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Figure 1: This table shows samples generated using our algorithm, by varying the density difference parameter—the difference between the
actual density and the rest density in SPH. From left to right the spectrum transitions from low effective Nyquist Frequency and oscillation to
high effective Nyquist Frequency and oscillation. Our sampling method generates various blue noise profiles at 10000 points per second.

Abstract

We propose a novel algorithm for blue noise sampling inspired by
the Smoothed Particle Hydrodynamics (SPH) method. SPH is a
well-known method in fluid simulation – it computes particle dis-
tributions to minimize the internal pressure variance. We found
that this results in sample points (i.e., particles) with a high quality
blue-noise spectrum. Inspired by this, we tailor the SPH method for
blue noise sampling. Our method achieves fast sampling in general
dimensions for both surfaces and volumes. By varying a single pa-
rameter our method can generate a variety of blue noise samples
with different distribution properties, ranging from Lloyd’s relax-
ation to Capacity Constrained Voronoi Tessellations (CCVT). Our
method is fast and supports adaptive sampling and multi-class sam-
pling. We have also performed experimental studies of the SPH ker-
nel and its influence on the distribution properties of samples. We
demonstrate with examples that our method can generate a variety
of controllable blue noise sample patterns, suitable for applications
such as image stippling and re-meshing.

CR Categories: I.4.1 [Computer Graphics]: Digitization and Im-
age Capture—Sampling;

Keywords: blue noise sampling, smoothed particle hydrodynam-
ics, surface sampling, Fourier spectrum.

1 Introduction

Blue noise sampling is a well-known technique useful in many
graphics applications, such as image synthesis, physically-based
simulation, non-photorealistic rendering, and geometry processing.
It generates sample points that are stochastic yet evenly dispersed
in the spatial domain. Fourier spectrum analysis shows that the
spectral energy of such sample points is largely absent in the low-
frequency region, while evenly spread in the high-frequency region.
This ‘blue noise’ property turns out to greatly benefit anti-aliasing,
and the sample patterns are also visually pleasing, leading to its
popularity in the aforementioned applications.

Beginning with the first dart throwing algorithm [Cook 1986;
Mitchell 1987], various methods have been proposed to generate
samples with blue noise property, such as Lloyd relaxation [Lloyd
1982], Poisson disk sampling [McCool and Fiume 1992], half-
toning [Ulichney 1987], Capacity Constrained Voronoi Tessella-
tions (CCVT, [Balzer et al. 2009]), the kernel-density model [Fat-
tal 2011] and tiling [Wachtel et al. 2014]. Others have proposed
methods to analyse and characterize the distribution properties of
samples in various domains [Dippé and Wold 1985; Wei and Wang
2011] and their anti-aliasing properties [Heck et al. 2013; Subr and
Kautz 2013].

One limitation of classic blue noise methods is that they are difficult
to steer or even vary the distribution properties of the generated
samples. For example, samples generated using dart throwing have
a characteristic blue noise profile, but it is unclear how to modify
or adapt the method to generate samples with a different profile.
The ability to control the spectral profile is important since different
applications may perform better with alternative sample patterns.

Recently, several techniques have been proposed to generate sam-
ples with user-specific spectral profiles [Zhou et al. 2012; Heck
et al. 2013; Wachtel et al. 2014]. These techniques are flexible and
can generate samples with a range of different distribution proper-
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ties. However, they are typically slow to compute and difficult to
extend to general sampling domains such as surfaces and volumes.

In this paper we propose a new sampling method using a well-
known fluid simulation method – Smoothed Particle Hydrodynam-
ics (SPH). It computes particle distributions to minimize the inter-
nal pressure variance. Experiments show that this results in sample
points with a high-quality blue noise spectrum. Our contributions
are as follows:

1. We present a novel blue noise sampling method inspired by
SPH. Our method is fast, easy to parallelize, and can produce
samples with a variety of different blue noise profiles, ranging
from Lloyd’s relaxation to CCVT samples.

2. We extend the method to support general domain sampling
(including surfaces and volumes), as well as adaptive sam-
pling and multi-class sampling.

3. Using our framework enables a continuous trade-off between
the Nyquist frequency and oscillation. Through experimenta-
tions we also evaluate the SPH kernel and its influence on the
distribution properties of samples.

Finally, we demonstrate the use of our method applied to popular
problems such as image stippling and re-meshing.

2 Related work

Blue Noise Sampling. One of the earliest blue noise sampling al-
gorithms is the ‘dart throwing’ method, which generates random
samples with minimum distance constraints [Cook 1986; Mitchell
1987]. The original algorithm is computationally expensive, and
difficult to precisely control the number of samples. Since then,
many alternatives have been proposed to improve the performance
of dart throwing [Wei 2008; Guo et al. 2015].

Relaxation–based methods introduce additional topological infor-
mation into the point pattern, making it easier to precisely control
the number of samples and improve the spectrum properties. A
well–known approach in this class is the Lloyd’s method [1982],
also known as Voronoi relaxation, firstly introduced to computer
graphics by McCool and Fiume [1992]. Despite its popularity, the
produced sampling suffers from too much regularity which causes
aliasing problem for intended applications.

Balzer and coworkers [2009] presented a variant of Lloyd’s method
with capacity constraints (CCVT), which solved the regularity is-
sue. However, CCVT is considerably more expensive to compute,
as it needs to preserve the capacity constraints at every iteration
step. Fast CCVT [Li et al. 2010] increased the speed while still
maintaining the basic discrete sampling technique. More recently,
Xu et al. [2011] proposed Capacity-Constrained Delaunay Triangu-
lation (CCDT), replacing the Voronoi cells of CCVT with Delaunay
triangles on the same sites to avoid the dual problem. De Goes
et al. [2012] modelled CCVT as a constrained transport problem.
Similarly Capacity–Constrained Surface Triangulation (CCST) [Xu
et al. 2012] extended CCDT to allow for surface sampling with sur-
face area constraints. Compared with CCVT-like methods which
focus on one kind of sampling pattern, our method provides control-
lable sampling pattern and can provide better trade-off between ef-
fective Nyquist Frequency and oscillation with a much faster speed.

Using a kernel density model, Fattal [2011] proposed a new sam-
pling algorithm with excellent blue noise characteristic and linear
time complexity. His method introduced a ‘randomness’ param-
eter to avoid hexagonal patterns. However, it is not capable of
varying the samples’ distribution properties. Our method, in con-
trast, allows users to choose the desired blue noise patterns with the

change of one parameter. Although we both use kernel functions
to define the density, the density in SPH implicitly considered the
volume, and the use of pressure term ensures the volume preserva-
tion. This is analogous to the capacity constraint in CCVT, and thus
our method naturally avoids hexagonal patterns without using the
‘randomness’ parameter. In addition, Fattal’s method changes the
number of samples dynamically to match the points density with
the target density, resulting in difficulties of controlling the exact
number of samples. Our method, on the other hand, allows user-
specified number of samples.

Stochastic Sampling with Controllable Spectrum. A limitation
of classic blue noise sampling methods is that they are difficult
to steer or even vary the distribution properties of the resulting
samples. The ability to change the distribution property is im-
portant as different applications may call for different sample pat-
terns. In [Zhou et al. 2012; Öztireli and Gross 2012], gradient-
based methods were presented to generate samples with general,
user-specified spectral profiles. Wachtel et al. [2014] proposed
a tile-based method to achieve the same capability. To improve
stochastic integration, other research has proposed blue noise with
controlled bias, variance [Subr and Kautz 2013] and aliasing [Heck
et al. 2013]. These methods are flexible, but many of them are ex-
pensive to compute, and it’s not clear how to extend such methods
to general sampling domains such as surfaces and volumes. Our
method is focused on generating a variety of blue noise samples,
controllable with one parameter. We analyse the trade-off between
effective Nyquist frequency and oscillation in the Fourier power
spectrum for our method. In addition, our method can be easily
extended to surface sampling and volume sampling.

Smoothed Particle Hydrodynamics (SPH). SPH was originally
introduced for the simulation of astrophysical problems [Gingold
and Monaghan 1977], with its first application to free surface flows
by Monaghan [1994]. In the last two decades SPH has enjoyed
popularity as one of the key methods for fluid simulation [Akinci
et al. 2012; Adami et al. 2013; Ihmsen et al. 2014b]. The localised
nature of the simulation naturally lend themselves to parallel imple-
mentations, which greatly improves performance of intensive fluid
computations [Harada et al. 2007; Hérault et al. 2010] and result-
ing in more accurate simulations. There are few fluid papers re-
lated with sampling idea. Adams et al. [2007] proposed adaptive
SPH. De Goes et al. [2015] related SPH model to a power dia-
gram based CCVT energy solver. Both methods applied to fluid
simulation without considering the sampling properties of the point
distribution.

We used the standard SPH model to demonstrate the fundamen-
tal idea, and simplify the evaluation and exposition of our method,
as it is the first application of fluid simulation to this problem do-
main. Alternative formulations of particle–based fluid [Solenthaler
and Pajarola 2009; Ihmsen et al. 2014a; Macklin and Müller 2013]
allow the simulation to run with larger time steps through greater
stability but at a higher cost per step. While these methods have the
potential to improve computational performance, they could also
lead to slow convergence as the number of points increases since
they all used Jacobi-style iterative methods [Macklin and Müller
2013]. We would like to investigate the usage of these schemes as
future work.

3 The Core Idea

SPH is an interpolation method for particle systems. The concept of
SPH in fluid simulation is to interpolate fluid quantities at arbitrary
positions and to approximate the spatial derivatives with a finite
number of sample positions [Ihmsen et al. 2014b]. SPH itself is
a process which forces the density to approach the rest density by
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minimizing the pressure difference between points [Müller et al.
2003]. This explains why in the regions with a smooth flow field
SPH particles are uniformly distributed [Adami et al. 2013] – which
provides an intuition for its use in generating blue noise samples.

3.1 The Basic Algorithm

In SPH [Monaghan 2005], a scalar quantity Ai at location xi is
approximated with a set of neighboring points j at xj using radially
symmetrical smoothing kernels Wij :

Ai =
∑
j

mj

ρj
AjWij (1)

Wij =W (xi − xj , h) (2)

where mj is the mass of point and ρj the density. The kernel satis-
fies

∫
W (x, h)dx = 1 and W (x, h) = 0 when ‖x‖ > h. Here h

as a smooth radius defines the neighbourhood size.

Following Equation 1, the point density can be represented by:

ρi =
∑
j

mjWij (3)

We know that the relationship between the mass and the density can
also be written as:

ρi =
mi

Vi
. (4)

where Vi is the volume. Notice that the volume of points will be
the same if the density of points is the same (assuming the mass is
the same for each point).

The pressure force is computed using spatial derivatives by apply-
ing SPH rules to the Navier-Stokes equation [Girault and Raviart
1986]:

Fpres
i = −mi

∑
j

mj

(
pi
ρ2i

+
pj
ρ2j

)
∇Wij (5)

where p is the pressure calculated directly from density:

p = k(ρ− ρ0), (6)

where ρ0 is the rest density, k is a gas constant. The pressure
force is created whenever there is a pressure difference and it acts in
the direction from high pressure to low pressure along the negative
pressure gradient.

Equation 5 introduces a spring-like behavior to the pressure calcu-
lation: while a density higher than the rest density produces a posi-
tive pressure that pushes the points away, a lower density will result
in a negative pressure and brings the points together. As such, the
pressure term aims to equalize the density differences throughout
the fluid. For blue noise sampling, to avoid the attracting pressure
forces we adopt the same concept with fluid simulation and clamp
the negative pressure to 0 in each iteration.

The pressure forces move the points towards the density center. The
density center is actually the mass center according to the definition
of the density. This idea is consistent with Lloyd’s algorithm which
moves the points towards the center of the cell and converges to
equal area, while SPH converges to equal density.

If a point is inserted at a density center where there is no density
difference, the pressure force returns to 0. This implies in an equi-
librium the pressure and density will be identical everywhere, thus
the same volume (capacity) is achieved according to Equation 4.

This implicitly matches the capacity-constraint in CCVT. However,
we don’t need to guarantee the same capacity (volume) in every it-
eration in SPH — instead the SPH algorithm automatically reaches
the same capacity (density) in convergence which guarantees the
quality of SPH sampling.

When using SPH for fluid simulations a viscosity force is included
to synchronize the velocity of all particles. In the sampling context
the smooth dynamic flow of a simulation is irrelevant: instead we
want the samples to settle with 0 velocity as quickly as possible.
Since SPH is a force driven solver, without viscosity points easily
overshoot. In our method, a damping coefficient δ is applied to
the velocity, achieving an equivalent behavior to viscosity but with
considerably better performance. The damping coefficient plays a
similar role to the viscosity coefficient: it affects how quickly the
particle reacts to the pressure. We’ve found δ = 0.9 works well in
our experiments.

3.2 Convergence

We consider the sampling to have converged when the point dis-
placement ‖x′−x‖ is less than ε, where x′ is the updated point po-
sition. We set ε = 0.01 d, where d is the average distance between
adjacent samples which can be approximated by d = n

√
V/N for

n-dimensional sampling.

Upon convergence, the points have the following properties:

1. All points have approximately the same density, i.e.
∀i, j, ρi ≈ ρj . Notice that this does not imply point density
reaches the rest density.

2. The pressure force of all points reaches zero, i.e. ∀i, Fpres
i =

0.

The first property means there is no density difference among points
and the volume of the points are the same (surface area in 2D).
Combining this with Equations 5 and 6, under the setting of con-
stant point mass, the second property can be written as:

Fpres
i = 0 ≈ −2m2k (ρi − ρ0)

ρ2i

∑
j

∇Wij (7)

The above equation implies that upon convergence, for any point i,
one of the two following conditions must stand:

1. ρi = ρ0;

2.
∑
j ∇Wij = 0.

Notice that in practice those two conditions are not strictly satisfied
since in implementation the algorithm stops when point movement
is small enough. There is a trade off between those two conditions,
and its effect will be discussed in Section 5.1. When the first condi-
tion is satisfied for all points with a smooth kernel, we can assume
that the density is approximately the same in the whole domain, or:

∀x, m
∑
j

W (x− xj , h) ≈ ρ0 (8)

The condition of
∑
j ∇Wij = 0 actually asks for all the forces

acting on a sample to be symmetrical, the points in this case will
favor a regular distribution — hexagonal pattern. The results are
very similar with the fully-converged Lloyd’s relaxation, shown in
Fig. 2. To avoid the regularity artifacts, we meet the condition of
ρi = ρ0, rather than

∑
j ∇Wij = 0.

When SPH reaches the stable state in a free-surface fluid simula-
tion, the pressure tends towards 0. In sampling context, the user
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Figure 2: Using our SPH sampling method to simulate the Lloyd’s
relaxation profile. This regular hexagonal distribution results from
the convergence condition of

∑
j ∇Wij = 0.

controls the number of the points, so we cannot guarantee the den-
sity equals to the initial rest density. Therefore when the distri-
bution converges, the difference between the actual density and
the rest density will tend towards a constant. Note that this con-
stant may not be 0, in which case the points are under high pres-
sure. If we assign the rest density close to the actual density of all
points, most points will quickly converge with ρi = ρ0 rather than∑
j ∇Wij = 0. In this case the resulting point distribution will

be more likely to form tetragons, heptagons or pentagons — with
similar results to CCVT — as demonstrated in Fig. 3.

Discussion. The choice of kernel function affects the accuracy of
the summation [Ihmsen et al. 2014b]. For the sampling example in
Section 4 and Section 6, we use the standard kernels of Müller et
al. [2003]. The use of alternative kernels is discussed in Section 5.2.

4 SPH Sampling and Implementation

We initialize the points as white noise within a given boundary.
Each sample is modeled as an SPH particle, which carries associ-
ated properties, e.g. position, velocity, density and pressure. We run
SPH over all the points, with the acceleration of the points obeying
Newton’s third law ai = Fpres

i /mi. Fig. 4 shows the SPH sam-
pling within a 2D bunny shape. Note that in the sampling context,
gravity is not needed.

4.1 Surface and Volume Sampling

In SPH, points are relocated to achieve the same density within the
sampling region. However, due to the insufficient sampling along
the object boundary the points on the boundary become highly dis-
ordered, as shown in Fig. 5(a).

4.1.1 Correction Force

The net forces push the points along the boundary in the direction of
the boundary normal. We therefore need a correction force which
allows the boundary points to relax onto boundary without being
pushed outwards. To allow points to move freely along the bound-
ary, we can counteract the force in the normal direction, only keep-
ing the force along the tangential direction:

Fsurf
i = −n(n · Fpres

i ) (9)
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Figure 3: Using our SPH sampling method to simulate the CCVT
profile. This distribution results from the convergence condition of
ρi = ρ0.

This correction force ensures that points near the boundary remain
on the boundary of the object, leading to a better quality surface
sampling. This principle is also applied to the velocity of points
on the boundary, counteracting the perpendicular component of the
velocity.

(a) boundary (b) initial samples (c) converged samples

Figure 4: Sampling the interior and boundary of a 2D bunny shape
using our SPH-based method. The color visualizes the density
value at each point, from high (red) to low (blue).

Normal Calculation. Due to the insufficient sampling around the
boundary, density changes dramatically for points on the boundary.
Therefore we can calculate the normal for the surface points from
the gradient of the density [Müller et al. 2003]:

n = −
∑
j

mj

ρj
∇Wij (10)

The resulting normal points from the high density to the low den-
sity, out the volume.

4.1.2 Cohesion Force

As we do not adjust density of boundary points, the boundary will
attract more points to compensate the density loss, leading to a more
dense sampling on the surface (shown in Fig. 5(b)). With only the
correction force, once points are on the surface they cannot leave –
potentially causing discontinuities between surface points and inte-
rior points. For this reason we introduce an additional force which
adjusts the density difference between surface points and interior
points.

We use the surface tension model of Akinci et al. [2013] which
contains cohesion and surface area minimization terms. As our
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(a) No correction (b) +corrective force (c) +cohesion forces

Figure 5: In (a) the boundary points are irregularly spaced after
sampling. In (b), the points are more relaxed after adding the cor-
rection force, but the sampling rate is much denser than the interior.
In (c) both correction and cohesion forces are applied, and the re-
sulting boundary samples are coherent with the interior samples.

sampling model defines the surface area beforehand (unlike free
surface fluid), the surface area minimization term does not affect
our results. We only apply the cohesion force:

Fcohe
i = −γmimjKijWcohe(|xi − xj |)

xi − xj
|xi − xj |

(11)

where γ is surface tension coefficient, Wcohe is the spline function
defined by Akinci et al. [2013], and Kij is a symmetric correction
factor defined as Kij = 2ρ0

ρi+ρj
.

This cohesion force is applied to both interior and surface points.
For interior points the cohesion force is almost the same everywhere
as it converges. Surface points with smaller density have largerKij

due to the lack of neighboring samples, which amplifies the cohe-
sion forces of boundary points. The effect of this force is demon-
strated in Fig. 5(c). Note also that the corrected surface sampling
refines the points near the boundary which have boundary points as
neighbors.

Discussion. Our method for surface and volume sampling en-
sures that the surface points are exactly on the surface and also en-
sures the consistency between surface and volume sampling. Most
boundary correction methods in SPH do not guarantee the particles
to converge exactly on a fixed boundary, e.g., [Akinci et al. 2012;
Akinci et al. 2013], therefore we introduce the correction force.
Schechter et al. [2012] sampled both the interior and the surface,
using an initial surface sampling as seeds to sample the volume.
Our method solves both surface and volume sampling at the same
time, reducing algorithmic complexity and computation overhead.
Unlike the density of the ghost particles in Schechter and Bridson
[2012], the density of the surface samples in our method does not
need extra treatment, since they only receive forces tangential to
the surface. The full method of volume and surface sampling is
provided in Algorithm 1.

4.2 Surface Sampling

Our method is also suitable for surface sampling without the inte-
rior points. We achieve that by only using the correction force and
replace the distance metric with geodesic distance.

Samples are initialized on the surface. We then run SPH for all
surface samples, calculating Fsurf for each sample. Instead of re-
stricting the points within the object, we constrain the points to only
move on the surface. Therefore within every time step of the SPH
process we need to map the samples back onto the surface. To cal-
culate the geodesic distance, we apply the light-weight algorithm
of Bowers et al. [2010], which approximates the geodesic distance
using normal information. The normal is calculated according to
the distance field. The full algorithm is shown in Algorithm 2.

Input: Initial Random Sample Set Po, Boundary Level set L,
Sampling number N , count i = 0

Output: Blue noise samples P
while not converged do

for i = 0 to N do
calculate ρ;

end
for i = 0 to N do

x,v← the position and velocity of current point
if x is on the surface then

n← calculate normal
a← Fpres + Fcohe + Fsurf

else
a← Fpres + Fcohe

end
Integrate a to get velocity v′ and position x′

Apply velocity damping v′ ← δv′

if ‖x′ − x‖ > ε then
if x′ is within L then

x← x′

v← v′

else
v← v′ − n(n · v′)

end
end

end
end
Algorithm 1: The SPH sampling algorithm for interior and bound-
ary points.

As we discussed in Section 5.1, our algorithm can also generate
surface samples with a variety of blue noise properties, including
distributions similar to CCVT. In Fig. 6 we compare our surface
sampling results with Poisson disk sampling of [Bowers et al. 2010]
on a sphere. Our samples exhibit uniform distributions similar to
the CCVT profile. In Fig. 7 we demonstrate a surface sampling
on a bunny model and compare the Differential Domain Function
(DDF) [Wei and Wang 2011] with that of 2D CCVT [Balzer et al.
2009]. The results look qualitatively similar – the difference is
mainly due to the geodesic distance approximation when evaluat-
ing surface DDF.

Another interesting property of our algorithm is that samples im-
plicitly distribute along ridges and valleys on the mesh. This is be-
cause in high curvature regions, points will be automatically pushed
outwards along the normal, attracting samples to regions of high
curvature. This effect is actually beneficial for many sampling

(a) [Bowers et al. 2010] (b) Ours with CCVT profile

Figure 6: Comparison of Poisson disk surface sampling ([Bowers
et al. 2010]) and our method.
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Input: Initial Random Sample Set Po, Boundary Level set L,
Sampling number N , count i = 0

Output: Blue noise samples P
while not converged do

for i = 0 to N do
calculate ρ;

end
for i = 0 to N do

x,v← the position and velocity of current point
n← calculate normal
a← Fpres + Fsurf

Integrate a to get position x′ and velocity v′

Apply velocity damping v′ ← δv′

Map x′ to the surface position x′surf
if ‖x′surf − x‖ > ε then

x← x′surf
v← v′

end
end

end
Algorithm 2: The SPH sampling algorithm for surfaces.

applications such as rendering and remeshing, capturing high fre-
quency features on the mesh. Its application will be discussed in
Section 6.3.

(a) (b) (c)

Figure 7: Surface sampling of a bunny model. Fig. 7(a) visual-
izes the samples. Fig. 7(b) shows the Differential Domain Function
(DDF) of the bunny surface samples (averaged over 10 runs) and
Fig. 7(c) shows the DDF of the CCVT method [Balzer et al. 2009],
both calculated using the method of Wei and Wang [2011].

4.3 Adaptive Sampling

Adaptive sampling is achieved by applying a distance field scale
s(x) to the sample properties. As in previous work [Wei and Wang
2011; Zhou et al. 2012], the distance field in 2D can be calculated
from the intensity image I(x) as s(x) = 1/

√
I(x), or in 3D it

can be defined as the inverse of the size function. The unwrapped
distance between two points now becomes:

s̃(xi,xj) =
2(xi − xj)

s(xi) + s(xj)
(12)

Which is then used in the kernel functions in Equation 2:

Wij = W (s̃(xi,xj), h) (13)

As we increase the scale, the kernels will cover larger regions. In
equilibrium, to keep a similar density ρ as defined in Equation 3,
the total number of points (and their distribution pattern) in the

(a) [Fattal 2011] (b) Our method

Figure 8: In (a) and (b) we show the result of Fattal [2011] and
our method respectively.

large kernel region shall remain similar to those with smaller scale.
As a result, points will become more sparse in high scale regions
and denser in low scale regions. The update of the sample position
therefore needs to correspond to the distance field scale as well:

(x− x′)← s̃(x)(x− x′). (14)

Notice that when computing the convergence criterion, one still
needs to use the unscaled distance instead of the new one.

0.83% 9.05% 30.80% 59.32%
(a) Quadratic density ramp

0.9% 8.9% 30.9% 59.3%
(b) [Balzer et al. 2009]

29.6% 59.4%0.8% 10.2%
(c) [Fattal 2011]

29.6% 60.3%0.9% 9.2%
(d) Our method

Figure 9: Comparison of adaptive sampling of our method vs.
[Balzer et al. 2009] and [Fattal 2011]. Here the spatial density
function is defined using the quadratic ramp as show on the top.
Every example contains 1000 points, the percentage underneath in-
dicate the density ratios for each quarto of the ramp.

Image stippling is a common problem in Computer Graphics. In
Fig. 8 we compare our method with the work of Fattal [2011]. We
additionally compare the quality of adaptive sampling in Fig. 9 with
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Balzer et al. [2009] and Fattal [2011] using a quadratic ramp as the
scale function. In the coarse region, our method does not produce
as good results as in the dense region. It is because the choice of h
limits the influence range. If h is too large, it will cause the points
to blur the given density function.

5 Varying Kernel Functions

The choice of SPH parameters and kernels directly affect the sam-
pling patterns and distribution properties. In this section we evalu-
ate these choices experimentally.

5.1 Trade-Off Between Noise and Aliasing

Heck and coworkers [2013] characterized the blue noise sampling
property by its effective Nyquist frequency νeff and oscillation Ω.
νeff measures the size of the empty low-frequency region in its
Fourier power spectrum. A blue-noise sampling with high νeff can
effectively reduce the low-frequency noise. Ω measures the varia-
tion in the non-zero region of a blue noise spectrum. High oscilla-
tion would results in structured aliasing [Heck et al. 2013].

Ideally the perfect blue noise shall have high νeff with low Ω. But
unfortunately high νeff always comes with high Ω, thus users have to
make the trade-off between those two properties, or in other words,
the trade-off between noise and aliasing. While most of the existing
blue noise sampling methods are implicitly making such trade-offs,
there are few discussions about how to have direct control over it.
In our SPH sampling method, we can control the trade-off between
νeff – Ω by varying the density difference parameter.

The density difference is the difference between the rest density ρ0
and the actual density ρ̄ which is calculated as the average density
of all points. To have direct control of the density difference, we
can calculate ρ̄ and adaptively set ρ0 so that it is lower than ρ̄ by
the predefined density difference. For accuracy, only points not near
the surface count towards the average density since the density of
surface points are deficient.

The trade-off between νeff – Ω has to do with the convergence con-
ditions of our algorithm. As we mentioned before, there is a trade-
off between the two convergence criteria of the algorithm. When
we set ρ0 closer to ρ̄ upon convergence, the first convergence con-
dition will be more strictly satisfied. In this case, as is shown by
experiments (Fig. 3) samples will give lower Ω while compromis-
ing νeff.

When the density difference is large, the algorithm will adhere more
strictly to the second convergence condition and produce results
with high νeff, at the cost of high Ω as in Fig. 2. Notice that those
samples with hexagon patterns actually give the theoretical upper
bound of effective Nyquist frequency [Dippé and Wold 1985].

One can easily control the trade-off between νeff and Ω by tuning
the density difference, exposing a single user controlled parameter
for this purpose. A lower difference refers to both low νeff and
Ω, and a high difference gives samples with high νeff and Ω. The
experimental results are shown in Fig. 1. By changing the density
difference, we can see a smooth transition on the Fourier power
spectrum.

To directly see how the density difference affects νeff and Ω, we
also plot their relation in Fig. 10: providing a guide to achieve pre-
ferred νeff and Ω. Fig. 11 plots the achievable νeff against the cor-
responding Ω alongside other sampling methods for comparison.
This curve describes what are the νeff - Ω pairs that our sampling
method can achieve. The curve of SPH sampling passes through
Lloyd’s relaxation and is also close to the CCVT method, and can
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Figure 10: Effective Nyquist frequency and Oscillation changes as
we increase the ‘density difference’ parameter.

also give sampling patterns in a continuous range between these two
methods. Methods that are optimized for low oscillation with high
effective Nyquist frequency, such as the step function and single-
peak function [Heck et al. 2013] give a better trade-off than our
method, although these methods are not directly tunable.
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Figure 11: Trade-off between Effective Nyquist Frequency and os-
cillation. The blue line shows the range that our SPH sampling
method can achieve, by varying the ‘density difference’ parameter.
We compare with other methods by plotting their trade-off in the
same figure. Note that most of them can only generate one distri-
bution profile, therefore are represented by single dots. The data
source of these methods is from Heck et al. [2013].

The technique by Chen et al. [2012] also provides trade-offs of the
cut-off frequency and undulation, allowing intermediate results be-
tween CVT and CCVT. However their range of trade-off is limited
by the CCVT pattern, which corresponds to the (cut-off frequency)
region of 0.89–0.98 in Fig. 11. Our method, on the other hand,
can go way beyond the CCVT pattern and provides a much wider
range of sampling patterns, which allows for bigger trade-offs area
0.52–0.98.

As discussed above, the density difference significantly effects the
sampling quality. If one wants a specific trade-off between νeff
and Ω, we can easily achieve it by looking up the correspond-
ing density difference value. For convenience, we plot the den-
sity difference parameter against effective Nyquist frequency of the
2D domain, and fit it with a curve using the regression function
f(x) = aebx + cedx, with parameters a = 15.28, b = 1.154, c =
0.2565, d = 7.729, as is shown in Fig. 12. To achieve a specific
effective Nyquist frequency νeff, one just needs to set the corre-
sponding density difference ∆ρ = f(νeff).

5.2 Sampling with different kernels

In Table 1 we show how the sampling patterns are affected by the
choice of the kernel. The kernel gradient of the pressure force
(which controls the mapping from the density difference to the
force) is replaced by a box kernel, tent kernel, quadratic kernel
and an off-center double-peak kernel respectively. The results show
that the sampling patterns are significantly influenced by the kernel
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Figure 12: Plot of density difference against effective Nyquist fre-
quency and the fitted curve in 2D domain.

choice. The tent kernel and quadratic kernel give results with blue-
noise type distributions, but the other kernels generate distributions
that are more like red or green noise. This set of examples pro-
vide experimental studies, and further experiments and theoretical
analysis would be interesting to understand the exact relationship
between the kernel and the resulting distribution.
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Table 1: Experimental studies of how using different kernels affects
the distribution of the resulting samples. Here we show four kernels
with different shapes, the corresponding samples, and Fourier spec-
trum analysis results.

5.3 Kernel Size

According to the Nyquist-Shannon theorem, the sufficient sampling
rate is twice the bandwidth of a band-limited function, so the rela-
tionship between smooth radius h and average adjacent distance d
can be written as h ≥ 2d. Therefore, h should not be too small.

However if the object has features which are small enough, our
sampling method may fail if h is chosen too large. In Fig. 13, we
demonstrate the case of an object with an internal boundary. The
smoothing radius must be chosen to be smaller than the minimum
feature size, otherwise the sampling on the boundary will fail.

(a) (b) (c)

Figure 13: If the smooth radius is smaller than the feature size
(b), the interior boundary will be correctly sampled. Otherwise the
sampling on the interior boundary will be incorrect (c).

6 Results and Applications

6.1 Performance

Our method can be easily parallelized on the GPU. All experi-
ments below were performed on an Intel Xeon W3680 (8M Cache,
3.33GHz) with 8GB RAM. The SPH fluid simulation is imple-
mented in CUDA and executed on a GeForce GTX 560Ti with 1GB
onboard RAM. Our GPU implementation is based on the open-
source code of [Hoetzlein 2014]. We used a simple uniform grid
for the neighbour searching – further acceleration can be achieved
by more advanced data structures. Currently our method performs
slower than [Wachtel et al. 2014], but their method is difficult to
extend to general sampling domains.

The computational cost of our algorithm depends on the number
of samples. Specifically, the time complexity of our method is
O(N logN) for each iteration (whereN is the number of samples).
This is the same complexity as Lloyd’s relaxation method [Du and
Emelianenko 2006]. In the table below we show the computation
times of our method for generating 16384 samples with Lloyd and
CCVT profiles respectively, and compare them with previous work.

Lloyd’s profile CCVT profile
Fast CCVT [Li et al. 2010] - 35.75s

Lloyd’s relaxation 37.38s -
Our method 0.687s 0.952s

Other supported features of our method, such as surface and adap-
tive sampling, incur additional computational costs. In the table
below we show the computation times of different examples pre-
sented in this paper.

Example Samples Iterations Time(s)
Fig. 4 2000 49 2.04
Fig. 6 3000 94 2.85
Fig. 7 2500 90 4.79
Fig. 8 13000 159 2.93

Fig. 15 10000 312 4.77
Fig. 16 5000 223 6.71
Fig. 17 10000 445 9.10

6.2 Multi-class sampling

The natural property of mixing fluid using SPH gives rise to the ap-
plication of multi-class noise sampling similar to Wei [2010]. Wei
defined two methods for multi-class sampling – soft disk sampling
and hard disk sampling. Hard disk sampling cannot control the
number of points for each class, and while soft disk sampling avoids
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this problem, it is much more expensive to ensure the sample uni-
formity. In contrast, our method can accurately control the number
for each class without adding computational cost to our SPH single
sampling method.

Figure 14: Multi-class sampling without different class handling
fails to reproduce a blue-noise profile in each class.

We achieve multi-class blue noise sampling by giving different
points a different class ID {ci}i=0:C−1 for C classes of points. We
initially specify a number of samples for each class. If we run SPH
for all samples without special handling, the total set will be uni-
form blue noise, but not for individual classes (as shown in Fig. 14).

Take two classes sampling as
an example, if we want samples
within the same class to be uni-
formly sampled, the distance be-
tween samples in the same class
r1 and distance of samples in dif-
ferent classes r2 in 2D should
satisfy r1 =

√
3r2 in an ideal

hexagon pattern, shown on the
right. This implies that we can
achieve multi-class sampling by
simply modifying the concept of
adaptive sampling. We set the
scale for samples from the same classes as s1, the scale for sam-
ples from different classes s2 has to fulfill 3s1 = s2 in order to
achieve r1 =

√
3r2. The results are shown in Fig. 15
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Figure 15: SPH sampling produces samples which exhibits blue
noise distribution for each class as well as the total set.

(a) [Chen et al. 2013] (b) Our method

Figure 16: The surface of a bowl model remeshed using 5000 sam-
ples. With our method (b), points are implicitly attracted to regions
of high curvature. In contrast, artifacts appear in (a) using [Chen
et al. 2013], due to uneven sampling across the edges when sam-
pling rate is low.

This works for multi-
classes without the
need of building a
matrix for multi-class
as proposed in [Wei
2010]. A five-class
blue noise sampling
is shown on the right.
It should be noted
that while Wei [2010]
produces results that
are Poisson-disk sam-
pled, our method gives
results closer to that of
CCVT.

6.3 Remeshing

Our surface sampling algorithm enables us to achieve excellent sur-
face sampling with accurate control of the sampling number, which
can be used for remeshing. A good remeshing algorithm should
keep sharp features of the mesh while maintaining samplers uni-
formly distributed. Our algorithm can easily generate uniform sam-
ples due to blue noise property. As discussed in Section 4.2 our
algorithm will naturally place points in regions with sharp features.

In Fig. 16 we sample a bowl surface and mesh the result using the
Ball Pivoting algorithm [Bernardini et al. 1999]. Our algorithm pre-
serves the features of the bowl without the need for any additional
techniques such as sub-sampling in regions of high curvature [Chen
et al. 2013], thanks to the properties of SPH sampling described in
Section 4.2. We compared the surface remeshing results of Chen et
al. [2013] with ours. Our method turns out better on sharp feature
preservation. Further improvement of this result by adaptive sam-
pling based on surface curvature is a promising research direction.

6.4 Adaptive Volume Sampling

Adaptive volume sampling according to different features can be
very useful for a variety of applications, such as variational tetra-
hedralization and volume rendering. SPH sampling allows us to
choose a different size function based on the particular application.
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(a) (b)

Figure 17: The bunny model is adaptively sampled based on a size
function deduced using the medial axis [Adams et al. 2007]. This
results in dense sampling around the ears, tail and feet, and sparse
sampling in the body. The cutaway demonstrates that both the sur-
face and internal volume are adaptively sampled well. The radius
and color of each rendered particle are set according to the size
function.

In Fig. 17 we sample the interior and surface of the bunny adap-
tively by determining the feature size using the medial axis of the
manifold, similar to Adams et al. [2007]. The scale function of the
adaptive sampling is set according to the computed size function.
Other size functions, such as that of Alliez et al. [2005] are also
applicable.

7 Conclusion and Future work

We have presented a new sampling method based on Smoothed
Particle Hydrodynamics that is fast and provides controllable blue
noise spectral profiles. By adjusting the rest density we are able
to generate a variety of blue noise sample patterns with distri-
bution properties that range from Lloyd’s relaxation to CCVT.
The flexibility of SPH allows spatially-varying point density, lead-
ing to adaptive sampling. Our method supports multi-class blue
noise sampling and surface/volume sampling in general dimen-
sions. Moreover, SPH is easy to implement in parallel which en-
sures the efficiency of computation. We have also performed ex-
perimental studies of the choice of SPH kernel and its influence on
the resulting samples.

There are several directions for future research. The relationship
between the kernel and its resulting sample spectrum warrants fur-
ther investigation. An interesting problem is to study how to au-
tomatically compute, given a target spectral distribution function,
a kernel function that would lead to that target distribution. This
would make it possible to use our SPH-based method to generate
samples with a noise with an arbitrarily designed spectral by the
user. Another possible direction is to study how to improve the
trade-off between Nyquist Frequency and oscillation. The trade-off
of our algorithm is currently not competitive with those of ideal blue
noise or step blue noise and the single-peak blue noise discussed in
Heck et al. [2013]. Finally, we would like to try other fluid sim-
ulation frameworks for the blue noise sampling and to study their
trade-off tendency and potential performance improvement.
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HÉRAULT, A., BILOTTA, G., AND DALRYMPLE, R. 2010. SPH on
GPU with CUDA. Journal of Hydraulic Research 48, 1, 74–79.

HOETZLEIN, R. C. 2014. Fast fixed-radius nearest neighbors:
Interactive million–particle fluids. In GPU Technology Confer-
ence.

IHMSEN, M., CORNELIS, J., SOLENTHALER, B., HORVATH, C.,
AND TESCHNER, M. 2014. Implicit incompressible SPH.
IEEE Transactions on Visualization and Computer Graphics 20,
3 (Mar.), 426–435.

IHMSEN, M., ORTHMANN, J., SOLENTHALER, B., KOLB, A.,
AND TESCHNER, M. 2014. SPH fluids in computer graphics. In
Eurographics 2014 - State of the Art Reports.

LI, H., NEHAB, D., WEI, L.-Y., SANDER, P. V., AND FU, C.-W.
2010. Fast capacity constrained voronoi tessellation. I3D ’10,
13:1–13:7.

LLOYD, S. 1982. Least squares quantization in PCM. IEEE Trans.
Inf. Theor. 28, 2 (Sept.), 129–137.

MACKLIN, M., AND MÜLLER, M. 2013. Position based fluids.
ACM Trans. Graph. 32, 4 (July), 104:1–104:12.

MCCOOL, M., AND FIUME, E. 1992. Hierarchical Poisson disk
sampling distributions. In Proceedings of the Conference on
Graphics Interface ’92, 94–105.

MITCHELL, D. P. 1987. Generating antialiased images at low
sampling densities. SIGGRAPH Comput. Graph. 21, 4 (Aug.),
65–72.

MONAGHAN, J. J. 1994. Simulating free surface flows with SPH.
J. Comput. Phys. 110, 2 (Feb.), 399–406.

MONAGHAN, J. J. 2005. Smoothed particle hydrodynamics. Re-
ports on Progress in Physics 68, 8, 1703.
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