising an artificial neural network for measurement of the pressure loads experienced by marine
structures. The suitability and performance of utilising an artificial neural network for quantifying the pressure load
applied to a marine structure is presented. It was found that the artificial neural network was able to estimate accurately
the pressure loads applied to up to 12 locations on the structure. It is concluded that the inverse problem approach can
be used to estimate the applied loads on the marine structure in real time from strain measurements.
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Composite, marine, artificial intelligence, artificial neural network, structural analysis, load
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Introduction

A review of methods for evaluating the hydrodynamic
loads on ships by Phelps1 outlined that, for given ship
conditions, both the hydrostatic loads and the self-
weight loads can be evaluated with a high degree of
confidence. In contrast, the determination of the hydro-
dynamic loads generated by sea waves is more difficult
to quantify. Most designers of high-speed craft use the
rules, guidelines and procedures of the various classifi-
cation societies to calculate the bottom loads and pres-
sures. Unfortunately, there are some uncertainties in
these calculations that can lead to overdesign.2 Recent
studies demonstrated that measurement of the in-
service hydrodynamic load on marine structural
components is also particularly difficult owing to the
transient nature of the load intensities.3

Xu and Duan3 have reviewed the techniques used to
estimate the impact loads (slamming, wave slap, flare
slamming and green water on the deck). In summary,

these techniques can be categorised into four groups:
theoretical approaches, experiments, empirical formu-
lae and numerical simulations. Theoretical approaches
and numerical simulations are the most flexible
approaches. Experimental methods are thought to be
most reliable but can be costly and suffer from scale
effects. The measured results, such as a two-
dimensional wedge, a two-dimensional cross section of
a ship and a three-dimensional drop cone or sphere,
are usually used for validation of a theoretical method
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or numerical simulation. There are also sea-keeping
tests conducted in the towing tank in either regular
waves or irregular waves. The objective of these experi-
mental studies is to obtain the relationship between the
pressure magnitude and the velocity at the instant of
impact on a given body.

Some modern composite laminate hulls have sensors
integrated within them during manufacture. Stresses
and strains generated because of the loads acting on a
craft are used to monitor the structural integrity, and
also to monitor stresses at key locations where there
are geometrical or material discontinuities. These sys-
tems provide real-time information concerning the state
of the ship structure, can be employed to validate com-
puter models, increase operational attainability and
ship service life and can lead to reductions in the
ongoing maintenance costs.4–6

Computational fluid dynamics (CFD) techniques
provide a method to solve these problems; however, it
is generally accepted that CFD codes have difficulties
in estimating the impact loads.7 CFD methods are time
consuming, making statistical estimations of the
response variables in the sea difficult.3

Finite element analysis (FEA) can be employed for
assessment of a ship’s structural strength. This requires
a suitable method for applying loads to the FEA model.
This approach is dependent upon the accuracy of the
methods used to define and calculate the loads in the
first place and also the specific FEA software being
used. It is more difficult to apply hydrodynamic loads
to finite element models than to apply static loads. This
is due to the dynamic nature of the problem and less
clearly defined loads. In addition, the material proper-
ties are usually not available, difficult or too costly to
obtain and are very variable for typical marine-type
laminates. According to Phelps,1 the work carried out
so far has been limited and correlation between numeri-
cal predictions, test data and further evaluations are
necessary.

As vessels and craft, in most cases, are extremely
complicated structures, the mechanical properties, or
relations between externally induced excitation and
structural responses, are difficult to formulate. An
appropriate load-monitoring system and technique
have to be developed for naval assets and large
structures.8

A novel approach for determination of the pressure
loads experienced by marine structures is the utilisation
of artificial intelligence (AI). Different approaches
employing AI methods may be utilised to solve com-
plex problems. Fuzzy logic and artificial neural net-
works (ANNs) are examples of various AI techniques
available.9 These methods have been utilised in research
areas where problems are solved by pattern recognition,
generalisation and pattern classification.10 ANNs have
attracted considerable attention and show promise for
modelling complex non-linear relationships.

This approach has the potential to overcome issues
related to both direct measurement of pressure and

other analytical estimation techniques. Transducers
allow measurement of the pressure in only a finite num-
ber of regions, provide data at only the location at
which they are attached and are relatively heavy.
Therefore, to provide an adequate profile of the pres-
sure on the boat a large number of transducers would
be required, adding significant weight to it. A common
analytical estimation technique involves developing a
complex relationship relating the load to all the key
design parameters. The sensitivity constants and influ-
ence factors for the relationship can then systematically
be calculated by a parametric study using linear regres-
sion analysis. Once all the constants have been deter-
mined, the relationship can be transformed into an
empirical formula, relating the pressure load to the
design parameters. This technique requires knowledge
of all the parameters that influence the load and that
each parameter is studied independently of all others to
find the relationship between each parameter and the
applied load. This methodology therefore requires a
large amount of testing to collect the required data.

ANNs have been used extensively in other fields.
For instance, ANNs have been widely used for damage
identification.11 In a study by Cao et al.,8 an approach
was developed to identify the loads acting on aircraft
wings where an ANN was utilised to model the load–
strain relationship for structural analysis. The research
demonstrated that using an ANN to identify loads is
feasible and a well-trained ANN reveals an extremely
fast convergence and a high degree of accuracy in the
process of load identification for a cantilevered beam
model. In a study by Amali et al.,12 it was demon-
strated that an ANN can be combined with experimen-
tal methods to create a hybrid inverse problem analysis
tool or inverse problem engine. The hybrid approach
can be applied to both direct problems (calculation of
the structural response from known loads applied to
the structure) and inverse problems (calculation of the
applied load from a known structural response).
Additionally, the approach avoids the need for having
information on the component geometry and the mate-
rial properties.13

Applying AI to a ship or a boat has been limited to
the use of an ANN for preliminary ship design.14,15

Research by Kim et al.16 presented a new method to
classify surface hull plates effectively in preliminary
ship design using neural networks.

This paper reports the research undertaken to
develop an ANN methodology for quantifying the sta-
tic pressure loads on a marine composite panel from
strain measurements collected from the panel.

Methodology

The methodology employed to evaluate the suitability
and performance of utilising an ANN as an inverse
problem solver for quantifying the load applied to the
composite panel is presented in this section. The first
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stage of the investigation was to design a load quantifi-
cation methodology for the panel utilising an ANN. In
the second stage the load quantification methodology
was validated by comparing loads estimated by the
ANN with the actual loads applied to the panel.

Inverse problem analysis methodology

Inverse problem analysis is based on accurately calcu-
lating the external loads or boundary conditions that
generate a known amount of strain, stress or displace-
ment at predetermined locations on a structure. An
ANN, as an inverse problem solver, can be utilised to
solve structural problems where the structure’s response
to the load is known but the load which causes this
response is not. In a study by Xu et al.,17 it was indi-
cated that many fields of science and industry employ
inverse analysis such as material property estimation,
radar tracking, medical tomography, residual stress
determination, oil reservoir identification and non-
destructive testing.

According to Kohonen,18 WS McCulloch and WA
Pitts introduced the fundamentals of neural computing
for the first time in 1943. An ANN, consisting of neu-
rons (units) and connections between them, is based on
simulating the way that the brain processes different
data. Therefore, ANNs are able to perform behaviours
similar to brain activities such as learning, generalisa-
tion, categorisation, association, optimisation and fea-
ture extraction.

The inverse method is used to determine a relation-
ship between the cause and its effect. In this study, the
static loads (the cause (output)) on a composite panel
are quantified by acquiring repeatable strain responses
(the effect (input)) to these loads from the panel. By
introducing examples to an ANN, it can learn the rela-
tionships between the input and the output through a
training process. The ANN requires a number of
known input and output data for training (i.e. relating
the ANN inputs to outputs using a transfer function
and series of weighting values). New input strain data
can then be introduced to the trained ANN (problem
data) to quantify or estimate the load (Figure 1).

The ANN is adjusted or trained such that a particu-
lar input leads to a unique and specific desired response
(testing inputs). Weight adjustment (described in the
section on the ANN architecture or topology) is based

on a comparison of the network response and the
desired response. Looping continues until the network
response matches the desired response or at least the
error function becomes an acceptably small value (i.e.
minimisation of the error function or convergence). A
back-propagation ANN uses a mean square error
(MSE) function which is defined as a sum of the
squared errors between the desired response and the
network response over all the network responses for all
the input–desired response pairs.

Further input–desired response pairs, which have
not been seen previously by the network (testing pat-
terns), are introduced after each loop and fed through
the network to find the MSE between the desired
response and the network response. This is a further
check to ensure that the error function is being reduced
and that the network is moving towards the global
minima or convergence. The testing MSE value also
indicates the level of accuracy of the network (i.e. if the
testing MSE is 10%, then the network should estimate
accurately to within 90%).

ANN analysis often requires a high number of indi-
vidual loops to determine the best solution. However,
the training time can be reduced (i.e. the number of
loops to minimise the error equation can be reduced)
by pre-processing the data that are given to the net-
work to train. Introducing noisy data to the ANN is
one technique to improve the ANN’s training effi-
ciency. These data are generated from the original
input and output data and have a noise level either
added to or subtracted from a predefined proportion of
the training data. The noise level depends on the nature
of the input and output data collected (i.e. if data are
collected from strain gauges the noise value will depend
on the accuracy of the data acquisition equipment).
Introducing noisy data during training allows the ANN
still to recognise input data that may have some ran-
dom fluctuation in its magnitude owing to the accuracy
of the data acquisition device.

Once the ANN is sufficiently trained, it can be uti-
lised to estimate the output in real time. New inputs
(problem data) are presented and processed by the
ANN as though training were taking place. However,
at this point the output is retained and no back propa-
gation occurs. Establishing an inverse problem analysis
approach can result in important advantages over
simulation, numerical or theoretical methods. Through
utilising such a method, knowledge of the component
material constitutive laws and component geometry are
not required. In contrast, they are necessary for valid
and accurate simulation, numerical or theoretical
analysis.

Experimental set-up

The structure under consideration was a 1m2 glass-
reinforced fibre polymer marine composite panel
(Figure 2(a)). The properties of the composite material
were unknown; however, as discussed in the section onFigure 1. ANN training loop to minimise the error.
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inverse problem analysis methodology, a major advan-
tage of the inverse approach is that the material proper-
ties are not required to quantify the load applied to the
structure.

The panel was divided into a four-by-four grid, pro-
ducing 16 equal regions of area 0.25m3 0.25m (Figure
2(b)). The positions of the strain readings collected
from the panel are also important. To produce efficient
training data the strain data should be captured in the
sensitive regions (i.e. the strain at those locations must
vary significantly owing to changes in the load level).
In addition, the strain data collected must provide a
unique response for each load distribution. If strain
data are collected from non-sensitive regions of the
panel and/or the strain data collected are not unique
for each load distribution, the ANN is less likely to be
able to find a function relating the input and the out-
put. A rectangular strain gauge rosette was attached to
the top surface of the panel at the centre of each region,
giving 48 strain readings (S1 to S48). The specifications
of the strain gauges used are detailed in Table 1.

The bottom surface of the panel was supported at
four points using blocks, each 0.035m wide, 0.009m
deep and 0.025m tall (Figure 2(b)). Loading was
achieved by applying weights normal to the panel

surface at the 12 locations indicated in Figure 2(b) (L1

to L12).
A Windmill 751-SG strain-monitoring and control

data acquisition system (Windmill Software Ltd,
Manchester, UK) with a resolution of 61 microstrain
was used to capture the strain data. The 751-SG pack-
age consists of Windmill 6 software, a universal serial
bus (USB) unit which provides differential inputs to
monitor 16 strain gauges at up to 80 samples/s. Eight
USB units can be connected to one computer to moni-
tor up to 128 strain gauges.

Generation of the ANN training data

The efficiency of the process for collection of the training
data can be increased by reducing the amount of data
collected. This is achieved by using the theory of super-
position to generate training and testing patterns from
the independent parent patterns, as discussed in detail
elsewhere.19 The theory of superposition states that the
strain at a point on a structure due to a series of loads is
equal to the sum of the strains from each individual load
case. Using this theory an infinite number of training
patterns can be generated by applying one known load
to each location on the structure individually. However,
the superposition method is only valid if the structure
under investigation has a linear stress–strain or load–
displacement response within the expected load range
applied to it. The results of the investigation to study the
linearity of the panel can be found in the section on the
linearity of the composite panel.

In this study, 48 strain readings from 16 rosettes
(inputs) and 12 load readings from 12 locations (out-
puts) were used with the superposition method to

Figure 2. Top view of the marine composite panel showing (a) the weights used for loading and (b) the locations L of the loads, the
locations S of the strain gauges and the locations C of the constraints (all dimensions are in metres).

Table 1. Strain gauge rosette specifications.

Type Rectangular rosette
Resistance 120 O6 0.6%
Gauge factor 2.100 6 0.5%
Gauge length 3.18 mm
Gauge width 1.78 mm
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generate 1116 sets of training data. This meant that
1116 sets of 12 random loads at each location on the
panel and the resultant 48 strains caused by these ran-
dom loads were required to find the relationship
between the input data and the output data. Some 280
testing patterns were also generated using the superpo-
sition method and introduced to the network during
training to ensure convergence. This represented 20%
of the original 1396 total patterns generated. Some 200
noisy patterns were also added to the training data
based on the level of noise in the data acquisition sys-
tem (61 microstrain). Once training data and testing
data had been generated, they were normalised by con-
verting all data to a range between 0 and 1 to improve
the accuracy of the solution.

ANN architecture or topology

Network architecture or topology is the way that neu-
rons are connected to each other in the ANN. Key
architectural issues are as follows:

(a) the number of layers in the ANN;
(b) the number of neurons per layer;
(c) the type and parameters of the neuron, which are

usually the same throughout;
(d) the number of calculations per iteration during

learning and recall.

An example of a back-propagation neural network
with three layers, namely an input layer, a hidden layer
and an output layer, is shown in Figure 3.

A common network has one or more hidden layer
with a log-sig transfer function connected to an output
layer with a pure-lin function: pure-lin is a linear trans-
fer function used for linear approximation, and log-sig

is a non-linear sigmoid transfer function that accepts
any value as an input between +N and 2N. If the last
layer of a network has a sigmoid function, then the out-
puts of the network are limited to a small range. If a
linear function is used as the final layer, the network
outputs can take on any value as is required to estimate
the actual load on the panel. Since the log-sig function
is differentiable, it is usually utilised in back-
propagation networks.

A transfer function calculates the layer’s output
from its input. The input data are fed through the
ANN and they are adjusted using the transfer func-
tions. The input to the transfer function is the sum of
the weighted inputs W and the bias b (Figure 4). The
values of these parameters are randomly generated
when training is initiated. The weight controls the slope
of the transfer function while the bias allows the trans-
fer function to shift from left to right. Having multiple
hidden layers of neurons with non-linear transfer func-
tions enables the network to understand both non-
linear and linear relationships between the input data
and the output data.

Unsatisfactory performance of the ANN can be due
to a wide range of reasons, such as the following:

(a) an unsuitable ANN architecture or learning
method;

(b) insufficient representative data (not a sufficient
number of example strain–load data);

(c) inadequate pre-processing (noisy data from data
acquisition system have been ignored);

(d) unsuitable ANN training parameters.

However, most of the time this is not the case, and
the ANN will be well trained and performs satisfacto-
rily even on a new untrained data set. An iterative pro-
cess was used to determine the optimum network
architecture for the panel based on the value of the
final MSE of each network tested. The number of
layers chosen can have an effect on the efficiency of the
network. However, because of the relatively low num-
ber of inputs and outputs involved in this example this
was not deemed to be an important factor to consider
when selecting the architecture.

It was determined, through the testing of various
network architectures, that the optimum network (low-
est MSE) had one hidden layer with 22 neurons and
used a tan-sig transfer function which is similar to a
log-sig function but compresses the output to a value
between 21 and +1 (Figure 4). The output layer had
12 neurons (representing the 12 loads to be estimated)
and used a pure-lin transfer function. The final specifi-
cation of the ANN is shown in Table 2.

It is possible to over-train the ANN, which means
that the ANN has been trained to respond to only one
type of input. If this should happen, then learning can
no longer occur. In real-world applications this situa-
tion is not very useful as a separate over-trained
ANN for each new kind of input would be required.

Figure 3. Three-layer back-propagation ANN, where the
inputs are denoted X, the outputs are denoted Y and the output
from every neuron in the hidden layer is denoted Z. The V
values are the weights between the neurons in the input layer
and the neurons in the hidden layer. Similarly the W values are
the weights between the neurons in the hidden layer and
neurons in the output layer.
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To confirm that the ANN was not over-trained the
training was supervised to ensure that the MSE of the
testing data did not increase, which is an indication of
over-training. The ANN was trained to minimise the
MSE (Figure 5). The final testing MSE was approxi-
mately 43 1023%, which took under 3min to reach.
This meant that the ANN should estimate accurately
to within 99.9% of the actual load value.

ANN validation and performance

The validity and performance of the ANN method
were evaluated by comparing the load estimated by the

ANN with known loads applied to the panel (problem
data). Experimental problem data are the captured
strain data from the 48 strain gauges attached to the
panel while it is being loaded. It is essential that the
strain data are captured at identical locations for both
the training data and the problem data.

The first validation study utilised load and strain
data generated from the original superposition data col-
lected to produce the training data. This meant that any
issues with the repeatability of the strains collected for a
given load were removed. In the second study, problem
strain data were captured directly from the panel under
different loading conditions (i.e. one or two random
loads were placed at random locations on the panel)
and again the estimated loads were compared with the
actual applied loads.

The strain data were collected through bespoke data
acquisition and ANN software linked to the Windmill
data acquisition system. This software was developed
by the present authors in MATLAB (MathWorks,
Natick, Massachusetts, USA) utilising Windmill Direct
Data Exchange protocols to acquire the strain data
and the MATLAB Artificial Neural Network Toolbox
capabilities.

Results

The validity of utilising the theory of superposition for
the panel and the ANN validity and performance are
detailed in the following sections.

Linearity of the composite panel

The application of the theory of superposition was
shown to be valid through studying the linearity of the
material within the expected load range used in this
study (discussed in the section on the generation of
ANN training data). The load was applied in incre-
ments between 19.62N and 117.72N at each of the 12
locations and the 48 strains were collected. Figure 6
shows the typical strain response to the applied load.
The strains decreased as the load increased as the strain
gauges were attached to the compressive surface of the
panel. Plotting a linear trend line through the data
showed that the strain changed linearly with load for
all gauge locations as the coefficient of determination
(R2 value) was very close to one in each case.

Figure 4. MATLAB representation of the optimum ANN architecture.

Table 2. Architecture of the ANN.

Architecture Feedforward back propagation
Number of layers 2
Data process Normalisation
Noise generator 61 microstrain on 200 of the

training patterns
Range of loads 0–196.2 N
Number of inputs (surface

strains)
48

Number neurons in the
output layer (normal

loads)

12

Number of neurons in the
hidden layer

22

Number of training patterns 1116
Number of testing patterns 280
Number of problem patterns Depends on the number of

patterns collected

Figure 5. Training and testing errors graph.
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ANN validation and performance

In order to validate the trained network, a set of prob-
lem strain data was generated from the panel. Since this
set of data had not been seen by the network during the
training stage, it can be used to evaluate the accuracy of
the ANN’s load estimation.

Validation using superposition data. The theory of superpo-
sition was used to generate problem data (12 loads and
48 strains generated on the panel surface from these
loads) for loads between 0N and 196.2N. Figure 7
shows example strain data collected from the 48 gauges
used as the problem data in the trained ANN.

Table 3 shows the ANN estimated loads for all 12
load locations for actual loads of 9.81N and 196.2N
applied to all 12 locations at once. The average of the
estimated loads together with the average estimated
loads for all load increments were used to generate
Figure 8.

Figure 8 shows the comparison of the actual loads
applied to the panel with the ANN estimated loads gen-
erated from the introduced problem data. If the ANN
estimates the loads accurately, the actual load data and
the ANN load data should be identical. In this exam-
ple, loads were applied to all 12 locations on the panel
at once for loads ranging from 0N to 981N.

The accuracy of the estimated load is high within
the range of loads (0–196.2N) that the ANN was
trained to estimate, thus indicating the suitability of

Figure 6. Typical linear response of the composite panel to the applied load.

Figure 7. Typical problem strain data.

Table 3. ANN estimated loads for 9.81 N and 196.2 N loads
applied to all 12 load locations.

Load location ANN estimated load (N)

9.81 N applied 196.2 N applied

1 9.72 200.91
2 9.76 195.04
3 9.65 196.45
4 9.59 187.23
5 10.09 205.00
6 9.84 191.51
7 9.82 195.39
8 9.69 198.70
9 9.83 198.09
10 9.90 198.86
11 9.76 196.07
12 9.80 195.26

Average 9.79 196.54

ANN: artificial neural network.
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this method for load estimation. The results, however,
indicate that the network is capable of accurate estima-
tion up to 294.3N. As the applied loads increase fur-
ther outside the trained load range, the accuracy of the
estimated load decreases. In summary, the network is
most accurate in the load range that it has been trained
to estimate, as would be expected. However, loads just
outside the training envelope can still be estimated
accurately.

Validation usingdirect data. The MATLAB program
was developed to be able to acquire strain data directly
from panel and to introduce them to the ANN as new
problem data. This enabled the system to estimate the
applied load on the panel in real time. The robustness
of the system was investigated by introducing strain
data gathered by applying loads at the extremes of the
range that it was trained to estimate (0–196.2N).
Figure 9 shows typical examples of the comparison
between the actual loads applied to the panel with the
ANN estimated loads generated from the introduced
problem data. In these examples, either one or two

loads are applied to the panel. For both sets of problem
data it can be seen that the ANN can again estimate
the load at the loaded locations with a high degree of
accuracy.

The estimated negative load values at the unloaded
locations were due to the differences between the strain
data collected to generate the training data and the col-
lected problem strain data. Beacause of these errors,
slightly different strain patterns are introduced to the
ANN, producing the errors in the estimated loads. The
introduction of further noisy patterns in the training
data set may reduce these small errors, indicating that
further work could be carried out to improve the accu-
racy further.

Discussion

The results presented in this paper show that the inverse
problem method, utilising an ANN, can accurately esti-
mate the position and magnitude of a number of static
loads applied to the composite panel from the captured
strain data. The results of this study can be summarised
as follows.

1. An ANN can be trained using experimental data to
solve inverse problems.

2. As there is a mathematical relationship between
the applied load and the surface strains, the system
always converges and the MSE is in the range of
acceptable error.

3. The system is capable of accurately estimating the
static loads.

4. Using a combination of pure and noisy data (as
used in this study) improves the accuracy of the
results.

5. The main source of error was found to be in the
reliability of the data acquisition system utilised
owing to the large variance in the strain data col-
lected at different time intervals. The ANN cannot
estimate the load accurately if there is a large var-
iance in the strain data used to generate the train-
ing data set and the problem data set collected at a
later date.

Figure 8. Comparison of the actual loads and the ANN loads.
ANN: artificial neural network.

Figure 9. Example comparisons of the ANN estimated loads
and the actual applied loads.
ANN: artificial neural network.
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The ability to measure the actual load history of a
craft in service would enable the designer to validate the
load estimation and structural design tools used during
the design stage of a craft. This would lead to the devel-
opment of more optimal structure designs for this type
of craft. The operational safety of the craft can also be
improved by having a real-time load-monitoring system
that is able to detect any degradation of the structural
integrity and defects within the structure.

It is proposed that the ANN methodology, with fur-
ther research and development, could be utilised for the
quantification of in-service transient loads in real time
acting on the craft from the craft’s structural response
(strain response to the load). This would provide valu-
able information to influence future craft design. In
order to evaluate fully the proposed methodology for
in-service load monitoring of marine structures the fol-
lowing areas require investigation:

(a) the behaviour of marine structures under large
displacement (a static load is applied) where the
structure may behave non-linearly;

(b) the behaviour of marine structures under transient
load conditions (a dynamic load is applied);

(c) the effect of size of the structure on the ANN esti-
mation accuracy;

(d) the number of sensors required for accurate load
estimation by optimising the method (while some
vessels do have integrated sensors, most do not;
the number of sensors should be minimised to
reduce the time to train the system, the cost and
the weight);

(e) the effect of modifying the ANN training para-
meters, including the number and type of training
patterns introduced to the ANN;

(f) validation of the methodology on an in-service
craft.

Finally, a graphical user interface should be devel-
oped, allowing control of various parameters of the
data acquisition and load-monitoring system as well as
a graphical display in real time.

Conclusion

It was shown that the inverse problem approach can be
used to estimate the loads applied on a marine compo-
site panel from the strain measurements. A comparison
of the ANN loads with the actual applied loads indi-
cated a very good performance of the methodology.
This was achieved in real time, providing an accurate
load history for a component without requiring knowl-
edge of the material properties or the component geo-
metry. This potentially makes the system ideal for
solving many classes of complex engineering problem
that require load monitoring. Areas for future investi-
gation including evaluation of the suitability of the
approach for estimating transient loads were discussed.
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Marsza1ek.
12. Amali R, Noroozi S and Vinney J. The application of

combined artificial neural network and finite element

method in domain problems. In: 6th international confer-

ence on engineering applications of neural networks

(EANN 2000), Kingston upon Thames, Surrey, UK, 17–

19 July 2000, pp. 1–7. London: Kingston University.
13. Amali R, Noroozi S, Vinney J et al. Predicting interfacial

loads between the prosthetic socket and the residual limb

for below-knee amputees – a case study. Strain 2006;

42(1): 3–10.

20 Proc IMechE Part M: J Engineering for the Maritime Environment 227(1)



14. Rosenblatt F. The perceptron: a probabilistic model for
information storage and organization in the brain. Psy-
chol Rev 1958; 65(6): 386–408.

15. Shar S and Palmieri F. MEKA – a fast, local algorithm
for training feed forward neural networks. In: Interna-
tional joint conference on neural networks, Como, Italy,
24–27 July 1990, vol 3, pp. 41–46. New York: IEEE.

16. Kim S-Y, Moon B-Y, Kim D-E and Shin SC. Automa-
tion of hull plates classification in ship design system
using neural network method. Mech Systems Signal Pro-
cessing 2006; 20(2): 493–504.

17. Xu S, Deng X, Tiwar V, et al. An inverse approach for
pressure load identification. Int J Impact Engng 2010;
37(7): 865–877.

18. Kohonen T. An introduction to neural computing.
Neural Networks 1998; 1(1): 3–16.

19. Sewell P, Noroozi S, Vinney J, et al. Improvements in the
accuracy of an inverse problem engine’s output for the
prediction of below-knee prosthetic socket interfacial
loads. Engng Applic Artif Intell 2010; 23(6): 1000–1011.

Appendix

Notation

b bias
C locations of constraints
L locations of loads

S locations of strain gauges
V weights between the neurons in the input

layer and the neurons in the hidden layer
W weights between the neurons in the hidden

layer and the neurons in the output layer
X artificial neural network inputs
Y artificial neural network outputs
Z output from the hidden layer of the

artificial neural network

Abbreviations

AI artificial intelligence
ANN artificial neural network
CFD computational fluid dynamics
FEA finite element analysis
MSE mean square error
USB universal serial bus
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Abstract. Current methods to estimate the behaviour of composite structures are based on trial and 

error or oversimplification. Normally the nonlinearities in these structures are neglected and in order 

to cover this inadequacy in design of composite structures, an overestimate safety factor is used. 

These methods are often conservative and leading to the heavier structures. A novel technique 

employs Artificial Neural Network (ANN) as an inverse problem approach to estimate the pressure 

loads experienced by marine structures applied on a composite marine panel from the strain 

measurements. This can be used in real-time to provide an accurate load history for a marine structure 

without requiring knowledge of the material properties or component geometry. It is proposed that 

the ANN methodology, with further research and development, could be utilised for the 

quantification of in-service, transient loads in real-time acting on the craft from the craft’s structural 

response (strain response to load).  However, to fully evaluate this methodology for load monitoring 

of marine structures further research and development is required such as sensor optimisation. The 

number of sensors should be minimised to reduce the time to train the system, cost and weight. This 

study investigates the number of sensors required for accurate load estimation by optimising the 

method. 

Introduction 

Measurement of hydrodynamic loads generated by sea waves is difficult due to the fact that the sea is 

highly irregular. The common practice to determine wave loads is based on applying rules and 

standards which often relies on conservative methods due to large uncertainties in the theoretical 

calculations used for wave load predictions for ships. In addition, for unconventional ships with new 

structural designs, it can be sometimes difficult to apply general standards and rules. Direct 

calculation procedures are needed specifically for complex structures and designs. However, the 

direct calculation procedures, especially the calculation of the wave loads, are less applied in the 

shipbuilding industry [1]. One reason is the rather large uncertainties in the wave load predictions for 

ships as well as lack of experience. In addition, the theoretical basis of the calculation methods is not 

necessarily sufficient to achieve reliable predictions. Furthermore, uncertainties exist also in all 

assumptions involved in stochastic methods and prediction procedures including environmental and 

operational conditions. Sometimes these are difficult to determine accurately in advance and hence 

assumptions need to be made to estimate them [1]. 

The current techniques to measure hydrodynamic loads indicate that many techniques developed 

are either simplified or very expensive and time-consuming [2]. Many studies have been performed to 

date for evaluating hydrodynamic loads on ships. Such methods are summarised in the reviews by 

Phelps [3] and Guo-Dong and Wen-Yang [4].  Various strip methods [5,6] have been developed and 

used to estimate wave induced ship motions and wave loads. The conventional strip theory [7] is 

successfully used in the seakeeping analysis of normal displacement ships. However, its validity can 

be questioned when it is used for ships with higher maximum operating speeds [8]. Nonlinearities 
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become more significant for higher speed ships, however, the conventional strip theory is a linear 

theory.  Strip methods are extensively used as a standard tool to predict the nonlinear loads and 

motions [9]. Though, there are some concerns on the accuracy of the strip methods for estimation in 

short waves as they do not precisely consider hydrodynamic interference effects of reflected waves 

among strips lengthwise or three-dimensional effects.  

In order to enhance the accuracy of estimation especially in short waves, many numerical methods 

considering the three-dimensional effects have been proposed. Among them are the 

three-dimensional Green function method [10] and Rankine source method [11–13] based on 

three-dimensional potential theory. However, nonlinear theories and three-dimensional load 

prediction methods require greater computational effort and have not yet proven to be significantly 

more accurate than the two dimensional methods [3,4].    

Computational Fluid Dynamics (CFD) techniques provide a method to solve these problems. So 

far, it is generally accepted that CFD codes have difficulties in estimating impact loads [14]. CFD 

methods are time consuming, making statistical estimations of response variables in sea difficult [4].  

Although CFD solutions have been greatly improved in both speed and accuracy in recent years, it is 

still very challenging to perform complete nonlinear three-dimensional computations for the present 

problem [15]. As vessels and craft, in most cases, are extremely complicated structures, the 

mechanical properties, or relations between externally induced excitation and structural responses, 

are difficult to formulate. An appropriate load monitoring system and technique has to be developed 

for naval assets and large structures [16]. 

A novel approach for the determination of pressure loads experienced by marine structures is the 

utilisation of Artificial Neural Networks (ANN) [17]. ANN methods are utilised in research areas 

where problems are solved by pattern recognition, generalisation and pattern classification [18]. 

ANN has attracted considerable attention and shown promise for modelling complex nonlinear 

relationships. ANNs have been used extensively in many fields [16, 19-24]. 

Ramazani et al. [17] have recently shown that the inverse problem approach can be used to 

estimate the loads applied on a composite marine panel from the strain measurements when 

responding linearly under load. A comparison of the ANN loads with the actual applied loads 

indicated a very good performance of the methodology. However, it was discussed that more 

investigation is necessary to further evaluate the suitability of the proposed methodology for 

in-service load monitoring of marine structures. For instance, the number of sensors required for 

accurate load estimation needs to be optimised. This is due to the fact that while some vessels do have 

integrated sensors most do not. Hence, the minimum number of sensors should be employed to 

reduce the time to train the system, cost and weight.  

This paper reports on the research undertaken to further develop the ANN methodology for 

quantifying static pressure loads on a marine composite panel under large displacement from 

nonlinear strain measurements collected from the panel. 

Methodology 

The methodology employed to generate training data sets and optimise the quantity of sensors based 

on the performance of various trained ANN as an inverse problem solver for quantifying the load 

applied to the composite panel is presented in this section. The first stage of the investigation was to 

design a load quantification methodology for the panel utilising an ANN. In the second stage the load 

quantification methodology was validated by comparing loads estimated by the ANN with the known 

loading cases of the panel.  

Inverse Problem Analysis Methodology. Inverse problem analysis is based on accurately 

calculating the external loads or boundary conditions that generate a known amount of strain at 

pre-determined locations on a structure. An ANN, as an inverse problem solver, can be utilised to 

determine a relationship between the cause and its effect [17]. In this study, the static loads (the 

cause/output) on a composite panel are quantified by acquiring repeatable strain responses (the 

effect/input) to these loads from the panel. By introducing examples to an ANN, it can learn the 

relationships between the input and output through a training process. Once the ANN is sufficiently 
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trained it can be utilised to estimate the output in real-time. New inputs (problem data) are presented 

and processed by the ANN to quantify/estimate the load. 

Experimental Setup. The structure under consideration was a 1  Glass Reinforced Fibre Polymer 

(GRFP) marine composite panel made of 7 layers of stitched biaxial  E-glass cloth and with Ampreg 

22 epoxy resin system (all provided by SP Gurit Systems), hand laid up with a total thickness of  m 

(Fig. 1). The panel was divided into a four-by-four grid producing sixteen equal regions of area  m
2
. A 

120 ohm rectangular strain gauge rosette was attached to the top surface of the panel at the centre of 

each region giving 16 gauges () with 48 strain readings (S1-48). Four rectangular strain gauge rosettes 

were also placed in the middle of the panel with 12 strain readings (S49-60) attached at the corners of a  

m
2
 square. The specifications of the strain gauges used are detailed in Table 1.  

 

                                   

                        

                       

                         
                                                                                   Table 1. Strain gauge specification.  

Type Rectangular Rosette 

Resistance 120 [ohms] ±0.6% 

Gauge factor 2.100±0.5% 

Gauge length  [m] 

Gauge width  [m] 

 

 

 

 

 

 
Fig 1. Schematic of composite panel indicating strain gauge, loading and support locations.    

 

The bottom surface of the panel was supported at four points using blocks, each 0.035 m wide, 

0.009 m deep and 0.025 m high (Fig. 1). Loading was achieved by applying weights normal to the 

panel surface at the 12 locations indicated in Fig. 1 (L1-12). A Windmill 751-SG strain monitoring and 

control data acquisition system (Windmill Software Ltd, Manchester, UK) with a resolution of +/- 1 

microstrain was used to capture the strain data. The 751-SG package comprises of Windmill 6 

software, a Universal Serial Bus (USB) unit which provides differential inputs to monitor 16 strain 

gauges at up to 80 samples per second. Eight USB units can be connected to one computer to monitor 

up to 128 strain gauges. The strain data was collected through bespoke data acquisition/ANN 

software linked to the Windmill data acquisition system. This software was developed by the authors 

in MATLAB (MathWorks, Natick, Massachusetts, USA) utilising Windmill Direct Data Exchange 

(DDE) protocols to acquire the strain data and the MATLAB Artificial Neural Network Toolbox 

capabilities. 

Generation of ANN Training Data. The efficiency of the training data collection process can be 

increased by reducing the amount of data collected. This is achieved by using the theory of 

superposition to generate training and testing patterns from the independent parent patterns, as 

discussed in detail elsewhere [19]. The theory of superposition states that the strain at a point on a 

structure due to a series of loads is equal to the sum of the strains from each individual load case. 

Using this theory, an infinite number of training patterns can be generated by applying one known 

load to each location on the structure individually. However, the superposition method is only valid if 

the structure under investigation has a linear stress/strain or load/displacement response within the 

expected load range applied to it. The results of the investigation to study the linearity of the panel 

indicate a linear relation between load and strain readings. For instance Fig. 2 indicates that the strain 

changed linearly with load for strain readings S49 when location L9 was loaded. 
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Fig. 2. Linearity of strain data for S49 when loaded on location L9 is increased from 0 to 196.2 N. 

 

In this study, 48 strain readings (S1-48) from 16 rosettes (inputs) and 12 load readings from 12 

locations (outputs) were used with the superposition method to generate 1116 sets of training data. 

This meant that 1116 sets of 12 random loads at each location on the panel and the resultant 48 strains 

caused by these random loads were aquired to find the relationship between the input/output data. 280 

testing patterns were also generated using the superposition method and introduced to the network 

during training to ensure convergence. 200 noisy patterns were also added to the training data based 

on the level of noise in the data acquisition system (+/- 1 microstrain). Once training and testing data 

had been generated it was normalised by converting all data to a range of between zero and one to 

improve the accuracy of the solution. 

ANN Architecture/Topology. In this study a common Backpropagation ANN architecture is used 

and trained employing MATLAB Artificial Neural Network toolbox capabilities. An iterative 

process was used to determine the optimum network architecture for the panel based on the value of 

the final Sum of the Squares Errors (SSE) of each network tested. SSE is a measure of the discrepancy 

between the data and an estimation model. A small SSE indicates a tight fit of the model to the data. 

Table 2 lists the major parameters of the network architecture used in this study.   

Table 2. ANN architecture parameters. 

Architecture Feed Forward Backpropagation 

Number of layers in each network 2 

Range of load estimation 0-196.2 [N] 

No. of inputs (surface strains) 48,18,15,12 

No. of output layer neurons (loads) 12 

No. of each  hidden layer neurons [20 20] 

Number of training patterns 1116 

Number of testing patterns 280 

Optimisation. In order to optimise the number of gauges, various sensor configurations are 

employed to acquire and generate training data sets and the corresponding ANN is trained. The 

performance of each ANN in terms of SSE is used for comparison. The aim of this optimisation is to 

minimise the number of strain gauges needed to reasonably estimate the magnitude of load at 12 

loading locations on the composite panel.   

In this study, the number rosettes are reduced/optimised in several steps and the effect on the 

performance of the load estimation methodology is investigated.  Due to the inherent characteristic of 

an ANN, reduction of the number of inputs is limited by the number of outputs. Hence, a minimum of 

12 strain inputs are required to be able to successfully estimate 12 load outputs.  Therefore, the 

minimum number of rosettes that could be used to successfully predict 12 loads is 4.  In order to 

optimise the number of the strain gauges, the number of gauges are reduced step by step from 16 (48 

readings) to 6 (18 readings), 5 (15 readings) and 4 rosettes (12 readings) respectively.  There are 

multiple permutations for selecting 6, 5 or 4 rosettes from the 16 rosettes attached to the panel.  Since 
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the aim of this study was first to find the optimum number of gauges, random permutations of gauges 

were selected and the ANN performance using the SSE values for each ANN were compared.  It was 

then possible to determine the optimum number of gauges required to achieve a high quality 

estimation of the 12 loads from this study.  A further strategy for also optimising the sensor locations 

was then also investigated.   

ANN Validation and Performance. Finally, the validity of the ANN using the optimised strain 

gauges was evaluated by comparing the load estimated by the ANN with known loads applied to the 

panel (problem data). Experimental problem data is the captured strain data from the optimised strain 

gauges attached to the panel while it is being loaded. It is essential that the strain data is captured at 

identical locations for both the training and problem data.  The first validation study utilised load and 

strain data generated from the original superposition data collected to produce the training data of the 

optimised sensor configuration. This meant that any issues with the repeatability of the strains 

collected for a given load were removed. In the second study, problem strain data for the same sensor 

configuration was captured directly from the panel under different loading conditions (i.e. one or two 

random loads were placed at random locations on the panel) and again the estimated loads compared 

with the actual applied loads.   

Results 

Optimisation. A selection of the optimisation tests and the ANN performance results are presented in 

Table 3. The results show that as the number of the rosettes is reduced, the SSE values as performance 

indicators of various random tests are reasonably small values. This implies that even for cases with 

only 6, 5 or 4 rosettes, the ANN is trained well and it is capable of estimating the magnitude and 

position of the applied loads. The results indicated that utilising only 4 rosettes (12 strain readings) it 

is possible to accurately estimate applied loads on all 12 locations (L1-12).  

Table 3. Comparison of ANN performance SSE for various sensor configurations. 

 16 Rosette Locations () Performance SSE 

Random Test 1 1-16 1.520 

 6 Rosette Locations () Performance SSE 

Random Test 1 2 3 6 11 14 15 1.670 

Random Test 2 3 6 8 9 11 14 0.842 

Random Test 3 5 6 7 10 11 12 2.376 

Random Test 4 6 7 8 9 10 11 2.038 

 5 Rosette Locations () Performance SSE 

Random Test 1 2 5 7 10 15 1.442 

Random Test 2 3 6 7 10 114 2.963 

 4 Rosette Locations () Performance SSE 

Random Test 1 3 6 11 14 2.643 

Random Test 2 4 7 10 13 2.185 

Random Test 3 5 8 9 12 2.642 

Random Test 4 5 8 9 12 1.208 

 

Furthermore, in practice, it is more desirable to have the minimum number of strain gauges 

attached only in one small area on the structure.  Hence, 4 new rosettes were attached much closer 

together in the middle of the panel (Fig. 1, SL17-20) and the performance of ANN was investigated. 

Achieving reasonable results enables the gauges to be placed in just a small portion of the panel and 

yet be able to accurately estimate the position and the value of 12 externally applied loads. The SSE 

performance value of this test was 8.259 which is still small value and indicates a tight fit of the model 

to the data.  

Applied Mechanics and Materials Vol. 248 157



 

Validation using Superposition Data. In order to validate the trained network, a set of problem 

strain data was generated from the panel using the 12 strain readings from the optimised patch 

(S49-60). Since this set of data had not been seen by the network during the training stage, it can be 

used to evaluate the accuracy of the ANN’s load estimation. 

The theory of superposition was used to generate problem data (12 loads and 12 strains generated 

on the panel surface from these loads) for loads between 0 N and 196.2 N.  These were introduced to 

the ANN and the estimated loads calculated by the ANN compared to the expected load profile (Fig. 

3). 

  

 

 

 

Fig. 3. Estimated load data by ANN vs. expected load values from superposition. 

Validation using Direct Data. The MATLAB program was developed to be able to acquire strain 

data directly from the panel and introduce it to the ANN as new problem data. This enabled the 

system to estimate the applied load on the panel in real-time. The robustness of the system was 

investigated by introducing strain data gathered by applying loads at the extremes of the range it was 

trained to estimate (0-196.2 N). Fig. 4 shows typical examples of the comparison between the actual 

loads applied to the panel with the ANN estimated loads generated from the introduced problem data. 

In these examples, one load is applied to the panel. For both sets of problem data it can be seen that 

the ANN can again estimate the load at the loaded locations with a high degree of accuracy. 

 

  

 

Fig. 4. Estimated load data by ANN Vs. expected load values from experiment. 
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Discussion 

Establishing an inverse problem analysis approach for structural analysis can result in important 

advantages over simulation, numerical or theoretical methods. Through utilising such a method, 

knowledge of the component material constitutive laws and component geometry are not required. In 

contrast, they are necessary for valid and accurate simulation, numerical or theoretical analysis. The 

results presented in this paper show that the inverse problem method, utilising an ANN, can 

accurately estimate the position and magnitude of 12 static loads applied to the composite panel from 

4 strain gauge rosettes placed close to each other in centre of the panel. The results indicate that the 

system always converges, the SSE is small and in the range of acceptable error. This means that an 

ANN can be trained using experimental data to solve inverse problems and accurately estimate the 

static loads. Although, the first validation study indicated that the estimated load data by the ANN 

almost perfectly fits the expected load values from superposition, small error values were seen in 

second validation study. The main source of error was found to be in the reliability of the data 

acquisition system utilised due to the large variance in the strain data collected at different time 

intervals. However, the noise to strain ratio decreases as the load increase which results in less 

variances in strain data patterns. Having more similar strain data patterns to those employed to train 

the network leads to better load estimation output.  

The ability to measure the actual load history of a craft in-service would enable the designer to 

validate the load estimation and structural design tools used during the design stage of a craft. This 

would lead to the development of more optimal structure designs for this type of craft. The 

operational safety of the craft can also be improved by having a real-time load monitoring system that 

is able to detect any degradation of the structural integrity and defects within the structure. 

Conclusion 

The aim of this research was to establish an inverse load monitoring approach based on directly 

acquired structural response from an optimised set of sensors. It has been shown that the inverse 

problem approach can be used to estimate 12 loads applied on a composite marine panel from the 

strain measurements from 4 strain gauge rosettes. A comparison of the optimised ANN loads with the 

actual applied loads indicated a very good performance of the methodology. This was achieved in 

real-time, providing an accurate load history for a component without requiring knowledge of the 

material properties or component geometry. This potentially makes the system ideal for solving many 

classes of complex engineering problem that require load monitoring.  
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Paper 3: Using Artificial Neural Networks and Strain Gauges For The Determination of 

Static Loads On A Thin Square Fully-Constrained Composite Marine Panel Subjected to a 

Large Central Displacement 



MARINE COMPOSITES

Current methods of estimating the behaviour of marine 
composite structures under pressure due to slamming 
as a result of high waves are based on trial and error or 
oversimplification. Normally under these conditions the 
non-linearities of these structures are often neglected and, 
in order to compensate, an overestimated safety factor is 
employed. These conservative approaches can result in 
heavier and overdesigned structures. In this paper, a new 
semi-empirical method is proposed that overcomes some of 

these problems. This work involved the use of an artificial 
neural network (ANN) combined with strain gauge data 
to enable real-time in-service load monitoring of large 
marine structural panels. Such a tool has other important 
applications, such as monitoring slamming or other 
transient hydrostatic loads that can ultimately affect fatigue 
life. To develop this system, a glass fibre-reinforced polymer 
(GFRP) composite panel was used due to its potential for 
providing a non-linear response to pressure or slamming 
loads. It was found that the ANN was able to predict normal 
loads applied at different locations on the panel accurately. 
This method is also capable of predicting loads on the 
marine structure in real time.

Keywords:	Composite,	 marine,	 artificial	 intelligence,	 artificial	
neural	 network,	 structural	 analysis,	 load,	 non-linear	
structures,	large	displacement	analysis.

1. Introduction
In	 addition	 to	 hydrostatic	 and	 mass-related	 loads	 that	 can	 be	
evaluated	with	a	high	degree	of	accuracy	and	confidence,	it	is	also	
desirable	to	measure	transient	loads	due	to	slamming	as	a	result	of	
high	waves.	The	current	practice	to	determine	wave	loads	is	based	
on	 applying	 standard	 rules,	 which	 often	 relies	 on	 conservative	
methods	due	to	large	uncertainties	in	the	theoretical	treatment	used	
for	wave	load	predictions.	This	leads	to	a	craft	that	is	heavier	and	
slower	than	it	could	otherwise	be.	

Although	sea	has	an	irregular	and	arbitrary	condition,	the	overall	
condition	can	be	predicted	statistically	by	superimposing	a	series	of	
different	regular	waves	of	varying	heights,	lengths,	directions	and	
phase[1-3].	In	order	to	define	the	sea-state	that	the	craft	are	expected	
to	 encounter	 during	 their	 lifetime,	 an	 enormous	 amount	 of	 data	
regarding	ocean	waves	has	been	collected.	Hogben	et al[4]	collected	
comprehensive	data	regarding	ocean	waves	from	104	ocean	areas	
covering	all	major	shipping	routes.	Having	more	information	about	
sea	 states,	 the	wave-induced	 loads	 on	 the	 craft	 structure	 and	 the	
response	to	such	loads	may	be	estimated.	

Techniques	 used	 to	 measure	 hydrodynamic	 loads	 use	 non-
linear	 equations	 due	 to	 the	 random	 and	 irregular	 nature	 of	 the	
sea,	 resulting	 in	 a	 very	 expensive	 and	 time-consuming	 analysis.	
Methods	 have	 been	 developed	 in	 order	 to	 simplify	 such	 an	
analysis[5].	Strip	theory	is	one	of	the	most	well-known	techniques	
used	to	determine	the	wave-induced	loads[6,7].	The	principle	is	that	
the	craft’s	hull	is	divided	into	a	number	of	segments	or	strips.	The	
forces	 acting	 on	 the	 hull	 are	 then	 calculated	 separately	 on	 each	
segment	using	a	two-dimensional	flow	theory.	This	method	ignores	
the	 longitudinal	 component	 of	 relative	 velocity	 and	 any	 type	 of	
interaction	between	the	different	segments.	Other	shortcomings	of	
this	 theory	 include	 ignoring	 three-dimensional	 or	 viscous	 effects	
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as	well	as	 the	inability	 to	account	for	 the	above-water	hull	form.	
In	order	to	resolve	the	problem	with	compatibility	between	strips,	
flexible	 beam	 strip	 theories	were	 developed	 that	 account	 for	 the	
bending	 and	 shear	 stiffness	 of	 the	 hull[8].	Although	 this	 kind	 of	
theory	can	estimate	the	distortional	higher	frequency	responses	of	
a	hull	to	slamming	and	lashing	excitation,	it	is	still	linear	analysis	
and	extreme	response	is	not	well	modelled.	

The	 accuracy	 of	 the	 strip	 theory	 and	 other	 codes	 has	 been	
investigated	by	 several	 researchers	 and	 the	 error	 associated	with	
predicting	a	mid-ship	bending	moment	using	strip	theory	is	of	the	
order	 of	 10%	 to	 20%.	This	 accuracy	 is	 reduced	 further	 towards	
the	 ends	 of	 the	 vessel	 and	 as	 seas	 become	 progressively	 more	
beam-on[9].	 Clarke[10]	 conducted	 many	 on-board	 measurements	
employing	several	Royal	Navy	(RN)	ships.	The	results	 indicated	
that	 strip	 theory	 over-estimates	 wave	 bending	 moments,	
particularly	 at	 larger	 wave	 heights.	 Furthermore,	 the	 hogging	
bending	 moment	 was	 over-predicted	 more	 so	 than	 the	 sagging	
moment.	It	is	concluded	that	these	techniques	are	only	accurate	for	
moderate	sea	conditions	and	ship	speeds	meaning	an	extreme	load	
causing	a	 large	displacement	 in	panels	 is	 impossible	 to	measure.	
Moreover,	doubts	also	exist	in	many	of	the	assumptions	that	involve	
stochastic/random	 data	 or	 procedures	 involving	 environmental	
and	operational	conditions.	This	is	due	to	the	fact	that	sometimes	
environmental	 and	 operational	 conditions	 are	 difficult	 to	 define	
accurately	in	advance	and	therefore	assumptions	are	needed[11].	

In	 order	 to	 improve	 the	 accuracy	 of	 estimation,	 especially	 in	
short	 waves,	 many	 numerical	 methods	 considering	 the	 three-
dimensional	 effects	 have	 been	 introduced.	Among	 them	 are	 the	
three-dimensional	Green	 function	method[12]	 and	Rankine	 source	
method[13-15]	 based	 on	 three-dimensional	 potential	 theory.	 The	
benefits	 of	 these	 methods	 include	 taking	 the	 three-dimensional	
effects	 into	account,	having	good	stability	of	computations	and	a	
moderate	computing	time.	Hence,	they	are	considered	as	suitable	
design	tools	replacing	the	strip	methods.	

A	 review	 by	 Phelps[9]	 indicates	 that	 non-linear	 theories	 and	
three-dimensional	load	prediction	methods	have	been	introduced,	
but	 these	 require	 greater	 computational	 effort	 and	 have	 not	 yet	
proven	to	be	significantly	more	accurate	than	the	two-dimensional	
methods.	 It	 is	 concluded	 that	 a	 novel	 technique	 is	 required	 to	
overcome	 current	 limitations	 in	 the	 practices	 used	 to	 measure	
and	estimate	loads	experienced	by	the	hull	of	a	small,	high-speed	
boat	operating	in	a	seaway.	Furthermore,	as	vessels	and	craft	are,	
in	most	 cases,	 extremely	 complicated	 structures,	 the	mechanical	
properties,	 or	 relationship	 between	 externally-induced	 excitation	
and	structural	responses,	are	difficult	to	formulate.	An	appropriate	
load	 monitoring	 system	 and	 technique	 has	 to	 be	 developed	 for	
naval	assets	and	large	structures[16].	

A	 novel	 approach	 for	 the	 determination	 of	 pressure	 loads	
experienced	 by	 marine	 structures	 is	 the	 utilisation	 of	 artificial	
neural	networks	(ANN)	as	an	inverse	method.	In	a	study	by	Cao	
et al[16],	an	approach	was	developed	to	identify	the	loads	acting	on	
aircraft	wings,	where	an	ANN	was	utilised	to	model	the	load-strain	
relationship	 for	 structural	 analysis.	 The	 research	 demonstrated	
that	using	an	ANN	to	identify	loads	is	feasible	and	a	well-trained	
ANN	reveals	an	extremely	fast	convergence	and	a	high	degree	of	
accuracy	 in	 the	 process	 of	 load	 identification	 for	 a	 cantilevered	
beam	 model.	 In	 a	 study	 by	Amali	 et al[17],	 it	 is	 illustrated	 that	
ANN	 can	 be	 combined	 with	 experimental	 methods	 to	 create	 a	
hybrid	 inverse	 problem	 analysis	 tool	 or	 inverse	 problem	 engine.	
The	 hybrid	 approach	 can	 be	 applied	 to	 both	 direct	 problems	
(calculation	of	 the	 structural	 response	 from	known	 loads	applied	
to	the	structure)	and	inverse	problems	(calculation	of	 the	applied	
load	from	a	known	structural	response).	Additionally,	the	approach	
avoids	 the	need	 to	have	 information	on	 the	component	geometry	
and	material	properties[18,19].

Ramazani	 et al[20]	 have	 recently	 shown	 that	 the	 inverse	
problem	approach	can	be	used	to	estimate	low	loads	applied	on	a	

composite	marine	panel	from	a	small	deflection	and	its	associated	
strain	 measurements.	A	 comparison	 of	 the	ANN	 loads	 with	 the	
actual	 applied	 loads	 indicated	 a	 very	 good	 performance	 of	 the	
methodology.	This	was	achieved	in	real	time,	providing	an	accurate	
load	history	for	a	component	without	requiring	knowledge	of	the	
material	properties	or	component	geometry.	However,	a	large	load	
results	in	a	large	displacement	in	the	panel,	where	the	displacement	
is	no	longer	predictable.	This	implies	that	the	superposition	method	
of	generating	training	data	for	a	small	displacement	can	no	longer	
be	 applied	here.	However,	marine	 structures	do	 experience	 large	
displacement	and	for	that	reason	load	prediction	is	essential.	This	
paper	 reports	 on	 the	 research	 undertaken	 to	 further	 develop	 the	
ANN	 methodology	 to	 quantify	 static	 pressure/central	 load	 on	 a	
composite	marine	panel	from	its	non-linear	structural	response.	

2. Methodology
The	methodology	employed	to	evaluate	the	suitability	of	an	ANN	as	
an	inverse	problem	is	presented	in	this	section.	A	backpropagation	
ANN	 was	 designed,	 developed	 and	 trained	 within	 the	 Matlab	
simulation	 environment	 (Mathworks,	 Natick,	 Massachusetts,	
USA)	to	measure	transverse	load	on	a	flat	composite	marine	panel.	
The	estimated	output	was	 then	validated	by	comparing	 it	against	
both	experimental	and	numerical	data.	

2.1 Inverse problem analysis methodology
Inverse	 problem	 analysis	 is	 based	 on	 accurately	 calculating	 the	
external	loads	or	boundary	conditions	that	generate	a	known	strain	
at	pre-determined	locations	on	a	structure.	An	ANN,	as	an	inverse	
problem	solver,	can	be	utilised	to	determine	a	relationship	between	
the	cause	and	its	effect[20].	In	this	study,	the	static	loads	(the	cause/
output)	on	a	composite	panel	are	quantified	by	acquiring	repeatable	
strain	 responses	 (the	 effect/input)	 to	 these	 loads	 from	 the	 panel.	
Introducing	 these	 examples	 to	 an	 ANN,	 the	 system	 can	 learn	
and	form	the	relationships	between	the	input	(strains)	and	output	
(load)	through	the	transfer	function.	The	ANN	requires	a	number	
of	known	input	and	output	data	for	training	(ie	relating	the	ANN	
inputs	to	outputs	using	a	transfer	function	and	series	of	weighting	
values).	Once	the	ANN	is	sufficiently	trained	it	can	be	utilised	to	
estimate	 the	 output	 in	 real	 time.	New	 inputs	 (problem	data)	 can	
then	be	presented	and	the	load	can	be	estimated	in	real	time.

2.2 Experimental set-up
The	structure	under	consideration	was	a	1	m2	glass	fibre-reinforced	
fibre	polymer/plastic	(GFRP)	marine	composite	panel	(Figure	1).	
The	sample	GFRP	composite	panel	used	was	made	of	seven	layers	
of	stitched	biaxial	±45	E-glass	cloth	with	Ampreg	22	epoxy	resin	
system,	hand	laid-up	with	a	total	thickness	of	5	×	10–3	m.	The	fibres	
were	aligned	parallel	to	the	edges	of	the	panel.	Table	1	shows	the	
experimental	mechanical	properties	of	the	glass	fibre	as	provided	
by	the	manufacturer.

The	 panel	 was	 divided	 into	 a	 four-by-four	 grid	 producing	
sixteen	equal	regions,	each	with	an	area	of	0.25	×	0.25	m2	(Figure	

Figure 1. Schematic of composite panel indicating strain gauge 
and loading locations



1).	The	bottom	surface	of	the	panel	was	supported	on	all	four	edges	
using	aluminium	bars,	each	0.0381	m	high,	0.01905	m	wide	and	 
1	m	long.	Sixteen	linear	electrical	resistance	strain	gauges	(ERSG)	
(S1-16)	were	 bonded	 to	 the	 centre	 of	 each	 region	 (specification	
in	Table	2).	Two	eight-channel	NI	cDAQ	9236	modules	mounted	
on	 NI	 cDAQ	 9174	 chassis	 (National	 Instruments	 Corporation,	
Austin,	Texas,	USA)	were	used	as	the	strain	monitoring	and	control	
data	 acquisition	 system	with	 a	 resolution	of	+/–	 0.1	microstrain.	
The	 system	provides	 differential	 inputs	 to	monitor	 sixteen	 strain	
gauges	 at	 up	 to	 10,000	 samples	 per	 second.	The	 strain	 data	was	
collected	using	Matlab,	utilising	Matlab	Data	Acquisition	Toolbox	
capabilities.

Table 2. Strain gauge specification

Type General	purpose	linear	gauge

Resistance 350	ohms	±	0.6%

Gauge	factor 2.100	±	0.5%

Gauge	length 6.35	mm

Gauge	width 2.54	mm

Normal	 loads	 were	 randomly	 applied	 to	 the	 top	 surface	 of	
the	 panel	 at	 thirteen	 grid	 intersections	 (L1-13).	 Depending	 on	
the	proximity	of	 the	gauge	 to	 the	applied	 loads,	different	gauges	
exhibited	different	levels	of	sensitivity,	which	was	as	expected.	To	
produce	efficient	 training	data	 the	strain	data	should	be	captured	
at	the	sensitive	regions	(ie	the	strain	at	those	locations	must	vary	
significantly	due	to	changes	in	load	level).	In	addition,	 the	strain	
data	 collected	 must	 provide	 a	 unique	 response	 for	 each	 load	
distribution.	If	strain	is	collected	from	non-sensitive	regions	of	the	
panel	and/or	 the	strain	data	collected	 is	not	unique	for	each	 load	
distribution	 the	ANN	 is	 less	 likely	 to	 be	 able	 to	 find	 a	 function	
relating	the	input	and	output.

2.3 Generation of training data
Many	 small	marine	 craft	 hulls	 are	manufactured	 from	fibreglass	
strengthened	by	wood	or	foam.	Their	characteristics	are	such	that	
their	thickness	is	small	compared	to	their	other	dimensions.	In	this	
study,	 a	 GFRP	 panel	 has	 been	 utilised	 to	 represent	 a	 section	 of	
the	hull.	Panels	can	be	classified	according	to	their	thickness	and	
their	lateral	deflection	compared	to	their	thickness[21].	They	can	be	

classified	 as:	 (1)	 thick	 plate,	 small	 deflection;	 (2)	 thin	 plate	 and	
small	 deflection;	 (3)	 thin	 plate,	 large	 deflection;	 or	 (4)	 very	 thin	
plate	(membranes)	with	either	small	deflection	or	large	deflection.	
In	all	cases	the	solutions	are	approximate,	not	exact	or	closed	form.	
The	deflection	at	the	centre	of	a	plate	subject	to	pressure	is	offered	
by	Westergaard	and	Slater[22]	and	is	based	on	the	modified	flexure	
theory	of	plates	where,	depending	on	the	plate	aspect	ratio,	edge	
boundary	 conditions	 and	 load,	 different	 approximate	 empirical	
solutions	are	found.	In	such	cases,	a	small	displacement	is	defined	
as	displacement	less	than	or	equal	to	half	the	thickness	of	the	plate.	
If	the	displacement	exceeds	this	limit	then	the	problem	is	treated	
as	a	non-linear	problem	where	the	displacement	can	no	longer	be	
accurately	predicted	using	the	above	theory.	This	is	due	to	highly	
non-linear	double	curvature	deformation,	unlike	the	displacement	
function	stated	above.	In	large	displacement	analysis,	the	transverse	
shear	can	also	no	longer	be	ignored	and	if	the	panel	is	composite	
then	 the	 transverse	 shear	 requires	 further	 special	 treatment.	 In	
such	cases,	 the	classical	 inverse	approach	used	previously,	based	
on	utilising	data	 generated	 from	 superposition,	 can	no	 longer	 be	
employed	due	to	the	complexity	of	the	displacement	function.	

For	non-linear	structures	an	alternative	approach	 is	needed	 in	
order	 to	generate	 the	 required	 training	data.	There	 are	 two	ways	
in	which	 such	 data	 can	 be	 generated:	 (a)	 experimentally;	 or	 (b)	
using	a	non-linear	finite	element	analysis	(FEA)	solver.	Generating	
the	required	training	data	experimentally	is	very	time	consuming	
and	 labour	 intensive.	Therefore,	non-linear	FEA	analysis	using	a	
script	that	allowed	automatic	generation	of	a	random	load	on	the	
panel	was	utilised	to	generate	the	training	data.	Abaqus	6.10-1	FEA	
software	 (Dassault	 Systèmes	Simulia	Corp,	Rhode	 Island,	USA)	
was	used.	A	script	function	written	in	Python	language	was	used	to	
iteratively	run	the	software	in	a	batch	using	different	random	loads	
applied	at	each	of	the	thirteen	loading	locations	on	the	panel.	The	
FEA	model	was	initially	validated	to	ensure	that	it	represented	the	
actual	panel	accurately.	The	validation	was	achieved	by	comparing	
strains	 collected	 experimentally	 with	 the	 FEA	 strains	 under	 the	
same	loading	conditions.	Loads	from	100	N	to	800	N	applied	in	100	
N	increments	were	placed	on	the	panel	one	at	a	time	at	locations	
L1	to	L13.	The	strain	readings	at	locations	S1	to	S16	on	the	panel	
were	saved	for	each	test.	The	same	tests	were	performed	with	FEA	
to	compare	with	the	experimental	results.

Once	 validated,	 a	 large	 number	 of	 training	 (load/strain	

Table 1. Panel material specification provided by SP Gurit Systems (Newport, Isle of Wight, UK)

Material	name XE905

Material	type Stitched	biaxial

Fibre	volume	fraction 0.46

Longitudinal	property Units                                                                                      Units

Longitudinal	tensile	modulus N/mm2 21220 Poisson’s	ratio	(longitudinal	strain) 0.120

Longitudinal	tensile	strength N/mm2 318.3 Poisson’s	ratio	(transverse	strain) 0.120

Longitudinal	compressive	modulus N/mm2 21220 Longitudinal	coeff.	of	thermal	expansion 10-6/°K 14.62

Longitudinal	compressive	strength N/mm2 254.6 Transverse	coeff.	of	thermal	expansion 10-6/°K 14.62

Transverse	property Density kg/m3 1786

Transverse	tensile	modulus N/mm2 21220 Structural	ply	thickness mm 0.75

Transverse	tensile	strength N/mm2 318.3 Actual	ply	weight g/m2 1364

Transverse	compressive	modulus N/mm2 21220 Shear	thickness mm 0.75

Transverse	compressive	strength N/mm2 254.6

Shear	properties Derived	shear	properties	@	±45°

Interlaminar	shear	modulus N/mm2 3050 Shear	material	name 1	x	XE905	@	±45°

Interlaminar	shear	strength N/mm2 36.6 Axial	modulus	with	fibres	@±45° N/mm2 9737

In-plane	shear	modulus N/mm2 3050 Shear	modulus	with	fibres	@45° N/mm2 9471

In-plane	shear	strength N/mm2 46.1 Poisson’s	ratio	with	fibres	@±45° 0.596
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response)	data	was	able	 to	be	generated	from	the	FEA	model.	In	
order	 to	 increase	 the	 efficiency	 of	 generating	 the	 training	 data,	
it	was	possible	 to	 reduce	 the	number	of	FEA	models	 required	 to	
establish	 the	 non-linear	 strain	 response	 for	 each	 gauge	 location.	
This	was	achieved	by	fitting	non-linear	curves	to	data	collected	for	
each	strain	location	and	using	the	curves	to	interpolate	strain	data	
for	different	load	magnitudes.	

The	 structural	 responses	 of	 the	 panel	 in	 terms	 of	 strain	were	
saved	to	be	used	as	the	input	training	dataset.	The	corresponding	
load	for	each	input	dataset	was	also	saved	and	utilised	as	the	output	
training	set.	Some	of	these	input	and	outputs	were	saved	separately	
for	testing	the	network	and	error	minimisation.	In	this	study,	sixteen	
single	 strain	 gauge	 readings	 (inputs)	 and	 thirteen	 applied	 loads	
(outputs)	constitute	one	training	dataset.	At	each	loading	location	
(L1-L13),		a	static	load	ranging	between	24.525	N	and	784.8	N	was	
applied	in	steps	of	24.525	N.	In	total,	1040	training	datasets	were	
generated	from	the	non-linear	FEA	model.

2.4 ANN architecture/topology
ANN	 analysis	 often	 requires	 a	 high	 number	 of	 individual	 loops	
to	 determine	 the	 best	 solution.	 However,	 the	 training	 time	 can	
be	 reduced	(ie	 reduce	 the	number	of	 loops	 to	minimise	 the	error	
equation)	by	pre-processing	 the	data	 that	 is	given	to	 the	network	
to	train.	Having	multiple	hidden	layers	of	neurons	with	non-linear	
transfer	functions	(such	as	tan-sig	and	log-sig)	enables	the	network	
to	 understand	 both	 non-linear	 and	 linear	 relationships	 between	
input	and	output	data.	Unsatisfactory	performance	of	the	ANN	can	
be	due	to	a	wide	range	of	reasons,	such	as:
q	 an	unsuitable	ANN	architecture	or	learning	method;
q	 insufficient	representative	data	(not	enough	example	strain/load	

data);
q	 inadequate	 pre-processing	 (noisy	 data	 from	 data	 acquisition	

system	ignored);
q	 unsuitable	ANN	training	parameters.

Most	of	the	time	this	is	not	the	case	and	the	ANN	will	be	well	
trained	and	perform	satisfactorily,	even	on	a	new	untrained	dataset.	
Key	 architectural	 issues	 that	 can	 be	 optimised	 include:	 (i)	 the	
number	of	layers	in	the	ANN;	(ii)	the	number	of	neurons	per	layer;	
(iii)	the	type	and	parameters	of	the	neuron,	which	are	usually	the	
same	throughout;	and	(iv)	the	number	of	calculations	per	iteration	
during	learning	and	recall.	

The	Matlab	Artificial	Neural	Network	 toolbox	was	 used	 in	 this	
study	to	generate	two	different	backpropagation	ANN	architectures	in	
order	to	compare	their	performance.	The	architectures	utilised	were:
q	 One	network	with	sixteen	neurons	in	the	input	layer	and	thirteen	

neurons	in	the	output	layer	is	trained	to	estimate	the	load	on	the	
panel	from	the	strain	responses	(Figure	2).

q	 Thirteen	networks	each	with	sixteen	neurons	 in	 the	 input	 layer	
and	one	neuron	in	the	output	layer	are	trained	and	used	to	estimate	
the	load	on	the	panel	from	the	strain	responses	(Figure	3).	

The	number	of	hidden	layers	and	neurons	
in	 each	 hidden	 layer	 of	 the	 two	 network	
architectures	 were	 flexible.	 These	 were	
dependent	on	the	complexity	of	the	training	
datasets	and	were	optimised	according	to	the	
network	 performance.	 The	 sum	 of	 squared	
errors	 (SSE)	 and	 mean	 of	 squared	 errors	
(MSE)	 are	 common	 network	 performance	
indicators.	 Through	 the	 testing	 of	 various	
network	architectures,	the	optimum	network	
having	the	lowest	performance	indicator	can	
be	determined.	Once	 the	ANN	 is	 trained,	 it	
can	 be	 employed	 to	 estimate	 new	 loading	
cases	 where	 the	 same	 patterns	 exist.	 In	
other	 words,	 whenever	 the	 same	 pattern	 of	

strain	reading	as	an	input	 is	 introduced	to	the	network,	 it	will	be	
able	 to	 estimate	 the	 loads	 that	 caused	 those	 structure	 responses.	
Depending	on	how	well	the	network	is	trained	(the	performance	of	
the	network),	there	will	be	an	error	between	the	output	dataset	and	
the	network	estimated	output	(load).	

2.5 ANN validation and performance
The	validity	and	performance	of	the	ANN	method	was	evaluated	
by	comparing	 the	 load	estimated	by	 the	ANN	with	known	 loads	
applied	to	 the	panel,	which	were	not	seen	by	the	network	during	
the	 training	 process.	 The	 first	 validation	 study	 utilised	 load	 and	
strain	data	generated	from	the	FEA	model	and	was	compared	with	
estimated	loads	from	the	ANN.	In	the	second	study,	problem	strain	
data	was	captured	directly	from	the	panel	and	again	the	estimated	
loads	were	compared	with	the	actual	applied	loads.

3. Results
The	 validity	 of	 utilising	 FEA	 for	 training	 data	 generation	 and	
the	ANN	validity	 and	 performance	 are	 detailed	 in	 the	 following	
sections.

3.1 FEA model validation
Figure	 4	 indicates	 that	 for	 loading	 only	 location	 L13,	 there	 is	
reasonable	agreement	between	the	strain	readings	(S6	and	S10)	of	
FEA	tests	and	experimental	tests.	The	average	percentage	error	is	

Table 3. ANN architectures 

1	network	with	16	strain	inputs	
and	13	load	outputs

13	networks	each	with	16	
strain	inputs	and	1	load	output

Number	of	networks 1 13

Architecture	 Feed	forward	backpropagation

Number	of	layers	in	each	network 2 1

Range	of	load	estimation 24.525-784.8	(N) 24.525-784.8	(N)

No	of	inputs	(surface	strains)	 16 16

No	of	output	layer	neurons	(loads) 13 1

No	of	each	hidden	layer	of	neurons	 [20	20] [50]

Number	of	training	patterns	 1040 1040

Number	of	testing	patterns	 1040 1040

Figure 2. Matlab representation of ANN architecture 1

Figure 3. Matlab representation of ANN architecture 2



less	than	7%.	These	results	indicate	that	the	FEA	model	can	be	used	
confidently	to	simulate	various	loading	conditions	and	to	generate	
the	required	training	input	data.

3.2 ANN validation and performance
As	mentioned	in	Section	2.4,	two	different	methods	are	employed	
to	define	 the	networks.	Table	3	 lists	 the	major	parameters	of	 the	
network	architecture	used	in	the	two	methods.	It	was	determined,	
through	 the	 testing	 of	 various	 network	 architectures,	 that	 the	
optimum	network	 (lowest	 SSE)	 for	method	 one	 had	 two	 hidden	
layers	with	twenty	neurons	and	used	a	tan-sig	transfer	(Figure	2).	
The	 output	 layer	 had	 thirteen	 neurons	 (representing	 the	 thirteen	
loads	 to	 be	 estimated)	 and	 used	 a	 pure-lin	 transfer	 function.	
Similarly,	it	was	determined	that	the	thirteen	networks	for	method	
two	had	one	hidden	layer	each	with	fifty	neurons	and	used	a	tan-
sig	transfer	(Figure	3).	The	output	layer	of	each	network	had	one	
neuron	 (each	 network	 estimates	 the	 corresponding	 load	 of	 one	
location)	and	used	a	pure-lin	transfer	function.

In	this	study,	SSE	is	used	as	a	performance	indicator.	Once	the	
networks	were	trained,	SSE	values	between	the	estimated	loads	and	
training	load	data	were	calculated.	Each	network	has	an	individual	
SSE	value.	This	means	that	although	the	first	method	has	only	one	
SSE	 value,	 the	 second	 method	 had	 thirteen	 SSE	 values.	 Figure	
5	 indicates	 the	 SSE	 performance	 of	 all	 thirteen	 networks,	 each	
having	sixteen	inputs	(all	strain	readings)	and	one	output	(load	at	
one	location)	generated	from	the	second	network	architecture.

In	order	to	compare	the	two	methods,	the	summation	of	all	the	
networks’	SSE	values	in	the	second	method	is	compared	to	the	SSE	
value	of	the	first	method,	when	only	a	network	with	sixteen	inputs	
and	thirteen	outputs	were	used	to	train	the	system.	As	it	is	indicated	
in	Figure	6,	a	better	performance	for	the	second	method	is	achieved.	

In	addition	to	having	a	better	performance,	the	second	method	
has	 more	 flexibility.	 This	 means	 having	 thirteen	 independent	
networks;	 for	 each	 load	 location	 a	 separate	 new	 network	
architecture	and	parameters	can	be	employed.	
For	 instance,	 the	 sum	 of	 the	 estimation	
performances	 of	 networks	 in	 the	 second	
method	 can	 be	 improved	 by	 changing	 the	
network	architecture	of	those	networks	(eight	
and	twelve	from	Figure	5)	having	relatively	
higher	SSE	values.	As	it	is	illustrated	in	Table	
4,	 for	 locations	 eight	 and	 twelve,	 networks	
with	 two	 layers	 with	 twenty	 neurons	 are	
used.	The	improvement	in	SSE	for	networks	
eight	and	 twelve	with	 the	new	architectures	
can	be	seen	in	Figure	7.	

In	order	to	investigate	the	capability	of	the	
ANN	to	estimate	loads	in	real	time,	once	the	
ANN	is	trained	new	strain	data	from	different	

loading	cases	were	introduced	to	it.	Having	a	good	performance,	
the	ANN	should	be	able	to	estimate	the	external	pressure	loads	that	
caused	 those	 structure	 responses.	 For	 instance,	 introducing	 new	
sets	of	strain	data	that	have	not	been	used	to	train	the	network,	the	
ANN	 estimates	 the	 corresponding	 load	 data.	Depending	 on	 how	
well	the	network	is	trained	(the	performance	of	the	network),	there	
will	be	errors	between	the	expected	output	dataset	and	the	network	
estimated	output	(loads).	Figure	8	depicts	three	random	examples	
of	the	comparison	of	the	ANN	results	(trained	with	both	FEA	and	
experimental	data)	with	actual	externally	applied	loads	of	300	N,	
200	N	and	300	N	applied	individually	at	locations	L13,	L1	and	L7,	
respectively.	For	both	sets	of	problem	data	it	can	be	seen	that	the	
ANN	can	again	estimate	the	load	at	the	loaded	locations	with	a	high	

Table 4. Optimum ANN architecture 2

13	networks	each	with	16	strain	inputs	and	1	load	output

Number	of	networks 13

Architecture	 Feed	forward	backpropagation

Number	of	layers	in	each	network Most	of	it	has	1	and	for	location	8	and	12	are	2

Range	of	loads	 0-809.3	(N)

Number	of	inputs	(surface	strains)	 16

Number	of	neurons	in	output	layer	(normal	loads) 1

Number	of	neurons	in	each	hidden	layer	 [50]	or	[20	20]

Number	of	training	patterns	 1040

Number	of	testing	patterns	 1040

Figure 4. Comparison of FEA and experimental data of selected 
strain gauges 

Figure 5. SSE performance of network architecture 2

Figure 6. Comparison of the SSE values of the two network 
architectures

Figure 7. Flexibility of ANN architecture 2 in training stage
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degree	of	accuracy.	However,	the	error	size	of	estimated	loads	with	
the	ANN	for	experimental	tests	is	slightly	bigger.	Such	a	small	error	
is	normal	and	it	could	be	from	an	initial	error	between	the	FEA	data	
and	experimental	data,	errors	induced	from	the	repeatability	of	the	
data	acquisition	system	with	a	resolution	of	+/–	0.1	microstrain	as	
well	as	possible	overtraining	of	the	ANN.

The	 estimated	 negative	 load	 values	 at	 the	 unloaded	 locations	
were	 due	 to	 the	 differences	 between	 the	 strain	 data	 collected	 to	
generate	 the	 training	 data	 and	 the	 collected	 problem	 strain	 data.	
Due	to	these	errors,	slightly	different	strain	patterns	are	introduced	
to	 the	 ANN	 producing	 the	 errors	 in	 the	 estimated	 loads.	 The	
introduction	of	 further	noisy	patterns	 in	 the	 training	dataset	may	
reduce	 these	 small	 errors,	 indicating	 that	 further	 work	 could	 be	
carried	out	to	improve	the	accuracy	further.

4. Discussion
In	this	study,	it	is	shown	that	the	inverse	problem	method,	utilising	
an	ANN,	 is	 capable	of	 estimating	magnitude	and	position	of	 the	
static	 pressure	 loads	 on	 a	 marine	 composite	 panel	 under	 large	
displacement	from	non-linear	strain	measurements.	The	results	of	
this	study	can	be	summarised	as	follows:
q	 FEA	data	can	be	used	to	generate	training	data	for	ANN	inverse	

load	estimation	problems.
q	 Two	different	ANN	architectures	are	used	and	the	performances	

are	compared.
q	 Having	non-linear	 relationships	between	 the	applied	 load	and	

the	surface	strains,	the	system	always	converges	and	the	SSE	is	
in	the	range	of	acceptable	error.

q	 The	system	is	capable	of	estimating	the	position	and	magnitude	
of	static	pressure	loads	on	a	marine	composite	panel	under	large	
displacement.

q	 Having	a	large	difference	between	the	training	datasets	and	the	
problem	 dataset	makes	 the	ANN	 unable	 to	 estimate	 the	 load	
accurately.	

q	 The	main	source	of	error	was	found	to	be	an	initial	error	between	
the	FEA	data	and	experimental	data.	

The	ability	to	measure	the	actual	load	history	of	a	craft	in-service	
would	 enable	 the	 designer	 to	 validate	 the	 load	 estimation	 and	
structural	design	tools	used	during	the	design	stage	of	a	craft.	This	
would	lead	to	the	development	of	more	optimal	structure	designs	
for	 this	 type	of	craft.	The	operational	safety	of	 the	craft	can	also	
be	improved	by	having	a	real-time	load	monitoring	system	that	is	
able	to	detect	any	degradation	of	the	structural	integrity	and	defects	
within	the	structure.	

It	is	proposed	that	the	ANN	methodology,	with	further	research	
and	 development,	 could	 be	 utilised	 for	 the	 quantification	 of	
in-service,	transient	loads	in	real-time	acting	on	the	craft	from	the	
craft’s	 structural	 response	 (strain	 response	 to	 load).	 This	 would	
provide	 valuable	 information	 to	 influence	 future	 craft	 design.	 In	
order	 to	 fully	 evaluate	 the	 proposed	methodology	 for	 in-service	
load	monitoring	of	marine	structures,	 the	following	areas	require	
investigation:
q	 The	 behaviour	 of	 marine	 structures	 under	 transient	 load	

conditions	(dynamic	load	is	applied).
q	 The	effect	of	 the	size	of	 the	structure	on	 the	ANN	estimation	

accuracy.
q	 The	number	of	sensors	required	for	accurate	load	estimation	by	

optimising	the	method.	While	some	vessels	do	have	integrated	
sensors	most	do	not.	The	number	of	sensors	should	be	minimised	
to	reduce	the	time	to	train	the	system,	cost	and	weight.	

q	 The	effect	of	modifying	ANN	training	parameters,	including	the	
number	and	type	of	training	patterns	introduced	to	the	ANN.

q	 Validation	of	the	methodology	on	a	craft	in-service.

Finally,	a	graphical	user	 interface	 (GUI)	should	be	developed	
allowing	control	of	various	parameters	of	the	data	acquisition	and	
load	monitoring	system,	as	well	as	graphical	display	in	real	time.

5. Conclusions
It	has	been	shown	that	the	inverse	problem	approach	can	be	used	
to	estimate	the	magnitude	and	position	of	static	pressure	loads	on	
a	 marine	 composite	 panel	 under	 large	 displacement	 from	 non-
linear	strain	measurements.	A	comparison	of	the	ANN	loads	with	
the	actual	applied	loads	indicated	a	very	good	performance	of	the	
methodology.	This	was	achieved	in	real	time,	providing	an	accurate	
load	history.	This	potentially	makes	 the	 system	 ideal	 for	 solving	
many	 classes	 of	 complex	 engineering	 problem	 that	 require	 load	
monitoring.	
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Abstract. Current practices to estimate the pressure loads on the hull of small high-speed craft in a 

seaway are based on determination of the wave loads by applying rules and standards which itself 

relies either on often conservative methods, leading to a craft that is heavier and slower than it could 

be otherwise. There are rather large uncertainties in the wave load predictions for ships mainly caused 

by not necessarily sufficient theoretical basis of the calculation methods. Direct pressure 

measurement techniques can only provide data at each transducer location and classical analytical 

techniques require a large amount of experimental data to be collected to relate pressure to the 

structures response. The evaluation of wave generated hydrodynamic loads is less reliable as the 

dynamic nature of the loading as well as transient effects such as slamming and green water on deck 

still demands more investigations. Therefore, a novel technique is required to overcome these 

limitations by providing a method of measuring the pressure load with relatively few sensors and 

minimal data collection. This paper reports on research undertaken to develop an inverse problem 

approach utilising an Artificial Neural Network (ANN) for quantification of in-service, transient 

loads in real-time acting on the craft from the craft’s structural response (strain response to load). This 

study investigates suitability and performance of utilising ANN as an inverse problem approach to 

estimate impact loads applied to up to 13 locations on the structure in real-time from 16 strain 

measurements. 

Introduction 

The measurement of hydrodynamic impact loads has an important role in the design of reliable cost 

and weight effective marine structures. Weight is a major factor to optimise the speed of a marine 

structure. Although employing stiff and light materials such as composites leads to increase in speed, 

structural damage is still significant [1]. It is expected that the structural damage may be influenced 

by global hydroelastic behaviour from waves and/or local hydrodynamic impact loads from 

slamming [2]. Wave impact is a random nonlinear phenomenon which is very sensitive to relative 

motion and attack angle between the body and free surface of the water. Since the duration of wave 

impact loads is very short, hydroelastic effects are large. In addition, due to air trapping, the wave 

impact phenomenon is difficult to describe. As the new generation of high speed naval craft gets 

larger and faster, slamming impact loads on these vessels becomes a critical design concern. 

However, the hydrodynamic impact load is one of the least understood areas of marine structure 

design [3]. Wave impact has challenged many researchers for more than half century and yet more 

research for an accurate practical estimation method of wave impact loads is required.  

Many studies have been performed so far for evaluating hydrodynamic loads on ships. Such 

methods are summarised in the reviews by Phelps [4] and Guo-Dong and Wen-Yang [3].  It is 

indicated that the evaluation of wave generated hydrodynamic loads is less reliable than the static 

loads and there is less guidance as to how to handle the dynamic nature of the loading as well as 

transient effects such as slamming. In the past four to five decades, research has provided increased 

knowledge of the nature of hydrodynamic loads, which together with the improvements in computing 
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power have greatly enhanced the capability to determine the effects of these loads on ship structures. 

Starting with the work of von Karman [5], various research works have been carried out to describe 

hydrodynamic loads in Naval Architecture, on motorboats and sailboats in parallel with rules and 

regulations [6-19]. Furthermore, the introduction of composite materials in marine architecture, such 

as fast marine crafts, has brought new types of operational failures in panels. In contrast to metallic 

materials, when the design makes use of composite materials, different types of cracks can appear 

such as delaminations. This usually happens due to the localised impacts from service loads (such as 

slamming loads) often observed in composite high-speed crafts. Although, many studies have been 

carried out to describe the slamming phenomenon and its consequences on the design of ships made 

of metallic materials [10, 20-26], there are limited studies in this area for composite marine structures.  

In addition, as it is pointed out in various studies [1, 27], there is a need for more accurate knowledge 

of the hydrodynamic impact on marine structure problems as the knowledge on wave impact is still 

far from sufficient.  

A novel approach for the determination of pressure loads experienced by marine structures is the 

utilisation of Artificial Neural Networks (ANN) [28]. ANN methods are utilised in research areas 

where problems are solved by pattern recognition, generalisation and pattern classification [29]. 

ANN has attracted considerable attention and shown promise for modelling complex nonlinear 

relationships. ANNs have been used extensively in many fields [29-38]. 

In a recent study by the authors [28], it is shown that the inverse problem approach can be used to 

estimate the loads applied on a marine composite panel from the strain measurements when behaving 

linearly. A comparison of the ANN loads with the actual applied loads indicated a very good 

performance of the methodology. However, it was discussed that more investigation is necessary to 

further evaluate the suitability of the proposed methodology for in-service load monitoring of marine 

structures under transient load conditions such as slamming. This paper reports on the research 

undertaken to further develop the ANN methodology for quantifying pressure loads on a marine 

composite panel under transient load conditions from strain measurements. 

Methodology 

The methodology employed to evaluate the suitability and performance of utilising an ANN as an 

inverse problem solver for quantifying the transient load applied to the composite panel is presented 

in this section. The first stage of the investigation was to design an impact load quantification 

methodology for the panel utilising an ANN. In the second stage the load quantification methodology 

was validated by comparing loads estimated by the ANN with the known loading cases of the panel.  

Inverse Problem Analysis Methodology. Inverse problem analysis is based on accurately 

calculating the external loads or boundary conditions that generate a known amount of strain at 

predetermined locations on a structure. An ANN, as an inverse problem solver, can be utilised to 

determine a relationship between the cause and its effect [28]. In this study, the impact loads (the 

cause/output) on a composite panel are quantified by acquiring repeatable peak strain responses (the 

effect/input) to these loads from the panel. By introducing examples to an ANN, it can learn the 

relationships between the input and output through a training process. Once the ANN is sufficiently 

trained it can be utilised to estimate the output in real-time. New inputs (problem data) are presented 

and processed by the ANN to quantify/estimate the load. 

Simulation Setup. The structure under consideration was a 1 m
2
 glass Reinforced Fibre Polymer 

(GRFP) marine composite panel made of 7 layers of stitched biaxial ±45 E-glass cloth and with 

Ampreg 22 epoxy resin system (all provided by SP Gurit Systems), hand laid up with a total thickness 

of 5 × 10�� m. Fig. 1 shows a schematic of composite panel indicating strain node, loading and 

support locations. The panel was divided into a four-by-four grid producing sixteen equal regions of 

area 0.25	 × 0.25	m . The bottom surface of the panel was supported on all four edges using 

aluminium bars, each 0.0381 m high, 0.01905 m wide and 1m long (Fig. 1). Strain readings (S1-16) 

were captured from the centre of each of the 16 regions on the top surface of the panel. Loading was 

achieved by simulating a free fall impact of a rigid mild steel cylinder (length 0.103 m, diameter of 
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0.02 m and mass of 0.254 kg) normal to the panel surface at 13 locations (L1-13) from various 

heights.  For this study, the finite element models are developed and simulated in ABAQUS 6.10-1 

(SIMULIA). The panel has 7096 elements and the cylinder has 40 elements. Mesh type used is 

hexagonal. Fig. 2 indicates a typical Finite Element Analysis (FEA) model output employed in this 

study.  

 

 
 

Fig 1. Schematic of composite panel.                             Fig 2. Meshed FEA Panel. 

 

Generation of ANN Training Data. Generating the required training data sets may be through 

experimental tests or the use of simulation such as FEA. However, having a validated FEA model 

would dramatically save in time and costs compared to the experimental tests. In this study, an FEA 

model is developed and validated against experimental results. Employing a Python script in the FEA 

model allows automatic generation of various loading conditions by changing the velocity of cylinder 

just before impact. The structural response of the panel in terms of strain readings and velocity values 

for specific locations are evaluated.  

ANN Architecture/Topology. In this study a common Backpropagation, ANN architecture is used 

and trained employing MATLAB Artificial Neural Network toolbox capabilities. The network has an 

input layer with 16 neurons (as there are 16 strain readings), output layer with13 neurons (as there are 

13 loading positions) and some hidden layers each having any number of neurons. An iterative 

process was used to determine the optimum network architecture for the panel based on the 

performance of each network tested. In this study, three hidden layers each having 20 neurons was 

found to be the optimum. 

ANN Validation and Performance. The validity and the performance of the ANN method were 

evaluated by comparing the load estimated by the ANN with known loads applied to the panel 

(problem data). Experimental problem data is the strain data from the same 16 nodes on the panel 

while it is being loaded. The Sum of Squared Errors (SSE) between a known target and ANN 

estimation is a common network performance indicator. For this validation study, new loading cases 

simulated by FEA and corresponding load and strain data is employed to evaluate ANN estimation 

performance when it is introduced with new data sets. 
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Results 

A script written in Python language is used to model the structure and simulate various loading 

scenarios up to 0.02 seconds after impact. Since this test is under high loads, large displacements 

analysis is used to simulate the model using a nonlinear solver.  Furthermore, the structural response 

of the panel in terms of strain as well as the cylinder velocity over the simulation time is saved to be 

used to generate training data sets. In order to validate the FEA model against the real structure, the 

panel is loaded from 100 to 800 N in 100 N increments at all 13 load locations (L1 – L13) seperately. 

The strain readings at all 16 locations (S1 - S16) on the panel are saved for each test. The same tests 

are performed with FEA to compare the results with the experimental results. For instance,  Fig. 3 

indicates that for loading only location L13, there is reasonable agreement between the strain readings 

(S7 and S11) of the FEA model and experimental tests.  

 

Fig 3. FEA Vs. experimental test results 

Once the model is validated, it can be simulated for various loading conditions to generate the 

required data.  The corresponding peak strain values of the first impulse from locations S1-16 (Fig. 1) 

of the FEA model is used as input training data. Fig. 4 shows example FEA strain data collected from 

the gauge location S1 when impact location was L1. 

 
 

Fig 4. Typical strain data during the impact for gauge S1. 

In order to calculate, the impact force of the first impulse (F), Eq. 1 is used where �� is the velocity 

of cylinder just before impact and � is its velocity after impact. ∆�	is the duration of peak impulse. 

Impact forces of each loading cases are saved and utilised as training data set targets.  
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In this study 16 strain readings (inputs) and 13 load readings from 13 locations (outputs) are 

needed to have one set of training data. Enough training sets of 13 various loads at each location on 

the panel and the resultant 16 strains caused by these loads were required to find the relationship 

between the input/output data. For each loading location (L1 - L13), 75 training data sets are 

generated by loadings from 600 N to 6071N making a total of 975 training data sets from FEA. 

Loadings are changed based on the velocity of the cylinder just before impact. Introducing the 

training data to the trained network, ANN output should be as similar as possible to the impact load 

set that the ANN has been trained with. Fig. 5 indicates some random examples of estimated impact 

load data by the ANN compared with the expected values for impact locations L3 and L9.   

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig 5. Estimated impact load data by ANN Vs. expected values from training data. 

 

Validation using FEA Data. For each loading location (L1- L13), 25 training data sets are generated 

by loadings from 600 N to 6071N making a total of 325 training data sets from FEA. This set of 

problem data was not introduced to the network during its training procedure. The strain set of this 

problem data set is introduced to the previously trained ANN and the corresponding estimated load 

values are calculated.  Fig. 6 shows some random examples of estimated impact load data by ANN 

and is compared with the expected values. 

 

 

 

 

 

 

 

 

 

 

 

 

Fig 6.     Estimated impact load data by ANN Vs. expected values from test data. 

The results presented in this paper show that the inverse problem method, utilising an ANN, can 

accurately estimate the position and magnitude of 13 impact loads applied to the composite panel 

from the captured strain data of 16 nodes spread over the panel surface. The results indicate that the 

system always converges and ANN can be trained using FEA data to solve inverse problems and 

accurately estimate the impact loads. Once the ANN is sufficiently trained it can be utilised to 

estimate the output in real-time where new inputs (problem data) are presented and processed by the 

ANN and impact loads are estimated. 
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 The ability to measure the actual load history of a craft in service would enable the designer to 

validate the load estimation and structural design tools used during the design stage of a craft. This 

would lead to the development of more optimal structure designs for this type of craft. The 

operational safety of the craft can also be improved by having a real-time load monitoring system that 

is able to detect any degradation of the structural integrity and defects within the structure. 

Conclusion 

The aim of this research was to establish an inverse impact load monitoring approach based on 

structural response from a set of nodes simulated in FEA. It has been shown that the inverse problem 

approach can be used to estimate 13 impact loads applied on a composite marine panel from the strain 

measurements of 16 strain gauges. A comparison of the ANN estimated impact loads with the actual 

applied impact loads indicated a very good performance of the methodology. Once the ANN is 

sufficiently trained it can be utilised to estimate the output in real-time. This potentially makes the 

system ideal for solving many classes of complex engineering problem that require impact load 

monitoring.  
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