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Abstract 

 

Eye movement data analyses are commonly based on the probability of occurrence of 

saccades and fixations (and their characteristics) in given Regions of Interest (ROIs). In this 

paper, we introduce an alternative method – iMap – to compute statistical fixation maps of 

eye movements based on an approach inspired by methods used in functional Magnetic 

Resonance Imaging. Importantly, iMap does not require the a priori segmentation of the 

experimental images into ROIs. With iMap, fixation data are first smoothed by convoluting 

Gaussian kernels to generate 3D fixation maps. This procedure embodies the eye-tracker 

accuracy but can also be used, by setting the Gaussian kernel, to represent acuity or 

attentional constraints. In addition, the smoothed fixation data generated by iMap conform to 

the assumptions of the robust statistical Random Field Theory (RFT) approach applied 

thereafter to assess significant fixation spots and differences across 3D fixation maps. The 

RFT corrects for the multiple statistical comparisons generated by the numerous pixels 

constituting the digital images. To illustrate the processing steps of iMap, we provide real eye 

movement data on face, visual scene and memory processing. The iMap Matlab toolbox is 

editable and freely available to download online. 
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The human visual system is equipped with the most sophisticated machinery to 

effectively adapt to the visual world. Where, when and how human eyes are moved to gather 

information to adapt to the visual environment has been a question that has fascinated 

scientists for more than a century. Javal (1879) coined the term saccade to describe the rapid 

movement of the eyes produced during reading, an oculomotor phenomenon identified by 

Hering (1879) and Lamare (1892) during this period. However, a comprehensive sense of the 

very nature of those ballistic movements, the description of the use of fixations to gather the 

relevant information to solve the task at hand and the scientific definition of saccades, came 

with Dodge (1916) and the development of photographic techniques for recording corneal 

reflections. This novel recording approach paved the way to the scientific study of eye 

movements (see Wade, Tatler, & Heller, 2003).  

Guy T. Buswell (1935) published the first systematic study on How People Look at 

Pictures: A Study of The Psychology of Perception in Art. Buswell observed that trained and 

untrained artists deployed similar fixation patterns to analyze paintings. All observers shared 

a similar oculomotor behaviour, deploying initial short fixations over the main features of the 

paintings, which were subsequently followed by a series of longer fixations. Interestingly, 

when fixations were collapsed across observers, they highlighted areas containing salient or 

diagnostic parts of the images. Critically, these observations revealed that eye movements are 

not randomly sampling the visual input space, but are effective to solve problems in visual 

cognition. This work was then followed by a series of studies, leading in particular to the 

seminal work of Yarbus (1965), which extensively showed similar findings for diverse visual 

objects. Yarbus showed more importantly how top-down factors modulate the eye movement 

strategy deployed by observers to gather information from the very same picture, attracting 

attention in the wider scientific community
1
. Since then, we have witnessed an explosion of 

                                                 
1
 Note that Yarbus recorded only a single observer for demonstrating task effects on eye movement patterns. 
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eye movement studies in language and visual scenes (see Rayner, 1998; Rayner, 2009), as 

well as studies with clinical populations (see Van Gompel, Fischer, Murray, & Hill, 2007). 

Nowadays, the development of new technologies that have increased the precision, 

the ease and affordability of eye tracking devices, has significantly impacted on the 

prominence of eye movement research. There is also an increasing awareness in the scientific 

community of the need to control eye movements during any experiment in vision (e.g., 

Yuval-Greenberg, Tomer, Keren, Nelken, & Deouell, 2008). These observations lead to the 

prediction that eye movement research will continue to gain importance in the future within 

the vision sciences community. 

Scientific disciplines rely on their own specific metrics. Eye movement studies 

generate a quantity of rich data, which traditionally have largely relied on measures from two 

events characterizing where, when and how the eyes gather information from the visual 

world: saccades (i.e., their latency, amplitude, direction and occurrence over the time course) 

and fixations (i.e., location and duration), as well as many measures derived from these 

events such as cumulative saccade length, pupil dilation, etc.. To characterize and isolate 

statistical differences in the eye movements deployed to process visual inputs, the large 

majority of the eye movement literature has used a Region or Area of Interests (ROI or AOI) 

approach. Strictly and formally speaking, every single pixel of a digital image could be 

considered as a variable of interest to measure the occurrence of saccades and fixations, 

which results in a complex multidimensional space. The goal of segmentation is to reduce the 

visual input space (usually defined by thousands or millions of pixels) of the digital images 

used during the experimental tasks into something that is meaningful and easier to analyze. 

Image segmentation is usually based on a mixture of low-level boundaries of the 

object/feature shapes (lines, curves, etc.) present in the digital images, and high-level, 

semantic a priori that experimenters have about the parts constituting a particular visual 
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object. These boundaries are typically related to object/feature locations. More precisely, 

image segmentation is the process during which pixels are clustered together and assigned a 

label, such that pixels sharing a similar label would also share particular visual characteristics 

or semantic properties. This process results in a set of regions that collectively cover the 

entire image. Once the images used in a particular experiment are segmented into ROIs, 

descriptive eye movements are then measured, with the probability of fixation/saccade and 

their respective characteristics (i.e., number, duration, amplitude, etc.) calculated for each of 

the defined ROIs. The measures obtained for those metrics are thereafter submitted to 

conventional statistical analyses. 

So far it has often been implicitly assumed that the ROIs are optimally representing 

the visual categories present in the visual input space (i.e., for face processing: the eye, the 

nose and mouth regions). However, segmenting visual inputs into ROIs is constrained by 

subjective evaluations, which is – by definition – problematic from a scientific point of view. 

For instance, how should the borders of a visual region representing the human eyes be 

concretely defined? Should both human eyes be considered as a single region? Should the 

pixels outside the eye sclera be considered as belonging to the eye region or not? If this is the 

case, how many pixels of the skin should be included? Should the pixels of this region be 

included by using a curvilinear, elliptical or rectangular shape? Obviously, beside an 

objective definition of a ROI based on the human sclera, the remaining options used to define 

ROIs for an eye region do not have an objective answer. For this reason, there is great 

variability between eye movement studies in the definition of ROIs representing the very 

same information: for instance, the eye region in faces (e.g., Barton, Radcliffe, Cherkasova, 

Edelman, & Intriligator, 2006; Henderson, Williams, & Falk, 2005; Orban de Xivry, Ramon, 

Lefevre, & Rossion, 2008). The same difficulties generalize to all the visual inputs.  For 

instance, in the domain of visual scenes, it is difficult to define the objects to be included in 
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the ROI. Is it appropriate to determine different regions for a human body embedded in a 

visual scene (i.e., head, neck, hands, etc.), or would a unique shape defining the body be more 

appropriate? Should a ROI be strictly defined by using the edges of an object? The physical 

boundaries of objects are usually used to define ROIs. This choice appears sensible, however, 

under certain circumstances using ROIs might not be appropriate to thoroughly and 

effectively capture the eye movement behaviour (see Figure 1). 

 

Figure 1. Panel a shows an example extracted from an item of an animal visual search task 

used in Miellet et al.’s study (2010). The red contour represents a ROI based on the edges of 

the panda, a rule routinely used in the eye movement literature relying on ROIs. The white 

contour shows areas of the visual scene that resulted being significantly fixated above chance 

level with iMap. The centre of gravity of the location driving the majority of fixations in this 

image is located outside the ROI. This perceptual bias used by the observers, would be 

therefore inaccurately reported by probability of fixation analyses based on ROIs. Panel b 

illustrates the difficulty in defining a priori ROIs in face processing studies (data from 

Caldara et al., 2010). The white contour shows significant area according to iMap, blue 

contours show example of ROI as commonly used in the literature. In this example, it is 

difficult to objectively attribute the intermediary fixations to the nose or mouth regions. 
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But the more critical consequences of this drawback rely on the fact that the subjective 

criteria used to define ROIs compromise the potential to replicate findings across studies. 

Since ROIs are based on qualitative and quantitative subjective evaluations of the 

experimenters, they engender natural variations across authors, which in some cases thus 

lead to difficulty in generalizing observations across studies. Note that there are other 

potential problems of using ROIs has been also discussed in neuroimaging, particularly 

circular analyses and “double dipping” - the use of the same data set for selection and 

selective analysis (see Kriegeskorte, Simmons, Bellgowan, & Baker, 2009).Therefore, this 

factor alone could potentially explain the absence of consistent effects across studies reported 

in the eye movement literature and points towards a methodological problem.  

To overcome these limitations, we introduce a novel robust data-driven technique that 

does not require an a priori segmentation of the digital images used as stimuli in the 

experiment into ROIs: iMap. [It is worth noting that methods sharing similarities with iMap 

were introduced by various researchers before us (e.g., Barrington, Marks, Hsiao, & Cottrell, 

2008; Bruce & Tsotsos, 2009; Buchan, Pare, & Munhall, 2007; Harding & Bloj, 2010; 

Henderson, 2003; Kita et al., 2010; Pomplun, Ritter, & Velichkovsky, 1996; Tatler, Wade, 

Kwan, Findlay, & Velichkovsky, 2010; Torralba, Oliva, Castelhano, & Henderson, 2006; 

Wooding, 2002). Here, we will briefly present the characteristics that few of these methods 

share with iMap and what differentiate them from it. Tatler, Baddeley & Gilchrist (2005) 

used a fixed grid with fixation counts in each cell and the Kullback–Leiber divergence (KL) 

in order to test differences in probability density functions. These authors did not weight the 

probability density functions with fixation durations. Moreover, because KL reports a single 

index for each comparison, Tatler et al. (2005) could not generate statistical fixation maps for 

single conditions (and their comparisons). Hence, in contrast with iMap, significant 
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differences between conditions could not be localised inside the stimulus space. Tatler (2007) 

used Gaussian smoothing in order to generate fixation maps. However, he did not weight the 

density functions by the fixation duration. Moreover, no statistical test was performed on the 

individual or difference fixation maps. 

Note that using Gaussian smoothing and weighting by fixation durations is not new 

per se and heat-map representations have become very popular in the last few years (see for 

instance (e.g., Barrington, et al., 2008; Bruce & Tsotsos, 2009; Buchan, et al., 2007; Harding 

& Bloj, 2010; Henderson, 2003; Kita, et al., 2010; Tatler, et al., 2010; Torralba, et al., 2006; 

Wooding, 2002). However, in most of the cases, heat-maps were just used for illustration 

purposes. More importantly, in comparison with iMap, no statistical test is performed on 

these fixation maps in order to locate the effects in the stimulus space. For instance Buchan et 

al. (2007) or Tatler et al. (2010) generated heat-maps for visualizing the eye-movement 

pattern but computed statistics using ROIs. Moreover, none of these approaches was 

implemented as a toolbox and is offering the numerous statistical and descriptive analyses we 

provide with iMap. For the whole stimulus space:  number of fixations, total fixation 

duration, mean fixation duration, path length and mean saccade length. In the significant 

areas: Z-scored fixation durations (or number of fixations), effect sizes (Cohen’s d). As well 

as, mean fixation duration, path length, total fixation duration and number of fixations for 

significant areas and the rest of the picture. 

To the best of our knowledge, the method used by Leonards, Baddeley, Gilchrist, 

Troscianko, Ledda & Williamson (2007) is the most similar to iMap. These authors created 

fixation maps based on Guassian kernels, generated difference maps and used robust statistics 

to compare conditions. The main advantage of iMap over their technique is its public 

availability, direct access to the parameters used and its ease of use. Another difference is that 

in Leonards et al. (2007), each fixation is replaced by an elongated Gaussian distribution 
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around this point (while iMap uses a circular Gaussian), and with a spread determined by the 

magnitude and angle of the saccade used to get to this location. This is a very interesting way 

to represent the distribution of landing positions depending of the direction and size of the 

saccade. However, in iMap, the Gaussian kernel is used to approximate a unique fixation 

location and not a distribution of fixations. In this sense, we think that using a circular (not 

elongated) Gaussian kernel allows us to keep as much as possible an assumption-free 

approach. In addition, one could argue that representing the direction of the fixation with 

elongated Gaussian is valid, but only for the few milliseconds following the arrival saccade 

arrival. Thereafter, a representation more close to the foveal projection (circular) might be 

more appropriate. But, similarly to iMap, this approach raises also novel questions: for 

instance, for how long an elongated representation is the most appropriate way to describe the 

data (20ms? 40 ms? etc.), is the shape of the Gaussian dependent of the task, background 

information, etc. at hand? Finally, it is also worth noting that although the direction of the 

saccade impacts on the landing distribution, the average across saccade directions reveals a 

nearly circular Gaussian distribution as used in iMap (see Figure 7 in Nuthmann & 

Henderson, 2010). 

Other authors used slightly different data-driven approaches. We would like to 

particularly mention the Scanmatch toolbox from Cristino, Mathôt, Theeuwes & Gilchrist 

(2010), the scanpath similarity measure by Jarodzka, Holmqvist & Nystrom (2010) and the 

approach used by Mannan, Kennard & Husain (2009). Interestingly, Cristino et al. (2010) and 

Jarodzka et al. (2010) used similar methods: the Needleman–Wunsch algorithm for the first 

ones and the Levenshtein distance for the second ones (see also Harding & Bloj, 2010, for a 

use of this method). A key advantage of Cristino et al. (2010) is to provide an implemented 

toolbox, making such method available for researchers that are not expert in programming. 
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These previous above approaches aim at describing and comparing sequences of 

fixations, a depiction that iMap does not provide. However, both these techniques return a 

single number reflecting how similar some fixation sequences are. Thus, they do not allow, 

like iMap, to visualize and test statistically which spatial areas are fixated significantly longer 

and which areas show significant differences between two datasets. Note that Tatler et al. 

(2005) also investigated temporal sequences of eye movements by computing KL for each 

specific fixation. This strategy is also possible with iMap, individual and difference maps can 

be computed for single, successive fixations in order examine temporal characteristics of the 

oculomotor behavior. 

Carmi & Itti (2006) presented and discussed various metrics for comparing fixation 

distributions. The approaches they present are particularly interesting for the question they 

explore: quantifying the agreement between human attentional selection and attention-

priority maps. We will not detail these metrics here because none of them allows, as in iMap, 

to visualize the effects location in the stimulus space. The same limitation applies to the 

Voronoi diagrams that Over, Hooge and Erkelens (2006) used to provide a quantitative 

measure of the uniformity of fixation densities. 

[ ] 

To sum up, despite some similarities between those previous approaches, iMap 

remains an original, complementary tool for analysing eye movement data. The main 

difference between iMap and the methods previously cited above is that iMap provides an 

implemented toolbox that allows users to share an identical implementation of this technique 

and, above all, to compute robust statistical analyses. iMap generates fixation distributions 

smoothed with Gaussian kernels, transforming 2D fixation maps, uniquely based on the 

fixation coordinate location in x, y dimensional space, into a 3D fixation landscape, with z 
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reporting the intensity of the fixation (number of fixations or fixations weighted by their 

durations – see Figure 2). ] 

[ Eye movements do not provide unequivocal evidence on the measure of the visual 

information being used by observers (Posner, 1980). Hence, it is important to stress that iMap 

generates statistical fixation maps and not the so-called attentional maps (e.g., 

http://www.attentiontool.com; http://eyequant.com). The Gaussian kernel is a variable that 

can be used to characterize both the visual information that can be sampled for a given 

fixation and/or the potential error due to the eye-tracker. This choice offers the flexibility to 

the user to set the kernel size according to specific hypothesis, material, population, task, 

equipment or presentation conditions. Researchers who would like to adopt an assumption-

free approach can set the kernel to a minimum value corresponding to the accuracy of the 

eye-tracker. This strategy was the one used in our previous articles where the kernel size was 

set to 10 pixels corresponding to 0.5 degree of visual angle (accuracy of the Eyelink 1000, 

desktop) in our set-up. This flexibility allows researchers to adapt the kernel size to their 

equipment but to the participant as well. Hence, it is possible to set a specific kernel for each 

individual depending on the eye tracker accuracy, as measured during the calibration 

procedure. ] 

iMap generates fixation maps for each single participant and every visual stimulus, 

resulting on an average fixation map. The individual fixation maps can then be averaged 

together, resulting in a group fixation map (Figure 2). 

 

http://www.attentiontool.com/
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Figure 2. General processing steps for the computation of statistical fixation map with iMap (adapted from 

Caldara, et al. (2010). Individual fixations maps are smoothed by convoluting a Gaussian kernel on each 

fixation. The resulting fixation maps for all the trials are then averaged to results in a single fixation map per 

condition. The differential fixation map highlights significant eye movement biases. The significant areas are 

determined using the Pixel test (Chauvin, Worsley, Schyns, Arguin, & Gosselin, 2005). Finally, the statistical 

fixation maps are produced merging the fixation patterns, the areas significantly fixated above chance level and 

background. 

 

But the critical value and the key innovative feature of the iMap technique relies on the 

ability to statistically compare fixation maps, with an approach taking into account the 

problem of the multiple comparisons generated by the pixel space. To the best of our 

knowledge, iMap is the first freely available technique integrating robust statistics in order to 

generate unbiased data-driven statistical fixation maps from eye movements.  iMap corrects 

for multiple comparisons, quantifies the effect size of the statistical differences and also 

provides descriptive measures routinely used in eye movement research (i.e., number of 

fixations, average fixation duration, fixation scanpath length and total fixation duration). 
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The processing steps of the iMap method, its rationale and logic, were very much 

inspired by methods used in functional Magnetic Resonance Imaging (fMRI). The 3D 

fixation maps created with iMap can be considered as ‘activation maps’ of eye movement 

data. In fMRI studies, brain activations are represented by 3D maps containing many voxels 

(i.e., 3D volumetric pixel elements used to visualize and analyze fMRI data) over time 

(which is considered the fourth dimension). It is common practice to spatially smooth fMRI 

data by applying Gaussian kernels prior to the statistical comparison of brain activations 

across conditions (i.e., comparing the neural responses for processing faces to houses). 

Firstly, the smoothing procedure improves anatomical inter-subject variability. Secondly, it 

increases signal to noise ratio, by reducing random noise in individual voxels (Smith, 2003). 

Thirdly, this procedure ensures that the assumptions of Random Field Theory (RFT – see 

below), commonly used to correct for multiple-comparisons, are met (Worsley & Friston, 

1995). Conventionally, fMRI results rely on massive univariate statistics testing for the effect 

of interest in each brain voxel, which therefore results in a large number of statistical 

comparisons, increasing the likelihood of Type I errors. Hence, in fMRI, the results need to 

be corrected for the multiple comparisons.  

The statistical comparison of the 3D fixation maps generated with iMap share the very 

same problem, as the 3D fixation maps contain thousands of pixels and, therefore, generate 

the same large amount of statistical comparisons. In addition, similarly to voxels in the fMRI 

space, pixels are not statistically independent. Data for a particular pixel tend to be similar to 

the nearby pixels. RFT (Adler, 1981) is a recent branch of mathematics that has been 

implemented in statistics to overcome this major limitation. RFT has been adapted and used 

to define theoretical thresholds for smooth statistical maps in fMRI (Worsley et al., 1996). 

The RFT is based on two main processing stages. First, it relies on the estimation of the 

smoothness (spatial correlation) of the statistical maps. Then, it uses the smoothness values to 
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determine the expected Euler characteristic at different thresholds. This procedure estimates 

the threshold at which 5% of equivalent statistical maps are expected to arise under the null 

hypothesis. iMap relies on spatially normalized smoothed data which therefore satisfy the 

formal constraints of the RFT used in fMRI. More precisely, it applies the statistical Pixel test 

of the Stat4Ci toolbox (Chauvin, et al., 2005) that has been developed and validated for 

analyzing smooth classification images. The Pixel test sensitivity depends on the number of 

comparisons performed, which is represented here by the size of the search space (i.e, the size 

of the digital images). The default search space for iMap is the entire stimulus but a specific 

search space size can be specified. For instance, one could consider that the background of a 

picture with a face is not influencing eye movements during face processing and therefore 

reduce the search space to pixels belonging to the face only. To have a better understanding 

of some limitations in using iMap, this and other caveats of the approach will be addressed in 

the discussion, after providing formal knowledge of the technique and concrete examples.  

[ ] 

iMap has been already used and successfully validated in a series of eye movement 

studies (Blais, Jack, Scheepers, Fiset, & Caldara, 2008; Caldara, et al., 2010; Jack, Blais, 

Scheepers, Schyns, & Caldara, 2009; Kelly et al., submitted; Kelly, Miellet, & Caldara, 2010; 

Miellet, et al., 2010; Rodger, Kelly, Blais, & Caldara, in press). To illustrate the functionality 

and flexibility of iMap, we provide examples from real eye movement data and diverse 

statistical comparisons (i.e., across different groups of observers, same observers but different 

tasks, etc.). Importantly, iMap has been coded with Matlab; the code is fully editable and is 

freely available to download and use. It is worth noting that we plan to continuously improve 

and update the iMap code and to also add plug-ins to the toolbox in the future (i.e., a plug-in 

to generate 3D fixation map movies or dynamic statistical tests over time). The relevant 
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information and files will always be freely available to download and use online. Finally, 

iMap can be used on data acquired with any eye-tracker and pre-processing software that 

provides a fixation report which includes the coordinates and duration of each fixation, as 

well as an item number.  

 

Methods 

Installation and credits 

iMap and the supporting functions (CiVol.m, HalfMax.m, exportfig.m and 

stat_threshold.m) have to be copied in the same folder as the input data files. 

Exportfig was written by Ben Hinkle, 2001 (bhinkle@mathworks.com) and can be 

downloaded at: http://www.mathworks.com/matlabcentral/fileexchange/727 

CiVol and HalfMax are part of the Stat4Ci toolbox, which allows performing the 

Pixel and the Cluster tests, both based on Random Field Theory. The Stat4Ci toolbox is free 

and can be downloaded at: 

http://www.mapageweb.umontreal.ca/gosselif/basic%20Stat4Ci%20tools/ 

If you use the statistical functions of the Stat4Ci called with iMap (i.e., Pixel or 

Cluster test), please cite Chauvin, A., Worsley, K. J., Schyns, P. G., Arguin, M. & Gosselin, 

F. (2004). A sensitive statistical test for smooth classification images. Journal of Vision, 5, 

659–667. 

The stat_threshold function was written by Keith Worsley for the fmristat toolbox 

which is free to download at: http://www.math.mcgill.ca/~keith/fmristat 

An alternative to copying some of the supporting functions into the data folder is to 

download the Stat4Ci and fmristat toolboxes and to add them to the Matlab path. 

The Western Caucasian face images used in the examples of the toolbox belongs to 

the KDEF (Lundqvist, Flykt, & Öhman, 1998) face database. 

mailto:bhinkle@mathworks.com
http://www.mathworks.com/matlabcentral/fileexchange/727
http://www.mapageweb.umontreal.ca/gosselif/basic%20Stat4Ci%20tools/
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Creating the input matrices 

iMap can be used with eye movement data collected with any eye tracker. First, the data 

needs to be pre-processed in order to determine saccades and fixations. This filtering process 

should be feasible with the majority of the analysis software provided with eye-trackers, or 

alternatively, with a saccade detection algorithm based on the eye velocity. 

The file resulting from this pre-processing will be used as input data for the iMap 

function. The input data is a set of matrices with a single fixation per line. The only data 

required are the coordinates and duration of the fixations, and the item numbers. The order of 

the columns has no importance, as they have to be specified in the iMap function. Any other 

column can be use for specifying experimental conditions. A specific input data matrix has to 

be created for each participant and/or condition. The input files used by the iMap function are 

Matlab .mat files called data1.mat, data2.mat,...). The matrix in each of the files is called 

"summary". The matrices and files can be made from any .txt file (e.g. fixation report from 

EyeLink® Data Viewer). Some of the examples show how to create such input data matrices. 

 

Running the iMap function 

iMap can then be used by calling a single function including a set of parameters. The 

general format of the function is: 

imap (xSize, ySize, columnx, columny, columnduration, columnitem, dataset1, dataset2, 

standard deviation, maptype, firstfix, backgroundfile, specificfix, searchspace), with 

1- xSize and ySize: stimulus size in pixels (e.g. 382, 390) 

2- columnx, columny, columnduration, columnitem: specify the column number for 

x, y coordinates, fixation durations and item number. This allows flexible data format. 

3- datasets 1 and 2: specify the data .mat files that will be tested/compared. For 

example [1:20], [21:40] to compare data1 to data20 with data 21 to data40. The second data set is 
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optional; this field has to be left empty if only one dataset is tested. If only one dataset is tested, 

iMap produces a statistical map and eye-tracking indexes for this dataset. If two datasets are 

specified, iMap provides the statistical maps and eye-tracking indexes for both dataset and the 

difference map and indexes. 

4- standard deviation: Standard deviation in pixels of the Gaussian kernel used for 

smoothing the data. The default value is 10 pixels. Specifying a value is necessary in order to 

specify the subsequent variables of the function. The empty square brackets [] setting, will use the 

default value. 

5- maptype: 1 for fixation duration maps, 2 for number of fixations maps. The 

default value is 1. 

6- firstfix: This option discards the first fixation of each trial. This is particularly 

useful if the stimuli are centred and a central fixation cross is presented before the trials. 1 

(default option) keeps all the fixations, 2 ignores the first fixation of each trial.  

7- backgroundfile: e.g. 'facebackground.tif'. This option allows adding a background 

picture to the statistical fixation maps. The value is optional and has to be set to 0 or [] in order to 

specify the subsequent variables. 

8- specificfix: To select one or several specific fixations. e.g. [3 3] or [1 3]. This 

value is optional. 

9- searchspace: By default the size of the stimulus, xSize * ySize. The search space 

size can be specified by indicating directly the number of pixels it contains or by using a black 

and white picture (e.g. ‘facemask.tif’) where the black mask indicates the search space. 

 

Importantly, after launching the function a map will stay on the screen, maximize it 

then click on the top-left corner then bottom-right then "enter" (see figure 3): 
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Figure 3. Validation of the fixation map area when using iMap. 

 

Output 

iMap creates .tif pictures of the single and difference fixation maps called 

dataset1picedge.tiff, dataset2picedge.tiff and diffpicedge.tiff respectively. The maps can be 

merged with a background picture. It displays the significant areas based on a Pixel-test. It 

also creates .tif pictures with the scales of the Z-scored fixation measures, called 

dataset1map.tif, dataset1map.tif and Zdiffmap.tif respectively. 

iMap generates .txt files with global eye-tracking measures for both datasets (called 

eyebasicdataset1.txt and eyebasicdataset2.txt). The columns are: the number of fixations, the 

total fixation duration (seconds), the mean fixation duration (seconds), the path length 

(pixels) and the mean saccade length (pixels). The lines correspond to the raw data files 

(participants, sessions). iMap also creates a text file called Zscore.txt that includes the mean 

Zscores in the significant area for (respective columns) the dataset 1, dataset 2, dataset 1 in 

the area 1 and area 2 (areas in which the fixation durations are significantly longer for dataset 

1 and 2 respectively), dataset 2 in the area 1 and area 2. 
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iMap also produces a .txt file with the Cohen's d values (Cohen, 1988) between both 

datasets for area 1 and 2 (areas in which the fixation durations are significantly longer for 

dataset 1 and 2 respectively). The file is called cohend.txt. Finally, imap creates .txt files with 

the eye-tracking data in both the significant areas and the rest of the picture. The files are 

called eyeareadataset1.txt and eyeareadataset2.txt and are organised the following way: mean 

fixation duration for area 1 then for area 2 then for the rest of the picture. Path length, total 

fixation duration and number of fixations are also organised with the same logic. 

 

 

Examples 

For convenience, iMap and the supporting functions have been copied to each of the 

example folders. 

 

Example 1: 

Example 1 uses a subset of data from Caldara, Zhou & Miellet (2010). Putting Culture 

Under the ‘Spotlight’ Reveals Universal Information Use for Face Recognition. PLoS ONE 

5(3): e9708. doi:10.1371/journal.pone.0009708 

In this experiment, East-Asian (EA) and Western-Caucasian (WC) participants 

performed an old-new task on EA and WC faces. The stimuli came from the KDEF 

(Lundqvist, et al., 1998) and the Asian Face Image Database (Bang, Kim, & Choi, 2001). The 

presentation was gaze-contingent with a 2°, 5° or 8° Gaussian aperture around the fixation 

location. For this example, the aperture size is 8°. There was a central fixation cross before 

each trial then the 382x390 stimulus was randomly placed on an 800x600 screen. The eye 

position was recorded every 8ms with Matlab. We then extracted fixations and saccades (with 
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a custom-made Matlab script), by using the same filter parameters as the EyeLink software: 

saccade velocity threshold = 30°/sec; saccade acceleration threshold = 9500°/sec. 

The data in this example are in .mat files (called data1.mat, data2.mat,...), the matrices 

are called "summary".  

The 1
st
 contrast aims at comparing the respective eye movement strategies of Western 

Caucasian [2 3 8 12 13 18] versus East Asian [22 23 24 32 33 34] observers deployed when 

learning human faces (WC and EA faces stimuli for both groups). The values for maptype 

and firstfix were 1, so the fixation duration maps were generated and the first fixation of each 

trial was included in the analysis (note that the position of the stimulus was randomized on 

the screen). The iMap function can then be executed by typing: 

imap (382, 390, 6, 7, 5, 1, [2 3 8 12 13 18], [22 23 24 32 33 34], 10, 1, 1, 

'facebackground.tif') 

 

The statitical fixation maps produced are shown in figure 4: 

 

Figure 4. Statistical fixation maps for the first and second data sets, and for their difference. 

 

This example shows the presence of significant fixation biases across the two group of 

observers (i.e., areas delimited with a white border). WC observers showed a fixation bias 

towards the eyes and mouth (dataset1picedge, red color in the difference map), whereas EA 
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observers showed a fixation bias towards the center of the face (dataset2picedge, blue color 

in the difference map). 

The scaling can be obtained with the dataset1map.tif, dataset2map.tif and Zdiffmap.tif 

files. 

 

Figure 5. dataset1map.tif with the scale. 

 

The numerical outputs produces by the analysis are reported below. Here, for 

simplicity, we report only the global eye-tracking measures and the measures according to 

significant areas for the dataset1. 

 

number of 

fixations 

total fixation 

duration 

mean fixation 

duration 

path 

length 

mean saccade 

length 

29.09677 7.483355 0.2343271 1539.18 48.12055 

27.87097 5.932745 0.2136969 1699.69 61.15729 

27.67742 7.76056 0.2542954 1674.231 54.56829 

28.41935 7.174361 0.2308422 1353.442 43.39324 

27.87097 4.96008 0.1603119 2130.377 69.2846 

27.32258 7.850284 0.2606777 1726.404 57.04416 

 

Table 1. Eyebasicdataset1.txt, averages of global eye-tracking measures for the dataset 1 
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mean fixation duration 

(sec.) path length (pixels) 

total fixation duration 

(sec.) number of fixations 

area 1 area 2 rest area 1 area 2 rest area 1 area 2 rest area 1 area 2 rest 

0.3178 0.2506 0.2521 135 47 65 0.8901 0.2753 7.1256 2.79 1.00 28.46 

0.1881 0.2297 0.2128 63 117 90 0.1566 0.4580 5.3216 0.87 1.87 25.16 

0.3166 0.2829 0.2778 300 71 89 1.4285 0.3257 6.8447 4.75 1.18 24.75 

0.2904 0.2448 0.2540 108 53 82 0.7069 0.3226 6.9384 2.50 1.39 27.61 

0.1808 0.1693 0.1775 89 59 63 0.2640 0.1710 5.0603 1.46 1.00 28.43 

0.3323 0.3189 0.2759 266 113 86 1.5321 0.6282 6.5381 4.64 1.96 23.68 

 

Table 2. Eyeareadataset1.txt, averages of eye-tracking measures for significant areas, dataset 1 

 

 

single maps difference map 

dataset1 dataset2 

dataset1 - 

area1 

dataset1 - 

area2 

dataset1 - 

area1 

dataset1 - 

area2 

4.483855 4.909454 4.646505 2.261218 1.699236 5.669345 

      Table 3. Z-score.txt. Z-scored fixation durations in significant areas 

 

 

cohen's d 

area1 

cohen's d 

area2 

1.575624 -1.697319 

 

Table 4. cohend.txt. Effect sizes in the significant areas of the difference map 

 

For this particular task, it was appropriate to specify only the face area as search space 

(excluding the white background). Indeed, if the default search space contains a large amount 
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of pixels that are never fixated (because there is no visual information for instance), the Zcrit 

can be too low to accurately capture the sensitivity of eye movement patterns. Adjusting the 

search space to an appropriate level of analysis can be done by using a mask to limiting the 

search to pixels containing information (a face mask here): 

imap ( 382, 390, 6, 7, 5, 1, [2 3 8 12 13 18], [22 23 24 32 33 34], 10, 1, 1, 

'facebackground.tif', [], ‘facemask.tif’) 

 

Figure 6. Statistical fixation maps for the first and second data sets, and for the difference when using a mask 

limiting the search space 

 

Reducing the search space increases the threshold hence decreasing the sensitivity, as 

highlighted by the iMap analysis reported in Figure 6. 

 

Example 2: 

This example uses a subset of data from Miellet S., Zhou X., He L., Rodger H. & 

Caldara R. (2010). Investigating cultural diversity for extrafoveal information use in visual 

scenes. Journal of Vision Vol.10(6) pp 21. 

http://www.journalofvision.org/content/10/6/21.full   

In this experiment, the participants had to detect and identify an animal in a natural 

visual scene (full-screen, colour pictures). The two main manipulations were the size of the 
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target and the size of a gaze-contingent artificial central scotoma (Blindspot). The target and 

the Blindspot sizes could be 0° (natural vision), 2°, 5° or 8° of visual angle. The raw eye-

tracking data were recorded in Matlab. The pre-processing was done with the velocity based 

saccade detection algorithm described above. 

The target position was randomly distributed in the scene. In order to make the 

fixation maps, either trials can be considered individually (see an example with 

singlescenes.m) or fixation positions can be normalized relatively to the target position, by 

creating a new fixation space where all the targets are centered in the middle of the screen 

(see an example with normalizedscenes.m). 

singlescenes.m shows how to generate data1… datan files containing the summary 

matrix with gaze coordinates, fixation durations and item number. Here, we created such files 

only for the no-Blindspot (0°) and 5°-target conditions. Moreover, because there is no spatial 

normalization in this example, we selected only the fixations corresponding to a specific item 

(here, item 49). In this example, only one dataset (including 10 participants) is considered 

and the first fixation of each trial was excluded (there was a central fixation cross before each 

trial and the stimuli were covering the full screen). Hence, the iMap function can be executed 

by typing the following sequence:  

imap(600, 800, 1, 2, 3, 4, [1:10], [], 10, 1, 2, '5deg_9.tif') 
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Figure 7. Statistical fixation map (fixation durations) for a specific item, the first fixation of 

each trial was excluded and the search space cover the entire stimulus/screen. 

 

normalizedscenes.m is constructed in a similar way as singlescenes.m, beside the fact 

that there is no need to filter the data for a specific trial as the target positions are spatially 

normalized. Here, there is no background as different stimuli are considered. The iMap 

function can be executed by typing the following sequence: 

imap(600, 800, 1, 2, 3, 4, [1:10]) 
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Figure 8. Statistical fixation map for spatially normalized items 

 

Below is an example of a selection of specific fixations (fixations 6 to 15 of each trial, 

late fixations): 

imap(600, 800, 1, 2, 3, 4, [1:10], [], 10, 1, 2, [], [6:15]) 

The syntax imap(600, 800, 1, 2, 3, 4, [1:10], [], 10, 1, 2, 0, [6:15]) is also accepted. 

 

Figure 9. Statistical fixation map for spatially normalized items and late fixations 

 

This example reveals less surrounding fixations due to the image exploration. 

In contrast, only a central hotspot is present showing that most of the ‘late’ fixations 

are on the target. This example also shows that it is possible to extract individual or a 

series of fixations for the eye movement analysis with iMap. 

 

Example 3: 

This example uses data collected during an experiment using eye movements and a 

memory task similar to the one described in Harkin, B., & Kessler, K., (2009). How 

Checking Breeds Doubt: Reduced Performance in a Simple Working Memory Task. 

Behaviour Research and Therapy, 47, 504-512. 
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The experiment involved learning letters position on a 2x3 grid, testing high vs. low-

checking participants and the presentation of correct versus incorrect probes (see figure 10).  

 

Figure 10. Presentation of the stimuli used and the time course of the trials. 

 

 

The experiment was presented with E-Prime. The raw data were recorded in SR-

Research edf format. The data were then pre-processed using SR-Research DataViewer and 

the fixation report was exported in text format. memorytask.m prepares the data for the 

analysis and run iMap. The screen-based coordinates are also centered on the stimulus.  

The preparation code (memorytask.m) allows considering specific conditions. We can 

specify for correct or incorrect probe 1 (corP1 and incorP1) and several time periods (period 

1 < 2 sec., 2 sec. < period 2 < 4 sec., 4 sec. < period 3). The fixation maps reveal specific 

patterns for each time period. 

Figure 11 shows the fixation pattern for the learning stage (period), regardless of the 

probe correctness or the participant group (note that a specific analysis showed no effect of 

these factors during learning). We used the following function: 

imap(396, 288, 1, 2, 3, 4, [lowcheck highcheck], [], 10, 1, 1) 



iMap          28 

 

 

Figure 11. Fixation map of the learning stage calculated across all participants and probe conditions. 

 

These data clearly show that the central fixation cross appearing before the beginning 

of the trial impacts on the fixation pattern. In such experimental situations (with no 

randomization of stimulus location and identical first fixation location for all the trials), it is 

recommended that the the first fixation is excluded. Figure 12 presents the same analysis 

when excluding the first fixation, by using the following parameters in the input of the iMap 

function: 

imap(396, 288, 1, 2, 3, 4, [lowcheck highcheck], [], 10, 1, 2) 
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Figure 12. Fixation map of the learning stage calculated across all participants and probe conditions 

without the first fixation. 

 

The statistical fixation map reveals significant hotspots on each of the 6 positions 

where the letters could appear. It also shows an upper-field bias. 

Figure 13 shows the fixation pattern during the delay (period 2), regardless of the 

probe correctness or the participant group.  

 

Figure 13. Statistical fixation map for the delay period (empty screen) 
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During the delay, no information was presented on the screen. The statistical fixation 

maps revealed central fixations with an upper-field bias and no effect of the probe or the 

group of participant. 

 

Interestingly, the fixation maps were different for low- versus high-checkers in the 

third time period when the probe was incorrect. During the third period, the empty grid was 

presented and the participant had to indicate the location of the probe. The hotspots, at the top 

of the fixation maps, indicate that the participants were gazing at the instruction (probe, the 

letter they had to localize). Looking at the incorrect probe is sufficient for a response from the 

low-checkers. In contrast, the high-checkers verify on the grid (which is empty during this 

period) before answering. 

 

 

Figure 14. Statistical fixation maps for low- versus high-checkers during the third period in the 

incorrect-probe condition. 
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Discussion 

We have developed an alternative method to analyze eye movement data: iMap. As 

previous approaches (e.g., Barrington, et al., 2008; Bruce & Tsotsos, 2009; Buchan, et al., 

2007; Harding & Bloj, 2010; Henderson, 2003; Kita, et al., 2010; Pomplun, et al., 1996; 

Tatler, et al., 2010; Torralba, et al., 2006; Wooding, 2002), this method does not rely on the 

subjective definition of ROIs; it simply does not require the use of ROIs. iMap offers some 

advantages compared to previous methods. Firstly, it relies on robust statistics to assess the 

significance of the effects. Secondly, it is coded as an editable toolbox for Matlab, freely 

available for use. 

To illustrate the functionality and flexibility of the toolbox, we have provided three 

examples. The results from those examples, coupled with the results from our previous work 

on face (Blais, et al., 2008; Caldara, et al., 2010; Jack, et al., 2009; Kelly, et al., submitted; 

Kelly, et al., 2010; Rodger, et al., in press) and scene processing (Miellet, et al., 2010) that 

are largely consistent with the Western Caucasian eye movement literature and the literature 

on East Asian observers (Kita, et al., 2010), show that the toolbox effectively captures eye 

movement sensitivity for the tasks at hand. In the first dataset, we initially compared the 

fixation strategies deployed by Western Caucasian (WC) and East Asian (EA) observers 

while learning WC and EA faces. This comparison resulted in significant fixation biases 

across observers. WC observers fixated the eye region more than EA observers, whereas EA 

observers fixated the central part of the face more in comparison with WC observers. 

Additional analyses also revealed similar fixation patterns for both type of stimuli (WC 

versus EA faces) or correct versus incorrect face recognition (see Caldara, et al., 2010). In the 

second dataset, observers had to detect and identify an animal in a natural visual scene. We 

showed iMap analyses for the natural digital images and digital images normalized (centred) 

for the position of the animal. This analysis showed significant fixation hotspots on the 
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search target. Additional analysis also revealed fixations on the targets despite large 

Blindspots and similar fixation patterns for EA versus WC participants (see Miellet, et al., 

2010), along with the flexibility of using a subset of fixations for generating the statistical 

maps. Finally, in the last dataset, we compared High- and Low-checkers observers in a 

memory task. This analysis showed that High- and Low-checkers deploy different strategies 

when confronted with ambiguous/erroneous information. 

iMap was inspired by fMRI methods and it suffers for very similar caveats, which we 

are going to address in turn: the choice of the width of the standard deviation of the Gaussian 

kernel used during the smoothing procedure and the normalization. 

The first parameter is clearly dependent on the experimental stimuli used in the eye 

movement study and the task at hand. In neuroimaging, this choice is perhaps easier, as the 

width of the Gaussian should not be larger than the brain region of interest, for instance: 3 to 

6 mm for the Full Width Half Maximum for a small region such has the Fusiform Face Area 

(e.g., Caldara & Seghier, 2009; Caldara et al., 2006; Rossion et al., 2003; Schiltz et al., 2006), 

or up to12mm for the Full Width Half Maximum for a larger region such as the insula (see 

Mutschler et al., 2007). The logic is similar for eye movement analyses. In our previous 

work, we were very careful to not “over-smooth” our data. We have used  Gaussian kernels 

with a standard deviation covering approximately 0.5° of visual angle (Blais, et al., 2008; 

Caldara, et al., 2010; Jack, et al., 2009; Kelly, et al., submitted; Kelly, et al., 2010; Miellet, et 

al., 2010; Rodger, et al., in press), which is roughly the size covering a fourth of the fovea 

(Hood & Finkelstein, 1986). We thought this was a sensible choice for the question we aimed 

to address: investigating cultural diversity in face processing. However, this could not be 

considered as the optimal parameter for analyzing any eye movement task. For instance, let’s 

assume we would like to investigate the role of the pupil size in the evaluation of 

attractiveness for a series of human face stimuli. In this case, it would be necessary to 
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significantly decrease the standard deviation of the Gaussian kernel in order to capture subtle 

differences in the fixation patterns falling in the pupil/eye region. As for neuroimaging, there 

is no a governing rule to define the size of the standard deviation of the Gaussian kernel. The 

experimenters need to evaluate and back up their choice with existing knowledge in the 

literature, and also justify their choices in respect to the stimuli, the equipment and the task 

used in the experiment. 

Similar to neuroimaging data that are recorded from brains of different participants, 

iMap requires a normalized space to perform statistical analyses. Without entering into the 

details, in fMRI there are several approaches used to normalize the human brains of different 

participants. The most commonly used approaches involve the realignment of the brains into 

the Tailairach (Talairach & Tournoux, 1988) or the Montreal Neurological Institute (MNI) 

standard template spaces. This process ensures that the comparison of voxels across 

participants is valid. Similarly, iMap requires that the fixation landscapes created for a 

particular condition are built on a homogenous space, such as a given fixation for one item is 

fully comparable to a fixation on the same location in another item. Therefore, to meet this 

requirement, the faces we used in our previous studies (Blais, et al., 2008; Caldara, et al., 

2010; Jack, et al., 2009; Kelly, et al., submitted; Kelly, et al., 2010; Rodger, et al., in press) 

and in the current examples, were normalized for their eye and mouth positions. In the 

example we provide for visual scenes, we demonstrated that is also possible to normalize 

natural scenes, by arbitrarily centring the object of interest in the middle of the scene (see 

Miellet, et al., 2010); note that the task used here was to find and identify the animal. 

However, iMap does not prevent the analyses of a unique input space, as long as many eye 

movement samples are collected to ensure the statistical validity of the analysis. 

It is worth noting that iMap has been developed to analyse where and when eye 

movements are performed by the observers. As illustrated by the previous examples, iMap 
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can extract (and compare) the fixation maps of each particular fixation (first, second, etc.). 

This descriptive analysis provides information on the time course of fixations. Recently, there 

have been various fruitful attempts to integrate these measures occurring over time and to 

extract the occurrence of statistically significant sequences in the scanpath used by the 

observers (e.g., Cristino, et al., 2010; Jack, et al., 2009). 

To sum up, iMap can analyse eye movement data with a robust data-driven approach 

that generates statistical fixation maps. As with every novel method, we anticipate 

improvements in the near future arising from the feedback of potential users. We aim to keep 

the iMap method updated, and will freely provide new versions of the Matlab toolbox code 

online. We believe that various approaches and methods are necessary in any scientific 

discipline, allowing researchers to use the more appropriate method to answer the question at 

hand. We hope that users will help us on improving iMap and eventually on building bridges 

with other data-driven Matlab-based toolboxes for eye-movement analysis. 
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