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Impact of climate change on extinction risk of montane tree species 

Natalia Tejedor Garavito 

Abstract 

The potential impacts of climate change on many species worldwide remains unknown, 

especially in those tropical regions that are centers of endemism and are highly 

biodiverse. This thesis provides an insight into the extinction risk of selected tree species 

using different species distribution modelling techniques and reviewing the current 

conservation status on montane forest in the Tropical Andes. Starting with a global 

analysis, the potential impacts of climate change on montane ecoregions is investigated, 

by identifying those that are more vulnerable to the expected changes in temperature and 

precipitation, from global predictions under different climate change scenarios. It then 

gives an insight on the current and potential threats to biodiversity in the Andean region, 

including the identification of those that are most likely to be responsible for increasing 

the extinction risk of the species. With the use of the IUCN Red List Categories and 

Criteria, selected tree species were assessed to identify their extinction risk. Information 

on the species’ current distribution was collated and used to estimate their potential 

distribution under climate change, by using different modelling techniques. These results 

were used to reassess the species using the IUCN Red List and establish the changes in 

Red List Category. Lastly, it provides a discussion that integrates all the results obtained 

throughout the thesis, to explore the implications for conservation, in order to highlight 

the overriding importance of including threatened tree species to target conservation 

efforts in the region, while considering the uncertainties that surround predictions under 

climate change scenarios, modelling techniques and the use of the IUCN Red List. 
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1 Introduction 

1.1  Climate change and forest biodiversity 

Climate change is a global scale process but with diverse regional manifestations 

(Committee on Ecological Impacts of Climate Change 2008; IPCC 2007). In recent 

decades, evidence for anthropogenic climate change has accumulated. Global average 

surface temperature has risen some 0.75°C (1.3°F) since 1850 (Crowley 2000; IPCC 

2007); there has also been a decrease in extent of mountain glaciers and snow cover in 

both hemispheres (Kohler and Maselli 2009; Vuille et al. 2008). From 1900 to 2005, 

precipitation has increased significantly in eastern parts of South America (van der 

Hammen 1974), but has declined in the Sahel (Hulme 1992), the Mediterranean (Sarris et 

al. 2007), southern Africa (Nicholson 1993) and parts of southern Asia (Bradley et al. 

1987). Global atmospheric concentrations of carbon dioxide (CO2), methane (CH4) and 

nitrous oxide (N2O) have increased markedly (Matson and Vitousek 1990) and now far 

exceed pre-industrial values determined from ice cores spanning many thousands of years 

(Crutzen and Zimmermann 1991). Although the primary causes of natural climate change 

are suggested to be volcanic activity and fluctuations in solar radiation, much of the 

recent patterns have been attributed to anthropogenic factors (IPCC 2007; Parmesan et al. 

2013). 

The current rate of induced climate change is of increasing concern with regard to its 

potential effects on forest systems (Loehle and LeBlanc 1996; McCarty 2001), especially 

on tropical montane forests. Historically, the global forest biota has been affected by long 

term climatic fluctuations and has coped through evolutionary changes and the ability to 

survive and migrate to patches of favourable habitats (Peters 1990). These changes, 

however, occurred in landscapes that were not as fragmented as they are today and with 

less pressure from human activities (Secretariat of the Convention on Biological Diversity 

2006; Thomas et al. 2004; Walther et al. 2002). Evidence suggests that climate change 

affects forest ecosystems by altering the frequency, intensity, duration, and timing of 

rainfall, fire, drought, introduced species, insect and pathogen outbreaks, hurricanes, 

windstorms, icestorms and landslides. This influences forest composition, structure and 

phenology, the range and distribution of species, as well as the dynamics of communities 

and functional processes (Beniston 2003; Dale et al. 2001; Foster 2001; Walther 2004). 
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Climate change is shifting vegetation geographically (Rosenzweig 2007), altering the 

global location of biomes (Gonzalez et al. 2010). Understanding the impacts of climate 

change on plant and animal life requires the development of models that predict future 

range shifts in species, communities and ecosystems (Kappelle et al. 1999). Different 

approaches to modelling the impact of climate change on forests, such as Dynamic Global 

Vegetation Models (DGVMs), enable the identification of areas vulnerable to vegetation 

shifts and potential refugia (Gonzalez et al. 2010). Studies using DGVMs have projected 

the replacement of forests with drier biomes such as grasslands and scrub e.g. (Alo and 

Wang 2008b, 2008a; Jolly and Haxeltine 1997; Salazar and Nobre 2010; Scholze et al. 

2006), typically as a result of changes in temperature and precipitation. Vegetation often 

responds slowly to changes in environmental conditions (Gonzalez et al. 2010) and the 

lags between climate change and vegetation response are quite variable, reflecting 

limitations on seed dispersal, influence of dispersal barriers (e.g. topography), and slow 

rates of soil production and biomass accumulation (Gonzalez et al. 2010; Masek 2001). 

Montane forests  

Species can only live in geographical areas where they can tolerate the local temperatures, 

rainfall and snowfall regimes (Committee on Ecological Impacts of Climate Change 

2008). Mountain environments respond strongly even to small changes in temperature. 

Their vertical (altitudinal) dimension creates steep gradients of temperature, precipitation 

and solar radiation. Such topography-climate interactions create a multitude of 

microhabitats over short distances, each with varied micro-climates, ecological conditions 

and specific sets of organisms. For these reasons mountains are rich repositories of 

biodiversity, endemism and ecosystem services (Bubb et al. 2004; Chaverri-Polini 1998; 

Hamilton 1995; Körner 2004; Nogués-Bravo et al. 2006; Olson and Dinerstein 1997; 

Sharma et al. 2009). They also have tangible economic value as source of energy, 

tourism, forestry and crop and livestock production (Nogués-Bravo et al. 2006). 

 

Some montane forests, such as tropical cloud forests, are high on the list of the world’s 

most threatened ecosystems (Hamilton 1995; Ledo et al. 2009; Stadtmüller 1986; 

Wuethrich 1993). It is widely believed that the majority of those cloud forests that remain 

are small areas or remnant fragments of their original extent (Aldrich et al. 1997; Bubb et 
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al. 2004; Stadtmüller 1986; Wuethrich 1993). For example, it is estimated that 90 percent 

of the original cloud forests in the northern Andes have been lost, mainly as a result of 

deforestation, forest degradation and overexploitation (Hamilton 1995). Climatic and 

geographic factors, on a local or regional level, influence the formation and elevation of 

clouds, as well as their water content, thickness, and dynamics (Bruijnzeel 2002; 

Stadtmüller 1986). Tropical montane cloud forests have the unique additional 

characteristic of capturing water from the condensation of clouds and fog. Increasing 

global temperatures and changes in precipitation patterns will have a detrimental impact 

on the water balance of these forests (Sharma et al. 2009), raising the average altitude at 

the base of the orographic cloud bank (Kappelle et al. 1999), affecting the ecosystem 

integrity and water availability. This will perhaps result in a shift to higher latitudes and 

altitudes, but one of the key features of upper montane forests is that their scope for such 

migration is limited geographically (Kappelle et al. 1999; Kohler and Maselli 2009; 

Kreyling et al. 2010; Sharma et al. 2009; Urrutia and Vuille 2009). As a result, montane 

forests may be particularly vulnerable to climate change.  

Mountain zonation 

Biogeographically, mountains are stratified into elevational belts, each with a 

characteristic flora and fauna. The part below the natural climatic limit of trees (the 

treeline) is called the 'montane' belt (Körner 2004). Frahm and Gradstein (1991), who 

classified tropical mountain forests taking into consideration the bryophyte cover, identify 

five altitudinal belts: lowland forest, submontane forest, lower montane forest, upper 

montane forest, the subalpine forest. However, the description of the altitudinal zonation 

differs from place to place (Frahm and Gradstein 1991). 

Many of the classifications described above depend on a series of factors such as those 

described below. 

a) Local climatic conditions 

Determinant factors in the classification of mountain forests are the frequency of fog 

(Grubb and Whitmore 1966) and prevailing (trade) winds (Bubb et al. 2004; Jarvis and 

Mulligan 2011). Additional influential factors include: (a) precipitation, which tends to 

decrease with altitude (Jarvis and Mulligan 2011; Stevens 1992); (b) evapotranspiration; 

(c) temperature, which tends to decrease by around 0.6
o
C per 100 m rise (Bach et al. 
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2003; Richards 1952) and (d) solar radiation, which decreases with altitude, as there is an 

increase of cloud cover as the altitude increases that in turn affects evapotranspiration 

(Bach et al. 2003). 

b) Substrate 

Zonation may occur due to geological or geomorphological characteristics of the 

environment. The tree line may in some equatorial areas reach up to 4000 m a.s.l, whilst 

in others it is considerably lower, e.g. 3200 m a.s.l. in many places in the equatorial 

Andes and 3400 m on Mt Kinabalu, Borneo. The low tree lines in the Andes are usually 

considered the result of human influence (wood cutting, burning), however on Mt 

Kinabalu the upper limit of the forest is determined by the presence above 3400 m a.s.l. 

of a very steep, granitic slope unsuitable for tree growth (Frahm and Gradstein 1991). 

c) Latitude 

It is well known that vegetation belts decrease in altitude from the equator towards the 

tropics of Cancer and Capricorn, and beyond, towards the poles (Frahm and Gradstein 

1991). 

d) Massenerhebung effect 

This has been described as the raising of the limits of a given forest-type to higher 

altitudes on a large massif than on small, isolated or outlying peaks and coastal mountains 

(Grubb and Whitmore 1966; Richards 1952). The rate of decrease of temperature with 

altitude (the lapse rate) is not consistently different on the two types of mountain (Grubb 

and Whitmore 1966); in other words, this mass-elevation effect causes the occurrence of 

montane forest conditions at lower altitudes on narrow cordilleras and outlying ridges 

(Armenteras et al. 2003).  

Tropical Andes 

The Andes is the longest mountain chain on earth, stretching more than seven thousand 

linear kilometres across tropical, subtropical, and temperate latitudes. These mountains 

were shaped by local climatic and edaphic factors and by important past events, such as 

the Pleistocene glaciations, which affected their geology and climate, producing a wide 

variety of ecosystems with both latitudinal and altitudinal dimensions (Chaverri-Polini 

1998; Little 1981). On wet tropical mountains with increasing altitude, the changes in 



21 

 

forest structure are principally a decrease in forest stature, and a tendency for the leaves to 

become smaller, thicker, and harder ("xeromorphic") (Bruijnzeel and Veneklaas 1998). 

Climatic and geographic factors, on a local or regional level, may additionally influence 

formation and elevation of clouds, as well as their water content, thickness, and dynamics 

(Stadtmüller 1986). 

Andean forests, even near the tree line at around 3000 m, are more rich in species than are 

most temperate forests and this high species richness is due to the much greater endemism 

compared to other parts of the world (Gentry 1982, 1988; Olson and Dinerstein 1997), in 

which for example, epiphytes (bryophytes, lichens and filmy ferns) contribute largely to 

the overall floristic diversity (Barthlott et al. 2001; Benzing 1998; Wuethrich 1993). One 

of the reasons for such a high richness and endemism is the complexity and variety of 

microhabitats available. These microclimates on eastern slopes differ from the western 

slopes and are different again in the valleys of the interior (Walter 1985). The altitudinal 

belts on the western slopes become increasingly xerophytic toward the south. In some 

areas the presence of a warm season pushes the tree line limit up to 4000 m a.s.l., with 

scattered stands of Polylepis even at 4500 (4900) m a.s.l. (Walter 1985). According to 

Gentry (1995) Lauraceae is the most species-rich woody plant family in neotropical 

montane forests (above 1500 m a.s.l.), followed by Melastomataceae and Rubiaceae. 

Close to the timberline, Compositae and Ericaceae are most prominent. 

Montane forest in the tropical Andes are currently a major global conservation priority 

owing to their biological richness and high level of endemism (Bush et al. 2007; Olson 

and Dinerstein 1997). They are considered as an extremely fragile ecosystem playing an 

important hydrological and ecological role, and also are considered amongst the least 

known ecosystems in the tropics (Bubb et al. 2004; Gentry 1995; Kessler 2000; La Torre-

Cuadros et al. 2007; Stadtmüller 1986). Research is very scattered and is commonly 

undertaken at a national level e.g. (Armenteras et al. 2007; Grubb and Whitmore 1966; 

La Torre-Cuadros et al. 2007), and little research has been done at a regional level e.g. 

(Buytaert et al. 2010; Cuesta et al. 2009; Urrutia and Vuille 2009). It is believed that 

warming in the tropical Andes is likely to be of similar magnitude as in the Arctic, and 

with consequences that may be felt much sooner and which will affect a much larger 

population (Vuille et al. 2008), therefore research on the potential impacts of climate 

change is urgently needed.  
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1.2  Extinction risk 

Global climate change potentially threatens all ecosystems through temperature and 

rainfall changes, implying a shift in distribution of optimum habitats. This suggests the 

replacement of many of the narrow altitude range forests by lower altitude ecosystems. 

Also, species with low adaptability and/or dispersal ability could be faced with climate-

forced range shifts and low chances of finding habitats to colonize in the remaining 

natural vegetation (Walther et al. 2002). In addition, existing cloud forests can be lost 

altogether (Foster 2001; Kappelle et al. 1999; Walther et al. 2002). Climate driven 

changes in the forest structure can lead to a decline of late-successional species, 

increasing the dominance of early successional species, or leave poorly adapted plant 

communities that are vulnerable to invasion by species that can thrive in the area’s new 

climate (Dukes and Mooney 1999), acting as a major cause of extinctions in the near 

future (Malcolm et al. 2006; Schwartz et al. 2006; Thomas et al. 2004), especially on 

restricted-range endemic species (Thomas et al. 2004).  

Studies have shown that projected climate change scenarios will have a major impact on 

biodiversity (Golicher et al. 2008; Midgley et al. 2002; Thomas et al. 2004). Predictive 

models carried out in the Andes for the year 2020 and 2050 suggest that an estimated 

13% to 21% of the pluvial forests will be lost by the end of the studied period (Cuesta et 

al. 2009). There is a need to explore the potential impacts of such changes on extinction 

risk of species, as forests are already threatened by anthropogenic activities such as of 

deforestation, degradation and selective logging (Achard et al. 2002; Armenteras et al. 

2011; Carretero et al. 2003; Fundación Pachamama 2010; Hansen et al. 2010; Hansen et 

al. 2008; Ibisch 2002; Lambin et al. 2003; Rodríguez 2005). The IUCN (International 

Union for Conservation of Nature) Red List is a globally recognised assessment of the 

extinction risk of species, and has become one of the most effective sources of 

information for conservation planners (Lamoreux et al. 2003; Newton 2010; Rodrigues et 

al. 2006). Although the list includes over 12,000 plant species, the vast majority of the 

species have yet to be assessed (Newton and Oldfield 2008).  

1.3  Predicting the impact of climate change 

The quantification of species-environment relationships has gained importance as a tool 

to assist in decision-making related to nature conservation (Cayuela et al. 2006) and for 
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predicting the effects of global change on species distributions and the resulting 

extinction risks (Feeley and Silman 2010). The availability of data for some areas of the 

world, however, is still comparatively limited, restricting the parameterization of complex 

niche models (Feeley and Silman 2011; Golicher et al. 2008). In addition, a large number 

of tree species that are potentially threatened with extinction still await assessment using 

the IUCN Red List (Newton and Oldfield 2008). To date, the study of tropical forests in 

mountain areas has emphasized that they are globally significant areas of species richness 

and endemism (La Torre-Cuadros et al. 2007). While there have been reports outlining 

the extensive biological changes that are ongoing in montane environments because of 

climate change (Feeley and Silman 2009; Parmesan and Yohe 2003; Wuethrich 1993), 

few efforts have been made to assess the potential effects of climate change on montane 

forests at a global scale. Little research has been undertaken focusing on individual tree 

species and their potential extinction risk using internationally recognised approaches 

such as the IUCN Red List. Examples of efforts to model extinction risk due to climate 

change include: Schwartz et al.(2006) in the eastern United States, Feeley and Silman 

(2009, 2010) in Amazonian and Andean forests and Cuesta et al.(2009) in selected 

Andean forests. More accurate predictions of how species and ecosystems will respond to 

climate change are needed to assist in preparation for future conservation challenges 

(MacKinnon et al. 2008; McCarty 2001). Limitations in the data available and the 

insufficient studies performed in montane forests are the key gaps in the current 

knowledge that this research intends to address.  

Understanding the potential impacts of climate change on tree diversity in the montane 

forests, by using projections for future climate scenarios and species’ distributions, will 

provide an assessment of the extinction risk for many species that still remain unknown 

internationally, and will inform development of conservation priorities. It is 

acknowledged that uncertainty will arise when predicting extinction risk in relation to the 

proportionate reduction in area of forest, as stated by Thuiller et al. (2004), because 

species life history and environments change over time. In addition, uncertainty can arise 

through measurement errors and uncertainty in the status and distribution of species, 

which has previously been explored using fuzzy approaches such as RAMAS® Red List 

(Akçakaya and Root 2007) or the Bayesian network described by Newton (2010). 
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1.4  Thesis aims, objectives and structure 

Aims and objectives 

The aim of this research is to examine the extinction risk of montane tree species, with a 

particular focus on the potential impacts of climate change. This will be achieved using 

spatial analysis and modelling approaches at a range of scales. First, an investigation will 

be conducted at the global scale, to examine the potential impacts of climate change on 

montane forests occurring at different altitudes, with the aim of identifying those areas 

that are most vulnerable to climate change impacts. Second, an investigation will be 

performed at the regional scale, focusing on the tropical Andes, which will evaluate the 

risk of extinction of tree species present in montane forests. This will be achieved by 

analysing spatial data describing the potential change in climate with data on the spatial 

distribution of tree species, to determine potential changes in distribution patterns and 

associated extinction risk. The research will therefore increase understanding of the 

potential role of climate change as a cause of biodiversity loss. The overall objective of 

this research is to test the hypothesis that climate change is a major potential contributor 

to biodiversity loss in montane areas. This will be evaluated by testing the following 

hypotheses: 

Hypothesis 1: 

Montane forests at the global scale vary in their vulnerability to projected climate change, 

as defined by the IPCC scenarios. 

This hypothesis will be tested by addressing the following objective: 

a. To identify the relative vulnerability of different montane forest areas to potential 

climate change, by analysing the current climatic conditions associated with 

different montane forests at the global scale, and assessing how they might change 

under different projected climate scenarios (Chapter 2). 

Hypothesis 2: 

Projected changes in distributional range resulting from climate change will increase the 

extinction risk of many tree species, particularly those associated with high rainfall and 

high elevations, and those with restricted geographical ranges.  
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This hypothesis will be tested for one selected region (tropical Andes) by addressing the 

following objectives: 

a. Identify the current conservation status of montane forest in the tropical Andes by 

compiling the evidence available (Chapter 3). 

b. Identify the extinction risk for the different tree species that occur in montane 

forests in the tropical Andes by carrying out an IUCN Red List (RL) assessment, 

which is checked and validated using expert knowledge from within the region 

(Chapter 4). 

c. Investigate the potential impact of climate change on the extinction risk of selected 

tree species using different species distribution modelling techniques to support the 

RL assessment (Chapter 5). 

d. Analyse the sources of uncertainty and their impact on the assessment of RL status 

including: determination of the sample size required for reliable estimation of 

potential species distributions using species distribution modelling approaches 

(Chapter 4 and 5).  

1.5  Thesis structure 

Chapter 1 Introduction and literature review 

This comprises an expanded version of the text provided above. This chapter includes a 

comprehensive literature review of the impact of climate change on forests; the process of 

evaluating extinction risk including the IUCN Red List; methods for modelling climate 

change impacts; and the definition and classification of montane forests. The information 

collated in this chapter has been used to guide the data collection phase of the research 

and has been referred to throughout the thesis. 

Chapter 2 Vulnerability of montane forest to global climate change 

This chapter examines how climate change could potentially affect montane forests 

distributed worldwide. This has been achieved by analysing the current climatic 

conditions of montane forests and assessing how they might change under different 

climate scenarios. This part of the research is based on the analysis of spatial data to 

identify the distribution of montane forests, with their corresponding ecoregions, and by 

using georeferenced global climate sets to analyse the potential vulnerability of these 
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forests to potential climate change under two climate change scenarios (i.e. A2 and B2 

from the Intergovernmental Panel on Climate Change (IPCC)).  

Chapter 3 Evaluation of the conservation status of montane forest in the tropical 

Andes 

This chapter is an overview of the conservation status of tropical Andean montane forests 

and the challenges that they currently face. It also provides information on threats to 

biodiversity in the region, including the identification of those that are most likely to be 

responsible for increasing the extinction risk of species. This chapter also highlights the 

need for more information on the conservation status of species to identify future 

priorities for conservation in the region. This part of the work has been carried out with 

the collaboration of a network of experts from throughout the region. This has been 

published in Ecosistemas journal. 

Chapter 4 Red List and conservation planning of tree species in montane forests of 

the tropical Andes 

This chapter evaluates the implications of the IUCN Red List and the implementation of 

conservation planning for the montane forest tree species in the tropical Andes. This was 

completed in a series of steps. Firstly, a list of tree species present in the region was 

compiled, to form the basis for subsequent assessment. Secondly, the extinction risk of 

these was evaluated according to the IUCN Red List Categories and Criteria. This step 

was achieved by compiling spatial data describing the current distribution of each species. 

These data was used to produce a Minimum Convex Polygon (MCP) for each of the 

species present in the tropical Andes, as a measure of geographical range, which enabled 

the estimation of the species current Extent of Occurrence (EOO) and Area of Occupancy 

(AOO) in R (R version 2.14.2) (R Development Core Team 2011). These variables were 

used to identify a preliminary category of the IUCN Red List. This process was supported 

by the development of a network of experts within the region, who have provided a 

source of specialist knowledge for the validation of the assessments. 

Chapter 5 Modelling potential species distribution under climate change scenarios 

for the tropical Andes 

This was completed through an analysis of the potential species distribution under current 

and projected climatic variables using the spatial data compiled in Chapter 4. A range of 
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modelling approaches was explored to conduct the analyses, based on a review conducted 

to date. A reassessment of the species evaluation was then carried out using the IUCN 

Red List Categories and Criteria, in order to assess the influence of climate change on the 

species evaluation and potential implications for conservation.  

Chapter 6 Discussion 

This section discusses the implications of climate change on montane forests and the 

extinction risk of montane tree species. This section also integrates the results from the 

previous chapters and includes relevant conclusions and recommendations where 

possible. 
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2 Vulnerability of montane forest to global climate change 

2.1  Introduction 

Historically, climate change has had a great influence in shaping the distribution of 

biodiversity (Cárdenas et al. 2011; Luterbacher et al. 2004), and today it is 

recognised as one of most influential causes of change in global ecosystems 

(Parmesan 2006; Rosenzweig et al. 2008; Walther et al. 2002). Anthropogenic 

climate change is now an issue of major concern in relation to its potential impacts 

on biodiversity, as indicated by both projected and observed changes (Root et al. 

2003; Rosenzweig et al. 2008; Travis 2003). Changes such as shifts in ranges in 

plant and animal species (IPCC 2007; Rosenzweig et al. 2008) have already been 

observed in a range of ecosystems, which could have major implications for their 

future structure, function and composition (Gottfried et al. 2012; Parmesan and 

Yohe 2003; Sommer et al. 2010; Wu et al. 2010). 

Montane forests are widely recognised to be of high importance for biodiversity 

conservation. They are often characterised by a relatively high degree of endemism 

(Bruijnzeel et al. 2010; Bubb et al. 2004; Foster 2001; Kessler 2000), a wide variety 

of edaphic conditions and pronounced climate gradients over relatively small 

geographic areas (Jarvis and Mulligan 2011; Mulligan 2010). They are also 

important providers of benefits to humans, including water, energy, minerals, 

timber, fibre and agricultural products (Beniston 2003; Bruijnzeel et al. 2010; 

Tobón 2009). Some montane forests, such as tropical cloud forests, are among the 

world’s most threatened ecosystems (Hamilton 1995; Ledo et al. 2009; Stadtmüller 

1986; Wuethrich 1993); the majority of the cloud forests that remain are remnant 

fragments of their original extent (Aldrich et al. 1997; Bruijnzeel et al. 2010; Bubb 

et al. 2004; Wuethrich 1993). The main threats to these forests come from forest 

loss and degradation, caused by conversion of forest to agricultural land use, and 

over-exploitation of tree species for products such as timber and fuelwood. Hansen 

et al.(2010) estimated a global gross forest cover loss of 3.1% between 2000 and 

2005. For the same period Hansen et al.(2008) estimated that humid tropical forests 

had an area cleared of 27.2 ±2.28 million hectares, representing a further reduction 

of forest area to the estimated losses reported by Achard et al.(2002) between 1990 
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and 1997, where the annual forest area lost was of 5.8 ±1.4 million hectares, with a 

further 2.3 ±0.7 million hectares of forest visibly degraded. Furthermore, there are 

activities that pose additional threats to these forests, which include the impacts of 

fire, browsing animals, urban expansion, infrastructural development and mining, as 

is the case of the tropical Andes (Tejedor Garavito et al. 2012). The potential land 

use changes that result from climate change will interact with current land use 

change (Lambin et al. 2003) and could further increase the level threat to these 

forests. 

Montane forests are the focus of particular concern in relation to the potential 

impacts of anthropogenic climate change. Increasing global temperatures and 

changes in precipitation patterns could have a detrimental impact on their water 

balance (Anderson et al. 2011), for example by raising the average altitude of the 

base of the orographic cloud bank (Ruiz et al. 2008), reducing horizontal 

precipitation (Anderson et al. 2011), the amount of foggy days and relative 

humidity (Ruiz et al. 2008). Such changes could negatively affect water cycling and 

availability, with consequences for both plant and animal communities. Montane 

forests could be particularly at risk under projected climate change because many 

species that occur in these forests are characterised by relatively narrow climatic 

adaptation (Keenan et al. 2011). While species are generally expected to respond to 

climate change by range shifts towards higher latitudes and altitudes (Kappelle et 

al. 1999; Kohler and Maselli 2009; Kreyling et al. 2010; Sharma et al. 2009; 

Urrutia and Vuille 2009), there is less scope for such responses in species associated 

with mountain environments, particularly at higher elevations. Other potential 

impacts of climate change on montane forest ecosystems related to changes in 

precipitation include alteration of runoff and filtration patterns, which in turn would 

increase soil erosion (Anderson et al. 2011). Extreme climatic conditions could 

increase physiological stress, encourage changes in fecundity, phenology, trophic 

dynamics (including disease), species invasion and migration, and drive habitat 

loss, causing population declines or extinctions (Larsen et al. 2011). Furthermore, 

climate change could lead to expansion of the agricultural frontier to higher 

elevations, which could contribute to the further fragmentation and loss of forests 

(Anderson et al. 2011). 
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Despite such concerns, no systematic analysis of the potential impacts of climate 

change on montane forests has been conducted previously at the global scale. 

Recent research carried out on the impacts of climate change on ecoregions 

(Beaumont et al. 2011) and on disappearing climates (Williams et al. 2007) have 

shown that there are ecoregions and climates that are especially vulnerable to 

predicted changes in temperature and precipitation. However, such analyses do not 

explicitly consider montane forests, and do not take into consideration the current 

extent or distribution of such forests. The objective of this research is to identify the 

relative vulnerability of different montane forest areas to potential climate change, 

by analysing the current climatic conditions associated with different montane 

forests at the global scale, and assessing how they might change under different 

projected climate scenarios. 

2.2  Methods 

Globally, montane forests are primarily distributed on continuous mountain ridges 

and can be classified as extratropical, subtropical or tropical, based on the 

geographic region in which they occur. For the purpose of the research in this 

chapter, montane forest, at the global scale, is defined as an area with trees where 

the canopy cover is ≥10%, following Schmitt et al.(2009b) and FAO (2010), 

occurring ≥1000 m a.s.l. as defined by a Digital Elevation Model (DEM) used by 

WorldClim (Hijmans et al. 2005). This threshold allows the exclusion of most 

lowland vegetation (UNEP-WCMC [United Nations Environment Programme's 

World Conservation Monitoring Centre] 2002; Young 2006). Although some recent 

definitions of mountains, such as those of Körner et al. (2011) and UNEP-WCMC 

(2002), use characteristics such as ruggedness or slope to define them, such 

definitions would exclude most forests occurring in high elevation plateaux. The 

definitions that were adopted here would explicitly include such forests, which 

should be borne in mind when interpreting the results. The influence of the different 

definitions of montane forests on the results was explored by repeating the analyses 

using different thresholds of forest cover and mountain maps.  

To develop a forest distribution map the DEM was masked with a map of global 

forest cover (GFM) produced by Schmitt et al. (2009b). This is based on a satellite-
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derived 500 m resolution Moderate Resolution Imaging Spectroradiometer 

(MODIS) Vegetation Continuous Fields Dataset (MODIS05 VCF) for Percent Tree 

Cover for the year 2005 (Hansen et al. 2006), a Global Forest Cover map (UNEP-

WCMC 2000) and the Global Land Cover 2000 dataset (GLC 2000) produced by 

the European Commission Joint Research Centre (Bartholomé and Belward 2005). 

MODIS05 VCF is the most recent global dataset on tree cover but includes many 

areas of woody land cover other than natural forests, especially in the lower tree 

cover classes. Many of these areas, such as shrublands, tree plantations and some 

types of agro-ecosystems, were identified and excluded from the updated GFM by 

Schmitt et al. (2009b) using the GLC 2000 data. Thus, the GFM is primarily a map 

of relatively natural forest cover. 

Thresholds of 30% and 40% forest cover have previously been used to determine 

the distribution of montane forests in some previous studies (e.g. Bubb et al. 

(2004)). However, this threshold may underestimate forest extent. To avoid this 

problem, a threshold of 10% was adopted following (Schmitt et al. 2009a; Schmitt 

et al. 2009b) and the FAO, as employed in the most recent Global Forest 

Assessment (FAO 2010).  

Although a number of different approaches have been used to classify and map 

global vegetation, relatively few of these are primarily based on biogeographic 

information, rather than climate, and incorporate information on the distribution of 

both plant and animal species. Therefore, the ecoregion classification described by 

Olson and Dinerstein (1998) was used, which has been widely used to conduct 

global and regional conservation assessments. These ecoregions or biogeographic 

realms represent a development of those presented previously by Pielou (1979) and 

(Udvardy 1975), and were adapted as a result of extensive literature search and 

expert consultation. In this investigation the ecoregion classification presented by 

Olson et al. (2001) and the corresponding ‘Global 200’ priority ecoregions 

presented by Olson and Dinerstein (2002) were used to identify montane 

ecoregions. A digital (vector) layer of global ecoregions was accessed from: 

www.worldwildlife.org/science/data/item6373.html. This was then overlaid with 

the forest map and the DEM (> 1000 m) in a geographical information system (GIS) 
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enabling the total and the percentage of montane forest within each ecoregion to be 

calculated. GIS layers were transformed into Mollweide’s projection in order to 

carry out all area calculations. All GIS operations were conducted with ArcGIS v.10 

(© 1999-2006 ESRI Inc. California, USA). 

Current and future climatic data was obtained from the World Data Centre for 

Climate (http://cera.wdc-climate.de), which is a repository of different Global 

Circulation Models (GCM) that predict future climatic variables for different spatial 

and temporal scales. For this research climatic variables were chosen from among 

those believed to have a significant influence on the growth and distribution of tree 

species, namely mean temperature (K) and mean precipitation (mm d
-1

) (Attorre et 

al. 2011). The results of the Hadley Centre Coupled Model for two of the Special 

Report on Emission Scenarios (SRES), namely HADCM3 for scenario A2 and 

HADCM3 for scenario B2 were used. These were prepared for the 

Intergovernmental Panel on Climate Change (IPCC) Third Assessment Report 

(Cubasch et al. 2001), and are considered to be the most policy relevant of the 

scenarios that have been developed (Johns et al. 2003). These scenarios were 

designed to consider different trajectories of future economic development and 

energy use and perhaps this choice of scenarios is seen as conservative or optimistic 

as more fossil fuel intensive scenarios such as A1FI were excluded. The A2 

scenario represents a very heterogeneous world, where population continues to 

increase at a higher rate than the B2 scenario. Fragmented and slower economic 

growth and technological change characterises this scenario when compared to 

other scenarios (IPCC 2001; Joos et al. 2001; Table 2.1), this scenario is commonly 

used for ‘business as usual’ impact studies, as it projects a 3°C increase in surface 

air temperature by 2100 on average across model (Cubasch et al. 2001). The B2 

scenario depicts a world that emphasises local solutions to social, economic and 

environmental sustainability, where human population continues to increase with an 

intermediate level of economic development, and therefore a less energy-intensive 

scenario featuring a lower emission path, projecting a 2.2°C temperature increase 

on average across all models by 2100 (Cubasch et al. 2001). The data cover a 

period of 150 years from 1950 until 2100 at a scale of 3.75
o
 longitude and 2.5

o
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latitude, which is approximately 417 km x 278 km at the Equator, and 295 km x 278 

km at 45
o
 latitude. 

Global climate sets were analysed using the Climate Data Operators (CDO) 

software (available from: https://code.zmaw.de/projects/cdo), which are a collection 

of many operators for standard processing of climate and model outputs, allowing 

data splitting, averaging and statistical analysis. The data was split into two sets of 

50 years for comparison with a similar length period in the 21
st
 century. Therefore, 

three sets of data for the following periods were identified: 1951–2000 (baseline 

climate), 2001–2050 and 2051–2100, for temperature and precipitation variables. 

All data layers were interpolated to a common resolution of 0.0083° 

latitude/longitude by using a nearest neighbour method (command RESAMPLE in 

ArcGIS v10).  

Scenario Temperature 

range for 2090-

2099 (°C) 

Sea level rise 

for 2090-2099  

(m) 

Characteristics 

B1  1.1 – 2.9 0.18 – 0.38 

 More environmentally focused 

 Homogeneous world (globalisation) 

 Global environmental sustainability 

 Population growth peaks in mid-century and 

declines thereafter. 

A1T  1.4 – 3.8 0.20 – 0.45 

 Non-fossil energy sources 

 Rapid economic development 

 Homogeneous world (globalisation). 

B2 1.4 – 3.8 0.20 – 0.43 

 Local solutions to economic, social and 

environmental sustainability 

 Lower population growth than A2 

 Regionalisation (heterogeneous world). 

A1B  1.7 – 4.4 0.21 – 0.48 

 A balance across all sources of energy 

 Rapid economic development 

 More economic focus 

 Homogeneous world (globalisation). 

A2  2.0 – 5.4 0.23 – 0.51 
 Regionally oriented economic development.  

 Continuous population growth. 

 Regionalisation (heterogeneous world). 

A1FI  2.4 – 6.4 0.26 – 0.59 

 Fossil-intensive 

 Rapid economic development  

 More economic focus 

 Homogeneous world (globalisation). 

Table 2.1 Characteristics of climate change scenarios predicted for 2090-2099 

relative to 1980-1999. Adapted from Cubasch et al.(2001) and Solomon et 

al.(2007). 



42 

 

In order to assess the vulnerability of each ecoregion to climate change the 

standardized Manhattan Distance (M) was calculated, which is the distance between 

the mean (μ) values of both temperature and precipitation from projected values for 

2051–2100 (100 years) and the mean of the 1951–2000 baseline, standardized by 

the Standard Deviation (σ) of the baseline climate 

(Beaumont et al. 2011). Extreme climatic conditions for a specific ecoregion are 

considered here as those where M exceeds 2 SDs (σ) (i.e. M>2) departing from the 

mean (μ) of the 1951–2000 baseline period (Beaumont et al. 2011; Luterbacher et 

al. 2004). Differences for precipitation were expressed as ratios (future/baseline) for 

values that were different from zero. Once mean values were obtained for each 

ecoregion, these were ranked in descending order to identify the ecoregions with the 

largest M values. 

2.3  Results 

518 of the 867 ecoregions and 117 of the ‘Global 200’ ecoregions were identified, 

covering an estimated total area of 5,892,529 km
2
, in which montane forest was 

found to be present. However, 307 ecoregions were each found to contain an area 

<5% of forest cover and were therefore excluded from this analysis. This left a total 

of 211 ecoregions covering a total area of 5,291,398 km
2
. Of these, 141 are part of 

68 ecoregions that are considered to be global conservation priorities, as they 

belong to the ‘Global 200’ ecoregions defined by Olson and Dinerstein (2002). 

Africa was found to be the region with the largest forest area (1,744,600 km
2
) 

followed by Asia and North America (with 1,670,875 km
2
 and 1,287,313 km

2 

respectively). 

The ecoregions with the largest areas of montane forests are the Central Zambezian 

Miombo woodlands, in southern central Africa, followed by the Angolan Miombo 

woodlands, in Angola and Democratic Republic of Congo, and Sayan montane 

conifer forests, in the Siberian taiga and the Mongolian steppe (Figure 2.1). 

Percentage montane forest cover within ecoregions was found to be largest in the 

Angolan montane forest-grassland mosaic followed by the Australian Alps and 

Eastern Australia Temperate Forests (Figure 2.2). 
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These analyses were repeated using a threshold value of 30% tree cover rather than 

10%, to examine the sensitivity of results to this parameter. This would reduce the 

total area of montane forests to 4,397,664 km
2
, and a reduction in the number of 

ecoregions by 11, as the following would be excluded: from Australia, the Central 

Ranges xeric scrub; from Africa, West Sudanian savannah and Mediterranean 

acacia-argania dry woodlands and succulent thickets; from America, Central 

Canadian Shield forests, Gulf of California xeric scrub, Low Monte; from Asia, Al 

Hajar montane woodlands, Qilian Mountains subalpine meadows, Northwest 

Russian-Novaya Zemlya tundra, Red Sea Nubo-Sindian tropical desert and semi-

desert; and from Europe, Southeastern Iberian shrubs and woodlands. Also, from 

the remaining 507 ecoregions, 325 would possess an area <5% forest cover. 

When the mountain definition used by UNEP-WCMC (2002) was used as the basis 

of this analysis, which includes slope and local elevation range, the following 

ecoregions would be excluded: from America, Nebraska Sand Hills mixed 

grasslands and Llanos; from Asia, Alashan Plateau semi-desert, Tarim Basin 

deciduous forests and steppe; and from Australia, Carpentaria tropical savanna. 

Also, the of forest area in each ecoregion would be reduced, especially in areas with 

forested plateaux such as these ecoregions from Africa: Central Zambezian Miombo 

woodlands, Angolan Miombo woodlands, Southern Miombo woodlands, 

Zambezian Baikiaea woodlands and Northern Congolian forest-savanna mosaic. 

These would be reduced by up to 99.8% as in the case of Zambezian Baikiaea 

woodlands. 

Analyses of precipitation indicated that no ecoregions possessing montane forest 

would be projected to experience extreme conditions (i.e. M>2, Beaumont et al. 

2011) (Figures 2.3 and 2.4). However changes in precipitation below the 2 SD (σ) 

threshold were projected for many of the ecoregions (68.2% under scenario A2 and 

49.3% under scenario B2). For example, under scenario A2, some 23.7% of 

ecoregions would experience a decrease in precipitation whereas 44.6% would 

experience an increase in precipitation. Similarly, under scenario B2 49.3% of the 

ecoregions would experience change, 14.7% exhibiting a decrease and 34.6% an 

increase in precipitation. Analysis of temperature suggested that this might be a 
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more influential driver of change in montane forests (Figures 2.5 and 2.6). Under 

scenario B2, an increase in temperature is projected for all ecoregions, with 99.5% 

of the ecoregions experiencing extreme conditions (i.e. M>2, Beaumont et al. 

2011). Under scenario A2 all of the ecoregions will experience extreme conditions, 

some (such as Northeastern Congolian lowland forests) experiencing M values of 

>11 (Table 2.2 and Figure 2.6). The difference between the outputs of scenarios 

A2 and B2, for the projections of precipitation and temperature, suggests that the 

degree of change in precipitation between the two would be within ±1M (Figures 

2.7); with 63.7% ecoregions having the no difference in the projected M value; and 

for temperature the difference ranges from -0.0124M, in ecoregions such as Sierra 

de la Laguna pine-oak forests in Mexico, to 3.2M, in the Rwenzori-Virunga 

montane moorlands ecoregion in Central Africa (Figures 2.8). 

Some ecoregions with montane forest were projected to experience relatively high 

change in both temperature and precipitation, namely Eastern Java-Bali montane 

rain forests, Western Java montane rain forests, Northern Triangle subtropical 

forests and Northern Triangle temperate forests, all of which are in Asia. These are 

among the top 25 ecoregions with montane forest at the top of the ranking for both 

temperature and precipitation (Tables 2.2 and 2.3). 
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Figure 2.1 Area of montane forest in the ten ecoregions with highest values of 

forest cover.  

 

 

 

Figure 2.2 Percentage forest cover in the ten ecoregions with highest values of 

forest cover. 
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Figure 2.3 Vulnerability of montane forest to projected changes in precipitation. The map illustrates projection of precipitation under 

the A2 scenario from the HadCM3 model (CERA). Mapped values are Standardized Manhattan Distance (M), which is the distance 

between the mean (μ) values of precipitation from projected values for 2051–2100 (100 years) and the mean of the 1951–1990 

baseline, standardized by the SD (σ) of the baseline climate (for details, see text). 
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Figure 2.4 Vulnerability of montane forest to projected changes in precipitation. The map illustrates projection of precipitation 

under the B2 scenario from the HadCM3 model (CERA). Mapped values are Standardized Manhattan Distance (M), which is the 

distance between the mean (μ) values of precipitation from projected values for 2051–2100 (100 years) and the mean of the 1951–

1990 baseline, standardized by the SD (σ) of the baseline climate (for details, see text). 
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Figure 2.5 Vulnerability of montane forest to projected changes in temperature. The map illustrates projection of temperature under the 

A2 scenario from the HadCM3 model (CERA). Mapped values are Standardized Manhattan Distance (M), which is the distance between 

the mean (μ) values of temperature from projected values for 2051–2100 (100 years) and the mean of the 1951–1990 baseline, 

standardized by the SD (σ) of the baseline climate (for details, see text). 
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Figure 2.6 Vulnerability of montane forest to projected changes in temperature. The map illustrates projection of temperature under the B2 

scenario from the HadCM3 model (CERA). Mapped values are Standardized Manhattan Distance (M), which is the distance between the 

mean (μ) values of temperature from projected values for 2051–2100 (100 years) and the mean of the 1951–1990 baseline, standardized by the 

SD (σ) of the baseline climate (for details, see text). 
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Figure 2.7 Difference in impact of scenario A2 and scenario B2, based on the are Standardized Manhattan Distance (M), which is the 

distance between the mean (μ) values of precipitation from projected values for 2051–2100 (100 years) and the mean of the 1951–1990 

baseline, standardized by the SD (σ) of the baseline climate. 
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Figure 2.8 Difference in impact of scenario A2 and scenario B2, based on the Standardized Manhattan Distance (M), which is the 

distance between the mean (μ) values of temperature from projected values for 2051–2100 (100 years) and the mean of the 1951–

1990 baseline, standardized by the SD (σ) of the baseline climate. 
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ID Ecoregions Temperature 

change 2100 

A2 

Rank 

A2 

Temperature 

change 2100 

B2 

Rank 

B2 

30124 Northeastern 

Congolian lowland 

forests* 

11.07 1 7.87 1 

31013 Rwenzori-Virunga 

montane 

moorlands* 

10.90 2 7.71 2 

30101 Albertine Rift 

montane forests* 

10.21 3 7.29 3 

30721 Victoria Basin 

forest-savanna 

mosaic 

9.65 4 6.88 5 

30712 Northern 

Congolian forest-

savanna mosaic 

9.27 5 6.89 4 

40103 Borneo montane 

rain forests* 

9.15 6 6.63 10 

10105 Central Range 

montane rain 

forests* 

8.95 7 6.33 19 

10104 Buru rain forests 8.95 8 6.50 13 

10107 Huon Peninsula 

montane rain 

forests* 

8.93 9 6.82 8 

40144 Peninsular 

Malaysian montane 

rain forests* 

8.90 10 6.82 7 

40140 Northern Triangle 

subtropical forests* 

8.85 11 6.77 9 

40402 Northern Triangle 

temperate forests* 

8.77 12 6.87 6 

40112 Eastern Java-Bali 

montane rain 

forests 

8.69 13 6.57 11 

40304 Sumatran tropical 

pine forests* 

8.68 14 6.55 12 

31007 Ethiopian montane 

grasslands and 

woodlands* 

8.64 15 6.44 14 
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10125 Trobriand Islands 

rain forests 

8.58 16 6.37 16 

10127 Vogelkop montane 

rain forests* 

8.56 17 6.15 21 

30112 Ethiopian montane 

forests 

8.40 18 6.28 20 

11002 Central Range sub-

alpine grasslands* 

8.39 19 6.07 22 

40159 Sumatran montane 

rain forests* 

8.38 20 6.33 18 

40167 Western Java 

montane rain 

forests* 

8.36 21 6.39 15 

10124 Sulawesi montane 

rain forests* 

8.27 22 6.36 17 

41001 Kinabalu montane 

alpine meadows* 

8.10 23 5.81 31 

10120 Southeastern 

Papuan rain forests 

8.08 24 5.62 38 

10116 Northern New 

Guinea montane 

rain forests* 

8.08 24 6.06 23 

Table 2.2 List of the Andean ecoregions with montane forest that are most 

vulnerable to climate change, illustrating the top 25 ecoregions ranked according to 

the highest M values for projected temperature change under scenario A2. Those 

ecoregions that belong to the ‘Global 200’ (Olson and Dinerstein 2002) are 

indicated by an asterisk.  
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ID Ecoregions Precipitation 

change 2100 A2 

Rank 

A2 

Precipitation 

change 2100 B2 

Rank 

B2 

60169 Pantepui* -2.00 1 -1.50 1 

60124 Guianan Highlands moist 

forests* 

-2.00 1 -1.50 1 

51116 Ogilvie-MacKenzie alpine 

tundra* 

 1.50 3 1.50 1 

51111 Interior Yukon-Alaska alpine 

tundra* 

1.50 3 1.50 1 

50617 Yukon Interior dry forests*  1.50 3 1.50 1 

60175 Venezuelan Andes montane 

forests 

-1.50 3 -1.00 7 

61005 Cordillera de Merida paramo -1.50 3 -1.00 7 

30701 Angolan Miombo woodlands -1.50 3 -0.50 19 

30723 Western Congolian forest-

savanna mosaic 

-1.50 3 -0.50 19 

40140 Northern Triangle subtropical 

forests* 

 1.50 3  0.50 19 

40112 Eastern Java-Bali montane 

rain forests 

-1.00 11 -1.00 7 

40167 Western Java montane rain 

forests 

-1.00 11 -1.00 7 

30203 Zambezian Cryptosepalum 

dry forests 

-1.00 11 -1.00 7 

30724 Western Zambezian 

grasslands* 

-1.00 11 -1.00 7 

61007 Santa Marta paramo* -1.00 11 -1.00 7 

60305 Hispaniolan pine forests* -1.00 11 -0.50 19 

80433 Pyrenees conifer and mixed 

forests* 

-1.00 11 -0.50 19 

31001 Angolan montane forest-

grassland mosaic* 

-1.00 11 -0.50 19 

40402 Northern Triangle temperate 

forests* 

1.00 11 0.50 19 

80102 Yunnan Plateau subtropical 

evergreen forests* 

1.00 11 0.50 19 

40131 Mizoram-Manipur-Kachin 

rain forests 

1.00 11 0.50 19 
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40137 Northern Indochina 

subtropical forests 

1.00 11 0.50 19 

80516 Nujiang Langcang Gorge 

alpine conifer and mixed 

forests* 

1.00 11 0.00 105 

80512 Khangai Mountains conifer 

forests* 

1.00 11 0.00 105 

80414 Changbai Mountains mixed 

forests* 

1.00 11 0.00 105 

Table 2.3 List of the Andean ecoregions with montane forest that are most 

vulnerable to climate change, illustrating the top 25 ecoregions ranked according to 

the highest values of M for projected precipitation change under scenario A2. Those 

ecoregions that belong to the ‘Global 200’ (Olson and Dinerstein 2002) are 

indicated by an asterisk. 

2.4  Discussion 

These analyses show that montane forests are very likely to be affected by projected 

changes in climatic conditions, and particularly by increases in temperature. The 

results indicate that all montane forests are likely to be highly vulnerable to changes 

in temperature under scenario A2. Although up to 68% of montane forest 

ecoregions are expected to experience changes in precipitation according to the A2 

scenario, none exceeded the 2SD threshold. The results also suggest that in terms of 

temperature, Africa and Asia are the two continents with the most vulnerable 

montane forest ecoregions, whereas South America and Asia are the continents with 

montane forest ecoregions that will experience the largest changes in precipitation. 

Although precipitation changes are less evident than temperature changes in the 

analyses presented here, potential interactions between precipitation and 

temperature could lead to further changes in water balance (Fung et al. 2011; 

Pounds et al. 2006). 

It should be noted that an M value threshold of 2SD can perhaps best be viewed as 

an arbitrary threshold, which does not necessarily correspond with anticipated 

ecological impacts. However, a number of authors have demonstrated that 2SD can 

correspond to significant ecological impacts (Beaumont et al. 2011; Palmer and 

Raisanen 2002). This value was originally established as the deviation of baseline 
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climatic data for Europe between the years 1500 and 1900 (Luterbacher et al. 

2004), and from extreme climatic conditions such as the those experienced in 

Europe during the summer 2003, when temperatures increased by ~3.8°C, 

corresponding to an excess of up to 5 standard deviations (Schär et al. 2004). Schär 

et al. (2004) have shown that exceeding this threshold by 5SD, as experienced in 

Europe in 2003, ecosystems become vulnerable and changes in the basic 

performance become affected, such as reduction of primary productivity (Ciais et 

al. 2005).  

Many uncertainties are associated with broad-scale analyses such as that presented 

here, relating to the basic choice of procedures, evaluation metrics, time, scale, 

global climate models (GCM), emissions scenarios and the amount and character of 

the predictor variables themselves (Synes and Osborne 2011). Uncertainties in 

climate modelling are greater when predicting precipitation patterns, as aspects such 

as wind, clouds, precipitation regimes and small-scale processes cannot always be 

easily included at the global scale (Randall et al. 2007). No single analysis can 

capture all ecological risks associated with climate change (Williams et al. 2007), 

and using only two climate variables does not provide a complete indication of the 

projected likelihood of major impacts of climate change on ecosystems. However, 

over-fitting and variable redundancy can also become an area of concern as more 

predictor variables are included (Beaumont et al. 2005). So, although methods to 

assess the impacts of climate change vary considerably, a number of studies have 

suggested that climate change will lead to considerable declines in species survival 

and perhaps lead to mass extinction (Bellard et al. 2012). Although widespread 

impacts of climate change on montane forest were projected in the current analysis, 

intra-annual or inter-annual climate variability was not explicitly examined, which 

may mean that such impacts were underestimated. The current analysis was also 

limited by the fact that a number of variables that determine the distribution of 

montane forests were not analysed here, including relative humidity (Foster 2010), 

length of the dry season (Aiba et al. 2010) and mean annual light intensity (Rüger et 

al. 2010). 



57 

 

Studies such as that of Williams et al. (2007), that employed the standardized 

Euclidean distance (SED) to calculate the dissimilarities between 20th- and 21st-

century climates for climatic models for A2 and B1 scenarios for mean surface air 

temperature and precipitation for June–August and December–February, 

corroborates the fact that projections of climate change will put climates, 

particularly those occurring in mountains, at risk of disappearing where high SED 

was found. In particular, they identified the climates occurring in montane 

ecosystems such as those on the Colombian and Peruvian Andes, in Central 

America, the African Rift Mountains, the Zambian and Angolan Highlands, the 

Cape Province of South Africa, southeast Australia, portions of the Himalayas, and 

the Indonesian and Philippine Archipelagos. Many of these areas were also 

identified as highly vulnerable in this assessment, as is the case of the Albertine Rift 

montane forests ecoregion, which had an M value for temperature of 10.21 under 

scenario A2 and 7.29 under scenario B2 (Table 2.1).  

Of the 211 ecoregions considered in this study, 141 of them are considered a global 

conservation priority (the Global 200) and 151 ecoregions are part of 27 

biodiversity ‘hotspots’ identified by Myers et al. (2000). Ecoregions scoring high in 

the ranks for vulnerability to climate change for being associated with the some of 

the largest M values (i.e. >9) under projections of the scenario A2 for temperature, 

such as Rwenzori-Virunga montane moorlands and Albertine Rift montane forests, 

are also part of the Eastern Afromontane biodiversity ‘hotspot’. The projected 

climate change impacts documented here could therefore have significant 

implications for conservation of biodiversity at the global scale.  

Generally the direct effects of climate change on forests are related to phenology 

and physiological processes that affect shifts in the boundary of the geographical 

range and population dynamics of tree species (Abbott and Le Maitre 2010). These 

shifts may be more likely to occur in montane forests as many of the tree species 

occurring in these forests do not have long range dispersal; are situated at the edge 

of their ranges; are geographically localised; are genetically impoverished; are slow 

reproducers; or are highly specialised (Price and Neville 2003). Prolonged high 

temperatures may expose species to increased water stress, leading to increased tree 
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mortality (Allen et al. 2010) and the reduction of population sizes, threatening those 

species with few and small populations (Abbott and Le Maitre 2010). Increasing 

temperature increases evaporation, which in turn increases water loss through 

transpiration, increasing the risk of hydraulic failure in specific tree species (Allen 

et al. 2010). Also the carbon storage of trees is affected as the carbohydrate 

consumption required for respiration is closely associated with temperature (Norby 

et al. 1992); root mortality also increases as soil temperature rises (Majdi and 

öhrvik 2004).  

The potential impact of increased temperatures could also lead to widespread 

increases in the extent and frequency of vegetation die-off (Adams et al. 2009). The 

occurrence and frequency of fires will not only be increased by high temperatures 

but also by elevated CO2 concentration, as woody tissue is generated at a higher 

rate. As a result, dry woody tissue and leaf litter will increase, leading to increased 

occurrence of fires, which in turn will increase the abundance of those species that 

are tolerant of fire (Abbott and Le Maitre 2010) and limit the persistence of plant 

populations dependent on seed banks (Ooi 2012) or have thinner protective layers 

of bark (Cochrane 2003). Tree mortality could increase by changes in temperature 

alone independently of other changes in the ecosystem water balance (Adams et al. 

2009), as increases in temperature will be directly related to heat exhaustion and the 

inhibition of the abilities of the species to cope with the heat. Carbon storage in 

soils will also be likely to change due to fires, particularly in tropical montane 

forests, Montane forest peat soils are reserves of terrestrial organic carbon, 

maintained by conditions occurring in montane ecosystems such as cold 

temperatures, slow decomposition, high humidity, and large litterfall (Román-

Cuesta et al. 2011). Fires directly release a large proportion of carbon into the 

atmosphere. Furthermore, carbon losses continue to appear through time as a result 

of the decay process from the biomass of killed trees (Cochrane 2003). Potential 

carbon recovery would take place after a fire as species resprout, but many of the 

species may never recover as are not adapted to withstand fire and have a slow 

recovery rate (Román-Cuesta et al. 2011).  
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Changes in climate could potentially interact with other factors influencing montane 

forest. Montane forests could be particularly vulnerable to invasion by non-native 

species (Pauchard et al. 2009), and interactions between climate change and species 

invasion could increase the likelihood of the establishment of these species, by 

enhancing their reproductive means, their survival and their competitive power 

against the native species (Thomas et al. 2004; Thuiller 2007). Increased habitat 

loss has been forecasted for cooler environments, such as those present in montane 

forests, as species niches in colder regions show a linear relationship with 

temperature gradients (Thuiller et al. 2005). Although vegetation in montane 

ecosystems will be constrained by effects of temperature, there are also other 

factors that will influence their distribution such as radiation, wind, storminess and 

water availability (Beniston 2003), which could also influence their vulnerability to 

invasive species.  

In addition to affecting trees directly, climate change could also affect the 

communities of other species associated with forest habitats. Climate change may 

be detrimental for tropical organisms, particularly for those animals that are 

physiologically specialised with respect to temperature and have poor acclimation 

capacity. Many such species are particularly vulnerable as they rely on constant 

shade and are not adapted to warmer temperatures, and may display few 

behavioural options to evade increases in temperature (Tewksbury et al. 2008). 

Birds and mammals that are highland specialists might be particularly vulnerable to 

global warming because of their small geographic ranges and high energetic and 

area requirements (Laurance et al. 2011). Also, ectothermic vertebrates such as 

amphibians and reptiles that have high species richness may also be vulnerable to 

increases in temperature (Laurance et al. 2011). Pounds et al. (2006) also concluded 

that the potential outbreak of pathogens that are implicated with the extinction of 

amphibians will be encouraged by warmer conditions.  

Although most of the consequences mentioned above reflect the potential negative 

impacts of climate change, interactions between temperature, precipitation and 

seasonality can lead to the creation of novel climates (Williams et al. 2007), where 

the species may be able to migrate to and thrive in, for example in cool and dry 
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temperate regions which will be likely to experience increased moisture availability 

are expected to exhibit increases in richness (Holzinger et al. 2008), but this depend 

on the dispersal capability and the patchiness of the species in the landscape 

(Menéndez et al. 2006). 

2.5  Conclusions and conservation implications 

These results show that montane forests are at high risk of extinction under 

projected climate change scenarios. Climate change is now regarded as a current 

threat to biodiversity along with deforestation, land use change, habitat 

fragmentation, pollution and invasion by non-native plant and animal species 

(Thuiller 2007). The potential migration and adaptation of species will not only be 

jeopardised by dispersal barriers but by the lack of suitable habitats which they 

could occupy, as a result of climate change (Williams et al. 2007). Montane forest 

species could potentially have no place to go. 

Some of the ecoregions in this study are characterised by having a naturally 

occurring low canopy cover and fragmented forest structures. Others are meant to 

have a high canopy cover but may have shown low canopy cover in this assessment, 

due to the consequences of human activities mentioned above. This may imply that 

these latter ecoregions may be further affected by the potential effects of climate 

change. Therefore, the relative impact of climate change on montane forests is 

likely to vary in relation to geographic location and the forest composition, as well 

as with the intensity of land use change. 

As suggested by Scheffer et al. (2001), in order to reduce the risk of changes in the 

state of ecosystems in the face of increasing climate change, it is necessary to build 

and maintain resilience by addressing the gradual changes that affect ecosystem 

stability, such as land use, nutrient stocks, soil properties and biomass of long-lived 

organisms. This can potentially be achieved by designating new protected areas and 

undertaking low-level habitat management to reinforce species’ intrinsic dispersal 

and migration mechanisms (Dawson et al. 2011). The encouragement and 

participation of schemes such REDD+, which encourages afforestation and 
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diversification with locally valued tree species, could be of value to encourage 

forest protection at the same time as providing local developments for humans. 
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3 Evaluation of the conservation status of montane forest 

in the tropical Andes 

3.1  Abstract 

The tropical Andes is a unique region with high habitat diversity, resulting from 

broad altitudinal and latitudinal gradients. Andean montane forests are currently a 

major global conservation priority owing to their high species richness and high 

level of endemism, and are considered one of the least known ecosystems in the 

tropics. These forests are fundamental for the provision of a variety of ecosystem 

services, including the regulation of regional climate and the capture and storage of 

carbon. This article provides an overview of the conservation status of tropical 

Andean montane forests and the challenges it entails. It also provides information 

on threats, including the identification of those that are most likely to be responsible 

for increasing the extinction risk of species. It highlights the need for more 

information on the conservation status of species to identify future priorities for 

conservation in the region. The recent collaborative initiative "Red List and 

conservation planning for montane tree species of the tropical Andes," with 

delegates from several countries in the region, will provide a solid basis for the 

development of policies and management responses aimed to reduce deforestation 

and species loss in these forests, including actions to promote the creation of 

protected areas, forest restoration and sustainable forest management. 

3.2  Introduction 

 Montane forests in the tropical Andes are a global conservation priority, because of 

their high levels of biodiversity and endemism (Bush et al. 2007; Olson and 

Dinerstein 1997; Pennington et al. 2010), and their important role in providing 

different ecosystem services to the region (Anderson et al. 2011; Balvanera 2012). 

Furthermore, these ecosystems are considered among the least known and most 

threatened in the tropics (Ataroff and Rada 2000; Bubb et al. 2004; Gentry 1995; 

Kessler 2000; Price et al. 2011; Stadtmüller 1986), associated with high 

deforestation rates, mainly as a result of conversion to agriculture and logging. 

Research is sparse, often carried out at national level (Armenteras et al. 2007; 
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Grubb and Whitmore 1966; La Torre-Cuadros et al. 2007), with few studies 

undertaken at the regional level (Cuesta et al. 2009; Herzog et al. 2011). This 

document provides an overview of the current state of knowledge of montane forest 

in the tropical Andes, and the importance of biodiversity at regional and global 

scales, together with identification of the main threats to which biodiversity is 

subjected in the region. The paper also highlights the need for more information on 

the conservation status of species, to identify future conservation priorities in the 

region. 

3.3  Distribution and status of knowledge of montane forests 

The Andes are the longest mountain chain in the world, stretching over seven 

thousand linear kilometres through tropical, subtropical and temperate latitudes. 

This is a unique region with multiple ecosystems types, reflecting high species and 

ecosystem diversity as a result of large altitudinal and latitudinal gradients (Josse et 

al. 2003; Young et al. 2002; Young 2007). The tropical Andes cover an area of 

approximately 1,542,644 km
2
 in Colombia, Venezuela, Ecuador, Peru, Bolivia, part 

of northern Argentina and Chile, and contain most of the montane forests of the 

Andean region (Josse et al. 2009; Young et al. 2002). In Venezuela, the Andes 

extend from the depression of Barquisimeto in Lara state, to the state of Tachira on 

the border with Colombia. In Colombia the Andes are divided into three ranges 

(Oriental, Central and Occidental), corresponding to 24.52% of the area of the 

country, 60.47% of which are ecosystems that have been transformed by human 

activity (Cabrera and Ramírez 2007; Rodríguez et al. 2006). Throughout Ecuador, 

the Andes consists of two parallel mountain ranges (Occidental and Oriental or 

Real) and lose altitude as they cross Peru until the Huancabamba depression, where 

the elevation of the Andes again increases, forming the Cordillera Occidental and 

Central until Junin. Further south, these converge again as the main Andean chain 

extends into Chile and Argentina (Josse et al. 2009). In Bolivia, the Andes have two 

chains: Occidental and Oriental.  

The term forest is defined here as an area with trees where the canopy cover is 10% 

or more, following Schmitt et al. (2009b). Montane forests of the tropical Andes 

typically have very dense vegetation, with tree heights between 10 and 35 m, often 
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with abundant lichens and mosses. Seasonal forests have species adapted for 3 to 5 

months of drought (Josse et al. 2009). Montane forests comprise two major 

landscapes recognized in the North and Centre of the Andes by Josse et al. (2009): 

cloud forests and seasonal forests, which are each characterized by the presence of 

multiple ecosystems types, mostly rainforest and/or pluviseasonal forest. Montane 

forests are also distributed among three of the five phytoregions specified by Josse 

et al. (2009): the Northern Andes, the Yungas and Bolivian-Tucuman forests, which 

differ in their floristic and biogeographic characteristics. For example the Yungas 

are biogeographically similar to the forest formations of Peru but are very different 

from the Bolivian-Tucuman forests of the eastern slopes of the region (Ibisch et al. 

2004), which are also known as las Yungas (Cabrera and Willink 1973). Within 

these three phytoregions there is a wide variety of forested ecological communities 

as shown in Table 3.1. The montane forests of the tropical Andes reach their 

southernmost limit in the Northwest of Argentina (22°- 29° S), located above 1,500 

m a.s.l. and occupying about 2.1 million ha in the country. 

The main montane forest ecoregions in the tropical Andes, according to Olson et al. 

(2001) are: Bolivian Yungas, Cauca Valley montane forests, Cordillera Oriental 

montane forests, Cordillera Real Oriental montane forests, Magdalena Valley 

montane forests, Northwestern Andean montane forests, Peruvian Yungas, Southern 

Andean Yungas and Venezuelan Andes montane forests (Figure 3.1). The threshold 

elevation of montane forests varies geographically. In the high mountains of the 

interior this transition typically occurs at an altitude of 1200-1500 m a.s.l., but it can 

occur at much lower altitudes (Bruijnzeel 2002). The constant moisture on both 

external sides of the Andes is due to winds from the Pacific Ocean and the Atlantic, 

while on internal slopes, the bimodal patterns that characterize the wet-dry inter-

Andean valleys is attributable to the rain shadow effect (Kattan et al. 2004) and 

daily cycles of atmospheric circulation (Killeen et al. 2007b). 
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Northern Andes Central Andes Southern 

Andes del Norte Bolivian-Tucuman Yungas 

Eastern sub-Andean ridge 

montane pluvial forest  

Bolivian-Tucuman upper 

montane seasonal evergreen 

forest 

Yungas upper montane 

seasonal evergreen forest 

Northern Andes upper 

montane evergreen forest 

Bolivian-Tucuman inter-

Andean foothill wash 

woodland 

Yungas upper montane 

pluvial forest 

Northern Andes upper 

montane Polylepis pluvial 

forest  

Bolivian-Tucuman montane 

Alder forest 

Yungas ridge seasonal 

evergreen dwarf forest 

Cordillera del Cóndor lower 

montane pluvial forest 

Bolivian-Tucuman montane 

Podocarpus forest 

Yungas lower montane 

seasonal evergreen forest 

Northern Andes lower 

montane pluvial forest  

Bolivian-Tucuman montane 

semideciduous forest 

Northern Yungas lower 

montane semideciduous 

forest 

Northern Andes lower 

montane seasonal evergreen 

forest 

Bolivian-Tucuman inter-

Andean foothill riparian 

forest 

Southern Yungas lower 

montane semideciduous 

forest 

Northern Andes lower 

montane  

semideciduous forest 

Transitional sub-Andean 

Bolivian-Tucuman Yungas 

forest 

Southern Yungas lower 

montane xeric forest 

Eastern sub-Andean ridge 

montane pluvial forest  

Sub-Andean Bolivian-

Tucuman moist forest 

Yungas upper montane 

Polylepis pluvial forest 

Northern Andes montane 

pluvial forest 

Lower sub-Andean 

Bolivian-Tucuman 

semideciduous forest 

Yungas upper montane 

Polylepis seasonal 

evergreen forest 

Northern Andes montane 

seasonal evergreen forest  

Upper sub-Andean 

Bolivian-Tucuman 

semideciduous forest 

High Andean Yungas 

Polylepis pluvial forest 

Northern Andes foothill 

semideciduous forest  

Bolivian-Tucuman dry 

montane riparian forest 

Yungas montane pluvial 

forest 

Sub-Andean transitional 

forest of the Llanos del 

Orinoco 

 Yungas montane seasonal 

evergreen forest 

Cordillera del Condor 

sandstone plateau pluvial 

forest 

 Yungas montane 

semideciduous forest 

Andean lowland forests and 

shrublands paramunos 

 Yungas lower montane 

pluvial (palm dominated) 

forest 

Premontane rain forest of 

the Choco-Darien 

  

Table 3.1 Examples of ecological communities occurring in the humid and pluvi-

seasonal forests of northern and central Andes. Adapted from Josse et al. (2011). 

Argentinean forests are excluded. 
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Figure 3.1 Montane forest in the Andean region with more than 10% canopy cover 

in 2005, as identified by MODIS imagery (Schmitt et al. 2009a) limited to altitudes 

≥ 1,500 m a.s.l., and the different ecoregions present in the area (Olson et al. 2001) 

(see ‘Legend’ on Figure). 

  



78 

 

3.4  Importance of biodiversity 

Montane forests of the tropical Andes contain the largest concentration of species 

with restricted distribution in South America (Dinerstein et al. 1995; Latta et al. 

2011), which is manifested in the high number of endemic species of fauna and 

flora (Jørgensen 2011; Myers et al. 2000; WWF and IUCN 1997). Birds (Fjeldså 

and Irestedt 2009; Latta et al. 2011), mammals (Grenyer et al. 2006), amphibians 

(Grenyer et al. 2006), insects (Brehm et al. 2005), bryophytes (Churchill 1996, 

2009) and vascular plants (Brooks et al. 2002; Joppa et al. 2013; Kier et al. 2005; 

Myers et al. 2000; Pennington et al. 2010) are each characterised by high levels of 

species richness and endemism (Table 3.2). This exceptionally rich biodiversity has 

been attributed to three m0061jor historical factors: 1) the lifting of the Andean 

ridges in a complex series of orogenic processes, 2) the connection with North 

America through the Isthmus of Panama, which promoted biotic exchange, and 3) 

climatic fluctuations during the Pleistocene, which led to fragmentation and 

isolation of populations, with later events of speciation and radiation (Hughes and 

Eastwood 2006). 

Secies Plants Mammals Birds Reptiles Amphibians Total 

Total  45000 414 1666 479 830 48389 

Total endemics 20000 68 677 218 604 21567 

Table 3.2 Estimated number of species within the "hotspot" of the tropical Andes 

identified by Myers et al. (2000). This "hotspot" includes all ecosystems of the 

Andes: paramos, puna, grasslands, montane forests and dry forests. 

Collectively, the montane forests of the tropical Andes are considered to be global 

conservation priorities, both as 'hotspots' of global biodiversity (Myers et al. 2000) 

and as priority ecoregions (Olson and Dinerstein 1997). The tropical Andes contain 

has been identified as a priority for the conservation of birds, defined in terms of 

species richness, threat and endemism (Orme et al. 2005). These forests also are 

considered as a Centre of Plant Diversity (Davis et al. 1997). As shown in Table 

3.2, more than 20,000 plant species are believed to be endemic to the tropical 

Andes, and although efforts are continuing to produce a complete checklist of plant 

species (e.g León et al. 2006), there are still many species that remain undescribed 
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(Honorio and Reynel 2011). Knowledge gaps are substantial, even at a basic 

taxonomic level. Interactions between species and their contribution to ecosystem 

functioning have been little explored in the region. Factors determining 

vulnerability, such as population density, biological, ecological and physiological 

needs are poorly understood (Tiessen 2011). Although a number of research 

initiatives conducted in individual countries have enabled the development of 

knowledge of these forests in terms of the composition of their flora and fauna, in 

terms of dynamics (e.g. impacts of human disturbance and climate change) they are 

less known and there are still many gaps to fill. Therefore the montane forests of the 

tropical Andes are still considered among the least known ecosystems in the tropics 

(Ataroff and Rada 2000; Bubb et al. 2004; Gentry 1995; Kessler 2000; Stadtmüller 

1986). Particular conservation attention has been paid to cloud forests, which 

represent a subset of montane forests occurring in sites of exceptional humidity, 

associated with high cloud cover. In general, most of the cloud forests that still exist 

are small areas or remnants (Aldrich et al. 1997; Bubb et al. 2004; Wuethrich 

1993). It is estimated that a large part of the cloud forests in the northern Andes 

have been lost (Hamilton 1995; WWF and IUCN 1997) as a result of anthropogenic 

activity. Other specific forest types such as those of Polylepis spp. are also 

considered to be highly threatened; 15 species of this genus have been classified as 

Vulnerable under the IUCN Red List criteria (Jameson and Ramsay 2007), and 

Polylepis forests also contains several species of birds that are threatened 

worldwide.  

3.5  Threats and impacts 

Several factors have contributed to the loss and degradation of these forests, which 

continue to be subjected to processes of exploitation, colonization, deforestation, 

fragmentation and resource extraction. Agricultural expansion, opening of new 

roads, lack of planning in mining and oil extraction, the establishment of illicit 

crops (Dávalos et al. 2011), social inequality (poverty), population growth and new 

settlements, have all contributed to their loss. One of the principal threats to Andean 

forests is deforestation, which is attributable to the complex interaction of different 
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social, cultural, political, technological, economic and ecological factors (Geist and 

Lambin 2002) that occur in the region. 

In Colombia, between 1985 and 2005 there was a change in forest cover in the 

montane forests from 7,335,125 to 6,405,591 ha (Armenteras et al. 2011), 

representing an annual deforestation rate of 0.63%, which is higher than reported 

nationally (Table 3.3). In Venezuela, estimates of deforestation have primarily 

focused on lowland forests; however, it is estimated that by 2005 the cloud forests 

had been reduced by 32% (Rodríguez 2005). In Ecuador, although there are no 

specific figures available for montane forest, the country as a whole exhibits the 

highest deforestation rates of the region (Table 3.3; Fundacion Pachamama (2010)). 

The deforested area of the Peruvian Yungas owing to agricultural expansion 

amounted to 1,452,955 ha by 2001, representing 9.65% of the area of the ecoregion 

(Tovar et al. 2010). In Bolivia, Carretero et al. (2003) considered that the Yungas 

are predominantly in relatively good condition, although it has also been reported 

that a high percentage of Andean forests in Bolivia have been severely affected by 

human impacts (Ibisch 2002). 

Country Forest area (1000 ha) Annual change rate 

2005 2010 

2005-2010 

1000ha/yr 

% 

Argentina 30599 29400 -240 -0.80 

Bolivia  58734 57196 -308 -0.53 

Colombia 61004 60499 -101 -0.17 

Ecuador 10853 9865 -198 -1.89 

Perú 68742 67992 -150 -0.22 

Venezuela  47713 46275 -288 -0.61 

Table 3.3 Percentage of forest cover change at the national scale, adapted from 

FAO (2010), based on national statistics. The rate of loss in percentages is given 

with respect to the total forest remaining in each country in each year within the 

period. These rates include new forests established through planting or seeding (not 

necessarily with native species) and natural expansion of existing forests, so they 

underestimate the total losses of natural forest that have occurred. 
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Other research studies that have estimated deforestation rates, as shown in Table 

3.4, indicate that many of these forests are being subjected to high rates of 

deforestation. These are not always reflected in national statistics, such as those 

presented by FAO (2010), because the latter often include afforestation, which in 

most cases it undertaken with non-native species. Also, deforestation rates do not 

provide an indication of the extent of degradation of the forests that remain, for 

example that caused by the selective exploitation of species. 

Country Annual 

deforestation rate 

(%) 

Study area Year Reference 

Argentina -0.32 Bolivian-Tucuman 

forest 

1998-2002 (Montenegro et al. 

2005) 

Bolivia -0.49 Forests (wet, semi-wet, 

semi-deciduous and 

deciduous, up to 3000 

m a.s.l.) 

1976-2004 (Killeen et al. 2007a) 

Colombia 

-0.9 Quercus humboldtii 

Bonpl. Forest (Andes) 

1985-1993 

 

(Moncada Rasmussen 

2010) 

-0.63 Montane forest 1985-2005 (Armenteras et al. 

2011) 

-0.49 Andean forest (humid, 

sub-humid, dry) 

1970-2000 (Etter et al. 2008) 

-0.54 Andean forest 2000-2005 (Cabrera and Ramírez 

2007) 

Ecuador -0.6 to -0.9 Loja and Zamora 

(montane moist forest 

(Parque Nacional 

Podocarpus), 

grasslands, abandoned 

grasslands, succession  

1985-2001 (Goerner et al. 2007) 

Perú -0.5 to -1.0 Peruvian Andes 1990-1997 (Achard et al. 2002) 

 

Venezuela 

-0.3 National 1920-2008 (Pacheco Angulo et al. 

2011) 

-1.3- -2.4 Cloud forest Capaz 

river 

2005 (Rodríguez 2005) 

Table 3.4 Deforestation rates from different sources that include montane forest. 

Estimates obtained with analysis of LANDSAT images, maps and reconstruction of 

historical documents. 
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At least two national experts from each country associated with this project 

participated in an exercise that aimed to identify and score the relative importance 

of the different threats affecting forests in each country of the region, to identify 

those that are having the greatest impact on montane forests (Table 3.5). Although 

the relevance of the threats varies across countries, there is some congruence in that 

livestock, deforestation for land use change to agriculture, logging and 

fragmentation are widely considered to be the major threats to these forests. In 

Bolivia and Colombia, cultivation of illicit crops are considered to be a major threat 

to montane forests. 

Threats to montane 

forests 

Argentina Bolivia Colombia Ecuador Perú Venezuela 

Livestock  1 1 1 1 3 1 

Deforestation, land 

use change to 

agriculture 

4 1 1 1 1 1 

Wood extraction  1 3 2 2 2 1 

Fragmentation 4 3 1 3 1 3 

Extraction of 

minerals / mining 

activities including 

hydrocarbons 

4 3 1 3 2 5 

Illicit crops n.a. 2 2 5 4 5 

Wood and charcoal 

collection 

5 3 2 3 2 4 

Urbanisation and 

infrastructure, 

including hydro-

electrical plants 

4 5 2 3 3 2 

Fires 2 2 3 5 5 2 

Invasion by exotics 3 5 3 4 4 2 

Climate change 3 5 1 5 4 4 

Plantation of exotics 3 5 3 4 5 2 

Diseases and 

plagues 

5 5 3 4 4 5 

Landslides 5 5 3 4 4 5 

Non timber 

products 

5 5 3 4 4 5 

Table 3.5 Results of an assessment based on expert knowledge of the importance of 

different threats to montane forests in different countries of the tropical Andes. 

Classification according to level of importance: (1) the most important (5) the least 

important in the country. Based on responses from 14 experts.  
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Regionally, other potential threats include climate change, about which very little is 

known, although some research results suggest that the effects of climate change 

may be highly significant (Feeley et al. 2011; Herzog et al. 2011; Román-Cuesta et 

al. 2011; Urrutia and Vuille 2009; Table 3.6). Also, the use of exotic herbaceous 

species such as the Kikuyo (Pennisetum clandestimum), have major impacts on the 

biodiversity associated with forest ecosystems (Etter et al. 2008), as they reduce 

local species richness and interfere with water flow and runoff (Ataroff 2003; 

Ataroff and Rada 2000). 

Ecoregion  Area 

Km
2
 

Temperature  Temperature Precipitation  Precipitation  

A2 B2 A2 B2 

    (σ) (σ) (σ) (σ) 

Venezuelan Andes 

montane forest 

12091 7 .1 5 .4 -1 .5 -1 

Cordillera 

Oriental montane 

forest  

18433 6 .4 4 .9 0 .5 0 .5 

Cordillera Real 

Oriental montane 

forest 

47720 5 .4 4 .1 1 0 .5 

Northwestern 

Andes montane 

forest 

16926 5 3 .8 1 0 .5 

Cauca Valley 

montane forest 

8225 5 .2 4 0 .5 0 .5 

 Magdalena Valley 

montane forest 

22399 6 .1 4 .7 0 .5 0 .5 

Bolivian Yungas 50536 7 .5 5 .5 0 0 

Peruvian Yungas 88803 5 .8 4 .3 1 0 .5 

Southern Andes 

Yungas 

36396 6 .9 5 .4 0 0 

Table 3.6 Vulnerability of different ecoregions of Andean montane forests to 

climate change. Values for climate change scenarios A2 and B2 of the HadCM3 

model for the period between 2051 and 2100. The values presented are the number 

of standard deviations (σ) from the mean (μ) for the years 1961-1990. Values 

greater than 2σ are considered as extreme weather conditions. Methodology adapted 

from Beaumont et al. (2011). Estimates of remaining forest area in each ecoregion 

for 2005 are derived from MODIS data (Schmitt et al. 2009a) and refer to areas 

with ≥ 10% forest canopy cover and occurring at elevations ≥ 1.500 m a.s.l. 
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3.6  Policy responses 

 All Andean countries have ratified a series of international treaties that promote the 

protection and conservation of natural areas, including the Convention on 

Biological Diversity (CBD), the Framework Convention on Climate Change 

(UNFCCC), Convention on International Trade of Endangered Species (CITES) 

and the Global Strategy for Plant Conservation (GSPC). One objective of targets of 

the CBD is that terrestrial ecosystems should have a minimum of 15% protection by 

2020.  

Within the tropical Andes, Josse et al. (2009) identified those ecosystems that meet 

these criteria and concluded that although protected areas vary considerably 

between countries and ecosystems, (e.g. Venezuela (67%), Colombia (54%), 

Ecuador (52%), Bolivia (45%) and Peru (30%)), there are still many areas where 

there is little or no formal protection, such as pluviseasonal areas of Colombia and 

Venezuela, montane ecosystems of Ecuador and the Bolivian-Tucuman ecosystem 

in Bolivia (Carretero et al. 2011). The Yungas ecoregion corresponds to the best 

preserved (56%) area in the region, with areas of mixed forest with Dictyocaryum 

lamarckianum and Nectandra laurel, mixed forest with Juglans boliviana, and 

mixed forest with Prumnopitys harmsiana and Weinnmannia pinnata. In contrast, 

forests such as the Cauca Valley in Colombia are considered to have a critical 

conservation status because they are severely fragmented and have little protection 

(Table 3.7). 
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Ecoregion  Habi

tat 

loss
a
 

Fragm

entatio

n
b
 

Converti

on
c
 

Con

serv

atio

n 

stat

us
d
 

Final 

conservati

on status 

Biod

iveri

sty 

prior

ity 
e
 

Biodivers

ity 

distictivn

ess
f
 

Protect

ion
g
 

Venezuelan 

Andes montane 

forest 

10 16 6 51 Threatened I 1 4 

Northwestern 

Andes montane 

forest 

20 12 6 54 Threatened I 1 6 

Cordillera 

Oriental 

montane forest  

20 12 9 47 Vulnerable I 1 4 

Cordillera Real 

Oriental 

montane forest 

20 12 8 50 Vulnerable I 1 8 

 

Cauca valley 

montane forest 

32 20 6 88 Critical I 1 10 

 Magdalena 

valley montane 

forest 

32 20 6 88 Critical II 3 10 

Bolivan Yungas 20 12 8 50 Threatened I 2 8 

Peruvian 

Yungas 

20 12 8 51 Threatened I 1 8 

Southern Andes 

Yungas 

20 12 6 41 Vulnerable III 3 1 

Table 3.7 Evaluation of the ecoregions at the landscape level, with their 

conservation status, adapted from (Dinerstein et al. 1995). 
a
Habitat loss: index 

from 0 (least loss) to 40 (most) 
b
Fragmentation: index from 0 (least fragmented) to 

20 (most). 
c
Conversion: index from 0 (lowest annual conversion rate of natural 

habitat ) to 10 (highest rate), 
d 

Conservation status: index from 0 (best) to 100 

(worst), 
e
Biodiversity priority: I = highest priority at regional scale, II = 

High priority regional scale, III = Moderate regional priority and VI = important at 

national level; 
f
Biological distinctiveness: 1= Globally outstanding, 2 = Regionally 

outstanding, 3 = Bioregionally outstanding, and 4= Locally important; 

g
protection: 1 (best protection) to 10 (least).  

Colombia currently has a number of laws in place, such as Act 299 of 1996, Act 

464 of 1998 and Act 599 of 2000, which provide for the protection of flora in the 

country, ratifies international conventions for wood extraction and specifies the 

penalty for the illegal exploitation of non-timber forest products. Most recently, 

resolution 383 of 2010 declares the wildlife species that are endangered in the 

country. In Venezuela discussion is ongoing for a new national strategy for 
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biological conservation which would include protection and conservation measures 

adapted to each ecoregion of the country, including the Andean ecoregion, to be in 

the context of the new Law on Biodiversity Management (Venezuela 2008). In Peru 

conservation jurisdiction is divided: on the one hand, the protection of the biota in 

the system of protected areas, including buffer zones, is part of the Ministry of 

Environment, while areas outside of these correspond to the Ministry of 

Agriculture. In Bolivia current laws such as 1333 (Bolivia 1992), 1700 (Bolivia 

1996) and 3525 (Bolivia 2006), that support the conservation and sustainable 

management of forests and their resources, and the regulation and promotion of the 

production of agricultural and non-timber forest products; in the Bolivian montane 

forests there are eight national protected areas and a biosphere reserve. In 

Argentina, around 320,000 ha (15% of total) of cloud forests are protected in 

different forms and levels of restriction of use, including a biosphere reserve and 18 

protected areas designated nationally, provincially and municipally. Also, the law 

‘Minimum budgets for Environmental Protection of Native Forests’ (Presupuestos 

Mínimos de Protección Ambiental de los Bosques Nativos) (Argentina 2007) 

establishes the zoning of forest areas in all the provinces of Argentina. In this 

context, tropical Andean montane forests have been mostly categorized as areas of 

medium conservation value that can be used under sustainable schemes, tourism, 

collection and research, and as areas of high conservation value not to be 

transformed (mainly protected areas already established). One of the mayor 

problems in terms of protected areas is that in countries like Colombia the highest 

proportion of protected areas is preferentially located in areas with low 

deforestation threats (i.e. far from roads and urban settlements, at high elevations 

and on steep slopes, and on less suitable land for agriculture). 

3.7  Tree species conservation efforts 

The identification and assessment of conservation status and threat of trees species 

in montane forests of the tropical Andes has not been undertaken previously at the 

regional scale. However, national efforts to assess species have been undertaken in 

some countries through the use of the IUCN Red List (International Union for 

Conservation of Nature) categories and criteria (Zamin et al. 2010). Some examples 
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where tree species are included are: the Red Books of endangered flora of 

Colombia, with a total of 1,853 species of which 36% are threatened with extinction 

(García et al. 2010). In Peru, 5509 taxa restricted to Peru, of which 33% are 

classified as Endangered, 18% Critically Endangered and 10% as Vulnerable (León 

et al. 2006). In Ecuador, the Red Book of endemic plants, evaluated 4500 species, 

0.07% are Extinct, 0.02% are Extinct in the Wild, 7.84% are Critically Endangered, 

23.8% Endangered, 46,22% Vulnerable and 8,5% Near Threatened (León-Yánez et 

al. 2011). In Bolivia, the Red Book of wild relatives of cultivated species where 152 

species have been identified as threatened (Moraes et al. 2009), some of them 

represented in the Andes, and in early 2012, the first chapter of the Red Book of 

Plants of Bolivia in the Andean region is expected to be completed (Navarro et al. 

in preparation). In Venezuela, 1598 vascular plant species were evaluated in 2003, 

of which 341 were considered to be the most threatened (Llamozas et al. 2003). 

Although Argentina does not yet have a Red Book of endangered species, it is 

estimated that for the montane forests there are about 130 tree species in total, 

which are currently being evaluated. 

To assess the conservation status of tree species in the montane forests of the 

tropical Andes, a collaborative initiative with experts from Venezuela, Colombia, 

Ecuador, Peru, Bolivia and Argentina has been established, which aims to evaluate 

about 3750 species of trees, using the IUCN Red List categories and criteria. This 

initiative intends to identify priorities for conservation action in accordance with 

objectives of the Global Strategy for Plant Conservation (EGCEV/GSPC) 2020 

(http://www.cbd.int/gspc/objectives.shtml). The main objectives addressed are: 

Objective I: Understand, document and recognize the diversity of plant species; 

Objective IV: Promote education and awareness of the diversity of plant species, 

their role in sustainable livelihoods and importance for life on Earth; and Objective 

V: Capacity building and public engagement necessary to implement the Strategy. 

A series of workshops have been carried out to begin the evaluation. The use of 

georeferenced information of species distributions, previously published 

information and expert knowledge are the main sources of information being used 

in this evaluation. 
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Once the most threatened species at the regional level are identified, this will 

provide a strong basis for the development and targeting of policy and management 

responses aimed at reducing deforestation and species loss, including actions such 

as promoting the creation of protected areas, forest restoration and sustainable forest 

management. It should also emphasize the need to implement land management 

policies aimed at the conservation of biodiversity in productive rural landscapes. 

Recently, several authors ( e.g. Herrera 2012; Perfecto and Vandermeer 2008, 2010; 

Perfecto et al. 2010; Vandermeer and Perfecto 2005) have discussed the importance 

of preserving and managing territories which integrate conservation, productive 

systems (agriculture and livestock) and human population. For example, Perfecto et 

al. (2010) propose the concept of "Nature’s matrix" and argue for the importance of 

managing the rural landscape, improving habitat conditions for the conservation of 

biodiversity and ecosystem services (e.g. improving connectivity between forests 

remnants and protected areas), while ensuring the sustainability of food production 

and distribution. Harvey and González Villalobos (2007), Bhagwat et al. (2008) and 

Mendenhall et al. (2011) present a series of case studies showing the importance of 

rural landscapes for biodiversity conservation. Perfecto and Vandermeer (2010; 

2012) make an analysis from the recent development of ecological theory (showing 

the importance of migration between fragments and local extinction) supplemented 

with empirical evidence to show that a model that incorporates the agricultural 

matrix as an integral component of conservation programs can be successful in the 

context of small-scale agro-ecological production in tropical regions. It is 

encouraging that in some regions of the tropical Andes progress has been made in 

the implementation of these models. For example, a paper published on 

“Management tools for biodiversity conservation in rural landscapes" in Colombia, 

by Lozano-Zambrano (2009), recommended management practices aimed at 

increasing the quality of habitat in productive territories. Considering the high level 

of land use change of the tropical Andes, it is urgent to train politicians, planners 

and local communities throughout the region, so they can implement these 

alternative models of production and conservation, and take into consideration 

threatened tree species. 
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4 Red List assessment of tree species in montane forests of the 

tropical Andes 

4.1  Introduction  

The IUCN (International Union for Conservation of Nature) Red List (RL) is an 

authoritative approach for assessing the extinction risk of species (Lamoreux et al. 2003; 

Newton and Oldfield 2008; Rodrigues et al. 2006; Zamin et al. 2010), which uses clear 

and comprehensive categories and criteria that are flexible enough to allow uncertainty 

(Akçakaya et al. 2006). The quantitative rules for this approach are based on population 

sizes and rate of population decline, and the extent and decline of geographic ranges 

(Table 4.1; Akçakaya et al. 2006; Lamoreux et al. 2003; Newton and Oldfield 2008; 

Rodrigues et al. 2006; Zamin et al. 2010). The RL has been used by governments and 

other institutions to inform conservation policies and influence legislation, and has also 

been applied to support the identification of priority areas for conservation, to guide 

conservation investment, and to encourage species-based conservation and management, 

biodiversity evaluation and monitoring (Hoffmann et al. 2008). 

Criterion  Critically 

endangered 

Endangered Vulnerabl

e 

Subcriteria 

A1: reduction in 

population size 

≥90% ≥70% ≥50% Over 10 years/3 generations in the past, 

where causes are reversible, understood 

and have ceased 

A2–4: reduction 

in population size  

≥80% ≥50% ≥30% Over 10 years/3 generations in past, future 

or combination 

B1: small range 

(extent of 

occurrence) 

<100km2 <5000km2 <20000k

m2 

Plus two of (a) severe fragmentation/few 

localities (1, ≤5, ≤10), (b) continuing 

decline, (c) extreme fluctuation 

B2: small range 

(area of 

occupancy) 

<10km2 <500km2 <2000km2 Plus two of (a) severe fragmentation/few 

localities (1, ≤5, ≤10), (b) continuing 

decline, (c) extreme fluctuation 

C: small and  

declining 

population 

<250 <2500 <10 000  Mature individuals. Continuing decline 

either (1) over specified rates and time 

periods or (2) with (a) specified population 

structure or (b) extreme fluctuation 

D1: very small 

population 

<50 <250 <1000 Mature individuals 

D2: very small 

range locations 

N/A N/A <20 km2 

or ≤5 

Capable of becoming critically endangered 

or extinct within a very short time 

E: quantitative 

analysis 

 50% in 10 

years/3 

generations 

20% in 20 

years/5 

generations 

10% in 

100 years 

Estimated extinction-risk using 

quantitative models, e.g. population 

viability analyses 

Table 4.1 Summary of IUCN Red List Categories and Criteria (IUCN 2001). 
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A recent review of the progress on the Red Listing of tree species by Newton and 

Oldfield (2008) identified that by 2008, the IUCN RL database included a total of 8324 

tree species of the estimated total of over 24000 tree species in the world. These mostly 

comprised the species assessed more than 10 years previously in the World List of 

Threatened Trees (Oldfield et al. 1998), together with assessments of the endemic tree 

species of Ecuador, carried out by Valencia et al. (2000) and with an update by León-

Yánez et al. (2011), and the assessment of endemic tree species of Peru by León et al. 

(2006). Since 1998, more than 2500 tree taxa have been evaluated, primarily by the 

IUCN/SSC Global Tree Specialist Group (GTSG), but only a fraction of these have so far 

been added to the RL database owing to a lack of resources or capacity to perform the 

evaluation work required (Hoffmann et al. 2008; Newton and Oldfield 2008; Nic 

Lughadha et al. 2005). Overall, it is clear that many tree species still await assessment. 

Progress has been limited by a number of factors, including the lack of appropriate data 

on the status and distribution of many species. Many assessments that have been 

undertaken depend on the use of herbarium records (Rivers et al. 2011; Willis et al. 2003) 

and supporting GIS data (Bachman et al. 2011; Cicuzza et al. 2007; Nic Lughadha et al. 

2005) to identify the potential distribution of the species and the potential threats, which 

are mainly of anthropogenic origin (Mace et al. 2008). However, compilation and 

analysis of such data can be a time consuming task. Assessments have been further 

hindered by taxonomic confusion surrounding many taxa, and a lack of resources to 

support the assessment process, which is primarily undertaken by volunteers (Hoffmann 

et al. 2008; Newton and Oldfield 2008; Nic Lughadha et al. 2005).  

RL assessments provide fundamental information of both scientific and political 

relevance regarding the state of biodiversity and for reporting trends in biodiversity loss. 

They also contribute to the development of national level strategies for species and 

ecosystem adaptation to climate change (Zamin et al. 2010). Although significant 

national RL assessments of vascular plants have been undertaken previously in the 

Andean region (e.g. Valencia et al. 2000), no systematic RL assessment of montane tree 

species has previously been undertaken in this area. This is a unique region, with around 

133 different types of ecosystem (Josse et al. 2009a, 2009b), and high habitat diversity, 

resulting from broad altitudinal and latitudinal gradients (Josse et al. 2003). Andean 

montane forests are currently a major global conservation priority owing to their 
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biological richness and high level of endemism (Bush et al. 2007; Olson and Dinerstein 

1997). These forests are of high value for the provision of ecosystem services related to 

water, the regulation of regional climate and the capture and storage of carbon (Cuesta et 

al. 2009); they are also considered to be amongst the least known ecosystems in the 

tropics (Ataroff and Rada 2000; Bubb et al. 2004; Gentry 1995; Kessler 2000; 

Stadtmüller 1986). Andean montane forests are considered to be highly threatened by the 

continuing rates of deforestation, fragmentation, degradation (Chapter 3; Cabrera and 

Ramírez 2007; Tejedor Garavito et al. 2012) and the potential effects of climate change 

(Cuesta et al. 2009; Herzog et al. 2011; Urrutia and Vuille 2009). 

The objective of this chapter is to evaluate the extinction risk of the tree species that occur 

in montane forests in the tropical Andes by carrying out an IUCN RL assessment, which 

is checked and validated using expert knowledge from within the region. This process 

was implemented as a series of steps: (i) compilation of a list of tree species occurring 

within the montane forests of the region; (ii) compilation of spatial data indicating the 

geographical distribution of each species; (iii) production of distribution maps for each 

species, and use of these to estimate the extent of geographical range of each species, 

according to the RL guidelines; (iv) validating the distribution maps using expert 

knowledge from within the region; (v) performing a preliminary RL assessment of each 

taxon according to the RL categories and criteria, in collaboration with experts within the 

region, and employing the distribution maps produced. The assessment focused on taxa 

with regional distributions (i.e. present in more than one country), in order to complement 

previous or ongoing RL assessments of vascular plants undertaken within individual 

countries.  

4.2  Scope and study area 

The scope of this assessment is the tropical Andes occurring in Argentina, Bolivia, 

Colombia, Ecuador, Peru and Venezuela. Geographically, the tropical Andes represent 

most of the montane forests in the Andean region. The definition of upper montane forest 

for the purposes of the research in this chapter includes cloud forest (Northern Andean 

forests, Yungas forests and Bolivia-Tucuman forests) and seasonal (wet) forest above 

1500 m a.s.l., with temperatures between 6-18°C and yearly mean precipitation above 

1000 mm, as described by Josse et al. (2009a, 2009b). An altitudinal threshold of 1500 m 
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a.s.l. was chosen as this is the altitude at which the species composition typically changes, 

as lowland or lower montane tree species are displaced by a floristically different 

assemblage of upper montane species (Gentry 1993; Josse et al. 2009a). However, it is 

recognised that this threshold varies geographically. On large equatorial inland mountains 

this transition usually occurs at an altitude of 1200-1500 m a.s.l. but it may occur at much 

lower elevations on small outlying island mountains and away from the equator 

(Bruijnzeel 2002). On large inland mountain systems cloud forests may typically occur 

between 2000 and 3500 m a.s.l., whereas in coastal and insular mountains this zone may 

descend to 1000 m a.s.l. Under exceptionally humid conditions a cloud forest zone may 

develop on steep, tropical island or coastal mountains at elevations as low as 500 m a.s.l. 

(Bubb et al. 2004). The threshold of 1500 m was therefore selected as a compromise, in 

discussion with experts familiar with the region. The intention here is to ensure that all 

tree species associated with upper montane forest are included in the assessment, and 

through a process of expert consultation, it was adjudged that a lower altitudinal limit of 

1500 m would achieve this.  

The focus here is on tree species associated with moist, upper montane or cloud forests. 

However, some species that are also associated with other types of vegetation such as 

seasonal (moist) forests have been included in the assessment, because there are areas 

where species occur in more than one vegetation type, as in the overlap between 

xerophitic and seasonal vegetation, and between seasonal and cloud forest vegetation. 

Therefore some cloud forest species are shared with seasonal forest, as for example in 

Argentina and Bolivia, where species that might be considered to be threatened with 

extinction would be excluded if only cloud forest species were included. Trees are 

defined here as upright woody plants with a dominant above-ground stem that reaches a 

height of at least 3 m (Körner 1998), including palms and woody ferns. Species such as 

Chusquea sp., although their main stem reaches above the height threshold were excluded 

from the analysis, as they are considered as tall grasses. 

 

As national RL assessments have been undertaken in individual countries, e.g. Bolivia 

(Meneses and Beck 2005), Colombia (Calderón et al. 2002), Ecuador (León-Yánez et al. 

2011), Peru (León et al. 2006) and Venezuela (Llamozas et al. 2003), the objective here 
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is to focus primarily on those species that are shared by more than one country so as not 

to duplicate national efforts. 

4.3  Methods  

As a first step, a workshop was held in Ecuador involving regional specialists (see 

Appendix I), with representation from each country in the region (Argentina, Bolivia, 

Colombia, Ecuador, Peru and Venezuela). Based on this expert knowledge, a 

consolidated list was produced of the candidate tree species that are known to occur in the 

Tropical Andes. The development of this list was supported by accessing data from a 

range of sources, including the Missouri Botanical Gardens database 

(www.Tropicos.org), regional herbaria (Colombian National Herbarium (COL), 

Venezuelan National Herbarium (VEN), Bolivian National Herbarium (LPB), Herbarium 

of the Universidad Pontificia Católica in Ecuador (QCA) and San Marcos Herbarium of 

the Universidad. Nacional Mayor de San Marcos, Peru (USM)), regional floras and 

personal databases. The nomenclature of taxa on the list was checked using the Plant List 

(www.theplantlist.org, accessed March 2011), to identify synonyms and those species 

unresolved taxonomically. The Angiosperm Phylogeny Group III system (APG III 2009) 

was followed to provide consistency on the names of the species families. 

Geographical distribution data for all the tree species was then compiled using pre 

digitized data from species’ specimens and previously surveyed locations from the 

different sources of information. The sources of this information included: personal 

records of the network of regional specialists involved in this assessment, the Missouri 

Botanical Gardens database (www.Tropicos.org), regional herbaria, and the Global 

Biodiversity Information Facility (GBIF: www.gbif.org), accessed during November 

2010. A spatial database incorporating these distribution data was created in ArcGIS v.10, 

and then critically examined in order to exclude those points that were incorrectly 

georeferenced. The database was used to identify those species occurring exclusively at ≥ 

1500 m a.s.l. by overlaying data on a Digital Elevation Model (DEM) obtained from 

www.worldclim.org (Figure 4.1), with a grid space of 30 arc seconds (0.0083
o
 or 

approximately 1 km). If at least one of the records was below this altitude threshold, the 

species was excluded from further analysis. These records were also used to identify 

those species shared by more than one country (see Appendix II). Distribution maps of 
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each taxon that met these selection criteria were then checked by the regional network of 

specialists, and revised further where necessary.  

 

Figure 4.1 Map of the distribution of the study area, which exceeds an attitude of 1500 m 

in the tropical Andes. Based on the Digital Elevation Model (DEM), obtained from 

www.worldclim.org. 

The IUCN RL criteria were then applied to each taxon, with reference to the distribution 

maps created, and a preliminary classification was provided. These assessments were 

conducted by a lead assessor (Tejedor), which were then reviewed in consultation with 

the network of specialists. In each case, the RL criteria were applied following the IUCN 

Red List guidelines (IUCN Standards and Petitions Subcommittee 2011). The RL process 

requires that all the species are evaluated using all of the criteria and that the final 
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category allocated to the species is the one associated with the highest category of threat 

(IUCN 2001).  

Two key elements used in the RL process, at least for those species poorly known (as is 

the case of many Andean tree species), are the Extent of occurrence (EOO) and the Area 

of Occupancy (AOO), which are measures of the geographical range of a species. EOO is 

used to evaluate the species under criteria A and B, and AOO is used to evaluate the 

species under criteria A, B and D.  

EOO is defined as the smallest polygon in which no internal angle exceeds 180° and 

contains all sites of occurrence, and is commonly calculated using the Minimum Convex 

Polygon (MCP) around georeferenced data for species distributions. These calculations 

were performed using a series of packages in R 2.14 (R Development Core Team 2011) 

such as ‘dismo’, ‘rgdal’,’rpart’,’mgcv’, kernlab,’ among others and ArcGIS v.10. The 

scripts used in R were modified from those provided by both, the R packages and by 

Duncan Golicher. The MCP requires at least three points in order to be calculated. For 

those species that had fewer than three points EOO was not calculated, namely: 

Citharexylum rimbachii, Crossothamnus gentryi, Diplostephium cinerascens, Dunalia 

trianaei, Joosia aequatoria, Polylepis microphylla, Ribes canescens and Tournefortia 

loxensis. This result was then filtered further to calculate an EOO that excluded non 

suitable habitats, by using a classified global land cover map for 2009 (referred to 

henceforth as “GlobCover”) produced by Arino et al. (2010), which was obtained from 

the MERIS imaging spectrometer, at a resolution of 300 m. This was achieved by 

excluding the following land cover classes: Rainfed croplands, Mosaic cropland (50-

70%)/vegetation (grassland/shrubland/forest) (20-50%), Mosaic vegetation 

(grassland/shrubland/forest) (50-70%)/cropland (20-50%), Artificial surfaces and 

associated areas (Urban areas >50%), Closed to open (>15%) herbaceous vegetation 

(grassland, savannas or lichens/mosses), Bare areas, Water bodies, Permanent snow and 

ice. Also, this map was masked using the DEM, to only include areas ≥1500m a.s.l. Once 

the EOO map was clipped using GlobCover, it was then projected using the Mollweide 

(sphere) projection, in order to calculate the area for each of the species. 

The AOO is defined as the area occupied by a taxon, excluding cases of vagrancy, which 

is calculated using gridded (raster) data at a scale appropriate to the taxon (IUCN 2001). 
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The IUCN guidelines (IUCN Standards and Petitions Subcommittee 2011) suggest a 

resolution of 4 km
2
, as this allows the taxa to be listed as Critically Endangered, as the 

criteria requires a taxon to have an AOO of < 10 km² to qualify. Therefore AOO was 

calculated using two resolutions: using a 4 km
2
 and a 100 km

2
 grid cell (IUCN 2011). 

These two grid sizes were chosen to evaluate the variability of the range size for a given 

species. These calculations were performed using a series of packages in R 2.14 (R 

Development Core Team 2011). AOO was not calculated for the 14 species with ≤3 

records. 

Assessment under Criterion A addresses a decline in population size (past, present and/or 

projected), based on (a) direct observation (A1, A2 and A4 only), (b) an index of 

abundance appropriate to the taxon, (c) a decline in area of occupancy, extent of 

occurrence and/or quality of habitat, (d) actual or potential levels of exploitation, and/or 

(e) the effects of introduced taxa, hybridization, pathogens, pollutants, competitors or 

parasites (IUCN Standards and Petitions Subcommittee 2011). Under Criterion A1, a 

reduction in the population is defined as a decline in the number of mature individuals of 

at least a 50% over a time period (years) in the past, although the decline need not be 

continuing, which means that the sources of decline are clearly reversible and understood 

and have ceased. This criterion was not applicable for any of the species, as the causes of 

decline for the species have not stopped, as is the case of forest fragmentation and 

conversion for agriculture or livestock, as detailed in Chapter 3. Even in the case of 

species such as Cinchona sp. where the main cause of population reduction has ceased 

(i.e. exploitation for the extraction of quinine, owing to its replacement by synthetic 

production), other pressures on the habitat such as forest degradation and loss have not 

ceased throughout the region where the species is distributed. 

Under A2, A3 and A4, the Criteria stipulate that in order to include a species under the 

threat category there should be a reduction in the population, representing a decline in the 

number of mature individuals, of at least 30% over the time period (years) specified, 

which relates to a decline over 10 years or 3 generations, whichever is the longer. A2 

refers to the past, A3 to the future and A4 to past and future. For these Criteria, the causes 

of reduction may not have ceased or may not be understood or may not be reversible. 

Information on species population declines and information regarding the species’ 

specific characteristics such as generation length, species age at maturity and longevity 



108 

 

are scarce. However, the IUCN guidelines (IUCN Standards and Petitions Subcommittee 

2011) acknowledge that this lack of information is a common issue for many species, so it 

is possible to infer or project values based on a decline in the AOO, EOO and/or quality 

of habitat, by making assumptions about the relationship between habitat loss and 

population reduction, as long as details of all the factors taken into consideration to avoid 

over or under estimations are included in the documentation. Generation length for tree 

species can be longer than 10 years; therefore it is possible to use a time scale of 100 

years, as the most significant population declines could have occur during the last 100 

years and relevant information is available (IUCN Standards and Petitions Subcommittee 

2011). In this assessment 50 and 100 years were used as time lengths to identify the 

population decline in the past and future with reference to forest loss.  

Inferences from deforestation rates and the area of current forest cover were used to 

estimate the percentage of forest loss over a period of 50 and 100 years in the past (A2) or 

that might occur in the future (A3). Three scenarios were set with the different data 

available and different estimation of potential forest loss were explored. For the first 

scenario (S1), deforestation rates and the total forest area per country for 2010 were 

obtained from data provided by the FAO (2010). The deforestation rates from the FAO 

(2010) are percentage annual forest change rate that occurred between 2005 and 2010. 

For the second scenario (S2), the deforestation rates were obtained from regional 

averages from different sources from the literature summarised in Table 3.4 in Chapter 3 

and the total area of current forest cover for the Andean montane forests, calculated using 

the GlobCover map for 2009 excluding lowland areas <1500 m. a.s.l. and the following 

land use classifications: Rainfed croplands, Mosaic cropland (50-70%)/vegetation 

(grassland/shrubland/forest) (20-50%), Mosaic vegetation (grassland/shrubland/forest) 

(50-70%)/cropland (20-50%), Artificial surfaces and associated areas (Urban areas 

>50%), Closed to open (>15%) herbaceous vegetation (grassland, savannas or 

lichens/mosses), Bare areas, Water bodies, Permanent snow and ice. The third scenario 

(S3) used the deforestation rates provided by the FAO (2010) and total area of current 

forest cover for the Andean montane forests estimated above. For all scenarios, the area 

of forest loss per annum was calculated, and then multiplied by 50 and 100 to estimate the 

area of forest lost during the period. These values were then added to or subtracted from 

the current forest area in order to calculate the change in forest area over the last or in the 
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next 50 and 100 years. The current forest area was then compared to the estimated forest 

areas to estimate percentage forest loss. These percentages were used to estimate whether 

the forest area has been reduced by more than 30% in the past, or is projected to do so in 

the next 50 to100 years, assuming that the percentage of annual forest change will remain 

constant over time. The area of forest estimated in the three scenarios described above, 

for the last and next 50 years, was also used to calculate the percentage of forest loss in a 

window of 100 years including past and future required for the Criterion A4. 

Furthermore, if there was information available for the species indicating that it had been 

exploited (or overexploited), this was noted in support of sub-criterion (d) of Criteria A1-

4:, ‘actual or potential levels of exploitation’. In addition, information on the decline of 

populations as required by sub-criterion (c) was elicited from experts supported by 

inspection of the distribution records, taking the collection dates into account. 

Criterion B addresses the geographical range of the species, which is based on the on the 

EOO and AOO, calculated as explained above, to identify populations with restricted and 

declining distribution. Calculation of EOO and AOO allowed the identification of species 

for which the estimated area was within the thresholds of the threatened category, as 

shown in Table 4.1, to produce a preliminary categorisation. Then, species were 

evaluated further using the following sub-criteria, at least two of which need to be met, 

for a species to qualify as threatened under this Criterion: a) if the species is severely 

fragmented or with few number of locations, b) in continuing decline and/or c) if there are 

extreme fluctuations in the areas of occupancy or number of mature individuals (in the 

present or near future). These sub-criteria were estimated using expert knowledge and 

literature if this was available, supported by reference to the distribution maps and maps 

of potential habitat (forest cover).  

Criterion C addresses small population sizes and their fragmentation, decline, or 

fluctuations. This Criterion identifies taxa with small populations that are currently 

declining or may decline in the near future. This Criterion was only used for those species 

for which an estimate of the total population size was available or could be estimated, 

based on population density figures given by the experts, in turn based on their 

collections, field data and knowledge of the species. The information for most species is 

scarce and although some species appear to be rare, estimations of the total population 
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size was difficult. In every case where data were available, values of total population size 

exceeded the thresholds of the Criterion. Therefore, none of the species qualified as 

threatened under this Criterion. 

Criterion D is based on an accurate estimate of populations smaller than 1000 individuals 

(D1). This criterion is also applied to qualify a taxon under the Vulnerable category when 

the species has an AOO <20 km
2 

or is found in ≤5 locations and for which a plausible 

future threat exists that could drive the taxon to CR or EX in a very short time (D2) 

(IUCN Standards and Petitions Subcommittee 2011). To apply this Criterion the experts 

were consulted and where possible they identified those species with small number of 

individuals per hectare. However, none of the species were identified to have fewer than 

1000 individuals in total, although many were identified to be found at low densities or as 

rare. 11 species had AOO <20 km
2
, but in each of these cases, expert knowledge 

indicated that these were likely cases of under-recording, as each of the species was 

relatively widely distributed. Therefore, no species was found to meet this Criterion. It 

should be noted, however, that accurate field inventories of very threatened species 

throughout their ranges are generally not available in this region, particularly for those 

species present in more than one country, as examined here. 
 

Criterion E is based on information on quantitative analysis of the species; this was 

applied by consulting the scientific literature and the expert network. From this, it was 

identified that for none of the species there has been a population viability analysis been 

carried out to date. Therefore, Criterion E did not apply to any species. 

Uncertainty is an issue that underlies the Red List, as many of the decisions are inferred, 

estimated and projected. Natural variability, vagueness in the terms and definitions used 

in the Criteria (semantic uncertainty), and measurement error are further sources of 

uncertainty (IUCN Standards and Petitions Subcommittee 2011). In this assessment the 

level of uncertainty was measured in several different ways. Uncertainty was scored for 

each subcriterion on a scale, represented as high, medium or low uncertainty. For the 

information provided by the experts, uncertainty was assessed by scoring the degree of 

uncertainty associated with applying each sub-criterion. For those sub-criteria based on 

map analysis, uncertainty was scored according to the number of records that were 

available to carry out the evaluation. 
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4.4  Results 

3750 tree species were initially identified as occurring in the upper montane forests of the 

Andes. From this total, 917 species were excluded as no georeferenced records were 

found at the time of the search. Another further 1287 species were excluded as all of their 

records fell entirely within the boundaries of a single country of South America. 1400 

species had at least one record that occurred below the 1500 m threshold and were 

therefore excluded from subsequent analyses. Of the 146 species remaining, a further 17 

were excluded during checking, as a result of taxonomic revision. As a result, 129 taxa 

were evaluated according to the RL categories and criteria (see Appendix II for the full 

list of species). Ecuador was the country with most species and Argentina the fewest 

(Figure 4.2). The most speciose family was Melastomataceae (11) (Figure 4.3). A total 

of 1663 distribution records were obtained for these species. The number of records per 

species varied among species (Figure 4.4), with 79 species having ≤10 unique records 

and four having > 50 unique records, and with an overall mean (+/-SD) of 12.9 (+/-11.4) 

records per species. 

 

Figure 4.2 Number of species per country that were evaluated using the RL categories 

and criteria. 
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Figure 4.3 The ten families with the largest number of species included in the 

assessment. 

 

Figure 4.4 Frequency distribution of the abundance of species records for the 129 species 

evaluated under the RL categories and criteria. 

The calculation of the EOO varied markedly among species Figure 4.5. The EOO values 

without excluding unsuitable areas showed that 102 species had an EOO ≤500,000 km
2
, 

and 9 species were widely distributed with an EOO ≥1,000,000 km
2
, e.g. Weinmannia 

auriculata with an estimated EOO of 2,632,149 km
2
 (Figure 4.5a). 26 species had an 

EOO <20,000 km
2
, 14 of which can be preliminarily classified as meeting Criterion B as 

Vulnerable (VU), 10 as Endangered (EN) and 2 as Critically Endangered (CR), according 

to the IUCN thresholds.  
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By excluding areas of unsuitable areas for the species (Figure 4.5b), the EOO was 

reduced for all the species. The mean (± SD) EOO reduction was 208,687± 35,185 km
2
. 

For example Weinmannia auriculata, which originally had a large EOO, the area was 

reduced to 158,665 km
2
. Another example of the considerable reduction in EOO area for 

the species is shown in Figure 4.6 where the EOO for Ceroxylon parvifrons is displayed. 

The initial estimate of EOO was 1,927,465 km
2
 but when excluding unsuitable areas this 

was reduced to 196,676 km
2
. When unsuitable areas were excluded, 49 species had an 

EOO <20,000 km
2
, 30 of which can be preliminarily classified as meeting Criterion B as 

Vulnerable (VU), 17 as Endangered (EN) and 2 as Critically Endangered (CR), according 

to the IUCN thresholds.  

 

 

Figure 4.5 Frequency distribution of EOO values for the species based on: a) MCP 

including the full extent of the distribution. b) Excluding unsuitable areas (see text for 

further details). 

a) 

b) 
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Figure 4.6 EOO for the species Ceroxylon parvifrons. Light green polygon shows the 

MCP which includes the full extent of the species’ distribution. Dark green polygon 

shows the EOO without unsuitable areas (see text for further details).  

The AOO was calculated using two resolutions, with respective grid cell sizes of 4 km
2
 

and 100 km
2
 (figure 4.7). With an AOO of 4 km

2
 resolution, all of the species were 

associated with an AOO of less than 300 km
2
, which in terms of the RL would classify all 

species under a threatened category of at least Endangered (EN), as the threshold for their 

inclusion in this category is <500 km
2
. However, as the RL guidelines state, it is 
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necessary to explore the different scales to identify a relevant value where the biological 

aspects of the taxon are incorporated. An additional AOO was therefore calculated for the 

species at a resolution of 100 km
2
, in order to explore the implications of the choice of 

grid cell size on the classification. 96 species had an AOO <2,000 km
2
, 81 of which can 

be preliminarily classified as Vulnerable (VU), 15 as Endangered (EN) and none of them 

were Critically Endangered (CR) according to the IUCN thresholds, and without taking 

into consideration those species with ≤3 records. Therefore, 19 species had AOO ≥2,000 

km
2
 using a resolution of 100 km

2
. 

 

 

Figure 4.7 Frequency distribution of the AOO with a grid cell size of a) 4 km
2
 and b) 100 

km
2
 for the species evaluated. 

Under Criterion A, further information on the deforestation rates and the area of current 

forest cover was used to estimate the percentage of forest loss that has occurred over a 

a) 

b) 
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period of 50 and 100 years in the past (A2) or might occur in the future (A3) (Tables 4.2 

and 4.3). Deforestation rates vary across the Andean countries and sources, as do the 

percentages of forest loss thought the region. Estimates of total forest loss in the past 50 

years did not exceed the 30% threshold of the IUCN guidelines; however this value was 

exceeded over a timescale of 100 years by a small margin (Table 4.2). The estimate of 

projected forest loss in the next 50 years, as shown in Table 4.3, reached the threshold at 

30.8% forest loss. The estimated forest loss for the next 100 years, in all three methods of 

calculation, was at least 30% and up to 61.63% of forest loss, based on the estimation 

method (Tables 4.2 and 4.3). Analysis showed that Ecuador and Venezuela showed that 

if forests continue to be lost at the current rate, these forest areas may be lost in their 

entirety over the next 100 years.  

To estimate population declines under A4 criteria, considerations must relate to both the 

past and the future. Therefore, to infer population decline from forest loss a combination 

of percentage forest loss since 50 years ago (Table 4.2), for the next 50 years (Table 4.3) 

and a combination of both past and future (Table 4.4) was used. The results show that 

with current deforestation rates, the estimated percentage forest loss will be at least 30% 

and for S2 this could be at least 47% (Table 4.4). Therefore, the estimated forest loss in a 

time frame of 100 years, including the past and the future, could exceed the 30% 

threshold, which in terms of the RL would qualify all species as at least Vulnerable (VU). 

In the case of future forest loss, all species would be classified as Endangered (EN) 

according to this criterion. 
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Table 4.4 Estimation of forest loss in the past 50 years and projected for the next 50 years 

as calculated in Tables 4.2 and 4.3. 1) Total forest area per country and deforestation 

rates provided by FAO (2010). 2) Andean forest area from GlobCover in 2009 and mean 

deforestation rates from the literature available in Table 3.4, Chapter 3. 3) Andean forest 

area from GlobCover in 2009 and mean deforestation rates provided by the FAO (2010).  

The RL assessment carried out here identified one species as Critically Endangered (CR), 

namely Polylepis microphylla, which also in 2011 was evaluated by the Ecuadorian 

authorities as CR within that country. Its status in Peru has not been verified and therefore 

upgraded from the preliminary category EN to CR. In the Endangered (EN) category 

there were 47 species, Vulnerable (VU) 28, Near Threatened (NT) 19, Least Concern 

(LC) 29 and Data Deficient (DD) 5 (Figure 4.8). The 5 species that were classified as DD 

1) FAO past and future (S1) 

Country Forest area in 1960 

in km
2
 

Forest area in 2060 in 

km
2
 

% remaining in 

2060 

%loss in 

2060 

Argentina 411600 176400 42.86 57.14 

Bolivia  723529 420391 58.10 41.90 

Colombia 656414 553566 84.33 15.67 

Ecuador 191874 5426 2.83 97.17 

Peru 754711 605129 80.18 19.82 

Venezuela  603889 321611 53.26 46.74 

Total  3342018 2082522 62.31 37.69 

 

2) Forest area in the Andes and literature rates (S2) 

Country Forest area in 1959 

in km
2
 

Forest area in 2059 in 

km
2
 

% remaining in 

2059 

%loss in 

2059 

Argentina 122069 88395 72.41 27.59 

Bolivia  252239 152964 60.64 39.36 

Colombia 133195 68616 51.52 48.48 

Ecuador 64350 29250 45.45 54.55 

Peru 431905 196321 45.45 54.55 

Venezuela  20471 6158 30.08 69.92 

Total  1024229 541703 52.89 47.11 

 

3)Forest area in the Andes and FAO rates (S3) 

Country Forest area in 1959 

in km
2
 

Forest area in 2059 in 

km
2
 

% remaining in 

2059 

%loss in 

2059 

Argentina 147324 63139 42.86 57.14 

Bolivia  256291 148912 58.10 41.90 

Colombia 109482 92328 84.33 15.67 

Ecuador 91026 2574 2.83 97.17 

Peru 348665 279560 80.18 19.82 

Venezuela  17375 9254 53.26 46.74 

Total  970164 595767 61.41 38.59 
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were Ilex maasiana, for which there were two records obtained from Missouri Botanical 

Garden that were recorded as affiliated to this species, and no other records were 

available to review. This is a small tree shrub and was not known by the reviewing 

experts. Allophylus coriaceus could be possibly listed as LC, as its EOO is large; 

however, more information is needed to evaluate this species. Phenax laxiflorus was 

believed to be a small shrub and the records available for the species did not provide 

further information to perform an evaluation. Cyathea catacampta and Prunus muris were 

taxonomically unresolved and further information about them was not available to 

conduct an assessment.  

 

Figure 4.8 Number of species within each of the RL Categories. CR: Critically 

Endangered, EN: Endangered, VU: Vulnerable, NT: Near Threatened, LC: Least Concern 

and DD: Data Deficient. 

The IUCN requires that the all of the Criteria are considered when carrying out the RL 

assessment and that the highest level of threat is given. Tables 4.5 and Appendix III 

show the preliminary category assigned to the species according to the individual Criteria. 

The classification was made according to the information available to assess the species 

and taking into consideration any applicable sub-criteria. Additional information collected 

from the experts assisted in the final classification of the species, which is also presented 

on these tables.  
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Criteria 

Time 

duration 

(years) Method 

Past (P) 

Future (F) 

Both (B) 

Preliminary Category 

CR EN VU LC NT DD n.a. 

A1 reduction in population size          129 

A2 reduction in population size 50 S1 P    129    

A2 reduction in population size 50 S2 P    129    

A2 reduction in population size 50 S3 P    129    

A2 reduction in population size 100 S1 P   129     

A2 reduction in population size 100 S2 P   129     

A2 reduction in population size 100 S3 P   129     

A2 reduction in population size 100 EK P  3 46   80  

A3 reduction in population size 50 S1 F    129    

A3 reduction in population size 50 S2 F   129     

A3 reduction in population size 50 S3 F    129    

A3 reduction in population size 100 S1 F   129     

A3 reduction in population size 100 S2 F  129      

A3 reduction in population size 100 S3 F   129     

A3 reduction in population size 100 EK F  5 42   82  

A4 reduction in population size 100 S1 B   129     

A4 reduction in population size 100 S2 B   129     

A4 reduction in population size 100 S3 B   129     

A4 reduction in population size 100 EK B   6 1  122  

B1 small range (EOO)
1
  EK/Data   10 15 95  9  

B1 small range (EOO)
2
  EK/Data   17 31 72  9  

B2 small range (AOO)
3
  EK/Data   115    14  

B2 small range (AOO)
4
  EK/Data   15 81 19  14  

C1 small and declining population
5
      1   128  

C2 small and declining population
5
         129  

D1 very small population
5
         129  

D2 very small range locations
5
      1   128  

E quantitative analysis
5
         129  

Table 4.5 Preliminary classification category using the IUCN criteria for each of the 

species. The classification was made according to the information available to assess the 

species without taking into consideration any applicable sub-criteria. S1: based on the 

calculation of forest loss using deforestation rates and national forest area by FAO (2010). 

S2: based on the calculation of forest loss using the regional averages of deforestation 

rates from the literature and Andean forest area from the GlobCover map. S3: based on 

the calculation of forest loss using deforestation rates from the FAO (2010) and Andean 

forest area from the GlobCover map. EK: based on expert knowledge. 
1
: based on the 

MCP area for each species. 
2
: based on the GlobCover map area for each species. 

3
: based 

on the AOO at 4 km
2
. 

4
: based on the AOO at 100 km

2
. 

5
: based on information available 

for the species.  

After considering all the criteria in the RL assessment for which information was 

available (Appendix II), the criteria which gave the highest category of threat and 
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relatively low uncertainty were considered for the final classification of the species 

(IUCN Standards and Petitions Subcommittee 2011). Therefore, for each species, the sub-

criteria on which classification depended were identified, to specify under which 

conditions the species were assigned the final category (Table 4.6). Results indicated that 

sub-criterion B2ab(iii) was the most widely met by species throughout the assessment, 

both in isolation and in conjunction with other sub-criteria.  

Table 4.6 Summary of the different sub-criteria assigned to the species under the 

threatened categories, CR (Critically Endangered), EN (Endangered) and VU 

(Vulnerable). 

The level of uncertainty measured in this assessment under each of the criteria of the RL 

varied significantly among criteria (Table 4.7). Greater uncertainty was identified in the 

Criteria for which information was scarce. Criterion B had the largest number of species 

with low uncertainty as expert knowledge assisted in the process, with Criterion B1 

having the largest number of species assessed with lowest level of uncertainty. 

  

 

 

 

 

 

 

 

Category  

Sub-criteria CR EN VU Total 

A2acd; B2ab(iii,v)  1  1 

A2c; A3c; B1ab(iii); B2ab(iii)  1 3 4 

A2c; A3c; B1ab(iii,iv); B2ab(iii,iv)   1 1 

A2c; A3c; B2ab(ii,iii)   1 1 

A2c; A3c; B2ab(iii)   3 3 

A2c; B1ab(iii); B2ab(iii)    1 1 

A2cd; A3cd; B1ab(ii,iii,iv,v); B2ab(ii,iii,iv,v)  1  1 

A2cd; A3cd; B1ab(iii); B2ab(iii)    1 1 

A2cd; A3cd; B2ab(iii)   1 1 

A2cd; A3cd; B2ab(iii,iv,v)   3 3 

A2cd; A3cd; B2ab(iii,v)   1 1 

A3c; B1ab(iii); B2ab(iii)   1  1 

A3c; B1ab(iii,v); B2ab(iii,v)  1  1 

A3c; B2ab(iii)  1  1 

B1ab(ii,iii); B2ab(ii,iii)  1  1 

B1ab(iii); B2ab(iii)   6 6 12 

B1ab(iii,v); B2ab(iii,v)  4  4 

B2ab(i,ii,iii)  1  1 

B2ab(ii,iii)  1  1 

B2ab(iii) 1 18 5 24 

B2ab(iii,iv)  1  1 

B2ab(iii,iv,v)  2 1 3 

B2ab(iii,v)  7 1 8 

Total 1 47 28 76 
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 Uncertainty level 

Criteria High Medium Low 

A1 Reduction in population size 128 1  

A2: reduction in population size
1
 98 20 11 

A2: reduction in population size
2
 129   

A3: reduction in population size
3
 129   

A4: reduction in population size
4
 129   

B1: small range (EOO)
5
 30 6 94 

B1: small range (EOO)
6
 16 113  

B2: small range (AOO)
7
 47 58 24 

B2 : small range (AOO)
8
 45 44 40 

B(a) Severely fragmented
9
 44 59 26 

B(a) Locations less than 10
9
 32 57 40 

B(b) Continuing decline
9
 31 63 35 

B(c) Extreme fluctuation 129   

C1: Number of mature individuals less than 10000  128 1  

C1: Continuing decline in the future more than 10% 128 1  

C2: small and declining population 128 1  

C2: ai) Number of mature individuals >1000 128 1  

C2: aii) % individuals in subpopulation is 90-100% 128 1  

C2: b) Extreme fluctuation of number of individuals 128 1  

D: Individuals less than 1000 and <20 km
2
 AOO or less than 5 

locations 

129   

D2: Restricted area of occupancy and with a threat that could change 

taxon to CR or EX 

128 1  

E: Quantitative analysis  129   

Table 4.7 Uncertainty for all the species under each of the RL criteria and the information 

used to assign the classification. 
1
) A2: based on expert knowledge. 

2
) A2: based on the 

three scenarios detailed in the methodology to estimate the percentage of forest loss over 

a period of 50 to 100 years in the past. 
3
) A3: based on the three scenarios detailed in the 

methodology to estimate the percentage of forest loss over a period of 50 to 100 years in 

the future. 
4
) A4: based on the three scenarios detailed in the methodology to estimate the 

percentage of forest loss over a period of 100 years including past and future. 
5
) B1: based 

on the MCP and expert knowledge. 
6
) B1: based on the GlobCover map area for each 

species. 
7
) B2: based on the AOO at 4 km

2
 and expert knowledge. 

8
) B2: based on the 

AOO at 100 km
2
 and expert knowledge. 

9
) Based on expert knowledge.  

4.5  Discussion 

In this assessment, of the 129 tree species evaluated using the IUCN RL criteria, 76 

species were classified within a threatened category. 467 candidate species were excluded 

from the assessment as they are endemic to or only had georeferenced records available 
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from one country of the 6 countries studied. 64 species were known to be in more than 

one country but were not associated with georeferenced records, and were therefore 

excluded. Of the national endemic species, 199 have been evaluated previously at the 

scale of individual countries using the IUCN Categories and Criteria (Figure 4.8). 87 of 

these were listed in the IUCN website: (www.iucnredlist.org, consulted May 2010), of 

which 84 are species from Ecuador. Taking into consideration these evaluations and the 

results of the current research, a total of 241 tree species have been identified as being 

under threat in the tropical Andes (Figure 4.8). 32 species were Near Threatened, as these 

fulfilled most but not all the Criteria and sub-criteria, or were close to the Vulnerable 

Category.  

Country CR EN VU NT LC DD NE Total 

Ecuador 2 36 52 9 5 1 61 166 

Peru 9 31 15 2 3 10 50 120 

Colombia 4 5 5 2 1 0 60 77 

Bolivia  5 1   1 94 101 

Argentina       3 3 

Venezuela        0 

Total endemics 15 77 73 13 9 12 268 467 

This evaluation 1 47 28 19 29 5 - 129 

Total Andes 16 124 101 32 38 17 268 596 

Table 4.8 Red List classification of national endemic species evaluated previously in 

national-scale assessments (Calderón et al. 2002; IUCN 2010; León-Yánez et al. 2011; 

León 2006; Llamozas et al. 2003; Meneses and Beck 2005). In addition, the results of this 

assessment are presented, focusing on those species present in more than one country, 

together with the total number of species in each threat category.  

The tropical Andes is a centre of plant endemism (Kier et al. 2005; Morawetz and Raedig 

2007; Myers et al. 2000). Brummitt and Lughadha (2003) have further identified the 

tropical Andes as one of the hottest biodiversity hotspots for conservation, in terms of the 

species richness, endemism and the relation with the extent of the remaining vegetation 

available in the hotspot. Previous regional assessments of biodiversity such as those 

carried out by Brooks et al. (2002) and Myers et al. (2000) in the tropical Andes 

biodiversity hotspot have identified that out of an estimated 45,000 plant species present 

in the hotspot, 20,000 are endemic to the Andes, of which 78 species were identified as 

threatened in the IUCN RL. Furthermore, these authors identified 3,389 species of 

mammals, birds, reptiles and amphibians present in the region. 1,567 of these species 
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were identified as endemic, 124 endemic species of which were considered threatened, 

with two bird species having gone extinct. More recently, Orme et al. (2005) identified 

2,139 bird species present in this hotspot, of which 483 are estimated to be endemic 

within the hotspot and 114 are threatened. A further study carried out by Young et al. 

(2001) identified that the tropical Andes above 1000 m. a.s.l. in Venezuela, Colombia, 

Ecuador and Peru have the highest population decline of amphibians in Latin America, 

with several species locally extinct. In the case of fish in the tropical Andes, which have 

been little studied, it has been estimated that there are around 400 to 600 species present 

and at least 40% of them are endemic, some of which are threatened (Anderson and 

Maldonado-Ocampo 2011).  

Other RL assessments at the national scale have identified the number of endemic species 

and the number of these that are threatened in different species groups (Vié et al. 2009; 

Table 4.9). These values provide a basis for comparison with the total of 241 tree species 

that are endemic to the region and are also threatened, based on the results of the current 

assessment and the national-scale assessments undertaken previously. These values 

suggest that the number of threatened tree species that are endemic to the region is 

substantially higher than the equivalent number of mammals and birds, but less than that 

of amphibians, as this assessment only included a fraction of the total tree species that are 

endemic to the region that didn’t fit the criteria to be assessed in this evaluation. When 

comparing these figures, however, it should be noted that the current assessment was 

limited to altitudes >1500 m, whereas these figures for other species groups refer to the 

entire tropical Andean region, including lowland areas.  

 Mammals      Birds  Amphibians     Conifers   Cycads 

Country Total 

endemic 

Threatened 

endemic 

Total 

endemic 

Threatened 

endemic 

Total 

endemic 

Threatened 

endemic 

Total 

endemic 

Threatened  

endemic 

Total 

endemic 

Threatened 

endemic 

Argentina 82 13 12 0 37 21 0 0 0 0 

Bolivia 22 4 15 5 63 32 2 0 1 0 

Colombia 37 9 65 40 333 158 0 0 6 6 

Ecuador 29 11 32 17 155 100 0 0 1 1 

Peru 55 19 106 36 217 69 0 0 2 2 

Venezuela 19 6 38 14 139 62 5 1 0 0 

Total 244 62 268 112 944 442 7 1 10 9 

Table 4.9 Endemic species from the tropical Andean countries and the number of 

endemic species that are threatened. Adapted from: Vié et al. (2009).  
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Comparison of the results obtained in this RL assessment with previous assessments of 

tree species in other locations, such as those described in Newton and Oldfield (2008), 

shows that the percentage of regionally endemic species threatened in this assessment 

(59%) was somewhat higher than the mean value (45%) recorded in previous targeted 

assessments (Table 4.10). In comparison with other assessments of tree species 

undertaken in the Latin American region, the percentage of threatened species is higher 

than in Guatemala and in Central American dry forest, but slightly lower than that of 

Mexican cloud forest (González-Espinosa et al. 2011). The Mexican assessment included 

many local endemics, which were excluded from the current assessment, suggesting that 

the degree of threat to montane tree species in the tropical Andes is at least comparable to 

that of Mexico. The principal threatening processes are similar in the two regions, namely 

deforestation and forest fragmentation (González-Espinosa et al. 2011). Together, these 

results provide evidence of the fact that montane biodiversity is particularly threatened 

(Cayuela et al. 2006; Cincotta et al. 2000; Jarvis et al. 2010). 

   No. of taxa included in different Red List categories 

Assessment focus No. of tree 

taxa 

included 

% 

threatened CR EN VU LC NT DD NE 

Andes (this assessment) 129 59 1 47 28 29 19 5 0 

Acer spp. (maples) 179 26 6 15 25 80 8 20 25 

Quercus spp. (oaks) 508 11 13 16 27 97 22 33 ca. 300 

Caucasus region 150 21 7 10 15 65 14 39 0 

Ethiopia and Eritrea 135 78 42 35 28 19 9 2 0 

Magnoliaceae (magnolias) 245 46 31 58 23 20 9 10 94 

Guatemala 48 52 10 13 2 0 0 23 – 

Cuba 125 90 73 23 17 8 2 2 – 

Dry forest of Mesoamerica 544 8 1 17 24 457 39 6 – 

Central Asia 97 47 25 12 9 25 8 18 – 

Mexican cloud forest 762 61 83 206 175 215 78 2 0 

Table 4.10 Comparison of the results in this assessment with recent Red List assessments 

of different groups of tree species, coordinated by the Global Tree Specialist Group, 

described in Newton and Oldfield (2008) and González-Espinosa et al. (2011) for 

Mexican cloud forest. CR: Critically Endangered; EN: Endangered; VU: Vulnerable; LC: 

Least Concern; NT: Near Threatened; DD: Data Deficient; NE: Not Evaluated. 

Although deforestation is one of the principal threats to many montane tree species 

(Table 3.5 in Chapter 3), other threatening processes may also be influential. Threats 

such as invasion of exotic species, forest degradation and overexploitation (Asner et al. 
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2009) may also be affecting tree populations over the long term (Gibson et al. 2011). 

Species such as Polylepis spp. have been heavily exploited in the Andes (Bellis et al. 

2009; Gareca et al. 2010; Jameson and Ramsay 2007), and many species of this genus are 

now restricted to small forest fragments in the landscape. In countries such as Bolivia, 

only 11% of its potential distribution area remains covered with Polylepis woodland 

(Gareca et al. 2010). Also, species of high commercial value such as Cinchona spp., 

Podocarpus spp., Zanthoxylum spp. and Ilex spp., have also been subjected to 

overexploitation at different times in the past, which is likely to have reduced population 

size. Cinchona spp., for example, were particularly sought after for their medicinal 

properties up to the 1950s (Cuvi 2011), until a synthetic substitute for quinine was 

created. Today these species are still exploited by local communities and the forests 

continue to be degraded (Ayma-Romay and Padilla-Barroso 2009), despite restrictions 

established by some countries to halt these activities. The populations of these species are 

further jeopardised by the fact that some regenerate with difficulty in transformed 

landscapes, as is the case of Podocarpus spp. (Ayma-Romay and Padilla-Barroso 2009). 

Many uncertainties arise with the application of the RL, many of which are described in 

the RL guidelines (IUCN Standards and Petitions Subcommittee 2011). Furthermore, 

applying the RL to plants and particularly to tree species has been recognized to have 

particular challenges, relating to the lack of accurate information on their status and 

distribution (Newton and Oldfield 2008; Nic Lughadha et al. 2005). The different types 

and sources of uncertainty in relation to the RL have been identified and discussed by 

various authors e.g. Akçakaya et al. (2000), Mace el al. (2008) and Newton (2010). 

Regan et al. (2002) provide a useful overview of the different kinds of uncertainty that are 

commonly encountered in conservation ecology. Epistemic uncertainty, which 

characterizes many of the input variables for RL, is classified by these authors into six 

types: measurement error; systematic error; natural variation; inherent randomness; model 

uncertainty; and subjective judgment. These authors also recognise linguistic uncertainty, 

classified into five types: vagueness, context dependence, ambiguity, indeterminacy of 

theoretical terms, and underspecificity. Akçakaya et al. (2000) describe the main sources 

of uncertainty in the RL process as 1) measurement error, owing to the lack of 

information for some or most of the variables used in the rules; 2) semantic uncertainty, 

which is mostly attributable to the inexact definitions used in the IUCN guidelines, and 3) 
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natural variability, including temporal and spatial variation in the population size and 

distribution. 

In terms of the RL assessment presented here, the largest area of uncertainty is 

measurement error; this can be viewed from different aspects. Firstly, this may be 

considered in relation to the so- called “Linnean” and “Wallacean” shortfalls (Whittaker 

et al. 2005), which refer respectively to the inadequacy of taxonomic knowledge and 

distribution data available to assess the species. This has been identified more generally 

as a major constraint to the conservation planning process in tropical regions (Cayuela et 

al. 2009), and the identification of species distributions for further conservation actions 

(Lavoie 2013). Although data are increasingly being made available through digitized 

biological portals and databases such as GBIF and the Missouri Botanical Gardens 

database, which provide quantitative georeferenced species distribution data (Bachman et 

al. 2011; Beck et al. 2013), such data does not always provide an accurate indication of 

the full distribution of a species. The georeferenced data for the species used in this 

research, shown in Figure 4.9, illustrates the distribution of the species collections 

evaluated along the Andes. The first aspect that is apparent is that there seem to be gaps 

in the collection efforts, many of which are explicable in terms of the limited access to 

different locations (Feeley and Silman 2009). This lack of species data is likely to have 

resulted in an underestimation of the species’ ranges (Feeley and Silman 2009; Knapp 

2002). However, that lack of data in some species was related to their rarity and degree of 

habitat specialism, implying a restricted distribution (Feeley and Silman 2009). Using 

expert’s knowledge, to evaluate the accuracy of the records and the estimated species’ 

distribution, played an important role in deciding an appropriate category of threat for 

each of the assessed species, reducing the geo-referencing error encountered in the 

research. This was reduced even further as each of the species was evaluated at least 

twice due to the fact that the assessed species were to be found in at least two countries.  
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Figure 4.9 Georeferenced distribution of the species collections evaluated along the 

Andes. Different dot colours are different species. 

A second area of uncertainty is semantic uncertainty. Although the latest IUCN RL 

Categories and Criteria (IUCN 2001), with their corresponding guidelines (IUCN 

Standards and Petitions Subcommittee 2011), address much of the possible ambiguity of 

definitions, there is still a significant area of uncertainty in terms of their applicability to 

tree species, especially when the available data are scarce. For example, the establishment 
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of an appropriate scale to use for AOO estimation of different species has been discussed 

in the literature (Hartley and Kunin 2003; Willis et al. 2003), as the resolution used for 

this estimation influences the category given to the species (Rivers et al. 2011). As 

illustration, if this value is too coarse, the species may not be able to be listed as CR and 

vice versa. A further issue in relation to estimation of EOO in relation to the B criteria as 

indicated by Newton and Oldfield (2008) is that in previous RL assessments of tree 

species, there was a tendency to use criteria B1 and B2 to classify the species under one 

of the RL categories (Table 4.11). This reflects the strong reliance on herbarium 

accession data for EOO estimations in tree species, and in plant species more generally 

(Nic Lughadha et al. 2005). While it can be argued that conservation assessments based 

on range estimates are repeatable and objective (Rivers et al. 2011), they only form part 

of what is required by a comprehensive RL assessment. Perhaps the most significant area 

of uncertainty in the current assessment was the estimation of actual population size, as 

inventory data for the majority of tree species in the region is entirely lacking.  

Assessment focus 

Red List Criterion 

A1 A2 A3 A4 B1 B2 C1 C2 D 

Andes (this assessment) 0 16 14 0 12 73 0 0 0 

Acer spp. (maples) 1 22 1 0 11 10 1 3 7 

Quercus spp. (oaks) 4 12 0 0 17 17 0 1 19 

Caucasus region 0 3 0 0 21 11 0 0 0 

Ethiopia and Eritrea 0 24 0 0 65 77 0 0 0 

Magnoliaceae (magnolias) 0 3 0 3 83 30 4 8 8 

Guatemala 0 4 0 0 8 20 0 2 0 

Cuba 2 2 1 7 39 96 1 12 17 

Dry forest of Mesoamerica 0 0 0 0 40 2 0 0 0 

Central Asia 0 3 0 0 12 40 1 0 1 

Mexican cloud forest 7 18 17 98 71 53 2 10 4 

Table 4.11 Comparison of the frequencies of criteria cited in Red List assessments of tree 

species cited in Newton and Oldfield (2008). Multiple criteria may be cited for a single 

taxon.  

Additional uncertainty arises from the methodology used for identifying the areas of 

potential distribution. The method applied here focused on areas that are >1500 m a.s.l., 

through exclusion of species recorded below this altitudinal threshold. It is possible that 

owing to the species being under-recorded in certain areas, their distributional range 

could have been underestimated. Some of the species included in this analysis may 
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therefore actually occur below the altitudinal threshold adopted. Further uncertainty is 

associated with the use of maps to exclude unsuitable areas. The GlobCover map used in 

this assessment may have overestimated the species’ EOO values, as unsuitable areas 

were directly related to human activities such as rainfed areas and cropland. 

Overestimation may have also occurred in areas with land cover types that are not 

suitable for the species or where the species no longer occur. In addition, some of the 

transformed vegetation that may not be the original forests but an alternative vegetation 

type may still support the species and allow their survival. The use of other global forest 

maps, such as the one produced by Schmitt et al. (2009) that defines “forest” using a 

minimum threshold of 10% tree cover, could also potentially be used to estimate EOO. 

However, these may exclude isolated patches of shrubs/forest or mixed grasslands/shrubs, 

where montane tree species in the Andes occur, potentially leading to EOO 

underestimation.  

Expert knowledge played an important role in this assessment. For example, it allowed 

the identification of the level of rarity of the species and the threats that they face, as well 

as validation of species distributions where georeferenced data were lacking. Expert 

judgment has been identified to be important in the RL process but is also an area of 

uncertainty (IUCN Standards and Petitions Subcommittee 2011). Previously, it has been 

related to biases in the listing process, where personal interests of the experts resulted in 

inflated lists of species at risk (Possingham et al. 2002). Recently, the RL process has 

become more robust, reducing reliance on expert knowledge to categorize the species 

subjectively, but this remains as a fundamental part of the RL assessment (Newton and 

Oldfield 2008; Rodrigues et al. 2006). Expert knowledge has been used widely in 

previous RL evaluations of tree species (Newton and Oldfield 2008), for example for 

montane tree species in Mexico (González-Espinosa et al. 2011) and Magnoliaceae 

(Cicuzza et al. 2007), but most conservation assessments rely on the use of expert 

knowledge only when objective observations are not available (Burgman et al. 2001; 

Drew and Collazo 2012; Drew and Perera 2011; Kangas and Leskinen 2005; Orsi et al. 

2011; Perera et al. 2012).  

Measuring the level of uncertainty that expert knowledge adds to any conservation 

assessment is valuable (IUCN Standards and Petitions Subcommittee 2011). In this RL 

the uncertainty was measured as the level of confidence that experts had for each of the 
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species, in terms of their knowledge of the species and evaluation of the data provided 

(Table 4.7). Expert knowledge relating to Criteria B1 and B2 had the lowest level of 

uncertainty, as expertise was validated by empirical data provided by the available 

herbarium records and preliminary estimations of EOO and AOO provided by GIS. 

Distribution data are typically the most abundant resources available to experts 

undertaking RL assessments (Bachman et al. 2011; Newton and Oldfield 2008). The 

areas in which the experts had greater uncertainty were related to estimation of the AOO 

and EOO of those species that had relatively few distributional records. The current 

research supports the finding of Rivers et al. (2011), who suggested that there is a need 

for at least five good valid records in order to carry out a robust RL assessment.  

In conclusion, this assessment identified that the number of threatened trees in the tropical 

Andean region is high relative to other groups of organisms such as mammals, birds and 

fish, and provides further evidence of the congruence that occurs in this region of species 

richness, endemism and threat. Therefore tree species should be factored into 

conservation plans in the region and be a priority for conservation action, as they are 

currently not taken into consideration as much as other more “charismatic” species such 

as birds or large mammals. 

Recent research by Giam et al. (2010), which used the number of vascular plants that 

occur globally, described in Kier et al. (2005), and the ecoregions where these species 

occur, described by Olson et al. (2001), established a nonlinear mixed-effects species-

area relationship, to identify the species richness in each ecoregion and the countries in 

which they occur. These authors have also added historical land use cover and projected 

human population density to identify current and future endangerment of vascular plants, 

together with the average per capita gross national income adjusted for purchasing power 

parity, to identify the financial resources of individual countries and estimate how they 

overlap with those threatened ecoregions. Although this is a different approach to the one 

in this research, it has also concluded that plant species in many countries, such as those 

in the tropical Andes, are threatened and in need of conservation actions, owing to the 

large number of endangered species and the poor governance and underfunding, despite 

efforts of non-governmental advocacy groups.  
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Other recent research by Waldron et al. (2013), analysed mammal biodiversity and 

country-level conservation funding from different sources including government, donors, 

trust funds, and self-funding, to establish where there is underfunding at the global scale. 

These authors concluded that Colombia and Venezuela are in the top 40 countries that are 

underfunded and have high levels of threatened biodiversity (mammals). This coincides 

with current research, identifying the Andes as an area with important biodiversity at the 

global scale, which is currently highly threatened. Despite the funding available for 

conservation actions, there is still a need for coherent conservation planning and targeted 

investment to reduce biodiversity loss.  

Since the Tropical Andes are an important area of the world for biodiversity conservation 

and much of it is considered under threat, a range of conservation measures have been 

proposed in the region in order to respond to these pressures (Dinerstein et al. 1995). 

Different institutions have invested heavily on developing, strengthening and protecting 

key biodiversity areas (KBAs). Some of these institutions are: Conservation International 

(CI), BirdLife International, Wildlife Conservation Society, World Wildlife Fund, The 

Nature Conservancy, as well as the national governments of the states within the region. 

For example, BirdLife in collaboration with CI have identified important areas for the 

conservation of birds (BirdLife and Conservation International 2005), based on the 

number of endangered bird species occurring in the Andes. However, as this assessment 

itself recognized, it does not integrate information on other endangered fauna and flora, 

but is a step towards the creation of KBAs in the region. Another example of the efforts 

of these institution is the work carried out by CI in order to increase the number of 

biodiversity corridors in the region (Conservation International 2013; Critical Ecosystem 

Partnership Fund 2006), which has been identified as an area with several endemic 

species that are threatened and in need of conservation actions.  

These examples illustrate the general state of the biodiversity in montane forest in the 

tropical Andes, the lack of information regarding the species that need to be prioritised 

for conservation action, and imperfect information regarding the areas where these efforts 

need to be directed. Threatened trees species do not always form a fundamental role in the 

conservation actions. The role of protected areas in the conservation of endangered trees 

species will be explored in chapter 5, as identifying the areas where the distribution of 
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multiple threatened species coincide, which could provide valuable information for 

conservation actions.  
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5 Modelling potential species distribution under climate 

change scenarios for the tropical Andes 

5.1  Introduction 

Historically, climate change has had a great influence on shaping the distribution of 

species (Cárdenas et al. 2011; Davis and Shaw 2001; Luterbacher et al. 2004), and 

today it is recognised as one of most influential causes of ecosystem change 

(Parmesan 2006; Parmesan et al. 2013; Rosenzweig et al. 2008; Walther et al. 

2002). The rate at which changes will occur during the next century will determine 

whether species are able to adjust, for example by migrating to suitable habitats, or 

will face extinction (Saxe et al. 2001; Thomas et al. 2004). Observed migration 

rates required for tree species have been estimated in different parts of the world, 

ranging from 20 to 40 km per century, whereas the projected rate for the 21
st
 

Century is expected to be 300 to 500 km per century (Davis and Shaw 2001). Past 

climate changes in montane forests, as in the Tropical Andes, have shown that an 

increase of ~6°C has led to an upward migration of lowland species which in turn 

reduced and in many cases replaced highland taxa (Bush et al. 2004; Cárdenas et al. 

2011; Feeley et al. 2012; Urrego et al. 2010). These estimations show that previous 

migration rates are far below the rates required to track projected climate changes in 

the future, and some species are already showing a contraction in their distribution 

ranges (Lindner et al. 2010; Zhu et al. 2012). This highlights the potential impact of 

climate change on the extinction risk of species (Root et al. 2003), especially for 

endemic species (Malcolm et al. 2006; Thomas et al. 2004; Thuiller et al. 2011) and 

those in areas where biodiversity is already threatened by habitat loss and 

degradation (Giam et al. 2010; Ramírez-Barahona et al. 2011; Travis 2003).  

Assessing the effects of climate change on forest communities requires an 

understanding and quantification of current mechanisms controlling present 

geographic distributions, and how such distributions may change in future in 

response to climate change (Sykes and Prentice 1996). Development of such 

projections requires some kind of modelling approach. Modelling can be performed 

using ‘mechanistic’ models based on ecophysiology, or ‘bioclimate envelope’ 
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models based on correlations between species distribution and climate. Species 

distributions correlate with climate at a range of spatial scales (Way and Oren 

2010). At a small scale, topography plays a role in mountain ranges, modifying the 

macroclimate and producing an altitudinal distribution of the species according to 

the climatic gradient (Trivedi et al. 2008). Climatic limitations that restrict species 

distributions at a continental or altitudinal scale can be physiological constraints on 

survival or reproduction, or biotic interactions such as competition (Attorre et al. 

2011; Ruiz-Benito et al. 2013). The direct and indirect effects of these constrains 

may dominate at opposing range margins, such that the cold (poleward or upper 

altitudinal) margins are driven by intolerance to a stressful climate while warm 

margins are delineated by biotic interactions (Loehle and LeBlanc 1996; Trivedi et 

al. 2008).  

There are several methods that can be used for modelling species distributions 

(Appendix IV). For example, MaxEnt (Phillips et al. 2004) has recently become a 

popular method to model species’ potential distribution (e.g. Busch et al. 2012; 

Jiménez-Alfaro et al. 2012; Rinnhofer et al. 2012; Warren et al. 2013), as it can be 

used effectively when distribution data are scarce (Hernandez et al. 2008; Pearson 

et al. 2007). This is a characteristic of many of the tree species within the tropical 

Andes. Also, this method has recently been used to investigate the vulnerability of 

plant species to climate change (Crossman et al. 2012; Elith et al. 2006a). However, 

this capacity to work with small number of records has been attributed to the fact 

that the program assumes that the data has been systematically collected or 

randomly sampled (Phillips et al. 2009; Royle et al. 2012), which is not the case for 

the species studied here. This in turn, results in the autocorrelation of the model 

residuals and inflates model accuracy (Kramer-Schadt et al. 2013). Recent research 

by Golicher et al. (2011) identified that the results from MaxEnt are very similar to 

Generalized Additive Models (GAM). Furthermore, more recently Renner and 

Warton (2013) Other methods that can potentially be used for modelling species 

distributions include Support Vector Machines (KSVM), and regression trees. 

These have been used to determine species potential distribution of tree species in 

other regions e.g. Golicher et al. (2011). GAMs are a method for detecting non-

linearity of predictors and response function and then building a parametric model. 
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This technique applies smoothers independently to each predictor and additively 

calculates the component response (Franklin 2009; Guisan and Zimmermann 2000; 

Yee and Mitchell 1991). This is often used in multiple regression analysis. This 

method has been demonstrated to have high predictive accuracy when used for 

spatial prediction and species distribution modelling (Franklin 2009). Classification 

trees or recursive partitioning are used to predict membership of cases of a 

categorical dependent variable from their measurements on one or more predictor 

variables (De'ath and Fabricius 2000). Classification trees are developed using 

different measures that recursively split data sets into increasingly homogeneous 

subsets representing class membership, based on ranges of values of predictor 

variables (De'ath and Fabricius 2000). This takes place in three stages: tree 

building, tree stopping and tree pruning. All classification tree approaches employ 

hierarchical, recursive partitioning of the data, resulting in decision rules that relate 

values or thresholds in the predictor variables with pixel classes (Rogan et al. 

2008). KSVM are perhaps the least widely used of these three methods, but carry 

out classification and regressions. The approach uses a “kernel trick”, which is a 

function that returns the inner product between two points in a suitable feature 

space, thus defining a notion of similarity, with little computational cost even in 

very high-dimensional spaces (Karatzoglou et al. 2006). 

Identifying the potential effects of climate change on species potential distribution 

does not only give an insight into individual species, which can contribute to 

improved conservation status assessments and future conservation measures, but 

can also inform conservation planning and management at a regional scale (Busch 

et al. 2012). Outcomes could have implications for the choice of selecting areas and 

networks for conservation priorities, as currently these are typically fixed in space 

and time (Araújo et al. 2004). Furthermore, as climate change occurs, ranges of 

some species may well shrink, but for some other species ranges may shift, and 

therefore the composition of communities will be transformed. Therefore, existing 

protected areas may not include areas where species may be located in the future 

(Hole et al. 2011a; Shaw et al. 2012). 
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Climate change is becoming a focal issue for conservation planning and policy 

making, as extensive research provides evidence on the potental impacts of climate 

change on species, increasing their extinction risk (Araújo et al. 2005; Butchart et 

al. 2010; Feeley et al. 2011; Keith et al. 2008; Midgley et al. 2002; Schwartz et al. 

2006; Thomas et al. 2004) and more recently in cloud forests (Ponce-Reyes et al. 

2013). However, only a few studies e.g. (Bomhard et al. 2005; Thuiller et al. 2005) 

have assessed species extinction risk under projected climate change using the Red 

List assessement and none of these have been carried out in the Tropical Andes.  

The hypothesis tested in this chapter is that projected changes in distributional range 

resulting from climate change will increase the extinction risk of many tree species, 

particularly those associated with high elevations and those with restricted 

geographical ranges. Therefore, the main objective of this research is to investigate 

the potential impact of climate change on the extinction risk of selected tree species 

using different species distribution modelling techniques, using the Red List 

assessment process described in Chapter 4. 

5.2  Methodology 

Study area 

The tropical Andes is a unique region with multiple ecosystem types, reflecting 

high species and ecosystem diversity as a result of large altitudinal and latitudinal 

gradients (Josse et al. 2003; Young et al. 2002; Young 2007). Montane forests of 

the tropical Andes contain the largest concentration of species with restricted 

distribution in South America (Dinerstein et al. 1995; Latta et al. 2011), which is 

manifested in the high number of endemic species of fauna and flora (Brehm et al. 

2005; Brooks et al. 2002; Churchill 1996, 2009; Fjeldså and Irestedt 2009; Grenyer 

et al. 2006; Latta et al. 2011; Myers et al. 2000; Pennington et al. 2010). Latin 

America has suffered a high loss of forest habitat (DeFries et al. 2005) and the 

tropical Andes is an area currently subjected to processes of exploitation, 

colonization, deforestation, fragmentation and resource extraction (Chapter 3), to 

which climate change could further contribute to the long term biodiversity (Bellard 

et al. 2012). The tropical Andes region in this assessment is described as montane 

areas above 1500 m a.s.l., occurring in Argentina, Bolivia, Colombia, Ecuador, Peru 
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and Venezuela. Montane forests in the tropical Andes are identified as those 

occurring from Venezuela, starting in the depression of Barquisimeto in Lara state, 

until they reach their southernmost limit in the Northwest of Argentina (29° S) in 

the border between Catamarca and La Rioja provinces. Including this sub-tropical 

point in Argentina as part of the study allows the identification of potential areas to 

which species may be able to migrate, seeking cooler southern environments 

(Feeley 2012). To investigate the species distribution in the region predictions were 

made to an area covering: Longitude -81.3
o
 to -55.3

 o
 W and Latitude 12.3

 o
 N to -

29.3
o
S. 

Species Data 

Presence-only data was obtained for 129 tree species as described in Chapter 4. 

Records were filtered to identify unique records for each location. The total number 

of records for all the species was 1666, with Cestrum peruvianum having the largest 

number of records (65). 25 species had fewer than 5 records and were therefore 

excluded from this analysis and classified as Data Deficient (DD). Modelling 

methods do not perform well with fewer than 5 records (Hernandez et al. 2006) and 

more recently it has been identified that in order to estimate a realistic species’ 

conservation status, at least 15 georeferenced records are preferable (Rivers et al. 

2011). Having few localities increases the problems associated with the generation 

of independent data to test the models and the statistical tests to validate them 

(Pearson et al. 2007). Therefore, the analysis undertaken here needs to be 

interpreted with caution, especially for those species with few records.  

A robust modelling process would include absence data (Lobo et al. 2010; Raes and 

ter Steege 2007). However, these data are more limited than presence-data and were 

not available in this study. Therefore 1000 randomly selected background data 

points were obtained to characterize the environment in the study region (Golicher 

et al. 2012).  

Environmental data 

Current climate data were derived from the WorldClim data set (Hijmans et al. 

2005), which is available at 1 km resolution. Making decisions about which 

environmental variables to use and their relative contribution remains a challenge 
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for species distribution modelling, as selecting variables that are physiologically 

relevant is very important (Synes and Osborne 2011; Williams et al. 2012). As the 

species data are sparsely sampled throughout the region, less information is likely to 

be revealed about the relationship between response and explanatory variables than 

in more densely sampled regions. Therefore, in this situation, fewer variables may 

be needed to adequately predict areas with similar environments, although they 

might inadequately define the range limits (Williams et al. 2012). Many 

environmental variables are typically highly correlated (Braunisch et al. 2013; 

Golicher et al. 2012) and the selection of those variables that are the most 

influential on the species distribution is therefore a challenge (Williams et al. 2012). 

A principal component analysis (PCA) analysis provides a view of the multiple 

colianearity among the different variables, allowing the visualization of the weights 

that each variable has on the species’ presence points. Hijmans and Graham (2006) 

found that the more variables were used from BIOCLIM data the more under-

prediction is made. Therefore, for the purpose of investigating the effect of 

variables in the models, five combinations of variables with high component load 

were tested with the different models, which were: a) 2, 5, 12 and 14; b) 2, 3, 13 

and 14; c) 5, 9, 16 and 18 and d) 2, 5, 13 and 14, e) 2, 5, 12 and 13 (see Table 5.1. 

for the variable details). 

Based on the PCA weightings, biological interpretability (Golicher et al. 2011) and 

because most of the variability was explained by the first four axes from which each 

of the variables were taken, the following four variables were selected: 1) Mean 

annual temperature, 2) Mean diurnal range (mean of monthly (max temp. - min 

temp.)), 3) Precipitation of the wettest month and 4) Precipitation of the driest 

month. Some of these variables have been used previously to investigate the 

potential impact of climate change on the ecoregions in the region (Tovar et al. 

2013), potential species distribution in some Andean countries (Loiselle et al. 2008) 

and climate change effects in other tropical montane cloud forests in the neotropics 

(Ponce-Reyes et al. 2013). 
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N Variables Comp.1 Comp.2 Comp.3 Comp.4 Comp.5 

1 Elevation 
 

0.400 
  

0.133 

2 BIO1 = Annual Mean Temperature 
 

-0.396 
   

3 
BIO2 = Mean Diurnal Range (Mean of monthly (max 

temp - min temp))     
0.628 

4 BIO3 = Isothermality (BIO2/BIO7) (* 100) 
  

0.576 
  

5 
BIO4 = Temperature Seasonality (standard deviation 

*100)   
-0.575 0.109 0.107 

6 BIO5 = Max Temperature of Warmest Month 
 

-0.351 
  

0.208 

7 BIO6 = Min Temperature of Coldest Month 
 

-0.334 0.209 
 

-0.237 

8 BIO7 = Temperature Annual Range (BIO5-BIO6) 
  

-0.236 
 

0.432 

9 BIO8 = Mean Temperature of Wettest Quarter 
 

-0.387 -0.102 
  

10 BIO9 = Mean Temperature of Driest Quarter 
 

-0.382 0.19 
  

11 BIO10 = Mean Temperature of Warmest Quarter 
 

-0.385 
   

12 BIO12 = Annual Precipitation -0.370 
  

0.208 
 

13 BIO13 = Precipitation of Wettest Month -0.536 
    

14 BIO14 = Precipitation of Driest Month 
   

0.570 
 

15 
BIO15 = Precipitation Seasonality (Coefficient of 
Variation) 

-0.224 
  

-0.409 0.269 

16 BIO16 = Precipitation of Wettest Quarter -0.535 
    

17 BIO17 = Precipitation of Driest Quarter 
   

0.53 
 

18 BIO18 = Precipitation of Warmest Quarter -0.431 
 

-0.354 
 

-0.372 

19 BIO19 = Precipitation of Coldest Quarter -0.210 
 

0.197 0.401 0.266 

Table 5.1 PCA output matrix of five components (comp. 1-5) of the environmental 

variables considered for species modelling. Values presented are weights 

(regression coefficients). Climatic variables and elevation were obtained from the 

WorldClim dataset (Hijmans et al. 2005). 

Climate change scenarios 

For analysis of potential distribution under climate change scenarios, data were used 

from the results of the Hadley Centre Coupled Model for two of the Special Report 

on Emission Scenarios (SRES) for the year 2080, namely HADCM3 for scenario 

A2 and B2. These were prepared for the Intergovernmental Panel on Climate 

Change (IPCC) Fourth Assessment Report (IPCC 2007) and were downscaled by 

Ramirez and Jarvis (2008). These scenarios were designed to consider different 

trajectories of future economic development, and energy use and perhaps this 

choice of scenarios is seen as conservative or optimistic as more fossil fuel-

intensive scenarios such as A1FI were excluded, but they still have significant 

implications for biodiversity. Also, recent research suggests that the more extreme 

warming predictions may be less likely to occur (Huntingford 2013). The A2 

scenario represents a very heterogeneous world, where population continues to 
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increase at a higher rate than the B2 scenario. Fragmented and slower economic 

growth and technological change characterises this scenario when compared to 

other scenarios (IPCC 2001; Joos et al. 2001). This scenario is commonly used for 

‘business as usual’ impact studies, as it projects a 3°C increase in surface air 

temperature by 2100 on average across the model (Cubasch et al. 2001). The B2 

scenario depicts a world that emphasises local solutions to social, economic and 

environmental sustainability, where human population continues to increase with an 

intermediate level of economic development, and therefore a less energy-intensive 

scenario featuring a lower emission path, projecting a 2.2°C temperature increase 

on average across all models (IPCC 2001). 

Predictions and interpretation 

To determine the species potential distribution the following methods were initially 

explored, following Golicher et al. (2011): generalized additive models (GAM) 

(Hastie 2008), recursive partitioning (rpart) (Therneau et al. 2013), Support Vector 

Machines (KSVM) (Karatzoglou 2013) and Maximum Entropy (MaxEnt) (Phillips 

et al. 2006). After considering the similarities between MaxEnt and the other 

methods, only the results of ‘GAM’,’ rpart’ and ‘KSVM’ are presented in this 

chapter. The scripts used were modified from those provided by both, the R 

packages and by Duncan Golicher in the R statistical environment (R Development 

Core Team 2011). KSVM models were used from the ‘kernlab’ package, regression 

trees from the package ‘rpart’ and GAM from the ‘mgcv’ package, all of which are 

available in R (R Development Core Team 2011). All the maps and outputs were 

resampled to a resolution of ~25km
2
.  

Model validation 

Model validation is an important part of modelling species distributions. This is 

carried out to identify if the model has the potential to discriminate presence data 

from absence (or background) data better than random. The Akaike information 

criterion (AIC) is commonly used to identify the most parsimonious models. A 

similar technique has been found to be the most effective means of optimizing 

predictions of distributional change for European plants (Thuiller et al. 2005). Also, 

the area under the receiver operating characteristic (ROC) curve, known as the 
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AUC, is also commonly used in predictive modelling to evaluate the performance of 

the models used. More specifically, ROC is used to evaluate the ability of models to 

distinguish between a true presence and a true absence drawn at random (Pearce 

and Ferrier 2000). ROC results are more accurate when there is truly independent 

data to test the models as well as the use of real absence data. However, as these 

were not available for this research, ROC curves were calculated using a subset of 

the original data, to measure the power of discrimination of the models for a subset 

of those species with the largest number of records (n>19). This was carried out as 

follows. First, the data were split into two data sets using the median latitude as a 

splitting point. One of the subsets was used to build the model and one was used to 

test the model ability to predict the remaining data set. These predictions were 

carried for KSVM, Rpart and GAM models, using two different types of 

background points. One set of background points was collected from throughout the 

region and the other was collected within the MCP of the species distributions. This 

provides an overview of the potential discrimination properties of the models taking 

into consideration the extent of the prediction area of the models. These three 

models were used to validate the models as it was possible to use R to select a 

consistent set of background points to be considered as pseudo-abscences  and to 

split the data by the median latitude. The same process was not carried out in 

MaxEnt as the program generates its own background points and the calculation of 

AUC is carried out by default, where the program randomly splits the data for 

model training and model validation. Furthermore, recent literature suggests that 

MaxEnt predicts very similar to GLMs (Hastie and Fithian 2013) and produces 

similar results to GAM (Golicher et al. 2012), especially when predicting species 

distribution in montane forests (Golicher et al. 2011). MaxEnt has also been 

identified as to inflate the measures of accuracy as a result especially when the data 

is not randomly or systematically collected as is the case in the studied species 

(Renner and Warton 2013). 

Area predictions  

The AUC values were used to produce binary maps that assist the calculation of the 

potential area of distribution for the species. This required selection of an 

appropriate AUC threshold. Models with values of AUC >0.9 are considered to be 
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highly accurate, those providing values in the range 0.7–0.9 ‘useful’, and those 

lower than 0.7 ‘poorly accurate’ (Guisan et al. 2007). For this research the threshold 

was set at 0.9, in order select only the grid cells that have the highest probability of 

occurrence to prevent outliers that may have arisen as a result of coordinate 

imprecision unduly affecting the distribution maps. Using this threshold discounts 

specificity and is used to measure sensitivity (Golicher et al. 2011). In order to 

identify the areas where the species are likely to occur, a MCP was used to restrict 

the species distributions and to compare the results with the Red List carried out in 

Chapter 4. A Minimum Convex Polygon (MCP) is described in the IUCN RL 

Categories and Criteria as the smallest polygon in which no internal angle exceeds 

180° and contains all sites of occurrence (IUCN 2001), which in this case are the 

georeferenced locations. MCPs were therefore plotted for each projected species 

distribution, under each climate change scenario, using R (R Development Core 

Team 2011).  

Suitable forest area and protected areas 

In order to identify the area that is suitable for each species, a classified global land 

cover map for 2009 (referred to henceforth as ‘GlobCover’) produced by Arino et 

al. (2010) was used to exclude non suitable habitats. These data were obtained from 

the MERIS imaging spectrometer, at a resolution of 300 m, which was reclassified 

to ~5 km. This was achieved by excluding the following land cover classes: Rainfed 

croplands, Mosaic cropland (50-70%)/vegetation (grassland/shrubland/forest) (20-

50%), Mosaic vegetation (grassland/shrubland/forest) (50-70%)/cropland (20-50%), 

Artificial surfaces and associated areas (Urban areas >50%), Closed to open (>15%) 

herbaceous vegetation (grassland, savannas or lichens/mosses), Bare areas, Water 

bodies, Permanent snow and ice, for areas above 1500 m. a.s.l.  

Furthermore, the outputs of the modelled suitable habitat for the species’ current 

distribution was mapped, for those species that were classified as under the 

threatened Category, i.e. VU, EN and CR, using the RL Criterion A3, and overlaid 

with the corresponding ecoregions, described by Olson et al. (2001), to identify 

those ecoregions with the largest number of threatened species. Also, the role of 

current protected areas on the potential species distribution under each projected 
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climate change scenario was explored by filtering the predicted area by the 

protected areas map produced by IUCN and UNEP-WCMC (2012), for the 

countries in the region.  

Red List assessment including and excluding future threats 

In Chapter 4 the Red List status for each taxon was assessed excluding potential 

future threats under climate change. For a comparative assessment of the potential 

impacts of future climate change, Criterion A of the IUCN Red List Categories and 

Criteria, Version 3.1 (IUCN 2001) was used, as this assesses the population 

reduction and geographic range parameters (Table 4.1). Criteria C, D and E were 

not applied, as specific required information for most species such as population 

size parameters and population viability analyses, were not available for the species.   

Criterion A3 was applied by subtracting the EOO projected under the climate 

change scenarios from the current EOO, using model outputs. MCPs were used to 

calculate the EOO in both cases. In addition, for calculation of both current and 

projected EOO values, areas of unsuitable habitat were excluded, using the 

GlobCover map. According to IUCN guidelines, population reduction must be 

measured over the longer of either 10 years or three generations, up to a total of 100 

years (IUCN Standards and Petitions Subcommittee 2011). However, generation 

length is not available for most of the species evaluated in this assessment, although 

most tree species have generation lengths spanning several decades. Climate change 

projections for the years 2080-2100 were used, resulting in a period of potential 

population reduction of at least 70 years measured from 2009. The IUCN Red List 

Categories and Criteria stipulate thresholds for using criterion A3, in terms of 

species population decline, where a decline of ≥ 30% has been established for a 

species to qualify as threatened in the Vulnerable (VU) Category, with 

corresponding values of ≥ 50% and ≥ 80% for Endangered (EN) and Critically 

Endangered (CR) respectively. These values were used to reassess the species as to 

identify potential changes in the classification carried out in Chapter 4. 

Calculations of potential current distribution using predictive modelling were used 

to reassess the species under Criterion B and give a preliminary category, solely 

based on the specific area thresholds for the species current distribution, as this is 
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the first parameter to be able to list the species under a threatened category (Table 

4.1). These thresholds are: EOO of <20,000 km
2 

for VU, EOO <5,000 km
2 

for EN 

and <10 km
2
 for CR. This therefore allows comparison of the preliminary category 

given to the species in Chapter 4, where the estimated EOO was calculated using 

the ‘Globcover’ map alone.  

Assumptions 

Certain assumptions need to be made explicit when carrying out species distribution 

modelling, so as to identify potential areas of uncertainty in the models. The main 

assumptions in the approach taken in this research are: 1) current climatic 

conditions are considered to be in an equilibrium state with current species 

distributions, 2) climatic projections are potential areas that may be suitable for a 

species to colonise and become established, but this does not actually take into 

considerations other biotic interactions that may limit potential migration, such as 

competition and dispersal barriers; 3) the land use map is a snapshot in time of the 

year 2009, which does not take into consideration the change in land use that may 

occur during the period forecast by the models.  

5.3  Results 

Model validation 

The process of splitting the data into two by the median latitude and then using one 

set to fit the models and the other to test the data, with the five different sets of 

variables, enabled evaluation of model ability to predict species occurrences. The 

average AUC values for the three different models fitted for the 13 of the most 

abundant species, when tested with background data from the whole region, showed 

that the models had a high mean AUC value: KSMV: 0.83 (±0.04), Rpart: 0.84 

(±0.02), GAM: 0.86 (±0.04). None of the models predicted an AUC lower than 0.5 

(Figure 5.1). However, mean AUC values decreased considerably for many of the 

species when the background points were selected within the species’ MCPs, 

namely: KSMV: 0.63 (±0.04), Rpart: 0.64 (±0.04), GAM: 0.66 (±0.04) (Figure 

5.2). This result shows that when values were used from locations distant from 

where the data were collected, the models provided in most cases high AUC values, 
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whereas when the models were fitted with data from within the MCPs the models 

ability to discriminate presence against background data was reduced, and for many 

species the AUC value was below 0.5. Overall, GAM produced the highest AUC 

value and therefore the results from this model are presented from now on. Also the 

model outputs for the set of variables that gave the highest AUC values using GAM 

with the MCP background data will be presented, namely variables 2, 3, 13, and 14 

(Table 5.1). 

 

Figure 5.1 Mean AUC values for 13 of the most abundant species, from five 

combinations of variables, using different climatic variables for three models 

(♦=KSMV, ▲=Rpart, ■=GAM). Models used background data from the whole 

region. 
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Figure 5.2 Mean AUC value for 13 of the most abundant species, from five 

combinations of variables, using different climatic variables for three models 

(♦=KSMV, ▲=Rpart, ■=GAM). Models used background data from within the 

MCP of each species. 

Predictions of current distribution 

Using a specific set of climatic variables to predict the species distribution does not 

encompass all the factors influencing their current distribution, and for some species 

these variables may not be as important restricting the species occurrence as those 

not considered in this assessment. Therefore, the potential area of distribution for 

many species evaluated, using the results for the GAM model, was widely 

distributed over the region, with a mean (± SE) area of 3,767,049 (±326,364) km
2
, a 

minimum area predicted of 114,525 km
2
 for Calliandra taxifolia and maximum area 

of 8,069,350 km
2
 for 15 species, namely: Axinaea grandifolia, Azara salicifolia, 

Cinchona pyrifolia, Clusia pseudomangle, Clusia sphaerocarpa, Cyathea 

catacampta, Cybianthus laetus, Gynoxys calyculisolvens, Gynoxys sancti-antonii, 

Oreopanax seemannianus, Schefflera inambarica, Solanum goniocaulon, 

Weinmannia auriculata, Zanthoxylum brisasanum (Figure 5.3).  
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Figure 5.3 Frequency distribution of the full extent of the species' potential 

distribution from the model (GAM) predictions.  

Restricting each of the species’ distributions with the use of a suitable habitat map 

(‘GlobCover’) of areas above 1500 m a.s.l, reduced the species’ distribution areas 

considerably, with a mean area of 451,234 (±20,710) km
2
 with a minimum area of 

53,825 km
2
 for Ilex rimbachii; and a maximum area of 657,375 km

2 
for 23 species, 

which were the same 14 species with the largest distribution with the full 

distribution area, with the addition of Daphnopsis espinosae, Dendrophorbium 

balsapampae, Ilex scopulorum, Ilex uniflora, Miconia harlingii, Nectandra 

subbullata, Persea brevipes, Prunus urotaenia and Ribes canescens. 

The estimates of distributional range were further restricted by the MCP around 

current distribution data and the ‘GlobCover’ map to enable comparison between 

model outputs and current patterns of distribution. Figure 5.4 shows that by using 

these two parameters to restrict the potential distribution for the species, the mean 

area predicted was 32,965 (±3,569) km
2
. 68 species had an area below the mean and 

47 species had an area <20,000 km
2
, which is the threshold for the threatened 

categories under the B1 criteria, in relation to the Extent of Occurrence (EOO) 

(IUCN 2001). The minimum predicted area was for Berberis jobii, for which the 

model predicted the distribution outside the MCP and therefore the suitable habitat 
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within the MCP was null. The maximum area predicted was for Senna versicolor 

with an area of 170,900 km
2
.  

 

Figure 5.4 Frequency of species’ potential distribution from the model (GAM) 

prediction, restricted to the MCP and ‘GlobCover’ map of suitable habitats.  

Prediction of potential distribution under climate change scenarios 

When EOO values were calculated without excluding unsuitable areas, the results 

for the (GAM) model showed that for 10 species, the predicted area under the A2 

climate change scenario was larger than the predicted current distribution. These 

species were: Citharexylum joergensenii, Clethra rugosa, Cyathea frigida, 

Geissanthus argutus, Ilex uniflora, Prunus pleiantha, Schinus pearcei, Schoepfia 

flexuosa, Senna versicolor and Smallanthus fruticosus. For the other 94 species the 

predicted area was less than the current potential distribution. Under the B2 

scenario, 12 species were predicted to have a larger potential distribution than 

predictions for their current distribution, namely: Berberis lehmannii, 

Dendrophorbium balsapampae, and the 10 species under A2 scenario. For the other 

92 species, the distribution under climate change was less than the current potential 

distribution.  

As expected, when EOO values were calculated by excluding unsuitable areas (i.e. 

using the ‘GlobCover’ map) and by clipping with the MCP around current 

distribution data, the projected species distributions under the climate change 

scenarios were considerably reduced compared to the predicted current distribution. 
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Using these lower EOO values, under the A2 scenario the projected distributional 

area decreased for 73 species and remained unchanged for 27 species. Under the B2 

scenario, the projected area decreased for 75 species and remained unchanged for 

25 species. The mean projected distributional area for the species under the A2 

scenario was 26,198 (±3,193) km
2
 and for the B2 scenario was 27,124 (± 3,208) 

km
2
. The lowest values were recorded for Alchornea anamariae, for which 

projected area was reduced from 3,250 km
2
 to 0 km

2
, and Berberis jobii, for which 

values were 0 km
2 

under both scenarios. The maximum projected area for both 

scenarios recorded was for Senna versicolor with areas of 167,600 km2 and 

169,575 km2 for the A2 and B2 scenarios, respectively. The mean difference 

between the area of current potential distribution and the area projected to be 

suitable for each species under climate change (within the MCP) was 7,177 

(±1,088) km
2
 (28%) and 5841 (±947) km

2
 (23%), for the A2 and B2 scenarios, 

respectively (Figure 5.5). 

 
Figure 5.5 Frequency of species’ EOO under two climate change scenarios A2 

(black) and B2 (grey), and predicted current distribution (white), excluding 

unsuitable areas using the ‘GlobCover’ map and clipped by the MCP. 
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Model predictions and the Red List 

Criterion A3 of the Red List was used to predict whether a population reduction was 

projected to occur for each species individually, as a result of climate change. When 

the projected distributional area of each species was used, resulting from the GAM, 

none of the species met any of the EOO thresholds associated with threatened Red 

List categories. In this case, all species were classified as LC. When currently 

unsuitable areas were subtracted from the EOO estimate using the “Globcover” 

map, all species again classified as LC. When estimates of EOO were further 

reduced by clipping with the MCP associated with current distributional range, 46 

species qualified as threatened according to the A3 criterion, under the A2 climate 

change scenario. These included 9 in the CR Category with a ≥80% reduction of the 

suitable area, 10 EN with a ≥50% reduction of the suitable area and 27 species VU 

with a ≥30% reduction of the suitable area. Under the B2 scenario 36 species would 

preliminarily be in the threatened category, 4 CR with a ≥80% of reduction of the 

suitable area, 10 EN with a ≥50% reduction of the suitable area and 22 species VU 

with a ≥30% reduction of the suitable area (Figure 5.6). 

 

  

Figure 5.6 Preliminary category assigned to the species, according to the A3 

criterion taking into consideration the percentage change from the modelled 

predicted area of distribution to the A2 (black) and B2 (grey) scenarios, a) 
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According to the IUCN RL thresholds: Critically Endangered (CR) with a ≥80% 

reduction of the suitable area, Endangered (EN) with a ≥50% reduction of the 

suitable area, Vulnerable (VU) with a ≥30% reduction of the suitable area, Least 

Concern (LC) and Data Deficient (DD). b) Frequency of species per class of 

percentage change in suitable area asterisks, are the RL thresholds from modelled 

current distribution.  

Taking into consideration the information obtained for the species’ current and 

potential distribution under climate change scenarios, it is possible to provide an 

overview of the possible changes to the species RL classification. Table 5.2 

illustrates that the preliminary category assigned to the species using the outputs 

from the modelled present distribution, with the use of B criterion thresholds and 

modelled potential distribution using the A3 criterion thresholds. The number of 

species that are threatened under the CR category increased and the EN and VU 

decreased. However, column (f) in Table 5.2 shows the highest given category 

under any of the cases considered (a-e), highlights the fact that potentially 105 

species could be considered under a threatened category.  

Category Final (a) Present (b) Model present (c) A2 (d) B2 (e) Highest (f) 

CR 1 0 1 9 4 8 

EN 47 17 20 10 10 63 

VU 28 31 26 25 22 34 

NT 19 0 0 0 0 5 

LC 29 72 57 58 68 16 

DD 5 9 25 25 25 3 

Table 5.2 Overview showing the species Categories according to the (a) Final RL 

given considering all the Categories and Criteria (Chapter 4); (b) Present 

distribution based on ‘GlobCover’ and species’ MCP, taking into consideration the 

thresholds of Criterion B1; (c) Modelled potential present distribution using current 

climatic variables, ‘GlobCover’ and the species’ MCP taking into consideration the 

thresholds of Criterion B1; (d) Modelled potential distribution using climatic 

variables from scenario A2, ‘GlobCover’ and the species’ MCP, taking into 

consideration the thresholds of Criterion A3; (e) Modelled potential distribution 



163 

 

using climatic variables from scenario B2, ‘GlobCover’ and the species’ MCP, 

taking into consideration the thresholds of Criterion A3, and (f) Highest category 

given to the species in any case (a-e). 

To further explore the potential changes in the species classification, Table 5.3 

shows the changes in the categories, from the Final RL given to all taxa, 

considering all the Categories and Criteria (Chapter 4) and results from the 

modelled potential current distribution using current climatic variables, 

‘GlobCover’ and the species’ MCP. This shows that 19 species have been uplisted 

to a higher category of threat, 42 remained in the same category and the remainder 

were downlisted or were Data deficient (DD).  

 Final RL (a) 

 Category CR EN VU NT LC DD Total 

M
o
d
el

le
d
 p

re
se

n
t 

ra
ti

n
g

 (
b
) CR    1   1 

EN 
 

9 7 2 1 1 20 

VU 
 

10 9 3 4 
 

26 

LC 
 

15 11 11 20 
 

57 

DD 1 13 1 2 4 4 25 

Total 1 47 28 19 29 5 129 

Table 5.3 Matrix of categories given to the species according to all Categories and 

Criteria for (a) Final RL given considering all the Categories and Criteria (Chapter 

4) and preliminary categories given to the species according to Criterion B1 

thresholds for (b) Modelled potential current distribution using current climatic 

variables, ‘GlobCover’ and the species’ MCP using the outputs of GAM. 

Furthermore, Table 5.4 shows the matrix of potential changes in the species 

preliminary classification taking into consideration the Criterion B1 thresholds, 

using current species distributions based on ‘GlobCover’ and species’ MCP and 

modelled potential present distribution using current climatic variables, 

‘GlobCover’ and the species’ MCP. This shows that, from the current distribution to 

the modelled distribution, 19 species increase to a higher threatened category, 93 

species remained in the same category and 17 were Data Deficient.  
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Present (a) 

 
Category EN VU LC DD Total 

M
o

d
el

le
d

 p
re

se
n
t 

ra
ti

n
g

 (
b

) 

CR 1 

   

1 

EN 10 6 3 1 20 

VU 

 

18 8 

 

26 

LC 

  

57 

 

57 

DD 6 7 4 8 25 

Total 17 31 72 9 129 

Table 5.4 Matrix of preliminary categories given to the species according to the RL 

Criterion B1 thresholds for both (a) Present distribution based on ‘GlobCover’ and 

species’ MCP and (b) Modelled potential current distribution using current climatic 

variables, ‘GlobCover’ and the species’ MCP. 

Criterion A3 of the Red List was used to establish whether a population reduction 

was projected to occur for each species individually, as a result of climate change. 

These results illustrate that for the species evaluated with the A2 scenario, 26 

species were uplisted in the category of threat, 5 of which moved from VU to CR, 5 

from LC to VU, 2 from LC to EN and one from LC to CR, 34 remained in the same 

category and the remaining 69 species were downlisted from category or were DD 

(Table 5.5). For the B2 scenario 23 species were uplisted in the threat category, 

with 4 species moving from NT, VU and EN to CR and 16 from NT or LC into a 

threatened category, 30 species remained in the same category and the other 76 

species were downlisted or were DD (Table 5.6). 
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Final RL (a) 

A
2

 s
ce

n
ar

io
 (

b
) 

Category CR EN VU NT LC DD Total 

CR 

 

1 5 2 1 

 

9 

EN 

 

4 2 2 2 

 

10 

VU 

 

8 8 6 5 

 

27 

LC 

 

21 12 7 17 1 58 

DD 1 13 1 2 4 4 25 

Total 1 47 28 19 29 5 129 

Table 5.5 Matrix of categories given to the species according to all the Categories 

and Criteria for (a) Present distribution based on ‘GlobCover’ and species’ MCP 

and using the Criterion A3 thresholds for (b) Modelled potential distribution using 

climatic variables from scenario A2, ‘GlobCover’ and the species’ MCP. 

 Final RL  

B
2
 s

ce
n
ar

io
 (

b
) 

Category CR EN VU NT LC DD Total 

CR 

 

1 2 1 

  

4 

EN 

 

2 4 2 2 

 

10 

VU 

 

5 6 6 5 

 

22 

LC 

 

26 15 8 18 1 68 

DD 1 13 1 2 4 4 25 

Total 1 47 28 19 29 5 129 

Table 5.6 Matrix of categories given to the species according to all the Categories 

and Criteria for (a) Present distribution based on ‘GlobCover’ and species’ MCP 

and using the Criterion A3 thresholds for (b) Modelled potential distribution using 

climatic variables from scenario B2, ‘GlobCover’ and the species’ MCP. 

Areas of most threatened species 

To establish areas which could potentially be targeted for future conservation 

actions, having a high density of threatened species, a calculation of the number of 

species that were classified under a threatened Category using Criterion A3, under 

climate change scenario A2 was made, by taking into consideration the species’ 

present modelled distribution, based on ‘GlobCover’ and the species’ MCP. The 
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results showed that the areas with the largest number of threatened species are 

found in Ecuador, the south of Colombia and the north of Peru (Figure 5.7). 

Furthermore, the ecoregions that contain the largest number of endangered species, 

are ‘Eastern Cordillera real montane forests’ with a mean of 10 species, followed by 

‘Iquitos varzea’ with a mean of 9 species, “Northern Andean paramo” with a mean 

of 8 species and ‘Northwestern Andean montane forests’ with a mean of 7 species 

occurs throughout this region (Figure 5.8).  

 

Figure 5.7 Density of threatened species in the study area, based on the present 

modelled distribution of the species and the category of threat according to the RL 

Criterion A3 under climate change scenario A2. 
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Figure 5.8 Ecoregions in the study area, described by Olson et al.(2001), and mean 

density of species classified in the threatened (VU, EN or CR) categories, according 

to the RL Criterion A3, based on the model outputs of the climate change scenario 

A2.   

Protected Areas  

Protected areas play an important role in the conservation of species, in particular in 

the Tropical Andes, where as described above, many species are already threatened 

can potentially be at even further risk as protected areas may not cover the species 

EOO. The total area with protection status in the study area was of ~110,625 km
2
, 

taking into consideration the suitable areas of the ‘GlobCover’ map, (Figure 5.9). 
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For the species’ present potential distribution, the percentage of area protected 

within the species EOO was on average 19.6 (± 0.91)%,with two species, Berberis 

jobii and Cyathea catacampta, not having protected areas within their predicted 

current EOO and Citharexylum joergensenii on the other hand, having the largest 

proportion of EOO protected with 50%.  

The percentage of areas protected in the projected EOO under climate change A2 

and B2 scenarios declined to an average of 18.6 (±0.97)% and 19.1 (±0.96)%, 

respectively. Under scenario A2 seven species had no protected areas within their 

EOO, namely: Alchornea anamariae, Berberis jobii, Calliandra taxifolia, Cyathea 

catacampta, Palicourea candida, Prunus pleiantha and Symplocos canescens; and 

under scenario B2: Alchornea anamariae, Berberis jobii, Cyathea catacampta and 

Symplocos canescens. For both scenarios the species with the maximum area 

protected was also Citharexylum joergensenii with 50% of the area being within 

protected areas (Figure 5.10a). For those species that were considered to be in a 

threatened category under Criterion A3, taking into consideration the projected 

distribution under climate change scenarios A2 and B2, the mean protected area 

was 18.3 (± 0.97)% and 18.7 (± 0.95)%, respectively (Figure 5.10b).  



169 

 

 

Figure 5.9 Protected areas (green) excluding unsuitable areas using the 

‘GlobCover’ map in the study area.  
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Figure 5.10 Percentage protected area available in the species’ EOO. a) For all the 

species evaluated from the modelled predicted area of distribution under the A2 

(black) and B2 (grey) scenarios and b) for those under a threatened Category, taking 

into consideration the IUCN RL criterion A3 for climate change scenarios A2 

(black) and B2 (grey). 

5.4  Discussion 

Predictive modelling has become an important and cost-effective tool for regional 

biodiversity assessments, biodiversity management and conservation planning 

(Elith et al. 2006b), especially in poorly surveyed regions, such as the Andes, that 

are already threatened by other anthropogenic actions (Tejedor Garavito et al. 2012; 

Chapter 3). A large proportion of the current research into predictive modelling has 

been carried out using presence only data from herbaria and museums (Elith and 

Leathwick 2007) and these have provided an insight into the knowledge gap on the 

potential distribution and the consequent effects of climate change in tropical tree 

species. Models have been built with as few as 5 records, with some reliable results 

(Hernandez et al. 2006). However, knowledge of species distributions is poorly 

developed (Whittaker et al. 2005), and much uncertainty still remains about 

inference from model prediction using presence data only (Hastie and Fithian 

2013).  

In this evaluation, as for all research carried out in predictive modelling, a large 

number of caveats should be considered when interpreting the results. Limitations 

of predictive modelling using presence only data have been recognised in the 

literature e.g. (Feeley and Silman 2010; Golicher et al. 2012; Jiménez-Valverde et 

al. 2008; Lobo et al. 2010; Lobo et al. 2008; Synes and Osborne 2011; Thuiller et 

al. 2008). Here, the modelling was limited initially by the properties of the data that 
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was available, and those species that are potentially rare with only a few records 

were not evaluated and were therefore classified as DD. The use of the area under 

the receiver operating characteristic curve (AUC) to evaluate the choice of variables 

and models has potential weaknesses, some of which are described by Golicher et 

al. (2012) and Lobo et al. (2008), including the fact that it weights omission and 

commission errors equally and that it does not give information about the spatial 

distribution of model errors. However, some of the effects of the over predictions in 

this assessment were reduced by comparing the results from predictions from 

collecting pseudo-absences from within the MCPs, which reduces the inflated AUC 

values from data from outside the species’ climate envelope (Lobo et al. 2008). 

Furthermore, potential biases in the climatic variables have previously been tested 

by Loiselle et al. (2008) in two of the Andean countries, Bolivia and Ecuador, who 

concluded that significant parts of the climatic gradient were poorly represented in 

herbarium collections. However climatic bias in collections did not greatly affect 

distribution predictions for plant species and were used to estimate species potential 

distributions. Also, selecting thresholds to identify the realized distributions for 

each of the species in the output maps involved an arbitrary method that assists 

interpretability. This threshold was set at a 90% cut off. This could have left some 

of the species locations out, but reduced further errors in the interpretation. 

The uncertainties surrounding modelling species distributions, particularly under 

climate change scenarios, relate in part to the choice of spatial scale to project the 

species distribution. The use of a coarse spatial scale hinders the precise forecast of 

the species potential distribution, as it may hide potential refuges for species and 

environmental heterogeneity that could increase species survival, especially in 

mountain areas where estimation of risks of extinctions could be overestimated 

(Thuiller et al. 2005). Also, the choice of scenario, which in this case was 

HADCM3 scenarios A2 and B2, were conservative, compared to more extreme 

scenarios available such as the A1FI. However, recent literature has demonstrated 

that these more extreme conditions may be unlikely to occur within the timeframe 

that these were projected by the IPCC (Otto et al. 2013), as local feedbacks may 

have contributed to the slower increase in temperatures than originally predicted 
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(Armour et al. 2012), some of which are related to the increased carbon storage 

capacity of the oceans and land in recent times (Ballantyne et al. 2012).  

This assessment only evaluates the potential changes in the species distribution 

under projected climate change scenarios to assess the future population decline 

related to potential habitat loss. However, these results highlight the fact that as 

many as 105 species were preliminarily identified as threatened in at least one of the 

different cases evaluated in this assessment (Figure 5.2). It also gives an indication 

of the extent of protected areas that falls within the species EOO, and identified that 

for all of the species evaluated here, this area is ≤50%. It is recognised that 

modelling technique used here is limited, as this could have been improved by 

including species migration, population dynamics, biotic interactions and 

community ecology into the models (Guisan and Thuiller 2005), as these could 

provide a better understanding and further inform the RL assessment (Akçakaya et 

al. 2006). However, these results are in line with the studies carried out in other 

regions, such as in Africa (Bomhard et al. 2005) where the authors, by using 

climate change scenarios and the IUCN RL assessment, identified that climate 

change will greatly contribute to the change of species classification, uplisting up to 

a third of the 227 Proteaceae taxa assessed in a threatened category.  

Evidence that tree species in the Andes are migrating to higher altitudes at a rate of 

+1.1 m elevation year
-1

 has been recently identified (Feeley et al. 2011). This 

highlights the fact that species are likely to be lost under climate change if they are 

either slow to migrate or associated with previously stable climates (Fjeldså et al. 

1999; Golicher et al. 2011). The climatic stability of forests and forest patches at 

high altitude in the Andes, which has been maintained through time, even in 

climatically stressful events in the past, including the most recent Little Ice Age, has 

been identified of fundamental value for the survival of species as biological refugia 

(Fjeldså et al. 1999; Hole et al. 2011b). Recent studies have concluded that due to 

climate change the upper boundaries of almost all biomes in the tropical Andes are 

likely to show an upslope displacement (Tovar et al. 2013). This potentially could 

create novel climates (Williams et al. 2007), where the species may be able to 

migrate to and thrive in. However, as many of the species evaluated here have 
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distribution ranges that are already restricted to the highest altitudes, these could 

readily face extinction as they may not have places to migrate to. Other potential 

impacts of climate change on forest composition, which have been highlighted by a 

recent study in temperate areas (Meier et al. 2012), were that pioneer or early 

successional species have been found to respond rapidly to new climates, whereas 

late successional species respond much slower to these changes, increasing further 

the extinction risk of these species and encouraging species invasion. 

The results of this research indicate that comparing the results of this research with 

those obtained in the RL assessment in Chapter 4, climate change increased the 

risk of extinction of 18-20% tree species evaluated, depending on the climate 

scenario. While these results suggest that climate change represents a significant 

threat to tree species in the tropical Andes, they contradict suggestions that climate 

change will become the most important cause of biodiversity loss in coming 

decades (Bellard et al. 2012; Dawson et al. 2011; Thomas et al. 2004). These 

results are partly attributable to the fact that upper montane species in the Andean 

region are already being subjected to a number of current threats. Pre-eminent 

among these is forest loss and degradation, caused by conversion of forest to 

agricultural land use, and over-exploitation of tree species for products such as 

timber and fuelwood. Estimates of deforestation rate for the period 2005-2010 

based on national statistics vary from 0.17-1.89% per annum, depending on the 

country (FAO 2010). Deforestation rate estimates based on analyses of satellite 

remote sensing imagery provide a regional mean value of forest loss of 0.62% per 

annum in recent decades, with values ranging from 0.32-1.08% for individual 

countries (Table 3.4, Chapter 3). With respect to exploitation, species such as 

Polylepis spp. have been intensively harvested in the Andes over the past century 

(Gareca et al. 2010; Jameson and Ramsay 2007), and many species of this genus are 

now restricted to small forest fragments. Tree species of high commercial value 

such as Cinchona spp., Podocarpus spp., Zanthoxylum spp. and Ilex spp. have also 

been subjected to overexploitation at different times in the past, which is likely to 

have reduced population sizes (Chapter 3; Tejedor Garavito et al. 2012). Other 

threats affecting tree species in the region include the impacts of fire, browsing 

animals, urban expansion, infrastructural development and mining (Chapter 3; 
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Tejedor Garavito et al. 2012). Climate change therefore represents an additional 

potential threat to species that are currently being subjected to multiple additional 

threats. Potentially, climate change could interact with other threats such as spread 

of pests and diseases, intensity of land use or land cover change, and the frequency 

and intensity of fires. Such potential interactions are poorly understood (Staudt et 

al. 2013), and could potentially be very significant, but were not explicitly 

considered here. 

Any insight into the potential impacts of climate change on tree species’ distribution 

is an important element to be included in conservation planning. Furthermore, the 

main outcome of this investigation can be viewed as a preliminary selection of 

those species that are potentially more at risk in terms of the potential range shifts 

under climate change scenarios. This highlights priorities for future work, including 

the need for more detailed information on the life-history traits for threatened 

species to integrate demographic modelling approaches, as suggested by recent 

research by Fordham et al. (2013). These authors suggest that using more detailed 

information is key for conservation prioritisation and intervention. But rather than 

focusing primarily on climate change, it may therefore be more relevant to consider 

the relationship between current threats and species extinction risk biodiversity loss 

and is increasing, as pointed out by Maslin and Austin (2012). While it’s possible 

that the criteria for selecting the species for this evaluation had an impact on the 

number of threatened species and their geographic distribution, Figures 5.7 and 5.8 

show that the areas with the highest densities of endangered species coincide with 

areas and ecoregions that have been previously identified as conservation priorities 

(Dinerstein et al. 1995), with a critical conservation status (e.g. ‘Cauca valley 

montane forest’ and ‘Magdalena valley montane forest’), a threatened status 

(‘Northwestern Andes montane forest’), or Vulnerable (‘Cordillera Real Oriental 

montane forest’), as detailed in Table 3.7.  

Identifying threatened species not only focuses on prioritising conservation of these 

species; the aim is to enhance the overall conservation status of the forest system 

where they are found and increase forest resilience to potential climate change 

impacts. Species that may not be as sensitive to climate change could still be 
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important in terms of their contribution to ecological structure, composition and 

function (Crossman et al. 2012). Also, the approach to identify the current area of 

species’ current EOO that is already protected indicated that for most species this is 

≤50%. Therefore this should encourage a regional-scale overview for where habitat 

re-creation, corridors and ecosystem resilience can be established to increase the 

percentage areas of protection for at least the most threatened species.  
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6 Discussion and conclusion 

6.1 Summary of research findings 

There is mounting evidence that climate change is largely attributed to 

anthropogenic activities (IPCC 2013; Parmesan et al. 2013). Changes in climate are 

predicted to impact biodiversity and increase the extinction risk for many taxa 

(Thomas et al. 2004). Many tree species are known to have limited adaptive 

capacity to respond to rapid environmental change (Lindner et al. 2010). However, 

the lack of data from forest systems has limited the integration of specific species 

into forest conservation planning (Whittaker et al. 2005). The management of 

tropical montane forest ecosystems is an example of where bridging this knowledge 

gap would be beneficial, as these are high on the list of the world’s most threatened 

ecosystems (Bruijnzeel et al. 2010; Hamilton 1995; Kapos et al. 2000; Ledo et al. 

2009; Stadtmüller 1986).  

The IUCN Red List assessment (RL) is considered an authoritative approach for 

assessing the extinction risk of species (Lamoreux et al. 2003; Newton and Oldfield 

2008; Rodrigues et al. 2006; Zamin et al. 2010). It provides a cohesive structure 

and serves multiple purposes: 1) To inform conservation policies and influence 

legislation, 2) The identification of priority areas for conservation, 3) To guide 

conservation investment and 4) To encourage species-based conservation and 

management, biodiversity evaluation and monitoring (Hoffmann et al. 2008). To 

date, progress has identified the threat category for many tree species (Newton and 

Oldfield 2008; Oldfield et al. 1998); however, many tree species still await 

assessment. Progress has been limited by a number of factors, including the lack of 

appropriate data to assess the status and distribution of many species. This is 

especially apparent in regionally endemic taxa, which are distributed in more than 

one country and their evaluation is carried out at the national level, not including 

their full distribution. 

This thesis investigates the potential effects of climate change on montane forests 

and in particular how climate change can increase the extinction risk of tree species 

in the tropical Andes. In this thesis, I 1) Identified that projected changes in climate, 
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where temperature was considered to be a particularly key parameter that could 

potentially lead to changes in habitat conditions of vulnerable montane forests 2) 

Evaluated the extinction risk of 129 endemic tree species in the tropical Andes, 

using the RL Categories and Criteria, with 76 species classified within a threatened 

category, with the level of uncertainty associated with the classification process. 3) 

Evaluated the potential impact of climate change on the species distribution under 

different climate change scenarios and reassessed the species using the RL, and 

established the changes in RL Category. Under a more severe climate change 

scenario (A2), it was estimated that 5 species moved from VU to CR, 5 from LC to 

VU, 2 from LC to EN and one from LC to CR. I also identified areas and 

ecoregions where the most threatened species are currently distributed. 

6.2 Novel contributions to species extinction risk assessments  

Vulnerability of montane forest areas to potential climate change 

Understanding the level of vulnerability of specific ecosystems will lead to a better 

assessment and improve conservation efforts to halt biodiversity loss. Climate 

change will have major implications for the future of current ecosystems, in 

particular their structure, function and composition (Gottfried et al. 2012; Parmesan 

and Yohe 2003; Sommer et al. 2010; Wu et al. 2010). Chapter 2 tested the 

hypothesis that montane forests, at the global scale, vary in their vulnerability to 

projected climate change scenarios defined by the IPCC and showed that this is true 

with a particular sensitivity to changes in temperature. The results indicate that all 

montane forests are likely to be highly vulnerable to changes in temperature under 

scenario A2, particularly montane forest ecorergions in Africa and Asia. 

Precipitation will affect ecoregions to a lesser extent; South America and Asia will 

experience the largest changes in precipitation. Increasing global temperatures and 

changes in precipitation patterns will have a detrimental impact on the water 

balance of these forests (Bruijnzeel et al. 2010), raising the average altitude at the 

base of the orographic cloud bank (Pounds et al. 1999), affecting montane forest’s 

ecosystem integrity and their water availability. Although potential interactions 

between precipitation and temperature were not evaluated in this investigation, this 

could lead to further changes within the water balance of montane forests (Fung et 
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al. 2011; Pounds et al. 2006). Sangarun et al. (2007) found that increased air 

temperatures decrease the percent relative humidity of forests in Thailand’s 

montane cloud forests. Prolonged high temperatures may expose species to 

increased water stress, leading to increased tree mortality (Allen et al. 2010) and the 

reduction of population sizes, threatening those species with few and small 

populations (Abbott and Le Maitre 2010). A strong relation between the canopy 

density and site-specific water availability has been established; water deficit can 

restrict seedling establishment and therefore lead to changes in forest ecosystem 

structure and functioning (von Arx et al. 2013).  

The ecoregion classification used in this assessment, as described by Olson and 

Dinerstein (1998), has been widely used to conduct global and regional 

conservation assessments. In addition, the corresponding ‘Global 200’ priority 

ecoregions presented by Olson and Dinerstein (2002), assisted the identification of 

those ecoregions that are already of international importance due to their species 

richness, endemism and current threats, for which climate change can potentially 

pose a further threat. Of the 211 ecoregions considered in this study, 141 of them 

are considered a global conservation priority (“Global 200”). Many of these 

ecoregions scored high in the ranks for vulnerability to climate change, being 

associated with the some of the largest M values (i.e. >9) under projections of 

scenario A2 for temperature. For example, the Rwenzori-Virunga montane 

moorlands and Albertine Rift montane forests are also part of the Eastern 

Afromontane biodiversity ‘hotspot’(Myers et al. 2000).  

Lack of understanding of all the processes that are involved in natural systems and 

the feedback processes of climate change, such as the effects that clouds have on 

temperature, the speed that forests die back (Allen et al. 2010), the amount of CO2 

that is absorbed by oceans and the speed that methane in the poles will be released 

as temperatures rise, give rise to large areas of uncertainty in the potential impacts 

of climate change worldwide (Maslin and Austin 2012). However by applying a 

precautionary principle, it is necessary to continue the identification of the potential 

effects of climate change in areas of high vulnerability with acceptance of 
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uncertainty, as uncertainty should not disguise the risk that extreme changes can 

have on ecosystems (Thomas et al. 2004).  

Conservation status of montane forest in the tropical  

Montane forest in the tropical Andes are a major conservation priority, both as 

'hotspots' of global biodiversity (Myers et al. 2000) and as priority ecoregions 

(Olson and Dinerstein 1997), owing to their biological richness, high level of 

endemism (Bush et al. 2007; Olson and Dinerstein 1997) and for having the largest 

concentration of species with restricted distribution in South America (Dinerstein et 

al. 1995; Jørgensen 2011; Jørgensen et al. 2006; Latta et al. 2011). They are 

considered fragile ecosystems, playing an important hydrological and ecological 

role and despite this, they are the least known ecosystems in the tropics (Ataroff and 

Rada 2009; Bubb et al. 2004; Gentry 1995; Kessler 2000; Stadtmüller 1986).  

Many threats have been identified to have been contributing to the loss and 

degradation of these forests (Chapter 3). A panel of experts from throughout the 

region, identified that livestock, deforestation for land use change to agriculture, 

logging and fragmentation are widely considered to be the major threats to these 

forests (Tejedor Garavito et al. 2012), while recent research (Feeley et al. 2011; 

Herzog et al. 2011; Román-Cuesta et al. 2011; Tovar et al. 2013; Urrutia and Vuille 

2009; Table 3.6) also identified that climate change could potentially have 

considerable impacts on these montane forests. The identification of threats and 

threatened species should focus conservation planning and lead to a more efficient 

way to mitigate biodiversity loss. This can be done by reinforcing the role of 

existing protected areas, but also promoting the creation of protected areas, forest 

restoration and sustainable forest management (Tejedor Garavito et al. 2012). Also, 

this could assist land management policies aimed at the conservation of biodiversity 

in productive rural landscapes, where there is an integration of conservation, 

productive systems (agriculture and livestock) and the human population; where 

landowners are encouraged to set aside part of their land for conservation or are 

encouraged to adopt agroecological methods (Perfecto and Vandermeer 2008, 2010; 

Perfecto and Vandermeer 2012; Perfecto et al. 2010). 
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Actions are required to encourage countries to reduce biodiversity loss, forest 

degradation and protect the ecosystem services they provide. International policies 

have been agreed by Andean countries such as the Convention on Biological 

Diversity (CBD), the Framework Convention on Climate Change (UNFCCC), 

Convention on International Trade of Endangered Species (CITES) and the Global 

Strategy for Plant Conservation (GSPC). These initiatives encourage ecosystem 

resilience, the increase of protected areas and the conservation of endangered 

species. These political initiatives have been accommodated to be implemented at 

the national level in many countries, but individual countries have also created their 

own policies to encompass the protection and restoration of forests (Chapter 3). 

Although different institutions have invested heavily in developing, strengthening 

and protecting key biodiversity areas in the tropical Andes, conservation actions in 

the region still require the inclusion of threated tree species. 

Extinction risk of tree species that occur in montane forests in the tropical 

Andes  

The evaluation of the current conservation statutes of montane forest in the tropical 

Andes (Chapter 3; Tejedor Garavito et al. 2012), identified that montane forests are 

currently under threats from different sources. Although mechanisms are in place to 

mitigate to some extent the rate of biodiversity loss, the use of the RL Categories 

and Criteria can provide further valuable information on the decisions for 

conservation actions that include tree species that are in the endangered category. A 

RL assessment can be done with the use of information of the species distribution, 

population and threats (IUCN 2001). However, as information is limited for many 

of the species occurring in the tropical Andes, the use of a network of regional 

experts on montane tree species can particularly assist the identification and 

validation of species data, playing a fundamental role in the RL process (Newton 

and Oldfield 2008).  

In Chapter 4, 129 species were assessed using the RL Categories and Criteria. 

These species were chosen for being endemic to the region, as the georeferenced 

data available identified them as having a distribution in a least two countries and 

that the records were unique to areas ≥1500 m. a.s.l. 76 species were classified 
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within a threatened category: 1 species was Critically Endangered (CR), 47 

Endangered (EN) and 28 Vulnerable (VU). The rest were: 19 Near Threatened 

(NT), 29 Least Concern (LC) and 5 Data Deficient (DD). By incorporating results 

from previous RL assessments of other endemic species to a particular country to 

this assessment, it is possible to identify that the number of species endangered in 

the region reaches 241 species out of 328 evaluated as a whole. This means that 

52% of the evaluated tree species are threatened and a further 285 species are DD or 

are still Not Evaluated (NE). Compared to other assessments of tree species in other 

locations and of other taxa such as mammals, birds and fish in the region (Table 

4.9), these results show that the number of threatened tree species in the Andes is 

relatively higher and provides further evidence of the congruence that occurs in this 

region of species richness, endemism and threat (Chapter 4). Forests are habitat to 

at least half of the global biodiversity (Millenium Ecosystem Assesment 2005) for 

which, in the long term, their protection will increase their resilience and have a 

positive impact on dependant taxa. Tree species should take priority as much as 

other more charismatic species, as the consequences of current and potential threats 

will increase the strain on key elements of species dependant on forests for their 

survival (Biringer 2003). 

Potential impact of climate change on the extinction risk of selected tree species 

Climate change is becoming a focal issue for conservation planning and policy 

making as species are predicted to go extinct under climate change scenarios 

(Araújo et al. 2005; Butchart et al. 2010; Feeley et al. 2011; Keith et al. 2008; 

Midgley et al. 2002; Schwartz et al. 2006; Thomas et al. 2004), and this applies to 

species in cloud forests too (Ponce-Reyes et al. 2013). However, only a few studies 

(Bomhard et al. 2005; Thuiller et al. 2005) have assessed species extinction risk 

under projected climate change using the Red List assessement and none of these 

have been carried out in the tropical Andes.  

Modelling species distributions can help drive the direction of future research by 

identifying species and areas for which to target conservation action, although there 

are limitations and caveats identified (Golicher et al. 2012; Lobo et al. 2010; Synes 

and Osborne 2011; Thuiller et al. 2008). At least 18 species have been identified to 
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have a potential change in the RL classification from NT and LC to a category of 

threat under a more severe climate change scenario (A2). Also, the majority of 

threatened species occurred in ecoregions that are already priorities for conservation 

owing to their high endemism, species richness and current threats: Cauca valley 

montane forest, Magdalena valley montane forest, Northwestern Andes montane 

forest and Cordillera Real Oriental montane forest (Dinerstein et al. 1995). 

Uncertainty and their impact on the assessment of RL status 

As uncertainty exists within the RL process, in this assessment it was possible to 

identify the different levels of uncertainty under each of the Criteria applied. The 

level of uncertainty in this assessment was related to the data availability and its 

validation, the latter being a key instrument in this assessment; it was possible to 

use the panel of experts to assess the data and outputs for all the species assessed 

and reduce the uncertainty for the preliminary values given to the Extent of 

Occurrence (EOO) and Area of Occupancy (AOO), as well as to identify the current 

threats to individual species. Limitations on species distribution modelling have 

been identified extensively; however their usefulness has an overriding value in 

terms of their contribution to the RL to identify species extinction risk. However, by 

exploring the level of uncertainty in the RL process and by using the precautionary 

principle (IUCN Standards and Petitions Subcommittee 2011), this can assist in 

clarifying the areas where further research can be focused.  

6.3 Critical evaluation of current research  

As with most of the research carried on climate change or the RL assessment, this 

research needs to be used with caution. Here is an outline of the methods used and 

in the assumptions made throughout this thesis. 

Climate change models 

Models cannot capture all the factors affecting natural systems, their weight in the 

model and their implications. For example, at a regional scale, it is difficult to 

predict and conversely model known important parameters like precipitation due to 

their highly variable nature (Maslin and Austin 2012). Two climate change models 

were used in this thesis: HADCM3 for scenario A2 and HADCM3 for scenario B2, 
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from the Hadley Centre Coupled Model for two of the Special Report on Emission 

Scenarios (SRES). However, these two models give a view of the potential 

implications for many montane forest areas under climate change scenarios, and 

choosing more extreme climate conditions would lead to a more drastic future 

position for montane forest ecosystems. The use of the Manhattan Distance (M) 

with a threshold of 2SD (standard deviation) from the mean, as a measure for 

extreme climatic conditions, needs to be taken with caution as, although it 

corresponds of significant ecological impacts, the way particular ecoregions and 

forests systems respond to climate changer varies (Beaumont et al. 2011; Palmer 

and Raisanen 2002).   

Some authors have attempted to address, with varying success, species extinction 

risk based on the RL assessment. Thomas et al. (2004) used an adapted version of 

the RL assessment and two climate change scenarios for projection to 50 years and 

100 years, with increase in temperature of 1.8-2 °C and >2°C, and of CO2 levels of 

500-550 p.p.m.v and >550 p.p.m.v respectively. The two models were used to 

assess the extinction risk of a range of species with a wide range of generation 

lengths. Their method incorporated the species-area relationship to identify the 

species potential change in their Area of Occupancy (AOO), which falls under the 

RL Category B2, for which the thresholds are set lower that for EOO (see Table 

4.1). Their conclusion was that 15–37% of species sampled in regions and taxa 

were going to be ‘committed to extinction’.  

Bomhard et al.(2005) carried out an RL assessment of 227 Proteaceae taxa endemic 

to South Africa and used liner relationships for abundance and area, with projected 

climate change and land use scenarios for time periods ranging from 20 to 80 years. 

Their conclusion was that under the more severe scenarios, up to 7% of the taxa 

could move into a Critically Endangered (CR) category and 2% could potentially 

become Extinct. Shoo et al. (2005) looked at the altitudinal effect of climate change 

on population size in birds in Australia, identifying upland birds as the most 

sensitive, and in some severe climate change scenarios all the species studied would 

be threatened, based on RL Criterion A thresholds. In addition, Thuiller et al. 

(2005) evaluated the climate change threat to European plants, relating the large 

proportion of species loss to variations on temperature and moisture conditions, 



198 

 

based on four climate change scenarios for the year 2080, namely: HadCM3 A1, 

A2, B1 and B2. They found that in the scenario with non-migrating species, 

montane species are those most at risk, with up to 60% of the studied species 

threatened. From these examples, it is possible to appreciate that most of the RL list 

assessments so far have been based on the relationship of area and species 

abundance, to assess the reduction of population size required by the RL 

assessment. These examples have been criticised by Akçakaya et al. (2006) for their 

lack of accuracy in the use of species generation lengths and for using incorrect 

timeframes that arbitrarily encompass a range of species that have a varied 

generation length, and for over/underestimating the real threat to the species by not 

taking into consideration further aspects that have an implication of the species 

extinction rates.   

Analysis of climate change using modelling techniques at a regional scale poses a 

range of limitations for their use and interpretability for on the ground conservation 

actions; most are related to the choice of model, variables, scale and scenarios to 

predict the potential areas that would be suitable for the species. The methodology 

used in this thesis has identified and minimised (where possible) the impacts of 

caveats and limitations of the modelling process. Further improvements would 

include strengthening the data for the modelling and including additional model 

scenarios and assemblages of variables, incorporating further data variability and 

providing ground validation for the predictions of present distributions, and 

analysing data that has been systematically collected, as most of the data that is 

available has elements of bias - primarily owing to the way in which data has been 

collected, mostly by road-sides and where species are already known to exist 

(Feeley 2012; Feeley and Silman 2011; Feeley et al. 2011). If current, available data 

does not provide an accurate indication of the full distribution of a species, its use to 

drive modelling data and hence predictions should be addressed.  

Red List assessment 

The usefulness of the RL assessment to assess species extinction risk, to inform 

policy makers and to assist the targeting of conservation actions has been widely 

recognised (Mace et al. 2008; Miller et al. 2006; Possingham et al. 2002). It is used 

to assist conservation decisions at different levels, particularly at national and 
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regional levels (Miller et al. 2007). Despite its usefulness, there are areas of 

uncertainty in the application of the RL assessment, which must be addressed and 

minimized where possible, as has been done in this research (Table 4.7). Most of 

the uncertainty relates to the lack of accurate information on the species status and 

distribution. Calculations of species EOO and AOO had a fundamental role in this 

assessment; the guidelines suggest that these sites should encompass all the known 

species locations (IUCN 2001). In this assessment these measurements were based 

on available georeferenced data and the use of a recent land use map for the EOO, 

with two resolutions for the calculations of area, 4km
2
 and 100km

2
, for the 

estimation of AOO. Therefore under or over estimations for some of the species 

could have occurred. However, by discussing these preliminary estimations with the 

panel of experts and consulting literature, a final decision based on current 

knowledge of the species, provided a means to validate the data. Species analysed 

in this thesis are regionally distributed (i.e. in more than one country) and therefore 

their EOO would not place most of them into a threatened category. Up to 72 

species were classified using the values for AOO, but the use of the EOO was more 

valuable to identify the level of threat to these species in the full extent of their 

distribution. The importance of having these two values calculated has also been 

useful for the RL assessment of other taxa considered by Rivers et al. (2011), where 

the authors investigated the effect of the number of records needed to evaluate a 

species using the RL assessment.  

Another area of uncertainty is the estimation of population reduction required for 

Criterion A3, as it uses climate change models to estimate the loss in species due to 

reductions in habitat availability. Although this method has been criticised in the 

literature (Akçakaya et al. 2006), it provides an outlook of the potential species 

range shifts and potential uplisting of species to a higher category of threat. The use 

of predictive modeling demonstrates that, although climate change could be a major 

factor that will increase species extinction risk, many species are already highly 

threatened by deforestation, forest degradation and overexploitation processes that 

are already occurring in many montane forests in the tropical Andes (Chapter 3). 

Conservation actions must prioritise the minimisation of current threats and then 

mitigate the plausible consequences that climate change could have on species.   
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The data available for this assessment was collected from different sources, 

including online databases, herbarium vouchers and personal data sets, making up 

more than 1600 records for the 129 species evaluated. Despite the extensive data 

collection, there was still insufficient data to carry out the assessment with high 

accuracy, or at all, for some of the species (Figure 4.9). The lack of data for some 

species may be due to species rarity, collection efforts and data access processes 

that vary between areas and countries in the region. Access to data differs between 

countries with Ecuador having large amounts of data online (Feeley and Silman 

2011). Species collections tend to be selective and not systematic (Feeley 2012). 

Some of the areas are under-collected, being remote areas or due to political 

conflicts (e.g. southern Colombia) or used to grow illicit crops - a threat to the 

forests in the region (Dávalos et al. 2011). Data limitation was reduced by data 

validation by the panel of experts. However, validation of the AOO and EOO of 

those species that had relatively few distribution records could be strengthened. In 

this research at least two records, each one in a different country, were needed to 

carry out an assessment with the assistance of the experts, but not enough to create 

an MCP for which 3 records were required. Furthermore to create a relatively 

adequate potential distribution model a minimum of 5 unique records were needed. 

This supports the recent research finding of Rivers et al. (2011), who suggest that 

there is a need for at least five good valid records in order to carry out a robust RL 

assessment. Even though, it is recommended to use the largest number of unique 

records when possible. 

6.4 Conclusions and further research 

Recent research has focused on the potential impact of climate change on the 

distribution of species or ecosystems, mainly based on the areas where these could 

migrate to or where they would be more at risk (Beaumont et al. 2011; Tovar et al. 

2013). The research presented here looks further into the potential impacts that 

climate change can have on montane forests and species that are already threatened 

by multiple factors (e.g. forest degradation, deforestation and land use change). 

Montane forests have been identified to be globally threatened, and the tree species 

that are distributed regionally throughout the tropical Andes need to be taken into 
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consideration in the designation and management of areas for conservation. At least 

74 species of the 129 evaluated here have been identified in a threatened category, 

with several potentially being uplisted into a threatened category due to climate 

change. These results, in relation to some other endemic species in the region, have 

shown that the number of threatened species is higher than, for example, the 

equivalent number of mammals (Brooks et al. 2002; Myers et al. 2000) and birds 

(Orme et al. 2005) assessed in the region. More important is the fact that many 

species remain to be evaluated (Joppa et al. 2013) and there is a large data gap, 

especially for rare species and in remote locations (Feeley and Silman 2010, 2011). 

Incorporating climate change into conservation efforts needs to be taken with 

caution, as changing current conservation priorities could jeopardise efforts to 

mitigate current biodiversity threats such as deforestation and degradation, which 

are urgent, or could neglect certain areas that may not be affected by climate change 

as much as may be the case for montane forests (Tingley et al. 2013). However, as 

for many montane forests and specific ecoregions already threatened, considering 

further potential threats is valuable, especially when this could potentially increase 

their extinction risk to unprecedented levels. 

Strengthening and creating conservation areas is necessary to increase viable 

populations of threatened species and to provide incentives for private landowners 

to assist with the inclusion of management techniques that pursue conservation 

values. These can be used to create conservation corridors and buffer zones to 

existing protected areas. By doing so, it would maintain ecosystem resilience by 

addressing the gradual changes that affect ecosystem stability, such as land use, 

nutrient stocks, soil properties and biomass of long-lived organisms (Scheffer et al. 

2001). 

The outcomes of this RL assessment can inform and encourage both in situ (in their 

natural habitat) and ex situ (outside their natural habitat) conservation, to increase 

knowledge of the actual species’ distribution and safeguard the species’ survival, 

maintaining viable populations in their environment. It would also provide baseline 

knowledge, to assist local botanic gardens to expand species’ protection and provide 

information to local communities on the species’ role in forest ecosystem services, 
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which will increase socio-economic values and well-being in the long term 

(Oldfield and Newton 2012).  

Uncertainty surrounds all aspects of forest conservation; especially in areas such as 

the Andes where many environmental aspects are still to be understood and taken 

into consideration for better management practices. However, as demonstrated in 

this research, collaborative research and contributions from regional experts have 

largely reduced the knowledge gap for some of the aspects considered in this 

research, and created links for further collaboration to continue the assessment of 

threatened tree species in the region.  

Species distribution modelling provides an overview of the potential change in the 

suitability of the current forest areas, in which species may not be able to thrive in 

the future. This preliminary assessment is a precedent to encourage the search of 

further information as to how these particular species would be able to adapt and 

interact with their ecosystems to thrive in the face of a changing climate and current 

threatening factors. 

6.5 References 

Abbott, I., and Le Maitre, D., 2010. Monitoring the impact of climate change on 

biodiversity: The challenge of megadiverse Mediterranean climate 

ecosystems. Austral Ecology, 35 (4), 406-422. 

Akçakaya, H. R., Butchart, S. H. M., Mace, G. M., Stuart, S. N., and Hilton-Taylor, 

C., 2006. Use and misuse of the IUCN Red List Criteria in projecting 

climate change impacts on biodiversity. Global Change Biology, 12, 2037-

2043. 

Allen, C. D., Macalady, A. K., Chenchouni, H., Bachelet, D., McDowell, N., 

Vennetier, M., Kitzberger, T., Rigling, A., Breshears, D. D., Hogg, E. H., 

Gonzalez, P., Fensham, R., Zhang, Z., Castro, J., Demidova, N., Lim, J.-H., 

Allard, G., Running, S. W., Semerci, A., and Cobb, N., 2010. A global 

overview of drought and heat-induced tree mortality reveals emerging 

climate change risks for forests. Forest Ecology and Management, 259 (4), 

660-684. 



203 

 

Araújo, M. B., Pearson, R. G., Thuiller, W., and Erhard, M., 2005. Validation of 

species–climate impact models under climate change. Global Change 

Biology, 11 (9), 1504-1513. 

Ataroff, M., and Rada, F., 2009. Deforestation impact on water dynamics in a 

Venezuelan Andean cloud forest. AMBIO: A Journal of the Human 

Environment, 29 (7), 440-444. 

Beaumont, L. J., Pitman, A., Perkins, S., Zimmermann, N. E., Yoccoz, N. G., and 

Thuiller, W., 2011. Impacts of climate change on the world's most 

exceptional ecoregions. Proceedings of the National Academy of Sciences, 

108 (6), 2306-2311. 

Biringer, J., 2003. Forest Ecosystems Threatened by Climate Change: Promoting 

Long-term Forest Resilience. In: Hansen, L., Biringer, J., and Hoffmann, J. 

R. eds. Buying time: a user's manual for building resistance and resilience 

to climate change in natural systems. Berlin, Germany: : WWF Climate 

Change Program.,  41-73. 

Bomhard, B., Richardson, D. M., Donaldson, J. S., Hughes, G. O., Midgley, G. F., 

Raimondo, D. C., Rebelo, A. G., Rouget, M., and Thuiller, W., 2005. 

Potential impacts of future land use and climate change on the Red List 

status of the Proteaceae in the Cape Floristic Region, South Africa. Global 

Change Biology, 11 (9), 1452-1468. 

Brooks, T. M., Mittermeier, R. A., Mittermeier, C. G., Da Fonseca, G. A. B., 

Rylands, A. B., Konstant, W. R., Flick, P., Pilgrim, J., Oldfield, S., Magin, 

G., and Hilton-Taylor, C., 2002. Habitat loss and extinction in the Hotspots 

of biodiversity. Conservation Biology, 16 (4), 909-923. 

Bruijnzeel, L. A., Scatena, F. N., and Hamilton, L. S. (Eds.). 2010. Tropical 

Montane Cloud Forests. Science for Conservation and Management. 

Cambridge, UK: Cambridge University Press. 

Bubb, P., May, I., Miles, L., and Sayer, J., 2004. Cloud Forest Agenda. Cambridge, 

UK: UNEP-WCMC. 

Bush, M. B., Hanselman, J. A., and Hooghiemstra, H., 2007. Andean montane 

forests and climate change. In: Bush, M. B., and Flenley, J. eds. Tropical 

rainforest response to climatic change. Berlin, Heidelberg, Germany: 

Springer,  59-79. 



204 

 

Butchart, S. H. M., Walpole, M., Collen, B., van Strien, A., Scharlemann, J. P. W., 

Almond, R. E. A., Baillie, J. E. M., Bomhard, B., Brown, C., Bruno, J., 

Carpenter, K. E., Carr, G. M., Chanson, J., Chenery, A. M., Csirke, J., 

Davidson, N. C., Dentener, F., Foster, M., Galli, A., Galloway, J. N., 

Genovesi, P., Gregory, R. D., Hockings, M., Kapos, V., Lamarque, J.-F., 

Leverington, F., Loh, J., McGeoch, M. A., McRae, L., Minasyan, A., 

Morcillo, M. H., Oldfield, T. E. E., Pauly, D., Quader, S., Revenga, C., 

Sauer, J. R., Skolnik, B., Spear, D., Stanwell-Smith, D., Stuart, S. N., 

Symes, A., Tierney, M., Tyrrell, T. D., Vié, J.-C., and Watson, R., 2010. 

Global Biodiversity: Indicators of Recent Declines. Science, 328 (5982), 

1164-1168. 

Dávalos, L. M., Bejarano, A. C., Hall, M. A., Correa, H. L., Corthals, A., and 

Espejo, O. J., 2011. Forests and drugs: Coca-driven deforestation in tropical 

biodiversity hotspots. Environmental Science and Technology, 45 (4), 1219-

1277. 

Dinerstein, E., Olson, D. M., Graham, D. J., Webster, A. L., Primm, S. A., 

Bookbinder, M. P., and Ledec, G., 1995. A conservation assessment of the 

Terrestrial Ecoregions of Latin America and the Caribbean. Washington, 

D.C., USA: The International Bank. 

Feeley, K. J., and Silman, M. R., 2010. Modelling the responses of Andean and 

Amazonian plant species to climate change: the effects of georeferencing 

errors and the importance of data filtering. Journal of Biogeography, 37 (4), 

733-740. 

Feeley, K. J., and Silman, M. R., 2011. The data void in modeling current and 

future distributions of tropical species. Global Change Biology, 17 (1), 626-

630. 

Feeley, K. J., Silman, M. R., Bush, M. B., Farfan, W., Cabrera, K. G., Malhi, Y., 

Meir, P., Revilla, N. S., Quisiyupanqui, M. N. R., and Saatchi, S., 2011. 

Upslope migration of Andean trees. Journal of Biogeography, 38 (4), 783-

791. 

Feeley, K. J., 2012. Distributional migrations, expansions, and contractions of 

tropical plant species as revealed in dated herbarium records. Global 

Change Biology, 18 (4), 1335-1341. 



205 

 

Fung, F., Lopez, A., and New, M., 2011. Water availability in +2°C and +4°C 

worlds. Philosophical Transactions of the Royal Society A: Mathematical, 

Physical and Engineering Sciences, 369 (1934), 99-116. 

Gentry, A. H., 1995. Patterns of diversity and floristic composition in neotropical 

montane forests. In: Churchill, S. P., Balslev, H., Forero, E., and Luteyn, J. 

L. eds. Biodiversity and conservation of neotropical montane forests. 

Proceedings of the Neotropical Montane Forest Biodiversity and 

Conservation Symposium. June 21-26, 1993 (Bronx, N.Y, U.S.A). New York, 

USA: New York Botanical Garden,  103-126. 

Golicher, D., Ford, A., Cayuela, L., and Newton, A., 2012. Pseudo-absences, 

pseudo-models and pseudo-niches: pitfalls of model selection based on the 

area under the curve. International Journal of Geographical Information 

Science, 26 (11), 2049-2063. 

Gottfried, M., Pauli, H., Futschik, A., Akhalkatsi, M., Barancok, P., Benito Alonso, 

J. L., Coldea, G., Dick, J., Erschbamer, B., Fernandez Calzado, M. R., 

Kazakis, G., Krajci, J., Larsson, P., Mallaun, M., Michelsen, O., Moiseev, 

D., Moiseev, P., Molau, U., Merzouki, A., Nagy, L., Nakhutsrishvili, G., 

Pedersen, B., Pelino, G., Puscas, M., Rossi, G., Stanisci, A., Theurillat, J.-P., 

Tomaselli, M., Villar, L., Vittoz, P., Vogiatzakis, I., and Grabherr, G., 2012. 

Continent-wide response of mountain vegetation to climate change. Nature 

Climate Change, advance online publication. 

Hamilton, L. S., 1995. Mountain cloud forest conservation and research: a synopsis. 

Mountain Research and Development, 15 (3), 259-266. 

Herzog, S. K., Martínez, R., Jørgensen, P. M., and Tiess, H. (Eds.). 2011. Climate 

change and biodiversity in the tropical Andes: Inter-American Institute for 

Global Change Research (IAI) and Scientific Committee on Problems of the 

Environment (SCOPE). 

Hoffmann, M., Brooks, T. M., Fonseca, G. A. B., Gascon, C., Hawkins, A. F. A., 

James, R. E., Langhammer, P., Mittermeier, R. A., Pilgrim, J. D., Rodrigues, 

A. S. L., and Silva, J. M. C., 2008. Conservation planning and the IUCN 

Red List. Endangered Species Research, 6 (2), 113-125. 

IPCC [Intergovernmental Panel on Climate Change]. 2013. Summary for 

Policymakers In: Climate Change 2013: The Physical Science Basis. 



206 

 

Working Group I Contribution to the IPCC Fifth Assessment Report. 

Cambridge, UK: Cambridge University Press. 

IUCN. 2001. UCN Red List categories and criteria. Version 3.1. Gland, Switzerland 

and Cambridge, United Kingdom: IUCN Species Survival Commission, 

IUCN. 

IUCN Standards and Petitions Subcommittee. 2011. Guidelines for Using the IUCN 

Red List Categories and Criteria. Version 9.0. Prepared by the Standards and 

Petitions Subcommittee. Downloadable from: 

http://www.iucnredlist.org/documents/RedListGuidelines.pdf. 

Joppa, L. N., Visconti, P., Jenkins, C. N., and Pimm, S. L., 2013. Achieving the 

Convention on Biological Diversity’s Goals for Plant Conservation. Science, 

341 (6150), 1100-1103. 

Jørgensen, P. M., Ulloa Ulloa, C., and Maldonado, C., 2006. Riqueza de plantas 

vasculares. In: Moraes R., M., Øllgaard, B., Kvist, L. P., Borchsenius, F., 

and Balslev, H. eds. Botanica Economica de los Andes Centrales. La Paz, 

Bolivia: Universidad Mayor de San Andres, Plural Editores. 

Jørgensen, P. M., Ulloa Ulloa, C., León, B., León-Yánez, S., Beck, S.G., Nee, M., 

Zarucchi, J.L., Celis, M., Bernal, R. & Gradstein, R., 2011. Regional 

patterns of vascular plant diversity and endemism. In: Herzog, S. K., 

Martínez, R., Jørgensen, P. M., and Tiess, H. eds. Climate Change and 

Biodiversity in the Tropical Andes: Inter-American Institute for Global 

Change Research (IAI) and Scientific Committee on Problems of the 

Environment (SCOPE),  92-203. 

Kapos, E. V., Rhind, M., Edwards, M., and Price, M. F., 2000. Developing a map of 

the world's mountain forests. In: Price, M. F., and Butt, N. eds. Forest in 

sustainalbe mountain development: A state-of- knowledge report for 2000. 

Wallingfird: CAB International. 

Keith, D. A., Akçakaya, H. R., Thuiller, W., Midgley, G. F., Pearson, R. G., 

Phillips, S. J., Regan, H. M., Araújo, M. B., and Rebelo, T. G., 2008. 

Predicting extinction risks under climate change: coupling stochastic 

population models with dynamic bioclimatic habitat models. Biology 

Letters, 4 (5), 560-563. 

http://www.iucnredlist.org/documents/RedListGuidelines.pdf


207 

 

Kessler, M., 2000. Elevational gradients in species richness and endemism of 

selected plant groups in the central Bolivian Andes. Plant Ecology, 149 (2), 

181-193. 

Lamoreux, J., Resit Akçakaya, H., Bennun, L., Collar, N. J., Boitani, L., Brackett, 

D., Bräutigam, A., Brooks, T. M., da Fonseca, G. A. B., Mittermeier, R. A., 

Rylands, A. B., Gärdenfors, U., Hilton-Taylor, C., Mace, G., Stein, B. A., 

and Stuart, S., 2003. Value of the IUCN Red List. Trends in Ecology and 

Evolution, 18 (5), 214-215. 

Latta, S. C., Tinoco, B. A., Astudillo, P. X., and Graham, C. H., 2011. Patterns and 

magnitude of temporal change in avian communities in the ecuadorian 

andes. Condor, 113 (1), 24-40. 

Ledo, A., Montes, F., and Condes, S., 2009. Species dynamics in a montane cloud 

forest: Identifying factors involved in changes in tree diversity and 

functional characteristics. Forest Ecology and Management, 258 

(Supplement 1), S75-S84. 

Lindner, M., Maroschek, M., Netherer, S., Kremer, A., Barbati, A., Garcia-Gonzalo, 

J., Seidl, R., Delzon, S., Corona, P., Kolström, M., Lexer, M. J., and 

Marchetti, M., 2010. Climate change impacts, adaptive capacity, and 

vulnerability of European forest ecosystems. Forest Ecology and 

Management, 259 (4), 698-709. 

Lobo, J. M., Jiménez-Valverde, A., and Hortal, J., 2010. The uncertain nature of 

absences and their importance in species distribution modelling. Ecography, 

33 (1), 103-114. 

Mace, G. M., Collar, N. J., Gaston, K. J., Hilton-Taylor, C., Akçakaya, H. R., 

Leader-Williams, N., Milner-Gulland, E. J., and Stuart, S. N., 2008. 

Quantification of extinction risk: IUCN's system for classifying threatened 

species. Conservation Biology, 22 (6), 1424-1442. 

Maslin, M., and Austin, P., 2012. Uncertainty: Climate models at their limit? 

Nature, 486 (7402), 183-184. 

Midgley, G. F., Hannah, L., Millar, D., Rutherford, M. C., and Powrie, L. W., 2002. 

Assessing the vulnerability of species richness to anthropogenic climate 

change in a biodiversity hotspot. Global Ecology and Biogeography, 11 (6), 

445-451. 



208 

 

Millenium Ecosystem Assesment. 2005. Ecosystems and human  well-being: 

Biodiversity Synthesis. Washington, DC, USA: World Resources Institute. 

Miller, R. M., Rodriguez, J. P., Aniskowicz-Fowler, T., Bambaradeniya, C., Boles, 

R., Eaton, M. A., Gärdenfors, U., Keller, V., Molur, S., Walker, S., and 

Pollock, C., 2006. Extinction risk and conservation priorities [4]. Science, 

313 (5786), 441. 

Miller, R. M., Rodriguez, J. P., Aniskowicz-Fowler, T., Bambaradenya, C., Boles, 

R., Eaton, M. A., Gärdenfors, U., Keller, V., Molur, S., Walker, S., and 

Pollock, C., 2007. National Threatened Species Listing Based on IUCN 

Criteria and Regional Guidelines: Current Status and Future Perspectives. 

Conservation Biology, 21 (3), 684-696. 

Myers, N., Mittermeier, R. A., Mittermeier, C. G., da Fonseca, G. A., and Kent, J., 

2000. Biodiversity hotspots for conservation priorities. Nature, 403 (6772), 

853-858. 

Newton, A., and Oldfield, S., 2008. Red Listing the World’s Tree Species: A 

Review of Recent Progress. Endangered Species Research, 6, 137-147. 

Oldfield, S., Lusty, C., and MacKinven, A., 1998. The world list of threatened trees. 

Cambridge: World Conservation Press. 

Oldfield, S., and Newton, A., 2012. Integrated conservation of tree species by 

botanical gardens: a reference manual. Richmond, United Kingdom: 

Botanical Gardens Conservation international. 

Olson, D. M., and Dinerstein, E. 1997. Global 200: conserving the world’s 

distinctive ecoregions. USA: WWF-US. 

Olson, D. M., and Dinerstein, E., 1998. The Global 200: A Representation 

Approach to Conserving the Earth's Most Biologically Valuable Ecoregions. 

Conservation Biology, 12 (3), 502-515. 

Olson, D. M., and Dinerstein, E., 2002. The Global 200: Priority Ecoregions for 

Global Conservation. Annals of the Missouri Botanical Garden, 89 (2), 199-

224. 

Orme, C. D. L., Davies, R. G., Burgess, M., Eigenbrod, F., Pickup, N., Olson, V. 

A., Webster, A. J., Ding, T.-S., Rasmussen, P. C., Ridgely, R. S., 

Stattersfield, A. J., Bennett, P. M., Blackburn, T. M., Gaston, K. J., and 



209 

 

Owens, I. P. F., 2005. Global hotspots of species richness are not congruent 

with endemism or threat. Nature, 436 (7053), 1016-1019. 

Palmer, T. N., and Raisanen, J., 2002. Quantifying the risk of extreme seasonal 

precipitation events in a changing climate. Nature, 415 (6871), 512-514. 

Parmesan, C., and Yohe, G., 2003. A globally coherent fingerprint of climate 

change impacts across natural systems. Nature, 421 (6918), 37-42. 

Parmesan, C., Burrows, M. T., Duarte, C. M., Poloczanska, E. S., Richardson, A. J., 

Schoeman, D. S., and Singer, M. C., 2013. Beyond climate change 

attribution in conservation and ecological research. Ecology Letters, 16, 58-

71. 

Perfecto, I., and Vandermeer, J., 2008. Biodiversity Conservation in Tropical 

Agroecosystems. Annals of the New York Academy of Sciences, 1134 (1), 

173-200. 

Perfecto, I., and Vandermeer, J., 2010. The agroecological matrix as alternative to 

the land-sparing/agriculture intensification model. Proceedings of the 

National Academy of Sciences, 107 (13), 5786-5791. 

Perfecto, I., Vandermeer, J., and Wright, A., 2010. Nature´s Matrix. London: 

Earthscan Ltd. 

Perfecto, I., and Vandermeer, J., 2012. Separación o integración para la 

conservación de biodiversidad: la ideología detrás del debate “land-sharing” 

frente a “land-sparing”. Ecosistemas 21 (1-2), 180-191. 

Ponce-Reyes, R., Nicholson, E., Baxter, P. W. J., Fuller, R. A., and Possingham, H., 

2013. Extinction risk in cloud forest fragments under climate change and 

habitat loss. Diversity and Distributions, 19 (5-6), 518-529. 

Possingham, H. P., Andelman, S. J., Burgman, M. A., Medelln, R. A., Master, L. L., 

and Keith, D. A., 2002. Limits to the use of threatened species lists. Trends 

in Ecology and Evolution, 17 (11), 503-507. 

Pounds, J. A., Fogden, M. P. A., and Campbell, J. H., 1999. Biological response to 

climate change on a tropical mountain. Nature (398), 611-615. 

Pounds, J. A., Bustamante, M. R., Coloma, L. A., Consuegra, J. A., Fogden, M. P. 

L., Foster, P. N., La Marca, E., Masters, K. L., Merino-Viteri, A., 

Puschendorf, R., Ron, S. R., Sanchez-Azofeifa, G. A., Still, C. J., and 



210 

 

Young, B. E., 2006. Widespread amphibian extinctions from epidemic 

disease driven by global warming. Nature, 439 (7073), 161-167. 

Rivers, M. C., Taylor, L., Brummitt, N. A., Meagher, T. R., Roberts, D. L., and 

Lughadha, E. N., 2011. How many herbarium specimens are needed to 

detect threatened species? Biological Conservation, 144 (10), 2541-2547. 

Rodrigues, A. S. L., Pilgrim, J. D., Lamoreux, J. F., Hoffmann, M., and Brooks, T. 

M., 2006. The value of the IUCN Red List for conservation. Trends in 

Ecology and Evolution, 21 (2), 71-76. 

Román-Cuesta, R. M., Salinas, N., Asbjornsen, H., Oliveras, I., Huaman, V., 

Gutiérrez, Y., Puelles, L., Kala, J., Yabar, D., Rojas, M., Astete, R., Jordán, 

D. Y., Silman, M., Mosandl, R., Weber, M., Stimm, B., Günter, S., Knoke, 

T., and Malhi, Y., 2011. Implications of fires on carbon budgets in Andean 

cloud montane forest: The importance of peat soils and tree resprouting. 

Forest Ecology and Management, 261 (11), 1987-1997. 

Sangarun, P., Srisang, W., Jaroensutasinee, K., Jaroensutasinee, M., and 

Thammarat, N., 2007. Cloud Forest Characteristics of Khao Nan, Thailand. 

International Journal of Mathematical, Physical and Engineering Sciences, 

1 (4). 

Scheffer, M., Carpenter, S., Foley, J. A., Folke, C., and Walker, B., 2001. 

Catastrophic shifts in ecosystems. Nature, 413 (6856), 591-596. 

Schwartz, M. W., Iverson, L. R., Prasad, A. M., Matthews, S. N., and O'Connor, R. 

J., 2006. Predicting Extinctions as a Result of Climate Change. Ecology, 87 

(7), 1611-1615. 

Shoo, L. P., Williams, S. E., and Hero, J.-M., 2005. Climate warming and the 

rainforest birds of the Australian Wet Tropics: Using abundance data as a 

sensitive predictor of change in total population size. Biological 

Conservation, 125 (3), 335-343. 

Sommer, J. H., Kreft, H., Kier, G., Jetz, W., Mutke, J., and Barthlott, W., 2010. 

Projected impacts of climate change on regional capacities for global plant 

species richness. Proceedings of the Royal Society B: Biological Sciences, 

277 (1692), 2271-2280. 

Stadtmüller, T., 1986. Cloud forests in the humid tropics: a bibliographic review. 

Turrialba, Costa Rica: The United Nations University and CATIE. 



211 

 

Synes, N. W., and Osborne, P. E., 2011. Choice of predictor variables as a source of 

uncertainty in continental-scale species distribution modelling under climate 

change. Global Ecology and Biogeography, 20 (6), 904-914. 

Tejedor Garavito, N., Álvarez, E., Arango Caro, S., Araujo Murakami, A., Blundo, 

C., Boza Espinoza, T. E., La Torre Cuadros, M. A., Gaviria, J., Gutíerrez, 

N., Jørgensen, P. M., León, B., López Camacho, R., Malizia, L., Millán, B., 

Moraes, M., Pacheco, S., Rey Benayas, J. M., Reynel, C., Timaná de la Flor, 

M., Ulloa Ulloa, C., Vacas Cruz, O., and Newton, A. C., 2012. Evaluación 

del estado de conservación de los bosques montanos en los Andes tropicales. 

Ecosistemas, 21 (1-2), 148-166. 

Thomas, C. D., Cameron, A., Green, R. E., Bakkenes, M., Beaumont, L. J., 

Collingham, Y. C., Erasmus, B. F. N., de Siqueira, M. F., Grainger, A., 

Hannah, L., Hughes, L., Huntley, B., van Jaarsveld, A. S., Midgley, G. F., 

Miles, L., Ortega-Huerta, M. A., Townsend Peterson, A., Phillips, O. L., and 

Williams, S. E., 2004. Extinction risk from climate change. Nature, 427 

(6970), 145-148. 

Thuiller, W., Lavorel, S., Araújo, M. B., Sykes, M. T., and Prentice, I. C., 2005. 

Climate change threats to plant diversity in Europe. Proceedings of the 

National Academy of Sciences of the United States of America, 102 (23), 

8245-8250. 

Thuiller, W., Albert, C., Araújo, M. B., Berry, P. M., Cabeza, M., Guisan, A., 

Hickler, T., Midgley, G. F., Paterson, J., Schurr, F. M., Sykes, M. T., and 

Zimmermann, N. E., 2008. Predicting global change impacts on plant 

species' distributions: Future challenges. Perspectives in Plant Ecology, 

Evolution and Systematics, 9 (3-4), 137-152. 

Tingley, M. W., Estes, L. D., and Wilcove, D. S., 2013. Ecosystems: Climate 

change must not blow conservation off course. Nature, 500 (7462), 271-272. 

Tovar, C., Arnillas, C. A., Cuesta, F., and Buytaert, W., 2013. Diverging Responses 

of Tropical Andean Biomes under Future Climate Conditions. PLoS ONE, 8 

(5), e63634. 

Urrutia, R., and Vuille, M., 2009. Climate change projections for the tropical Andes 

using a regional climate model: Temperature and precipitation simulations 



212 

 

for the end of the 21st century. Journal of Geophysical Research, 114 ( D2), 

D02108. 

von Arx, G., Graf Pannatier, E., Thimonier, A., and Rebetez, M., 2013. 

Microclimate in forests with varying leaf area index and soil moisture: 

potential implications for seedling establishment in a changing climate. 

Journal of Ecology, 101 (5), 1201-1213. 

Whittaker, R. J., Araújo, M. B., Paul, J., Ladle, R. J., Watson, J. E. M., and Willis, 

K. J., 2005. Conservation Biogeography: assessment and prospect. Diversity 

and Distributions, 11 (1), 3-23. 

Wu, S., Yin, Y., Zhao, D., Huang, M., Shao, X., and Dai, E., 2010. Impact of future 

climate change on terrestrial ecosystems in China. International Journal of 

Climatology, 30 (6), 866-873. 

Zamin, T. J., Baillie, J. E. M., Miller, R. M., RodrÍguez, J. P., Ardid, A. N. A., and 

Collen, B. E. N., 2010. National Red Listing beyond the 2010 Target. 

Conservation Biology, 24 (4), 1012-1020. 

 



213 

 

7 Appendices  

Appendix I: Network of experts in the region 

Partner  Institution  E-mail  

Alejandra Moscoso  Pontificia Universidad 

Católica del Ecuador, 

Ecuador  

mamoscosoe@yahoo.com  

Omar Vacas   Pontificia Universidad 

Católica del Ecuador 

and Herbario QCA, 

Ecuador  

omarvacas@yahoo.com 

Alejandro Araujo   Noel Kempff M. 

Museum of Natural 

History , Bolivia  

araujomurakami@hotmail.com 

Blanca León  Plant Resources Center, 

University of Texas at 

Austin, United States  

leon@austin.utexas.edu  

Carlos Reynel   Universidad Nacional 

Agraria - La Molina, 

Perú  

reynel@lamolina.edu.pe  

Esteban Alvarez   Alexander von 

Humboldt Biological 

Resources Research 

Institute (IAvH), 

Colombia  

esalvarez@une.net.co  

Lucio Malizia   Fundación ProYungas, 

Argentina  
luciomalizia@arnet.com.ar  

Juan Gaviria   Universidad de los 

Andes, Venezuela  
gaviria@ula.ve  

Maria De Los 

Angeles La Torre 

Cuadros  

Centro Mundial de la 

Agroforestería 

(ICRAF)  

angeleslatorre@lamolina.edu.pe  

Peter Jørgensen  Science & Conservation 

Division, Missouri 

Botanical Garden, 

United States  

peter.jorgensen@mobot.org  

María del Carmen 

Ulloa   
Science & Conservation 

Division, Missouri 

Botanical Garden, 

United States  

carmen.ulloa@mobot.org  

mailto:mamoscosoe@yahoo.com
mailto:omarvacas@yahoo.com
mailto:araujomurakami@hotmail.com
mailto:leon@austin.utexas.edu
mailto:reynel@lamolina.edu.pe
mailto:esalvarez@une.net.co
mailto:luciomalizia@arnet.com.ar
mailto:gaviria@ula.ve
mailto:angeleslatorre@lamolina.edu.pe
mailto:peter.jorgensen@mobot.org
mailto:carmen.ulloa@mobot.org
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Martín Timaná De 

la Flor  
Pontificia Universidad 

Católica del Perú, Perú  
mtimana@gmail.com  

Mónica Moraes 

Ramirez  
Herbario Nacional de 

Bolivia, Bolivia  
monicamoraes45@gmail.com  

René López 

Camacho 
Universidad Distrital, 

Colombia  
rlopezc@udistrital.edu.co  

Sandra Arango Caro  Science & Conservation 

Division, Missouri 

Botanical Garden, 

United States  

sacpriv@yahoo.com  

Carolina Granados 

Mendoza  
Department of Biology, 

Ghent University , 

Belgium  

carolina.granadosmendoza@ugent.
be  

Marie Stephanie 

Samain  
Department of Biology, 

Ghent University, 

Belgium  

MarieStephanie.Samain@UGent.b
e  

Betty Millán  Museo de Historia 

Natural de la 

Universidad Nacional 

Mayor de San Marcos, 

Perú  

bmillans@gmail.com  

Sara Oldfield  Botanic Gardens 

Conservation 

International (BGCI)  

sara.oldfield@bgci.org  

Tatiana Erika Boza 

Espinoza 
Missouri Botanical 

Garden  
tatianaerika@gmail.com 

Maria Isabel La 

Torre Acuy 
Herbario San Marcos- 

Museo de Historia 

Natural Universidad 

Nacional Mayor de San 

Marcos, Peru  

marycamb_11@yahoo.com 

Jose Campos de la 

Cruz 
Herbario San Marcos- 

Museo de Historia 

Natural Universidad 

Nacional Mayor de San 

Marcos, Peru  

joricampos@yahoo.com 

Severo Baldeón 

Malpartida  
Herbario San Marcos- 

Museo de Historia 

Natural Universidad 

Nacional Mayor de San 

Marcos, Peru  

severobaldeon2@hotmail.com 

Mario Benavente 

Palacios  
Herbario San Marcos- 

Museo de Historia 

Natural Universidad 

Nacional Mayor de San 

Marcos, Peru  

mjbenaventep@gmail.com 

mailto:mtimana@gmail.com
mailto:monicamoraes45@gmail.com
mailto:rlopezc@udistrital.edu.co
mailto:sacpriv@yahoo.com
mailto:carolina.granadosmendoza@ugent.be
mailto:carolina.granadosmendoza@ugent.be
mailto:MarieStephanie.Samain@UGent.be
mailto:MarieStephanie.Samain@UGent.be
mailto:bmillans@gmail.com
mailto:sara.oldfield@bgci.org
mailto:tatianaerika@gmail.com
mailto:marycamb_11@yahoo.com
mailto:joricampos@yahoo.com
mailto:severobaldeon2@hotmail.com
mailto:mjbenaventep@gmail.com


215 

 

Marisa Cristina 

Ocrospoma Jara  
Geo Solutions  

m_ocros@hotmail.com 

Arturo Mora IUCN/  programme 

officer, Ecuador 
Arturo.MORA@iucn.org 

Julio Bernal Fauna and Flora 

International, Quito, 

Ecuador 

Julio.bernal@fauna-flora.org  

Hugo Navarrete Pontificia Universidad 

Católica del Ecuador 

and Herbario QCA, 

Ecuador 

HNAVARRETE@puce.edu.ec 

Néstor Gutiérrez Universidad de los 

Andes, Venezuela 
nestorgutierrez@ula.ve  

Orlando Rivera 

Diaz 

Instituto de Ciencias 

Naturales, 

Universidad Nacional 

de Colombia 

oriverad@unal.edu.co  

Eduardo Rudas Instituto de Ciencias 

Naturales, 

Universidad Nacional 

de Colombia 

erudas.icn@gmail.com 

erudasb@unal.edu.co 

 

Alfredo Fernando 

Fuentes Claros  
Herbario Nacional de 

Bolivia, Bolivia 
alfrefuentes@gmail.com  

mailto:m_ocros@hotmail.com
mailto:Arturo.MORA@iucn.org
mailto:Julio.bernal@fauna-flora.org
mailto:nestorgutierrez@ula.ve
mailto:oriverad@unal.edu.co
mailto:erudas.icn@gmail.com
mailto:erudasb@unal.edu.co
mailto:alfrefuentes@gmail.com
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Appendix II: Species data (CD) 

Files inside the CD: 

File name Content 

Species data  Species list.xlsx : all species considered  

 Final classification.xlsx: species RL assessment  

 Climate change species classification.xlsx: species RL 

classification under climate change scenarios  
CD Outputs for the species models for current distribution for 

GAM, Rpart, KSVM, and MaxEnt. 

A2 Outputs of predictions for climate change scenario A2 for 

GAM, Rpart, KSVM, and MaxEnt. 

B2 Predictions for climate change scenario B2 for GAM, Rpart, 

KSVM, and MaxEnt. 

Analysis Overlay of climate change maps and current climate 
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Appendix III: Preliminary category for the species under each RL criterion 

 Criteria 

Species A1 
A2  

(1) 

A2  

(2) 

A2  

(3) 

A2  

(4) 

A2  

(5) 

A2  

(6) 

A3   

(7) 

A3   

(8) 

A3   

(9) 

A3   

(10) 

A3   

(11) 

A3   

(12) 

A4 

(13) 

A4 

(14) 

A4 

(15) 

A2 

(EK) 

A3 

(EK) 

A4  

(EK) 

B1 

hull 

B1  

Glob

Cove

r 

B2 

4km2 

B2 

10km
2 

C1 C2 D1 D2 E Final 

Acca macrostema n.a. LC  LC  LC  VU VU VU LC  VU LC VU EN VU VU VU VU VU VU VU LC LC  EN EN DD DD DD DD DD EN 

Aegiphila 

bogotensis n.a. LC  LC  LC  VU VU VU LC  VU LC VU EN VU VU VU VU DD DD DD LC LC  EN LC  DD DD DD DD DD LC 

Aegiphila 

cuatrecasasii n.a. LC  LC  LC  VU VU VU LC  VU LC VU EN VU VU VU VU DD DD DD LC VU EN EN DD DD DD DD DD LC 

Aegiphila 

ferruginea n.a. LC  LC  LC  VU VU VU LC  VU LC VU EN VU VU VU VU DD DD DD LC VU EN LC  DD DD DD DD DD LC 

Alchornea 

anamariae n.a. LC  LC  LC  VU VU VU LC  VU LC VU EN VU VU VU VU DD DD DD LC VU EN VU DD DD DD DD DD NT 

Allophylus 

coriaceus n.a. LC  LC  LC  VU VU VU LC  VU LC VU EN VU VU VU VU DD DD DD LC LC  DD DD DD DD DD DD DD DD 

Aphelandra 

acanthus n.a. LC  LC  LC  VU VU VU LC  VU LC VU EN VU VU VU VU DD DD DD LC LC  EN LC  DD DD DD DD DD LC 

Axinaea 

glandulosa n.a. LC  LC  LC  VU VU VU LC  VU LC VU EN VU VU VU VU DD DD DD LC LC  EN VU DD DD DD DD DD EN 

Axinaea 

grandifolia n.a. LC  LC  LC  VU VU VU LC  VU LC VU EN VU VU VU VU VU VU DD VU VU EN VU DD DD DD DD DD VU 

Axinaea 

lanceolata n.a. LC  LC  LC  VU VU VU LC  VU LC VU EN VU VU VU VU VU VU VU LC LC  EN VU DD DD DD DD DD EN 

Axinaea 

oblongifolia n.a. LC  LC  LC  VU VU VU LC  VU LC VU EN VU VU VU VU VU VU VU VU EN EN VU DD DD DD DD DD EN 

Azara salicifolia n.a. LC  LC  LC  VU VU VU LC  VU LC VU EN VU VU VU VU DD DD DD LC LC  EN VU DD DD DD DD DD LC 

Baccharis 

latifolia n.a. LC  LC  LC  VU VU VU LC  VU LC VU EN VU VU VU VU DD DD DD LC LC  EN LC  DD DD DD DD DD LC 

Bejaria 

mathewsii n.a. LC  LC  LC  VU VU VU LC  VU LC VU EN VU VU VU VU DD DD DD LC LC  EN VU DD DD DD DD DD LC 

Berberis 

grandiflora n.a. LC  LC  LC  VU VU VU LC  VU LC VU EN VU VU VU VU DD DD DD LC LC  EN VU DD DD DD DD DD LC 

Berberis jobii n.a. LC  LC  LC  VU VU VU LC  VU LC VU EN VU VU VU VU DD DD DD EN EN EN VU DD DD DD DD DD NT 
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Berberis 

lehmannii n.a. LC  LC  LC  VU VU VU LC  VU LC VU EN VU VU VU VU VU VU DD LC LC  EN VU DD DD DD DD DD VU 

Brunellia brunnea n.a. LC  LC  LC  VU VU VU LC  VU LC VU EN VU VU VU VU DD DD DD LC LC  DD DD DD DD DD DD DD EN 

Brunellia inermis n.a. LC  LC  LC  VU VU VU LC  VU LC VU EN VU VU VU VU VU VU VU LC LC  EN VU VU DD DD DD DD EN 

Buddleja coriacea n.a. LC  LC  LC  VU VU VU LC  VU LC VU EN VU VU VU VU DD DD DD LC LC  EN VU DD DD DD DD DD LC 

Buddleja 

pichinchensis n.a. LC  LC  LC  VU VU VU LC  VU LC VU EN VU VU VU VU VU VU LC LC VU EN LC  DD DD DD DD DD VU 

Calliandra 

taxifolia n.a. LC  LC  LC  VU VU VU LC  VU LC VU EN VU VU VU VU VU VU DD LC VU EN VU DD DD DD DD DD VU 

Cecropia bullata n.a. LC  LC  LC  VU VU VU LC  VU LC VU EN VU VU VU VU VU VU DD VU EN EN VU DD DD DD DD DD VU 

Cecropia 

telenitida n.a. LC  LC  LC  VU VU VU LC  VU LC VU EN VU VU VU VU DD DD DD LC LC  EN VU DD DD DD DD DD LC 

Ceroxylon 

parvifrons n.a. LC  LC  LC  VU VU VU LC  VU LC VU EN VU VU VU VU VU VU VU LC LC  EN LC  DD DD DD DD DD EN 

Cervantesia 

tomentosa n.a. LC  LC  LC  VU VU VU LC  VU LC VU EN VU VU VU VU DD DD DD LC LC  EN LC  DD DD DD DD DD NT 

Cestrum 

peruvianum n.a. LC  LC  LC  VU VU VU LC  VU LC VU EN VU VU VU VU DD DD DD LC LC  EN LC  DD DD DD DD DD LC 

Chionanthus 

pubescens n.a. LC  LC  LC  VU VU VU LC  VU LC VU EN VU VU VU VU DD DD DD LC LC  EN VU DD DD DD DD DD NT 

Cinchona 

pitayensis n.a. LC  LC  LC  VU VU VU LC  VU LC VU EN VU VU VU VU VU VU DD LC LC  EN VU DD DD DD DD DD VU 

Cinchona 

pyrifolia n.a. LC  LC  LC  VU VU VU LC  VU LC VU EN VU VU VU VU DD DD DD LC VU EN VU DD DD DD DD DD VU 

Citharexylum 

joergensenii n.a. LC  LC  LC  VU VU VU LC  VU LC VU EN VU VU VU VU DD DD DD VU VU EN EN DD DD DD DD DD NT 

Citharexylum 

rimbachii n.a. LC  LC  LC  VU VU VU LC  VU LC VU EN VU VU VU VU EN EN VU DD DD DD DD DD DD DD DD DD EN 

Clethra rugosa n.a. LC  LC  LC  VU VU VU LC  VU LC VU EN VU VU VU VU VU VU DD LC LC  EN VU DD DD DD DD DD VU 

Clusia 

pseudomangle n.a. LC  LC  LC  VU VU VU LC  VU LC VU EN VU VU VU VU DD DD DD LC LC  EN VU DD DD DD DD DD LC 

Clusia 

sphaerocarpa n.a. LC  LC  LC  VU VU VU LC  VU LC VU EN VU VU VU VU DD DD DD LC LC  EN LC  DD DD DD DD DD LC 

Clusia volubilis n.a. LC  LC  LC  VU VU VU LC  VU LC VU EN VU VU VU VU DD DD DD LC LC  EN VU DD DD DD DD DD EN 
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Crossothamnus 

gentryi n.a. LC  LC  LC  VU VU VU LC  VU LC VU EN VU VU VU VU VU VU DD DD DD DD DD DD DD DD DD DD EN 

Cyathea 

arnecornelii n.a. LC  LC  LC  VU VU VU LC  VU LC VU EN VU VU VU VU DD DD DD LC VU DD DD DD DD DD DD DD EN 

Cyathea 

austropallescens n.a. LC  LC  LC  VU VU VU LC  VU LC VU EN VU VU VU VU DD DD DD LC LC  EN VU DD DD DD DD DD VU 

Cyathea 

carolihenrici n.a. LC  LC  LC  VU VU VU LC  VU LC VU EN VU VU VU VU DD DD DD LC LC  EN VU DD DD DD DD DD NT 

Cyathea 

catacampta n.a. LC  LC  LC  VU VU VU LC  VU LC VU EN VU VU VU VU DD DD DD EN EN EN VU DD DD DD DD DD DD 

Cyathea 

corallifera n.a. LC  LC  LC  VU VU VU LC  VU LC VU EN VU VU VU VU DD DD DD EN EN EN EN DD DD DD DD DD NT 

Cyathea frigida n.a. LC  LC  LC  VU VU VU LC  VU LC VU EN VU VU VU VU DD DD DD LC LC  EN VU DD DD DD DD DD LC 

Cyathea halonata n.a. LC  LC  LC  VU VU VU LC  VU LC VU EN VU VU VU VU DD DD DD EN EN EN EN DD DD DD DD DD VU 

Cyathea 

parvifolia n.a. LC  LC  LC  VU VU VU LC  VU LC VU EN VU VU VU VU DD DD DD LC LC  EN VU DD DD DD DD DD VU 

Cybianthus laetus n.a. LC  LC  LC  VU VU VU LC  VU LC VU EN VU VU VU VU VU VU DD LC LC  EN VU DD DD DD DD DD VU 

Daphnopsis 

espinosae n.a. LC  LC  LC  VU VU VU LC  VU LC VU EN VU VU VU VU VU VU DD LC LC  EN VU DD DD DD DD DD EN 

Dendrophorbium 

balsapampae n.a. LC  LC  LC  VU VU VU LC  VU LC VU EN VU VU VU VU VU EN DD LC VU EN VU DD DD DD VU DD EN 

Diplostephium 

cinerascens n.a. LC  LC  LC  VU VU VU LC  VU LC VU EN VU VU VU VU DD DD DD DD DD DD DD DD DD DD DD DD LC 

Dunalia trianaei n.a. LC  LC  LC  VU VU VU LC  VU LC VU EN VU VU VU VU VU VU DD DD DD DD DD DD DD DD VU DD EN 

Duranta armata n.a. LC  LC  LC  VU VU VU LC  VU LC VU EN VU VU VU VU DD DD DD EN EN EN EN DD DD DD DD DD NT 

Escallonia 

corymbosa n.a. LC  LC  LC  VU VU VU LC  VU LC VU EN VU VU VU VU DD DD DD LC LC  EN VU DD DD DD DD DD LC 

Escallonia 

resinosa n.a. LC  LC  LC  VU VU VU LC  VU LC VU EN VU VU VU VU DD DD DD LC LC  EN LC  DD DD DD DD DD NT 

Freziera dudleyi n.a. LC  LC  LC  VU VU VU LC  VU LC VU EN VU VU VU VU VU VU DD LC LC  EN VU DD DD DD DD DD EN 

Freziera 

microphylla n.a. LC  LC  LC  VU VU VU LC  VU LC VU EN VU VU VU VU VU EN DD VU VU DD DD DD DD DD DD DD EN 

Freziera suberosa n.a. LC  LC  LC  VU VU VU LC  VU LC VU EN VU VU VU VU EN EN DD LC VU EN EN DD DD DD DD DD EN 
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Geissanthus 

argutus n.a. LC  LC  LC  VU VU VU LC  VU LC VU EN VU VU VU VU VU DD DD LC VU EN VU DD DD DD DD DD VU 

Geissanthus 

bogotensis n.a. LC  LC  LC  VU VU VU LC  VU LC VU EN VU VU VU VU VU VU DD LC LC  EN VU DD DD DD DD DD EN 

Graffenrieda 

calyptrelloides n.a. LC  LC  LC  VU VU VU LC  VU LC VU EN VU VU VU VU VU VU DD LC VU EN VU DD DD DD DD DD EN 

Gynoxys 

calyculisolvens n.a. LC  LC  LC  VU VU VU LC  VU LC VU EN VU VU VU VU VU VU DD LC LC  EN VU DD DD DD DD DD VU 

Gynoxys sancti-

antonii n.a. LC  LC  LC  VU VU VU LC  VU LC VU EN VU VU VU VU DD DD DD VU VU EN VU DD DD DD DD DD NT 

Hesperomeles 

cuneata n.a. LC  LC  LC  VU VU VU LC  VU LC VU EN VU VU VU VU DD DD DD LC LC  EN LC  DD DD DD DD DD LC 

Ilex colombiana n.a. LC  LC  LC  VU VU VU LC  VU LC VU EN VU VU VU VU VU VU DD VU EN EN EN DD DD DD DD DD EN 

Ilex maasiana n.a. LC  LC  LC  VU VU VU LC  VU LC VU EN VU VU VU VU DD DD DD DD DD EN EN DD DD DD DD DD DD 

Ilex rimbachii n.a. LC  LC  LC  VU VU VU LC  VU LC VU EN VU VU VU VU VU VU DD LC LC  EN VU DD DD DD DD DD EN 

Ilex scopulorum n.a. LC  LC  LC  VU VU VU LC  VU LC VU EN VU VU VU VU VU VU DD LC LC  EN VU DD DD DD DD DD EN 

Ilex sessiliflora n.a. LC  LC  LC  VU VU VU LC  VU LC VU EN VU VU VU VU DD DD DD LC LC  EN VU DD DD DD DD DD NT 

Ilex uniflora n.a. LC  LC  LC  VU VU VU LC  VU LC VU EN VU VU VU VU VU VU DD LC LC  EN VU DD DD DD DD DD EN 

Iochroma 

lehmannii n.a. LC  LC  LC  VU VU VU LC  VU LC VU EN VU VU VU VU VU DD DD EN EN EN VU DD DD DD DD DD EN 

Joosia aequatoria n.a. LC  LC  LC  VU VU VU LC  VU LC VU EN VU VU VU VU DD DD DD DD DD DD DD DD DD DD DD DD EN 

Magnolia 

yarumalensis n.a. LC  LC  LC  VU VU VU LC  VU LC VU EN VU VU VU VU EN VU DD LC VU EN VU DD DD DD DD DD EN 

Meliosma 

bogotana n.a. LC  LC  LC  VU VU VU LC  VU LC VU EN VU VU VU VU VU VU DD LC LC  EN VU DD DD DD DD DD VU 

Meriania radula n.a. LC  LC  LC  VU VU VU LC  VU LC VU EN VU VU VU VU VU VU DD LC LC  EN VU DD DD DD DD DD VU 

Miconia 

beneolens n.a. LC  LC  LC  VU VU VU LC  VU LC VU EN VU VU VU VU DD DD DD VU VU EN EN DD DD DD DD DD EN 

Miconia 

bipatrialis n.a. LC  LC  LC  VU VU VU LC  VU LC VU EN VU VU VU VU DD DD DD LC VU EN VU DD DD DD DD DD VU 

Miconia 

calophylla n.a. LC  LC  LC  VU VU VU LC  VU LC VU EN VU VU VU VU DD DD DD LC VU DD DD DD DD DD DD DD EN 

Miconia harlingii n.a. LC  LC  LC  VU VU VU LC  VU LC VU EN VU VU VU VU VU VU DD LC LC  EN VU DD DD DD DD DD VU 
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Miconia velutina n.a. LC  LC  LC  VU VU VU LC  VU LC VU EN VU VU VU VU VU VU DD LC LC  EN VU DD DD DD DD DD EN 

Monnina 

pseudosalicifolia n.a. LC  LC  LC  VU VU VU LC  VU LC VU EN VU VU VU VU VU VU DD VU VU EN VU DD DD DD DD DD EN 

Myrcianthes 

discolor n.a. LC  LC  LC  VU VU VU LC  VU LC VU EN VU VU VU VU DD DD DD LC LC  EN VU DD DD DD DD DD EN 

Myrsine 

oligophylla n.a. LC  LC  LC  VU VU VU LC  VU LC VU EN VU VU VU VU DD DD DD LC LC  EN VU DD DD DD DD DD LC 

Nectandra 

subbullata n.a. LC  LC  LC  VU VU VU LC  VU LC VU EN VU VU VU VU VU EN DD EN EN EN VU DD DD DD DD DD EN 

Ocotea arnottiana n.a. LC  LC  LC  VU VU VU LC  VU LC VU EN VU VU VU VU VU VU DD LC LC  EN VU DD DD DD DD DD EN 

Ocotea 

benthamiana n.a. LC  LC  LC  VU VU VU LC  VU LC VU EN VU VU VU VU VU VU DD LC LC  EN VU DD DD DD DD DD EN 

Ocotea 

infrafoveolata n.a. LC  LC  LC  VU VU VU LC  VU LC VU EN VU VU VU VU VU VU DD LC LC  EN LC  DD DD DD DD DD VU 

Oreopanax 

bogotensis n.a. LC  LC  LC  VU VU VU LC  VU LC VU EN VU VU VU VU DD DD DD LC LC  EN VU DD DD DD DD DD VU 

Oreopanax ruizii n.a. LC  LC  LC  VU VU VU LC  VU LC VU EN VU VU VU VU DD DD DD LC VU EN VU DD DD DD DD DD EN 

Oreopanax 

seemannianus n.a. LC  LC  LC  VU VU VU LC  VU LC VU EN VU VU VU VU DD DD DD LC VU EN LC  DD DD DD DD DD LC 

Palicourea 

candida n.a. LC  LC  LC  VU VU VU LC  VU LC VU EN VU VU VU VU DD DD DD LC VU EN VU DD DD DD DD DD VU 

Persea brevipes n.a. LC  LC  LC  VU VU VU LC  VU LC VU EN VU VU VU VU VU VU DD VU EN EN VU DD DD DD DD DD EN 

Perymenium 

jelskii n.a. LC  LC  LC  VU VU VU LC  VU LC VU EN VU VU VU VU DD DD DD LC LC  EN VU DD DD DD DD DD VU 

Phenax laxiflorus n.a. LC  LC  LC  VU VU VU LC  VU LC VU EN VU VU VU VU DD DD DD LC LC  EN EN DD DD DD DD DD DD 

Piper andreanum n.a. LC  LC  LC  VU VU VU LC  VU LC VU EN VU VU VU VU DD DD DD LC LC  EN LC  DD DD DD DD DD LC 

Piper bogotense n.a. LC  LC  LC  VU VU VU LC  VU LC VU EN VU VU VU VU DD DD DD LC LC  EN LC  DD DD DD DD DD LC 

Piper laguna-

cochanum n.a. LC  LC  LC  VU VU VU LC  VU LC VU EN VU VU VU VU DD DD DD LC VU EN VU DD DD DD DD DD EN 

Podocarpus 

glomeratus n.a. LC  LC  LC  VU VU VU LC  VU LC VU EN VU VU VU VU VU VU DD LC LC  EN VU DD DD DD DD DD EN 

Polylepis crista-

galli n.a. LC  LC  LC  VU VU VU LC  VU LC VU EN VU VU VU VU VU VU DD LC LC  EN LC  DD DD DD DD DD EN 
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Polylepis 

microphylla n.a. LC  LC  LC  VU VU VU LC  VU LC VU EN VU VU VU VU DD DD DD DD DD DD DD DD DD DD DD DD CR 

Prunus muris n.a. LC  LC  LC  VU VU VU LC  VU LC VU EN VU VU VU VU DD DD DD LC VU EN EN DD DD DD DD DD DD 

Prunus pleiantha n.a. LC  LC  LC  VU VU VU LC  VU LC VU EN VU VU VU VU DD DD DD LC LC  EN VU DD DD DD DD DD VU 

Prunus urotaenia n.a. LC  LC  LC  VU VU VU LC  VU LC VU EN VU VU VU VU DD DD DD LC LC  EN VU DD DD DD DD DD NT 

Randia 

micracantha n.a. LC  LC  LC  VU VU VU LC  VU LC VU EN VU VU VU VU DD DD DD VU EN EN EN DD DD DD DD DD LC 

Ribes canescens n.a. LC  LC  LC  VU VU VU LC  VU LC VU EN VU VU VU VU DD DD DD DD DD DD DD DD DD DD DD DD EN 

Ruagea 

microphylla n.a. LC  LC  LC  VU VU VU LC  VU LC VU EN VU VU VU VU VU VU DD EN EN EN VU DD DD DD DD DD EN 

Ruagea ovalis n.a. LC  LC  LC  VU VU VU LC  VU LC VU EN VU VU VU VU DD DD DD LC LC  EN VU DD DD DD DD DD NT 

Saurauia bullosa n.a. LC  LC  LC  VU VU VU LC  VU LC VU EN VU VU VU VU DD DD DD LC LC  EN LC  DD DD DD DD DD LC 

Saurauia 

lehmannii n.a. LC  LC  LC  VU VU VU LC  VU LC VU EN VU VU VU VU DD DD DD LC LC  EN VU DD DD DD DD DD NT 

Schefflera 

inambarica n.a. LC  LC  LC  VU VU VU LC  VU LC VU EN VU VU VU VU VU VU DD LC LC  EN VU DD DD DD DD DD VU 

Schinus meyeri n.a. LC  LC  LC  VU VU VU LC  VU LC VU EN VU VU VU VU DD DD DD EN EN EN VU DD DD DD DD DD VU 

Schinus pearcei n.a. LC  LC  LC  VU VU VU LC  VU LC VU EN VU VU VU VU VU VU DD LC VU EN VU DD DD DD DD DD EN 

Schoepfia 

flexuosa n.a. LC  LC  LC  VU VU VU LC  VU LC VU EN VU VU VU VU DD DD DD LC LC  EN VU DD DD DD DD DD NT 

Senna versicolor n.a. LC  LC  LC  VU VU VU LC  VU LC VU EN VU VU VU VU DD DD DD LC LC  EN VU DD DD DD DD DD NT 

Sessea 

crassivenosa n.a. LC  LC  LC  VU VU VU LC  VU LC VU EN VU VU VU VU DD DD DD LC LC  EN VU DD DD DD DD DD NT 

Sessea dependens n.a. LC  LC  LC  VU VU VU LC  VU LC VU EN VU VU VU VU DD DD DD LC LC  EN VU DD DD DD DD DD NT 

Smallanthus 

fruticosus n.a. LC  LC  LC  VU VU VU LC  VU LC VU EN VU VU VU VU DD DD DD LC LC  EN VU DD DD DD DD DD LC 

Solanum 

cajanumense n.a. LC  LC  LC  VU VU VU LC  VU LC VU EN VU VU VU VU DD DD DD LC LC  EN VU DD DD DD DD DD NT 

Solanum 

goniocaulon n.a. LC  LC  LC  VU VU VU LC  VU LC VU EN VU VU VU VU DD DD DD VU VU EN VU DD DD DD DD DD VU 

Solanum 

stenophyllum n.a. LC  LC  LC  VU VU VU LC  VU LC VU EN VU VU VU VU DD DD DD LC LC  EN LC  DD DD DD DD DD LC 
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Symplocos 

canescens n.a. LC  LC  LC  VU VU VU LC  VU LC VU EN VU VU VU VU DD DD DD VU EN EN VU DD DD DD DD DD VU 

Symplocos 

coriacea n.a. LC  LC  LC  VU VU VU LC  VU LC VU EN VU VU VU VU DD DD DD VU VU EN VU DD DD DD DD DD VU 

Symplocos 

reflexa n.a. LC  LC  LC  VU VU VU LC  VU LC VU EN VU VU VU VU DD DD DD LC LC  EN VU DD DD DD DD DD EN 

Ternstroemia 

lehmannii n.a. LC  LC  LC  VU VU VU LC  VU LC VU EN VU VU VU VU VU VU DD VU EN EN EN DD DD DD DD DD EN 

Tournefortia 

loxensis n.a. LC  LC  LC  VU VU VU LC  VU LC VU EN VU VU VU VU DD DD DD DD DD DD DD DD DD DD DD DD LC 

Tournefortia 

undulata n.a. LC  LC  LC  VU VU VU LC  VU LC VU EN VU VU VU VU DD DD DD LC VU EN EN DD DD DD DD DD LC 

Weinmannia 

auriculata n.a. LC  LC  LC  VU VU VU LC  VU LC VU EN VU VU VU VU DD DD DD LC LC  EN LC  DD DD DD DD DD LC 

Weinmannia 

cundinamarcensis n.a. LC  LC  LC  VU VU VU LC  VU LC VU EN VU VU VU VU DD DD DD LC VU EN VU DD DD DD DD DD LC 

Weinmannia 

jelskii n.a. LC  LC  LC  VU VU VU LC  VU LC VU EN VU VU VU VU VU VU DD LC VU EN VU DD DD DD DD DD EN 

Xylosma cordata n.a. LC  LC  LC  VU VU VU LC  VU LC VU EN VU VU VU VU DD DD DD EN EN DD DD DD DD DD DD DD EN 

Zanthoxylum 

brisasanum n.a. LC  LC  LC  VU VU VU LC  VU LC VU EN VU VU VU VU VU VU DD LC LC  EN VU DD DD DD DD DD EN 

Table 1: Preliminary and final classification of each species. (1) A2 past 50 years FAO deforestation rates and FAO forest area; (2) A2 past 50 years Andes area 

and deforestation rates from literature; (3) A2 50 past years Andes area and FAO deforestation rates; (4) A2 past 100 years FAO rates and FAO forest area; (5) A2 

100 past years Andes area and deforestation rates from literature; (6) A2 100 past years Andes area and FAO rates; (7) A3 next 50 years FAO rates and FAO forest 

area; (8) A3 next 50 years Andes area and deforestation rates from literature; (9) A3 next 50 years Andes area and FAO deforestation rates; (10) A3 next 100 years 

FAO rates and FAO forest area; (11) A3 next 100 years Andes area and deforestation rates from literature; (12) A3 next 100 years Andes area and FAO 

deforestation rates; (13) A4 past/future FAO rates and FAO forest area; (14) A4 past/future Andes area and deforestation rates from literature; (15) A4 past/future 

Andes area and FAO deforestation rates; (EK) Expert Knowledge. FAO rates: average deforestation rates from all the countries that occurred between 2005 and 

2010, available from FAO (2010). Andes area: calculated in this research for areas ≥1,500 m. a.s.l using ArcGIS 10. Deforestation rates from literature: averages 

from countries available in Table 3.4 in Chapter 3.  
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Appendix IV: Methods for modelling species distribution 

Species distribution models attempt to provide detailed predictions of distributions 

by relating presence or abundance of species to environmental predictors (Elith et 

al. 2006). As Higgins et al. (2003) described it: “All models are caricatures - there 

is no correct model. But useful models can be parameterized to capture the 

important features of a process within a restricted domain”. All model approaches 

are based on some form of empirical data. Model applications require that the fitted 

functional relationships in the models are general and will hold under changed 

environmental conditions. Models using a space time substitution are based on rich 

and detailed spatial information and have a very high level of empiricism. 

Consequently, this assumption is most critical for this type of model. In order to use 

empirical spatial models for predictions, it is assumed that the probability of species 

(or vegetation) occurrence conditional upon environmental conditions is constant in 

time (Masek 2001).  

With the current access to more data and the use of powerful machines, statistical 

methods can provide a valid and powerful approach to modelling large scale 

potential distributions under environmental change scenarios (Guisan and 

Zimmermann 2000). This section provides an overview of the methods available 

and their application to predict the potential effects of climate change on forests and 

tree species. 

Statistical models 

Empirical-statistical vegetation models relate species or community occurrence to 

site variables that best fit the empirical data. In general, statistical models require 

less information than process-based models and often better match the spatial and 

temporal resolution of General Circulation Models (GCM) and present 

experimental knowledge (Kienast 1998). Thus it is important that statistical models 

use input parameters that have a physiological - or biological - rationale or are at 

least highly correlated with physiologically or biologically relevant data (Kienast 

1998). The statistical model involves the choice of statistical method, error function 

and significance tests (Austin 2002).  
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Generalised Linear Models (GLM): Mathematical extensions of linear models 

which can handle non-linear relationships and different types of statistical error 

distributions such as Gaussian, Poisson, Binomial, negative binomial and Gamma, 

also called the exponential family of distributions (Guisan and Zimmermann 2000; 

Parviainen and Luoto 2007). Linear multiple regression models predict the response 

of a variable from a vector of multiple inputs or predictor variables. However, this 

type of model makes a lot of assumptions about the structure of the data and 

predictive stable but possibly inaccurate predictions. Also, as ecological data often 

does not follows the pattern of linear models, GLMs are designed to cope with non-

normal distributions of the response variables, transforming them so a linear model 

can be applied more accurately (Franklin 2009). 

Generalised Additive Models (GAM):  A non-parametric extension of GLM, GAM 

is a method for detecting non-linearity of predictors and response functions and then 

building a parametric model. GAMs allow the data to determine the shape of the 

response curves, rather than being limited by the shapes available in a parametric 

class (Yee and Mitchell 1991). This technique applies smoothers independently to 

each predictor and additively calculates the component response (Franklin 2009; 

Guisan and Zimmermann 2000). This is often used in multiple regression analysis. 

They are known to have high predictive accuracy when used for spatial prediction 

and species distribution modelling (Franklin 2009). 

Bayesian approach: Models based on Bayesian statistics combine a priori 

probabilities of observing species or communities with their probabilities of 

occurrence conditional on the value (or class of values) of each environmental 

predictor. Conditional probabilities p(y¦xi) can be, for instance the relative 

frequencies of species occurrence within discrete classes of a nominal predictor. A 

priori probabilities can be based on previous results or literature. This results in an a 

posteriori predicted probability of the modelled entity at a given site with known 

environmental attributes. In vegetation mapping, a posteriori probabilities are 

calculated for each vegetation unit and the unit with the highest probability is 

predicted at every candidate site (Guisan and Zimmermann 2000). 
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Environmental envelopes: Bioclimate envelopes can be defined as constituting the 

climatic component of the fundamental ecological niche, or the ‘climatic niche’. 

Thus, bioclimatic models in their purest form consider only climatic variables and 

do not include in their processing other environmental factors that influence the 

distribution of species, such as soil type and land-cover type. The definition of a 

bioclimate envelope, as with Hutchinson’s definition of the fundamental ecological 

niche, also does not include the influence of biotic effects such as competition for 

resources (Pearson and Dawson 2003). 

Machine learning methods 

Machine-learning algorithms refer to induction algorithms that analyze information, 

recognize patterns, and improve prediction accuracy (Rogan et al. 2008). 

Classification trees: are used to predict membership of cases of a categorical 

dependent variable from their measurements on one or more predictor variables 

(De'ath and Fabricius 2000). Classification trees are developed using different 

measures that recursively split data sets into increasingly homogeneous subsets 

representing class membership, based on ranges of values of predictor variables 

(De'ath and Fabricius 2000). This takes place in three stages: tree building, tree 

stopping and tree pruning. All classification tree approaches employ hierarchical, 

recursive partitioning of the data, resulting in decision rules that relate values or 

thresholds in the predictor variables with pixel classes (Rogan et al. 2008). An 

important advantage of classification trees is that they are structurally explicit, 

allowing for clear interpretation of the links between the dependent variable of class 

membership and the independent variables (Rogan et al. 2008). They are useful for 

devising prediction rules that can be rapidly applied and repeatedly evaluated, to 

assess the adequacy of linear models and to summarise large multivariate data sets 

(Insightful Corporation 2001). Probably the most important advantage of tree-based 

models is that they can identify and express in relatively simple form non-linear and 

non-additive relationships. A tree-based model can capture this kind of interaction 

by splitting the data into subsets based on the first predictor and then identifying 

entirely different relationships with other predictors in the two resulting subsets 

(Michaelsen et al. 1994). 
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The key difference between classification and regression trees is the nature of the 

response variable. Classification trees predict class membership probabilities for 

categorical response variables, while regression trees predict average values for 

interval or ratio scale response variables (Michaelsen et al. 1994). The idea is to 

finally prune the tree to a size or final groups that is likely to provide robust 

predictions for new data. The best tree size is the smallest one that produces an 

estimated error rate (Franklin 2009).  

Random Forests: Random forests are a combination of tree predictors such that each 

tree depends on the values of a random vector sampled independently and with the 

same distribution for all trees in the forest. The generalization error for forests 

converges as to a limit as the number of trees in the forest becomes large. The 

generalization error of a forest of tree classifiers depends on the strength of the 

individual trees in the forest and the correlation between them (Breiman 2001). 

Studies have found that random forest is an accurate algorithm for predicting 

habitats (Garzón et al. 2006). 

The variables predicted to be important in the model help us to understand what 

variables are driving the distribution of vegetation types. Some distributions are 

strongly driven by climate, whereas others are driven primarily by edaphic or land-

use variables (Prasad et al. 2006). It is important to ask how reasonable the maps of 

future climate scenarios are because one of the main goals in predictive vegetation 

mapping is to assess the performance of models when predicting under changed 

climatic conditions. For example, Keenan et al. (2011) compare the accuracy of 

different methods to predict species distributions under different climate scenarios, 

i.e. RF, random forest; CTA, classification tree analysis; GBM, generalized 

boosting model; MARS, multivariate adaptive regression splines; GAM, 

generalized additive model; MDA, mixture discriminant analysis; GLM, 

generalized linear model; ANN, artificial neural networks; SRE, surface range 

envelope. They conclude that RF is one of the most appropriate methods to predict 

the potential distribution of tree species under projected climatic conditions.  

Maximum entropy (MaxEnt): estimates the likelihood of a species being present by 

finding the distribution of maximum entropy (i.e. that is closest to uniform) subject 
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to the constraint that the expected value of each environmental variable under this 

estimated distribution matches its empirical average (Phillips et al. 2006). MaxEnt 

uses the ‘background’ data of the environmental layers in the modeling process. 

The output of MaxEnt are values between 0 (low) and 1 (high). MaxEnt uses 

presence and absence (or random background) data. This likely makes it able to 

correctly identify as suitable, at least some of the ‘new’ environmental space, if the 

conditions are closer to the conditions under which the species is currently present 

than to the conditions under which it is absent. MaxEnt a seems to be able to predict 

species distributions under novel combinations of climate space (Hijmans and 

Graham 2006). 

The MaxEnt program takes as input a set of point locality data and a set of 

measurements of environmental (e.g., bioclimatic) variables. It produces as output a 

map of values over the area covered by the point locality data; these values indicate 

the relative likelihood that each pixel in the study area contains environmental 

conditions corresponding to those at the point locations. By selecting an appropriate 

cut-off value, this continuous map can be converted to a binary map of predicted 

species presence or absence. One important aspect of this method is that it requires 

only locations at which the species is known to be present; locations at which the 

species is inferred to be absent are not used by MaxEnt (Andersen 2010). The 

output of MaxEnt is an exponential function that assigns a probability to each site 

(Franklin 2009). The program uses receiver operating characteristic (ROC) curves 

to diagnose model performance. These curves plot sensitivity (a measure of the rate 

of correct prediction of known locations) against 1 - specificity (a measure of the 

rate of correct prediction of absences). The area under the ROC curve, or AUC, is 

then an index of model accuracy (Andersen 2010). This method has been used by 

Crossman et al. (2012) to evaluate the potential impact of climate change on the 

distribution of plant species, with adequate results which could, accurately, identify 

the potential effects of species distribution under potential climate change. 

Artificial neural networks (ANN): Masek (2001) uses ANN to model a most 

suitable forest type based on the conditional probability of vegetation in the 

environmental space. ANN’s are used to parameterise vegetation–environment 

relationships for the region. The output of the ANN model is an environmental 
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suitability index for the forest types. The type with the highest environmental 

suitability is the most likely outcome for any location. Hence, if supplied with 

slightly changed maps of input variables (i.e. environmental conditions after climate 

change), the best-suited forest type under future conditions can be estimated 

(Ostendorf et al. 2001) 

Process-based models 

Process-based vegetation models attempt to describe the components of a system in 

a mechanistic way and avoid relating vegetation data with parameters that are often 

uninterpretable in terms of physiology (Kienast 1998). In terms of extinction-risk 

evaluation, niche-based models (environmental envelopes) tend to predict a stronger 

level of extinction and a greater proportion of colonization than the process-based 

model, because niche-based models do not take phenotypic plasticity and local 

adaptation into account (Morin and Thuiller 2009). 

BIOCLIM: a fitted, species-specific, p-dimensional environmental envelope 

(Boxcar) –to model plant species distributions, using one-by-one degree latitude-

longitude grid cells. This approach is based on calculating a minimal rectilinear 

envelope in a multi-dimensional climatic space (Guisan and Zimmermann 2000). 

HABITAT: is a similar approach to BIOCLIM, as it gives very similar results 

although they differ in their classification procedure (Guisan and Zimmermann 

2000). HABITAT it uses convex polytope envelopes (minimum convex polygon). 

A rectilinear envelope can be defined from a very simple classification tree as well 

(only one dichotomy per predictor), whereas the more complex polytope envelope 

would need a more detailed tree including more terminal nodes (Guisan and 

Zimmermann 2000). 

DISTRIB (www.nrs.fs.fed.us/atlas): This model predicts the potential habitat for 

individual tree species, using random forest to predict suitability. Model reliability 

is based on agreement among various individually modelled regression trees. 

Predictor importance is based on prediction stability under permutations of data. 

Built-in bootstrap/predictor-subsetting among 1000 regression-trees to get honest 

out-of-bag evaluations of prediction strength (USDA Forest Service 2008). 

http://www.nrs.fs.fed.us/atlas
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In terms of forest ecosystems, a number of modelling studies have been conducted 

using forest gap models to assess the impacts of climatic change on forest biomass 

and species composition in mountainous regions. VEMAP, a continental-scale 

vegetation response study of the United States, considered how three 

biogeographical models (BIOME2, DOLY, MAPSS) respond to a double CO2 

scenario. Simulated alpine and subalpine regions in the Western U.S. migrate to 

higher elevations, and thus decrease in area, while subalpine montane forest 

boundaries also move upward (Beniston 2003). Using gap model simulations 

applied to British Columbian mountains, certain upward-moving forest ecosystems 

could actually disappear from their potential habitats because of the lack of winter 

cooling, vital for regeneration and the robustness of trees, and a greater sensitivity 

to droughts and frosts. In all forest impact studies, both in latitudinal and altitudinal 

terms, projected climatic change will be more rapid than the migration capacity of 

forests. The faster the rate of environmental change, the greater the probability of 

species extinction and the disruption of ecosystems (Beniston 2003). 

Conclusions 

The overview of the available methods to predict species potential distribution and 

the responses of their environment to potential climate change clearly shows that a 

wide variety of methods exists and that choosing the most accurate method depends 

on the type of data used; however, some methods are more easily implemented 

where the data available is not as abundant as it is the case of the tropical Andes. 

Nowadays, it is common to find the use of a variety of methods in order to validate 

the accuracy of the different methods with a given set of data e.g. (Crossman et al. 

2012; Golicher et al. 2011). Therefore it can be concluded that a combination of 

methods needs to be used to provide reliable result from the research. 
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