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Inspired by the development of the matrix completion theories and algorithms, a low-rank
based motion capture (mocap) data refinement method has been developed, which has
achieved encouraging results. However, it does not guarantee a stable outcome if we only
consider the low-rank property of the motion data. To solve this problem, we propose to
exploit the temporal stability of human motion and convert the mocap data refinement
problem into a robust matrix completion problem, where both the low-rank structure
and temporal stability properties of the mocap data as well as the noise effect are consid-
ered. An efficient optimization method derived from the augmented Lagrange multiplier
algorithm is presented to solve the proposed model. Besides, a trust data detection method
is also introduced to improve the degree of automation for processing the entire set of the
data and boost the performance. Extensive experiments and comparisons with other meth-
ods demonstrate the effectiveness of our approaches on both predicting missing data and
de-noising.

� 2014 Elsevier Inc. All rights reserved.
1. Introduction

In recent years, with the rapid development of motion capture (mocap) techniques and systems, motion capture data
have been widely used in computer games, film production and sport sciences [38,39,42,52]. The great success of animated
and animation enhanced feature films Avatar provides a compelling evidence for the values of mocap techniques. However,
even with the most expensive commercial mocap systems, there are still instances where noise and missing data are inev-
itable [1,3,18,21]. Fig. 1 presents some real examples captured by ourselves using an optical mocap system. It can be seen
that the acquired raw mocap data contains imperfections which should be refined before used for animation production.
Thus, an important branch of motion capture research focuses on handling two highly correlated and frequently co-occurred
sub-problems: one is to predict the missing values in mocap data and the other is to remove both the noise and outliers.
These two sub-problems are collectively referred to as mocap data refinement problem. Meanwhile, the prevalence of some
novel yet cheap mocap sensors (e.g., Microsoft Kinect), which are able to capture human motion in real-time but whose
outputs are not very accurate especially when significant occlusions occur, makes the mocap data refinement problem much
more pertinent and important [13,45,48,54,60].
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Fig. 1. Four real examples of mocap data with missing and noisy values from our own captured motion sequences. In each subgraph, one joint of human
skeleton is selected and its trajectory’s x-, y-, z-axis curves are plotted below.
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Although many researchers have studied this problem and numerous techniques have been proposed to deal with this
problem, often the performance and application of these methods are hindered by their inherent drawbacks. For example,
the interpolation methods used in some commercial mocap systems such as EVaRT and Vicon are only suitable to deal with
the short-time (<0.5 s) data missing problem [1]. The data-driven methods often suffer from the out-of-sample problem
[4,5,37]. It is not exaggerated to say that the refinement problem is far from being solved and has attracted a great deal
of attention in recent years [1,2,4,5,12,19,23,37,47,58].

To handle this problem, a new optimization method is presented to process the input motion clip directly without the
support of any motion database. We convert the mocap data refinement problem into a robust matrix completion problem
with a smooth constraint. The proposed Temporal Stable and noise robust Matrix Completion (TSMC) model takes into ac-
count both the low-rank structure and temporal stability properties of motion data as well as the effect of noise. Addition-
ally, we present an efficient trust data detection method to automate the data processing and boost the performance. The
overview of our proposed approach is shown in Fig. 2.

Briefly speaking, our research makes three main contributions:

1. We can successfully convert the traditional mocap data refinement problem into a robust matrix completion
problem with the smooth constraint and propose a new model to exploit both the low-rank structure and the
temporal stability properties of mocap data at the same time.

2. We present a fast optimization method to solve the derived mathematic model with its convergence guaranteed
theoretically.

3. An efficient trust data detection method is designed to increase the degree of automation for data processing and
boost the performance of our model.

In the remainder of this paper, we will first review some closely related work in Section 2. Then the detail of our proposed
approach is given in Section 3 with extensive experiments following in Section 4. Finally, the paper is concluded in Section 5.
2. Related work

When motion data is acquired using a mocap system, data refinement is an indispensable subsequent post-process step.
More precisely, in this step two sub-problems must be solved: one is to predict the missing values in mocap data and the
other is to remove the noise and outliers. These two seemingly separate issues often co-occur in practice, although they have
been discussed largely separately in the literature. For the purpose of our discussion, we briefly review some of the closely
related work on these two sub-problems.
Fig. 2. Overview of our proposed approach for handling the motion capture data refinement problem. The approach contains two main parts: (1) detect and
find out the trust data entries using an efficient trust data detection method and then set bX and X according to the detection result and (2) refine the
imperfect data using the proposed TSMC algorithm.
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Due to reasons such as markers falling off or occlusion, the loss of marker information is a frequent challenge in human
motion capture. How to predict missing values in mocap data has been studied by many researchers [1,4,17,23,30,31,57,58]
in the past twenty years. The interpolation methods are widely used owing to the advantages that they are very fast and easy
to implement. However, they are off-line methods and only efficient for handling missing values for a very short period of
time, typically less than 0:5 s [1]. To overcome these drawbacks, Herda et al. [17] introduced a real-time method using an
anatomical human model to predict the position of the markers. It is unfortunately very difficult and time consuming to set-
up such a model. Aristidou et al. [1] used Kalman Filters to estimate missing markers in real-time without the support of any
human model. However, the filtered human motion exhibits visible short latency. Moreover, Kalman Filters may fail when
markers are missing or the motion data is corrupted by noise for an extended time period [12]. To discover hidden variables
and learn their dynamics, Li et al. [30] built a probabilistic model to estimate the expectation of missing values conditioned
on the observed parts. Their next work [31] imposed bone-length constraints in a linear dynamical system (LDS) to boost the
performance. The method [31], however, has to rely on the existence of other markers on the same segment to make inter-
marker distance measurement possible [4].

Recently, data-driven methods have attracted a lot of attention. Xiao et al. [58] adopted sparse representation to predict
the missing values and Baumann et al. [4] fixed missing data via searching poses with a similar marker set from a prior-data-
base and then optimizing an energy minimization function to synthesize the positional data of the missing markers. The
shortage of data-driven methods is the out-of-sample problem and they require an additional data preprocessing step which
will increase the human labor cost.

The out-of-sample problem will be overcome, if one can refine mocap data without the support of a database. Lai et al.
[23] noticed that the low-rank property of mocap data has not been explicitly exploited in the previous work, and they pro-
posed to handle the mocap data refinement problem based on low-rank matrix completion theory and algorithm. The key
point of their method is that it does not need any training data. Inspired by [23], our model also takes the low-rank structure
property into account. Besides, we include two other properties into our design: the temporal stability and the noise effect.
Compared with [23], our model does not only take the low-rank structure property into account but also the temporal sta-
bility property of motion data and noise effect. Our proposed model can handle both sub-problems of mocap data refinement
at the same time, while in [23] they used two separate models to achieve the same goal. Another significant difference be-
tween our model and its counterpart in [23] is that we do not need to guess the standard deviation of the noise which is used
for solving the de-noising model in [23]. More importantly, the optimization method for solving our model is much faster
and robust than SVT [23], which has been proven both in theory and in experiment [33]. In Section 4, we also have observed
that our method is not only faster than the work [23] but also outperforms it in the experiments on both synthetic and real
data. Meanwhile, we also notice that two low-rank matrix based methods [19,47] have been proposed almost at the same
time as ours following the work [23]. However, both papers [19,47] aim to well use the low-rank property of the trajectory
matrix of human motion data by reorganizing mocap data into sequences of trajectory segments. Moreover, they can be used
to handle just one sub-problem of mocap data refinement (i.e., predicting missing values), while our method can simulta-
neously solve both sub-problems.

There are also a lot of research focusing on removing the noise and outliers from mocap data, which is called mocap data
de-noising [20,23,24,26,27,37]. Lee and Shin [26] formulated rotation smoothing as a nonlinear optimization problem and
iteratively minimized the energy function to smooth the motion. In their later work [27], they proposed a linear time-invari-
ant filtering framework for filtering the orientation data by transforming the orientation data into their analogues in a vector
space; applying a time-domain filter on them; and transforming the results back to the orientation space. Lou and her col-
leagues [37] learned a series of filter bases from prerecorded mocap data and then used them in a robust nonlinear optimi-
zation framework to perform mocap data denoising. In [23], Lai et al. simply modified the objective function of SVT [7] by
imposing an inequality equation so that it is able to handle the mocap data de-noising problem. However, in their work, the
user has to guess the standard deviation of noise, which is difficult in practice. Moreover, only taking the low-rank property
into account, the recovered motion is not so stable that some poses will shake. Some corrupted markers cannot be recovered.
3. Our approach

3.1. Notations

To better present the details of our approach, we provide some important notations used in the rest of this paper. Capital
letters, e.g., X, represent matrices or sets, Xi;: is the i-th row of X and X :;j is the j-th column of X. Lower case letters, e.g., x,

represent vectors or scalar values. Superscript ðiÞ, e.g., XðiÞ and xðiÞ, represents datum in the i-th iteration. Throughout this
paper, Ic denotes the c � c identity matrix; X 2 f0;1gm�n is a binary matrix and X is the corresponding complement matrix,

i.e., Xij ¼ 1�Xij. For any matrix X 2 Rp�q, let kXk0 be the l0-norm, kXk1 ¼
P

i;jjXijj be the l1-norm, kFk2 ¼ kXkF ¼
P

i;j X2
ij

� �1
2

be

the l2-norm and the Frobenius norm, kXk1 ¼max16i6p
Pq

j¼1jXijj is the 1-norm, and kXk� ¼
Pr

i¼1 riðXÞ be the nuclear norm,

where r ¼minfp; qg and riðXÞ be the i-th largest singular value of X. XT stands for the transpose of X. Additionally, we denote
X � Y be the Hadamard product of X and Y, i.e., X � Y ¼ ½XijYij�, and hX;Yi ¼ trðXT YÞ, wherein trð�Þ is the matrix trace operation.
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Fig. 3. The relative approximation error of various motion capture data.
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3.2. Objective function

Based on the above defined notations, we denote a motion sequence which consists of n poses (frames) as
X ¼ ff1; f2; . . . ; fng, where fi 2 Rd is the i-th pose. In this work we use the 3D coordinates (i.e., ðx; y; zÞ) of markers to represent
a pose feature, i.e., fi ¼ ½x1; y1; z1; . . . ; xk; yk; zk�T , where k is the number of markers (i.e., d ¼ 3� k).

Intuitively, the nearby poses in X are often similar to each other and the motion sequence is of high temporal correlation.
In other words, if we represent this sequence in a motion matrix form X ¼ ½f1; f2; . . . ; fn� 2 Rd�n, it is naturally to guess that X
should have a low-rank structure [23]. To verify this hypothesis, we first collect 7 motion sequences with diverse activities
from the CMU mocap dataset.1 Then, we centralize X and apply singular value decomposition (SVD) on XT X to examine whether
the mocap data has a good low-rank approximation. The metric we used here is the relative approximation error of the top K

biggest singular values, i.e., 1�
PK

i r2
i

� �
=
Pr

i r2
i

� �
, where ri is the i-th largest singular value and

Pr
i r2

i

� �
gives the total variance

of the matrix XT X [43,50]. As we can see from Fig. 3, the top five biggest singular values can well approximate the whole var-
iance in all of the diversity activities. This result suggests that mocap data exhibits a low-rank structure.

Additionally, natural human motion satisfies the temporal stability constraint, i.e., the motion trajectories of markers are
smooth most of the time [9,44,49]. As shown in Fig. 4, it is smooth and stable in the direction of frame index (i.e., the tem-
poral direction which is the x-axis in Fig. 4). We believe there are two reasons leading to this situation. One is because that
the velocities of each markers are stable in a short period of time. The second reason is that the capture speed of the current
commercial mocap systems is very high (more than 60–120 fps2) and therefore smooth and stable human motions can be re-
corded accurately.

To further confirm our view, we calculate the velocity (i.e., Vi;j ¼ Xi;jþ1 � Xi;j) and acceleration (i.e., Ai;j ¼
Vi;jþ1�Vi;j

Dt and Dt ¼ 1
in our case) for each feature dimension and plot the results in Fig. 5(a) and (b). We find that although the velocities of dif-
ferent pose feature dimensions are diverse, their accelerations are very small (<±1 cm/frame2)3 mostly in a short period of
time. Ideally, if the articulation joints move with some constant velocities v, the coordinate values of all these markers at time
t can be represented as ft ¼ f0 þ t � v, where f0 is the initial coordinate vector. Here we denote 1 ¼ ½1; . . . ;1�T and t ¼ ½1;2; . . . ;n�T .
Then, the generated motion matrix X ¼ ½f1; . . . ; fn� ¼ f0 � 1T þ v � tT is both low-rank (the rank is 2) and temporal stable, even in
the case that each markers with different velocities.

Meanwhile, Candès et al. [8] proved that it is possible to recover most low-rank matrices from what appears to be an
incomplete set of entries. If an imperfect motion sequence is refined by matrix completion methods, the result also should
be both low-rank and temporally stable. In order to enhance the robustness of our model, we only assume that the noise is
sparse in the observed part. It is a weak but reasonable assumption, because the observable data from the current mocap
systems usually contain a little amount of noise and outliers. It means only a small percentage of the available data is cor-
rupted. Here we propose a robust low-rank matrix completion model to well exploit the low-rank structure and temporal
stability properties of mocap data as follows:
1 http
2 Now
3 Not
4 Opp
min
Y ;E

rankðYÞ þ akX � Ek0 þ
b
2

HðYÞ; ð1Þ

s:t: Y þ E ¼ X; ð2Þ
where X 2 f0;1gd�n is a mask matrix (i.e., Xi;j ¼ 1 for the observable Xi;j and Xi;j ¼ 0 for the missing entry Xi;j). X is the imper-
fect motion data and Y is the corresponding complete and clean motion data. Here HðYÞ is a smooth penalty function and E is
the sparse noise or outliers. When some markers are missing and we denote these missing values as zeros, E contains the
opposite numbers4 of the corresponding missing values.
://mocap.cs.cmu.edu/.
, the capture speed of Eagle-4 high speed video camera can achieve up to 500 fps at 1280� 1024 full resolution.

e that it is an approximate acceleration used here. Indeed, the real acceleration is �1 cm= 1
60 s2
� �

¼ �0:6 m=s2.
osite number of any number x is a number which if added to x results in 0. The opposite number for x is usually denoted as �x.

http://mocap.cs.cmu.edu/
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Because Y is smooth in the temporal direction as shown in Fig. 4, we enforce C2 continuity on each feature dimension of Y,

i.e., 8r;Yr;: is C2 continuity. This requirement leads to HðYÞ ¼ kYOTk2
F [10,14,28], and O is tridiagonal square matrix defined by
Oi;i�1 ¼
2

hi�1ðhi�1 þ hiÞ
; ð3Þ

Oi;i ¼
�2

hi�1hi
; ð4Þ

Oi�1;i ¼
2

hiðhi�1 þ hiÞ
; ð5Þ
for 8i; 2 6 i 6 n� 1, where n is the number of elements in Yr;: and hi represents the step between Yr;i and Yr;iþ1. Assuming

repeating border elements, that is Yr;0 ¼ Yr;1 and Yr;nþ1 ¼ Yr;n, gives O1;1 ¼ �O1;2 ¼ �1=h2
1 and On;n�1 ¼ �On;n ¼ �1=h2

n�1. In our
special case, the data can be treated as equally spaced which means 8i; hi ¼ 1, so we get:
O ¼

�1 1
1 �2 1

. .
. . .

. . .
.

1 �2 1
1 �1

26666664

37777775: ð6Þ
Note that O is a symmetrical matrix, Eq. (1) can be equivalently expressed as follows.
min
Y ;E

rankðYÞ þ akX � Ek0 þ
b
2
kYOk2

F : ð7Þ
Since Eq. (7) is a l0-norm regularized rank-minimization problem, which is NP-hard, in most matrix completion problems
the l1-norm and the nuclear norm are often used as surrogates of matrix rank and the l0-norm respectively [7,11,53,56]. So,
we relax Eq. (7) and get the model:
min
Y ;E

kYk� þ akX � Ek1 þ
b
2
kYOk2

F ; ð8Þ

s:t: Y þ E ¼ X; ð9Þ
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where a and b are two regularization parameters. In the above model (i.e., Eq. (8)), the first nuclear norm term restricts the
refined motion Y to be low-rank, the second term takes the effect of sparse noise into account and the last one incorporates
the temporal stability constraint into our model. We call it the Temporal Stable and noise robust Matrix Completion (TSMC)
model.

3.3. Trust data detection

In our proposed TSMC model, apart from the parameters a and b, we also need to set two matrices: X and O. As O depends
on the dimension of X, it is easy to set. If we know X only contains missing values and some relatively small noise, we can
simply set Xi;j ¼ 1 if Xi;j is observable, otherwise Xi;j ¼ 0. But X is frequently contaminated by some noise and outliers in prac-
tice. Thus it is unwise even incorrect to simply set Xi;j based on whether Xi;j is observable or not. A more sophisticated choice
is to detect and find out the trust data entries first, and then set X according to these trust data as shown in Fig. 2. In the
following part, we propose an efficient method to find out the trust entries in X based on the smoothness property of human
motion data in each pose feature dimension, as mentioned earlier.

Let’s consider the following model for the one-dimensional noisy signal x:
x ¼ x̂þ �; ð10Þ
where � represents some noise and x̂ is a smooth function. To smooth the data, a common choice is to enforce C2 continuity
on x̂, in which case x̂ is called a (cubic) spline. And inspired by the success of the penalized least squares regression model
[14], we seek to minimize the following objective function
Lðx̂Þ ¼ kG1=2ðx̂� xÞk2 þ lRðx̂Þ; ð11Þ
where Rðx̂Þ is a regularization term, l is a scalar which determines the balance between the first fitting term and the second
smoothing term, and G is a diagonal matrix such that Gi;i represents a weight assigned to the observed ith entry of x. The
main drawback of the penalized least squares regression models is their sensitivity to the outliers. We should choose robust
weighting functions to minimize or cancel the side effects of the outliers. Several weighting functions are available to achieve
this goal, such as the bisquare weight function [14,16] and the Welsch robust function [37] and so on. In order to mitigate the
effect of noise and outliers, we define G as follows:
Gi;i ¼
exp � r2

i
p2

� �
if xi is observable;

0 otherwise;

8<: ð12Þ
where ri ¼ xi � x̂i is the residual, p is a scalar and we experimentally fix it to 5.
From Section 3.2, we know that the C2 continuity requirement has led to the definition of Rðx̂Þ ¼ kOx̂k2. Thus Eq. (11) can

be reformulated as
Lðx̂Þ ¼ kG1=2ðx̂� xÞk2 þ lkOx̂k2
: ð13Þ
Solving Eq. (13), the minimization of Eq. (11) is given by
x̂ðkþ1Þ ¼ ðI þ lOT OÞ�1ðGðkÞðx� x̂ðkÞÞ þ x̂ðkÞÞ ð14Þ
¼ HðGðkÞðx� x̂ðkÞÞ þ x̂ðkÞÞ; ð15Þ
where H ¼ ðI þ lOT OÞ�1
. Because ðI þ lOT OÞ is a sparse symmetric matrix, Eq. (14) can be efficiently solved [15,32].

As indicated by Eq. (14), the output x̂ relies on the smoothing regularization parameter l. In order to set it correctly and
automatically, we resort to the method of generalized cross-validation (GCV) [10,28]. The GCV method chooses l that
minimizes the GCV score in the presence of weighted data as follows:
l ¼ arg min
l

ðGCVðlÞÞ; ð16Þ

GCVðlÞ 	 kG
1=2ðx̂� xÞk2

=ðn� nsÞ
ð1� trðHÞ=nÞ2

; ð17Þ
where n is the length of x and ns is the number of missing entries. It is to be noticed that trðHÞ is equal to
Pn

i¼1
1

1þlr2
i
, where r2

i

are the eigenvalues of OT O. Therefore, the GCV score is
GCVðlÞ ¼ n2Pn
i¼1

ffiffiffiffiffiffiffi
Gi;i

p
ðx̂i � xiÞ2

ðn� nsÞ n�
Pn

i¼1 1þ lr2
i

� ��1
� � : ð18Þ
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Till now, l and x̂ can be estimated based on Eqs. (16) and (14) iteratively. Suppose we get the optimal x̂i 2 Rn; i ¼ 1; . . . ; d

for each feature dimension, the smoothed X can be represented as bX ¼ ½x̂1; x̂2; . . . ; x̂d�T . Then, the mask matrix X can be
set as
Xi;j ¼
1 if Xij is observable and jXij � bXijj 6 h;

0 otherwise;

(
ð19Þ
where h is a threshold value which can be estimated from Fig. 5(a) and we set it to 6 cm in our experiments. Also, if a large
percentage of X is badly corrupted by noise, we can filter X using the smoothed bX as follows:
eXi;j ¼
Xij if jXij � bXijj 6 h;bXij otherwise:

(
ð20Þ
In summary, the proposed trust data detection method is listed in Algorithm 1.

Algorithm 1. Trust Data Detection Method
Input: x; h;
Output x̂;X;
1: Initialize:

i ¼ 0; x̂ð0Þ ¼ 0;
2: Repeat:

3: Calculate GðkÞ according to Eq. (12);
4: Find l according to Eq. (16);
5: Update x̂ðkþ1Þ according to Eq. (14)
6: untile convergence or reach the maximum iteration times.
7: Set X according to Eq. (19)
3.4. Optimization method

To solve the proposed TSMC model, we first introduce a slack matrix M ¼ Y to decouple the terms containing Y in Eq. (8),
and our model equivalent to:
min
Y;E;M

kYk� þ akX � Ek1 þ
b
2
kMOk2

F ; ð21Þ

s:t: Y þ E ¼ X; ð22Þ
Y ¼ M: ð23Þ
Indeed, the above low-rank matrix completion problem Eq. (21) can be efficiently solved via many algorithms such as the
accelerated proximal gradient (APG) algorithm [34,55], the SVT algorithm [7] and the augmented Lagrange multiplier
(ALM) algorithm [33]. In [33], the authors have compared all of these algorithms and demonstrated that the ALM algorithm
is much faster than the other methods and its precision is also higher [33]. More importantly, the ALM algorithm has a pleas-
ing Q-linear convergence speed. Therefore, we adopt the ALM algorithm to solve the above objective functions. And, the cor-
responding augmented Lagrange function is
J ðY ; E;M;Y1;Y2Þ ¼ kYk� þ akX � Ek1 þ
b
2
kMOk2

F þ hY1;X � Y � Ei þ k1

2
kX � Y � Ek2

F þ hY2;M � Yi þ k2

2
kY �Mk2

F : ð24Þ
The ALM algorithm solves Eq. (24) by alternately minimizing J w.r.t. Y ; E;M and maximizing it w.r.t. Y1 and Y2. Here we
denote the singular value shrinkage operator Ss [7,33,53] as
½DsðAÞ�ij ¼ sgnðAijÞðjAijj � sÞþ; ð25Þ

SsðBÞ ¼ UBDs
X

B

� �
VT

B; ð26Þ
where B ¼ UB
P

B VT
B is the SVD of B. Then the optimization method for solving Eq. (24) can be described in Algorithm 2. To

increase the readability of this paper for the casual reader and save the space, the derivation details of Algorithm 2 can be
found in Appendix A. For more details about the ALM algorithm, please refer to [33].
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Algorithm 2. The Optimization Method for TSMC
Input X;X;O, parameters a; b and c;
Output Y and E;
1: Initialize:

i ¼ 0;Yð0Þ1 ¼ Yð0Þ2 ¼ X=maxðkXk2; kXk1Þ;
Y ð0Þ ¼ 0; Eð0Þ ¼ 0;Mð0Þ ¼ 0,
k1 > 0; k2 > 0;

2: Repeat:

3: ZY  
YðiÞ1 þYðiÞ2 þkðiÞ1 ðX�EðiÞÞþkðiÞ2 MðiÞ

kðiÞ1 þkðiÞ2

4: Yðiþ1Þ  S
1= kðiÞ1 þkðiÞ2

� �ðZY Þ

5: Ze  1
kðiÞ1

YðiÞ1 þ X � Y ðiþ1Þ;

6: Eðiþ1Þ  X � Da=kðiÞ1
ðZeÞ þX � Ze

7: Mðiþ1Þ  ðkðiÞ2 Y ðiþ1Þ � Y ðiÞ2 ÞðbOOT þ kðiÞ2 IÞ
�1

8: Yðiþ1Þ
1  Y ðiÞ1 þ kðiÞ1 ðX � Yðiþ1Þ � Eðiþ1ÞÞ

9: Yðiþ1Þ
2  Y ðiÞ2 þ kðiÞ2 ðM

ðiþ1Þ � Yðiþ1ÞÞ
10: kðiþ1Þ

1  ckðiÞ1 ; k
ðiþ1Þ
2  ckðiÞ2 ; i iþ 1;

11: untile convergence or reach the maximum iteration times.
4. Experiments

4.1. Experiment setup

We have conducted several experiments on two mocap datasets to show the effectiveness of our method. The first one is
the CMU mocap dataset5 which contains a huge collection of mocap data. We pick out 12 motion sequences from 8 subjects6

including multiple types of actions such as walk, jump, run, boxing, and tai chi. Because data from CMU dataset are very clean
and complete [37], we used them in the synthetic experiments. In order to test for real applications, we captured 3 long motion
sequences using Motion Analysis Eagle-4 Digital RealTime System7 and these data consists of three daily actions (i.e., walk, run
and jump) and the total frame number is 3178. Different from the CMU dataset, our own captured motion sequences naturally
contains incomplete and noisy data as shown in Fig. 1.

Our method does not need the support of databases. To evaluate the performance of our method, we compare it with the
other four methods: Linear interpolation (Linear), Spline interpolation (Spline), Dynammo [30] and SVT [23]. The first two
are widely used in practice and the third and fourth are two state-of-the-art methods. For Linear and Spline, we combine
them with a Gaussian filter to handle the de-noising problem. In particular, we first use the Gaussian filter to remove the
noise and then use a simple threshold method to find out the clear entries, and finally apply these two interpolation methods
based on the detected entries to predict and correct the noise entries. This way, all methods can handle both of the two sub-
problems of the mocap data refinement problem and can make a fair comparison. To quantify the refined results, following
the work [4,19,30,47,51,58], the Root Mean Squared Error (RMSE) measurement is adopted:
5 http
6 The
7 http
RMSEðfi; f̂ iÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1
np
kfi � f̂ ik2

s
; ð27Þ
where fi is the imperfect pose, f̂i is the refined pose and np is the total number of imperfect entries (i.e., missing and noise
entries) in fi.

4.2. Evaluation on synthetic data

Since it is at most about 30–40% of the data is missing or noisy in practice [29], we fix the ratio of the missing or noisy
data to 30–40% to evaluate all the algorithms. Using the selected 12 motion sequences, we systematically simulate four clas-
sical situations to synthesize four different kinds of corrupted data, which are listed as follows.
://mocap.cs.cmu.edu/.
selected subjects include 2;5;6;9;10;12;13;49.
://en.souvr.com/product/200908/2530.html.

http://mocap.cs.cmu.edu/
http://en.souvr.com/product/200908/2530.html
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Fig. 6. Prediction results using different methods with 40% data are randomly missing.
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Randomly lose data. In this case, we randomly removed 40% data from each sequence, so that both the missing markers
number and missing time are random.
Regularly lose data. Different from the first case, we regularly removed about 30% data wherein the number of selected
missing markers is fixed to 10 for each incomplete frame and each selected markers miss 60 frames. Thus some long gaps
appear in the motion sequence under such condition.
Randomly corrupt data. To evaluate the de-noising capability, we randomly added gaussian noise (r ¼ 2) on 30% data for
each motion sequence.
Mixed corrupt data. In this case, we randomly remove 30% data and then corrupt 30% of the observed part data with
gaussian noise (r ¼ 2), so these data can be used to simultaneously evaluate the prediction and de-noising capability
of all the methods.

Note that we add noise on the original motion data recorded in the ASFnAMC8 files, so that when we convert the unit of
measurement into centimeter, we multiple the results by 5.6444.9 We use the above generated data to evaluate the prediction
8 http://research.cs.wisc.edu/graphics/Courses/cs-838-1999/Jeff/ASF-AMC.html.
9 http://mocap.cs.cmu.edu/faqs.php.

http://research.cs.wisc.edu/graphics/Courses/cs-838-1999/Jeff/ASF-AMC.html
http://mocap.cs.cmu.edu/faqs.php
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and de-noising capability of each algorithm. In order to investigate the proposed trust data detection method, we compare the
performance of TSMC with and without the step of trust data detection using the mixed corrupted data. The experimental re-
sults are shown in Figs. 6–10 one by one. From these evaluation results, we obtain the following conclusions:


 From Figs. 6–9, we can see that our method outperforms all competitors not only in predicting missing values but also in
de-noising most of the time. More importantly, the variance of RMSE obtained by our proposed TSMC is relatively small,
which means that the outcomes of our method are very stable. We believe the reason is that our model does not only
exploit the low-rank structure, but also the temporal stability property. Moreover, the trust data detection method boosts
the performance of our method as shown in Fig. 10.
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Fig. 7. Prediction results using different methods with about 30% data are regularly missing wherein the number of missing markers is 10 and missing time
is 60 frames in each time.
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Fig. 8. De-noising results using different methods with 30% data are randomly noised.
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 SVT [23] and our method are much more suitable to handle long sequences (e.g., boxing and tai chi sequences in Fig. 7(k)
and (i)) than short sequences (e.g., run and walk sequences in Fig. 7(a) and (b)).

 Linear and Spline methods are suitable for handling short time randomly missing data as Fig. 6. However they are unable

to handle long time data missing as Fig. 7 and the special case that the missing data appears at the end of a sequence as
Fig. 7(g)–(i).

 Dynammo [30] works very well in handling periodic actions such as walking and running. However, it will corrupt when

the noise increases or some data are randomly missing as Figs. 6 and 8.

4.3. Evaluation on real data

We also have evaluated all of these methods using our own captured three long sequences of mocap data. In these mocap
data, some markers are missing for a long period of time and what is more serious is that some missing markers appear at
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Fig. 9. Prediction and de-noising using different methods with 30% data are randomly missing and 30% of the observed data are corrupted by gaussian
noise (r ¼ 2).

Fig. 10. Performance comparison of our proposed TSMC algorithm with and without the step of trust data detection using mixed corrupted data.
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Fig. 11. Performance comparison results of different algorithms in our three motion sequences. In each subgraph, the first row is the raw incomplete poses
and the next rows are the refined results using Linear, Spline, SVT [23], Dynammo [30] and our method respectively. The red points represent the predicted
missing markers. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)
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the end. Fig. 11 shows the refinement results using different methods. As mentioned above, Spline and Linear methods are
only suitable for short-time data missing so they are easy to fail under such a condition. When the missing markers appear at
the end, both linear and spline method are unable to correctly predict the missing values as shown in Fig. 11. Some markers
predicted by these two methods deviate significantly from the correct positions due to lack of control points at the end of the
motion data. SVT [23] only exploits the low-rank structure of motion data and cannot handle the cases where markers are
missing for a long period of time. From the last two columns of each sub-image in Fig. 11, the shortcoming of SVT [23] is
shown that it is unable to correctly predict some missing values. Relatively speaking, we find that Dynammo [30] offers
the best performance for all the three motion sequences. However, when some markers are missing for a long period of time,
Dynammo [30] also fails to correctly predict the missing values. As shown in the last sub-image of Fig. 11(c), one head mar-
ker predicted by Dynammo [30] drifts a little away due to the reason that this marker is missing for a long period of time at
the end of the motion data. With exploiting both the low-rank structure and temporal stability of motion data, our method
works demonstrates the robustness on all three real sequences.

4.4. Parameter sensitivity and running time study

We investigate the parameter sensitivity of a and b in our model using a long sequence with multiple actions and tune
these two parameters from 10�2 to 103. From Fig. 12 we see that a and b are insensitive for a large range. Thus we simply set
a ¼ 1 and b ¼ 102 in our experiments. More importantly, our method is faster than Dynammo [30] and SVT [23] most of the
time as shown in Fig. 13. Meanwhile, one can notice that our method takes up more time than SVT [23] in two human activ-
ities: boxing and basketball. This may appear contradicting to our early claim that our method was much faster and robust
than SVT [23]. To demystify this inconsistency, we find that SVT [30] convergences too early in handling a large-scale imper-
fect human motion matrix in these two cases where the total frame numbers are 4840 and 4905. Therefore in Fig. 9(k) and
(f), SVT [30] is unable to correctly refine such a large-scale motion data, as opposed to our method, as shown in Fig. 9(k) and
(f), which demonstrates the robustness of our method.

5. Conclusion

Motion capture data typically consists of imperfection elements, such as noise and missing makers. Cleaning up the
imperfect data is known as the mocap data refinement. A lot of research efforts have been made to automate this process.
In this paper we have made the following contributions towards solving the problem: presented a new method making full
use of both the low-rank structure and temporal stability properties of the motion data and convert it into a matrix
completion problem; developed a fast optimization method derived from the ALM algorithm to solve the proposed model;
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presented an efficient trust data detection method to automate data processing and boost the computation performance.
Extensive experiments on both synthetic and real data have demonstrated the effectiveness of our proposed technique.

However, in the current development, the foot contact with the ground has not been taken into account, which may
sometimes lead to feet sliding. Fortunately, this issue has been well investigated [22,25,46]. Since human motion data con-
tains strong structural information, we would like to incorporate the human skeleton information into our proposed model
in the future. In addition, techniques such as key-frame reduction [35,40,41,59] and motion data segmentation techniques
[36,61] allow human motion data to be dealt with considering the specific features, which can be used with our framework
to further improve the speed of our algorithm.
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Appendix A. Derivation of the updating rules for our Algorithm 2

Before introducing how to derivate the updating rules for our Algorithm 2, we give an useful theorem from some liter-
atures [7,33,34,53] as follows.

Theorem 1. For any s P 0;A; B 2 Rm�n;X 2 f0;1gm�n;Ds and Ss defined as in Eqs. (25) and (26), we have
DsðBÞ ¼ arg min
A

skAk1 þ
1
2
kA� Bk2

F ; ðA:1Þ

SsðBÞ ¼ arg min
A

skAk� þ
1
2
kA� Bk2

F ; ðA:2Þ

bA ¼ arg min
A

skA �Xk1 þ
1
2
kA� Bk2

F ; ðA:3Þ
where bA ¼ X � DsðBÞ þX � B.
By the spirit of ALM, we rewrite Eq. (21) to its corresponding augmented Lagrange function:
J ðY ; E;M;Y1;Y2Þ ¼ kYk� þ akX � Ek1 þ
b
2
kMOk2

F þ hY1;X � Y � Ei þ k1

2
kX � Y � Ek2

F

þ hY2;M � Yi þ k2

2
kY �Mk2

F : ðA:4Þ
Given the initial setting Y ð0Þ1 ¼ Y ð0Þ2 ¼ X=maxðkXk2; kXk1Þ, Y ð0Þ ¼ 0; Eð0Þ ¼ 0 and Mð0Þ ¼ 0, the optimization problem Eq. (A.4)
can be solved via the following steps.

Computing Y ðiþ1Þ: Fix EðiÞ;MðiÞ, Y ðiÞ1 and Y ðiÞ2 , and minimize J ðY; EðiÞ;MðiÞ;Y ðiÞ1 ;Y
ðiÞ
2 Þ for Y ðiþ1Þ:
Y ðiþ1Þ ¼ arg min
Y

kYk� þ hY
ðiÞ
1 ;X � Y � EðiÞi þ k1

2
kX � Y � EðiÞk2

F þ hY
ðiÞ
2 ;M

ðiÞ � Yi þ k2

2
kY �MðiÞk2

F ; ðA:5Þ

)Y ðiþ1Þ ¼ arg min
Y

kYk� þ
k1 þ k2

2
Y � Y ðiÞ1 þ Y ðiÞ2 þ k1ðX � EðiÞÞ þ k2MðiÞ

k1 þ k2

�����
�����

2

F

: ðA:6Þ
Based on Eq. (A.2), we can solve the above Eq. (A.5) as
Y ðiþ1Þ ¼ S1=ðk1þk2ÞðZYÞ; ðA:7Þ
where ZY ¼
Y ðiÞ1 þ Y ðiÞ2 þ k1ðX � EðiÞÞ þ k2MðiÞ

k1 þ k2
.

Computing Eðiþ1Þ: Fix Y ðiþ1Þ;MðiÞ;Y ðiÞ1 and Y ðiÞ2 to compute Eðiþ1Þ as follows:
Eðiþ1Þ ¼ arg min
E

akX � Ek1 þ hY
ðiÞ
1 ;X � Y ðiþ1Þ � Ei þ k1

2
kX � Y ðiþ1Þ � Ek2

F ; ðA:8Þ

)Eðiþ1Þ ¼ arg min
E

akX � Ek1 þ
k1

2
E� 1

k1
Y ðiÞ1 þ X � Y ðiþ1Þ

� 	���� ����2

F

: ðA:9Þ
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and we get the updating rule for Eðiþ1Þ according to Eq. (A.3) as follows
Eðiþ1Þ ¼ X � Da=k1 ðZeÞ þ X̂ � Ze; ðA:10Þ
where Ze ¼ 1
k1

Y ðiÞ1 þ X � Y ðiþ1Þ.

Computing Mðiþ1Þ: Fix Y ðiþ1Þ; Eðiþ1Þ;Y ðiÞ1 and Y ðiÞ2 then calculate Mðiþ1Þ as follows:
Mðiþ1Þ ¼ arg min
M

b
2
kMOk2

F þ hY
ðiÞ
2 ;M � Y ðiþ1Þi þ k2

2
kY ðiþ1Þ �Mk2

F : ðA:11Þ
The derivative of the above Eq. (A.11) w.r.t. M is
@J
@M
¼ MðbOOT þ k2IÞ þ Y ðiÞ2 � k2Y ðiþ1Þ: ðA:12Þ
We can get the optimal value of M by setting Eq. (A.12) to zero and the optimal value of M is
Mðiþ1Þ ¼ k2Y ðiþ1Þ � Y ðiÞ2

� �
ðbOOT þ k2IÞ�1

: ðA:13Þ
Computing Y ðiþ1Þ
1 and Y ðiþ1Þ

2 : Fixing Y ðiþ1Þ; Eðiþ1Þ and Mðiþ1Þ, we calculate Y ðiþ1Þ
1 and Y ðiþ1Þ

2 as follows [6,7,33,53]:
Y ðiþ1Þ
1 ¼ Y ðiÞ1 þ k1ðX � Y ðiþ1Þ � Eðiþ1ÞÞ; ðA:14Þ

Y ðiþ1Þ
2 ¼ Y ðiÞ2 þ k2ðMðiþ1Þ � Y ðiþ1ÞÞ: ðA:15Þ
Similarly, we also update k1 and k2 with a positive scalar c > 1:
kðiþ1Þ
1 ¼ ckðiÞ1 ; kðiþ1Þ

2 ¼ ckðiÞ2 ; ðA:16Þ
so that fkðiÞ1 g and fkðiÞ2 g are two increasing sequences and the ALM will converge to the optimal solution as proved in [6,33].

Till now, we get all of the updating rules of Y ; E;M;Y1;Y2; k1 and k2. The optimization method is summarized in
Algorithm 2.

Appendix B. Supplementary material

Supplementary data associated with this article can be found, in the online version, at http://dx.doi.org/10.1016/
j.ins.2014.03.013.
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