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Abstract 

The XBeach model has been used to simulate the morphological impacts of storms 

on sandy and gravel beaches. Taking as a case study Rossbeigh Spit located on the 

high-energy coast of western Ireland, the study reported here tests the capacity of 

XBeach to reproduce barrier breaching during a storm in December 2008. It 

demonstrates that predictions of the breaching event agree reasonably well with 

observations. However, the main focus of the paper is to establish using the model 

results, site-specific critical wave and water level conditions giving rise to dune 

erosion, overwashing and breaching. By deriving simple-to-use expressions to define 

hydrodynamic thresholds the study advances the ability to predict the impacts of 

infrequent and rarely observed storm events and is considered to provide useful 

coastal management tool for assessing the vulnerability of sandy barriers to 

breaching high-energy during storms.  
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1 Introduction 

Sandy barrier beaches frequently provide a degree of protection to infrastructure, 

property and habitat from large waves and high water levels during storms (Bird, 

1985; Larson et al., 2004).  Erosion of these coastal features potentially makes them 

more vulnerable to overtopping and breaching and may increase the risk of coastal 

flooding. This risk may be elevated further by sea level rise and the occurrence of 

more frequent and more intense storms due to climate change. To improve coastal 

planning and management it is essential to develop robust tools that enable accurate 

prediction of barrier system responses to single storms and to storm sequences for 

present and future climatic conditions (cf. Stockdon et al., 2007). However, the 

majority of work undertaken in this field has investigated moderate or low energy 

coasts (e.g. Sánchez-Arcilla and Jiménez, 1994; Terchunian and Merkert, 1995; 

Kraus and Wamsley, 2003; Giese et al., 2009; Van Thiel de Vries, 2009; Gracia et 

al., 2013) and few studies have looked at the high-energy exposed coasts of western 

Europe (e.g. Sala, 2010, O’Shea & Murphy, 2013). 

 

Cooper et al. (2004) argue that beaches and dunes that are exposed frequently to 

high-energy wave regimes require extreme storms to cause significant morphological 

impact. With reference to the high-energy compartmentalised beaches of western 

Ireland they further observe that uncertainty about the nature of the storms required 

to generate morphological change makes the assessment of storm impacts difficult.  

 

With rare exceptions, dissipative beaches generally exposed to high-energy wave 

conditions exhibit little net morphological change in response to enhanced wave and 

tidal conditions. Cooper et al. (2004) suggest that for storms to have any significant 
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morphological impact on the high-energy beaches, they must be: (a) directed 

onshore; (b) coincident with high (spring) tide; and (c) sufficiently energetic to 

mobilise large quantities beach sediments. The probability of coincident high water 

levels during spring tides and large waves, and thus the magnitude of the storm 

impact, is also related to the duration of a storm. However, this is not a simple 

relationship as demonstrated by storm records. For example, on the west coast of 

Ireland, only a small number of recorded onshore directed storms coincide with 

spring tides (c. 10 between 1957 and 1988), and not all of these storms had an 

erosional impacts on the shoreline. Cooper et al. (2004) suggest that this is almost 

certainly linked to site-specific dynamic impact thresholds. 

 

The authors identify four characteristics that act individually or collectively to 

constrain the morphological response of exposed sandy coasts in Ireland to storms: 

(a) the available sediment volume is fixed with no contemporary sediment supply; (b) 

resistant headlands confine sediments; (c) beaches are dissipative and exhibit 

equilibrium plan forms; and (d) beaches are backed by high, vegetated Holocene 

dunes. They propose two models of storm response on dissipative beaches: (1) 

when near-spring high tide water levels are elevated by small surges, swell, and in 

some cases, short period waves generated locally by strong winds are able to 

undercut dunes resulting in erosion and cross-shore and/or alongshore transport of 

sediment (e.g. Hurricane Debbie, 1961); and (2) the occurrence of strong winds 

directed at an oblique angle to the shore for sustained periods can result in beach 

erosion and steepening which in turn allows subsequent swell to further erode the 

dunes as a new equilibrium beach profile is established.  In addition, and of special 
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relevance to the present study of Rossbeigh, is the temporary sediment storage role 

of the ebb tidal bar during storms (cf. Orford et al. 1999). 

 

Abrupt changes in the coastal morphology brought about by storms can be viewed 

as being reversible if the system can repair itself during normal conditions. The 

changes are irreversible when the new morphology changes hydrodynamic and 

sediment regimes to such an extent that recovery of the feature back to its former 

profile is impossible, at least within an immediate (less than decadal) timeframe. 

Although research into barrier and inlet dynamics in Ireland has been reported (e.g. 

O’Shea & Murphy, 2013), the combined wave and tidal threshold conditions resulting 

in breaching remain largely undefined. Further, since storm impacts are rarely 

observed and difficult to predict, Cooper et al. (2004) recommend that studies 

involving direct observations and/or detailed numerical simulations are required to 

identify the combination of storm attributes necessary to produce a morphological 

response.  

 

With this in mind, using the breaching of the exposed high-energy Rossbeigh Spit 

beach in western Ireland as a case study, this paper uses available data and the 

process-based nearshore numerical XBeach model Version 18 (Roelvink et al., 

2006; 2010) to examine the hydrodynamic conditions leading to the breach. The 

modelling study simulates the damaging storm of 13-14 December 2008 before 

quantifying hydrodynamic threshold conditions defining dune recession, overwashing 

and breaching brought about by varying storm scenarios. While data relating to 

topography, bathymetry and sediment properties at Rossbeigh are scarce and of 

limited temporal and spatial resolution, the site nevertheless is valuable for a 
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modelling study since storm breaching events are rarely observed and consequently 

little studied. Further, if the model can be shown to simulate the broad-scale 

morphological impacts of an observed breach event, its outputs may have further 

utility in providing effective coastal management tools that can be used to assist 

understanding and prediction of potential future coastal changes due to sea level rise 

and other climate related changes in forcing conditions.    

 

1.1 Field Site: Rossbeigh, Ireland 

Located in Dingle Bay, County Kerry, Ireland, Rossbeigh and Inch are two mid-bay 

barrier beaches on a coastline bounded by rocky cliffs (Fig. 1). This barrier beach 

system encloses Inner Dingle Bay to form the Castlemaine Harbour estuary which 

also contains a third barrier, Cromane Point. From the mainland, Rossbeigh extends 

northwards and is relatively stable and swash aligned for approximately 2.6km. 

Further north, the orientation of Rossbeigh changes and becomes drift aligned and 

has been subjected to strong erosion during the period 1998 to 2008. Inch and 

Rossbeigh are separated by a tidal inlet c. 2km wide where flow speeds exceed 

1m/s. Well-developed ebb tidal bars are present on the north and south seaward 

side of the inlet. The width of present day Rossbeigh varies between 100m to 600m 

and vegetated dunes are present along most of the spit.  

 

The spit is founded on underlying cobble or gravel deposits, with the coarser 

materials acting as an anchor upon which the finer sediments move. Dune heights in 

the south of Rossbeigh range between 12m to 17m above Ordnance Datum Malin 

(ODM). In the north, the dune heights decline to values between 5m and 12m ODM. 

The spit has no infrastructure or coastal structures and consists of sandy and coarse 
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sediments from both fluvial and glacial sources (Carter, 1988; O’Shea et al., 2011).  

With the exception of gravel-size sediments comprising the storm beach at the 

southern end of Rossbeigh, the beach is composed of sediment with D50 and D90 of 

0.235mm and 0.341mm, respectively (Sala, 2010). Due to exposure to modally high-

energy, fully-refracted swell and the availability of sandy sediment, Inch and 

Rossbeigh are characterised by shallow cross-shore gradients and can be classified 

as unbarred, dissipative, flat and featureless where spilling breakers are dominant 

(Masselink and Short, 1993). Typically, Rossbeigh has a relative tidal range (RTR) of 

2.9 and dimensionless fall velocity () value of 6 (Gournlay, 1968).  

 

In common with other locations on the western coastline of Ireland Rossbeigh is 

subjected to high modal wave and wind energy levels and also lies in the path of 

several common storm tracks (Cooper et al., 2004; Lozano and Devoy, 2000; 

Lozano et al., 2004). The main exposure of the Dingle embayment is to the 

southwest. The wave conditions that exist at Rossbeigh are dominated by Atlantic 

swell which propagates into Dingle Bay and has a peak period of around 16s. The 

mean spring and neap tidal ranges are 3.2m and 1.5m, respectively. The modal 

wave climate for Dingle bay is characterised by a peak period, Tp, of 7s, a mean 

significant wave height, Hs, of 2.4m and a mean direction, , of 260° (Sala, 2010; 

O’Shea et al., 2011). Refraction and dissipation reduces wave energy to low levels 

along the shoreline of Inch and Rossbeigh. Although during storms  remains 

approximately the same as the fair weather value, Tp and Hs values around the 

entrance to Dingle Bay are more typically 13.6s and 6.6m, respectively. Wave 

energy dissipation is concentrated on the ebb tidal bars and the distal beaches of 

Rossbeigh and Inch.  The proximal margins of Rossbeigh and Inch remain sheltered 
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from the impact of larger swell (Cooper et al., 1994). During extreme storms, (e.g. 

Hurricane Debbie in 1961), the bulk of incoming wave energy is dissipated on the 

frontal margins of the ebb tidal bars (Cooper et al., 1994). 

 

Owing to effective cross-shore wave energy dissipation, changes in sediment 

transport patterns may not necessarily follow an increase in swell size as the surf 

zone fronting Rossbeigh expands to accommodate the larger incoming wave energy. 

The offshore morphology (e.g. ebb tidal bar features) contributes further to energy 

dissipation during storms. However, storm enhancement by wave setup, enhanced 

secondary wave-induced flows and infragravity motions may contribute to coastal 

impacts over and above those associated with gravity waves alone. Rossbeigh and 

Inch are backed by well-developed dune systems which are of sufficient size at most 

locations to prevent overwash. In most cases the morpholological response of 

Rossbeigh and Inch to storms is restricted to cross-shore and/or alongshore 

transport of sediment, primarily by wave action and to aeolian deflation and 

transport.  

 

Based on historical evidence it is thought that the swash platform located offshore 

from the northern section of Rossbeigh is maintained with a cross-shore supply of 

sediment originating primarily from the southern ebb shoal deposits at the entrance 

to the estuary (O’Shea et al., 2011). In addition, there is evidence that some 

sediment is supplied by littoral drift from the south. Observed changes in the position 

of the main estuary channel can lead to a reduction in supply and result in erosion of 

the swash platform as seen in the period 2000 to 2008. During this period, the 

erosion increasingly exposed Rossbeigh to damaging waves during storms leading 
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eventually to the breaching during 13-14 December 2008 described below. Evidence 

from other breach events (e.g. Kraus & Wamsley, 2003; Sánchez-Arcilla & Jiménez, 

1994) indicates that once breaching has occurred, the resulting sediment deposits in 

the back barrier areas are available to be re-worked and transported seawards to the 

ebb shoal by existing channels. Here they can once again supply the swash platform 

and provide the degree of protection to Rossbeigh necessary to allow natural repair 

of the breach through beach and dune re-construction. However, since December 

2008, there is little evidence that this process is occurring quickly at Rossbeigh.      

 

1.2 Rossbeigh breach of 13-14 December, 2008 

Oblique aerial images of Rossbeigh in 2003 (pre-breach) and 2010 (post-breach) are 

shown in Fig. 2a and Fig. 2b, respectively and Google Earth images of Rossbeigh in 

2003 (pre-breach) and 2010 (post-breach) are shown in Fig. 2c and Fig. 2d, 

respectively. The 13-14 December 2008 breach event followed a 10 year period of 

intensive erosion and marked a significant change in the morphology of the barrier 

system and in the hydrodynamics of the estuary behind the barrier. Had erosion not 

been so severe, it is unlikely that the event of 13-14 December 2008 would have 

resulted in the breach.  

 

In order to understand the circumstances leading to the Rossbeigh breach during 13-

14 December 2008, Sala (2010), O’Shea et al., (2011) and O’Shea and Murphy 

(2013) have analysed historical maps and aerial photographs. Their analysis 

identified that the period 2004 to 2009 had a higher than average concentration of 

winter storms and recognised an important interdependency between the inlet 

channel, the ebb tidal bar and the beach.  The most significant events leading to the 
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breach can be summarised as follows: (a) around 2000, the inlet channel flowed in 

an ‘S’ shape, depositing sediment onto the ebb tidal bar which acted to both protect 

the distal end of Rossbeigh from waves and to supply the beaches with sediment; (b) 

in the period 2000 to 2006, the inlet channel became progressively straighter 

resulting in sediment being transported into deeper water out into Dingle Bay where 

it was less available to the ebb tidal bar and the beach. During this period dune 

recession rates of up to 12myr-1 were observed around the spit recurve location (the 

volume of dune sediment displaced was c. 52,000m3yr-1, O’Shea et al., 2011); (c) the 

reduction in sediment supply resulted in accelerated erosion north of the recurve 

point; and (d) erosion of the swash bar between 2006 and 2008 reduced the ability of 

the distal end of Rossbeigh to withstand storm waves. The loss of dune volume 

reached a maximum of 530,000m3yr-1 in 2008 and culminated in the 13-14 

December 2008 breach which left a small northern island separated by around 500m 

from the southern dune systems at high water (Fig. 2b; 2d).  

 

This evidence supports the view that the 13-14 December 2008 breach event 

resulted from a breach mechanism described by Kraus (2003) where the reduction of 

sediment supplied results in the narrowing and lowering of the barrier and eventual 

breaching. Indeed the 13-14 December 2008 storm was not exceptional and its 

effectiveness must be attributed in part to the antecedent erosion accomplished by 

numerous proceeding storm events during the period 1998 to 2008. On this basis 

Sala (2010) argued that the evidence of swash platform erosion at Rossbeigh 

indicates that the breach event most likely resulted from a decline in beach volume 

rather than from the direct impact of one or more storm events. Since the breach, 

erosion rates on Rossbeigh have continued to increase and the ebb tidal bars have 
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continued to grow (O’Shea et al., 2011; O’Shea & Murphy, 2013). The breach is 

currently around 800m wide. O’Shea & Murphy, 2013 suggest that if present 

historical trends continue erosion rates will continue to be high in the drift aligned 

zone and the hinge point between swash-aligned and drift-aligned zones will 

continue to move in the direction of the swash aligned zone, increasing the area 

susceptible to erosive processes. This processes is likely to increase the risk of 

coastal flooding and inundation in the back barrier area. 

 

1.3 Metocean conditions at the time of the breach 

At the time of the breach there are no available measurements of waves or tides in 

the vicinity of Rossbeigh. In order to better understand the prevailing metocean 

conditions during the breach, predicted wave conditions have been obtained from 

the ABPmer SEASTATES1 wave hindcast model at three locations in Dingle Bay 

(Fig. 1).  In addition, predicted astronomical tidal elevation data, h, were obtained at 

the location closest to Rossbeigh at Castletown using Delft Dashboard2 (Fig. 1). As a 

check on the predictions from SEASTATES and Delft Dashboard, metocean data 

were also obtained from the Irish Marine Weather Buoy M3 located 30 nautical miles 

south west of Mizen Head in a water depth of 155m (51°13'0" N 10°33'0"W, Fig. 1). 

As an additional check, these data were also compared with the Irish Marine 

Weather Buoy M6 located far offshore at 53°3'36"N 15°55'48"W (location not shown 

in Fig. 1).   

 

For the period 2 to 30 December 2008, Fig. 3 shows time-series of: (a) atmospheric 

pressure, P; (b) wind speed, Uw; and (c) wind direction, w measured by the M3 and 

                                                 
1
 http://www.seastates.net/ 

2
 https://publicwiki.deltares.nl/display/OET/DelftDashboard 
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M6 buoys; (d) predicted astronomical tide (Delft Dashboard), h, (e) predicted and 

measured (M3 and M6 buoys) Hs; (f) predicted mean wave period, Tm10; (g) 

predicted mean wave direction,; and (h) predicted wave power, WP. In all cases the 

predicted data are from SEASTATES at Location 1 (Fig. 1). WP is defined as 

Hs2.Tm10.(g2/64), where g is the acceleration due to gravity. The dates when the 

breach occurred (13-14 December, 2008) are shown by the grey shaded area. It is 

noted that although the storm on 5 December was more energetic (c. 50 % more 

wave power), it occurred during neap tides whereas the storm causing the breach 

occurred during spring tides which allowed waves penetration higher up the beach 

profile.  

 

It is noted that no tidal enhancement attributable to surge has been accounted for in 

Fig. 3. An estimate of the surge during the period 13-14 December was obtained 

using 

  

∂η

∂x
=

ητw

ρg(h+η)
            (1) 

 

where  is the surge elevation above the still water level, x is the horizontal distance, 

 is the density of sea water, g is the acceleration due to gravity, h is the water depth 

and the wind stress, w, is defined as 

 

τw=ρaCdwW
2
            (2) 
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where a is the density of air, Cdw is a drag coefficient (c. 1.2 x 10-6) and W is the 

wind speed (Van Dorn, 1953). Account was also taken of the inverse barometer 

effect with respect to the reference atmospheric pressure assumed 1013.3 mb (e.g. 

Dorandeu and Le Traon, 1999).  During the 13-14 December 2008 storm, the P 

decreased from around 1015mb on 12 December to a minimum value of 989 mb 

(Fig. 4) and elevated the mean water level by around 23 cm during the storm.  

 

Data for the period 11 to 15 December are shown in more detail in Fig. 4. This 

shows time-series of: P, Uw, w, Hs and Tm10 from the M3 and M6 buoys along with 

h and predicted Hs and Tm10 time-series from SEASTATES at locations 1-3 (Fig. 1).  

The surge component of the total water level is also shown in Fig. 4. The skew surge 

is estimated to be 0.55m (i.e. water level = 4.93m ODM) and approximates to a 1:5 

year event (Olbert and Hartnett, 2010).   The breach period is indicated by the grey 

shaded area on the figure. With available information it is not possible to define 

precisely when the breach occurred. However, anecdotal evidence suggests this 

occurred at high tide around 21h00 on 13 December, 2008. The metocean time-

series in Fig. 4 provide the forcing conditions used in the XBeach simulations 

described below. 

 

2 Modelling approach  

2.1 Bathymetry and topography 

A problem frequently faced at many coastal locations concerns a lack of good quality 

bathymetric and topographic data that are needed to create accurate pre- and post-

storm digital elevation models (DEMs). Here pre-breach data were obtained from 

digitised maps, aerial photographs and the British Admiralty Nautical Chart 2789 
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(Dingle Bay and Smerwick Harbour). Owing to a scarcity of contemporary data for 

the 2008 period, it should be noted these data comprise the best possible composite 

of data from a range of dates between 2002 and 2008. Using aerial photographs of 

Rossbeigh taken in 2005-2007, and the well-defined post-breach DEM described 

below, the MIKE3 Zero module was used to geo-reference and incorporate these 

images into existing maps. Using this approach, visual interpretation of the terrain 

allowed estimation of contours around the time of the breach. It is noted that 

historical evidence indicates that bathymetric/topographic changes occurring to the 

south and north of the breach area on Rossbeigh are typically small thus supporting 

the view that the pre-storm DEM of these area obtained from data in the period 

2005-2007 are a good representation of the pre-storm beach and dune geometry. 

Although it is considered likely that for areas of Rossbeigh characterised by quicker 

than average morphological change the resulting DEM is not an exact representation 

of the morphology of Rossbeigh immediately before the breach, it is sufficiently 

accurate to meet the objectives of the present study.  

 

An illustration of the pre-breach DEM extending 2km x 0.6km is shown in Fig. 5a. 

This is part of the larger DEM used in the XBeach model and is shown here to 

illustrate the primary area of investigation in this paper. All bathymetric and 

topographic data are referenced to Ordnance Datum Malin (ODM).  

 

The post-breach bathymetry and topography for Rossbeigh is well-defined using 

data from: (a) a multi-beam echo survey to the 10m isobath; (b) MIKE Zero 

digitisation of images from aerial and satellite sources (cf. O’Shea et al., 2011); (c) 

                                                 
3
 http://www.mikebydhi.com/ 
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lidar data from 2011 provided by Kerry County Council; and (d) British Admiralty 

Nautical Chart 2789 (Dingle Bay and Smerwick Harbour). An illustration of the post-

breach DEM extending 2km x 0.6km is shown in Fig. 5b. Here the red rectangle 

identifies the area of the December 2008 breach and encloses the washover 

deposited clearly seen in Fig. 2b and 2d.  

 

2.2 Model grid 

The grid setup for XBeach requires that the x-axis is orientated approximately normal 

to the shoreline and the offshore boundary must be far enough offshore to allow 

space and time to generate the bound long waves. In the 2D area model, a variable 

resolution grid was set up using the recommended minimum resolution of 12 points 

per wavelength in the offshore regions. The grid resolution was increased to 3m in 

the nearshore region. The offshore boundary of the model domain was extended 

using chart data4 beyond the region of available bathymetric survey data to a water 

depth of -15m ODM. A wave transformation using a MIKE Spectral Wave (SW) 

model of Dingle Bay provided wave data at the offshore boundary of the XBeach 

model from SEASTATES data at Location 1 (c. -45m ODM). The 2D XBeach model 

was then forced at the offshore boundary using time-varying JONSWAP spectra 

derived from the transformed wave data and the metocean data shown in Fig. 5 with 

a peak enhancement factor, , = 3.3 and a directional spreading coefficient, ns = 10. 

The sediment grain size across the whole model domain is based on measurements 

(i.e. D50 and D90 = 0.235mm and 0.341mm, respectively). To reduce the 

computational time the morphological acceleration factor (MORPH) of XBeach was 

                                                 
4
 British Admiralty Nautical Chart 2789 Dingle Bay and Smerwick Harbour 
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set to a value of 10 and other parameter settings conformed to the most recent 

settings recommended by the model developers5. 

 

2.3 Modelling scenarios 

The modelling study comprised two related parts. In Part 1, the 2D XBeach model 

simulated the morphological changes that occurred during the 13-14 December 2008 

breaching event. To define the starting bathymetry and topography, this study used 

the pre-storm DEM and compared XBeach predictions of storm impacts with the 

post-storm DEM. To simulate the breaching event, the XBeach model was run using 

metocean data for the 13-14 December 2008 storm.  

 

In Part 2, XBeach was used to define the site-specific threshold conditions for dune 

recession, overwashing and breaching of the pre-storm morphology by looking at 

combinations of waves and tidal elevations most likely to occur at Rossbeigh with 

return periods defined by available data.  

 

3 Results and discussion  

3.1 Part 1: 2D XBeach 

The XBeach model showed that during the simulated storm when wave height 

increased, a wide, well-defined surf zone developed on the ebb-tidal delta and along 

the proximal section of Rossbeigh where swash-aligned platforms are present (Fig. 

2d). However, owing to wave energy dissipation on the ebb-tidal delta, the model 

showed that the distal section of Rossbeigh was sheltered. Not only does the 

simulation show the control on planform by large swell waves, it illustrates the ability 

                                                 
5
 http://oss.deltares.nl/web/xbeach/home 
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of such shorelines to accommodate a large variation in swell wave sizes through 

energy dissipation on the shoreface and surf zone without any significant 

morphological change. Thus modification of the swell-related morphology requires 

waves to arrive at the shoreline without significant energy losses and/or produce a 

different energy dispersal pattern. These effects have been documented in previous 

XBeach modelling studies of barrier overwashing (e.g. Roelvink et al., 2009) and for 

this reason are not discussed further here.  

 

Using the same colour-scale on each sub-plot, results from the 2D XBeach depth-

average model are shown in Fig. 6 and focus on the breach site indicated by the red 

rectangle in Fig. 5b. Fig. 6a shows the changes in bed elevation between the 

observed pre- and post-storm DEMs (Fig. 5). For reference, the contour show the 

location of Rossbeigh spit prior to breaching (i.e. Fig. 5a). Fig. 6a shows a region of 

erosion O(-1m) associated with the breach running along the top of the spit and a 

corresponding region of accretion immediately behind the spit reflecting overwash 

deposits O(1.5m) shown in Fig. 2d. Maximum erosion is seen at the northern 

terminus of the large dunes (location A) and at the northernmost end of the breach 

area (location B). The maximum sediment accretion to the east of Rossbeigh is 

around 2m (location C). Regions of erosion and accretion less than 0.5m are 

observed to the west and east of the spit. Thus the evidence in Fig. 6a indicates a 

relatively simple morphological response of Rossbeigh to the storm characterised by 

the overwash event that acted to lower the spit and deposit mobilised sand to the 

east. The XBeach results therefore indicate a conservation of the total sand volume 

during the breach event.        
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Fig. 6b shows the changes in bed elevation between the observed pre-storm DEM 

and the storm-modified DEM predicted by the 2D XBeach model. In many respects 

the predicted areas of erosion and accretion are similar to those shown in Fig. 6a. 

However, the model appears to have a positive or negative bias across the majority 

of the model domain. Fig. 6a and 6b have many features in common, suggesting that 

the XBeach model performed well. However, the performance is better demonstrated 

in Fig. 6c which shows the difference between observed and predicted post-storm 

DEMs. Here areas shaded light blue (accretion) or light red (erosion) show regions 

where the XBeach model bed elevation predictions deviate from the observations. 

Fig. 6c shows that XBeach has a tendency to over-predict erosion on Rossbeigh Spit 

by values less than 0.5m. Accretion is also over-predicted on the eastern side of 

Rossbeigh.  

 

In order to compare the measured post December 2008 storm beach and dune 

profiles along Rossbeigh Spit with those predicted by the 2D XBeach model, 

measured and predicted shore-normal beach profiles were examined at 30 locations 

along the shoreline. For illustrative purposes graphical results from the six locations 

along Rossbeigh shown in Fig. 7a are presented in Fig. 7b. For reference, Fig. 7b 

also shows the position of the peak water level (tide plus surge) during the simulated 

storm period (13-14 December 2008). These beach profiles have been analysed to 

quantify: (a) the Brier skills score (BSS); (b) erosion above 0 m ODM; and (c) 

maximum dune recession distances. 

 

The BSS values quantify the skill of the XBeach model in predicting post-storm 

beach and dune profiles (cf. Sutherland et al., 2004). It compares the mean square 
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difference between the prediction and observation with the mean square difference 

between baseline prediction and observation so that 

 

BSS=1- [
〈|xp-xm|

2
〉

〈|xb-xm|
2
〉
]           (3) 

 

where xp is the post-storm beach profile predicted by the model,  xm is the measured 

post-storm beach profile and xb is the pre-storm beach profile (baseline). Perfect 

agreement gives a BSS score of 1, and negative values indicate that predictions are 

worse than the baseline value. An interpretation of BSS values is provided by Van 

Rijn et al. (2003) where 0< BSS < 0.3, 0.3< BSS < 0.6, 0.6< BSS < 0.8, and BSS > 8 

indicated poor, reasonable/fair, good and excellent, respectively.  

 

For P1 to P17 in the southern region of Rossbeigh, BSS values fall in the range 0.59 

to 0.89 with an average value of 0.74 (Fig. 8a) demonstrating ‘good’ agreement. In 

the region of the breach (P18 to P27) BSS values fall in the range 0.36 to 0.70 and 

the average BSS value reduces to 0.52 (i.e. ‘reasonable/fair’ agreement). At the 

northern end of Rossbeigh, P28 to P30 have BSS values in the range 0.56 to 0.74 

and an average BSS value of 0.66 (‘good’). These BSS values demonstrate that the 

XBeach model predictions are good or excellent for more than 70% of the profiles.   

 

The measured beach/dune erosion shown in Fig. 8b increases northwards from 

profile 1 and peaks at 587 m2/m in the centre of the breach area (P24). Thereafter, 

beach/dune erosion reduces to c. 400 m2/m. At most locations examined, the 

beach/dune erosion predicted by XBeach is O(15%) greater than the measured 
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values and shows a similar increasing trend northwards towards the breach and a 

similar decrease beyond P27.  

 

The storm response modelling of Rossbeigh Spit has identified a number of areas 

where increased levels of dune recession might be expected to occur. These areas 

correspond relatively well with the plots of historical dune recession. Measured 

maximum dune recession distances shown in Fig. 8c increase in a northwards 

direction along Rossbeigh from c. 2 m around P1 to c. 5m at P30. As there are no 

clearly defined dunes present between P20 and P28 it has not been possible to 

define a recession distance. However, this region is characterised by the highest 

erosion due to overwash and the general lowering of the upper beach profile (as 

shown in Fig. 7, P24). Again XBeach is shown to over-estimate dune recession by 

around 15%.  Nevertheless, the magnitudes of dune recession modelled (Fig. 8c) 

and the estimated historical rates of recession in these areas in the range 4m/yr and 

9m/yr indicate that the modelled values are not wholly unrealistic and a level of 

confidence can be afforded to them. The dune recession distances between P5 and 

P11 on the southern section of the spit of c. 2m are not well-supported by the 

historical evidence of erosion which indicates that the area is relatively stable. It is 

not possible to say whether this discrepancy arises from unknown errors in the pre-

storm DEM used in the simulation or from inaccuracies associated with the XBeach 

model.  

 

3.2 Part 2: 1D XBeach  

With the XBeach model now validated, Part 2 of the modelling study uses 1D 

XBeach simulations to first examine how well the storm impact scale proposed by 
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Sallenger (2000) performs at Rossbeigh. It then uses 2D XBeach results to establish 

the combination of waves and tidal conditions specific to Rossbeigh that resulted in: 

(1) dune erosion of more than 2m; (2) intermittent overwashing for more than one 

hour; and (3) breaching as observed in December 2008. 

  

Based on field observations of sandy barrier islands, Sallenger (2000) presents a 

storm impact scale which takes account of tide/surge, waves and wave runup as well 

as beach geometry. The impact classification is based on four parameters: Rhigh and 

Rlow, defining the upper and lower vertical limit of the swash margin during an event, 

respectively; and Dhigh and Dlow defining the maximum and minimum elevation of the 

dunes or berm, respectively. Using these parameters, four storm impact regimes are 

defined: (a) the swash regime (Impact Level 1) where Rhigh/Dhigh = 0 to Dlow/Dhigh; (b) 

the impact regime (Impact Level 2) where Rhigh/Dhigh = Dlow/Dhigh to 1; (c) the 

overwash regime (Impact Level 3) where Rhigh/Dhigh > 1 and Rlow/Dhigh < 1; and the 

inundation regime (Impact Level 4), where Rhigh/Dhigh > 1 and Rlow/Dhigh > 1. Although 

being simplistic, storm impacts defined by these parameters are considered to be 

appropriate for the present study since the model results are by definition only 

approximations to reality.  

 

Values for Dhigh and Dlow were obtained from the pre-storm DEM, and time-series of 

the waterline position extracted from the XBeach model were analysed to define 

Rhigh and Rlow at 10 minute intervals during the 13-14 December 2008 storm 

simulation. Broadly speaking it was found that initial dune toe erosion predicted 

south of the beach area (e.g. Dlow/Dhigh = 0.17 to 0.37) occurred when Rhigh/Dhigh > c. 

0.6. Overwashing of the breach area (Fig. 5b) began when Rhigh/Dhigh = c. 1.1 and, 
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owing to the pre-storm beach geometry where dunes were absent, inundation 

occurred shortly thereafter (Rhigh/Dhigh = c. 1.2). The XBeach model predictions of 

dune erosion, overwash and inundation (breaching) thresholds therefore agreed 

broadly with the Sallanger storm impacts classification.  

 

At Rossbeigh it is clear from both the historical records of erosive events (e.g. 

Cooper et al., 2004; O’Shea & Murphy, 2013), and from the XBeach model results 

reported in this study, that significant erosion, overwashing and breaching are only 

accomplished during spring tide (plus surge) conditions when the combined peak 

tide and surge water levels, hmax allow larger than normal waves to reach and attack 

the upper part of the beach. Part 2 acknowledges this and various combinations of 

Hs and hmax were tested over two spring tidal cycles (c. 12.5 hours, a typical storm 

duration) using the XBeach model. The matrix of model runs shown in Table 1. Here 

the Hs values indexed 1, 2, 3 and 4 correspond to 1:1, 1:5, 1:10 and 1:50 year return 

period events defined by previous analyses of wave records (Orford et al., 1999; 

Cooper et al., 2004; Vial, 2008; Sala, 2010; and Olbert and Hartnett, 2010). 

 

A further very important factor known to determine the amount of erosion at 

Rossbeigh and elsewhere (e.g. Esteves et al., 2011) concerns the duration of a 

particular storm. Therefore in Part 2, storm simulations spanning four tidal cycles (c. 

25 hours) were also examined (Table 2) to assess the importance of storm length. 

Although it is noted that storm duration at Rossbeigh can sometimes exceed 25 

hours, for practical reasons concerning the number of model runs and associated 

time, storms lasting more than 25 hours were not investigated.  
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In the present tests a peak wave period, Tp, of 16s was selected as being 

representative of typical storm scenarios at Rossbeigh. Additional test results for 

wave periods in the range 10s to 19s are discussed below with regards to model 

sensitivity. In common with the model runs in Part 1, the starting morphology in 

XBeach model runs in Part 2 was defined by the pre-storm DEM previously 

described.  

 

Colour coding in Tables 2 and 3 is used to identify the three morphological threshold 

conditions for Rossbeigh believed to be representative of the Sallenger collision 

(Impact Level 2), overwash (Impact Level 3) and inundation (Impact Level 4) 

regimes. Note that hmax and Hs pertaining during the 13-14 December 2008 storm, 

and applied in Part 1, are indicated by bold red text in both tables.   

 

Plots in Fig. 9 show the relationship between hmax and the offshore critical significant 

wave height, Hscrit that define Impact Levels 2, 3 and 4 for simulated storm durations 

of: (a) 12.5 hours; and (b) 25 hours.  Irrespective of the Impact Level, Fig. 9a shows 

a non-linear decrease in Hscrit with increasing in hmax values for simulated storm 

duration of 12.5 hours. Similar relationships are also shown in Fig. 9b for simulated 

storm duration of 25 hours. However, in this case, threshold Hscrit for a given hmax 

values for Impact Levels 2, 3 and 4 are lower than those for the 12.5 hour storm 

simulation. This simply reflects the morphological changes to Rossbeigh occurring 

during the first couple of tidal cycles which lowered the beach elevation allowing 

smaller waves during the later parts of the 25 hour simulations to be more effective. 

It is noted that storm waves with Tp of 16s resulted in a 45% increase in dune 

recession compared to storm with Tp of 10s. 
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For peak water levels in the range 4.0m < hmax < 5.0 m ODM, the statistical 

significance of relationships between hmax and Hscrit can be described using a 

second order polynomial expression (Fig. 9) in the form 

 

Hscrit = a.hmax
2 + b.hmax + c.           (4) 

 

Values of the coefficients a, b and c and the product moment correlation coefficient 

R2 are given in Table 3. In all cases Student’s t statistic demonstrated that R2 values 

were statistically significant at the 95% confidence interval or better. While Eq. 4 can 

be used to define the site specific critical conditions for Impact Levels 2, 3 and 4 at 

Rossbeigh, their use at other sites must be treated with caution.  

 

4 Conclusions 

The XBeach model has been applied to simulate the December 2008 breaching 

event at Rossbeigh Spit in the west of Ireland. With good model performance 

demonstrated, it has then been applied  to investigate the significance and relative 

importance of the parameters associated with storm events has examined the 

threshold conditions at Rossbeigh leading to dune recession, overwash and 

breaching.  

 

The processes and impacts occurring during storms along the southern coast of 

Rossbeigh are considered to fall within the ‘collision regime’ of Sallenger (2000) with 

high levels of dune recession at the dune base around the recurve point and towards 

the northern end of the recurve section. The locations agree broadly with known 
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historical erosion areas. Predicted dune recession values of c. 5m appear to be 

realistic as historical rates of recession in these areas have been shown to lie 

between 4m/yr and 9m/yr (O’Shea and Murphy, 2013). 

 

The various storm scenarios modelled with XBeach have shown that the exposure of 

Rossbeigh Spit to the high energy Atlantic swell wave characterised by wave periods 

of around 16s, is a critical factor in driving erosion processes at Rossbeigh. Storm 

waves with Tp of 16s resulted in a 45% increase in dune recession compared to 

storm with Tp of 10s. Local storm waves are unlikely therefore to cause significant 

morphological impacts along Rossbeigh. Increasing the period further to 19s had no 

detectable effect on dune recession owing to wave energy dissipation offshore.    

 

XBeach modelling has demonstrated that storm duration is an important factor 

determining the magnitude of storm impacts at Rossbeigh. Comparisons between 

erosion attributable to a 1:5 year storm event lasting c. 25 hour and a 1:50 year 

event lasting c. 12.5 hours indicated that an increase in dune recession of around 

80%. The results imply that extreme offshore waves will not necessarily cause a 

significant increase in erosion at the shoreline owing to dissipative nature of 

Rossbeigh beach. However, storms of sustained duration or storms occurring in 

rapid succession with little time for shoreline recovery are important events driving 

morphological change.  

 

While wave period and direction were approximately the same, the offshore 

significant wave height of the 5 December 2008 storm was 72% larger than the 13-

14 December 2008 storm that caused the breach. However, the occurrence of the 5 
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December 2008 storm during neap tides illustrates well that storm impacts on 

Rossbeigh are highly dependent on water level. Similarly, Pye & Blott (2008) and 

Esteves et al., (2011) show that dune erosion is strongly correlated with elevated 

water levels and/or storm duration along the Sefton coast in northwest England. 

 

Multiple XBeach model runs have examined the morphological impact of various 

combinations of hmax and Hs conditions. In broad terms, for a given peak water level 

during two tides at Rossbeigh (a typical storm duration), the critical significant wave 

height, Hscrit for Impact Level 2 on the pre-storm December 2008 barrier is defined 

by the expression Hscrit = a.hmax
2 + b.hmax + c where the coefficients a, b and c are 

site specific. At present no physical meaning can be attached to this equation. In 

order to develop an expression that can be tested at alternative locations work is 

now required to link the coefficients to site specific parameters. Initial work 

suggests that coefficient a might be inversely related to bottom friction, coefficient 

b to the depth of wave breaking, and coefficient c to a threshold wave height for 

HW impact.  Further, the inclusion of storm duration would widen the applications 

for this equation.  

 

The model results indicate that events giving rise to significant storm impact are 

likely to become more frequent for dune systems with rising sea levels. This 

demonstrates the importance of this research in relation to climate change and to 

other regions.  

 

The XBeach model has been shown to be a powerful and useful tool for assessing 

dune erosion and overwash for relatively short time-scale storm events. 



Williams, J.J., Esteves, L. S. & Rochford, L. A., 2015. Modelling Storm Responses on a High-Energy Coastline 
with XBeach: a Case Study of Rossbeigh Spit, Western Ireland.  Modelling Earth Systems and Environment, DOI: 
10.1007/s40808-015-0003-8.   

26 

 

Contemporary evidence of barrier breaching is rare and the study has value in 

demonstrating that a numerical model can reproduce the correct spatial distribution 

of the most important key morphological impacts albeit with questionable accuracy. 

Further by examining a naturally dynamic coastal system the study has scientific 

value and addresses a number of concerns associated with flooding, economic value 

and habitat.  

 

It is noted that this study has only considered present day sea levels. Although it has 

been shown that Rossbeigh can accommodate larger storms through a variable surf 

zone width, it is thought likely that breaching events will become more frequent in 

response to rising sea levels due primarily to wave action at higher elevations across 

beach and dune profiles. Further work is now required to assess climate change 

impacts and whether or not such a system can adjust with sufficient speed to 

accommodate sea level rise. 

 

The application of XBeach has potential use for assessing vulnerability of present 

day barriers and beaches to overwashing and breaching for a range of present day 

and future storm scenarios. It can contribute therefore to coastal management and 

planning as well as providing an early warning of potential erosion and structural 

damage and ensuing threat to lives and property.    
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Fig. 1: a) Location of the field site, Dingle Bay, County Kerry, Ireland. Also shown 

are: the data extraction locations for SEASTATES; and the location of the M3met 

buoy and the Castletown tidal prediction site. 

 

Fig. 2: a) Oblique aerial view of Rossbeigh pre-breach circa 2003; b) Oblique aerial 

view of Rossbeigh post-breach circa 2010; c) Google Earth image of Rossbeigh 

August 2003; and e) Google Earth image of Rossbeigh August 2010 showing the 

breach.  

 

Fig. 3: Metocean date time-series for the period 2-30 December, 2008 showing: (a) 

atmospheric pressure, P; mean wind speed, Uw; mean wind direction, w measured 

by the M3 and M6 buoys; predicted astronomical tide (Delft Dashboard), h; predicted 

and measured (M3 and M6 buoys) significant wave height, Hs; predicted mean wave 

period, Tm10; predicted mean wave direction,; and predicted wave power, WP. 

 

Fig. 4: Detail of metocean date time-series for the period 11-15 December, 2008 

showing: atmospheric pressure, P, mean wind speed, Uw, mean wind direction, w, 

significant wave height, Hs and Tm10 from the M3 and M6 buoys, along with the 

predicted astronomical tide (Delft Dashboard), h (including the surge component) 

and predicted Hs and mean wave period, Tm10 from SEASTATES at locations 1-3 

(Fig. 1).  
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Fig. 5: (a) Part of the pre- 13-14 December 2008 storm DEM used in the XBeach 

model; and (b) part of the post-storm DEM used to validate the XBeach model. The 

red box denotes the breaching area.  

 

Fig. 6: Plots showing DEM elevation changes during the 13-14 December 2008 

storm: (a) changes between the pre- and post storm DEMs; (b) changes between the 

pre-storm DEM and post-storm XBeach predictions; and (c) the differences between 

the measure post-storm DEM and the post-storm XBeach predictions. (Contours 

show elevation changes). 

 

Fig. 7: (a) Location of example beach profiles studied using the 1D XBeach model of 

the 13-14 December 2008 storm; and (b) results from the 1D XBeach profile study 

(locations shown in Fig. 7) of showing from the DEMs the pre-storm and post-storm 

profiles and the corresponding post-storm XBeach predictions. Also shown for 

reference is the peak tide plus surge water level relative to each profile.  

 

Fig. 8: Comparisons between post-storm and predicted beach profiles for all 30 

locations examined showing: (a) BSS values; (b) erosion; and (c) maximum dune 

recession. Location 1 is in the south of Rossbeigh (Fig. 7). 

 

Fig. 9: Relationships between hmax and Hs defining storm Impact Levels 2, 3 and 4 

for: (a) simulated storm duration c. 12.5 hours; and (b) simulated storm duration c. 

25 hours. 
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Table 1. Predicted response of Rossbeigh breach area (Fig. 5b) to 

combinations of waves and peak water elevations over two tidal cycles (c. 12.5 

hours) with Tp of 16s.  Note: bold red text shows hmax and Hs pertaining during 

the 13-14 December 2008 storm. 
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Table 2. Predicted response of Rossbeigh breach area (Fig. 5b) to 

combinations of waves and peak water elevations over four tidal cycles (c. 25 

hours) with Tp of 16s. Note: bold red text shows hmax and Hs pertaining during 

the 13-14 December 2008 storm.         

  

hmax, tide plus surge water level (m ODM) Tide plus surge water level (m ODM) 
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Table 3. Regression coefficients a, b and c, and product moment correlation 

coefficients R2 for Hs on hmax (Fig. 9) defining storm Impact Levels 2, 3 and 4 

for: (a) simulated storm duration c. 12.5 hours; and (b) simulated storm 

duration c. 25 hours. 

 

(a) 

Impact Level a b c R2 

2 -9.9 79.8 -155.5 0.91 

3 -5.9 48.5 -92.7 0.95 

4 -4.8 40.9 -81.9 -0.94 

 

(b) 

Impact Level a b c R2 

2 -2.9 21.3 -35.3 0.85 

3 -2.4 17.3 -26.1 0.88 

4 -7.4 62.3 -120.5 0.78 
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Fig. 3 
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Fig. 6 
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Fig. 7 
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